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Abstract

In a competitive insurance market, insurers have limited influence on the premium charged for

an insurance contract.  They must decide whether or not to compete at the market price.  This

paper deals with one factor in this decision – risk.

From policyholder’s standpoint, the only risk that matters is insurer insolvency.  For the insurer

to stay in business, it has to have sufficient capital to keep this risk below an acceptable level.

Also, investors demand an acceptable return on this capital.  The problem is that the return

comes from premiums that are charged to individual insureds, each with their own risk

characteristics.

This paper proposes a way to set standards for accepting individual insureds based on the risk

each contributes to the insurer’s portfolio.  These standards will assign the marginal capital to the

insured. These standards will be expressed in terms of the acceptable return on allocated surplus.

They will take into account: (1) the variability of the insurer’s loss; (2) the time it takes until all

claims are paid; and (3) the correlation of the insured’s losses with the insurer’s other losses.

We start by illustrating the basic concepts with simple examples, and finish with a

comprehensive example that shows how we can put these standards into practice.
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1. Introduction

Insurance companies are financial institutions with financial objectives.  This paper is about

linking the insurer’s financial objectives with the myriad of individual underwriting and pricing

decisions it makes as it goes about its business.

From the financial point of view, the insurer’s mission is the following.

• Under normal circumstances, the insurer expects its premium income to generate enough

money to pay for the insured losses.  On some occasions, insured losses will exceed premium

income and the insurer will have to pay for losses out of its own capital.

• The insurer assumes the risk of financial loss to its customers, i.e. the insureds.  While the

insurance contract covers losses arising from accidents that occur in a predetermined period,

the losses themselves can be payable over a much longer period of time.

• The insurer’s owners provide the capital.  In return for assuming the insureds’ risk of loss,

the owners expect to receive a return on their investment that is competitive with other

investments with similar risk. This return on the owner’s capital investment is the insurer’s

financial measure of success.

• In return for assuming this risk, the insurer collects premium from the insureds.  This

premium is used to pay underwriting expenses and set up the necessary reserves to pay future

losses.

The income that provides the return on the owner’s capital is derived from two principal sources:

the underwriting profit from its insurance operations; and the investment income from the assets

underlying its reserves and its capital.  Quite often, the underwriting profit is negative.  This is

acceptable if the investment income generated from writing the business is large enough to

provide a competitive return on the owner’s investment.

More generally, the insurer’s income is the result of numerous underwriting underwriting and

decisions made by employees of the insurer.  Each decision involves a consideration of the
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expected underwriting profit, the length of time that the reserve must be held, and the additional

capital needed to protect the insurer’s solvency.  From the owner’s perspective, the results of the

individual underwriting decisions do not matter as long as the total income is large enough to

provide a competitive return on the investment.  But ultimately, the insurer must make individual

underwriting decisions that contribute, in an actuarial sense, to its overall financial objectives.

This paper describes some actuarial considerations that an insurer can make to link its

underwriting decisions to its financial objectives.

2. The Cost of Committing Capital

We begin with a simple model that illustrates how the cost of capital influences the price of an

insurance policy.1

The risk is that an insurer will have to pay an amount of $1 at time, T, in interval [0,t].  The

distribution of T is uniform throughout [0,t].  The probability of making a payment at some time

in this interval is q.

Assume that the insurer has to hold $1 of capital until either the claim is paid, or the liability

expires at time t.  The capital is invested in a risk free interest bearing account with force of

nterest δi.  Interest on this investment is paid continuously to the insurer.  In return for subjecting

its capital to the risk, the insurer requires a higher rate of return with force of interest δr.

                                               
1 This example was motivated by a “thought experiment” about risk suggested to the author by Leigh Halliwell.
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Case 1.  The claim occurs

The insurer receives continuous interest payments at an annual rate of δi until time T, when the

claim is paid.  The insurer’s expected rate of return is δr.  The present value of the insurer’s

investment is:
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Case 2.  The claim does not occur

The insurer receives continuous interest payments at an annual rate of δi until time t.  At that

time the insurer’s capital of $1 is returned.  The present value of the insurer’s investment is:
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If the insurer is to expose its capital to the risk of loss, it must receive at least an amount, P, so

that the expected rate of return on its investment of $1 is at least δr, That is:

1 = + +P E PV with claim E PV without claim .

It is the insured who must provide P, otherwise the insurer would not accept the risk.

When pricing insurance policies, actuaries are accustomed to comparing P, the cost of the

insurance needed before they will voluntarily write the insurance, to q, the expected loss

payments.  Define the risk load R, as this difference.  In this example:

R P q= −
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The following table illustrates how the cost of insurance can increase with the length of time that

the supporting capital must be held.

Table 2.1

t 1 2 3 4 5 6
δi 6% 6% 6% 6% 6% 6%
δr 10% 10% 10% 10% 10% 10%
q 0.100 0.100 0.100 0.100 0.100 0.100
E[PV with claim] 0.003 0.006 0.008 0.011 0.013 0.015
E[PV without claim] 0.866 0.835 0.807 0.781 0.758 0.738
Cost of Insurance 0.131 0.160 0.185 0.208 0.229 0.248
Risk Load 0.031 0.060 0.085 0.108 0.129 0.148

We leave it to the reader to investigate how the other factors δi , δr and q affect the cost of

insurance.

This example represents a very simplified view of the insurance business.  A more

comprehensive example could include the following considerations.

1. δi should increase with t.  This is the normal behavior for fixed-rate investments.

2. δr depends upon the return of other investments with comparable risk and time commitment,

which in turn depends upon the probability and the timing of the insurer’s loss.

3. The losses that are covered by a typical collection of insurance policies are unlimited.  The

insurance buying public appears willing to accept the remote possibility that the insurer

won’t be able to cover its claims.  There are a number of regulatory and rating agencies that

take on the job of determining the amount of capital that is necessary to assure that the

probability of insolvency is indeed remote.

4. An insurer usually underwrites several insureds whose losses are of different amounts, are

paid at different times and are, more or less, independent.  The cost of providing the total

coverage depends upon the entire portfolio while the premium that provides for this cost
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comes piecemeal from individual insureds.  Since individual insureds may differ in their

variability of loss and payment times, their effect on the insurer’s financial position may

differ.

Although an insurer’s management cannot deal with these issues separately, it is also true that a

single paper cannot adequately cover all these issues adequately.  So in the remaining discussion

we will restrict our considerations by: (1) assuming a single fixed risk-free rate of return;

(2) assuming a single fixed rate of return to the investors for bearing the insurer’s risk; and (3)

using three conventional actuarial formulas for determining the insurer’s required capital.  This

paper deals primarily with the issues raised in (4) above.

3. Probabilistic Capital Requirement Formulas

In order to protect the policyholders, the business of insurance is subject to solvency regulation.

The regulators have the authority to revoke the insurer’s license.  In addition, there are a number

of private agencies that rate insurers on their ability to pay claims.  These ratings are taken very

seriously by the insurers because the ratings have a strong influence on their ability to attract

business.  These institutions put a lower bound on an insurer’s capital.

The insurer’s management will often attempt to duplicate the regulator’s and the rating agencies’

capital requirements.  In addition, they may develop their own probabilistic capital requirement

formulas that they use for planning purposes.  We now give a description of three such formulas.

Let X be a random variable representing the insurer’s aggregate loss. Let:

F x X x
f x F x
( ) Pr{ }
( ) ( )

=
=
= Standard Deviation of X

C = Required Insurer Capital

≤
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Then the required capital can be defined by one of the following equations

1. Probability of Ruin Formula

F C E X( [ ])+ = −1 ε

2. Expected Policyholder Deficit Formula

( [ ]) ( )

[ ]
[ ]

x C E X f x dx

E X
C E X

− − ⋅
=+

∞z η

3. Standard Deviation Formula

C = T⋅σ

Each of these formulas depends upon a judgmental solvency threshold denoted by either ε, η or

T.  More often than not, the people making these judgments also pay close attention to the capital

requirements of the regulatory and private rating agencies.

We summarize the rationale underlying each of the formulas.

1. The probability of ruin formula is the classic actuarial solvency formula.  It represents

interests of the insurer’s stockholders who have limited liability.  That is, once the insurer is

insolvent, nothing else matters.

2. The Expected policyholder deficit is a refinement of the probability of ruin formula in that it

takes the size of insolvency into account.  This appeals to the interests of the policyholders.

3. The standard deviation principle is equivalent to the probability of ruin formula when the

insurer’s distribution of losses is normal.  While the normal assumption is not realistic, there

is nothing to prevent one from using the standard deviation formula on other loss

distributions.  It is popular because it is easy to work with.
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We provide an illustrative example that can easily be programmed on a spreadsheet2 with

formulas found in Klugman, Panjer and Willmot [1998].  Let X be a random variable with a

gamma distribution.  That is:

Probability Density Function
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Variance
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2 The spreadsheet formulas given below are for MicroSoft Excel 97.
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Using the relationship ( [ ]) ( ) ^ [ ]
[ ]

x C E X f x dx E X E X C E X
C E X

− − ⋅ = − +
+

∞z b g

and Equations 3.2-3.5, one can set up a spreadsheet to solve for the capital required for insurer

loss distributions described by a gamma distribution.  The following table shows the results for

various solvency thresholds.  In this table we set α = θ = 100.   This yields a size of loss

distribution with mean, E[X] = 10,000 and standard deviation, Std[X] = 1,000.

For reference, we have also included a premium to surplus ratio.3  For comparison, the NAIC

Early Warning Test penalizes any insurer who has a premium to surplus ratio that is higher than

3.0 to 1.

Table 3.1
Illustrative Capital Requirements

Probability of Ruin
Threshold Capital P/S

1.0% 2,472 6.1 to 1
0.5% 2,763 5.4 to 1

Expected Policyholder Deficit
Threshold Capital P/S

0.10% 2,091 7.2 to 1
0.05% 2,382 6.3 to 1

Standard Deviation
Threshold Capital P/S

2.33 2,330 6.4 to 1
2.58 2,580 5.8 to 1

                                               
3 In this paper we will use the term “surplus” and “capital” interchangeably, ignoring the formal distinctions there
are between the two concepts.  Also, we assume an expected loss ratio of 2/3.
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We now add parameter uncertainty to this example.  Let β be a random variable with E[β] = 1

and Var[β] = b.  We then make Equations 3.1-3.5 conditional on β by replacing the parameter θ

with θ⋅β.  For example:

f x
x e

x

x
( )

/ ( )
( )

/( )
b qb

a

a qb
=

-b g
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We then modify our three probabilistic capital requirement formulas to account for parameter

uncertainty.

1.  Probability of Ruin Formula

E F C E Xβ β ε( [ ] )+ = −1

2. Expected Policyholder Deficit Formula

E x C E X f x dx

E X
C E Xβ β

η
( [ ]) ( )

[ ]
[ ]

− − ⋅LNM OQP =+

∞z
3. Standard Deviation Formula

C T E Var X Var E X= ⋅ +β ββ β

We use a three-point distribution for β in this example.  Let:

β β β1 2 31 3 1 1 3= − = = +b b, , ,

 Pr Pr / Pr /β β β β β β= = = = = =1 3 21 6 2 3l q l q l qand . (3.6)

We have that E[β] = 1 and Var[β] = b.
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Let b = 0.02.  Then:  θ⋅β1 = 75.5051, θ⋅β2 = 100.0000, and θ⋅β3 = 124.4949.  Recall α = 100.

If C = 4,443.25,  then:

E F C E Xβ β( [ ] )+

= + ⋅ +
=

Γ Γ Γα θβ α θβ α θβ; / ( ) / ; / ( ) / ; / ( )

.

14443.2 6 2 14443.2 3 14443.2

0 01
1 2 35 5 5b g b g b g

This means that the required surplus to make the probability of ruin equal to 0.01 = 4,443.25.

We similarly solved for the required surplus for the other formulas and parameters.  The results

are in the following table.

Table 3.2
Illustrative Capital Requirements with Parameter Uncertainty

Probability of Ruin
Threshold Capital P/S

1.0% 4,443 3.4 to 1
0.5% 4,895 3.1 to 1

Expected Policyholder Deficit
Threshold Capital P/S

0.10% 4,129 3.6 to 1
0.05% 4,557 3.3 to 1

Standard Deviation
Threshold Capital P/S

2.33 4,049 3.7 to 1
2.58 4,484 3.3 to 1
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4. The Marginal Cost of Capital

Consider the following situation.  A single insured is up for renewal.  An analysis of market

conditions has determined the premium necessary to retain the insured.  The expected loss and

all other expenses are known.  You must decide whether or not to renew the insured.

To make this decision, the insurer performs the following calculations.

CT = the capital needed for its current business.

RT = the total risk load (i.e. the total premium supplied by all insureds less the

expected loss along with all underwriting and acquisition expenses) that is

needed to attract the capital CT.

CT −  ∆Ci = the total capital needed if the ith insured is not renewed.

RT −  ∆Ri = the total risk load needed if the ith insured is not renewed.

The insurer’s decision to renew will depend other investment opportunities for ∆Ci.  Under stable

conditions, the insurer might decide to renew if 
R R
C C

R
C

T i

T i

T

T

−
−

<∆
∆

.  However, if the insurer can

find another prospect that requires the same marginal capital, ∆Ci, and will pay a premium that

yields a higher profit, the insurer may decide not to renew.

Determining ∆Ci is complicated since, as the following examples will show, ∆Ci depends upon

the characteristics of the insurer’s total book of business.

In the following example, we assume that the insurer’s distribution of losses has a gamma

distribution with θ = 100 and α = αT.  We also assume that the 1st insured’s distribution of losses

has a gamma distribution with θ = 100 and α = 1.  It is a property of the gamma distribution that

the parameters of the insurer’s distribution of losses are given by θ = 100 and α = αT −  1 when
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the 1st insured is removed.  Since the insurer’s expected loss is given by θ⋅αT, αT can reasonably

be viewed as an indicator of the size of the insurer.

Table 4.1
Illustrative Marginal Capital Calculations

Probability of Ruin @ 1.0%
b αT CT ∆C1

50 1,790.34 16.55
0.00 100 2,472.26 11.67

200 3,436.22 8.24
50 2,665.43 37.50

0.02 100 4,443.25 34.13
200 7,693.44 31.35

Expected Policyholder Deficit @ 0.10%
b αT CT ∆C1

50 1,634.55 11.52
0.00 100 2,091.11 7.53

200 2,684.89 4.84
50 2,609.60 32.22

0.02 100 4,129.19 29.15
200 6,915.78 27.00

Standard Deviation @ 2.33
b αT CT ∆C1

50 1,647.56 16.56
0.00 100 2,330.00 11.68

200 3,295.12 8.25
50 2,341.62 35.04

0.02 100 4,049.11 33.66
200 7,382.83 33.16
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We should note that parameter uncertainty generates correlation between the insured under

consideration for renewal and the rest of the insurer’s business.  If the parameters of the loss

distributions are mixed by the random variable β we have:

Var X E Var X Var E X= +β ββ β ; (4.1)

Cov X Y E Cov X Y Cov E X E Y, , ,= +β ββ β β ; and (4.2)

ρ =
⋅

Cov X Y

Var X Var Y

,
(4.3)

In our example we have:
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(4.4)

Using E g X g X i i
i

β β β βc h c h l q= ⋅
=
∑ Pr

1

3

 applied to Equations 4.1-4.3 for the g’s in Equations 4.4

and the Pr{βi}’s in Equation 3.6, we obtain the following coefficients of correlation for our

example with b = 0.02.

Table 4.2
Illustrative Coefficients of Correlation

αT ρ
50 0.137

100 0.195
200 0.277
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Note that the coefficient of correlation increases with αT.  This happens because the mean of the

first insured’s losses varies linearly with the mean of the insurer’s remaining losses.  But as the

size of the insurer’s remaining business increases, the insurer’s random deviations decrease as a

proportion of the mean.  This leads to a higher coefficient of correlation.

This phenomenon can be seen clearly in the graphs below.  The graphs below were generated by

a simulation where θ was first selected at random.  Then two random numbers were selected

from a gamma distribution with the same α.  Each graph shows 100 simulations.

Graph 4.1
α = 25, E[θ] = 100

Graph 4.2
α = 100, E[θ] = 100
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These examples illustrate that the marginal capital an insurer must have to renew an insured

depends upon properties of the insurer’s entire book of business.  In particular, we observed

differences due to the insurer’s size4 and the correlation between the insured being considered for

renewal, with the insurer’s existing book of business.

This means that an insured, which is acceptable to one insurer may not be acceptable to another

insurer with the same underwriting standards and financial goals.  We see this happening in the

current market for property insurance where there is an exposure to catastrophes. In property

insurance, geographic proximity drives correlation in much the same way that parameter

uncertainty does above.  One insurer who is concentrated in an area will reject new business,

while another insurer who is not concentrated in the same area will readily accept new business.

                                               
4 One might expect that an increase in the coefficient of correlation with the insurer’s book of business might lead to
an increase in the marginal cost of capital.  As Tables 4.1 and 4.2 show, this is not necessarily the case.
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5.  Allocating Capital

In the last section we indicated that an insured might decide to renew if:

R R
C C

R
C

T i

T i

T

T

−
−

≤∆
∆

. (5.1)

After all, renewing in this case will maintain the return on the insurer’s capital.  With a little

algebra, one can show that the above equation is true if and only if:

∆ ∆R
R
C

Ci
T

T
i≥ ⋅ . (5.2)

If the insurer plans to continue in its business, strict equality in Equation 5.2 for all insureds

presents a problem.  If (as is usually the case for insurers) ∆C Ci T
i

<∑ , then:

∆
∆

R R
C

C
Ri

i
T

i
i

T
T∑

∑
= ⋅ < .

Accepting all insureds at equality will not meet the insurers financial objectives.  Therefore there

must be a strict inequality for at least some insureds.

We assume that a strict inequality for some at the expense of others cannot exist in the long run.

To solve this problem we propose a formula of the form:

∆
∆

R
C

K
R
C

i

i

T

T

≥ >  for all i. (5.3)

The insurer must have an expected return of RT to keep its investors’ capital.  This means that:

∆R Ri T
i

≥∑ . (5.4)
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Combining Equation 5.3 and 5.4 we find that K must be no smaller than:

 K
R

C
T

i
i

= ∑ ∆
. (5.5)

Equations 5.3 and 5.5 do not provide the only solution to the problem posed by the strict equality

of Equation 5.2.  This problem is similar to what Mango [1998] refers to as the “ordering

problem.”  Mango’s other solutions to the ordering problem could also be used here.

The insurer’s management could instruct its underwriters to give due consideration to Equations

5.3 and 5.5 when accepting insureds.  But they often have another objective   to focus the

underwriters’ attention on maintaining an adequate return on capital.  A common way to do this

is to assign allocated capital, Ai, to individual insureds according to the following formula.5 6

∆R
A

R
C

i

i

T

T

≡ . (5.6)

We combine Equations 5.3, 5.5 and 5.6 to arrive at a formula for allocating capital.

A K C
C
R

C
C

Ci i
T

T
i

T

j
j

= ⋅ ⋅ = ⋅∑∆ ∆
∆

. (5.7)

That is, we allocate capital to individual insureds in proportion to their marginal capital.

We now continue with our illustrative example.  We use our three capital requirements formulas

on an insurer with αT = 100.  We populate the insurer with insureds with α = 1, 2, 3 and 4.  We

allow 10 insureds for each α.  We chose b = 0.02.  The results are in the following table.

                                               
5 Allocating capital has been controversial.  Opponents to the idea say that the insurers’ potential liability to the
insured is limited by its entire capital, not the capital “allocated” to the insured.  We agree.  Conventional use of the
term should be limited to communicating management financial goals to areas of underwriting responsibilty.
6 This could be summarized to higher levels if desired, but for now we will allocate capital to individual insureds.
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Table 5.1
Illustration of Capital Allocated to Individual Insureds

Probability of Ruin @ 1.0%

α
Number of
Insureds

∆C  per
Insured

% Allocated
to Insured

1 10 34.13 0.99865%
2 10 68.31 1.99865%
3 10 102.53 2.99999%
4 10 136.80 4.00270%

Total Marginal Capital 3417.68

Expected Policyholder Deficit @ 0.10%

α
Number of
Insureds

∆C  per
Insured

% Allocated
to Insured

1 10 29.15 0.99871%
2 10 58.33 1.99868%
3 10 87.55 2.99992%
4 10 116.81 4.00269%

Total Marginal Capital 2918.35

Standard Deviation @ 2.33

α
Number of
Insureds

∆C  per
Insured

% Allocated
to Insured

1 10 33.66 0.99964%
2 10 67.33 1.99964%
3 10 101.01 3.00000%
4 10 134.71 4.00072%

Total Marginal  Capital 3367.10

It is interesting to note that approximately the same proportion of capital is allocated to the

insurer for each of the three capital requirement formulas.  This is no accident, as we now

demonstrate.
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Express the capital as a function of the mean, µ, and the variance, σ2, of the insurer’s aggregate

loss distribution. The capital requirement is µ σ+ ⋅T 2 for the standard deviation formula.  In our

example above, the probability of ruin and the expected policyholder deficit was a function of

the parameters of the gamma distribution, which one can calculate from the mean and variance

of the gamma distribution.

Let:         C

    (For small 

=

≈ ∂
∂σ
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≈ =

∂
∂σ

⋅

∂
∂σ

⋅
=∑ ∑ ∑
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T T

µ σ

µ σ

µ σ

µ σ

,

)
,

,

,

2

2
2 2

2
2

2
2

2

2

2

2

2

c h
∆ ∆σ ∆σ

∆
∆

∆σ

∆σ

∆σ
∆σ

(5.8)

Equation 5.8 says that we can allocate capital in proportion to the marginal variance if:

1. We calculate the capital requirement with any differentiable function of the mean and

variance of the insurer’s aggregate loss distribution; and

2. The insured’s variance of loss is small compared to the insurer’s variance of loss.

If these conditions are met, allocating surplus becomes a simple task once one has the covariance

matrix for all insureds.  One calculates the marginal variance of the insured by summing all the

covariances in the appropriate row and column of the covariance matrix.

But, as we shall see below, these conditions are not always met.
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6. A Comprehensive Example

So far, this paper has developed the notion that there is a cost of insuring risk that depends on the

insurer’s cost of capital.  Section 2 demonstrated that the cost of insuring depends upon the

length of time that the capital must be held with a simple stochastic model.   Section 3 introduced

a more complex stochastic model but ignored the length of time that the capital must be held.

Section 4 introduced the notion of marginal capital and Section 5 showed how to use marginal

capital to allocate the cost of capital to a single insured.

This section combines both the time and stochastic elements of risk into a single comprehensive

example.

The XYZ Insurance Company writes three lines of insurance: Property; General Liability; and

Auto.  To limit extraneous details, we shall assume that:

• All polices go into effect on January 1 and expire on December 31.

• The property losses are all paid by the end of the year.

• All Auto and General Liability losses are paid within three years.

• The lines of business have been stable for the last three years and are expected to remain so

for the foreseeable future.

• XYZ has a conservative investment policy, so asset risk is not an issue.

• Invested assets earn interest at an annual rate of 6%.

• XYZ does not purchase reinsurance.

• The expected loss ratio is 2/3 for all lines.

The investors in XYZ demand a before-tax return on capital of 15%.  XYZ’s executives do not

monitor the prices on individual insureds but they do hold their line managers/underwriters
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responsible for meeting profitability targets.  XYZ’s actuary, Jane, has the job of allocating

surplus by line of insurance for use in evaluating the underwriting results of the year 2000.

Prior to doing this job, Jane projected XYZ’s aggregate loss distribution for the year 2000.

Noteworthy features of the aggregate loss distribution include:

• Losses for unpaid claims from accident years 1998 and 1999 are included as well as losses

for the accident year 2000.

• The property claim severity distribution and claim count distributions are both very skewed.

• Auto and General Liability losses are correlated, but Property losses are independent of the

liability losses. The correlation is generated by simultaneously varying the means of the

claim count distributions in a manner analogous to that explained in Section 4 above.

The following table provides summary statistics for XYZ’s aggregate loss distribution.  A more

detailed description is given in Appendix A.  This description includes various percentiles of the

aggregate loss distribution as well as the covariance matrix.  We calculated the aggregate loss

distributions with the Heckman/Meyers [1983] algorithm.
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Table 6.2
Summary Statistics for XYZ’s Aggregate Loss Distribution

Aggregate Mean 348,737,619
Aggregate Std. Dev 51,143,663

Line Statistics
Distribution Name E[Count] Std[Count] E[Severity] Std[Severity] E[Total Loss]

Property AY 2000 Lag 0 2,400.00 760.53 10,999.77 224,488.75 26,399,448
G.L. AY 2000 Lag 0 1,200.00 243.67 40,348.87 160,218.51 48,418,644
G.L. AY 2000 Lag 1 600.00 123.06 59,798.30 194,452.18 35,878,980
G.L. AY 2000 Lag 2 300.00 62.74 79,247.73 221,803.85 23,774,319
G.L. AY 1999 Lag 1 600.00 123.06 59,798.30 194,452.18 35,878,980
G.L. AY 1999 Lag 2 300.00 62.74 79,247.73 221,803.85 23,774,319
G.L. AY 1998 Lag 2 300.00 62.74 79,247.73 221,803.85 23,774,319
A.L. AY 2000 Lag 0 1,800.00 315.67 27,620.60 83,875.82 49,717,080
A.L. AY 2000 Lag 1 600.00 107.11 40,705.79 102,382.07 24,423,474
A.L. AY 2000 Lag 2 200.00 37.52 53,790.97 116,562.06 10,758,194
A.L. AY 1999 Lag 1 600.00 107.11 40,705.79 102,382.07 24,423,474
A.L. AY 1999 Lag 2 200.00 37.52 53,790.97 116,562.06 10,758,194
A.L. AY 1998 Lag 2 200.00 37.52 53,790.97 116,562.06 10,758,194

Using this aggregate loss distribution, Jane calculated the needed capital under three different

criteria with the following results.

Table 6.2

Capital Requirements for
XYZ Insurance Company

Standard Deviation @ 2.33 119,164,734
Probability of Ruin @ 1.0% 120,538,640
Expected Policyholder Deficit @ 0.05% 116,871,140

After consultation with the appropriate rating agencies, XYZ’s management concluded that a

capital of 120,000,000 would lead to an acceptable rating.  Assuming an expected loss ratio of

2/3, this leads to a premium to surplus ratio of 2.7 to 1.7

                                               
7 The expected loss calculation did not include the reserves from prior years.
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Now Jane went about her task of setting profitability targets by line of insurance.  She proceeded

as follows.

1. Since the agreed upon capital was close to her prior projections, she worked with the same

capital requirements criteria as before.

2. For each capital requirement criteria, she calculated the marginal contribution to capital by,

in turn, removing each of the lines and settlement lags from XYZ’s portfolio.

3. She allocated XYZ’s capital in proportion to the marginal capital for each line and

settlement lag.  The allocation proportions are shown in Tables 6.3a-c below.

4. Jane then calculated the capital, C0 that was initially needed to support each line of insurance

written in 2000 by multiplying the sum of the year 2000 allocation factors for each line by

120,000,000.  Now as losses are paid, the capital needed to support the insurance written in

2000 can be released.  Using the allocation factors, Jane similarly calculated the amount of

capital, C1 that was still needed at the beginning of 2001 and the amount of capital, C2 that

was needed at the beginning of 2002.  These amounts are shown Tables 6.4a-c below.

5. The capital will be invested at a rate of i = 6%.  Taking the investment earning into account,

Jane then calculated the amount of capital that XYZ expects to release at the end of the first,

second and third years with the formula:

Re ( )l C i Ct t t= ⋅ + −− 1 1 (6.1)

6. Jane then calculated the risk load, R, that must be collected from the insureds at time t = 0, to

give the investors a return of r = 15% on their investment of C0.  She used the formula:

C R
l

r
t

t
t

0
1

3

1
= +

+=
∑ Re

b g
The resulting profitability targets, R, are given in Tables 6.4a-c.
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Table 6.3a
Marginal Surplus

Standard Deviation @ 2.33

Property
Year\Lag 0 1 2

1998 0
1999 0 0
2000 4,431,638 0 0

General Liability
Year\Lag 0 1 2

1998 7,608,686
1999 11,687,172 7,608,686
2000 16,070,791 11,687,172 7,608,686

Auto Liability
Year\Lag 0 1 2

1998 3,252,286
1999 7,436,987 3,252,286
2000 15,358,640 7,436,987 3,252,286

Total Marginal Capital 106,692,300
Capital 119,164,734

Allocated Capital
Property

Year\Lag 0 1 2
1998 0
1999 0 0
2000 0.0415 0 0

General Liability
Year\Lag 0 1 2

1998 0.0713
1999 0.1095 0.0713
2000 0.1506 0.1095 0.0713

Auto Liability
Year\Lag 0 1 2

1998 0.0305
1999 0.0697 0.0305
2000 0.1440 0.0697 0.0305
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Table 6.3b
Marginal Surplus

Probability of Ruin @ 1.0%

Property
Year\Lag 0 1 2

1998 0
1999 0 0
2000 6,954,945 0 0

General Liability
Year\Lag 0 1 2

1998 7,429,797
1999 10,877,505 7,429,797
2000 15,292,833 10,877,505 7,429,797

Auto Liability
Year\Lag 0 1 2

1998 2,794,383
1999 6,486,603 2,794,383
2000 13,753,638 6,486,603 2,794,383

Total Marginal Capital 101,402,172
Capital 120,538,640

Allocated Capital
Property

Year\Lag 0 1 2
1998 0
1999 0 0
2000 0.0686 0 0

General Liability
Year\Lag 0 1 2

1998 0.0733
1999 0.1073 0.0733
2000 0.1508 0.1073 0.0733

Auto Liability
Year\Lag 0 1 2

1998 0.0276
1999 0.0640 0.0276
2000 0.1356 0.0640 0.0276
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Table 6.3c
Marginal Surplus

Expected Policyholder Deficit @ 0.05%

Property
Year\Lag 0 1 2

1998 0
1999 0 0
2000 8,170,468 0 0

General Liability
Year\Lag 0 1 2

1998 6,153,199
1999 9,772,421 6,153,199
2000 13,899,936 9,772,421 6,153,199

Auto Liability
Year\Lag 0 1 2

1998 2,389,980
1999 5,582,538 2,389,980
2000 11,964,669 5,582,538 2,389,980

Total Marginal Capital 90,374,524
Capital 116,892,764

Allocated Capital
Property

Year\Lag 0 1 2
1998 0
1999 0 0
2000 0.0904 0 0

General Liability
Year\Lag 0 1 2

1998 0.0681
1999 0.1081 0.0681
2000 0.1538 0.1081 0.0681

Auto Liability
Year\Lag 0 1 2

1998 0.0264
1999 0.0618 0.0264
2000 0.1324 0.0618 0.0264
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Table 6.4a
Profitability Target Calculation

Standard Deviation @ 2.33

t 0 1 2 3
Property

Ct 4,984,395
Relt 5,283,458
R 390,083

General Liability
Ct 39,777,920 21,702,624 8,557,715
Relt 20,461,971 14,447,067 9,071,178
R 5,096,397

Auto Liability
Ct 29,296,861 12,022,543 3,657,942
Relt 19,032,131 9,085,953 3,877,419
R 3,327,431

Total R 8,813,911

Table 6.4b
Profitability Target Calculation

Probability of Ruin @ 1.0%

t 0 1 2 3
Property

Ct 8,230,527
Relt 8,724,359
R 644,128

General Liability
Ct 39,762,622 21,664,982 8,792,471
Relt 20,483,397 14,172,410 9,320,019
R 5,106,530

Auto Liability
Ct 27,259,326 10,983,180 3,306,892
Relt 17,911,705 8,335,279 3,505,305
R 3,076,466

Total R 8,827,125
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Table 6.4c

Profitability Target Calculation
 Expected Policyholder Deficit @ 0.05%

t 0 1 2 3
Property

Ct 10,848,811
Relt 11,499,740
R 849,037

General Liability
Ct 39,602,606 21,146,162 8,170,265
Relt 20,832,600 14,244,666 8,660,481
R 5,021,880

Auto Liability
Ct 26,472,751 10,585,971 3,173,434
Relt 17,475,145 8,047,696 3,363,840
R 2,979,979

Total R 8,850,897

Jane could have calculated profitability targets for individual insureds using the same

methodology, but that was not her task.  Nevertheless, she has a standing offer to calculate these

targets, should she be asked.

Note that the three methods allocate surplus to the lines in different proportions in contradiction

to Equation 5.8.  This is because the capital requirements criteria are not all simple functions of

the mean and variance of the aggregate loss distribution. When one does not derive the aggregate

loss distribution from the first two moments, we should expect this to happen.

At XYZ, the underwriters’ bonuses depend upon how well their lines of insurance perform

relative to the targeted returns.  The fact that the three capital requirements criteria produce

different results has sparked a debate among XYZ’s management.  They have yet to inform us of

their decision of which criterion to accept.
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7. Data and Technology Requirements

You will need the following items to perform a capital allocation analysis like the one above.

1. Claim severity distributions by line and settlement lag

2. Claim count distributions by line and settlement lag

3. A correlation model between lines of insurance

4. An aggregate loss model

A large insurer might be able to analyze its own data to derive a claim severity distribution.

Those who have neither the necessary volume of data nor the inclination to analyze their own

data can obtain this information from an insurance advisory organization.

Claim count distributions and correlations between are harder to come by.  The claim count

depends upon exposure, which varies by observation.  When one gets one observation per year, it

is difficult to get a sufficient number of observations to get a reliable estimate of the claim count

distribution parameters.  A similar problem occurs when you are modeling the correlation

structure.  However, if one accepts the idea that similar claim count distribution and correlation

structures apply to different insurers, more reliable estimates can be made.  We are in the process

of making such estimates and Meyers [1999b] outlines our methodology.

Wang [1998] and Meyers [1999a] have written papers about aggregate loss models that allow

one to account for correlation.  Between the two papers, there are a variety of correlation

structures and calculation methods.  Wang shows how to use the Fast Fourier Transform, and

Meyers shows how to use the method of Heckman and Meyers [1983] to get the aggregate loss

distribution with correlated lines of insurance.

To summarize, the data and the technology are available to do these analyses.
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Appendix A

XYZ Insurance Company Aggregate Loss Distribution for EPD

Aggregate Mean 348,737,619
Aggregate Std. Dev 51,143,663

Entry Aggregate Excess Excess Excess Pure Excess
Ratio Loss Probability Pure

Premium
Premium

Ratio
Std.

Deviation
0.0500 17,436,881 1.00000 331,300,738 0.95000 51,143,663
0.1000 34,873,762 1.00000 313,863,857 0.90000 51,143,663
0.1500 52,310,643 1.00000 296,426,976 0.85000 51,143,663
0.2000 69,747,524 1.00000 278,990,095 0.80000 51,143,663
0.2500 87,184,405 1.00000 261,553,214 0.75000 51,143,663
0.3000 104,621,286 1.00000 244,116,333 0.70000 51,143,663
0.3500 122,058,167 1.00000 226,679,452 0.65000 51,143,663
0.4000 139,495,048 1.00000 209,242,571 0.60000 51,143,663
0.4500 156,931,929 1.00000 191,805,690 0.55000 51,143,663
0.5000 174,368,810 1.00000 174,368,810 0.50000 51,143,663
0.5500 191,805,691 1.00000 156,931,929 0.45000 51,143,661
0.6000 209,242,687 0.99997 139,495,048 0.40000 51,143,339
0.6500 226,686,696 0.99858 122,058,167 0.35000 51,125,716
0.7003 244,238,019 0.98430 104,621,286 0.30000 50,878,359
0.7522 262,337,792 0.93716 87,184,405 0.25000 49,639,303
0.8075 281,590,030 0.87687 69,747,524 0.20000 46,721,989
0.8659 301,983,999 0.83515 52,310,643 0.15000 42,717,920
0.9285 323,791,593 0.74502 34,873,762 0.10000 38,088,424
0.9646 336,406,976 0.62930 26,155,321 0.07500 34,870,906
1.0113 352,679,617 0.44134 17,436,881 0.05000 29,917,292
1.0233 356,846,506 0.39614 15,693,193 0.04500 28,546,354
1.0367 361,526,594 0.34991 13,949,505 0.04000 26,981,847
1.0520 366,869,090 0.30416 12,205,817 0.03500 25,181,542
1.0697 373,059,435 0.26092 10,462,129 0.03000 23,099,558
1.0905 380,304,532 0.22239 8,718,440 0.02500 20,697,967
1.1149 388,806,592 0.18956 6,974,752 0.02000 17,964,959
1.1436 398,804,143 0.16025 5,231,064 0.01500 14,915,778
1.1783 410,900,775 0.12800 3,487,376 0.01000 11,532,711
1.2258 427,473,858 0.08238 1,743,688 0.00500 7,584,599
1.3067 455,704,573 0.02324 348,738 0.00100 3,048,332
1.3351 465,608,759 0.01274 174,369 0.00050 2,151,270
1.3938 486,066,735 0.00293 34,874 0.00010 885,782
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XYZ Insurance Company Aggregate Loss Distribution for Probability of Ruin

Aggregate Mean 348,737,619
Aggregate Std. Dev 51,143,663

Entry Aggregate Cumulative Limited Limited Pure Limited
Ratio Loss Probability Pure

Premium
Premium

Ratio
Std.

Deviation
0.9003 313,985,816 0.20000 306,264,252 0.87821 18,419,083
0.9264 323,087,734 0.25000 313,337,705 0.89849 21,497,863
0.9444 329,341,831 0.30000 317,878,662 0.91151 23,625,415
0.9591 334,466,024 0.35000 321,340,633 0.92144 25,358,748
0.9722 339,041,527 0.40000 324,201,892 0.92964 26,886,924
0.9846 343,355,345 0.45000 326,682,998 0.93676 28,300,816
0.9967 347,593,543 0.50000 328,908,037 0.94314 29,655,678
1.0091 351,911,788 0.55000 330,958,545 0.94902 30,993,278
1.0222 356,477,451 0.60000 332,897,518 0.95458 32,353,637
1.0366 361,516,871 0.65000 334,784,712 0.95999 33,786,019
1.0535 367,405,105 0.70000 336,693,717 0.96546 35,367,585
1.0750 374,898,054 0.75000 338,745,055 0.97135 37,249,963
1.1063 385,798,096 0.80000 341,177,138 0.97832 39,787,220
1.1546 402,646,697 0.85000 344,102,571 0.98671 43,387,666
1.2074 421,069,012 0.90000 346,410,127 0.99333 46,765,737
1.2337 430,237,994 0.92500 347,211,396 0.99562 48,093,992
1.2631 440,507,642 0.95000 347,849,380 0.99745 49,240,996
1.2699 442,853,224 0.95500 347,960,736 0.99777 49,452,565
1.2771 445,358,595 0.96000 348,067,139 0.99808 49,658,835
1.2848 448,069,818 0.96500 348,168,712 0.99837 49,860,037
1.2934 451,052,995 0.97000 348,265,535 0.99865 50,056,374
1.3030 454,408,648 0.97500 348,357,632 0.99891 50,248,035
1.3142 458,301,948 0.98000 348,444,960 0.99916 50,435,172
1.3277 463,036,205 0.98500 348,527,363 0.99940 50,617,947
1.3456 469,276,259 0.99000 348,604,500 0.99962 50,796,509
1.3737 479,076,895 0.99500 348,675,584 0.99982 50,971,099
1.4314 499,191,423 0.99900 348,726,512 0.99997 51,108,659
1.4542 507,127,002 0.99950 348,732,250 0.99998 51,125,941
1.5040 524,496,702 0.99990 348,736,608 1.00000 51,139,995
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XYZ Insurance Company – Correlation Matrix for Lines of Insurance

L1 Yr 3 L2 Yr3
Lag0

L2 Yr3
Lag1

L2 Yr3
Lag2

L2 Yr2
Lag1

L2 Yr2
Lag2

L2 Yr1
Lag2

L3 Yr3
Lag0

L3 Yr3
Lag1

L3 Yr3
Lag2

L3 Yr2
Lag1

L3 Yr2
Lag 2

L3 Yr1
Lag2

L1 Yr 3 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

L2 Yr3 Lag0 0.0000 1.0000 0.3511 0.3245 0.3511 0.3245 0.3245 0.4528 0.4165 0.3541 0.4165 0.3541 0.3541

L2 Yr3 Lag1 0.0000 0.3511 1.0000 0.3097 0.3351 0.3097 0.3097 0.4322 0.3975 0.3379 0.3975 0.3379 0.3379

L2 Yr3 Lag2 0.0000 0.3245 0.3097 1.0000 0.3097 0.2863 0.2863 0.3995 0.3675 0.3124 0.3675 0.3124 0.3124

L2 Yr2 Lag1 0.0000 0.3511 0.3351 0.3097 1.0000 0.3097 0.3097 0.4322 0.3975 0.3379 0.3975 0.3379 0.3379

L2 Yr2 Lag2 0.0000 0.3245 0.3097 0.2863 0.3097 1.0000 0.2863 0.3995 0.3675 0.3124 0.3675 0.3124 0.3124

L2 Yr1 Lag2 0.0000 0.3245 0.3097 0.2863 0.3097 0.2863 1.0000 0.3995 0.3675 0.3124 0.3675 0.3124 0.3124

L3 Yr3 Lag0 0.0000 0.4528 0.4322 0.3995 0.4322 0.3995 0.3995 1.0000 0.5127 0.4359 0.5127 0.4359 0.4359

L3 Yr3 Lag1 0.0000 0.4165 0.3975 0.3675 0.3975 0.3675 0.3675 0.5127 1.0000 0.4009 0.4716 0.4009 0.4009

L3 Yr3 Lag2 0.0000 0.3541 0.3379 0.3124 0.3379 0.3124 0.3124 0.4359 0.4009 1.0000 0.4009 0.3408 0.3408

L3 Yr2 Lag1 0.0000 0.4165 0.3975 0.3675 0.3975 0.3675 0.3675 0.5127 0.4716 0.4009 1.0000 0.4009 0.4009

L3 Yr2 Lag 2 0.0000 0.3541 0.3379 0.3124 0.3379 0.3124 0.3124 0.4359 0.4009 0.3408 0.4009 1.0000 0.3408

L3 Yr1 Lag2 0.0000 0.3541 0.3379 0.3124 0.3379 0.3124 0.3124 0.4359 0.4009 0.3408 0.4009 0.3408 1.0000


