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Abstract 

It is standardpractice to use log-linear and log-log regression models in the analysis of workers 
compensation claim costs. While useful for the investigation of-proportional cost relationships, 
those transformed models are not well suited for predicting individual or even average claim 
costs. There is, however, enormous potential for using regression equations as a computational 
device for generating tabular reserves andfor benchmarking select sets of claim costs. This 
paper suggests that changing the assigned weights of observations in the determination of the 
logged cost model can improve its predicted values for conversion back to a dollar scale. The 
derivation of a spectfic reweighting formula is motivatedfiom the basic data$tting geometry of 
OLS regression. The technique is tested via a simulation and on a large database of actual 
workers compensation lost time claims. Both show a marked improvement in the claim cost 
estimates determinedfiom the modified regression equations. 



Introduction 

The use of log-linear and or log-log regression models is the preferred practice for the analysis of 
workers compensation insurance claim costs. The use of a logarithmic scale generally renders 
the cost distribution pattern more symmetric and less influenced by large “outlier” claims. It has 
the additional advantage of not predicting negative costs. Some of the more formal advantages 
are discussed in the background section below. While this typically results in better fits and 
higher R2 values, it is well known that the attempt to reverse the transformation by 
exponentiation usually fails to yield very useful dollar cost estimates. Indeed, on average the 
figures which result are smaller--sometimes spectacularly smaller-- than the original costs used 
to construct the model. As explained in the paper, this is a formal consequence of the geometric 
mean cost being less than the arithmetic mean. While the transformed models provide useful 
information on cost relationships, that transformation renders them of little value for directly 
predicting dollar cost estimates. 

The common sense explanation for this is that the high cost claims are effectively given less 
weight in a log-linear model. This is viewed as one of the prices to be paid for mitigating the 
influence of outlier claims. This paper pursues this somewhat further but from a simple 
geometric point of view rather than from the more challenging perspective of model specification 
error. It begins with the observation that cost data is typically presented with a “natural weight”. 
This may simply be one claim one vote within a claim population or, as is often the case, a 
weight inferred from claim sampling procedures or other information on the probability of claim 
occurrence. It is key that this “natural” quality in dollar terms need not be preserved under 
transformation of the data. In particular, this may happen when costs are recalibrated via the log 
function. This paper illustrates this and suggests that one practical way to deal with it is to 
reweight the data. Reweighting observations is a common practice in constructing regression 
models to temper the effect of outliers or more generally to deal with heteroscedasticity. What is 
presented here is a much more simpleminded application, one designed simply to shift the focal 
point of a logged cost model so as to make it better suited to producing dollar cost estimates. 

The task of generating tabular reserves is a natural application of multivariate analysis, provided 
the cost models yield suitable estimates when expressed in dollar terms. A single regression 
equation can be the formal equivalent of innumerable tables. Fitted cost equations have the 
potential to simultaneously account for many and varied claim characteristics and are 
computationally very convenient. For the most part, claims research has produced cost models 
geared toward determining proportional cost effects rather than dollar cost estimates. The ability 
to tune the regression equation to the task of estimating the average cost per case is therefore of 
practical importance. 

The paper begins with a background section dealing particularly with the treatment of categorical 
information and claim sampling in this context. The next section illustrates how linear 
regression focuses on the “center of gravity” and shows how alternative weighting schemes may 
be used to shift that focus. The following section presents some simple numeric facts and 
establishes the existence and essential uniqueness of an “exponential adjusted weight” which is 



shown, in the following section, to possess its own “naturalness” in the context of logged cost 
* estimation. The next two sections give examples. The first is simulation based and confirms 

some expected properties of alternative weights. The second example is of particular importance 
as it details the results of applying this technique to a large workers compensation lost time claim 
data base. The final section draws some conclusions and suggests an avenue of further study. 
An Appendix provides a SAS routine for determining the exponential adjusted weight, which 
the paper puts forth as a useful tool in the application of logged cost models. 

While much of this paper is devoted to properties of the exponential adjusted weight, this is not 
meant to imply that this is the correct choice for use with log-linear regression models. Indeed, 
the view is that weights correspond to perspectives on the data and no one perspective is best for 
this purpose. Additional perspectives--some via alternative weights--can provide insights for 
understanding the cost model. The work illustrates how transforming the data may dictate the 
need to consider such additional perspectives. 



Background 

Much of the information captured in workers compensation claim databases is “categorical” data, 
that is, it categorizes claims. For example, many databases include categories which identify the 
part of body injured or the cause of the injury. Some databases capture administrative categories, 
such as controverted cases or those for which the claimant has sought legal representation. Such 
categorical values are often incorporated into models designed to explain or predict claim costs. 
Usually this is in combination with numeric claim data, such as claimant age or pre-injury wage. 

One of the most robust sources of workers compensation claim information is the Detailed Claim 
Information [DCI] database of the National Council on Compensation Insurance, Inc. Introduced 
in 1979 and expanded in 199 1 to include 42 jurisdictions, the DC1 is a stratified random sample 
of lost time cases. The DC1 captures over 80 data elements on over 700,000 claims. For claims 
selected for the sample, an initial DC1 report is required 6 months after notification to the insurer 
with annual follow-up reports through claim closure (up to 9 reports). The categorical data 
elements include: the state of jurisdiction, the report sequence number and resolution status of 
the claim as of that report, the claimant’s gender and marital status, the part of body injured 
together with the nature and cause of the injury, whether the claimant was represented by an 
attorney and whether surgery or hospitalization was required, etc. The numeric data elements 
captured in the DC1 include: the date of the injury and where applicable the date of return to 
work, the age and wage of the claimant at the time of injury, an itemization of payments and case 
reserve for medical care and compensation for lost time, and loss adjustment costs allocated to 
the claim, etc. An empirical example is presented below which illustrates the findings using DC1 
data. 

Let x represent an observation, z = zX the corresponding claim cost and (xi} the values of a set 
of explanatory variables. This note considers log cost models of the form: 

y = In(z) = C pjxi + u 

where u represents the error term. The xi may be categorical or continuous and, if continuous, 
in its original scale (log-linear cost model) or transformed to a logarithmic scale (log-log cost 
model). 

On the continuous side, pre-injury wage and rate of compensation are important examples. 
Typically, dollar amounts like the pre-injury wage would be logged while that need not be the 
case for other continuous variables, such as the rate of compensation (periodic lost time 

compensation expressed as a percentage of the wage). Observe that the model parameter pi does 

not vary with claim cost Z, referred to as an assumption of constant elasticity (for xi in logged 
form). It is common to use the full wage (or log thereof) so as to capture utilization effects 
related with total income. This is done even though workers compensation benefit statutes 
impose maximum wage replacement levels. Their presence, it can be argued, compromises the 
assumption of constant elasticity. In any event, it is worth considering the implications on the 

use of the regression equation when {pi> is observed to vary with z. 



. The appeal of a log cost model in this context is, however, most easily recognized in the case of 

categorical variables. In the simplest case, suppose that the explanatory variable xi corresponds 

to a { yesno} condition, taking on the respective values { 1 ,O} . In terms of the original cost z, the 

model associates an adjustment factor of ai = e b. Most categories are better associated with 
such a proportional shift than to a particular dollar amount, as would occur if the logarithm were 
not used to transform the dependent variable of the cost model. While the above remarks on the 
shape of loss distributions is an important consideration, it is this observation together with the 
desire to avoid negative cost estimates which provides the strongest motivation for using 
logarithms to model workers compensation claim costs. 

As with continuous variables, there is the issue as to whether the adjustment factor ai associated 

with a characteristic variable changes with Z. Consider, for example, the characteristic whether a 
claimant is represented by an attorney. For most purposes it is clearly preferable to model the 
associated cost impact as a proportional rather than as a flat loading. Again there are 
countervailing statutory benefit considerations: some state statutes regulate attorney fees by 
imposing maximums or sliding scales relative to the settlement amount. 

The expense of collecting and storing detailed information on every claim may be prohibitively 
high, so oftentimes cost analyses resort to using claim samples. The efficiency of the claim 
sampling process may be further improved through stratification. In the case of the DC1 
database, state specific sampling ratios are used and stratification is applied so that the relatively 
simple and quickly resolved cases--for which many of the claim characteristics are missing or 
inapplicable--do not bog down the collection, storage and processing tasks. In this situation, a 
weight variable would be applied in deriving a cost model. In this study we use the notation 

oX(= aYX = coZX) to denote the weight assigned to the claim x based upon the sampling rules. In 

the case of the DCI, ox is determined as the inverse of the applicable state sampling ratio, 

selectively increased by a factor to account for stratification. The set of weights, {ox}, have the 
very desirable feature that, assuming the sampling is done correctly, the corresponding weighted 
arithmetic mean is an unbiased estimator of the average cost per case of lost time claims. 

Although not necessarily an integer, the value ox can be interpreted as the number of claims 

represented by the sampled claim X. When the set {co,} is this sampling weight, the sum total 

W= C ox provides an estimate of the size of the lost time claim population. Making the 

normalization pX = $ converts the weights into a probability density and reveals the weighted 

mean to equal the expected claim cost: 

E(z) = C pxzx = =xa;;x. 



Weights and Linear Regression--a Geometric Example 

The object of this section is to illustrate in very simple geometric terms how a choice of weight 
effects the regression equation and, by implication, how the intended application of a regression 
equation may suggest a choice of weight. This is done via a simple example: consider the set of 
points along the quadrant of a circle: 

y = f(x) = .Jx<lo-x> forxe {0,0.05,0.10,...,5.00} 

This defines the dependent variable y from a deterministic relationship with the single 

explanatory variable x. Observe that while y increases with x , its rate of change depends on its 

value. 

Three weights are considered, as depicted in Figure 1: 

Weight h : skewed toward left (smaller y) 

Weight /I,: uniform (independent of y) 

Weight P : skewed toward right (larger Y) 



For each weight, the regression equation 

j?=ct+px 
is plotted in Figure 2, along with the circle observation points: 

IFigure 2-Regression Lines/ 
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Recall that the center of gravity (x, y) lies on the regression equation. The following table 
shows how this relates with the choice of weight: 

Weight 

h 

P 

x Y B f’O0 
0.81 2.39 1.48 1.84 

2.50 3.91 0.72 0.80 

P 
4.19 4.88 0.27 0.22 

The regression equation behaves as would be expected when the weight shifts from left to right. 
This simple example illustrates how the choice of weight provides a means to customize the 

“slope” parameter p to a specified value of y = ji. 

Along with focusing the slope parameter to the center of gravity, OLS estimation is optimized at 
that point (i.e. for any fixed confidence level, the length of the interval about the point estimate 

determined from the regression equation is minimized at x = X--this applies whether the estimate 

is of a single observation or of an average). It follows that if a particular y value is of interest, an 
appropriate choice of weight may render the regression equation more suitable. If, for example, 

the largest values y = 5 were of greatest concern, p is the preferable of the three weights. 

The observations of this section are formal consequences of the data fitting properties of the OLS 
regression equation. It is independent of how well or poorly the linear model may be for the 

purpose of statistical estimation. Indeed, these remarks are of least interest when a linear model 
is well specified, since the choice of weight would then be expected to have a negligible effect 

upon the model parameter l3 . 



Numeric Relationships 

It is well known that the geometric mean is less than the arithmetic mean: 

for any set of N nonnegative real numbers {vi>. This section generalizes the above inequality 
and establishes the existence and essential uniqueness of a modified (reweighted) geometric 
mean which is useful in relating proportional effects with arithmetic means. The following 
lemma establishes the requisite inequalities. It is basically a first semester calculus exercise. 

Lemma: For h E (0, I] and T E [0, I] 
a) z+h-zh-hl-” 2 0 

(I-r)h 

b) h ~+(‘-z)k - z - h + hz 2 0 
Pr00f a) Fix z and define 

f(h)=z+h-Th-hl-” 

and note that 

-g = 1 - z - (1 - T)Z” = (1 - T)(l - h”) I 0 

because z 5 1 and h-’ 2 1. This implies that f(h) is decreasing on (O,l] and so 

establishing a). Note that the argument implies strict inequality for h, z E (0,l). 

b) Again fix z , define 

cm (I-T)h 

= T+(l-T)h 

and note that 0 I g(h) I 1. Also define 

h(h) = g(h)hg@)-’ 

Logarithmic differentiation of g(h) implies that 



Logarithmic differentiation of h(h) implies that 

dh 
dh= 

wvh(w(v(l-m)) I 0 
h 

since h I 1 a log(h) I 0 and all the other factors are 2 0. Since g(h) is increasing and h(h) is 
decreasing: 

h(h)> h(l)= g(l)1 g(l)-' = 1 -T = g(1) 2 g(h) 

Consider the function 

Logarithmic differentiation of the term hg@) combined with the above expression for $ and 

observation that log(h) 5 0 gives: 

$ = g(lpc”-’ + log(h)[hg@)-’ g(k)( 1 - g(h))] - 1 + T 

>g(h)h~(h)-'-l+~=h(h)-l+z~(l-~)-l+~=O - 

It follows that f(h) is increasing, whence: 

(1-q 

h_-z-h+aT=f(h)If(l)=l-z-l+z=O 

which establishes b) and completes the proof of the lemma. 

Let %+denote the positive real numbers, the following generalizes the relationship between the 
geometric and arithmetic averages to “weighted” averages. 



Propositon 1: For any {yi, o;ll I is N} c ‘%+, 

[I$!, y;i]h i &/c:, c!.Iiyj where MI= EE, COG 

PrOOf Induction on N. The case N = 1 is clear [(yy ’ ) 4 - - yt = 2~~1. It is instructive to do 

the case N = 2. By symmetry, we may assume that yt 2 y2 and replacing oi with $, we may 

assume that W= 1. Part a) of the lemma, with h = g and z = o 1 gives: 

ciIqy1 +ciQy2 =[z+?L-hz]yq 2x1-“yl =y;(hy,)‘-‘=y~‘y;* 
which establishes the case N = 2. Now proceed by induction. As before, we may assume 

n 
without loss of generality that W= 1. Letting W= 1 - CON, the induction hypothesis gives: 

Letting ZI = i cf,i’ yi and ~2 = YN, the case N = 2 and the above inequality combine to give 

which completes the proof. 

The fact that the weighted geometric mean is always less than the weighted arithmetic mean 
suggests that an alternative weight--one shifting more weight to larger values--may offset this. 
The simplest alternative is a weight proportional to the value itself. The following proposition 
shows that choice overcompensates: 

Proposition 2: For all {yi, cc& I i I N} c ‘%+ 

[II:, y~iyi]~ 2 $$!!, miyi where IN= CE, COG, V= I$!!, cl>iyi 

Pro@ The proof is again by induction. The case N = 1 is clear [yy’yl = yt = 2~~1. It is again 

helpful to do the case N = 2. By symmetry, we may assume that yl 2 y2 and, replacing o; with 

$ , that W = 1. Again letting h = E and z = LO 1, part b) of the lemma gives 

(I-T)h 

0.I 1 y1 + cO2y2 = [z + (1 - ‘G)h]yq I [k+(‘+]y1 

TYl WPYl -- 
= y;i(T-T)’ [hy, ] T$$L = ylv y2 v = ,yyly;*JQ,3 



’ which establishes the case N = 2. Proceed by induction. As usual, we may assume W = 1. Let 

lk = 1 - ci) N, i/ = V - 0 NYN , the induction hypothesis gives: 

A 

Let Z1 = r;v, ’ Z2 = YN and note that: Z1 W+ wNz2 = i+ ONYN = V. The above inequality and the 

case N = 2 give: 

WZ, @NZ2 -- 

=z,v zzv 2 k, +mNZ2 = v= 

completing the proof 

It follows that letting p = $Cwiyi we have: 

It is natural, then, to consider weights {ri> satisfying: 

It turns out that such equations determine an essentially unique set of weights. This is a corollary 
of the following: 



Proposition 3: For any F: ‘iR+ + ‘iR+ which is monotonic 
increasing and any {zi, u)ilzi I zi+l, 1 I i I A/} c ‘%+ 
there is a set {YiIl I ii IV}, uniquely determined up to 
a positive scaler multiple, such that 

c 21 YiWi) 

c:, Yi 

= F 

, IsksN. 

Proof I d t’ n UC ion on N, the case N = 1 being trivial. We may assume, without loss of 

generality, that W = CEI co i = I, o N > Oand that Z; < zi+l, 1 I i I A/ - 1 .Let 

&’ ojzj 
y2 =CEl aizi, yl = _N_l , 

then observe that y1 5 ZN_~ < ZN and so: 

y1 =(I -m&h +wvy1 <(I -wv)y1 +mz/v=y2 ~av. 
Since F is monotonic increasing, it follows that 

which enables us to define 

~(zw=o/2) 

a = ~(zw=o/1) 
E [O, 1) . 

By induction, there is a uniquely determined set { yil 1 I i I N - I} such that 

c :I Yif(Zi) 

$1 Yi 

= F 

’ 

1 IkSN-1, CEy’yi=a 

Setting YN= 1 -a E !JI+, we have TX:, yi = 1 = IX:, oi and 

XL, yiF(Zi) = EE!’ yiF(Zi) + (1 - CX)F(ZN) 

= & + (1 - @F(zN) = CXFO/I) + (1 - ~)F(zN) 



= F(zN) - ~[F(zN) - Fo/1)1= F(zN) - [WN) - Fo/2)1 

= F(y2) = F(C:, wizi) 

Observe that we in effect solved for 

w2)-RY1) 

YN = F(Z&F(yl) 

which establishes uniqueness and completes the proof. 

Corollary: For any {zi, UI~I 1 I is N} c 9X+, there is a unique 
set (yill I is A/} c !R+ such that 

1 

[I&q ] 
yi & _ yi _ x:1 aizi 

z:, wi 
,I <k<N andCf!,p=C~,oi 

PrOOJ Letting f(z) = log(z) in Proposition 3, there is a unique set{yil 1 I i I N} c !R+ such 

that: 

c:, yi = CAI, pi, ,I sk<N 

and the result follows by exponentiation. 

The set {ri> can be interpreted as a reweighting of (z;, co;> with the same total weight and which 
makes the reweighted geometric mean equal the original weighted arithmetic mean. This can be 
viewed as a weight shift designed to offset the effect of the logarithmic transformation and is 
accordingly referred to as the exponential adjusted weight. 

Letting z = ey, CO = 1 in the circle example of the previous section, Figure 3 shows the 

exponential weight y as a function of Z. 



Remark 1: The last line of the proof of Proposition 1 provides a recursive formula which can in 

practice be used to calculate the yi (refer to the Appendix). 

Remark 2: The potential degrees of freedom in the definition of a weight variable is large 

(= N, N - 1 if the total weight is specified). This was exploited in the derivation of the 

exponential weight y so as to impose constraints over an expanding series of cost intervals. It has 

been observed that the two geometric means determined using the sampling weight cu and using 

the proportional cost weight p are respectively less than and greater than the arithmetic mean 

cost CL. It is therefore natural to consider the 2-dimensional family of weights of the form: 

q=act> + bp, a,bdl+ 

Observe that the requirement C TJ = C p = C o = W removes a degree of freedom and forces 

b = 1 - a. This leaves 1 degree of freedom and suggests a closed form solution. Indeed, set 

Assume, to avoid degeneracy, that there are at least two distinct values of z with positive weight 

o = oz > 0. It has been shown that h < p I K which assures that 



a wP)-w~) 
= log(K)-log(h) 

is well defined. Setting q = ao3 + (1 - a)p, it follows that: 

This TJ differs from the exponential adjusted weight y as defined here. Indeed, in the example 

illustrated in Figure 3, y is clearly not a linear combination of o = 1 and p = 6. 



Properties of the Exponential Weight 

Letting a bar denote the weighted mean taken over the claim sample: 

U=O ji=ln(z) =Cf3jXj 

Regressions provide their best fit at this mean. Assume that the original set of weights (ox) is 
used in evaluating the log cost model. In dollar terms, therefore, it follows that the model 

parameters ( 0 .> , are optimized not at the original arithmetic mean but at the weighted geometric 

mean. Indeed, when exponentiation is used to convert the mean logged cost ji back to dollar 
terms: 

As point estimates, the factors oj = epj which the model associates with the explanatory 

variables are proportional adjustment factors applicable to the geometric mean 2. 

It is, however, the simple average cost per case which is the standard measure of claim severity. 
Geometric means, typically much smaller, do not have as straightforward a relationship with 
incurred costs. Indeed, claim costs are often decomposed into frequency and severity 
components with the severity component being a (weighted) arithmetic mean. Since the 

proportional effects may well vary with Z, the dollar size of the claim, it may be desirable to 
refocus the regression model to the higher arithmetic cost level. This paper proposes the use of 
alternative sets of weights--the exponential weight in particular--as a way to achieve this. 

Intuitively, the translation to logarithms has the effect of making claims more “equal”. In 
particular, the high cost claims have less influence in the mean. A natural correction to this is a 
scheme which assigns more weight to higher cost claims when evaluating the regression model. 
The simplest way to achieve this is to make the weight of an observation proportional to the 
dollar cost. Of course, the original sampling rules must not be ignored. This motivates the 

definition of an alternative set of weights ( ox}, referred to here as the proportional cost weight, 

which for each claim x0 is defined as: 

where the sums are over all claims and the ratio is imposed so that the total proportional weight 

equals the same total weight W as do the original set of sampling weights. 

The previous section shows that given any weighting of the original cost variable z there is a 
related exponential adjusted weight which can be assigned to the values taken on by the 

transformed dependent variable y = log(z). The main point is that the use of that alternative 
weight in determining the regression equation serves to optimize its fit to the data at a point 



corresponding to the usual mean cost per case. Indeed, the previous section established the 
* existence and essential uniqueness of this weighting and provides a practical means for its 

determination. This alternative weight { yX > , referred to as the exponential weight, is the weight 

related in the requisite way with the original sampling weight {ox > . Again holding the total 

weight W constant, among the defining properties is: 

,&z ZZX) = c Yxb$x) 

from which it follows that 

z= c oxzx 
W 

= exp(C YxWZd 
w ) = [Iw]f 

The previous section also established the relationships: 

which suggest that using the original sampling weight (ox} to evaluate the log cost model will 
produce a mean cost estimate which is biased downward, whereas use of the proportional cost 

weight { px > will overstate the mean cost. 

When the exponential weight ( yx > is used to evaluate the log cost model, it follows that: 

which implies that 

c YxXi Z = na~iwhereai=epiandcj= w . 

This, in turn, shows how the adjustment factors ai = e pi of the model then relate with claim 
severity. Indeed, the factors multiply together to make up an unbiased estimator of the average 

cost per case of the original claim population. The exponent ci is the exponentially weighted 

average of the explanatory variable Xi . 



Simulation Example 

Two independent random variables x2,x3 are generated. The variable x2 is a categorical variable 
satisfying: 

prob(x2 = 0) = 3 =prob(xz = 1) 

The continuous variable xs is generated to conform to a normal density (slightly truncated): 

x3 - N(log(40), $1 x3 E LO, 901 

The variable v is then generated also to conform to a normal density: 

v- N(2+?,3 

Define 

XI =WI =l,w~=x~,w~=ex~,z=ev+x~ andy=log(z) 

Three weights are defined on W simulated observations x = (XI , ~2, x3) according to the values 

taken on by z = zX . The first weight o is regarded as the “natural” sampling weight and is 

selected to be a uniform weight: ox = 1. The second weight y is the exponentially adjusted 

weight and the third weight p = pX = zX is the proportional cost weight. 

Two generic models are considered. Model A is a linear cost model included for simple 
comparison purposes: 

A: Z=?JlWl +q2w2+tj3w3 

while Model B is a log cost model of the type considered in this paper: 

Observe that the data has been simulated to approximate Model B (with PI = 2, p2 = i, and 

P3=1).Th f t e u-s goal is to determine the sensitivity of these models to the choice of weight. 
The second goal is to determine how the choices of weights and models fair at estimating the 

mean dollar cost Z, especially relative to the categorical explanatory variable ~2. The tables 
below show the parameter values from simulations of several population sizes. Standard errors 
are shown in parentheses. 

. 



Simulation of Regression Model A 

Weight 

1)2 259.884 258.33 1 243.405 242.5 14 241.057 

(26.730) (10.102) (2.993) (0.957) (0.302) 

r13 8.393 11.565 11.071 11.403 11.396 
(0.990) (0.345) (0.104) (0.033) (0.010) 

Adj R* 0.630 0.645 0.642 0.646 0.646 

z 485.88 525.12 522.07 520.71 521.27 

The negative values for the intercept term q 1 illustrate the problem of negative cost predictions 
by linear cost models. 



Simulation of Regression Model B 

Weight 

0 

vv= 1000000 

2.002 
(0.003) 

0.500 
(0.001) 

1 .ooo 
(0.001) 

0.709 

5.94 

2.024 
(0.003) 

0.501 
(0.001) 

1.002 
(0.001) 

0.709 

6.05 

2.063 
(0.003) 

0.500 
(0.001) 

1 .ooo 
(0.001) 

0.704 

6.15 

The truncation of x3 is observed to especially impact the intercept and, as one would expect, this 

impact is greater with a weight that is skewed toward higher (truncated) values of z. Even so, 
the results illustrate that when an OLS model is fairly well specified, like Model B, the choice of 
weight has little effect on the parameter values. 

The following three tables show the results of using the regression equations to estimate a mean 

value for z, the preferred severity measure, both overall and according to the characteristic x2. 
For model B there are two natural ways to do this. One is to first exponentiate individual 
predictions for y and then take their mean (using the natural weight co). Another is to first 

average the individual predictions for y (using the same weight as that used in determining the 

regression equation) and then exponentiate the result. On an overall basis, the combination of 

Model A and weight o guarantees complete accuracy. So too does Model B with weight y and 



the second method. The results are provided in the following tables. The choice of weight 
applies to the determination of the regression equations and to averages on the logged scale 
(average then exponentiate method). All actual and estimated mean costs are determined using 

the natural weight o . Observe that for Model B and weight o , the first method (exponentiating 
then averaging) yields a higher estimate than the second method--this is a consequence of the 
arithmetic weighted mean being greater than or equal to the geometric weighted mean: 

exponentiate then average average then exponentiate 
u u 

Model A Estimates 

Y O 276 278 312 314 318 323 319 323 319 323 

1 512 532 532 556 529 551 525 547 526 547 

All 397 407 421 434 424 437 422 435 422 435 

P 0 276 280 312 315 318 326 319 326 319 327 

1 512 551 532 578 529 571 525 567 526 568 

All 397 418 421 445 424 449 422 447 422 447 

Model B Estimates-Exponentiate then Average Metho - 



Model B Estimates-Average then Exponentiate Method 

1 512 544 532 576 529 570 525 567 526 567 

All 397 441 421 470 424 471 422 469 422 470 

As would be expected, use of alternative weight y or p makes little sense for Model A. Indeed, 
both those weights skew toward higher cost cases and result in an estimate which consistently 
exceeds the actual cost. In general, the size of the simulation serves only to stabilize the figures. 

When using the log cost Model B to estimate mean costs, CO consistently understates and p 
consistently overstates. This conforms to earlier observations. It is interesting to observe that 

the exponentiate then average method generates closer to actual estimates using either co or p . 

The key observation is that the exponential weight y yields essentially the same estimates under 
either method, always being within 1 of the actual. These observations hold both overall and for 

the two categories determined by the characteristic x2 . 

This simple but fairly generic simulation suggests that whether the mean is taken before or after 
exponentiating, the exponential weight provides a considerable improvement in the ability of the 
logged cost regression equation to provide average severity estimates. It also points out that 
pragmatically, despite issues like conceptual interpretation and handling outliers, a logged cost 
model is not always preferable to a linear cost model. 



Empirical Example 

The DC1 database is used to determine a logged model of incurred claim costs: 

y=CpiXi where y = log(z) and z =cost 

As in the previous section, three weights are considered.. The first weight o is the DC1 

sampling weight. The second weight y is the exponentially adjusted weight and the third weight 

p = px = zx i s th e proportional cost weight. The following table summarizes the results. The 
model includes 109 explanatory variables, 40 of which are state dummy variables and another 20 
which are industry group indicators not included in the table. Only two variables are continuous 
(log of pre-injury wage and log of claimant age at injury) the others are all {O=no,l=yes} 
characteristic variables. As above, the standard error of the coefficient estimate is shown in 
parentheses: 



Explanatory Variable 

Intercept 

Fatal or PT case 

Scheduled PPD case 

0 Y P 

Mean Coefficient Mean Coefficient Mean Coefficient 

1.000 4.645 1.000 5.482 1.000 6.842 
(0.044) (0.044) (0.044) 

0.004 0.960 0.012 1.365 0.03 1 1.238 
(0.052) (0.028) (0.017) 

0.079 0.770 0.133 0.515 0.177 0.27 1 
(0.013) (0.010) (0.008) 

Nonscheduled PPD case 0.030 0.742 0.053 0.497 0.075 0.252 
(0.019) (0.014) (0.011) 

Other PPD or lump sum award 0.032 0.867 0.053 0.612 0.071 0.342 
(0.018) (0.014) (0.012) 

2nd DC1 report basis 0.217 0.582 0.270 0.675 0.307 0.713 
(0.009) (0.010) (0.011) 

3rd DC1 report basis 0.055 1.258 0.108 1.381 0.174 1.361 
(0.018) (0.015) (0.013) 

4th DC1 report basis 



Amputation 0.011 0.234 0.015 0.196 0.019 0.188 
(0.033) (0.027) (0.023) 

Bum 0.020 -0.285 0.016 -0.011 0.017 0.467 
(0.035) (0.034) (0.030) 

Carpal tunnel 0.021 0.189 0.027 0.022 0.027 -0.145 
(0.027) (0.023) (0.021) 

Concussion 0.102 -0.252 0.089 -0.270 0.078 -0.348 
(0.014) (0.014) (0.013) 

Fracture 0.122 0.021 0.145 0.015 0.167 -0.001 
(0.014) (0.013) (0.011) 

Infection 0.021 -0.059 0.020 -0.089 0.018 -0.192 
(0.024) (0.023) (0.022) 

Laceration 0.08 1 -0.282 0.064 -0.292 0.046 -0.364 
(0.0 18) (0.018) (0.017) 

Cumulative injury 0.021 -0.050 0.022 -0.084 0.021 -0.2 15 
(0.025) (0.023) (0.022) 

IStrain I 0.496 1 -0.142 1 0.482 1 -0.118 1 0.471 I -0.154 I 
(0.012) 1 (0.011) 1 (0.010) 

Caused by bum 0.026 -0.315 0.021 -0.35 1 I 0.021 I -0.278 
(0.032) (0.030) (0.027) 

Caused by being caught 0.048 -0.183 0.048 -0.164 0.048 -0.080 
(0.019) (0.018) (0.017) 

Caused by cumulative exposure 0.041 0.138 0.046 0.008 0.043 0.109 
(0.021) (0.019) (0.018) 

Caused by being cut 0.048 -0.190 0.038 -0.204 0.029 -0.214 
(0.021) (0.021) (0.021) 

Caused by a fall 0.215 0.009 0.236 -0.03 1 0.259 -0.047 
(0.013) (0.012) (0.011) 

Caused by an auto accident 0.039 0.040 0.052 0.038 0.072 0.085 
(0.020) (0.017) (0.014) 

Caused by straining 0.362 0.008 0.340 -0.07 1 0.312 -0.139 
(0.013) (0.011) (0.011) 

Caused by striking 0.049 -0.167 0.044 -0.194 0.038 -0.207 
(0.018) (0.018) (0.017) 

ICaused by being struck I 0.087 1 -0.154 I 0.081 1 -0.155 I 0.077 I -0.109 I 
(0.016) (0.015) (0.014) 

N xxx 112,841 xxx 112,841 xxx 112,841 

Adjusted R2 xxx 0.533 xxx 0.583 xxx 0.563 

F-Value xxx 1,195.41 xxx 1,463.67 xxx 1,348.12 

Prob>F xxx 0.0001 xxx 0.0001 xxx 0.0001 

v 8.25 xxx 9.379 xxx 10.43 xxx 

z 11,840 xxx 35,089 xxx 81,109 xxx 



The following table summarizes the results of using the regression equations to estimate a mean 

value for z, the preferred severity measure, both overall and according to accident year. The 
same two methods are used as in the previous section: Method 1 exponentiates individual 

predictions for y and then takes their mean (using the natural weight o) while Method 2 first 

averages the individual predictions for y (using the same weight as that used in determining the 
regression equation) and then exponentiates the result. 

Again and as would be expected, o consistently understates and p consistently overstates. It is 
again interesting to observe that Method 1 generates closer to actual estimates using either 

weight oar p. The combination of Method 2 and the sampling weight estimates the average cost 
per case by the geometric mean, which grossly understates the severity measure. The 
combination of Method 2 and the proportional weight overstates the mark even worse. A key 

observation is again that the exponential weight y yields markedly better results with essentially 
similar estimates under either method. The best results are obtained combining Method 2 with 
the exponential weight. Indeed, the estimated cost is observed to fall within 1% of the actual, 
both overall (where equality is prearranged) and by accident year. 

Since the mean cost by accident year stays fairly close to the overall mean, the close to actual 
estimates with the exponential weight are not surprising. The following table is similar to the 
above but itemizes according to claim status. Open claims, on average, are more than double 
and closed cases only about half the overall mean: 



While the estimates are not as close to the actual as for accident year, the exponential adjusted 
* weight again does significantly better than the others. It is important to note that not only are 

those estimates closer to actual in dollar terms, but also in the relativity between open and closed. 
This indicates that the relativity varies with size of loss and a change in focus improves the 
logged cost regression severity estimates. 

This result provides strong empirical evidence that using either Method 1 or 2, the exponential 
weight provides a considerable improvement in the ability of the logged cost regression equation 
to provide estimates for workers compensation case severity. 



Conclusions 

When it is desired to use a log-linear or log-log cost model to determine aggregate or mean costs, 
use of the exponential adjusted weight in the regression may provide a practical way to 
significantly improve the estimate The adjustment is most useful when there is the concern that 
the model parameters may vary with the size of loss. It exploits the fact that the regression 
model affords its best prediction at the center of gravity of the weighted data. The idea is to 
select a weight which focuses the log cost model on the most appropriate severity measure. 
Typically that measure will be expressed in the original dollar units and equal the average cost 
per case (weighted by probability of claim occurrence). The technique also improves the result 
of exponentiating the log cost model equation to produce individual or average claim cost 
estimates. 

There is an evident asymmetry to the definition of exponential adjusted weight as defined here. 
This is due to the choice of working from smaller to larger costs. This “ascending” approach was 
arbitrary. One could equally well work in the other direction and this would result in a 
“descending” adjusted weight. It is easy to construct examples when the two differ. A weighted 
average of the two would provide a candidate for a more symmetric exponentially adjusted 
weight, but it is unclear whether that would add any value. 

While this paper emphasizes the value of considering multiple alternative weights, the results 
suggest the idea of an “optimal weight” (or measure) relative to a properly specified problem. A 
practical example is presented of how the application of the log function may be paired with the 
use of an alternative weight. In the case in point, the distortion from a change in scale (the log 
transformation) is offset by a change in the center of gravity (the exponential weight). The 
methodology clearly applies to a transformation by any strictly monotonic function. Any 
reasonably smooth transformation could be handled by restriction to intervals over which the 
function is strictly monotonic (intervals on which it is constant do not require any weight shift), 
being sure to maintain the original weight distribution among those intervals. It may be useful to 
generalize this into a “change of (weight) variable rule” for transforming the dependent variable 
of a linear regression. 



Appendix--SAS Routine to Calculate the Exponential Adjusted Weight 

The following SAS steps begin with a data set named DC1 which contains numeric variable Z 
and weight variable A. They end by including into DC1 the exponential adjusted weight 
variable B, as defined in the paper (also, DC1 is sorted by descending order of Z and any existing 
data sets named ONE, SONE or TWO are overwritten). The variable B is normalized to have the 
same total weight as the original weight variable A over the data set DCI. The two weights are 
defined to be proportional over subsets of observations with same value for the variable Z. The 
interested reader can readily modify this into a SAS macro. 

PROC SORT DATA=DCI;BY DESCENDING Z; 

DATA TWO;SET DCI; 
KEEP Z A; 

DATA ONE (KEEP=Z WGT) SONE (KEEP=SWGT SZWGT); 
SET TWO END=EOF;BY DESCENDING Z; 
IF F1RST.Z THEN WGT = 0; 
WGT + A; 
IF LAST.Z THEN DO; 

OUTPUT ONE; 
SWGT + WGT;SZWGT + Z*WGT; 
IF EOF THEN OUTPUT SONE; 
END; 

DATA 0NE;SET ONE END=EOF; 
KEEP Z WGT WGTB; RETAIN W SB SA SAZ; 
IF _N_ = 1 THEN DO; 

SET SONE; 
SB = 0;SA = SWGT;SAZ = SZWGT; W = SAZISA; 
END; 

A = WGT; 
IF NOT EOF THEN DO; 

Wl = (SA*W - A*Z)/(SA - A); 
B = (I-SB)*((LOG(W) - LOG(Wl))/(LOG(Z) - LOG(W1))); 
SB + B; SA + (-A); SAZ + (-A*Z); W = Wl ; 
END; 

ELSE 
B = l-SB; WGTB = SWGT*B; 

DATA DCI;MERGE DCI(IN=IND) ONE (IN=INO); 
BY DESCENDING Z; 
IF IND & INO; 
B = A*(WGTB/WGT); 


