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Taking Uncertainty Into Account: Bias Issues Arising

from Parameter Uncertainty in Risk Models

by John A. Major, ASA

Given a rundom variable of interest, a historical sample of its realized values,
and the desire to model iis possible future values, actuarial training provides many
methaods for selecting a family of probability models (distributions) and determining
specific parameter values thut best represent it.  But how should one take parameter
unceriainty (parameter risk) into account? In particular, uncertainty can lead 1o bias in
estimators commonly used by actuaries. This paper examines the problem of adjusting
estimated distwributions (risk curves) to remove the undesirable bias effects of parameter
risk. and shows several solutions. It goes on, however, to critique the very notion of
unceriainty-adjusted risk curves, emphusizing that this is an ambiguous concept. The
Jorm of the adjustment depends crucially on details of the specific question being
addressed, so much so that an estimator can seem to be simultaneously overestimating
and underestimating risk.  Parameter uncerluinty therefore cannot be “taken into
account ' in an unequivocal manner. [t is recommended that parameter risk be held
apart from process risk and presented in terms of confidence intervals, only with that as

background - und with great care — should bias corrections be attempted.



0. INTRODUCTION

0.1 Parameter Estimation for DFA

For DFA in particular, the problem of parameter estimation occurs in the process
of determining the appropriate method for generating random variables in the simulation
of a financial security system. For example, if it is desired to investigate the relative
efficacy of various reinsurance alternatives, a simulation can be created that tests the
alternatives in a series of hypothetical “future histories” of loss expericnce. To simulate
many realizations of possible future losses — many more than have been observed in the
past — it is necessary to first create a model of the probability distribution of losses. Such

a model would be based, at the very least, on the loss experience observed in the past.

If one can determine an appropriate cumulative probability distribution tunction
(risk curve) Fx(X,®) to associate with the random variable of interest X, then random
instances of X can be created by the inverse lookup method: X = Fy'(U,6) where U is a
uniformly distributed random variable between 0 and 1. For specific distributions, more
efficient techniques are available, but inverse lookup will always work when F can be

inverted, either analytically or numerically.

Generated variables X, Y, Z, etc., can be combined in pro forma financial
statements or other actuarial calculations to simulate financial results R=¢(X,Y,Z,...).
After a sufficient number of simulation cycles, the empirical distribution of R values can
be used to assess the risk to the financial system, answering questions such as “What
valuc of R is not likely to be exceeded with probability q?” and “What is the probability

that R will be greater than (a fixed value) L?”
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0.2 Randomness and Uncertainty

“The uncertainty associated with a stochastic mode] has two distinct sources: the
inherent  variability of the phenomenon. [and] incomplete knowledge... of the
probabilities.... Sometimes these sources of uncertainty are referred to as “process risk’
and ‘parameter risk,” respectively. The terms ‘risk” and ‘uncertainty,’ respectively, have
also been used....” [Commitiee on Principles, 1997] In this paper, the terms

“randomness’ and “uncertainty” are used.

Standard statistical theory, as taught to actuaries, offers many methods for fitting
risk models (distributions) to data. With parametric models, there are a variety of
techniques for estimating the parameters and assessing the uncertainty in those estimates.
What 1s relatively lacking, however, is advice on how to incorporate uncertainty
informatim.l into the risk mode] itself, or more generally. into the advice being given to

the user of the risk model.

The predictive approach to probability modeling is one such method for
embedding uncertainty (parameter risk) into the (process risk) model for a random
variable. The random variable’s assumed family of distributions and its parameters are
augmented to include variation in the estimation process itself. A familiar example of
this is the construction of a prediction interval for a yet-to-be observed time series or
regression value. The formula for the variance of the predicted value includes terms for
both the residual error (noise) variance and the variance of the estimator for the mean
value. Another way of saying this is that the estimated risk curve for the random variable

is modified somehow to account for the phenomenon of parameter uncertainty.



It is the purpose of this paper to critique the predictive approach (or indecd any
modcl-embedded approach) to “taking uncertainty into account™ in parameter cstimation
and risk curve construction. In so doing, it will emphasize that this is not an unambiguous
aperation.  The desired form of the risk curve adjustment depends crucially on subtle
details of the specific question being addressed. so much so that a risk curve can seem to

be simultancously overestimating and underestimating risk.

0.3 Contents

This paper consists of six parts.  The remainder of the introduction discusses
previous literature in this area. In particular. a seminal work by Kreps [1997} s
summarized.  Part 1 discusses estimation and bias in the context of probability
distribution parameters and percentiles. To help clarify theory, an exponential cxample
and a lognormal example are worked out in some detail. The lognormal example is the
same one used by Kreps [1997]. Part 2 presents some motivation for “adjusting for
uncertainty.” Taking a Frequentist approach. it casts the issue in terms of a particular
type of bias and works out the necessary - predictive - adjustment for the two examples.
While Frequentist, it draws strong parallels 10 the Bavesian approach in Kreps [1997].
Part 3 extends the bias concerns of part 2 in other directions and reveals the existence of
an apparcnt paradox. making the case against adjustment. Part 4 discusses confidence
intervals as an alternative to “adjusting for uncertainty.”  Confidence intervals for
parameters, percentiles. and exceedance probabilities are given for the two cxamples.

Part 5 concludes with advice to the DFA practitioner.



0.4 Previous Research

Previous actuarial literature has addressed “parameter uncertainty,” but it is

sometimes not clear what the term is intended to encompass.

0.4.1 The View from PCAS 1983

Venter [1983] refers to the possibility of modeling “parameter risk” in the context
of transformed gamma and beta models for losses where “because of uncertain trend (or
other factors) there is substantial uncertainty about the scale parameter A....”" He goes on
to suggest putting a gamma distribution on A“ and mixing the loss distribution over 4, as
a “practical technique for quantifving this uncertainty.” The parameters for the
distribution of A itself can be estimated through percentile matching or, alternatively, an

examination ot industry or sub-sector loss ratios.

Meyers & Schenker [1983] and Heckman & Meyers [1983] discuss parameter
uncertainty in the collective risk model. “Parameter uncertainty can arise from sampling
variability and changes... over time.... [or] when some members of the group have
difterent fexpectations].” Their mode!l uses a “contagion parameter” ¢ in the claim count
distribution and a “mixing parameter” b in the claim severity distribution. Specifically,
. the expected number of claims (say. from a Poisson distribution), is multiplied by ¥, a
gamma-distributed random variable with mean 1 and variance ¢. Z, the claim amount, is
divided by P. a pamma-distributed random variable whose inverse has mean 1 and

varianee h.

Meyers & Schenker [1983] provide three examples of fitting the parameters b and

¢ to empirical data. In the most general torm, their model treats #, years of experience of



insureds / = 1,...,T as manifesting T independent draws of the ¥ and P random variables.
Their equations then estimate b and ¢ through variance components (random effects

ANOVA).

Thus, we seem to have three sources of parameter uncertainty which perhaps
should be carefully distinguished: sampling error, nonstationarity, and heterogeneity.
The recommended mathematical treatment is to interpret uncertainty as a hierarchical
random effect. ~ While this method admirably represents nonstationarity and
heterogeneity, it does not appear to address sampling error. Sampling error is distinct
from heterogeneity; it determines the accuracy with which 4, ¢, A, etc., can be estimated.
The standard errors of the estimates will diminish with increasing numbers of insureds T.

The values of # and ¢ themselves, however, will not converge to zero with increasing T.

0.4.2 Kreps 1997

Kreps [1997] discusses parameter uncerlainty in normal and lognormal
distributions.  In his introduction, he states “One of thc most ubiquitous sources of
parameter uncertainty is the fact that samples in real life arc never infinite.” Here, he is
explicitly addressing sampling error, and develops a theory of predictive distributions
“with™ parameter uncertainty.' He concludes that “the effcct of parameter uncertainty is

to push probability away from the mean out into the tail.” As will be seen below, the

' Mathematically, his technique is again to treat uncertainty as a hierarchical

random effect, however, with the imprimatur of explicitly Bayesian justifications.



predictive approach can be interpreted as creating percentile estimators that are unbiased

in a probabilistic sense.

For a case study, he analyzes Best’s reserving data. IBNR is assumed to be
distributed lognormally. Based on n=$ years, the maximum likelihood estimates of the
mean and standard deviation of X = In(IBNR) are 23.01923 and 0.06653, respectively.
This “point estimate™ implies a probability of IBNR exceeding $11.5 billion equal to
1.39%. For Kreps, taking parameter uncertainty into account, “the exact result... is

12.78%. To get to the true 1.39% level, it is necessary to reserve $14.1 billion!™

Subsequent sections will follow through on this example and parallels to Kreps's

work will be sketched in more detail.

1. ESTIMATION

This section discusses the estimation of parameters and percentage points. While
the estimation of parameters is the usual goal. the theory of point cstimation applies
equally well to the estimation of functions of the parameters. Because of the typical DFA
interest in tail behavior of variables, the estimation of percentiles (specific points on the
risk curve) is arguably more important than the estimation of parameters per se. At the
very least, the choice of parameter estimation technique should be informed by the effect
it has on percentile estimates. Bias is defined and illustrated in both parameter and
percentile contexts. The concept of a risk curve is formally defined and examples are
presented. The specific notions of X-unbiased risk curves and estimation techniques are

defined and illustrated.
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1.1 Estimation of Parameters

While various techniques are available for estimating parameters. we focus here
on Maximum Likelihood due to its general applicability and widespread use. Consider a
family of probability density functions g(x:6) where x is a real variable and & is a
(possibly vector) parameter. Given a sample {x). xa. ... xp}. the Maximum Likelihood

Estimate (MLE) of the parameter #is the value 6 that maximizes the joint likelihood

. (LD
1(8) = ng(.\',:é)).

i

The sampling distribution of @ has (asymptotically. i.c. with large samples) a
dispersion matrix cqual to the inverse of the matrix of sccond derivatives (with respect to
&) of the nawral log of the likelihood. Thus, standard errors of the MLE may be
computed nearly as casily as the estimator itself. [n many commonly-used families of
distributions, the MLEs are the obvious moment estimators.

For the typical distributions in use by actuaries, MILEs are asympiotically
efficient. This means that for large samples, they uniformly provide the most accuracy,
regardless of the true parameter value. However, they tend not to have strong small-

sample justifications [Lchmann, 1983].

1.1.1 The Exponential Case

Consider a random variable X distributed as exponential with scale parameter A:

PriX <x} =K, (x12) = 1 - exp(- x/4). (1.2)

Given a sample {x). Xz, .... Xp}, the likclihood tfunction is given by
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a1 1y [ & (1.3)

Difterentiating by A and setting to zero, we can see that the value of A that

maximizes the likelihood is given by

T-1=

S (14
X, .

'

1
n
this is also the same estimator obtained by cquating first moments of the

theoretical distribution and the sample.

1.1.2 The Normal Case

Consider a random variable X distributed according to the normal cumulative

distribution function:

/ . 2 (1.5)
(ve o | H }7 _]_. ) _l'(zf,u) .
PriX¥ <x;= F[.\.[Uz} = _‘: 5 exp T dz

(v )] 0O

Differentiating the expression inside the exponential and setting to zero, we get

the so-called likelihood equations:
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(1.7

The solutions, the maximum likelihood estimators, consist of the sample mean

and variance, respectively:

1 (1.8)

Again, this gets the same result as moment matching. For a lognormal variablc Y
= exp(X). the sample mean and variance of In(Y) make up the MLE. This follows from
an invariance property of MLEs.

In the example set out in Kreps [1997], we have the log of IBNR modcled as a

normal distribution with £ =23.01923 and ¢ = 0.06653 based on n = 5 sample points.

1.2 Estimating a Percentile

Typically, actuarial risk calculations concern themselves with onc tail of a
distribution. In DFA, the “interesting” or “risky” behavior of the system will often be
driven by the upper or Jower extreme values of one or more key variables. For example,
in the context of reserving, it is common to ask. what level of the loss variable will only
be exceeded with specitied low probability? This sort of quantity is also known in other

financial disciplines as the value af risk.
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The 100(1-q)"™ percentile X, of a distribution is given by solving 1-q = Fx(Xg,6).
However, this requires knowing the true value of € In practice, we only have some

estimator § of @, therefore we are left with the problem of constructing estimators of X,.

1.2.1 The Exponential Case
Given the parameter 4, it is readily determined that X= -4 In(q). This suggests

an obvious estimator:

X =-T-In(g). (1.9)

o

1.2.2 The Normal Case
For normal variables, Xg = y + 230 where z, is the 100(1-q)™ percentage point of
the standard normal distribution, e.g.. zo0s=1.645. Again, this suggests an obvious

estimaltor:

(1.10)

For the lognormal. we simply transform by )Ajl :c,\'p(;\A’,l). Kreps’s example
notes that the probability of exceeding Y = $11.5 billion is 1.39% (if the estimated

arameters are exactly correct). Equivalently, X, =23166 or f, o =115-10.
p b q ) 001w 00130

1.3 Bias in Parameter and Percentile Estimators

Since estimators are themselves random variables. it is meaningful to inquire into
their sampling behavior (distributional properties). Imagine there are modelers, m =

1.....M, cach drawing an independent sample {xn.....Xnm} from some fixed distribution.
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Each modecler assumes (correctly) the form F(x:¢) of the distribution, but must estimate
the parameter & based solely on his or her own sample. Each modeler will then,
presumably. have a different estimate for 8 and some will get closer to the actual value

of # than others.
An estimator S for a quantity f€) is said to be unbiased it
E S~ f(0)=0 (L1

where the notation E; [] denotes mathematical expectation with respect to the distribution
characterized by € Note that ¢, hence £ 8). is a fixed number and S is a random variable.
In the example of the M modelers, unbiasedness means that the average estimate obtained
among modelers, as M gets arbitranly large, will converge to the true value of the
parameter. Unbiasedness is only one property that an estimator may possess, and not

- . . . . - . 2
having it does not necessarily make an estimator inferior o ones that do.”

Note that the detinition of unbiasedness applies to estimators of any quantity
associated with a distribution, parameters as well as percentiles, exceedance probabilities,

etc.

? “Bias™ is such a loaded word that statisticians would have been better off with a
more technical term like “expectation neutrality.” Alas, we are stuck with the baggage of

historical usage.
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1.3.1 The Exponential Case

The distribution of T. the MLE for the exponential scale parameter A, can be

shown to be a gamma with scale parameter A/n and shape parameter n,

(oL Z (1.12)
L_m) P( 1'/;)

(n=114/n “

™

Pr{T <} = |
0

The mean of T is therefore A, and the variance is A*n. T is therefore an unbiased

estimator for 4. Because T is unbiased for 4, X’q is also unbiased for X,.

1.3.2 The Normal Case

The sample mean of a normal distribution is distributed as a normal with mean g
and variance o/n, therefore it is unbiased for 4 The sample variance is distributed as
o&/n times a xz(n-l) variable; the MLE for o is therefore biased. We can distinguish
several alternatives. [f an unbiased estimate of the variance (02) is desired, then we want

the familiar

>

Ny (1.13)
‘—Vn—l'a

This gives us a value of 0.07439 in the Kreps example.
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Unbiased estimation of the standard deviation (o) is much less familiar to
beginning students of statistics. Lehmann [1983] gives a general form for unbiased o*

estimation® which specializes for k = 1 to:

‘(”_]J (1.14)
n ! 2 N
O

This gives us a value 0of 0.07911 in the Kreps cxample.

We may generalize our percentile estimator by considering

Y SN 1.15
X, =p+z, -0, (1.15)

where we have a choice of estimators 6’0 for oo Recall that the ML estimator of the

1.39% exceedance point (zgn39 = 2.2) is X = 23.166 translating 1o an IBNR of Y =

exp(23.166) = 11.5 billion.

An unbiased estimator for X, uses 6'() = o, which yields 23.193, translating to an
IBNR of 11.82 billion. This is not unbiased for IBNR, however, because an unbiased X
does not imply an unbiased exp(X). This author is not aware of an unbiased estimator for
¥,. We can estimate the magnitude of the bias, however, by noting that if the normat

parameters were indeed equal to their ML estimators, then, approximately,

3 Johnson, Kotz, and Balakrishnan [1994] discuss the special case of k=1 and

present a simpler approximation.
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o (1.16)
_E[exp(/f'qv_‘)]_ex o , a1 r( 2*)
RIS W [ EANCEA

1
—tz ;
¥ 2 0ln F 2 (n)
q 1" —
. 2

where the subscript s indicates we are using the unbiased estimator for . This is only an
approximation because it assumes that &, is distributed as a normal variable; for o <I,
however, it is accurate to within 5%. [In our example, for values of o in the
neighborhood® of the ML value, the ratio of equation 1.16 is within 1.3% of unity,

indicating little bias. However, for larger values of o the bias can be substantial.

1.4 The Risk Curve and X-Unbiasedness

We can present the results of many percentage point estimators in graphical form.
The locus of points {<Xg,q>} is known as the risk curve or exceedance probability (EP)

curve. We place the exceedance probability q on the vertical axis and the percentile
estimate );’q on the horizontal axis. Depending on the range of interest, we may want to

plot one or both axes logarithmically. An alternative for the vertical axis is to plot the
return period, l/q, in units of time. e.g., years if the variable represents an annually

measured quantity.

* Specifically, for values of the parameter within a two-tailed 90% confidence

interval, as defined in section 4.1.
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If, for every q, the pereentile estimator .Q'q is unbiased, we say that the risk curve
is X-unbiased, or unbiased in the X domain. 1f a parameter estimation technique leads to

an X-unbiased risk curve. we will call it an X-unbiased technique.

1.4.1 The Exponential Case

Taving developed T, the locus of points (— T ln(q).q) is the ML risk curve. This
risk curve is unbiased in the X domain. The MLE technique for exponentially-distributed

data is thus X-unbiased.

1.4.2 The Normal Case

Depending on which g, is used. there are corresponding alternatives for the risk
curve. Figure | shows the MIL.E-based curve as a thin solid line and the X-unbiascd
(approximately Y-unbiased) curve as a thick dotted line. For reference. the target
<$1.152 billion. 1.39%:> probability point is marked with a box. Note that the two
versions of the curve differ markedly. Around the reference point, the difference
amounts o $300mm on the dollar axis or 1.7% on the probability axis. The MLE
technique for normally distributed data is therefore not X-unbiased, but an X-unbiased

alternative, based on equation 1.14, is available.

2. THE CASE FOR ADJUSTMENT

Unbiased estimation in the X (log) or Y (dollar) domain may or may not be
appropriate for the decisions to be made in a real application of the theory. For example,

while the American Academy of Actuaries [1993] says, “Consideration must also bc
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given to any {statistical] bias in the reserves or premiums,” it doesn’t specify in what

manner this consideration should be given. This section considers a different sort of bias,
leading to the notion of P-unbiasedness, and how that can be achieved through the

predictive distribution approach.

2.1 Probabilistic Bias and Predictive Bounds

We can ask a slightly different question about estimators for X; (equivalently, ¥),
based on the property they purport to represent, namely, an exceedance probability of g:
What is the expected value of this probability? In particular, we might like estimators

that are “probabilistically unbiased™ (P-unbiased) in the sense that
El—F(/§’(I.9)]=q_ 2.1

Such probabilistically unbiased estimators do exist. They are known as prediction

bounds. because

E[F(Xq,a)] = Pr{X < /‘I'.,} 22
where A’ is another draw from the population, independent of the sample upon which the
estimator is based. Since X, is the point satisfying 1-q = Fx(X4.0), if /\74 is unbiased for

X,. 1t is natural to assume that the probability of X > X’,, is also equal to g. This is not
generally the case: X-unbiasedness does not imply P-unbiasedness. By establishing the

true ““predictive probability” of an estimator /\A’q

0la.8) = Pr{X > X} = E[1- Fo(X,;0)] (2.3)
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we might be able to solve for an adjusted g* satisfying g/)(qﬁ) =g . Then, X

o may

serve as a P-unbiased estimator for X, Other routes are available, also. If, for every q.
the percentile estimator /f’q. is P-unbiascd, we say that the risk curve is P-unbiased. Ifa

parameter estimation technique leads to an P-unbiased risk curve, we will call it an P-

unbiased technique.

2.1.1 The Exponential Case

The predictive probability for an exponential percentile MLE is independent of

the parameter:

I3

" " (2.4
Pr{X>X’q}:( ) . )

n—In(q)

For example, with n = 20 and nominal q = 0.01, the true predictive probability is

0.01e.

Inverting the relationship, we get the adjusted q* for a “probabilistically

unbiased” X .:

g* = exp(n .(1 _gh )) 2.5)

For example, with n = 20 and q = 0.01, the computed q* = 0.006. The adjusted
(P-unbiased) risk curve is then the plot of <-— T-n- (1 - q_""'; ),q>.

Can we find a P-unbiased estimator for the exponential parameter? In other

words, can we compute T in such a way that the straightforward X , from equation 1.9 is
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P-unbiased? Not in general; there is no solution S to the equation

—S-ln(q):—T-n-(lfq'l")lhat holds for all 0<q<l simultaneously (although as n

increases without bound. S=7 is an asymptotic solution). This means that there is no
parameter estimation technique within the exponential distribution that yields a P-

unbiased risk curve.
That is because the predictive distribution for an exponential variable is not an

exponential distribution, it is a Pareto! This can be seen by solving X =-7-n -(1 -g L”)

for q in terms of X:

% ) (2.6)

=11
4 (.+'['-n

In summary: to create an X-unbiased risk curve from presumed exponential data,
first determine the MLE T of the exponential parameter as in equation 1.4. Then
substitute 7" for A in equation 1.2. This is not P-unbiased, however, because the true
excecdance probability at an estimated percentile is affected by parameter estimation
uncertainty. For a P-unbiased risk curve. construct the Pareto distribution corresponding
to equation 2.6. Drawing simulated values X from the Pareto instead of the exponential
will “take uncertainty into account” in the sense that the true exceedance probabilities of

the simulated percentage points will be accurate in expectation.’

> Here, “in expectation” means “averaged over all random samples of data from

the same exponential population.”
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2.1.2 The Normal Case

A prediction bound which a single future, independently selected normal variable

will not exceed with probability ¢ is given by:

- 1 (2.7

X, =a+1,., 0 Vl -

where ¢ is the 100(1-q)th percentile of a Student / distribution with n-1 degrees of
tfreedom. For our example of n = 5 and ¢ = 1.39%, we get 1 = 3.379 and the prediction

bound is ¥ =23.295. corresponding to $13.08 billion.

This must mean the estimators in section 1 arc probabilistically biased. Indeed,

by setting j’q. :.\-'q (cquations 2.7 and 1.15. respectively) we may compute the

predictive probability ¢* corresponding to the nominal ¢ probability for the estimator

,\”W. The ML estimator for the ¢ = 1.39% exceedance point, shown previously to be

biased in the log domain, has an expected actual exceedance of ¢* = 7.34%. Thus, in

probabilistic terms. it is drastically biased — downward - underestimating the tail risk.

What about the (log) unbiased estimator based on &,? This is a little better, with
expected actual exceedance of g* = 4.98%, but it is slill far from being unbiased in the

probabilistic sense.

Figure 2 adds <,\7q .q> to the plot of risk curves as a dash-dot line. This represents
a dramatic increase in estimated risk. Values of IBNR exceeding $1.35 billion,
essentially inconceivable according to the MLE and dollar-unbiased curves (20,000-year

return period or higher), are now seen as a distinct possibility (100-year return period).



Is there a P-unbiased estimator for &? As with the exponential case, no. The
predictive distribution is from the Student ¢ family, not the normal family (although,
again, in the limit as n increases without bound, there is convergence). To create an X-
unbiased (or log-unbiased) risk curve from presumed normal data, the methods of section
1.3.2 suffice. For a P-unbiased risk curve, however, one must construct the Student ¢

distribution corresponding to cquation 2.7.

2.2 Discussion

A specific family of distributions will lead to a specific form for the predictive
distribution. However. there is an approximation method which can bypass the analysis.
By sampling the parameters (according to an estimate of their distribution) as well as the
object random variable (according to the particular parameter values selected in their
most recent draw), one can create a random variable drawn from a mixture.® This
mixture represents a predictive distribution insofar as it incorporates variability in the

random variable (process risk) as well as uncertainty in the parameters (parameter risk).

Making this sort of adjustment — analytically or numerically — is often what is
meant by “taking uncertainly into account.” Notice correcting this new sort of bias is a
matter of increasing an understated (on average) risk. For typical actuarial distributions

with decreasing density in the upper tail and small enough q, on average, the true

exceedance probability 1- F_\,(AXA’,I .8) for the quoted value of an unbiased estimator /\;q

° ¢f. Venter’s recommendation discussed in section 0.4.1.
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will be higher than the nominal probability q from which the estimate is developed. The

adjusted value )?q. will therefore be higher (farther up in the tail); this is why it is often

claimed that “uncertainty fattens the tails.””’

Why does this happen? The function Fy is nonlinear in its X argument. Values of
an X-unbiased ,’?q deviate from the true value in a balanced fashion between high and
low; the average is the true value X;. However, a deviation on the high side contributes

less to the expectation of F_(.(X'qﬁ) than an equally large deviation on the low side

diminishes it, due to the curvature of F;. Therefore the expectation is not the same as the

function evaluated at the true value X,.

As mentioned in section 0.4.2, Kreps [1997] addresses this issue from a Bayesian
perspective.  His result for the “true” 1.39% exceedance point is $14.1 billion, about a
billion higher than was calculated in section 2.1.2. It is interesting to note that Kreps
[1997] summarizes his computations of percentage points with analogous expressions
£+ z-0 involving the MLEs of the parameters. For the MLE of the percentage point, 2
is the corresponding percentile of a unit normal. For the predictive distribution, Kreps's z
is zem the percentile from a normal with variance (n+1)/(n+7~4), where 7 is a
parameter defining the “uninformative™ Bayesian prior distribution on o, typically 0 or 1

(he used zero). Since a ¢ distribution with v degrees of freedom has variance v/(v-2), the

Tef. Kreps’s comment, discussed in section 0.4.2.
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R . . n+l . . .
equivalent Frequentist coefficient ¢, ,f—l (derived from equation 2.7) can be
: n-
considered analogous to the Bayesian z witht = 1.

Bayesians feel free to treat uncertainty in the parameters on an equal footing with
the stochastic behavior of the random variable. Above, we saw how Frequentist
mathematics can, in effect, yield the same results. [If probabilistically unbiased
estimation (or simulation) is the goal, it is appropriate to utilizc the predictive
distribution, rather than the ML-estimated distribution, to look up percentiles (or generate
random variables). This is the Frequentist rationale for “adjusting the risk curve for

uncertainty.”

3. THE CASE AGAINST ADJUSTMENT

In this section, the search for hidden forms of bias continues. The concept of Q-
unbiasedness will be defined. It will be seen that the adjustments of section 2 can lead to
worsening of estimator behavior with respect to Q-unbiasedness. Moreover, it will be
seen how it is typically impossible to make an adjustment which simultaneously

improves the 1wo competing measures of bias.

3.1 Estimating Exceedance Probabilities and Q-Unbiasedness

Rather than divulge a dollar limit X, corresponding to a given exceedance
probability q. we may view a risk curve as telling us a probability Qr of exceeding a
specific threshold L. This might be the perspective, say. in a ruin-theoretic analysis. The

decisionmaker could have in mind that $1.152 billion is the most that could be lost
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without dire consequences, and might request an estimate of the probability of suffering
them. Ag far as the geometry of the risk curve is concerned, this new situation is simply a
matter of entering the graph from a different axis, treating the locus of points as <L,Q>

rather than <X,.q>.

If an estimator Q, is unbiased, we will say that a risk curve constructed from
such estimators is Q-unbiased. If a DFA modcl aims at constructing risk curves for both
Xy and Q; lookups. then Q-unbiasedness and P-unbiasedness are arguably cqually
desirable.

A natural point estimator is O, =1~ F,(L.6). Indeed, if§ is the MLE of 6.
then (), is the MLE of Q. It should come as no surprise that EH[Q,,] does not in
gencral equal Q. again. due to nonlinearity ot Fy — this time in its @ argument.

In the two examples 1t will be seen that. on average, the estimated exceedance
probability Q, for the specified loss threshold L will be higher than the true probability
Qi To correct for this bias, an adjusted probability estimate Q, * will have to be lower

than the estimate Q,‘ computed from maximum likelihood. Thus, this variety of bias is
in the direction of overstating the risk, in marked contrast with the case of the previous
section, which understated the risk. Q-unbiasedness is not the same as P-unbiasedness.

In a sense, they are duals, it not opposites, of each other.
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3.1.1 The Exponential Case

The point estimator Q,_ is obtained from equation 1.2 as exp(-L/T). This is
biased, and Johnson. Kotz, and Balakrishnan [1994] give the minimum variance unbiased
(MVU) estimator as:

N I - nel 3.1
O, :(1——) .
Yiew n- T

This represents the risk curve as a form of beta distribution. As with P-
unbiasedness. there is no estimator of the exponential parameter to make a Q-unbiased
cxponential risk curve. However (and again, similarly), in the limit as n increases
without bound, equation 3.1 approaches an exponential. With A=1,n =120, and L =
4.605. the true value of Qp is 1%; were T to equal A, this estimator would produce the

value 0.69%.

This estimator has the unfortunate property that if L is greater than nT then the
estimated exceedance probability is zero, making very-high-tail estimates impractical.

By taking a Taylor expansion, we may approximate

£,]0,]= E[1-Frsn]= exP(_ )[1 JUL-2-4)

Unfortunately, the “bias correction” term in this approximation is dependent on
the true value of A, which is unknown. By substituting T for A, we may compute an

approximately unbiased estimate as:
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ool 1) (1 4227) o3

For tail thresholds L greater than twice the estimated mean T, the denominator is
greater than one and the estimated probability is therefore less than the MLE, In this
numerical example (n = 20, L = 4.605, and 2 = 1), simulation shows this estimator to
average 1.1% versus the true [%. For n = 20, L = 4.605, and T = [, this adjusted
estimator produces 0.77%, about three-fourths of the ML-estimated probability, and 11%

higher than the MVU estimator.

3.1.2 The Normal Case

Again we have a variety of estimates

. (34)
3,(x) = 1—@(". "]

() -

available, depending on the estimator used for oo Here, ® is the cumulative (standard)
normal probability function corresponding to the integral in equation 1.5. The ML
version of this estimator gives us an exceedance probability estimate at L = $11.5 billion

(x =In(L)) of 1.39%.

At this point, readers should not be surprised to learn that the MLE is biased.
Lehmann [1983] and Johnson, Kotz, and Balakrishnan [1994] provide the minimum

variance unbiased estimator for the exceedance probability of a normal distribution:

179



r(,’?:,‘) s 33)

- n 2 ' n 2
G)=1-|— - (l——-zz) d;
Q['”(\) n—1 r(l)r(rli) [.\' n-1 g
2 2
n-1 . x—- 4
where S=.—— and U =m1n[S, ,]
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Unfortunately, for values of x such that U = S, (which includes our numerical
example) this estimator takes on the value of zero. Again, this is likely to be

unacceptable in the typical actuarial application.

Alternatively. we can. by numerical integration or simulation, estimate the bias of
the MLE (assuming various parameter values). For parameters taking on their MLE
values in our example, the expected value for the ML exceedance probability estimator is
approximately 1.83%, versus the hypothesized 1.39% - a ratio of 1.3. For other
parameter values in the neighborhood® of the ML values, this ratio is at least 0.9, usually
greater than one. often greater than two, and sometimes greater than 10. This means we
should suspect the MLE of being biased high in the situation representing our data, that
is, overestimating the tail risk. This is in contrast to the MLE percentile estimator, which

was biased low, underestimating the tail risk.

What about the alternative estimators? Using an unbiased estimator for o, we get
an expected exceedance estimate (again, assuming parameters at the ML values) of

3.17%, high by a factor of 2.3, substantially worse. This is because the unbiased estimate

# See footnote 4.
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of o is greater than the ML estimator, decreasing the Z-score, hence the cumulative

probability, and hence increasing the exceedance probability.

What about inverting the prediction bound equation? This is the equivalent of
“looking up” cxceedance probabilities from the predictive distribution. This is worse
still, with an expected exceedance estimate of 6.13%, high by a factor of 4.41.

Applying the same strategy as with the exponential distribution, we can take a o

order Tavlor series approximation to the exceedance probability and cxpress the relative

bias as
. (3.6)
@] 1 27/
o, g V2-m-n
(!
where I :(5-:—_-:"] e l\'f+ 2.n-1)-2'~5zn+3-z.
-
)
I -
and =~ ad
a

As in the case with the exponential. we may substitute the M1, estimators for p

and o, obtaining
- N (3.7
Q.\u = l‘(D(X -luJ
Lo
A .‘.',)_-_\_u_.,i e
exp| - 5 -2
45— —=" W
N2Zomen

This estimator, while not exactly unbiased, does manage to shrink the bias of the

MTI. estimator, typically by 60-90% in the neighborhood of the ML values.
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Figure 3 extends our family of candidate risk curves to include Q* and Qys.

3.2 The Paradox

We have seen that to fit a model to data from an assumed distribution, the ML
estimators of parameters led us to straightforward construction of risk curves. However,
“taking uncertainty into account™ in the parameter estimates led us to a profusion of

sometimes opposing adjustments,

The ML estimators underestimate tail risk in one or two ways. First, the MLE of
a normal L00(1-g)th percentile (for small enough q) is, on average, too low. Second,
even the unbiased version (or the naturally unbiased estimator in the case of an
exponential distribution) still provides “too low™ of an estimate because the true
exceedance probability of this estimator (the predictive probability) is, on average,

greater than the specified amount q.

On the other hand, an MLE of exceedance probability at a (high enough)
prespecified threshold is. on average. too high, thereby overestimating the tail risk. The
substitution of a predictive distribution, corresponding to the probabilistic bias correction

for estimating percentiles, is even more biased than the MLE.
The scarch to achieve simultaneous X-. P-. and Q-unbiasedness. even
approximately. leads us in conflicting directions.

Consider the implications of this in practice. An actuary has performed a
Dynamic Financial Analysis of a client’s balance sheet. Numerous sources of random
variation in liability and asset values were modeled, each of them having been fit to

historical data. After explaining the methodology and walking through various charts
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and tables, the actuary summarizes: “There appears to be a 1% chance that your surplus

will experience a drop exceeding $1 billion.”

In an atypical response, the client might remind the actuary that there is sampling
error in the various historical estimates and that actual probability distributions may well
be different from the point estimates used in the model. Is this not another source of risk?

Should the analysis not be adjusted to “take uncertainty into account?”

They meet a few days later, after the actuary has had a chance to enhance the old
“Certainty Model” to include uncertainty adjustments. The following dialog between the

client (C) and the actuary (A) ensues.

C: OK, now that you've taken uncertainty into account, what is an unbiused

estimate of my 1% exceedance point?
A: Ir's still 81 billion. That's an unbiased estimate.

C: But isn't it true that exceedance points including sampling error should be

higher than exceedance points without?

A: Yes, that makes sense. See, the probability of your experiencing a loss
greater than the point the Certainty Model picks out as the 1% poini, that is to
say, the predictive probability, is actually greater than 1%, so the $1 billion
figure is probably too low. A better answer is more like 81.2 billion.

C: So an unbiased estimate of the probability of exceeding $1 billion is actually
greater than 1%?

A: No. exceedance estimation in the Certainty Model is biased upwards. An

unbiased estimate of the probability of exceeding $1 billion is more like 0.8%.



C: First you tell me §1 billion is an unbiased estimate for the 1% point. Then
you tell me the risk is worse, that the probability is actually greater than 1%.
Then you tell me the risk is better, thut un unbiased estimate is less than 1%.
Now tell me why 1 shouldn't report you to the Actuarial Board for Counseling

and Discipline!

What, then is the correct response? How is uncertainty to be taken into account?

4. CONFIDENCE INTERVALS

The classical approach to expressing parameter uncertainty is through summaries
of the estimator distributions, either moments or selected percentage points. The latter
become confidence intervals when couched in terms of the probability that the quoted

percentage points bracket the true quantity.

Following Hahn & Meeker [1991]. we may define a confidence interval as an
interval bracketed by two estimators (functions of the sample data) intended to contain an
unknown characteristic of the sampled population. Such a characteristic could be a
parameter of the distribution, ec.g., the mean or standard deviation of a normal
distribution, or a function of thosc parameters, e.g., a percentile or an exceedance
probability. The interval will contain the true value of the characteristic with a specified

“confidence.” e.g.. 99%. This can be interpreted by Frequentists in terms of sampling,
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because the interval endpoints are random variables.’ If independent samples were
repeatedly drawn. and the interval computed from the samples. then the interval would
contain the true value of the characteristic with the specitied frequency, e.g., 99% of the

time.

4.1 Cl for Parameters

4.1.1 The Exponential Case
A 100(1-00%0 confidence interval for the exponential parameter 6 is given hy

T-n CRY

where v is the 100(c/23th or 100(1-e/2)th percentile from a gamma distribution with

shape parameter n. For aur numerical example with =1, the interval is [0.717, 1.509].

4 1.2 The Normal Case

A 100(1-)% confidence interval for the mean is given by

o (4.2)

® Interpretation is even easier for Bayesians, because they are free to treat the

parameters themselves as random variables.
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where 1 is the 100(1-a/2)th percentile from a Student’s ¢ distribution with n-1 degrees of
freedom. A 90% confidence interval for the mean in Kreps's reserving example (see

previous section) is therefore [22.948, 23.090].

A 100(1-0)% confidence interval for the standard deviation is given by

(4.3)

where X2 is the 100(a/2)th or 100(1-a/2)th percentile from a chi-square distribution with
n-1 degrees of freedom. A 90% confidence interval for o in our example is [0.0483,

0.1765].

4.2 Cl for Percentiles

4.2.1 The Exponential Case

Since the exponential is defined by only one parameter 0, a confidence interval
for a g-exceedance percentile can be obtained directly from the confidence interval for

the parameter by substituting endpoints:

. Ten (4.4)
bt

4.2 2 The Normal Case

Since the normal is defined by two parameters that must be estimated, the

situation is a bit more complex. A 100(1-a)% confidence interval for X, is given by
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I{"lt =g+ 1 i 0, (4:5)
IR

g

where tables of g’ are available in Hahn & Meeker [1991]. More complete tables, as well
as the underlying theory based on the noncentral ¢, are available in Odeh & Owen [1980].
Johnson, Kotz and Balakrishnan {1994} also give the distribution of )?q in terms of the

noncentral 1. A 90% confidence interval for the 1.39% exceedance point in the example

is [23.113.23.43]. This translates to an IBNR interval ot {10.91 billion, 14.98 billion|.

4.3 Cl for Exceedance Probabilities

4.3.1 The Exponential Case

Again, since the exponential is defined by only one parameter 0, a confidence
mterval for exceedance probabilities can bc obtained directly from the confidence

interval for the parameter by substituting endpoints:

L.;,{]‘Iia . (4.6)

Lo

0, = expl - ———

4.3.2 The Normal Case

A 100(1-00)% confidence interval for QQ is given by

4.7

187



where values of h are tabulated in Odeh & Owen {1980]. For the reserving example, a
90% confidence interval for exceeding Y= $11.5 billion is [0.000617, 0.28351]. Thisisa
stupefyingly large confidence interval, encompassing a factor of 459 between the two
extremes. Figure 4 adds the upper and lower 90% confidence risk curves to the previous

risk curves.

5. CONCLUSION

This paper examined the general problem of estimating parameters of probability
distributions and the specific problem of estimating the actuarially interesting percentage
points and exceedance probabilities as captured in the notion of a “risk curve.” The
choice of risk curve translates directly into the generation of random variables in DFA if
the inverse lookup method is used. or, indirectly, as it affects the selection of
distributional parameters for other methods. In particular, the paper showed how
parameter uncertainty (parameter risk), stemming from sampling variability, can induce
bias in estimators. It presented three varieties of bias that a risk curve could exhibit,
depending on what aspect of the curve is considered relevant. It demonstrated that. at
least in the common examples ot exponential and normal/lognormal distributions, there is

3

no way to correct these biases, even approximatcly, in a single “uncertainty-adjusted”
risk curve.  The conclusion. that a risk curve estimation procedure can seem to be

simultaneously overestimating or underestimating risk. appeared as something of a

paradox.
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The resolution of this paradox is to examine our intuitive expectations about

® 1t is not the case that a single “uncertainty-adjusted” curve

uncertainty-induced bias.'
can replace the “point-estimated™ curve, yielding better estimators all the way around.
Uncertainty (parameter risk), it seems, cannot be put on a par with randomness (process
risk). The problem is inherent in the nature of parameter uncertainty; like a carpet too big

for a room. attempls to “flatten it out”™ in one spot will only make it “bulge up”

somewhere clse.

The solution that would-be DFA model butlders should consider is to make
explicit the distinction between uncertainty and randomness by placing (uncertainty)
confidence intervals around the (randomness) estimates. For directly fitted distributions,
confidence intervals can be calculated as was done in section 4. For DFA outputs, the
situation is not so straightforward.  The model can be “stress tested” by substituting
extreme. but not implausible (sce section 4.1). values of the parameters (equivalently,
versions of the risk curve) and observing how the results change. Mare thoroughly,
multiple runs, with parameters selected randomly from estimates of their distributions
(again. refer to section 4.1 and fixed within each run. can provide multiple verstons of
the results. These multiple results can be summarized in terms of percentiles of their

empirical distribution. giving, in cffect. confidence intervals on the model outputs.

1o Bayvesians would say that the resolution i1s to not be concerned about bias; that
bias as a statistical concept is problematical per se. 1 suspeet few actuaries would feel

totally comfortable with this advice.
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After showing a client stress test or confidence interval results, bias can be
addressed according to the particular goals of the problem. Given that bias is typically
small compared to confidence intervals, a proper appreciation of confidence intervals

would tend to dampen concern over the minutiae of bias adjustments.
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