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Taking Uncertainty Into Account: Bias Issues Arising 

from Parameter Uncertainty in Risk Models 

by John A. Major, ASA 

(;il~n II rtmdom vrtritthlr of itz/rrr.r/. a hislorical .wmple of i/s realized values, 

and the d~srrc 10 model its possible .firlure values. acluarial training provides many 

ttte~hotl.\ f& selec~/ing a $ttrtily (?f’ probabilify modcls (disrribu/ions) und derermining 

spprcific parattw/er ~~llurs /hur bes/ represen/ if. But how should ene iakr purameler 

uttcc~rrairtt)~ (partrmerrr ri.ck) into accoutti? In particular. uncertainry can leud io bias in 

es/ittta!orr comtnot~!)~ ured b), acruarie.~. This paper namines Ihe problem o/ adjusting 

es~ttnatc~l distrihtrtion.~ (ri.vk L~~I.IW) to twttove thc undesiruble bius eJfec{J of parameter 

ri.sk. trnd .shmt:\ .rcvcral so1urion.s. Ii goes on. howeïer. io critique the ver.); notion oj 

trnl,errrrinty-uIlilr.,te<l risk curve.s. emphasizing thar fhi.y is un ambiguous concep!. The 

.jitrm U/ thr trdjus~tttent depend.s crucially on deruils of lhe speclfic question being 

trddressL~ti, JO tttuch .w thaf an cslimalor can seem IO be ,simultaneousJy overestimaring 

and trttifereslittlutit2g risk. l’aramefer uncet-tuinrI, thew/¿tre cannot he “ruken inro 

U~‘C’<~UII/ ” itf att rrncyui~~ocal manner. Ir i.s recommended thar paramerer risk be held 

aparl.fiotn process risk and presenled in iertns of‘confìdence in~ervals; only with that as 

hackgroutul atui rvirh great care - should bias correcrions be artempted. 

154 



0. INTRODUCTION 

0.1 Parameter Estimation for DFA 

For DFA in particular, thc problem of parameter estimation occurs in the process 

of determining the appropriate method for generating random variables in the simulation 

of a financia1 security system. For example, if it is desired to invcstigate the relative 

efficacy of various reinsurance altematives, a simulation can be created that tests the 

alternatives in a series of hypothetical “future histories” of loss expcricncc. ‘fo simulate 

many realizations of possible ftrture losses - many more than have been observed in the 

past - it is necessan to first create a model of the probability distribution of losses. Such 

a model would be based. at thc vcry least: on the loss experience observed in the past. 

If one can determine an appropriate cumulative probability distribution function 

(risk curve) Fx(X,o) to associate with the random variable of interest X, then random 

instances of X can be created by the inverse lookup method: X = Fx-‘(Ll,@ where l-1 is a 

uniformly distributed random variable between 0 and 1, For specific distributions, more 

efficient techniques are available, but inverse lookup will always work whcn F can be 

inverted, either analytically or numerically. 

Generated variables X, Y, Z, etc., can be combined in pro forma financia1 

statements or other actuarial calculations to simulatc financia1 resuits R=(p(X,Y,Z!. .). 

After a suffcient number of simulation cycles. thc cmpirical distribution of K values can 

be used to assess the risk to the financia1 system, answering questions such as “What 

value of R is not likely to be exceeded with probability q?” and “What is the probability 

that R will be greater than (a fixed value) L?” 
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0.2 Randomness and Uncertain ty 

“Thc uncertainty associated with a stochastic model has two distinct sources: the 

inhcrcnt variability of the phenomenon. [ami] incomplete knowledge... of the 

probabilities. ._. Sometimes (hese sources of uncertainty are referred to as ‘process risk’ 

and ‘parameter risk.‘ rrspectively. The terms ‘risk’ and ‘uncertainty,’ respectively, have 

also been uscd.. .” [C’ommittee on Principles, 19971 In this paper, the terms 

“randomness” and “uncertainty” are used. 

Standard statistical theory. as taught to actuaries. offers many methods for fitting 

risk models (distributions) to data. With parametric models, there are a variety of 

tcchniques for estimating the parameters and assessing thc uncertainty in thosc estimates. 

What is relativcly lacking, howevrr, is adrice on how to incorporate uncertainty 

information into the rish model itself. or morc grncrally. into the advice being given to 

the user ofthc risk model. 

The prcdictivc approach to probability modeling is one such method for 

embedding unccrtainty (parameter risk) into the (process risk) model for a random 

variable. Thc random variable’s assumed family of distributions and its parameters are 

augmrntcd to includc variation in the estimation process itself. A familiar example of 

this is the construction of a prediction interval for a yet-to-be observed time series or 

regression value. The formula for the variance of thr predicted value includes terms for 

both the residual error (noise) variancc and the bariance of the estimator for the mean 

\alur. Another way of saying this is that thc cstimatcd risk curve for the random variable 

is modiíied somehow to account for the phenomenon of parameter uncertainty. 



II is the purpose of this papcr to critique the predictive approach (or indccd any 

modcl-cmhedded approach) to “taking uncertaint) into account” in parametcr cstimation 

and risk curo constructlon. In so doing, it will emphasize that this is not an unambiguous 

opcratian. ‘l’hc dcsired iom ~1 the risk curve adjustmcnt drprnds crucinlly on subtlc 

details of thc specitic qucstion heing addressed. so much so that a risk CUITC can secm to 

be simultaneously o\-erestimating and undcrestimnting risk 

0.3 Contents 

‘lllIS papcr con\ist5 UF six parvi ‘l’he rrmaindcr ol’ thc introduction discusscs 

previous lireraturc in 0~1s ärea. In particular. a seminal work by Kreps [IV971 is 

5ummari7cd. Part 1 discusscs cstimation and hias in thc cuntcxt 01‘ probabilit> 

distribution parametrrs and prrcentilcs ‘fo help clarit~ thcar). an csponential cxampls 

and a lognormal examplc NC‘ wnrkcd out in some detail. I hc lognormal cxample IS thc 

samc ene uscd by Kreps ~1907]. Par1 2 prcscnts some motivation for “adjusting tòr 

unccrtüint, .’ _ ‘laklng a Frequrntist appruach. it L‘M> thc i~uc in terms ~>f a particular 

type of biah anal \rork?; out thc ncsrssary -- predictivc rld.iu5tnlcnt fòr thc two eY:amples. 

Bllile Frequcntist. II draw:s strong parallels to the Ra)csinn approach in Kreps [ 19071. 

Part 3 cxtcnds the bias conccrns of part 2 in othcr dircctions and rcveals thc cxistence of 

an apparcnt parados. rnUkiny the case against adjustmrnt. Part 4 discusses confidencc 

intervals as un altcrnnti\~e lo “adjusting for unccrtalrit~ ..’ C‘onlidrncc intcrvals Iòr 

parameters. percentiles. and excccdance probabilities are given for the two csamplcs 

Part 5 concludes with advicr to thc 01:A pructitionrr. 
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0.4 Previous Research 

Previous actuarial literature has addressed “parameter uncertainty,” but it is 

sometimes not clear what the teml is intended to encompass. 

0.4.1 The View from PCAS 1983 

Venter ] 19833 refers to the possibility of modeling “parameter risk” in the context 

of transformed gamma and beta models for losses where “because of uncertain trend (or 

other factors) therc is substantial uncertainty about the scale parameter h. _. .” He goes on 

to suggest putting a gamma distribution on J.?” and mising the loss distribution over i, as 

a “practica] technique for quantifying this uncertainty.” The parameters for the 

distribution of j, itsclf can be estimated throuyh percentile matching or, altematively, an 

esamination ofindustry or sub-sector loss ratios. 

h,lcyers Rr Schenker [ 19831 and Hcckman & Meyers [1983] discuss parameter 

unccrtainty in thc collectivc risk modcl. “Parameter uncertainty can arise from sampling 

\ariahilit> and changes., over time.. ,. [or] when some members of the group have 

dttt‘erent [espectations). ‘. ‘fheir model uses a “contagion parameter” c in the claim count 

distribution and n “mising parametcr“ h in the claim severity distribution. Specificahy, 

j.. thc cxpectrd numbcr ofclaims (sny. tiom a Poissvn distribution). is multiplied by r,, a 

~~~~llr~~~-distrih~lt~d ranJom \~ariable with mean 1 and \,ariance c’. Z, the claim amount, is 

dividcd by 13. a L-arnlnn-distributed random variable whose inverse has mean 1 and 

variancs h. 

hlcycrs 6 Schcnkcr [1Y83] provide threr cxamples of fitting the parameters b and 

( to empit~ical data. In thc most general form, their modcl treats r, years of experience of 



insureds i = 1.. ..T as manifesting T independent draws of the x and p random variables. 

Thcir equations then estimate h and c through variance components (random eflects 

ANOVA). 

Thus, we seern to have three sources of parameter uncertainty which perhaps 

should be carefully distinguished: sampling error. nonstationarity. and hcterogcneity. 

The recommended mathematical treatmcnt is to interpret uncertainty as a hierarchical 

random effect. While this method admirably represents nonstationarity and 

heterogcncity, it docs not appear to address sampling error. Sampling error is distinct 

from heterogeneity; it determines the accuracy with which b, c, A, etc.. can bc cstimated. 

The standard errors of the estimates will diminish with increasing numbers of insureds T. 

The values of h and c themselves. however. will not converge to zero with increasing T. 

0.42 Kreps 1997 

Kreps [ 19971 discusses parameter uncertainty in normal and lognomral 

distributions. In his introduction, he states “One of thc most ubiquitous sources of 

paramcter unccrtainty is thc fact that samples in real lifc are ncver infinite.” IIere. he is 

explicitly addressing sampling error, and devclops a theory of predictive distributions 

%ith” paramctcr uncertainty.’ He concludes that “thc effcct of parameter uncertainty is 

to pusb probability away from the mean out into thc tail.” As will be seen below. thc 

’ Mathematically. his technique is again to treat uncertainty as a hierarchical 

random effect. however, with the imprimatur ofesplicitly Bayesian justifications. 
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predictive approach can be interpreted as creating percentile estimators that are unbiased 

in a probabilistic sense. 

For a case study. hc analyzes Best’s reserving data. IBNR is assumed to be 

distributed lognormally. Based on n=S years, the maximum likelihood estimates of the 

mean and standard deviation of X = ln(IBNR1 are 23.01923 and 0.06653, respectively. 

This “point estimare” implies a probability of IBNR exceeding $1 1.5 billion equal to 

1.39?& For Kreps. taking parameter uncertainty into account, “thc exact result... is 

12.78%. To get to the true I .39% levcl, it is necessar) to reserve $13.1 billion!” 

Subsequent sections vvill follow throuyh on this esample and parallels to Kreps’s 

work will be sketched in more detail. 

1. ESTIMATION 

This section discusses the estimation of parameters and percentage points. While 

the estimation of parameters is the usual goal. the theory of point cstimation applies 

equally wcll to the estimation of functions of the parameters. Because of the typical DFA 

intcrcst in tail beha\ior of variables, the estimation of percentiles (specilic points on the 

risk curve) is arguably more important thnn thc estimation of parameters per se. At the 

vep least. tht: choicr ofparameter estimation technique should be informed by the effect 

it has on percentile estimntes. Birr.c is defined and illustrated in both parameter and 

percentile contcxts. Thc conccpt of a ri.sX- cwrc is formally defined and examples are 

presented. The specilic notions of X-unbiased risk curves and estimation techniques are 

detined and illustrated. 
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í.7 Estimafion of Pafamefers 

While various trchniques are availablc tòr cstimating parameters. we focus herc 

on Masimum Likelihood Jw tu its general applicnbilit~ and iridespread use. Considcr u 

family of probability density tiuwtions g(s:fJ \\here x is n real \wiahle nnd B is a 

(possihly \ector) paramctcr. Ciiven a samplc [ll, x2. . sn]. thc Maximum I.ikelihood 

Estimatr (hILE) ofthc parameter Bis the valueH that maximizcs thc joint likelihood 

II 
L(H) = nfip,:Lq 

j-1 

‘I-he sampling di~tribution of 6 has (asymptotically. i.c. with large samplcs) a 

dispersirw matriz cqual to the in\erse of the matris of sccond dericatives (witb resprct to 

@J of the natural log of thc likelihood. ‘lhus. standard errors of thc MLE map he 

ccwlputed nc,uly AS casil>, as thc cstimator itsclf. In man) commonly-used families of 

distributions, the MI-Es are the ob\,ious moment estimators. 

For the t! pical distributions in UC b! actuaries, h4I.F.s arr c~q~mp~o~icol~~ 

~‘fJic~c~/. This menns tl1;11 for large samplcs, thcy uniformly providc thc most accuracy, 

regardlcss of the true parameter value. IIowe\cr. thq tcnd not to have strong smail- 

samplejustlfications [Lchmnnn. 3981I. 

1 .l .l The Exponential Case 

Considcr n random valiablc X distrihuted as exponential with scale parameter Á: 

Pr{ .Y 5 .Y} = b‘,. (.Y;,%) = 1 - csp(- .Y/A) (1.2) 

Givcn a sample {XI. Y,, ., . s,,}. thc likclihood function is givcn by 
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Differentiating by /i and setting to Tero. we can see that the value of A that 

masimizes the likelihood is given by 

(1.4) 

I‘his is also thc samc cstimator obtained hy cquating first moments of the 

theoreticnl distrihution and the sample. 

1.1.2 The Normal Case 

Consider a random variable X distributed according to the normal cumulative 

distribution function: 

The likclihood can be written 

I (1.6) 
L =esp 

\ 

Differentiating thr cspression inside the esponential and setting to zero. we get 

the so-cnlled likelihood eyuorions: 
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(1.7) 

The solutions. thc maximum likelihood estimators. consist of the samplc mean 

and variance, respectively: 

Again. this gets the same result as moment matching. For a lognormal variable Y 

= exp(X). thr sample mean and variance of In(Y) make up the MLE. This follows from 

an invarinnce property of MLEs. 

In the example set out in Kreps [1997], we have the iog of IRNR modcled as a 

normal distribution with s = 73.01923 and â = 0.06653 based on n = 5 sample points. 

1.2 Estímating a Percentile 

‘l‘ypically, actuarial risk calculations concrrn themselves with onc tail of a 

distribution. In DFA, the “interesting” or “risky” behavior of the system will ofien be 

driven by the upper or lower extreme values of one or more key variables. For example, 

in thc contcxt of reserving. it is common to ask. what leve1 of the loss variable will only 

be exceeded with specitied low probability? This sort of quantity is also known in other 

linancial disciplines as the vulzre al fisk. 
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The lOO( 1 -q)lh percentile X, of a distribution is given by solving 1 -q = Fx(X,,Q. 

I-lowever. this requires knowing the true value of 0. In practice, we only have some 

estimator s^ of 6’. thcrefore we are lefì with the problem of constructing estimators of X,. 

1.2.1 The Exponential Case 

Given the pnrametcr 1. it is rradily determined that X,- -/i In(q). This suggests 

an ohvious cstimator: 

X,, = -T. In (1.9) 

1.2.2 The Normal Case 

For normal variables, X, = ,~r + Z~D where 74 is the lOO( 1 -q)lh percentage point of 

the standard normal distribution. e.g.. ZU,I~=I ,645. Again, this suggests an obvious 

estimalor: 

“,, = ,; + z,, à (1.10) 

For the lognormal. we simply transform by f, = esp( -t,, ) Kreps’s example 

notes that thc probability of rxceeding Y = $1 1.5 billion is 1.39% (if the estimated 

parametcrs nrc csactly corrrct). Equi\,alently. .? u “,,,) = 13.166 or î;,,,;, = 1 1.5.10” 

1.3 Bias in Parameter and Percentile Estimators 

Sincr estimntors are themselves rnndom \,ariables. it is meaningful to inquire into 

their sampling behaG«r (distributional properties). Imagine there are modelers. m = 

I....,M. cnch drawing an independent samplc (SI “,,. ..sN,,,) from some tixed distribution. 
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Each modcler assumcs (corrcctly) the form F(s;ll) of thc distribution. but must estimate 

the parametcr 0 basrd solely on his or her o\vn sample. Each modeler will then, 

presumably. have a different cstimate for B and some will get closer to the actual value 

of 0 than others. 

An cstimator S for a quantity.fiO) is said to be unbiased ii 

E,,[S - f(O)] = 0 (1.11) 

where the notation 13,) [] denotes mathcmatical espectation with resprct to the distribution 

charactcrized by 0. Note that 0. hencr f/& is a fìxcd number and S is a random vzariable. 

In the cxamplc ofthe M modelers. unbiasedncss means that the average estimate obtained 

among modelers. as M gcts arbitrarily large, will converge to the truc value 01’ thc 

parameter. Unbiasedncss IS only one property that an estimator may possess. and not 

having it docs not necessarily make an estimator interior w enes that do.’ 

Note that thr detinition of unbiasedness applies to cstimators of any quantity 

associatcd with a distribution, parameters as well as pcrccntilrs, cxcecdance probabilities, 

etc. 

’ “Bias” is such a loaded word thst statisticians would have been better off with n 

more technical teml like “expectation nrutrality.” Alas, we are stuck with the baggage of 

historical usage. 
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1.3.1 The Exponential Case 

The distribution of T. the MLE for the exponential scale parameter 1, can be 

shown to be a gamma with scale parameter A/n and shape parameter n, 

(1.12) 

dz 

The mean of T is therefore A, and the variance is A’/n. T is therefore an unbiased 

estimator for A. Bccause T is unbiased for 2. x,, is also unbiased for X,. 

1.3.2 The Normal Case 

The sample mean of a normal distribution is distributed as a normal with mean ,u 

ami variance c?in. therefore it is unbiased for ~1. The sample variance is distributed as 

din times a X’(n-1) variable; the MLE for 0 is therefore biased. We can distinguish 

severa] alternatives. If an unbiased estimate ofthc ~urir?/zce (2) is desired, then we want 

the familiar 

In. - 3, =vnel fl 

This gives us a value of 0.07439 in the Kreps example. 

(1.13) 
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Unbiased estimation of the standard deviation (0) is much less familiar to 

beginning students of statistics. Lehmann [ 19831 gives a general form for unbiased crL 

estimation3 which specializes for k = 1 to: 

This gives us a value of 0.0791 1 in the Kreps cxample 

We may generalize our percentile estimator by considering 

(1.14) 

(1.15) 

where we have a choice of cstimators s, for ch Recall that the MI, estimator of the 

1.39% exceedancc point (zoo,~~ = 2.2) is X .= 23.166 translating to an IBNR of Y = 

exp(23.166) = 11.5 billion. 

An unbiased estimator for X, uses ô,, = â, which yields 23.193, translating to an 

1BNR of ll .82 billion. This is not unbiased for IBNR, however, because an unbiased X 

does not imply an unbiased exp(X). This author is not aware of an unbiased estimator for 

l’,,. We can estimate the magnitude of the bias, however, by noting that if the normal 

parameters were indeed equal to their ML estimators, then, approximately, 

’ Johnson, Kotz, and Balakrishnan [ 19941 discuss the special case of k=l and 

present a simpler approximation. 
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E[exp(iV,,)] 2 
-___- = exp 

‘; ;- 
+ 

where the subscript J indicates we are using the unbiased estimator for 0. This is only an 

approximation because it assumes that â> is distributed as a normal variable: for o<l. 

howevcr. it is accurate to within 5%. In our example, for values of cr in the 

ncighborhood’ of the ML value, the ratio of equation 1.16 is within 1.3% of unity. 

indicating little bias. However. for larger values of C. the bias can be substantial. 

í.4 The Rhk Curve and X-Unbbiasedness 

We can present thc results of many percentage point estimators in graphical form. 

The locus of points (<X,,q>) is known as the risk curve or exceedance probability (EP) 

curve. We place the esceedancc probability q on the vertical axis and the percentile 

estimate x,, on thc horizontal axis. Depending on the range of interest, we may want to 

plot onc or hoth axcs logarithmically. An alternative for the vertical axis is to plot the 

rcturn period, I/q, in units of time. e.g.. years if the variable represents an annually 

measured quantity. 

’ Specifically, for values of the parameter within a two-tailed 90% contidence 

interval. as detined in section 4.1. 
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If, for evrry q. thc pcrccntilc csrimator .c4 is unhiaîed, we say that thc risk curve 

is X-unbiased. or unbiased in the X domain. If a parameter cstimation technique leads to 

an X-unbiascd risk curve. wt: will cull 11 an X-unbiased tcchnique. 

1.4.1 The Exponential Case 

Ila\ ing drvrloprd T. the Iocus ofpoints (- T In(q).<,) is the MI, risk curve. This 

risk curve is unbiascd in thc X domain. Thr MI,T: tcchniqur for exponentially-distributcd 

data is thus X-unbiased. 

1.4.2 The Normal Case 

Dependiny on \rhich ü,, is used. therc are corrcsponding altematives for thc risk 

cur\e. Figure I shorr-s thc MI.E-bascd curve as a thin solid line and the X-unbiascd 

(approximatel>, Y-unhiased) curve as a thick dotted linr. For referente. the target 

;$I.l57 billion. 1.39%~ prohability point is markcd \vith a box. Note that the two 

versions of thc curve differ markedly. Around thc rcfercnce point, the difference 

amounts to $300mm on the dollar axis or 1.7% on the probability axis. ‘fhe MLE 

technique for normally distributed data is therefore not X-unbiascd, but an X-unbiased 

altcrnativc. based on equation 1.14. is nvailable. 

2. THE CASE FOR ADJUSTMENT 

Llnbiased estimation in thc X (log) or Y (dollar) domain may or may not be 

appropriatc for the decisions to be made in a real application of the theory. For example. 

while the Ameritan Academy of Actuaries [ 19931 says, “Consideration must also bc 
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given to any [statistical] bias in the reserves or premiums.” it doesn’t specify in what 

manncr this consid&ation should be given. This section considers a different sort of bias, 

Icading to the notion of P-unbiasedness. and how that can be achieved through the 

predictivc distribution approach. 

2.7 Probabilisfic Bias and Predictive Bounds 

We can ask a slightlq different question about estimators for & (equivalently, Yq), 

based on thc property thcy purport to represent, namely. an exceedance probability of 4: 

What is thr sxpectcd value of this probability? In particular. we might like estimators 

that arr “probabilistically unbiased” (P-unbiased) in the sense that 

E[l-I;(&.O)]=q. (2.1) 

Such probabilistically unbiased estimators do exist. They are known aspredicCon 

houtds. because 

(2.2) 

where A’ is another draw from the population. independent of the sample upon which the 

estimator is based. Since X, is the point satisfying I-q = Fx(X,.B), if i, is unbiased for 

X,, it is natural to assume that the probability of X > x,, is also equal to q. This is not 

generally the case: X-unbiasedness does not imply P-unbiasedness. By establishing the 

true “predictive probability” of an estimator k,, 

P(%@)= Pr(X> iy) = E,[l4&QI)] (2.3) 
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we might be abie to solve for an adjusted q* satisfying p(q’.Q) = q Then. i,. may 

serve as a P-unbiased estimator for X,. Other routes are available, also. If, for every q. 

the percentile estimator ,f,,. is P-unbiascd, we say that the risk CUTVC is P-unbiascd. If a 

parameter estimation technique leads to an P-unbiased risk curve. we will call it an P- 

unbiased technique. 

2.1 .l The Exponential Case 

The predictive probability for an exponential percentile MLE is independent of 

the parameter: 

For example, with n = 20 and nominal q = 0.01, the true predictive probability is 

0.016. 

Inverting the relationship. we get the adjusted q* for a “probabilistically 

unbiased” i,,. : 

q*=exp(n.(l-q-j.)). 
(2.5) 

For example, with n = 20 and q = 0.01, the computed q* = 0.006. The adjusted 

(P-unbiased) risk curve is then the plot of 

Can we !ind a P-unbiased estimator for the exponential parameter? In other 

words, can we compute T in such a way that the straightforward k, from equation 1.9 is 
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P-unbiased? Not in general; there is no solution S to the equation 

that holds for all O<q<l simultaneously (although as n 

increases without bound. .S=T is an asymptotic solution). This means that therc is no 

parameter estimation technique ~ilhin IAL’ expu,onet7/iul dishibution that yields a P- 

unbiased risk curve. 

That is because the predictive distribution for an csponential variable is not an 

esponential distribution. it is a Pareto! This can be seen by solving X = -I‘. rr. 

for q in temis of X: 

(2.6) 

In summary: to create an X-unbiased risk curve from presumed exponential data. 

first dctemtine the MLE T of the cxponential parameter as in equation 1.4. Then 

substitute 7‘ tòr ?, in equation 1.2. This is not P-unbiased, however. because the true 

escecdance probability at an estimated percentilr is affccted by parameter estimation 

uncertainty. For a P-unbiased risk curve. construct the Pareto distribution corresponding 

to equation 2.6. Drawing simulated values X from the Pareto instead of the exponential 

will “take unccrtainty into account” in the sense that the true exceedance probabilities of 

the simulated percentage points will bc accurate in expectation5 

5 Here, “in expectation” means “averaged over all random samples of data from 

the same exponential population.” 
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2.1.2 The Normal Case 

A prediction bound which a single future. independently selected normal variable 

will not csceed Mith probability 4 is given by: 

-C,, -= Ii + I ,,,,, , 6, 
rl (3.7) 

d n 
1 + - 

where / is the lOO( 1-q)th percentile of a Studcnt I distribution with n-l degrees of 

frerdom. For our rsample of n = 5 and t, = 1.39%. we get I = 3.379 and the prediction 

bound is ay -r 23.295. corrrsponding to 613.08 billion. 

This must mean thc cstimators in section 1 are probabilistically biasrd. Indeed, 

by sctting ,v,,, = .?, (cquarions 2.7 and I .lS. rcspectively) \\c may compute the 

predictive prohahility cl* corrcspondin g to thc nominal y probability for the estimator 

.t,, Thr ML estimator for the 4 = 1.39% cxceedance point, sho\\m prsviously to he 

biased in the loy domain. has an espcctcd actual esceedance of CI* = 7.34%. Thus. in 

probabilistic terms. it is drastically hiased downward underestimating the taiI risk. 

Míhnt about thc (log) unbiased estimator basrd on c?>‘? This is a little bctter. with 

cspcctcd actual cxcccdance of y * = 4.98%. but it is still far from being unbiased in the 

probabilistic sense. 

Figure 2 adds lxyy .q) to the plot of risk cu~cs as a dash-dot linc. This represents 

a dramatic increase in cstimated risk. Values of IBNR cscecding $1.35 billion. 

essentially inconceivable according to thc MLE and dollar-unbiascd curves (20,000-year 

rctum period or higher), are now seen as a distinct possibility (1 OO-year retum period). 
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1s there a P-unbiased estimator for o? As with the exponential case, no. The 

predictive distribution is from the Student f family, not the normal family (although. 

again. in the limit as n increases without bound, therc is convergence). To create an X- 

unbiased (or log-unbiased) risk curve from presumed normal data. the methods of section 

1.3.2 suffice. For a P-unbiased risk curve, however. one must construct the Student I 

distribution corresponding to cquation 7.7. 

2.2 Discussion 

A apecitic family of distributions will lead to a specific form for the predictive 

distribution. However. there is an approsimation method which can bypass the analysis. 

By sampling the parameters (according to an estimate of their distribution) as well as the 

object random variable (according to the particular parameter values selected in their 

most rcccnt draw). one can create a random variable drawn from a mixture.6 This 

mixture represents a predictive distribution insofar as it incorporates variability in the 

random variable (process risk) as well as uncertainty in the parameters (parameter risk). 

Making this sort of adjustment - analytically or numerically - is often what is 

meant by “taking uncertainty into account.” Notice correcting this new sort of bias is a 

matter of increasing an understated (on average) risk. For typical actuarial distributions 

with decreasing density in the upper tail and small enough q, on average, the true 

excecdancc probability 1 F,. (.“,, .Q) for the quoted value of an unbiased estimator x, 

’ cf. Venter’s recommendation discussed in section 0.3.1 
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will be higher than the nominal probability q from which the estimate is developed. The 

adjusted value k,,. will therefore be higher (farther up in the tail); this is why it is ofien 

claimed that “uncertainty fattens the tails.“’ 

Why does this happen? The function F, is nonlinear in its X argument. Values of 

an X-unbiased,?, deviate from the true value in a balanced fashion between high and 

low; the average is the true value X,. However, a deviation on the high side contributes 

Icss to the expectation of F, (2,,;,19) than an equally large deviation on the low side 

diminishes it, due to the curvature of F,. Therefore the expectation is not the same as the 

function evaluated at the true value X,. 

As mentioned in section 0.4.2, Kreps [ 19971 addrcsses this issue from a Baycsian 

perspective. His result for the “true“ 1.39% exceedance point is $14.1 billion. about a 

billion highcr than was calculated in section 2.12. It is interesting to note that Kreps 

[ 19971 summarizes his computations of percentagc points with analogous expressions 

,íT + :. â involving the MLEs of the parameters. For the MLE of the percentage point, z 

is the corrcsponding percentile of a unit normal. For the predictive distribution, Kreps’s z 

is zCtn, the percentile from a normal with variance (n+ l)/(n + r - 4), where r is a 

parameter defming the “uninformative” Bayesian prior distribution on o, typically 0 or 1 

(he used zero). Sincc a 1 distribution with v degrees of freedom has variancc v/(v-2) the 

’ cf. Kreps’s comment, discussed in section 0.4.2 
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equivalent Frequentist coefficient /y,,,., s (derived from equation 2.7) can be 

considered analogous to the Bayesian z,tr with r = I 

Bayesians feel free to treat uncertainty in the parameters on an equal footing with 

the stochastic behavior of the random variable. Above, we saw how Frequentist 

mathematics can, in effect, yield the same results. If probabilistically unbiased 

estimation (or simulation) is the gonl. it is appropriate to utilizc the prcdictive 

distribution. rather than the ML-estimated distribution, to look up percentiles (or generate 

random variables). This is the Frequentist rationalc for “adjusting the risk curve for 

uncertainty.” 

3. THE CASE AGAINST ADJUSTMENT 

In this section. the search for hidden forms of bias continues. The concept of Q- 

unbiasedness will be defined. It will be seen that the adjustments of section 2 can lead to 

worsening of estimator behavior with rcspect to Q-unbiasedness. Moreover, it will be 

seen ho\v it is typically impossible to make an adjustment which simultaneously 

improvrs thc two competing measures of bias. 

3.7 Estimating Exceedance Probabilitíes and Q-Unbiasedness 

Rather than divulge a dollar limit X, corresponding to a given exceedance 

probability q. we may view a risk curve as telling us a probability QL of exceeding a 

specific threshold L. This might be the perspective. say. in a ruin-theoretic analysis. The 

dccisionmaker could have in mind that $1.152 billion is the most that could be lost 
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without dirc conscqucnccs. and might requcst nn estimate of the probability of suffering 

them. As far as the geomrtry ofthe risk curve is conccrncd, this new situation is simply a 

matter of entering the graph from a different asis. trcating thc locus of points as CL,&> 

rather than CC,.q? 

If an estimator 0, is unbiascd. we will say that a risk curve constructed from 

such estimators is Q-unbiascd. If a DF.4 modcl aims at constructing risk curves for both 

X, and Qr lookups. then Q-unbiascdncss and I’unbiasedness are arguably cqually 

desirable. 

A natural point cstimntor is $, = I - fi\, (L.6). Indeed, if6 is the MLE of H. 

then $, is the Ml.E of <Ir. It should come as no surprise that E~[G,,] does not in 

general equal Ql. again. due IO nonlinearity of F, - this time in its 0 argument 

In the two rxamplcs it will he seen that. on average. thc estimated exceedance 

probability 8, for thc spccified loss threshold L will be higher than the true probability 

Qt To corrcct for this bias. an adjusted probability estimate ti, * will have to be /ower 

than the estimate ti,, computed from maximum likelihood. Thus, this variety of bias is 

in thc direction of o~rsrn/i~tg thc risk, in marked contrast with the case of thc previous 

section. which understated the risk. Q-unbiasedness is not the samc as P-unbiasedness. 

In a sense. thep are duals, if not opposites, of each other. 
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3 1.1 The Exponential Case 

.I’he point estimator 0, is obtained from equation 1.2 as exp(-L/T). This is 

biased. and Johnson. Kotz. and Balakrishnan [1994] give the minimum variance unbiased 

(MVU) estimator as: 

>/ / c 1 (3.1) 
O,,‘,, = 1-A 

This represents the risk curve as a form of beta distribution. As with P- 

unbiasedness. there is no estimator of the exponential parameter to make a Q-unbiased 

cxponcntial risk curve. However (and again, similarly). in the limit as n increases 

without bound, equation 3.1 approaches an exponential. With ?, = 1 1 n = 20, and L = 

4.605. thc true value of QL is 1%; were T to equal A. this estimator would produce the 

value 0.69%. 

‘l‘his estimator has the unfortunate property that if L is greater than nT then the 

estimated esceedancc probability is zero. making very-high-tail estimates impractical. 

By taking a Taylor expansion, we may approximate 

Unfortunately, the “bias correction” term in this approximation is dependent on 

the true value of i. which is unknown. By substituting T for X, we may compute an 

approximately unbiased estimate as: 
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For tail thresholds 1, greater than tvvice thc cstimated mean T, the denominator is 

grcater than one and the estimated probability is thcrefore less than the MLE. In this 

numerical rxample (ti = 20, L = 4.605, and 2. = l), simulation shows this estimator to 

average I .1% versus the true 1% For n = 20. L = 4.605, and T = 1, this adjusted 

estimator produces 0.77%. about three-fourths of the ML-estimated probability, and Il % 

higher than the MVU estimator. 

3.1.2 The Normal Case 

Again we have a variety of estimatrs 

(3.4) 

available. depending on the estimator used for o. Here, cb is the cumulative (standard) 

normal probabiiity function corresponding to the integral in equation 1.5. The MI, 

version of this estimator gives us an exceedance probability estimate at L = $11.5 billion 

(s z In(L)) of 1.39?/,. 

At this point, readers should not be surprised to leam that the MLE is biased. 

Lehmann [ 19831 and Johnson, Kotz, and Balakrishnan [1994] provide the minimum 

variarme unbiased estimator for the exceedance probability of a normal distribution: 
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(3.5) 

C!nfortunately. for values of x such that U = S. (which includes our numerical 

example) this estimator takes on the value of zero. Again. this is likely to be 

unacceptable in the typical actuarial application. 

Alternatively. we can. by numerical integration or simulation, estimate the bias of 

the MLE (assuming various parameter values). For parameters taking on their MLE 

values in our example. the espected value for the ML esceedance probability estimator is 

approximately 1.83%. versus the hypothesized 1.39% a ratio of 1.3. For other 

parameter values in the neighborhoodY of the ML values, this ratio is at least O.Y, usually 

grcater than one. often greater than two. and sometimes greater than 10. This means we 

should suspect the MLE of being biased high in the situation representing our data, that 

is. ovcrestimating the tail risk. This is in contrast to the MLE percentile estimator, which 

was biased ION, nnderestimating the tail risk. 

What about the altemative estimators? Using an unbiased estimator for a, we get 

an expected exceedance estimate (again, assuming parameters at the ML values) of 

3.17%. high by a factor of 2.3, substantially worse. This is because the unbiased estimate 

* See footnote 4 
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of u is greater than the ML estimator, decreasing the Z-score, hence the cumulative 

probability. and hence incrcasing the csceedance probability. 

What ahout invcrting the prediction bound equation’? This is the equivalent of 

“looking up” cxcccdance probabilities from the predictive distribution. This is worse 

still. with an cxpccted cscecdance estimate of 6.13%. high by a factor of 4.4 1, 

Applq ing the same stratrgy as with thc cxponential distribution, we can take a Znd 

ordrr ‘l‘a~lor scrics approximation to the esceedance probability and csprcss thc rclative 

bias as 

(3.6) 

As in the case with thc csponential. \vc rna! substitutr the MI. cstimators for 11 

and o. obtaining 

(3.7) 

This cstimator. while nut exactly unbiascd, docs managc to shrinh the hias of the 

MI. estimator, typically by 60-90% in the neighborhood of thc ML values. 
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Figure 3 estends our family of candidate risk curves to include Q* and Qua. 

3.2 The Paradox 

We have seen that to fit a model to data from an assumed distribution, the ML 

estimators of parameters led us to straightfonvard construction of risk curves. However! 

“taking unccrtainty into account” in the parameter estimates led us to a profusion of 

sometimcs opposing adjustments. 

The ML estimators nndrrestimate tail risk in one or two ways. First, the MLE of 

a normal LOO(l-q)th percentile (for small enough q) is. on average, too low. Second, 

even the unbiased version (or the naturally unbiased estimator in the case of an 

esponential distribution) still provides “too low” of an estimate because the true 

escredance probability of this estimator (the predictive probability) is, on average, 

greater than the specitied amount q. 

On the other hand. an MLE of esceedance probability at a (high enough) 

prespeciticd threshold is. on average, too high, thereby overestimating the tail risk. The 

substitution of a predictive distribution, corresponding to the probabilistic bias correction 

for cstimating percentiles. is even ,nore biased than the MLE. 

Thc scarch to achieve simultaneous X-. P-. and Q-unbiasedness. even 

approsinxrtely. leads us in conflicting directions. 

C’onsidcr thc implications of this in practice. An actuary has performed a 

Dynamic Financia1 Analysis of a client’s balance sheet. Numerous sources of random 

varianon in liability and asset values were modeled, each of them having been fit to 

historical data. After esplaining the methodology and walking through various charts 
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and tables, the actuary summarizes: “There appears to be a 1% chance that your surplus 

will experience a drop exceeding $1 billion.” 

In an atypical response. the client might rcmind the actuary that there is sampling 

error in the various historical estimates and that actual probability distributions may well 

be different from the point estimatcs used in the model. 1s this not another source ofrisk? 

Should the analysis not be adjusted to “take uncertainty into account?” 

They meet a few days later, after the actuary has had a chance to enhance the oid 

“Ccrtainty Model” to include unccrtainty adjustments. The following dialog between the 

client (C) and the actuary (A) ensues. 

C’: OK, now that you ‘ve tuken uncertainy into account. what is an unhiu.red 

estimate qf my 1% exceedance point? 

A: II ‘s slill SI billion. Tl7rrt ‘.v an unbiased estimate. 

(‘: Buf isn’t it true thar exceedance points including sampling error should be 

higher rhan exccedance points withouf? 

.4: Yes. Iha/ makes sense See. !he prohability of your experiencing a koss 

grearer /han rhe point the Cerfainty Model pi& 0741 as /he I % poinf. that is IU 

say, rhe predictive probability, is actually grealer lhun Ia%, so the $1 billion 

jìgure is probab!y loo low A berrer answer is morc like SI. 2 billion. 

C:‘. So an unbiased estimate oflhe prabubiii~~ qfcscccding SI hillion is acrual1.p 

pxwter rhan 1 YO? 

,4: No. ewredance e.vtimarion in the Certainty Model i.r biased upwards. An 

unbiased estimate ofthe probabili& oj’exceeding SI billion i.y more like 0 8% 
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C’: First you (ell me $1 billion is an unbiased esrimare for (he 1% point. Then 

you kll me Ihe risk is worsc. (ha/ (he probabilil~~ is aclually greafer (han 1%. 

Thrn you rell me the risk is beflrr, fhaf an unhiased estimare is less {han 1%. 

Non, rell me why 1 shouldn ‘1 reporr yo~r W the Actuarial Boardfor Counseling 

und Discipline! 

What. then is the correct response? How is uncertainty to be taken into account? 

4. CONFIDENCE INTERVALS 

The classical approach to expressing parameter uncertainty is through summaries 

of the estimator distributions. either moments or selected percentage points. The latter 

become confìdence in!erval.v when couched in terms of the probability that the quoted 

percentage points bracket the true quantity. 

Following Hahn & Meeker [l991]. we may define a contidence interval as an 

interval bracketed by two estimators (functions of the sample data) intended to contain an 

unkno\vn charactrristic of the sampled population. Such a characteristic could be a 

parameter of the distribution. c.g.. the mean or standard deviation of a normal 

distribution. or a function of thosc parameters, e.g.. a pcrcentilc or an esceedance 

probability. The interval will contain the true value of the characteristic with a specified 

“contidence.” e.g.. 99%. This can be interpreted by Frequentists in terms of sampling, 
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bccause the interval endpoints are random variables4 If independent satnples were 

rcpcatcdly drawn. and the intcn al computcd from the samplrs. thrn thr intcrval would 

contain thc true value of thc characteristic with thc spccitied frequency, e-g.. 99% of the 

time. 

4.1 CI for Parametefs 

4 1 1 The Exponentlal Case 

A lOO( I-u)‘% conlidcncc intcrval for the esponential paramctrr 0 is given h> 

~hcrs í is thc 100(0:7)th or 1 OtI( I-aP)th percrntile tiom n gamma distrihution v.ith 

shapc parameter II. I:or our numcricid csamplc with ‘I- 1. the interval is 10.717, 1 .509]. 

4.12 The Normal Case 

A 1 OO( l -u)% confidente interval for thc mean is given by 

9 Interprrtation is even easier for Rayesians, because they are free to treat the 

parameters themselves as random variables. 
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where I is thc lOO( 1 -a/2)th percentile from a Student’s I distribution with n-l degrees of 

lieedom. A 90% contidence interval for thc mean in Kreps’s reserving example (see 

prrvious scction) is therefore [22.Y48,73.090]. 

A IOO( 1 -u)% comidence inter\.al for the standard dcviation is given by 

(4.3) 

where x2 is thc 1 OO(a!l)th or lOO( 1 -a/Z)th perccntile from a chi-square distribution with 

n-l degrees of fieedom. A 90% contidence intcrval for cr in our example is [O.Oi183, 

0.17651. 

4.2 CI for Percentiles 

4.21 The Exponential Case 

Since the esponential is defined by only one patameter 8, a contidence interval 

for a q-csccedance percentile can be obtained directly from the confidente interval for 

the parameter by suhstituting endpoints: 

4.2.2 The Normal Case 

Sincc the normal is detined by two parameters that mus: be estimated. the 

situation is a bit morc complex. .4 lOO( l-a) ?G contidence interval for X, is given by 
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where tables of g are available in Hahn Rr Meeker [ 19911. More complete tables, as well 

as the underlying theory based on the noncentral 1, are availablc in Odeh & Owen [ 19801. 

Johnson, Kotz. and Ralakrishnan [ 19941 also give thc distribution of iq in terms of the 

noncentral I. A 90% confidente interval for the 1.39% exceedance point in the example 

is [23.l 13. 23.431. This translates to an IBNR intervnl ot’[lO.Yl billion. l4,YX billion]. 

4.3 CI for Exceedance Probabilities 

4.3.1 The Exponential Case 

Agnin, sincc thc cxponential is defined by only onc parameter 8. a confidence 

interval for exceedance prohabilities can bc obtaincd directly from thc confidcncc 

intcrval for the parameter hy substituting endpoints: 

4.3.2 The Normal Case 

A 1 OO( 1 -a)?h confídence interval for Q is yiven by 

(4.6) 

(4.7) 

[a,:.Y,+] = 11 ^ 3 1 -h 
l-;.~,” 1 -;,-z,, 

CT ” Y _ 
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where values oí’ h are tabulated in Odeh & Owen [ 19801. For the reserving example. a 

90% contidence intrrval for exceeding Y= $1 1.5 billion is [0.000617. 0.28351]. This is a 

stupetjiingly large confidente interval. encompassing a factor of 459 between the two 

extremes. Figure 4 adds the upper and lower 90% confidente risk curves to the previous 

risK curves. 

5. CONCLUSION 

This paper rxamined the general problem of estimating parameters of probability 

distributions and the sprciiic problem ofestimating the nctuarially interesting percentage 

points and exceedance probabilities as captured in the notion of a “risk cune.“ The 

choicc of risk cun’c translates directly into thc gcncration of random variables in DFA if 

the invcrse lookup method is used. or. indirectly. as it affects the selection of 

distributional parameters for other methods. In particular. the paper showed ho\\ 

parameter unccr~ain~y (parameter risk), stemming from sampling variability. can induce 

bias in estimators. It presented thrce varieties 01‘ bias that a risk curve could exhibit. 

depending on what nspcct of thc cuna is considered relevant. It demonstrated that. at 

Ieast in the common examples ofexponential and normalilognormal distributions. there is 

no \\\a) to correct thrsr binLes. even approximatcly. in a single “uncertainty-adjusted” 

risk curve. l‘hc conclusion. that a risk curve cstimation procedure can seem to be 

simultaneously overestimating or underestimating risk. appeared as something of a 

parados. 
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‘l‘he resotution of this parddox is to examine our intuitive expectations about 

uncertainty-induccd bias.‘” It is not the case that a single ünccrtainty-adjusted” curve 

can replace the “point-estimatcd” curve. yielding better estimators alt the way around. 

Uncertaintv (parameter risk). it seems. cannot be put on n par nith randomness (process 

risk). Thc problem is inhercnt in the nature ofparameter uncertainty: likc a carpet too big 

for a moni. attempts to “tlatten it out” in one spot will only make it “bulge up” 

somewhere clsc. 

Ihr solution that would-be DFA mude1 builders should considcr is to make 

explicit the distinction between uncertainty and randomncss by placing (uncertainty) 

contidence intzrvals around the (randomness) estimares. For directly fitted distributions. 

confidcncc intcr\als can bc calculated as v.as done in section 4. Por DF.4 outputs. the 

situation is not so straightforward. The modcl can he “stress tested” by substituting 

extreme’. hut not implausiblc (sce section 4.1). vslucs of the parameters (equivalcntly, 

versions of thc risk cunej nud ubscrving how thc rcsults change. Morc thorouyhly. 

multiple runs. with parnmeters selcctcd randomly tiom cstimates of their distributions 

(agatn. refer to scction 4.1 ) and ftxed \\ithin each run. can provide multiplc versions ot 

the results. These multiple rcsults can be summarizcd in tcmrs of percentilcs of their 

empirical distribution. giving. in cffect. confidcnce intcrvals on thc model outputs. 

‘” Bayrsians would say that thc rcsolution is to not be conccrned about bias; thnt 

bias as a statistical concept is problematical per se. I suspcct fcw actuaries would feel 

totally comfortahlc with this advicc. 
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After showing a client stress test or confidence interval results, bias can be 

addressed according to the particular goals of the problem. Given that bias is typically 

small compared to confidence inten?als, a proper appreciation of confidence intervals 

would tend to dampen concern over the minutiae of bias adjustments. 
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