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MODELING PARAMETER UNCERTAINTY IN CASH FLOW PROJECTIONS 

by 

Roger M. Hayne 

In order to be complete dynamic financia1 analysis (DFA) models should deal with both 
the amount and timing of future loss and loss adjustment expense payments. Even 
more than asset cash flows, these future payments are very uncertain. However, even 
with this uncertainty, one would expect to see payments that are somewhat stable from 
year to year. 

This paper presents an approach that can deal with this seeming wntradiction. By 
separating total uncertainty in future cash flows into its parameter and process 
componen& we present a method to model future liability cash flows that maintains the 
desired total uncertainty characteristics. However, it will also result in speclfic payment 
flow “paths” having less variation from year to year than would a completely random 
sample from the expected total payout would indicate 

There is also a companion of this paper, tltled “Estimating Uncertainty in Cash Flow 
Projections” that considers the problem of estimating the distributions, including separate 
consideration of process and parameter uncertainty. 
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MODELING PARAMETER UNCERTAINTY IN CASH FLOW PROJECTIONS 

Introduction 

With the increased focus on dynamic financia1 analysis (DFA) as a tool to assist in 

quantifying the financia1 strength of insurers and other risk bearing entities, comes 

increased demands on tools for use in those models. As with reserves, insurer cash 

outflows representing those liabilities are subject to considerable uncertainty. Capturing 

and appropriately modeling this uncertainty will greatly enhance the accuracy and 

reliabillty of DFA models. 

The purpose of this paper is to outline a simple approach that can be used to capture 

various sources of uncertainty and incorporate them into stochastic cash flow models. A 

simple example should help illustrate this point. 

Consider two insurers, both with expectbd reserves of $90 million, assets of $110 

million, ignoring interest, and experiencing the following future payment possibilities, 

Table 1’ Distribution for Stable Insurer. Inc. 
Year 

Probability 1 2 Total 
50.0% $80 $40 $120 
50.0% 40 20 60 

Expected $60 $30 $90 

Table 2: Distribution for Random Insurer. Inc. 
Year 

Probability 1 2 Total 
25.0% $80 $40 $120 
25.0% 
25.0% 
25.0% 

Expected 

80 20 100 
40 40 80 
40 20 60 

$60 $30 $90 

Each Insurer experiences the same distribution of possible payments in each year. 

However. the first Insurer has a 50% chance of becoming insolvent at the end of two 

years while the second has only a 25% chance. 

The primary difference is that Random Insurer is allowed to experience all possible 

“futures” with either $80 or $40 paid in the first year and either $40 or $20 paid in the 
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second. Stable Insurer is only allowed two possible “futures,” the best and the worst. As 

we will see, these are simple examples of hvo approaches to modeling liability cash 

flows. 

If historically the second year’s payments were always half of those in the first year, then 

it could be argued that Stable Insurer’s pattern is closer to “reality” than that of Random 

Insurer. The challenge, then, is to develop methods of modeling liability cash flows that 

capture the full variation that can be expected in future payments, without “unrealistic” 

swings in payments from year to year. That is the purpose of this paper. 

Types of Uncertainty 

There are many ways to categorize uncertainty. Here we will divide uncertainty faced by 

actuaries into three categories: 

1, Process - uncertainty present simply from the random nature of a particular process, 

even if the process itself is known with certainty, 

2. Parameter- uncertainty that parameters selected for a particular model accurately 

reflect the reality to be modeled, and 

3. Specification and/or Model - uncertainty that the models selected themselves 

accurately reflect the reality to be modeled. 

Sometimes the thlrd category is divided into two parts. model and specification where 

speclflcation refers to the selectlon of distributions and model refers to the selection of 

the underlying model itself. 

For example, if we throw a fair die. even though we know the underlying physical model 

with (relative) certainty, there is still an equal chance of each of the six sides showing up. 

This is an example of process uncertainty. 

If, however, the die may be “loaded,” but that we know we are observing the throw of a 

die, we have added parameter uncertainty to the situation Here we know we will 

observe throws from one through six. but with one result potentially having higher 

probability than the others do. 
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Finally, we could be observing a series of digits from 1 through 6 without knowing the 

underlying process generating the series. We can still use a loaded die model. 

However, there is the possibility that some other process is generating the digits that 

cannot be modeled using a loaded die. For example, the digits could be the last digit 

from a Geiger counter reading with 1 substituted for 7 and 8 and 6 substituted for 9 and 

0. Here we have specification or model uncertainty 

Modeling Process Uncerlainty 

These categories of uncertainty are increastngly dlfficult to estimate. Reserves for 

insurers, or other risk bearing entities. are often set using non-statistical actuarial 

forecasting methods, including broad applicatlon of “actuarla1 judgment ” 

Even when statistical methods are used, the information regarding the resulting 

uncertainty is usually limited to conclusions within the framework of the model. For 

example, two different statistical models may result in two different probabillty ranges 

about their estimates with possibly little or no overlap in the ranges.’ The same 

statistical model applied to two different sets of data, paid and incurred losses for 

example, could even give widely different results and ranges. 

Statistical projection methods also tend to concentrate on “squaring the triangle” for a 

single set of data, usually paid losses. As Berquist and Shermar? and many other 

papers dealing with reserve estimation indicate. there is valuable information in many 

different insurer statistics. Claim count statistics are extremely valuable in a reserve 

analysis. Frequency and severity methods are often less volatile than development 

factor (or link ratio) methods for less mature exposure periods. In addltion, claim counts, 

in conjundon with other insurer data, can help identify changes that could affect one or 

another projection method For example, changes in average case reserves per open 

claim could signa1 a change In relative reserve adequacy thus affecting projections 

’ See. for example, Transcripts ol the 1992 Casualty Loss Reserve SemInar. pp. 1123-1150 
This Advanced Case Sludy presented two actuaries with the same set of data and asked them lo 
develop reserve and variability estimates. One estimated reserves to be 8239 million with a 
$12.7 million standard error. The other estimated reserves lo be $178 million with a standard 
deviation of $10.7 million. 

’ Berquist, J.R. and Sheman, R.E.. ‘Loss Reserve Adequacy Testing: A Comprehensive. 
Systematic Approach,” froceedings of the Casualty Actuarial Society. LXIV. 1977. pp. 123-l 84. 
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based on incurred loss development. Similarly, changes in the rate at whlch claims are 

closed will affect methods based on pald losses The author IS unaware of any statistical 

method that Incorporates all these items of mformation in estimating ultimate losses. 

The collectlve rlsk model offers a rather easlly understood framework to model insured 

uncertalnty Bnefly the collectlve rlsk model is based on the following algorithm 

Algonfhm f - Coliechve Risk 

1. Randomly select N. the number of clalms that will OCCUI 

2. Randomly select N mdependent clalms, X,.X:.. ,, X,,from the selected claim size 

dlstnbutlon 

3. Total the amounts T = 5 X 
I 

4. Repeat steps 1 through 3 “many” tlmes 

With a minimum of additional assumptions we can denve some very useful relationships 

between the distnbubons of the number (IV) and s!ze (x) of IndIvIduaI claims and that of 

the total In particular, if sufficlent moments exist for the various distributlons and if all 

random variables are independent then we have, 

(1) 
E(T) = E( 

Var(T) = E(N)Var(X) + Var(N 

Similar fcrmulae also hold for higher moments 3 

The coliective risk model also seems to be a logical choice to model process uncertainty 

in the drstnbution of insured losses. There has been considerable attention paid to thls 

baslc model in the hterature and severa1 algorithms have been developed to calculate 

the dlstributlon of T glven distributlons of N and X Probably of greatest interest to 

3 See, for example. Mayerson. A L., Jones, D.A.. Bowers, N L. (Jr.). “The Credibility of the Pure 
Premium.” Proceedings of the Casualty Acfuarral Society, LV, 1968, p, 179 for these and 
formulae for third and fourth moments. 
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practicing casualty actuaries are referentes by Heckman and Meyers,’ Panjer and 

Willmot,5 Robertson,6 and the text about to appear by Klugman. Panjer, and Willmot.’ 

The attractiveness of the collective risk model, aside from ~ts description of the insurance 

process is that it breaks the problem of estimating process variation into more 

manageable parts, i.e., to estimating the distribution of claim counts and the dlstribution 

of the size of claims. As with any model, the collective risk model is an approximation of 

reality. Many actuaries are concerned with some of its inherent assumptions, not the 

least of which is the assumption of independence among claims and between the claim 

size and the claim count distributions. Recent work by Wang’, sponsored by the 

Casualty Actuarial Society, addresses this issue. Although derived independently, the 

methods here follow closely with those presented by Wang. 

Some Approaches lo farameter Uncertainfy 

Probably the most mtuitive approach to modeling parameter uncertainty would be 

Bayeslan. Generally one would assume the distribution we wished to model, that of 

aggregate losses, had a particular distnbution with one or more of its parameters being 

uncertaln, itself having a separate distribution There are many distribution pairs of 

conditional and prior distributions that mix to closed form mixed distributions. In the 

appendix to his chapter in Foundations of Casualty Actuarial Science, Vente? for 

example has assembled of useful distribution pairs. 

’ Heckman, P.E., Meyers, G.G.. “The Calculation of Aggregate Loss Distributions From Claim 
Severily and Claim Count Distributions.” Proceedings of the Casua/ty Actuarial Society. LXX. 
1983. pp. í’2-61 

5 Panjer. G., Willmot, G. Insufance Risk Models, Society of Actuaries. Chicago, 1992 

6 Robertson. J.P.. ‘The Computation of Aggregate Loss Distributions,” Froceedings of the 
Casua/fy Actuaria/ Society, LXXIX. í992, pp. 57-133 

’ Klugman. S A.. Panjer. H.H Willmot. G.E.. Loss Modek: From Data fo Decisions. John Wlley & 
Sons. New York, 1998 

’ Wang, S.S. “Aggregation of Correlated Risk Porifolios: Models & Algorithms.” Casualty 
Actuarial Society at w.casact.orq (part of the CommlHee on Theory of Risk page of the 
Research portion of lhe web site). 

’ Venter. G.G.. “Credibility,” Foundations of Casuaffy Actuarial Science, Casualty Actuarial 
Society. 1992. Chapter 7. pp. 375483. 
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One example here may be helpful. Suppose X has a lognormal distribution with 

parameters p and 02. By this we mean that X has the probability density function: 

It is well known that the random variable X is lognormal if and only if the random variable 

InX is normal. In this parameterization the variable InX has a normal distribution with 

mean kr and variance o? If, now, we assume fl LS uncertain but has a normal distnbution 

with mean m and variance t, then the random variable X is still lognormal with 

parameters m and d+F. We note that the inclusion of parameter uncertalnty in thls way 

has the effect of increaslng both the mean and variance of the distribution Thls follows 

from the following results for a lognormal distribution with parameters p and d 

(3) 
Var(X) = exp(.+ + 2)(exdc2) - 1) = EZ(X)(exp(02) - 1) 

As an aside, the reader should note that Venter’s parameterization of the lognormal 

distr¡buGon differs from what we use here. The first parameter in our parameterization is 

the mean of the normal dlstribution of InXwhereas Venter’s parameter is the exponential 

of this amount. Thus in the appendix Venter assumes the prior distribution of the 

parameter is lognormal to conclude the mixed distribution is lognormal. Because of the 

log transformation between the two paramterizations, and the fact that a variable X is 

lognormal if and only if the variable InX is normal, the two results are actually identical. 

Thus one Intuitive way to model parameter uncertainty would be to select a pair of 

distributions (lognormal and normal in this example), use the lognormal to model 

process uncertainty (as an approximation to the results of a collective risk model). 

Parameter uncertainty could then be built in by allowing the ,u parameter to have a 

distribution of its own. In this paper we will label method this the Bayesian approach. 
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Another approach to modeling parameter uncertainty is discussed in Heckman and 

Meyers.” In their approach they separate parameter and process uncertainty by use of 

additional random variables. The following is a slight modification of the algorithm they 

present: 

Algorifhm 2 - Refined Collective Risk: 

1. Randomly select N, the number of claims that will occur from a distribution with mean 

A and variance A+cA? 

2. Randomly select N independent claims, X,, X,. . . . . X,from the selected clalm size 

distribution. 

3. Randomly select a mixing parameter p from a distribution with mean 1 and vanance 

b. 

4. Total the amounts and divide by p. T = 

5. Repeat steps 1 through 4 “many” times 

Actually, In Heckman and Meyers the authors assume the claim count distribution is a 

mix of a Polsson prior distribution wlth a gamma uncertainty distribution for a negative 

binomial posterior distribution. Their results, however, generalize to situations where the 

parameter c is negative, which does not make sense in terms of mixed distributions. 

The algorithm they present for calculating the aggregate distribution does requtre either 

a Poisson, binomial, or negative binomial claim count distribution. but the results we use 

here do not need that assumption. 

The primary result we will use, however, is that given Algotithm 2. and assuming all the 

distributions are independent from each other, then we have the following relationships: 

(4) 
E(T) = nE 

Var(T)= A(l+b)E(X2)+,I’(b+c+bc)E2(X) 

” Heckman. P.E.. Meyers. G.G.. ibtd 
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We note that these formulae reduce to formulae (1) in the case that b=O. Rearranging 

terms in the variance formula we obtain: 

(5) 

Var(T) = AE(X2) + bAqX2) + A’cE’(X) + A?bE2(X) + A2bcE2(X) 

= A.E(X’)+A2cE2(X)+b(AE(X2)+,12cE2(X)+A2E2(X)) 

= Var(qb = 0) + b(Var(qb = 0) + A2 E’(X)) 

Which can be used to obtain the following useful relationship for the coefflcient of 

vanation (ratio of the standard deviation to the mean) of the respective distributions 

(6) 

Var(qb = 0) + b(Var(T]b = 0) + A’ E’(X)) 

E’(qb = 0) 

Var(qb = 0) + b 

i 

Var(qb = 0) n2 E’(X) 
z 

E’(Tjb = Oj E’(‘rb = ‘Jj + 0’ -1 
=cv?(Tlb= 0)+ +v2(7jb=Oj+l) 

Solving for b we obtain: 

(7) 
b = CV?(T) - cv2(Tlb = 0) 

cv'[7jb= O)+l 

Recalling that b=O refers to the situation with only process variation, this formula 

provides a way to model parameter uncertainty given knowledge of the coefficient of 

variatlon for the final distribution and that for the distribution with only process 

unceftainty. 

From this point on we will assume that we know the various means and variances of the 

distributions with and without parameter uncertainty and concentrate on practica1 

considerations in modeling these sources of uncertainty. 

Moving to the example with a lognormal prior distribution mixed with a normal 

distribution let us consider two different ways of modeiing the amounts. We will identify 

two methods to generate random loss amounts. 
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Intuifive Mefhod: 

1. Randomly pick vfrom a normal distribution with mean m and vanance t. 

2. Randomly pick X from a lognormal distribution with mean vand variance d. 

“Smarte? Method: 

1. Randomly pick X from a lognormal dlstribution with mean m and variance c++ F. 

As we saw above. both methods glve exactly the same result. The Intuitive Method is 

simply the Bayesian statement of the problem and the Smarter Method is the posterior 

dlstnbution 

A Dllemma? 

Conslder a very simple extension of our Bayesian type of algortthm with a lognormal 

mlxed with a normal but for multiple years. 

Algon’thm 3. Multiple Year Bayesian 

1 Assume X, has a lognormal distribution with parameters ,II, and 0:. with af known 

but 

2. /r, = m,/l where p has a normal distribution with mean b and variance r2, with both 

b and r2 known. 

Here the parameter p provides “global” parameter uncertainty. The above discussion 

leads us to conclude that each X, has a lognormal distribution with parameters bm, 

and 0; t rn’r?. Thus we are templed to use either the Inluitive Method or the Smarler 

Method in modeling. In this case we would have the methods described as: 

Intuilive Mefhod: 

1. Randomly pick pfrom a normal distribution with mean b and variance r2 

2. Randomly pick X, from a lognormal distribution with parameters p, = m,p and uf 

“Smarter” Method: 
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1, Randomly pick X from a lognormal distribution with parameters bm, and uf + rn,‘$ 

Our reasoning abpve could lead to the conclusion that the lwo methods give the same 

answer. In fact the distributions for each year are identical. However, consider the 

example where miO.25, all the uf =O, and b=+l. The following graphs make it clear 

that, at least in this case, the two methods give considerably different answers: 

Figure 1: Intuitive Method. First Example 

i:Z ll 
1 2 3 

Year 

Figure 2: “Smartei’ Method. First Example 

i::l 
1 2 3 

Year 

Even though each year has a lognormal distribution by itself, the structure does not 

imply that each year is independent of the others. That is the major difference behveen 
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the Infuitive and “Smatief’methods. It is also the difference behveen Stable Insurer and 

Random Insurer in the /ntroduction. 

The above statement of the multiple year algorithm may lead to some ambiguity 

regarding the role of the uncertainty parameter. The following restatement may help 

clarify the ambiguity and provide us with a more explicit means to move AlgoMm 2 to a 

multiple year setting. 

Algorithm 4, Refined Mulfiple Year Bayesian Algorithm 

1. Selectpwith O<p<l 

2. Set ,u, x m, + r,W’(p), where W’(p) represents the inverse normal distribution, that 

is the value such that P(Z < W’(p)(Z - N(0,l)) = p 

3. Randomly select X, from a lognormal distributlon with parameters ,LI, and ~2, 0; 

are known. 

4. Repeat steps 2 and 3 for each year to be modeled 

5. Repeat steps 1 through 4 “many” times 

We recognize a slight inconsistency in the parametizations of these two versions. 

Strictly speaking we should have i,, = m,(b + r,@‘(p)) to be consistent with the first, but 

this parameterization leads directly to the conclusions for each year individually exactly 

parallel to those of the single year case. 

lmplications in Modeling Liabililies 

Liabilities for most lines of insurance are characterized by fairly (a very relative term) 

stable payments from year to year. Obvious exceptions are lines subject to catastrophe 

losses and small liability books with large loss exposure. Even large claims may have 

extended settlement provisions, affecting the timing and variation of future payments. 

If we consider only process variation we see that the law of large numbers soon comes 

into play. From (1) in the case of the collective risk model we have: 
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Var(T) 
cv2(T) = Eh 

(8) 

= E(N)Var(X) + Var(N)E2(X) 

E>(X)E’(N) 

V=(X) Var( N) 

= E*(X)E(N) + E2(N) 

CV’(X) 
= - + CV2(Nj 

E(N) 

If we make the usual assumption now that N has a Poisson distribution with variance 

equal to the mean then this becomes: 

Thus, no matter how volatile the claim size distribution is. the total amounts paid could 

have arbitrarily small relative variation simply by having E(N) sufficiently large. We note 

the law of large numbers is a special case here where the variance of the number of 

claims is zero. The same result will follow for any claim count distribution whose 

standard deviation grows more slowly than the mean, more precisely, whenever 

(10) Var(N) = o(E(N)) as E(N) -+ 3- 

The power of the law of large numbers should not be underestimated. Even if the claim 

count distribution were fairly “noisy” with a standard deviation of 5 times the mean, it 
would only require a Poisson distribution with 100 claims to result in the standard 

deviation of the total to 51% of the total. With 5,000 claims, not unusual for a fairly large 

insurer. the standard deviation reduces to 7% of the total. If one would use a rule of 

thumb that results beyond two standard deviations Yare” in this case it would be rare for 

actual payments to deviate by more than 15% of the mean. 

We recognize that “fairly noisy” is a soft term. Many would argue, and quite 

persuasively, distributions that are interesting to actuaries may not have finite standard 

deviations, or maybe not even have finite means. However. with policy limits usually in 

effect, distributions losses faced by insurers usually have finite means and variances. 
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The conclusion we reach is the same reached by Meyers and Schenker.” For insurers. 

and larger self-insured entities, the law of large numbers gives process variation much 

less influente on the overall variation of results than other sources of uncertainty Thus 

parameter uncertainty and model or speciflcation uncertainty are more significant issues 

lo insurers than simple process uncertainty 

Realistic modeling of liabilities in a dynamic financia1 model then must balance two 

realities. Flrst payments for an insurer are often fairly consisten1 from year to year. 

Second the liabilities for insurers or self-insureds ofien have a high degree of 

uncertainty, often well beyond that which can be attributed to process variation alone 

One way lo look at the problem is to consider payments as falling along various future 

“paths” with relatively little vanation in payments from year-lo-year on any given path but 

wlth potentially widely varying paths or futures. If this is actually the case, modeling 

future cash payments should be relatively straightforward. We could assume that 

variation in payments from year to year would be caused by process variation whereas 

other sources of uncertainty reflect various posible future paths. 

Consider, for example. Algorithm 4 with a multiple year runoff of reserves, as given by 

the following table, assuming no parameter uncertainty: 

Table 3: Refined Example Data 
&Yg Efa Es!u E(L1 

1 5,000 1,000 5,000,000 
2 11,000 300 3.300,000 
3 13.000 150 1,950.000 
4 20,000 50 1,000,000 
5 25,000 20 500,000 
6 30,000 7 210,000 
7 40,000 1 40,000 

CVJ-J 
0.100 
0.155 
0.183 
0.255 
0.316 
0.423 
1.031 

If, now for simplicity, we assume that the payments in each year have lognormal 

distributions, but v;iith “global” parameter uncertainty as described in Algodhm 4 with 

5, = 0.5 we can then view alternative future reserve runoffs in the following chart: 

” Meyers. G.G.. Schenker. N., ‘Parameter Uncertainty in the Colledive Risk Model.” Pfoceedings 
ofthe Casualiy Actuarial Sociely, LXX. 1983. pp.1 11-143. 
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Figure 3: Two “Paths” with Probability Levels 

1 2 3 4 5 6 7 

Year 

Here the two sets of lines present two of the many possible “futures,” corresponding to 

two different probability levels for the parameter uncertainty. The solid lines indicate the 

simulated reserve runoff. while the dotted lines represent the 5% and 95% probability 

bounds accounting only for process uncertainty as defined in the above table. Thus, for 

these two selected parameter uncertainty levels, we would expect 90% of the possible 

futures to lie between the dotted lines. 

The following graph shows the global 90% range with severa1 simulated runoffs (using 

our “lntuitlve” approach). 

Figure 4: Refined Example, Intuitive Method 

1 2 3 4 5 6 7 

Year 

To show the difference with the “Smartef” method the following is a graph showing the 

fully random lognormal approach: 
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Figure 5: Refined Example, “Smarter” Method 

1 2 3 4 5 6 7 

Year 

Again, the Infuifive approach gives smoother paths, yet still does provide the total 

uncertainty expected. 

We can also generalize Algorifhm 2 to model muitiple year uncertainty 

Algotithm 5 - Multiple Year Refined Collective Risk 

1 

2. 

3. 

4. 

5. 

6. 

Assume that payment amount process uncertainty can be modeled by known 

distributions in each year. 

Assume that other sources of uncertainty in each year can be reflected by dividing 

by a “distortion” variable p, , having mean 1 and known variance 9. 

Randomly select 0 -C p < 1 

Select each p, from the distortion distributions at probability level p 

Randomly select payments in year i, X, from the assumed distributions. 

Model amounts by the ratio of X, and the selected p, 

We note for each i this model is similar to Algorithm 2. The principal difference is the 

“linkage” between years provided by selecting the distortion variable at the same 

probability level for each year. 

For each year, then, if we can estimate total variation. the variances required in the 

second step can actually be easily determined using formula (7) above Of course. 
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estimating total variation is not a trivial matter. There currently may be no agreed-upon 

method to derive such estimates. however this continues to be an active area of 

actuarial research. 

Assuming that we can get the total variance estimates, the following is an example of 

estimating the b, values and the resulting graphs. These estimates are based on a 

fairly comprehensive attempt to estimate process uncertainty as well as other sources of 

uncertainty in the estimates. All estimates are in current dollars (with the effect of 

inflation removed) and are for total forecast payments in future years. including those 

arising from future exposures. 

Table 4: Comprehensive Example 
Expected Standard Deviation 

p&r Paid Process Total 
1 $213,000 $5,900 $60,700 
2 218,000 14,200 96,900 
3 237,000 22,800 125,000 
4 255.000 30,700 144.700 
5 274,000 36,100 167,800 
6 294,000 38,200 189,300 
7 316,000 42,900 209,100 
8 337,000 29,500 228,700 

Implied 
b Value 

0.0804 
0.1925 
0.2665 
0 3031 
0.3516 
0.3911 
0.4118 
0.4494 

The following graph shows simulations based on Algorithm 5 using the simplifying 

assumptlons that the uncertainty parameters all have gamma distributions and that 

process uncertainty can be adequately modeled by a lognormal distribution. 

Figure 6: Comprehensive Example. Intuitive Method 

600,000 - 

500,000 - 

400,000 - 

300,000 - 



This shows relatively moderate vanatlon from year to year but a fairly wtde spread of 

posslble outcomes Both would be expected glven the standard devlatlons shown 

above As we compared in other situat!ons, the followlng graph follows the “Smarter” 

method and results in substantially more variatlon from year to year than Algonfhm 5. 

Figure 7 Comprehenslve Example, “Smarte<’ Method 

800,000 

600,000 

400.000 

200,000 

0 

1 2 3 4 5 6 7 8 9 10 

Year 

As in pnor examples of the “Smarter” method. there are substantial swlngs in payments 

from year to year. If we would expect some predictabillty of payments then uslng these 

sirnulalions in a dynamc fInancIaI analysis model may be mlsleading. In shorl the 

“Smarter”model is not really so smart In these situatlons 

Conciusion 

Stmply knowmg the total dlstributlon of payments un any particular future year does not 

necessanly glve the actuary sufflcient information to accurately and adequately model 

future payments. whether the appllcation be In a full dynamlc financia1 analysis model or 

In other applications where modelmg of reserve payout is Important This paper 

presents one of many posslble alternatives that can be used to separate process 

variatlons that WIII happen even tf all information about the model is completely known. 

from other, potentjally more global, influentes. Still rematnmg. however, is significant 

research rnto the proper models to be used and in estimating the parameters of those 

models 
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