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Abstract 

Actuaries, economists, underwriters, and regulators are rightly convinced that the task of 
pricing insurance should depend on the uncertainty of the amount and the timing of the 
insured losses, as well as on the correlation of those losses with those already insured. 
The most common approach to pricing is to allocate equity to the insurance transaction 
and to achieve a certain expected return on that equity. This paper will argue that this 
ROE approach is illogical and inconsistent, and that the proper approach is to accept no 
price that reduces the expected utility of the insurer. The utility-theoretic approach will 
enable logical and consistent pricing, and will involve no unusual practical dif$culties. 
The paper will argue also that capital should play a role in assessing the strength of an 
insurer, but capital allocation should play no role in an insurer s pricing. 



1) Return on Allocated Capital 

A typical finance problem is the following: A company is considering entry into the 

widget business, which entails the purchase of a machine to produce widgets. The 

company estimates that the machine will last five years, and that the profits from the sale 

of its widgets over those five years will be $100,000, $125,000, $125,000, $100,000, and 

$75,000. If the beta of the widget industry is 1.20, what is the maximum price that the 

company should pay for the machine? 

The profits are expected to be those five amounts. But the profit of the first year, almost 

surely, will not be $100,000. If the estimate is unbiased, the profit will be $100,000 f o. 

But the variance of the profit is ignored. The rationale for ignoring it is that the “market” 

accounts for it in the beta of the widget industry. If the risk-free rate of return is five 

percent per year, and the expected rate of return on the universe of risky assets is ten, 

then the Capital Asset Pricing Model (CAPM) prescribes the expected rate of return for 

the widget industry to be rr + p(E[R, ]- yf ) = 0.05 + 1.2(0.10 - 0.05) = 0.11, or eleven 

percent per year. Therefore, the company is justified in purchasing the machine if it costs 

no more than 
$100,000 + $125,000 + $125,000 + $100,000 + $75,000 = $403 ooo 

(1.11)’ (1.11)2 (1X)3 (1.11)” (l.11)5 ’ . 

It 

might then be said that the company is allocating $403,000 of capital to its widget 

business and is expecting a return on that capital of eleven percent per year. 



The author distrusts this ROE approach to finance because it makes the CAPM (or some 

other rate-of-return model) the panacea for variance. Planners can justify a deterministic 

projection of the cash flow by claiming that some risk-adjusted rate of return on the 

expected cash flow takes into account its variance, and that the CAPM or some other 

model yields the proper rate. This approach also makes time to be of the essence of 

pricing risk. So the proper number is not a return (e.g., eleven percent), but rather a rate 

of return (e.g., eleven percent per year). That this is illogical and makes for inconsistent 

pricing will be demonstrated in the next two sections and in Appendices A and E. But for 

now one need only ponder how to price instantaneous cash flows, such as the flipping of 

a coin and the receipt of one dollar if the coin lands heads. 

2) Return on Capital Allocated to the Insurance Business 

If the ROE approach to pricing risk is problematic enough for the widget business, it is 

even more problematic for the insurance business. For the widget business behaves as a 

typical investment in that money first goes out with the desirable expectation that later it 

will come in. But the insurance business, at least superficially, behaves in reverse: 

money (in the form of premiums) first comes in with the undesirable expectation that 

later it will go out (in the form of losses). So if a company were considering to insure a 

risk whose losses were expected to be $100,000, $125,000, $125,000, $100,000, and 

$75,000 over five years, and the beta for the insurance industry were 1.20, it would not 

accept a pure premium of $403,000. In fact, it would not even accept a pure premium of 

these amounts discounted at the risk-free rate of return: 



$100,000 + $125,000 + $125,000 + $100,000 + $75,000 = $457 631 

(1.05)l (1 .05)2 (1.05Y (1.05)4 (1.05)5 ’ 

This has led Robert Butsic [4] and others to modify the CAPM formula to something 

like: 

rr -&E[y,]-~Tf)=0.05-1.2(0.10-0.05)=-0.01 

This would make for a risk-adjusted pure premium of: 

$100,000 + $125,000 + $125,000 + $100,000 + $75,000 = S540 342 

(0.99)l (o.99)2 (0.99)3 (0.99)4 (o.99)5 ’ 

Such modifications of the rate of return move the pure premium in the right direction, 

viz., to being greater than the present value of the expected losses. However, it seems 

unbecoming of a theory that it should have a plus sign when returns are desirable and a 

minus sign when they are undesirable. Moreover, time is still of the essence of this 

pricing. What would the risk-adjusted pure premium be to insure a one-dollar loss that is 

incurred if a coin to be flipped in the next moment lands heads? 

The sensing of these problems has led many to a more sophisticated concept of the 

insurance business. The insurance cashj7ow is opposite to that of a typical investment; 

but the order of the capital or equity flow is typical, i.e., an outflow followed by an 

inflow. Although the insurer first receives the premium, it must set up reserves and pay 

expenses. Usually this entails that the insurer’s net worth or equity decreases 

immediately after writing the policy, any eventual increase depending on how much loss 

is incurred and how much investment income is earned. But this is not the whole story. 

The insurer must convince prospective clients, as well as regulators and rating agencies, 

that it has sufficient capital on hand to cover worse-than-expected losses. Thus, every 



insured risk places some burden on the insurer’s capital. Hence, many have come to 

conceive of the financing of an insurance transaction as the allocation of some amount of 

capital on which the profits of the transaction are returns. 

The author believes that this more sophisticated ROE approach is no less problematic. 

For no suggested method for allocating capital has been widely accepted, nor is it likely 

that one will be (cf. [l] and [13]; also Appendix D). And even if some method were 

devised, there would remain the problem of determining what expected rate of return the 

allocated capital should earn. Also, the CAPM affords financial planners the 

convenience of a deterministic framework; but the allocation of capital to insurance risks 

requires the taking into account of variances and covariances. 

Moreover, the expected rate of return on allocated capital seems to depend on the amount 

of allocated capital. For suppose that companies A and B bid for the same risk, that both 

believe the expected losses to be $140, and that their expense loads are similar. But A 

proposes to allocate $100 of its capital to the risk for one year, at a cost of ten percent per 

year. Thus A’s premium will include a ten-dollar risk charge. Company B, which boasts 

of its disaster-proof security, proposes to allocate $200 for one year, at the same cost of 

ten percent. So B’s premium will include a twenty-dollar risk charge. Suppose that A 

quotes a premium of $200 and B quotes $210. Company A argues that its capital 

allocation corresponds to a 97.5% confidence level, whereas company B lays claim to a 

99.0% confidence level. It is questionable whether the prospective client will consider 

the additional 1.5% confidence level to be worth the additional ten dollars, especially if a 



guaranty fund backs up the companies. Company B will be hard pressed either to 

allocate less capital or to charge less than ten percent per year for that capital. 

And finally, time continues to be of the essence of this more-sophisticated ROE 

approach. If capital c is allocated to an instantaneous risk, such as the coin flip, at a cost 

of capital of K per time period, then the risk charge will be CKA~ -+ 0. Risk loads 

evanesce in the realm of the instantaneous, which is inconsistent with the fact that a lot of 

money can be lost in an instant. The next section will reinforce this critique of the ROE 

approach with a simple mathematical example. 

3) An Example of the Inconsistency of the ROE Pricing Approach 

We will use the ROE approach to price the following risk: a policy will cover the time 

interval [0, r]. Claim generation is a Poisson process with a constant frequency of h 

claims per time unit. The severity of every claim is s dollars. The risk-free yield curve is 

flat at a force of interest p per time unit. Somehow it is determined that c dollars of 

capital should be allocated to this risk and that this capital should earn a risk charge 

continuously at a rate of K per time unit. It is clear that the example is simple, 

particularly in that the uniform Poisson process with constant severity justifies the 

constancy of the allocated capital. But if the ROE approach proves to be illogical and 

inconsistent on a simple level, how much more illogical and inconsistent must it be on a 

complex level? 



The expected loss in the interval [t, t+dt] is Adt. And the present value of the loss in that 

interval is e-pfsl.dt . Therefore, the present value of the expected loss is: 

PV[E[LI] = jemp’sMr 
t=o 

T 

= SAL Iemptpdt 
P t=o 

= Skl-e-PT 

P 

= s$-e-pT 
PT 

L’Hospital’s rule can be used to extend this equation to the interesting case of pT = 0: 

pT#O 

SAT pT=O 

The allocated capital c will earn in the interval [t, t+dt] a risk charge of cKdt. The present 

value of the entire risk charge is: 

RC = je-“mdt 
t=o 

T 

= CK 1 Iem”’ pdt 
fJ t=o 

=cK1-emPI 

P 

_-CKT1-e-pT 
PT 

Again, L’Hospital’s rule allows for the extension to the case of pT = 0: 



CKl-e-P7 
~ PT#O 

P 
RC= 

CKT pT=O 

Summing these two, we have the formula for the risk-adjusted pure premium: 

RAPP = PV[E[L1]+ RC 

1 _ e-P* 
pTz0 

= (sh+CK)* 
P 

T pT=O 

The formula possesses a very attractive property, viz., that the premium for a policy 

covering [0, T2] equals the sum of the premium for a policy covering [0, Tl] and the 

present value of the premium for a policy covering [Tl, T2], where 0 L: T1 I T2: 



I 
1 -pc 

PT, #O 

=(sh+CK)* 

P I 
1 _ e-~7; + e-~r, _ ~PI; 

PT, +o 

I T +(r2 -0 pT, =0 

I q +e-'(T, -T,) pT, =0 

= (sh+CK)* I 
1 _ e-pq 

PVO 
1 _ e-~(Tz-T,) 

P(T, -T,b 0 
P P 

+ e-PT, 
(h+CK). 

= RAPP[O, q ] + eopT, RAPP[T, , T2 ] 

Now we will modify the example. Let the expected loss E[L] = shT be constant 

regardless of T. This is easily accomplished by making the frequency inversely 

44 proportional to T: h(T) = $ = sT. If the allocated capital c remains constant, the 

formula for the risk-adjusted pure premium becomes: 



I 
l- e-PT 

pT#O 

RAPP = (sh(T) + CIC) . 
T pT=O 

= (E[L] + CKT). 

/ 

1 _ (?-pT 
pTz0 

P 

I T pT=O 

1 _ yPT 

PT 
pT;cO 

1 pT=O 

But again, divide the coverage term into [0, TI] and [TI, Tz], and pro-rate the expected 

loss: E[L,]=$E[L]= W,E[L] and E[L,]= (T’,T’)~[~]=w2~[~], where w, +w, =I. 
2 2 

Then: 



RAPP = (E[L]+ NT,). 
PT* I 

l- e-G 
___ pT,#O 

I 1 pT, =0 

I e_pT, 1- e-p(T2-Tb) l- pr, 

PT, PT* 
PT, *O 

=(E[L]+cKT~). 

I wI+w2 pT, =0 

I 1 -e-pTJ 
-PT, 

1 _ e-~(G-T~) 
w, -+e 

PT, w2 p(T,-T,) pTz ” 
= (E[L]+ CKT,). 

I 

w, + cow, pT, =0 

= w, (E[L]+ CKT,). 

1 -e-p& 
~ pT,+O 

PT, 
+ CP4 w2 (E[L]+ CKT,). 

1 pT, =0 

___ pT,;tO 

= (E[L, ]+ CKT, ). 
PT, 

+ cpq (&I+ CK(T* -T,)). 

1 pT, =0 

So far, the ROE approach is behaving as desired. 

1 _ e-~(T,-T,) 

P(T2 -TJ 
P(T, -T&O 

P(T, -T,)=O 

I_ e-~@'r7i) 

P(T, 3) 
P(T, -T,>*O 

1 P(T, -T,)=O 

If p > 0 and T + 00, then RAPP = (E[L]+ CKT)’ - e-pT + F. 
PT 

In other words, the 

present value of the expected loss becomes insignificant and the premium is the present 

value of the perpetuity of the risk charge. But as p + O+, the value of this perpetuity 

becomes infinite. This is not a desirable behavior, since a risk-adjusted pure premium 

could be greater than a policy limit or maximum loss. Even if there were no maximum 

loss to the policy, a premium could be much greater than any probable loss. And the 

results are nonsensical if p < 0. Although a negative force of interest is unrealistic, a 



mathematical theory of pricing risk that suffers a discontinuity and excepts a domain is 

suspect. 

On the other hand, as T + O+, RAPP=(E[L]+acT) 
l-e+- 

PT 
+ E[L]. This is the 

problem of the evanescence of risk loads in the realm of the instantaneous, as mentioned 

at the end of the previous section. This too is not a desirable behavior. The author has 

tried to put a flattering construction on the ROE approach to pricing risk; nevertheless, 

this approach underprices very short-term risks and may well overprice very long-term 

risks. In fact, it is arguable that RAPP[O, r] should monotonically decrease for T 2 0, if 

E[L] remains constant. For the maximum risk load should pertain to RAPP[O, 0'1, since 

if the policy covering [0, O+] loses money, it does so without the consolation prize of 

investment income. 

The author does not expect that this critique of ROE pricing will convince everyone, or 

even most. Many will go back to their drawing boards and seek to rehabilitate this 

approach or to vindicate it against this critique. But the author will next turn to the 

utility-theoretic approach to the pricing of risk, hoping that the building up of a new 

approach will be more effective than the tearing down of an old. It is proverbial that one 

can catch more flies with honey than with vinegar. Those who wish for further argument 

against the ROE approach should consult Appendix E. 



4) The Utility-Theoretic Approach to Pricing Risk 

Perhaps Daniel Bernoulli was the father of utility theory; he employed it in his solution to 

the St. Petersburg Paradox (Appendix B). It is the foundation of much of modern 

economics and decision-making ([7], [ 151, and [26]). We will introduce utility theory 

with the example of the coin flip. A coin is about to flip, and if it lands heads it will cost 

a certain person one dollar. Otherwise, it will cost that person nothing. The person has 

come to us to purchase one dollar of insurance against the event of heads. What premium 

should we quote? 

If we were risk-neutral, we would quote a pure premium equal to the expected loss, or 

fifty cents. If our quote were accepted and we received the fifty cents, then in the next 

moment with equal probability we would be either fifty cents richer (tails) or fifty cents 

poorer (heads). But if we were risk-averse, we would dread the loss of fifty cents more 

than we would welcome the gain of fifty cents. Then our quote would be greater than 

fifty cents, perhaps sixty cents. If we received sixty cents, after the flip we would be 

either sixty cents richer (tails) or forty cents poorer (heads). And if we were risk- 

inclined, we would welcome the gain of fifty cents more than we would dread the loss of 

fifty cents. In this case our quote would be less than fifty cents, perhaps forty cents. 

Then, after the flip, we would be either forty cents richer (tails) or sixty cents poorer 

(heads). If we were extremely risk-averse we would quote 1-E dollars, and if we were 

extremely risk-inclined we would quote E dollars, where E is a small positive number. 



But whatever our risk-tolerance might be, we would quote a pure premium greater than 

zero and less than one. This is a realistic description of how individuals and companies 

assess risk, and it makes no use of allocated capital and returns thereon. 

The pricing of risk is really the weighing of alternatives, or utilities. Individuals and 

companies might not be aware that they have utility functions; they might operate on a 

visceral level. But, as Socrates said, “The unexamined life is not worth living.” What 

happens on a visceral level can and should be brought before the intellect. So let us take 

for granted that there is some function of wealth u(w) by which we weigh our 

alternatives. For now, we need to know only that u must be continuous and strictly 

increasing. Let w be our present wealth, and let p be the pure premium. After the coin 

flip our wealth will be either w +p (tails) or w +p - 1 (heads). Since heads and tails are 

equally likely, this insurance transaction will change our expected utility from u(w) to 

0.54w + p - 1) + 0.5U(W + p) = f(p). 

Since u is continuous and strictly increasing, f too must be continuous and strictly 

increasing. However, f(0) = 0.5u(w - l)+ 0.524~) < 0.524(w)+ 0.54~) = U(W). And 

f(1) = O.~U(W)+ 0.54~ + 1) > 0.54~) + 0.54~) = u(w). So, f(O) < U(W) < f(1). Since f 

is continuous, there must be some 0 < p * < 1 such that f(p *) = u(w). Entering into this 

transaction for any premium less thanp* decreases our expected utility, and 

any premium greater than p* increases it. p* is the equilibrating premium. 

that we should enter into no transaction that decreases our expected utility. 

entering for 

Our rule is 



In general, if there are n possible outcomes for a loss L to happen in the next moment (II, 

. . . ) In) with respective probabilities 7~1, . . . , nn, where 27c, = 1, then an acceptable 
i=l 

premium satisfies the equation TX,U(W + p - I, ) > 2 n,u(w) = 1. U(W) = U(W). If the 
r=l ,=l 

outcomes are uncountable, then an integral form is appropriate: 

JU(W + p - l)f(l)dZ > ~u(w)f(Z)fd = 1. U(W) = U(W) 

The current state may not be one of fixed wealth W, but of a distribution of wealths wi and 

probabilities xi. One can decide to change the distribution to wealths wi* and 

probabilities ni *. The decision is good if it increases the expected utility: 

Crr:U(W:)> CxIuCwi) 

I I 

This formulation, which shows the effect of a decision on one’s stochastic wealth, allows 

for the consideration of covariance among risks. 

So far, the decisions have taken place instantaneously. Earlier the ROE approach was 

criticized for making time to be of the essence of the pricing of risk. This is not the case 

with utility theory. Consider a variation of the game show The Price is Right. There are 

three doors, behind which are $100, $200, and $300 cash prizes. You may choose one 

door, but you do not know which prize is behind which door. However, you must pay to 

play this game. If your current wealth is fixed at w, your bidp is ruled by the equation: 

fu(w-p+lOO)+$u(w-p+200)++(w-p+300)>u(w) 



Obviously, $100 < p < $300. But now we introduce the time element. The prizes are 

$100 now, $200 one year from now, and $300 two years from now. Suppose that the 

risk-free yield curve is flat at six percent per year. Then the present values of the prizes 

are $100, $200/1.06, and $300/1.062, at which values the prizes can be cashed in. This 

modifies the equation: 

The equilibratingp, which must be greater than $100/1.06° and less than $300/1.062, has 

nothing to do with some such ROE equation as: 

1 100 1 200 1 300 

P=3(1+ROE)0 +?(l+ROE)’ ‘5(1+ROE) 

Time is not of the essence of utility-theoretic pricing. That this is a desirable feature is 

argued in Appendix A. 

5) Covariance and Order Dependence 

The price of insuring a new risk may depend on the risks that the insurer currently 

insures. The reason for this is that the new risk may covary with the current risks. This 

means that if A and B are two risks, what the insurer will quote to insure them may 

depend on the order in which they are submitted. Both ROE and utility-theoretic 

approaches to pricing consider the covariance phenomenon. But it is instructive to see 

how cleanly it is handled by utility theory. 



Returning to the coin flip example, suppose that we decided to insure heads for the 

equilibrating premium p *. Prior to this we had a non-stochastic wealth w. We have 

dropped the assumption that the coin is fair for the general probabilities nH and nr. 

Therefore, U(W) = (7c, + 7~~ b(w) = R~U(W + p* -l)+ 7rTu(w + p’). Now suppose that 

someone wishes for us to quote for a dollar of insurance against tails. We calculate the 

equilibrating premium q *, acknowledging that we have already insured heads, as: 

u(w)=7$$(w+p* -l)+n,u(w+p’) 

=n,u w+p* ( -1+q*)+x,u(w+p*+q* -1) 

=n,u(w+(p* +q*)-l)+RTU(W+(p* +q*)-1) 

=(7c, +7Q+(w+(p* +q*)-1) 

=u(w+(p* +q’)-1) 

But since u is a strictly increasing function: 

u(w)=z4(w+(p* +q*)-1) 

w=w+(p*+q*)-1 

1=p* +q* 

The equilibrating premium to insure tails has been affected by the prior decision to insure 

heads. If the tails policy were issued first, p* and q* would be different, but their sum 

would still be one. 

The covariance phenomenon sometimes annoys actuaries, because it implies that risk 

charges increase as positively correlated risks are added to a portfolio. So, for example, 

the second home insured in Miami, FL should be charged more than the first, and so 

forth. However, in practice this is not a problem, for an insurer usually decides to 

underwrite a block of correlated risks, in which case each risk is charged an average 



amount. The premium for the whole block may be affected by the presence of other 

blocks of insurance, but within the block order dependence is ignored. 

6) A Versatile Utility Function 

Until now u(w) has been unspecified, only that it had to be continuous and strictly 

increasing. The fundamental theorem here is that a decision based on a utility function is 

unaffected by a positive linear transformation of that function. Let the linear 

transformation be u* (w) = au(w)+ b , where a is positive. Then u*, like u, will be 

continuous and strictly increasing. Now suppose that the wealth distribution W is 

preferable to distribution W* according to utility function u. Hence, 

~v<Y)~~~:&,g. Then, since a > 0, the order will not be affected by the 
I I 

following algebraic manipulations: 

i I 

The proof holds whether the relation between W and W* is ‘>‘, ‘<‘, ‘=‘, ‘2’, or ‘9. 

Therefore, positive linear transformations of utility functions are equivalent. 



We desire for a utility function to be defined over all the real numbers. This excludes 

quadratic utility functions, because a quadratic function must somewhere be decreasing. 

This excludes also the logarithmic utility function, of which Daniel Bernoulli was so fond 

(Appendix B). For the logarithm of a negative number is not real. We will want to 

evaluate utilities such as u(w - L), were w - L represents an insurer’s wealth after a loss. 

But the loss could be large enough to make w - L negative. Some might reply that this 

would bankrupt the insurer, which is equivalent to a wealth of zero, or max(O, w - L). 

We disagree; utility-theoretic decisions should allow for negative wealth, since this will 

build into the decision not just the fact of the bankruptcy, but also its magnitude. 

Responsible decision-making should ignore limited corporate liability and guarantee 

funds; someone will have clean up the mess of a bankruptcy. And logarithmic utility 

fails with the formula max(O, w - L) , if Prob[ w - L I 0] > 0, since In(O) is undefined. 

Probably we are not giving up much if we demand that u be differentiable, or even 

analytic. Not only should a realistic utility increase a little with a little increase of 

wealth; probably it should increase smoothly. Therefore, u’(O) will exist and be positive. 

Then, the positive linear transformation u* (w) = 
1 40) -U(W)-- 

40) 40) 
is equivalent to U. But 

u* has standard properties of passing through the origin with a slope of one. 

A very versatile family of utility functions satisfies the differential equation 

U’(W) = au(w) + 1, with the initial condition that u(0) = 0. This implies that u’(0) = 1. 

And u”(0) = au’(O) = a. If a = 0, u(w) = w. This represents a risk-neutral utility. And if 



I 

aw -1 
a # 0, the solution of the differential equation is u(w;a) = ?.._.- 

a ’ 
It can be proven by 

aw -1 
1’Hospital’s rule that li+iu(w;a) = FzL = w = u(w;O). A graph of u(w; a) for three 

a 

values of a (-0.1, 0, and 0.1) follows (W on the x-axis, u(w; a) on the y-axis): 

The top curve (a = 0.1) represents risk inclination. The chance of gaining is more useful 

than the chance of loosing. The middle curve (a = 0 with dotted line) represents risk 

neutrality. And the bottom curve (a = -0.1) represents risk aversion. The chance of 

gaining is less useful that that of loosing. There is a certain antisymmetry to u in that 

u(-W; -a) = -u(w; a). So a loss of w dollars under (-a) risk-aversion is as unpleasant as 

a gain of w dollars under (a) risk-inclination is pleasant. 



Let X represent a stochastic (present) value with density functionJ: What would be its 

cash value to an investor whose risk tolerance is a and whose current (non-stochastic) 

wealth is w? Denote this value by &(X; w): 

Co 

e au’ 
1 I ea(w-S+*)fx (x)& 

x=-cc 

eat = je”.r,(x)dx 

MX denotes the moment generating function, With this particular family of utility 

functions (in effect, the exponential family) the initial wealth of the investor is irrelevant. 

Some will disagree, but the author believes this to be a desirable property. 

Moreover, making a to change with the wealth of the company is a natural way of 

making the company’s risk tolerance depend on its size (cf. [17:90]). Economists know 

that large firms are less risk-averse than small firms. It is reasonable that if company A is 

twice the size of company B, then company A can bear twice the loss at the same level of 

pain. Suppose that A is k times the size of B, and the cash value of X to company B is 

&&X). If A’s risk tolerance is a/k, then the cash value of kXto A is: 



Similarly, if tomorrow the government were to declare the Q to be the new currency and 

one Q to equal k old dollars, a decision-making entity would go on its merry way just by 

changing its risk tolerance from a to ak. (The unit of a is currency-‘.) 

If stochastic (present-valued) cash flows are independent, their cash values will be 

additive: 

This seems to be another desirable property. 

If X is a normal random variable with mean l_t and variance 02, M,(a) = e”p+“20”2. In 

this case c,(X) = A risk-inclined investor 

will pay more than expected value, a risk-averse one will pay less. In this case the risk 

load is proportional to the variance of the cash flow. Risk loads proportional to variances 

are widely thought to be reasonable. 



If the company’s stochastic present value is Xl, and it considers a project that will 

(immediately) change that value to X2, and the values can be treated as normal random 

variables (or equivalently, if only the first two moments are considered), the project 

would be undertaken if: 

P* +(;)4 <P* +[;)o; 

(Appendix D elucidates the properties of this relation.) The company would only need to 

know its risk tolerance a. 

7) Estimating One’s Risk Tolerance 

If one were impressed with the versatility of the exponential family of utility functions, 

he would have to estimate his tolerance toward risk, the parameter a. This is not a 

formidable undertaking; in fact, it may be easier to estimate a than to estimate the risk- 

adjusted rate-of-return of the ROE approach. 

As an example of how one might estimate a, let company A have a net worth of one 

billion dollars. Let the management of company A ponder the additional utility of the 

company’s gaining another $OSB of net worth. Then ask it what loss of net worth would 

diminish the utility by the same amount. If the company were risk-neutral, a $0.5B loss 

would be as unpleasant as a $OSB gain would be pleasant. Suppose that the management 

says that a $0.3B loss countervails a half-billion dollar gain. This yields the equation: 



e al.OB _ 1 ea0.7B _ 1 ea1.5B _ 1 eal.OB _ 1 

- = - 

a a a a 

2e 
al.OB -1 = ea0.7B _I + ,aL5B -1 

a a a 

The solution is a = -1.305 x 10T9. This method is simple; but it may rely too much on 

one judgment. A more robust method is to let the management judge the relations among 

the utilities of several amounts and to estimate the a that best fits these judgments. 

8) A Utility-Theoretic Approach to the Poisson Example 

Section 3 treated an example that revealed the inconsistency of the ROE approach. It is 

only fair to see whether utility theory fares any better. The problem was to price a policy 

covering the time interval [0, r]. Claim generation was a Poisson process with a constant 

frequency of h claims per time unit, the severity of every claim was s dollars, and the 

force of interest was p. 

The problem is that the distribution of the aggregate loss is not analytic. However, we 

can derive expressions for the mean, the variance, and the higher moments of the 

aggregate loss. For convenience we will use only the mean and the variance; and our 

utility will be exponential. Appendix C shows how the exponential family of utility 

functions works with the higher moments. 

Let L[t, t+dt] be the random variable of the loss incurred in the interval [t, t+dt]. The 

probability of a loss is hdt. Hence, the claim count is Bernoulli-distributed with 



parameter hdt, or Bernoulli[hdt]. So L[t, t+dt] is distributed as s. Bernoulli[hdt], whose 

mean is shdt, and whose variance is s*hdt(l - hdt). But higher-order terms in dt can be 

ignored: Var[L[t, t + dtl= s*Ia’t - s2h2(dt)2 = s*?dt . The present value of L[t, t+dt], 

PV[L[t, t+dt]], equals e -‘IL t t + dt] * therefore, PqL[t, t+dt]] has mean e-pfshdt and [ , , 

variance e-2p’s2hdt. 

The expectation of the sum equals the sum of the expectations. Hence: 

E[W[L[O, TN = lE[W[L[t, t + dtm 
t=o 
T 

= e-P’s?dt I 
t=o 

T 

= ski jewP’pdt 
p t=o 

=shl-e-P’ 

P 

= s?JJ-e-PT 
PT 

And, since the increments of a Poisson process are independent, the variance of the sum 

equals the sum of the variances: 

Var[PV[L[O,T~= jVar[PV[L[t,t + dt]jj 
I=0 

T 

=e 
I 

-2p’s2hdt 

= s2kL jem2P’ ‘Qdt 

2p ,=o 

=s2h1-e~2pf 

2P 

=S2hT1-e-2p7 

2pT 



-@I As in Section 3, let the expected loss be constant for all T by making 1(T) = $ = sT : 

E[PY[L[O, Tjjj = sh(T)T ’ -“T’ = E[L]’ -“T” 

Vaar[PV[L[O, Tfl= s*X(T)T ’ ;;;7 = sE[L]’ ;I;’ 

In Section 6 we proved the cash value of wealth inflow X to an investor whose utility is 

exponential with risk tolerance is a to be 5, (X) = 144 (4 
a * 

(This assumes that X does 

not covary with the investor’s current distribution of wealth.) And if X is normal with 

mean p and variance 02, then 5, (X) = 
~=ap+a202/2_y+(ljOz Aloss 

a a 2 . 

is a wealth outflow, or a negative inflow. And a premium is money received, or negative 

money spent. Therefore, the equilibrating premium of loss L to an insurer is: 

a -a -a 

It is worthwhile to corroborate this equation by deriving it in full: 



u(w)= ju(w+p-l)fL(l)dl 
I=-m 

e clw -1 m e++P-4 _ 1 
p= 

“f-L W 
a I 

1=-m a 

co 

e 
aw 

= J &+p-‘)fL (z)d 

-a 

So, if loss L is normal with mean p and variance 02, or if loss L is effectively normal by 

the consideration of just its mean and variance, then: 

p 
a 

(L)=e= -w+a2o2/2 __(qo2 _+(+)2. 

-a -a 2 2 

If the insurer is risk-averse, then its risk tolerance a is negative and it will charge more 

that the pure premium ~1. 

We can now formulate the utility-theoretic answer to the Poisson example: 



At the end of Section 3 we wondered whether RAPP should be a decreasing function of 

T. Now we have an answer. P(X)= I 
x 

is a decreasing function of x. 

1 x=0 

Therefore, if p > 0, RAPP decreases with T, a confirmation of our intuition. The other 

conditions of p, though unrealistic, also confirm our intuition: If p = 0, RAPP is constant 

with T; and if p < 0, RAPP increases with T. Utility theory fares well in this example; no 

inconsistency has arisen. And one can show that the utility-theoretic answer here has the 

same desirable characteristic as the ROE answer in Section 3 had, viz., that 

RAPP [o,T,]= RAPP [O,T,]+ empT’MPP [O,T, - T,]. S o utility theory has the advantage 

without the disadvantage. 

The author thinks that an insurer at any time should have a fairly good idea of the present 

value of its stochastic cash flows, whether they stem from assets or from liabilities. It 

should have an idea about the flows of a contemplated project and how they covary with 

its own flows. Then with a utility function it can decide whether the project is 

worthwhile. In the estimation of the cash flows lies a multitude of details; but the details 

plague every approach. Utility theory has no more of them than do the others, perhaps 

less. 



9) Capital and the Strength of an Insurer 

Section 6 argued that responsible decision-making should not countenance such 

protections to the risk-taker as limited corporate liability and guaranty funds. Many 

managers of insurance companies do not think beyond the probability of ruin, if they 

think even that far. But both the utility-theoretic and the ROE approaches encourage 

considering the magnitude of insolvency as well as the probability thereof. 

Undoubtedly, the focus of the utility-theoretic approach to pricing is not solvency. But 

on the other hand, neither is solvency the focus of the ROE approach, although some 

seem to believe that it derives naturally, or almost invariably, from a “solvency first” 

mentality. But with either approach there will be times when an insurer will have to 

decline a good deal simply because it is loaded to capacity, as James Stone [25] has 

demonstrated. Conversely, at times an insurer will accept a bad deal simply because it is 

not loaded to capacity. It may try to convince itself that the deal really is not too bad, or 

that it has intangible benefits; but the truth may be that the insurer, like an impatient 

child, just can’t stand to be idle. And as long as the insurer is not in a make-believe 

world, its low-balling injures no one. Indeed, would anyone purchase a policy from a 

company that couldn’t afford to give to him for free? Of course, if the company gave 

free insurance to all comers, eventually it would become insolvent. But on the margin, 

for the next few policies, or every now and then, a healthy company could afford to give 



away insurance. All this indicates how loose the link is between pricing and solvency, 

especially in the short term. 

Perhaps a prudent utility function will make insolvency tolerably unlikely. Perhaps a 

prudent ROE approach will also make it unlikely. More likely, prudence itself will make 

insolvency tolerably unlikely. Whatever the approach to pricing, it is prudent for an 

insurer’s financial strength to be assessed by regulators, rating agencies, and the insurer 

itself. Financial ratios, stress tests, risk-based capital, and dynamic financial analysis 

should prove to be helpful for this assessment, in addition to non-quantitative means. 

But assessing how well an insurer is capitalized does not necessitate the allocation of its 

capital to individual risks. However the company might internally allocate its capital, 

every dollar’s worth of it is on call to meet the loss of any risk. A strong man who 

contracts the flu is still strong; but a weak man is weak even on his best days. Likewise, 

a strong company may have ailing divisions; but the insurance issued by these divisions 

is just as secure as that issued by the healthy divisions. Conversely, the insurance issued 

by a profitable division of a weak company is not secure. The only caveat is that the 

capital must truly be one; the company can’t have firewalls between parts of its capital in 

the form of legally distinct entities. But this goes without saying. So capital is the sum 

and substance of an insurer’s financial strength. Capital allocation is nonsensical for the 

assessment of financial strength; and it yields illogical and inconsistent results as a 

pricing technique. 
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Appendix A: The Fundamental Theorem of Asset Pricing 

Imagine that you walk into a casino and see a table of payoffs and prices. The casino 

offers y2 games, the outcome of each game depending on which one of s possible states is 

realized. So the table shows an (nxs) matrix D, whose ijfh element is the payoff from one 

unit of game i in state j. (The notation is Duffie’s [9:3f.], for whom ‘D’ stands for 

‘dividend’.) The table also shows an (nxl) vector q, whose ith element is the cost per unit 

of game i. So the table looks like the partitioned matrix [D / q] . 

You may choose any amount of any game. These amounts are the elements of an (nxl) 

vector 6, which is your portfolio. You may be long or short in any game; negative 

elements of 8 are perfectly legitimate. The payoff of your portfolio is the (sxl) vector 

D’O, for which you must pay the cost 9’0. Let J, be the (sxl) vector of ones. Then the 

profit of your portfolio is the (sxl) vector D’8 - J,q% = (D’- J,s’)e . The time value of 

money is not an issue here, because immediately after you position yourself with a 

portfolio 8, a random variable S E { 1,2, . . ., s} is realized and your profit is determined. 

Being a cunning person, you would like to take advantage of the casino by finding some 

portfolio 8 that produces a positive profit in every state. A little less ambitious is to 

produce a non-negative profit in every state. Let ‘%T (the non-negative orthant [7:26]) be 

the set of vectors in s-space all whose elements are non-negative. Similarly, let ‘%I+ (the 



positive orthant) be the set of vectors in s-space all whose elements are positive. You 

would like to find a portfolio whose profit is in the positive orthant, or at least in the non- 

negative orthant. Of course, 8 = 0, the null portfolio, will produce a profit of 0, which 

belongs to the non-negative orthant. So you’d be happy with a profit anywhere in the 

non-negative orthant except for 0. This means that you have some possibility of a 

positive profit and no possibility of a negative profit - upside potential without 

downside potential. 

Define L as the span of D’ - J,q’ , i.e., the set of all attainable profit vectors. For every 

vector x E L , there is a portfolio 8 such that x = (D’ - J,s’>e . L is a linear subspace of 

53,‘) since 0 E L and if x, y E L , then for any scalars a and b ax + by E L . L intersects 

‘93: at least at 0. But the sure bets would be at non-zero vectors belonging to L n ‘93: . 

Thus we can define arbitrage. The table [D I q] is arbitrage-free if and only if 

LA%; = IO>. 

We make one more useful definition. The (sxl) vector \v is a state-price vector if and 

only if v E %T+ and J:v = 1. If x E St+, then J:x > 0, so (J:x)-’ exists and x(J:x)-’ 

qualifies as a state-price vector. A state-price vector can be interpreted as a set of non- 

zero probabilities and as a weighted-average operator. If x is an (sxl) vector, then v’x is 

a weighted average of x, each element receiving some weight. x - J,$x is the vector of 

deviations from the weighted average. It is important to note that x - J,y$x E 93: if and 

only of x is constant. Otherwise at least one deviation will be negative. But if x is 















































Appendix E: An Examination of One Sophisticated ROE Approach 

Sections 2 and 3 criticized the ROE approach for its undesirable (or illogical and 

inconsistent) behavior. If a risk is allocated capital c(t) at time t, and this capital should 

be rewarded with an expected rate of return of K, then the risk-taker should receive 

c(t)& for taking risk during the time interval [t, t+dt]. If v(t) represents the present value 

(at time 0) of one dollar to be received with certainty at time t, then the risk-taker can 

receive the whole risk charge up front at the amount RC[O, T] = ~v(t)c(t)ndt . 
r=o 

The major defect of this approach is that ‘;1% RC [0, T] = 0, a phenomenon that the paper 

calls “the evanescence of risk loads in the realm of the instantaneous.” The simplest 

instantaneous risk is to bet on a coin that will be flipped in a few seconds. But Section 3 

showed also that this approach makes the risk charge too large (even infinitely large) as T 

approaches infinity. The ROE approach does not relate properly with time. Again, 

Section 3 argued that as the loss is allowed more future in which to stretch out, the risk 

charge should decrease. For if the loss is going to happen, it is better that it happen 

farther into the future. Thus not only the present value of the loss but also the present 

value of the risk charge should decrease as the loss is allowed more future. 

As a simple example, a coin will flip at some random time uniformly distributed over [0, 

r]. If heads results, a dollar will be paid to someone at that time. If this were the only 



risk in the portfolio, the risk-taker would be justified in setting c(t) equal to one dollar. 

The ROE approach would have the risk-taker to collect a risk charge of K each time 

period. So, present value aside, the expected loss is always half a dollar and the risk 

charge for a [0, r] interval is KT. For realistic yield curves the risk-adjusted pure 

premium RAPP[O, r] increases with T. And RAPP[O, O+] always equals half a dollar. 

This revolts against our intuition that the risk-adjusted pure premium should decrease 

with T; and the utility-theoretic example of Section 8 confirmed our intuition. 

One of the most sophisticated ROE approaches is that of Rodney Kreps [ 161. The current 

net worth of an insurer has mean R and standard deviation S. The insurer considers 

underwriting a risk whose profit has mean r and standard deviation o. And the 

correlation of the profit with the current net worth is C. Therefore, immediately after 

underwriting the risk, the net worth has mean R’ = R + r and standard deviation 

St2 = s2 + 2cso + 02. According to the second footnote [ 16: 1971, “We take all 

values as present values.” This must mean the usual present value (sans risk adjustment), 

since the aim is to calculate a risk load, and one should avoid double counting. The 

marginal net worth (i.e., change in net worth) has mean R’ - R = r and standard 

deviation: 

s-S=($-s)E 
s” - s’ 

= S’+S 

2cso + cJ2 

= S’+S 

2cs+o 

= S’+S o 



Kreps then allocates capital V to the whole book of business as some multiple z of the 

standard deviation, giving as an example z = 3.1 for a 99.9% confidence level if the 

business is normally distributed [16: 1971. He also says that the allocated capital may be 

reduced by the expected profit of the business; so his formulas are V = z,S - R and 

Y’ = zs’ - R’ . Therefore, the marginal capital for writing the new risk is: 

V’ - V = (zS’ - R’)- (zS - R) 

= z(S’ - S)- (R’ - R) 

2cs+o 
=z CT--T 

The author disagrees that an insurer should be allowed to treat the expected profit of a 

risk as part of the capital allocated to the risk; but something greater is a stake here. 

_ 
S’+S - 

Nonetheless, the author prefers the formulas V = zs, V’ = zS’ , and V’ - V = z 2cs+o 
“, n o . 
3 +3 

The last element 

marginal capital. 

is y, what management deems to be the required expected return on the 

The expected marginal profit should equal the required expected return: 

Y =L(V’-V) 

=(z=& 
2cs+ CJ 

r(l+y:)=yzs+scJ 

r= yz 2cs+o 
CJ 

l+y S’+S 

=Ro 



R = Yz 2cs + (J is 
l+y S’+S 

“the reluctance to take on risk” [16:198]. If the formulas for V and 

V’ that the author prefers are used, the formula for the reluctance simplifies to 

2cs +o 

Yz S’+S . 
The premium is 

value of the expected losses and 

P = p + RCJ + E [ 16: 1991, where p represents the present 

E the present value of the (non-stochastic) expenses. 

This is a sophisticated ROE approach, and has attracted many actuaries (e.g., [l l] and 

[14]). Kreps calculates under some reasonable circumstances a value for R of 0.33 

[ 16:203], and it has become a rule of thumb among some actuaries that the risk load 

should be about a third of a standard deviation. Also attractive is that the approach 

considers the covariance of the new risk with the current portfolio. 

In fact, it may surprise some that this approach is similar to a utility-theoretic answer, as 

we will now show. If we use exponential utility and consider just the first two moments 

of the probability distribution (as Kreps does), the comparison of utility before and after 

underwriting the new risk is (cf. Section 6 and Appendix D): 

R+qSi -R+P-y-E+;St2 

-R+(p+RC+E)-p-E+;S2 

-R+RC+;S2 

1 
( x 

-- ci S12 
2 

- S2)- RC 



RC is what Section 3 called the risk charge, which Kreps calls the risk load and sets equal 

to Ro. It is convenient to prefix a with a minus sign, since a risk-averse perspective is 

assumed (a < 0), so -a is positive. We simplify: 

1 
( X 

-- CI sr2 
2 

-S’)- RC 

1 
( x 

-- cc s2+2cso+02 
2 

- S2>- RC 

1 
( x 

-- IY. 2CSo+o’ -RC 
2 

> 

Compare this with the Krep’s equilibrating profit (or risk load): 

r= yz 2cs+o 

I+y S’+S cJ 

1 yz 2 =_ - 

c I 2 l+yS’+S 
(2cso + 0’) 

J y”L (2c&+02) 
( I 2 l+yS 

S represents the average standard deviation of the portfolio, which will not change 

dramatically in the short term for a mature portfolio. So we see that -a and y”1; 
I+yS 

(or 

YZ - -_) 

S 
as the author prefers) serve the same purpose. 

This settles the debate as to whether risk loads should be proportional to standard 

deviation or to variance. Frequently the Kreps approach is cited in support of the 

standard deviation. But the formulation for the risk load Ro is really quadratic with 

respect to (3, because R = - yz 2CS+a 

l+y S’+S * 
Thus this approach really supports the 



variance. Only “in the very pessimistic case where C = 1” [16: 1991, in which case 

S’ = S + 0, does Ro become linear with respect to G: 

R = yz 2cs+o 

0 l+y S’+S 0 

yz 2(l)S+o 

=l+y(s+O)+sO 

yz 2s+o =-PO 
l+y2S+o 

YZ Z-0 
l+Y 

At this point the reader may be wondering why the author has fussed over utility theory 

when he has demonstrated its similarity with one of the most highly regarded ROE 

approaches. Just what is the big difference after all? 

Recall the critique of the ROE approach that was summarily stated in the beginning of 

this appendix. It has been instructive to examine the ROE approach of Rodney Kreps. It 

has merit, and that merit draws it close to the utility-theoretic approach. Perhaps that 

rapprochement will make it easier for some actuaries to make the transition to utility 

theory. But the author mentioned above, when digressing on a subtle point, that 

“something greater is at stake here.” That something is the problem of time, to which 

Sections 2 and 3 have drawn much attention. 

Even the Kreps approach is unaware of the problem of time; the second footnote blithely 

dispensed with it (“We take all values as present values”). But it reasserts itself on 

considering the dimensions of the variables: R, S, and V are in dollars; C and z are 



unitless. Therefore, because r = JJ(~’ - V), y too must be unitless. Section 1 showed 

time to be of the essence of the ROE approach, i.e., that it depends on determining the 

proper rate of return, where the unit of rate is time-‘. But this y is a unitless return, rather 

than a rate of return. How would management determine y? Even if management had, 

perchance, the beta of insurance liabilities, the CAPM would yield a rate of return, say 

twelve percent per year. But there is no natural unit of time in this formulation. 

Many would respond that there is a natural unit of time, viz., the policy term, normally 

one year. Therefore, if management targeted, for example, a rate of return of twelve 

percent per year, the y of the Kreps formulation would be 0.120. But all the dollar 

amounts, especially cr, are present valued, and it makes no difference to the present value 

of (T whether the risk is covered for one year, for two years, for six months, or for one 

instant. If the policy term were semiannual, y would be 1.120°.5 - 1.000 = 0.058. If we 

had a colony on Mars, perhaps the natural Martian policy term would be 687 Earth days. 

687 

(-1 Then y would be 1.120 365 - 1 .OOO = 0.238. And if the policy covered the next twenty- 

four hours, y would be 1.120 “’ (-1 - 1 .OOO = 0.000. Thus the premium would vary for 

risks whose o values are the same. Furthermore, the time to runoff makes no difference 

to 0. 

Only Kreps’ fifth footnote mentions time [ 16: 1981, “ . . . there are interesting questions 

with respect to the surplus flow needed to support the expected return of the book and of 

the contract, and the consequent internal rate of return.” (author’s italics) This means 



that we are back to square one, as described in the beginning of this appendix, having 

dealt neither with the evanescence of the risk loads in the realm of the instantaneous nor 

with the other inconsistencies of the ROE approach. The ROE approach does not relate 

properly with time; but the utility-theoretic approach does. 


