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Abstract 

In order to be complete dynamic financia1 analysis (DFA) models should deal with both 
the amount and timing of future loss and loss adjustment expense payments. Even 
more than asset cash flows, these future payments are very uncertain. 

This paper begins by estimating both process and parameter uncertainty in reserves for 
annulty-type benefits such as available in some automobile no-fault states or in workers 
compensation. Arguably, such reserves have underlying distributions (inherent in the 
mortality models) that may be more easily understood and treated than many other 
casualty coverages. We explore the estimation of both process and parameter 
uncertainty for this example. In the process we derive formulae that can be used to 
model uncertainty in other applications, once the various parameters are estimated. 
Many of the estimation methods covered should generalize to non-annuity applications. 

There IS also a companion of this paper, titled “Modeling Parameter Uncertainty in Cash 
Flow Projections” that provides motivation for the estimates contained in this paper. In 
that paper we discuss approaches to modeling future cash flows and argue for 
separation of parameter and process uncertainty as well as describing methods to model 
them both 

Roger is a Fellow of the Casualty Actuarial Society, a Member of the Amerizan Academy 
of Actuaries, and Consulting Actuary in the Pasadena, California Office of Milliman 8 
Robertson. Inc. with over twenty-one years of casualty actuarial consulting experience. 
Roger is a frequent speaker on reserve and DFA related topics and has authored 
severa1 papers dealing with considerations and estimates of uncertainty in reserve 
projections. Roger is currently the chair of the CAS Research Policy and Management 
Committee and has served as chair of both the CAS Committee on Theory of Risk and 
the CASIAAA Joint Committee on the Casualty Loss Reserve Seminar. 
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ESTIMATING UNCERTAINTY IN CASH FLOW PROJECTIONS 

1. Inh-oducfion 

There have been a number of papers and articles dealing with uncertainty in loss 

reserve estimates. However, dynamic financia1 analysis for risk bearing entities requires 

more than simply the clistribution of reserves. Also of critica1 importance is the timing of 

those futufe payments and their distributron. 

A simple example may clarify the point. Suppose two insurers, Shorl Ta¡/ Insurance 

Company and Long Ta¡/ Insurance Company are identical in all aspects except for the 

timing of future payments. Both companies are in runoff, both have $1 million in assets 

invested in the bank yielding 3% interest, and both will settle all losses in a single 

payment according to the following distribution: 

Table 1: Hypothetical Distribution of Payments 

Probability Amount 
20% $ 500,000 
20% 750,000 
20% 1 .ooo,ooo 

20% 7.250,000 
20% 1,500,000 

The only difference is that Long Tai/ will not pay this amount for 10 years, while ShoH 

Ta;/ must pay it at the end of this year. Even though both insurers have the same assets 

and face the same distribution of reserves, Short Ta;/ would face insolvency 40% of the 

time while Long Tail will only be insolvent 20% of the time (since 1,000,000 x 1.03 = 

1,030.000 and 1 ,OOO,OOO x 1.03’0=1 ,343,916). Though timing may not be everything, it 

is substantial. 

Thus knowing the distribution of the reserves is necessafy to model the financia1 

condition of a risk bearing entity. but it is not sufficient. Rather, to appropriately model 

the future cash flows we need to know the distribution of payments in each future year 
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In addition, economic conditions and unanticipated changes in cost inflation often impact 

reserves and contribute to the variability in both reserves and future payments as well as 

on assets. Thus, in dynamic financia1 analysis (DFA) applications where economic 

assumptions may be used as a “linkage” between asset and liability models, It will 

probably be necessary to separate the contributions of these economic factors from 

others in modeling liabilities. 

In this paper we will begin with an example of how estimates of the means and 

variances of payment distributions by year can be made. This first example will focus on 

claims involving lifetime payments, such as for certain workers compensation claims or 

unlimited no-fault medical claims. Unlike many casualty claims, the fact that payments 

are contingent on survival actually provides us with an underlying probability sttucture for 

the payments on individual claims and makes discussion of many of the topics we will 

address more accessible. However, unlike many life coverages, the future payments 

are contingent not only on the claimant’s survival, but on uncertain future costs. 

We will then consider how to cany these concepts over to other coverages. These 

concepts also can be useful in constructing models for use in dynamic financia1 analysis. 

2. A Relafively Simple Example 

Suppose our insurer only has a fixed book of life pension workers’ compensation 

indemnity claims and does not need to fund for the medical portion of these losses. 

Further, to keep this first example relatively simple, we also assume: 

2.1 We have mortallty tables that appropriately reflect survival probabilities for these 

claimants. 

2.2 There is no escalation of benefits for individual claimants due to inflation or some 

other index 

2.3 Future annual payments for each claimant are fixed and known. 

2.4 We are not currently mterested in the time value of money (Le. no discounting). 

2.5 The various claimants are statistically independent. 
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Here the expected future payments for any individual claim can easily be calculated 

using a life annuity. Not only can we use the mortality tables to obtain expected costs, 

but we can also use them to review the expected distribution of payments for our 

populatlon in any particular future year. 

To see this we let. 

a,, denote the payment for claimant x in year t in current dollars. 

Pd denote the probabillty that claimant x lives for t years and then dies or otherwise 

exits the claim population. 

It is easy to see the distribution of payments in any future year s is given by: 

Table 2: Payment Distribution for a Single Claim 

Probability Amount 

ZP.! a,, 

l-TP., 0 
I-I 

From this it IS easy to see the payments in year s, have expected value 

(2 1) 4x,) =a13Cp,, 
I-S 

and variance 

Var(X,) = E(X:) - E(X,)2 

(2.2) 

This is the result we would expect from the binomial distribution for the payments in year 

S. 
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In addition, from our assumptions we see that the future payments for this claimant will 

have a discrete distribution with payments totaling iars , occurring with probability p,, 
*:, 

Thus the total expected future payment for this claimant is given by: 

(2.3) 

The second is simply the total expected payments in each future year. 

Similarly we can also calculate the variance. 

Although this formula may not be immediately obvious it is not diffiwlt to derive. We 

show the derivation in Appendix A. 

Thus for a single claimant we can easily obtain the distribution of future payments, its 

mean and variance as well as the distribution of payments in any future year. We can 

still explicitly determine the distributions for multiple claimants, however, the calculations 

become more complex (such calculations may be necessaty if, for example, reinsurance 

attaches on a per incident not per claimant level). For example, for two independent 

claimants. x and y, the payments in year s have the following discrete distribution: 

Table 3: Payment Distribution for Two Claims 

We could derive a similar table for the distribution of total future payments for two 

claimants. Rather than having simply four separate points, the resulting table would 
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have nxm points where n denotes the number of future years having non-zero 

probabilities for claimant x and m the number for claimant y. Although we can exactly 

calculate the resulting distributions for many claimants. the resulting exponential growth 

in size makes such calculations prohibitive. 

On a practica1 level, however. the problem of combining two disttibutions is simply one of 

calculating the aggregate loss distribution for two distributions. Heckman 8 Meyers[l] 

provide one means of performing these calculations, Robertson[Z] gives another. 

We can also approximate the aggregate distribution of the drscrete distributions 

iteratively. We first calculate the aggregate distribution of two distributions exactly, 

resulting in mxn cells. We then compress this large distribution to. say, m cells and 

repeat the process with the next distribution. Straightforward combination of cells will 

usually result in a reduction in the variance in the final distribution tiile maintaining the 

mean. The following is an example of this approach. 

Consider the two distributions 

Table 4: Distributions for Convolution Example 

Variable 1 
Probability Amount 

0.60 100 
0.40 300 

Variable 2 
Probabilitv Amount 

0.20 250 
0.80 500 

The resulting aggregate clistribution is: 

Table 5: Distribution of the Sum of Variables 

Probability Amount 
0.12 350 
0.08 550 
0.48 600 
0.32 800 

A possible compression of this aggregate distribukon is: 

Table 6: Collapsed Distribution of Sum 

Probability Amount 
0.20 430 
0.80 680 
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Here 0.20=0.12+.0.08, 430=(0.12x350+0.08x550)/0.20, and so forth. Note the expected 

value of 630 is preserved in the compressed distribution but the variance of the exact 

distribution is 22,240 while that of the wmpressed disttibution is 10.000. There is some 

flexibility in this method, however, in that the algorithm used to combine the cells could 

take into account the purpose of the modeling. For example. if the interest is in 

probabilities of high loss amounts. then we could maintain more detail in the “tail” of the 

distribution by combining more cells with smaller loss amounts with less combination of 

higher loss cells. In the above example, the following is another compression: 

Table 7: Alternative Collapsed Distribution 

Probability Amount 
0.68 550 
0.32 600 

The mean IS again preserved but the variance is now 13,600, closer to that of the exact 

distribution. 

Another possible approximation would be to assume that the aggregate distribution 

follows a smooth distribution with a limited number of parameters. We could then “back 

into” the aggregate distribution making use of moments of the true aggregate 

distnbution. For this, however, we need to be able to Calculate those moments. For our 

simple example, however, the calculations follow very simply from (2.3) and (2.4) if we 

assume that individual claims are independent from one another. Given the fact that the 

distributions are based on survival probabilities, and our assumption that the 

probabilities themselves are correct, this is probably not too restrictive in practice 

In this case, letting T denote the random variable wrresponding to the aggregate 

distribution. we see that, assuming we have N claims. the expected aggregate loss IS 

given by: 
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(2.5) = t E(X, ) I-7 

Similarly, because we assumed the claims are independent. we can calculate the 

variance for the aggregate distribution as 

Var(T) - Var 2 X, 
t 1 / 1 

P.6) = 2 Var(X,) 
,~l 

Similar calculations based on (2.1) and (2.2) will give LIS the mean and variance of the 

total expected annual payments: 

(2.7) 

(2.8) 

Var(T,) = Var 2X3 
t 1 i-1 

= CVar/X, j 
,‘I 

We note we can calculate the exact distribution for payments in any particular year as 

with the aggregate distnbution for the total. However. in this case, there will “only” be 2N 

cells in the distribution. Again. we could use a compression algorithm to obtain 

approximate distributions. 
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3. Introducing Some Uncertainty 

The problem thus far considers only random fluctuations due to the fact that the exact 

time of exit from the claimant population is unknown. We have assumed that all other 

aspects of the problem are known. In short. we have only discussed process uncertainty 

thus far, i e.. that uncertainty remaining in the situation even if the process itself is known 

with certainty. 

In the real worid models used are generally approximations of the underlying process, 

sublect to uncertainty either In their parameters or even whether or not they are 

appropriate. In this section we begin to introduce uncertainty into the assumptions from 

section 2 

The first restriction we will relax will be the assumption that underlying survival 

probabilities for IndIvIduaI clalmants are known. In reality payments will often be 

contingent on the survival of an individual who is already injured and whose injuries may 

significantly impair chances for continued survival. Thus it may not be appropriate lo 

use standard mortality tables to determine the survival probabilities. It is possible that 

the tables that are used witl be modified or based in some way on populations of injured 

claimants and thus subject to estimation error. 

In addition, it is possible that a claimant will sufficiently recover from his or her injuries so 

as not to require additional payments from the insurer. Thus exit from the population 

could occur for reasons other than death. We may need additional modeling to study 

the effects of such recoveries on exits from the population by claimants. 

Since most such analyses focus on the mortality in a year, we let 

9,r denote the probability that claimant x will die in year t. given survival through year 

t-1. 

These are the standard mortality probabilities. In terms of the p,, variables defined 

above we have (possibly mixing notation somewhat): 
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I-1 
Pd =9z.,n(l-9..,> 

,=o 

(3.1) 
I-1 

= (l-(1- s,*,>,~<l-%*~~ 
,=O 

,-1 
=l-J-9”.~~-fil-s,.,) 

Very conveniently. these collapse in the sum to yield: 

In addition to allowing uncertainty in the survival probabilities we will also aliow the 

annual benefits to change over time with economic conditions and allow for discounting 

of the reserves. as would be the case for the medical portion of workers’ compensation 

or certain automobile no-fault benefits. We will allow the combined economic effect of 

inflation and discounting to be uncertain. Finally we will allow for some uncertainty in the 

annual payment estimates for individual claimants. Specifically we will relax our various 

assumptions to the following: 

3.1 The relative survival probabilities among various claimants are known, however, the 

absolute probabilities are based on an analysis of n exposures. Analytically, we 

assume that there is a random variable y and constants 9:, , such that for all x and t 

values: 

(3.3) l-9,, =(1-9i)Y 

3.2 The a,, values are stated in current dollars. There is escalation in those amounts 

between time t-l and time t in the amount of 1+ 4. This escalation will be the same 

for all claimants but may vary from year to year. The 1+ f, amounts are not known 

with certainty. 
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3.3 The present value of 1 at time t-7 is 1+ v, at time t. The l+v, amounts are not 

known with certainty. 

3.4 There is a random variable u and constants a:, such that for all claimants x and time 

t, the following holds: 

(3.4) a,, = a:,u 

3.5 The various claimants are statistically independent. 

3.6 There are random variables w, and constants f,*, and v; such that, for all I values: 

(3.5) 
l+f,’ lcf; 

1 + v, 1+v; / 

The variable y in 3.1 could be considered as a global load, reflecting the uncertainty In 

estimating the overall closure rate from experience. We recognize that this does not 

consider the uncertainty regarding the relative closure probabilities. For example. It is 

likely that younger claimants will expenence a greater reduction in survival chances due 

to the injury causing the claim than older claimants will. Thus, except in the simplest 

situations, the variable y probably should not be considered as a mortality load, but 

rather a global uncertainty parameter. 

We can estimate the degree of uncertainty arising from the sample size of n life-years 

used lo estimate the survival or closure probabilities. For this we use sample theory and 

an application of Bayes’ Theorem In fact, if we assume: 

1. The random variable y has a binomial distribution with expected value 8. 

2. The random vanable Uitself has a uniform distnbution between 0 and 1 (i e we have 

no prior knowledge of the appropriate value of a). 

3. Our sample size is n 

4. We observe z claims remainlng open after one year from our sample 
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If we make the more general assumption in 2 above that B has a beta distribution with 

parameters a and p it turns out that Ogiven the observations has a beta distribution with 

parameters z+u and n-z+fl. We show thts in Appendix B. In particular, then. 

(3.6) 
=r(z+a)r(nmz+p) 0 

+.d(, -u)n-h-l 

T(a+p+n) r(2 + f + a)r(n -z + p) 
=r(z+a)rjn-z+p) r(atrtp+n) 

r(a+ptnjr(z+r+a) 
= r(z + a)r(a t r t p + n) 

Thus, in particular, 

(3.7) 

E(ojzj = ~~~~fl+~~::~~~i 

r(a + p t n)rjz +a)(z ta) 
r(z+ajr(a+p+n)(a+p+n) 

zta 

a+p+n 

Thus we have: 

Now, the special case we will conslder is no preferente In the prior distribution for 0 

This IS simply a special case of the beta distnbution with cx = p =l. In this case we have 
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(3.9) 
n+2 -c 1 ' r(n +2)r(z+ r+l) 

z+l r(z+i)r(f+n+2) 

= jj(n +2)(z+i+l) 

,=o (zt l)(n ci +2) 

The last equation follows from the recursive properties of the gamma function and 

makes calculation easier in practice In terms of the survival probabilities we have: 

E,[~p~,)=E~,[~(l-9,.,)) 

( 

m-1 
=Ec,.Q(l-9;+,)~ 

1 

= E,(ym~(1-9:.;)) 

(3.10) m-1 

= E,,(vm)Q(7-9:.,) 

=L 

= $n+Z)(z+i+l) .z(,m9. 

i 
~___ 

1 .,~,(z+l)(nc1+2) ,0‘ “’ 
) 

As one would expect. the first term in the last product tends to unity as the sample size n 

becomes large if 

(3.11) lim~=O n-b- n 

for some value 0. The proof is shown in Appendix B 

Assumptions 3.2 and 3 4 deal wlth cost escalation and discounting and 3.6 relates the 

two We assume that the combined impact of inflation and discounting is uncertain with 

the variables w, providing that uncertainty. 
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Finally we will modify the assumption that all future payments (at curient cost levels) are 

known to one wherein there is “global” uncertainty regarding future payments. This is 

reflected in the variable u. 

For simplicity we will assume that the variables w, and u all have independent lognormal 

distributions, and that the distribution for the various wI have the same means and 

variances. In particular we will assume that all these variables are independent and: 

(3.12) 
u - lognormal(-t~‘,<r2) and 

w, -lognormal(-+r’,r2) for all t. 

Here and throughout this paper we will use the normal-transformed parameterization of 

the lognormal distribution. For example. (3.12) assumes that the normal variable In u 

has a normal distribution with mean -~LT> and variance &. More generally when we 

w 

(3.13) x - lognormal(/l, CT*) 

we mean that the random variable x has the probability density function 

(3.14) f(x) = 
xaJ2IT 

With this parameterization. then we have: 

(3.15) 

E(x) = ex& + +2j 
Var( X) = exp(2,u + c2)(exp(a2) - 1) 

c.v.(X) = 
Var(X) r- q$=JGvp 

This last relationship shows that, with this parameterization, the coefficient of variation 

(rabo of standard deviation to the mean) depends only on the u’ parameter. 
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It could be argued quite convincingly that u would not be the same for all claimants or for 

all years. That is clearly a refinement to the methodology we present here. However. to 

keep the calculations to a manageable level, we have elected to make this simplifying 

assumption here. However, the assumption of lognormality for the economic variables is 

probably much more plausible, although the assumption of constant variance may be 

somewhat restrictive. In both cases, here, we note that the expected values of both 

distributions are unity. that is both u and the w, variables are assumed to represent 

random shocks to our overall expectations 

We are now ready to calculate the mean and variance of the total populatlon reserve. 

The calculation makes repeated applications of the following relationships that hold for 

independent conditional dlstributions: 

(3.16) 
E(Z) = E:(E(Z(C)) 

Var(Z) = E,(VarfZ({)) + Var.(E[Zl<)) 

In this case we assume that the distribution of the random variable Z with probability 

density function f(z.9 that depends on a parameter < which itself is a random variable 

with probability density function g(,3. These assumptions result in the following formulae 

for the mean and variance of the total distribution: 

(3.17) 

In these formulae we have taken 
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(3.18) 
’ l+f’ 

b:, = a;, n d 
s 11+v; 

These are the present value of future payments wlthout consideration of uncertainty or 

the probability of payment. As a practlcal matter, the value of u7 IS not needed In the 

detailed calculations. We can calculate the various terms in (3 17) that involve IndIviduaI 

claim informatlon separately. and then include the value of O? in a fairly simple 

calculation 

If. now, we assume that there is no uncertarnty in any of the estimates then o = r = Cl 

and the expectations of all powers of y are 1 (infinlte sample size) the first three terms in 

the vanance sum vanish leaving 

Here. and throughout this paper, we use the term “Certainty” in the formulae to denote 

the sltuatlon where there IS no parameter uncertainty. We use this shorthand to help 

keep the formulae as simple as posslble. 

Thus incorporating unceriainty regarding the closure rates adds to the expected value of 

the total With this we see that E(T) WIII equal the reserve estimates calculated by the 

model If the survival rate were based on an infinite population, otherwise said, If we are 

certaln about the annual survival rate. 

If we defme 

(3 20) p;, =&,:J 
5 0 

Then this last formula becomes the standard variance formula 
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The actual calculations in deriving (3.17) are quite lengthy and are contained in 

Appendix C. Simllarly we have the following formulae for the mean and variance of 

payments in year s. as shown in detail in Appendix LI. 

Although, to maintain some simplicity we have not substituted from formula (3.9) in the 

variance formula in either (3.17) or (3.22). both formulae. with this substitution. no longer 

depend on the conditional variables It can be easily seen that in the case of no 

uncertainty (1.e. 0 = r = 0, E(y’ ) = 1) the formulae in (3.22) reduce to (2.7) and (2.8). We 

also see that the expected total reserve in (3.17) is simply the sum of the expected 

payments by future year from (3.22) However. as we would expect. the variance terms 

are much less comparable. This IS due to the nature of the dependencies we introduced 

with some of the uncertainty variables 

Thus, for the relatively simple case of known lifetime care claimants we can calculate the 

mean and vanance for both the total reserves and the payments in each future year. We 

can incorporate at least some parameter uncertainty in these calculations. 
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In short, these calculations provide a way to estimate the mean and variance of e 

reserves, including a potential provision for uncertainty in the case estimates as 

evidenced by the parameter u, but do not consider uncertainty regarding claims that are 

incurred but not reported. lt also does not consider reported claims that are not yet 

recognized as potential lifetime care claimants or for which there is not sufficient 

information available to establish estimates of future claim and medical costs. 

4. Additional Areas of Uncwtainty 

We consider three categories of claims 

1. Those having annual cost estimates with case reserves calculated using the annuity 

model described in sections 2 and 3 above. 

2. Claims reported but for whtch annual cost information is not yet available, and 

3. Claims incurred but not reported (true IBNR). 

Continuing with our development we have implicitly incorporated additional development 

in case reserves, along with ~ts corresponding uncertainty, in the estimates in section 3. 

Thus there is increasing uncertainty as we move through these categories of claims. In 

the first instance we have information regarding individual claims with uncertainty 

regarding inflation. investment, exit from the population, and some uncertainty regarding 

the accuracy of the annual cost estimates. All these elements of uncertainty are present 

in the second category along with additional uncertainty as to the overall average for the 

claims themselves. Finally the third category incorporates all this uncertainty as well as 

uncertainty as to the number of claims to ultimately be reported. 

In order to reflect this uncertainty we will use the following notation. Let: 

NR denote the number of claims having annual cost estimates 

NB denote the number of reported claims without specific annual cost estimates 

A denote the expected number of IBNR claims 

x denote a random variable with Ek)=l and VarCy)=c 

P denote a random variable with EM=1 and Var(J)=b 
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Y denote a random variable with E(y)=a and Var(y)=d 

6 denote a random variable with E(Q=r and Var(i)=z 

With this notation. we will use a modification of Algorithm 3.3 from the Heckman 8 

Meyers[l] paper 

1. Select claims with case reserves, X,. X,. .._, X, 

2. Randomly select a value for x. 

3. Randomly select N from a Poisson distribution with expected value 1~. 

4. Randomly select independent claims X,+,, X,.,, . . . . X+N,.N from the same 

distribution having the mean and variance equal to that of the case reserved claims. 

5. Randomly select values for ,& < and y 

6. Calculate the aggregate reserve as 

Here x incorporates uncertainty regardlng the clatm count estimate, p global uncertainty 

regarding the overall estlmates. < additional uncertainty and scaling for known but not- 

case-reserved claims, and y addttional uncertainty and scaling for IBNR claims. We will 

assume in the following, that clalms other than those with case reserves, except for the 

scallng values a and r, will have the same mean and variance as those with individual 

case reserves. 

If we consider the case where there are no IBNR claims and that we have case reserve 

estimates for all claims, (4.1) becomes: 

(4.2) T=& 
i?l 

From this we can calculate the mean as: 
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(4.3) 

= E,($E(X,) = cE = N,E(X) 
1 1 , I 

Since we are assuming all the claims are independent, this last term denotes the 

expected claim costs wlth no parameter uncertainty Thls can be calculated using (3 17) 

by letting the sample size tend to tnfinity. Now if we let all the uncertainty above be 

expressed in the parameter p, then we have 

WG 1 = E,j(Var(JRIP)) + Var,,(%IP)) 

(4 4) 

=E,.~,~‘Var(~X,))+Var,,(~E(~X,)) 
-,(,‘i,,r!~X,]tVar,,~~~E~~X,~ 

=(Var,,(pj+E,,(p’)2)Var TX (, , 

= (b + l)Var(J,lCertainty) + bE(J,ICertainty)* 

Solving for b we obtain- 

(4.5) b= 
Var(J,) - Var(J,ICertainty) 

Var(J,jCertaintyj + E(J,Jcerti 

We can then use (3 17) or (3 22) to derive a value for b that will explicitly Incorporate 

parameter uncertainty into thls algorithm. Assumlng, in addition, that estimates for the 

second and third claim categories depend on case reserves, we are able to quantify a 

level of global uncertainty inherent in the estlmates 

We use calculattons slmllar lo those led us to the mean and variance estimates In 

Appendices C and D to obtain the following 
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E(T) = (NR + rN, + ad)E(T,ICertainty)/N, 

q J ,Certainty)* 
R 

These are shown in detail in Appendix E 

Thus, under the above assumptions, we can express the mean and variance of the 

distributlon of total claims in terms of the mean and variance of the distribution of case 

reserved claims, without parameter uncertainty, and the various parameters spectfied 

above 

On review of that analysis we see that we did not specifically assume that the 

calculations were For total reserves. Thus a similar formula holds For payments in a 

particular year: 

E(J,) = (NR + rN, + aA)E(J,,ICekW)/N, 

N,(z + ?,)+(d +a’)A 

NI? 
Var(J,,ICertainty) 

(b+lj((d+a*XA+ck)+lid+zNi)+b 

NR2 

Inherent In these calculations is that we can use the same uncertainty variables for both 

the aggregate reserves and For the payments in each year. 

We note that, although the genesis of (4.6) and (4.7) were based on a book of life- 

pension claims, there is nothing In the derivation that requires such a book. IF we can 

separate our reservlng problem Into the three categories above and are willing to make 

the assumptlons indicated above, we can calculate the variance of the aggregate 

distribution. 
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5. Estimafing the farameters 

We will consider parameter estimation in two phases, we will first address the b 

parameter and then the remaining ones. Again, the discussion will begin wlth the life 

annuity model and then move to potential For generalization. 

5.1 Esfimafing fhe b Parameter 

We have already hinted at an approach that we could use to estimate the b parameter. 

Using (4.5) all we need are estimates of the variance of reserved claims with and without 

parameter uncertainty. The estimate without parameter uncertainty Follows directly From 

the annuity calculations as given in (3.19) or (3.21). Using (3.17) and the assumptions 

going into that estimate we can derive an estimate of the variance For claims having case 

reserves if we can estimate: 

E(y? Uncertainty regarding the mortality assumptions 

2 Uncertainty regarding (composite) economic estimates 

Uncertainty regarding the annual cost estimates 

5 1.1 Mortality Considerations 

There are other practica1 issues in the use of mortality assumptions, especially in usual 

applicatlons in property and casualty insurance. In almost every situation property and 

casualty claimants eligible For lifetime care will be physically impaired in some manner, 

either by trauma or disease. Often one may expect the impairment to affect the 

claimant’s Future survival chances as compared lo the general population. In addition. 

we could expect different injuries to have different effects on survival probabilities. 

There has been substantial research on the effect of spinal cord injuries on survival 

rates. As opposed to head trauma, spinal cord injurtes are relatively easy to categorize 

and are relatively uniform from patient to patient. and generally do not change during a 

claimant’s life. For example, the Following table. attnbuted to the National Spinal Cord 

Injury Statistical Center, University of Alabama at Birmingham, shows differences in Me 

expectancies for various levels of spinal cord injury[3]: 
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Table 8: Life Expectancies by Age and Spinal Cord lnjuty 

Life Expectancy 
Motor 

Function 
Current Ventilator High Low at Any 

Age Normal Dependent Tetrapleclic Tetrapleqic Paraplegic Level 
20 56.3 19.9 32.8 38.6 44.6 49.0 
30 46.9 15.9 26.0 30.7 36.7 40.5 
40 37.6 12.4 20.9 23.6 28.8 31.7 
50 20.6 9.3 15.5 17.0 21.2 23.4 

We have not been able to locate similar statistics For traumatic head injuries. Analysis 

For such injuries are complicated by the fact that head injuries are more difficult to 

categorize than spinal cord Injuries and, in contrast to spinal cord injuries usually 

identified by the location and degree of lesion in the spinal column. In addition, the level 

of severity of a head injury can change substantially during the course of treatment 

Other property and casualty claimants could have still different mortality profiles. For 

example. a back injury though disabling a person from employment, may have little or 

no effect on that person’s Future life expectancy. Conversely, hearl conditions or stress 

related illnesses could have a substantial impact on future survival chances. 

Compounding difficulties are the effects of medical treatment on the claimant’s survival 

chances, especially in situations where there is no limit on the amount that can be 

expended For medical treatment Thus. unlike many situations where mortality is a 

consideration. the appropriate survival Functions are often uncertain. 

For this reason, it may be useful to consider construction or modification of mortality 

tables to reflect the injured populatlon. In this case the table could be based on a Fairly 

small sample. though could still produce reasonable results. In this case Formula (3.9) 

gives an estimate of E(y”) under the assumption that uncertainty in the mortality table is 

uniform across all claimants and ages and depends only on the sample size used in 

estimating the mortality table and the overall average mortality For the population. 

However. the considerations above would seem to indicate that (3.9) may only produce 

a lower bound on the level of uncertainty inherent in the selection of mortality 

assumptions. 
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5.1 2 Uncertainty in Economic Assumpbons 

We note in (3.5) and (3.12) we have made the simpliFying assumptions that the net 

discount rates (ratio of annual cost inflatron to annual interest rate) are rndependent From 

year to year. In additron. we assumed that the distributlons of the rates In each year all 

have the same coeffflcrent of variation 

There has been much attention recently devoted to modeling economic scenarios in 

conjunction with dynamic Financia1 analysis, For example Daykin et.al.[4] If we were 

using such models one could estimate the value of ? using the results of those models 

Although the models can be quite complex, actual economic conditions have 

experienced some rather spectacular swlngs, even over the past twenty to thrrty years. 

For example, the hospital room component of the U S. Consumer Price Index For Urban 

Wage Earners (CPI-W) increased by 15.7% dunng 1981 and by only 3.5% during 1998 

Interest rates also expenenced similar swings during that same tlme with the average 1 

year United States Treasury 8111 moving From 14.8% in 1981 to 5.5% in 1998 

We could also use this histonc volatikty to estimate ?. For this we review the historical 

volatility In the quantity: 

Here we use f,. to denote the annual change in the medical care cost component of 

the U.S. Consumer Prrce Index for Urban Wage Eamers measured From month t-12 to 

month t and Y,* to denote the average yield For 1 Year U S Treasury Bilis during month t. 

Of course, IF we assume that claim costs would experience a different market basket 

than medtcal costs in general then we would re-weight them accordingly. 

We also somewhat randomly selected the 1-Year U.S. Treasury Bill rate for this 

example. Again, unique characteristics of the company’s investment portFolio may 

dictate a different measure For investment return. These values should be illustrative of 

the degree of variatron we could expect in our appkcations The Following graph shows 

values of (5.1) for each month from Apnl 1953 through July 1997. 
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Figure 1: Relative Real Retums 

Rdo of Change in Medical CPI Divided by 1 -Year T-Bill Rate Minus 1 

Since we have assumed that uncertainty in future net discount will show a lognormal 

distortion we can estimate the ? parameter as the variance of the natural logarithms of 

the amounts in (5.1). plus 1. In this case the result IS i = 0 000457. 

57.3 Uncerfatainfy in Cosi Assumptions 

The third area of uncertainty reflected in (3 17) deals with the fact that afl, the annual 

payment amounts in current dollars, may themselves be uncertain. In workers 

compensation claims the indemnity amounts are often specified by statute. so the 

amounts of those payments for life pension cases may not be subject to change. 

However. one would probably not expect the same degree of certainty in medical 

payments either for workers compensatlon or no-fault benefits. 

As noted In Section 3. Introducing Some Uncwtainty, we have assumed that claim 

annual cost estimates in current dollars have the same uncertainty distribution as 

reflected by the random variable u. In addition to u, the (present value of) annual 

payments are also affected by the w, random variables From a practical viewpoint. this 

effectively separates two factors that affect the accuracy of estimates of future costs; 

unexpected levels of inflation (andior Investment return) and actual costs (or services) 

differing from what had been expected for reasons other than economic conditions. 
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This dichotomy suggests a way to estimate the parameter d. We could compare actual 

annual payments with the forecasts made in previous analyses, after adjustment for 

trend in the form of some index reflecting underlying cost changes. The following table 

provides an example of such an approach. 

Table 9: Actual VS. Expected Payments 

Payment Forecast Annual Payment 
Year ye&f Actual Estimated InlAIE) 

1 0 $ 50,000 $ 45,000 0.1054 
2 0 40,000 35,000 0.1335 
2 1 40,000 45,000 -0.1178 
3 0 30,000 25,000 0.1823 
3 1 30,000 35,000 -0.1542 
3 2 30,000 30,000 0.0000 

Average 0.0249 

In this example. for a single claim, we have actual payments of $50,000, $40,000, and 

$30,000 in each of the first three years of a claim. In the first analysis (at the beginning 

of year 1) we estimated payments of $45,000, $35,000, and $25,000 Vended to future 

levels using the selected cost index. The second analysis we adjusted the forecasts for 

years 2 and 3 to $45.000 and $35,000 respectively, while for the third analysis we 

estimated $30,000 for the third year. 

Since the sample mean of the natural logarithms is the maximum likelihood estimator for 

the first parameter of a lognormal distribution in our parameterization, and the sample 

variance is a minimum variance estimator for the second parameter, we could use the 

sample variance for as an estimator of the C? parameter. We note here that the average 

does not satisfy the relationship assumed in (3.12). In particular the expected value of 

the resulting lognormal variable is not unity. Hence our estimates are biased and we 

should adjust the forecast estimates to remove this indicated bias. Such an adjustment 

would leave the 4 parameter unchanged. 

This approach ignores any “aging” considerations. For example. one would expect 

short-term forecasts to be more accurate than long term enes. all other things being 

equal. In addition, the longer-term estimates can-y less weight in the reserve forecasts 

due to discounting for mortality if not for investment income. 
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Also, for medical payments on seriously injured claimants, one would often expect 

payments in the first years after the accident to be much higher than those in later years 

after the claimant has medically stabilized. In addition, it could be argued that payments 

rise during the time just before a claimant’s death. The approach we outlined gives 

equal weight to all forecast errors in estimating the $ parameter. It does, however. have 

the appeal of a direct comparison of actual versus expected results 

An altemative approach would be to consider the development of claim estimates over 

time In such an approach, as in usual incurred loss development, annual cost 

estimates are gradually replaced by actual payments over the development period. If we 

take this approach we must keep in mind that we want to separate economic influentes 

from the measurement of movement of claim costs over tlme. 

One such approach would involve recalculating all expected incurred losses each year. 

replacing expected future payments with actual payments in the annuity calculations and 

reviewing the development. This would be the most consistent way to handle changes 

in economic assumptions in the valuations. However. it could be quite time-consuming, 

especially in situations where there are many claims evaluated over many different 

development periods, not to mention the need to maintain records of past annual cost 

estimates for indlvidual claims 

There is an approximatlon, however, that would allow for the separation of changes in 

economic assumptlons from development in estimates from other causes At this polnt 

we only consider claims having annual cost estimates, slnce we are trying to quantify the 

uncertainty in those annual cost estimates. Thus we do not want the development 

patterns we obtain to be influenced by emergence of new claims, hence aggregation by 

accldent period would not be useful. 

This may suggest grouping by report period. However. in that grouping there could be 

claims reported but which do not yet have individual annual cost estimates attached. 

The manner in whtch reserves are set on those claims could influente the review of 

development on claims having annual cost estimates. Hence report period grouping 

also seems to be lacking for this purpose. 

We thus conslder a third alternative, akin to report period. For this we group claims by 

the period in which they are first case reserved. calling this a reserve period grouping In 
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the case that there are no ‘Yormula” reserves for known claims. this alternative would be 

equivalent to a reporl period grouping. 

Once claims are grouped in this fashion, we can consider the development of expected 

incurred losses (calculated using the annuity approach of (2.3)) on fixed groups of claims 

using a development array format. However. we are faced with severa1 additional 

difficulties if we wish to focus on the movement and variability in the individual annual 

cost estimates (the focus of the (3 parameter). Those difficulties arise because our 

reserve estimates may be discounted and because changes in economic or mortality 

assumptions will cause changes in the expected amounts during the calendar period 

containing the change and should not be considered when evaluating the variability 

Inherent in the individual annual cost estimates. 

Even without changes in underlying assumptions. we are faced with the “unwinding of 

the discount” phenomenon. By this we mean the fact that incurred losses calculated 

with discounted reserves wil contlnue to develop upward due to a decreasing effect of 

discounting. even if all underlylng assumptions prove exactly correct. To deal with the 

unwlnding of the discount we discount 4 amounts to the beginning of the reserve 

period. Thls discounting lncludes the dlscountlng of all payments made to date, as well 

as discounting of reserves. For conveniente we discount to the beginning of the reserve 

period we are evaluatlng 

An obvious alternative at this juncture would be to not discount at all The appeal of 

discounting at this polnt. however, is the decreasing Influente of remote payments have 

on the final reserve calculated As noted above. these remote amounts are probably 

subject to greater uncertainty. The author recognizes at this point the current 

discusslons regarding the appropriateness of calculatlng reserves on a discounted basis. 

None of the methods or results presented here rely on the dlscount rate belng positive. 

Thus If reserves are carried on a undlscounted basis all the above analysis WIII apply. 

However, if the discount rate is negative (implying a significant risk-adjustment due to 

uncertainty) later payments are given increasing weight in the final expected value 

calculatlons. 

In any event, however. if we were to discount all amounts to the beglnning of the reserve 

period and If all estimates were exactly correct we would see no development in these 

amounts over time. In addttion, if economic conditions (and assumptlons regardlng 
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future conditions) remain unchanged all movement in total incurred amounts would 

reflect changes in future annual cost estimates making up the case reserve estimates. 

Hence we could quantify variation in those estimates over time, using, for example, 

techniques developed in Hayne[5], Mack[G] or others. 

A practica1 consideration still remains. however. In reality, assessments of future 

economic conditions change over time. For example, in the 1980’s it may not have been 

unreasonable to assume that medical cost inflation would remain quite high overa fairly 

long period of time. However, given the situation in the late 199O’s, we may be hard 

pressed to justify estimates of future inflation at levels experienced in the 1980’s. As 

noted above, such changes would appear as calendar period effects in the development 

patterns and could mislead estlmate of uncertainty in claim cost estimates. 

Specific changes such as those In assumed future economic conditions will affect 

reserve estimates similar to those of currency fluctuations on losses denominated in 

more than one currency. Borrowing techniques developed to handle such changes, as 

presented In Duncan and Hayne[7] we can consider a type of two-step development 

array. 

Table 10: Example Two-Stage Development 

Reserve 12 
Year m 

1995 $100,000 
1996 125,000 
1997 175.000 

Months of Development 
24 36 

Prior w Prior Current 
$110,000 $105,000 $107,100 $109,500 

143,750 137,500 

Development Factors 
24/12 36/24 

1995 1.10 1.02 

In this two-stage approach we use “Current” to denote the assumptions inherent in the 

final selected analysis at the rndicated valuation date. For example, $105,000 indicates 

the total incurred (dlscounted to the beginning of 1995) using the economic assumptions 

at the 1996 valuation. Similarly $109,500 represents the discounted incurred (again to 

the beginning of 1995) using the 1997 economic assumptions. 
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The “Priof amounts denote the calculations using the economic assumptions from the 

prior analysis. For example, the $110,000 represents the forecasts for 1995 claims, 

using 1996 claim information, but using the economic assumptions inherent in the 1995 

(prior) analysis. Thus the difference between $100,000 (1995 at 12 months) and 

$110,000 is due to the evaluation of the individual claims and not due to different 

economic assumptions used in calculating the losses. The development factors are then 

comparisons between the “Prior” at one stage of development with the “Current” at the 

previous stage. In effect. then, the development isolates changes in economic 

assumptions from development in underlying cost estimates. 

From this point we could use the variation inherent in these development factors to 

estimate uncertainty in annual cost estimates, and thus the (T* parameter. 

5.2 Estimating the r and z Parameters 

The next portion of total reserves in our consideration is that for known but not-case- 

reserved claims. If we assume that there is no inherent difference behveen these claims 

and those already reported, we could assume their disttibution is the same as that for 

known claims and take r= 1 and z = 0. 

However. there may be other factors considered in setting the formula reserves for these 

claims. The r and z parameters can then be used to account for these factors and 

resulting additional uncertainty. For example, assume the formula reserves are set only 

during the ftrst three years after claim occurrence, using only the most recent three 

accident years. without any adjustment for trend or differences by report lag. The 

following then shows one approach to estimating rand z in this case: 
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Table ll: Estimate of r and z Parameters 

Accident 
Year 

Loss 
Report Reported Standard 
Year Losses Claims - Averaoe Deviation 

1995 1995 $ 5,000 200 $ 25,000 $ 27,500 
1995 1996 5,100 300 17,000 15,300 
1995 1997 5,500 250 22,000 23,100 
1996 1996 9,800 350 28,000 22,400 
1996 1997 4,180 220 19,000 20,900 
1997 1997 10,500 350 30,000 31,500 

Total $ 40,080 1,670 $ 24,000 $ 24,635 

Expected Without Uncertainty $ 20,000 $ 18,000 

Parameter Estimates. 
r 
Z 

1.20 
0.19 

The estimate for r is simply the ratio of the average for the “formula” reserved claims to 

the expected average (without parameter uncertainty). The estimate of z follows from 

the assumptions regarding the form of uncertainty for these formula reserves. In 

particular, assuming the random variable Y is defined using the notation in Section 4. 

Additional ARas of Uncertainlyas: 

(5.2) V=&X 

We then have the following formula for the variance of Y. 

Var[Y) = EsjVar(XIc)j + Var.(E(XlS)j 

= E+.(Var(X<)) + Var.(E(X<)) 

= E;(i: Var(X)) + Var.(<E(X!) 

= var(x)qc2 j + E(X)’ Var(<) 

= Var(X)(Var(;j + E(C)‘) + E(X)’ Var(c) 

= Var(X)(z + r2) + E(X)>z 

Solving for z we obtain: 
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(5.3) 2 = 
Va+) - r2 Var(X) 

Var(X) + Ex- 

5.3 Estimating the c, a, and d Parameters 

The final ponion of total reserves IS for claims that are incurred but not reported. As with 

known claims with formula reserves, if IBNR reserves are estimated using averages for 

known clarms we could estimate the a and d parameters similar to the way we estimated 

the r and z parameters as descnbed in Section 5 2, Estimafing the r and z Paramefers 

We could estimate the c parameter in severa1 ways. One approach starts with the 

assumption that the number of IBNR claims has a Porsson distribution with a “contagion” 

parameter similar to that used by Heckman and Meyers.[l] With that assumption we 

see from Appendix E that with our notation above if N denotes the number of IBNR 

claims: 

(5 4) E(rV) 7 2, and 

(5.5) Var(N) = 1 + cI.2 

Solving (5.5) for c we obtain: 

Var(N) - A 
(5.6) c = >’ 

If we estimated the number of IBNR claims using development of reponed claims then 

Hayne[S] provides an approach we could use to estimate total variance in the IBNR 

estimates, if we are willing to assume independence among the various accident (or 

exposure) years. Consider the foltowing example: 
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Table 12: Example Reported Count Development 

Atident 
Year 

1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 

Months of Development 

12 23 35 t!!l 60 72 
176 363 417 477 500 500 
314 384 519 524 550 550 
178 294 382 405 425 425 
323 472 535 590 620 620 
264 492 503 572 600 
253 419 441 495 
137 324 410 
304 415 

Following Hayne, and assuming independence of the age-to-age factors (to keep the 

calculations simple) we calculate the natural logarithms of the age-to-age factors, their 

means and standard deviations as parameter estimates for the lognormal distributions of 

the age-to-age factors. Also. given independence the parameters for the age-to-ultimate 

factors can then be determined from the parameters of the age-to-age factors by simply 

summing the means and variances. The following shows these calculations: 

Table 13: Logarithms of Claim Age-to-Age Factors 

Acùdent Months of Development 
& 24/12 36/24 48/36 60/48 72/60 

1989 0.7239 0.1387 0.1344 0.0471 0.0000 
1990 0.2012 0.3013 0.00% 0.0484 0.0000 
1991 0.5018 0.2618 0.0585 0.0482 0.0000 
1992 0.3793 0.1253 0.0979 0.0496 0.0000 
1993 0.6225 0.0281 0.1226 0.0478 
1994 0.5045 0.0512 0.1155 
1995 0.8608 0.2354 
1996 0.3113 

Mean 0.5132 0.1631 0.0897 0.0482 o.oooo 
Std.Cev. 0.2182 0.1058 0.0473 0.0009 0.0000 

Cumulative: 
Mean 0.8142 0.3011 0.1380 0.0482 0.0000 

Finally, using standard formulae for the lognormal we obtain the following projected 

number of claims and their corresponding variance: 
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Table 14: Estimate of c Parameter 

Acàdent Cumulative Parameters Reported Forecast 
Year m StdDev. - Claims _Mean Std.Dev. 

1989 o.oooo 0.0000 540 500 - 
1990 0.0000 0.0000 550 550 - 
1991 0.0000 o.oooo 425 425 - 
1992 o.oooo 0.0000 620 620 - 
1993 0.0000 0.0000 600 600 - 
1994 0.0482 0.0009 495 519 0.5 
1995 0.1380 0.0474 410 471 22.3 
1996 0.3011 0.1157 415 565 65.5 
1997 0.8142 0.2470 282 656 164.6 

Total 4.297 4,906 178.6 

Indicated IBNR 609 1786 

Indicated c Value: 0.084 

6. Conchsion 

In this paper we have set out one approach that can be used to systematically estimate 

variation in both total reserve estimates and in payments in individual future years. In 

explicitly accounting for various components of uncertainty the actuary can adapt these 

estimates to be used in DFA applications. In such applications economic conditions can 

form a link between asset and liability models. Explicit recognition of the influente of 

such factors on loss reserve and payment uncertainty in the liability models will prevent 

“double counting” of its effect and result in potentially more realistic DFA models. 

We have presented this as a first step. There are obviously many simplifying 

assumptions even in this rather complex presentation. We hope this framework can 

provide a useful starting point to build and parameterize models of the amount and 

timing of insured liabilities. 
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AffEND/X A 

In this appendix we derive the formula for the variance for an individual life pension 

claimant, formula (2.4). From our definitions we have: 

We also have- 

Thus we have: 
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Var(X) = E(X’) -E(X)’ 
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APPENCVX B 

In this appendix we derive the conditional distribution of Bgiven z observed open claims 

from our population of n claims. We also review the asymptotic behavior of this 

distribution. 

1. Conditional Disiribution of B 

We first assume that the number of claims remaining open from one year to the next has 

a binomial distribution with parameter 8. Although we will assume that B will be 

uniformly distributed between 0 and 1. the following result holds in the more general 

case when B has with a beta distribution with parameters CI and p. In this case z. the 

number of “successes” (01 claims remaining open) is given by: 

f(z) = 
0 

” 8’(1-o)“-’ 
z 

The parameter Bthen has the distribution: 

r(a+P) u-1 

htH) = r(a)-(p) 
-e (l-o)"-' 

The joint distribution for z and Ois then given by: 

k(z,fl) = s(z)h(‘J) 

We will take y = B/E(B). Now we need to get the distribution of 0 given our observed 

annual closure rate, or conversely, rate of claims that remain open. From Bayes 

Theorem we obtain: 
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The integral in the denominator becomes: 

This then gives: 

n r(a+Pj . 

íl z r(dr(b) 

@‘” 1(, u)“-w-’ 

k(Blz) = n qa +a) r(z+a)r(n--z+p) 

0 z r(a)r(O I-(a+p+n) 

r(a+p+n) 

= r(z +a)rjn -2 +p) 
/y'" '(,- e)"~"" ' 

That is, k($z) has a beta distribution with parameters z+u and n-z+p 

2. Asymptotic Behavior 

We first assume that if the portion of claims remaining open tends to a finite limit as the 

sample size increases then the expected adjustment in (3.16) tends to unity. With this 

assumption, then. we conslder 

lim n+2 i 1 5 r(n +2)r(2 +S +i) 

- z -i-i r(z+i)r(s+f7+2) 

For this evaluation we will use Stirling’s approximation for the gamma function for large 

values of n: 

Using this approximation we have: 

108 



n +2 t 1 s rjn+2)r(z+~+i) í"+2)' ,2,,,.(y)":J%qy);*s 

z+i r(z+i)r(s+n+2)= z+l 
q gz jln(sYi(zqs +,q"* 

As n gets large we have: 

The limits for the other two terms follow from an alternative definltion for the exponential 

functlon. 

í 1 

n 

e’= lim l+’ O-n n 

We thus have: 
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Similarly we have: 

Thus we obtain, 

l;m 222 
( 1 

5 r(n + 9-k + s + 1) = e.ses = , 
fl-- z + 1 r(z + i)r(s + n + 2) 
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APPENDIX C 

In this appendix we derive formulae (3.17). using repeated application of the 

relationships in (3.16). First. we consider (3.16). From the definitions of the conditional 

distributions it is clear that 

E(z) = J Jzf(WWzdr 
= qfPl4) 

As for the variance we have 

Var(Z) = J Jz’ f(zl{)g(<)dzd{- E(Z)’ 

= E$(Z*1E)) - E(Zj2 

= E,(Var(Zl<) + E(ZI$) - E,(E(Z14j)2 

= E,(“arPH) + E~(W - Ec(E(zIC))Z) 

= E;( Var(Zkj) + Var&l5)) 

From our assumptions we have 

Similarly, we can compute 

Var(TIB,u,w,)= Var(~XlO,u.w,) 

= CVar(XIe,u,w,) 
I 

The last sum holds since we assumed the claims are independent for fixed 0, u, and w,. 

We thus need only consider the variance for a single claim. We thus have: 

From this we have 
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We also have 

Thus 

E(X*IB,u,w,)-E(XIH,u.w,i2 
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Which gives 

We will apply the Bayesian relationships above for each variable in succession so to as 

to appropriately track the various dependencies. First we remove the Bdependence: 

In calculatlons, the second-to-last representation is probably easier to manage. The 

variance estimate follows too: 

var(+,w,) = Var,(E(T\B.u,w,)) + E,(Var(@.u,w,)) 

From the above relationshios 

From the definitions of y we have 
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Var(y’) = E(y’“) - E(y”)* 

=2fi(n+2)(z+i+l)- fi(n+2)(z+i+l) ’ 

,.,(z+l)(n+i+2) ~- i ,.o (z + IXn + i + 2) 1 

i 

s-1 (n + 2)(z + i + 1) 

= Q(z+lxn+i+2) 1t 

~fp+2~z+i+l)~~("+2)(z+i+l) 

,;s (z +l)(n +i+2) ,-0 (2 + 1Xn + i + 2) 1 

Again, the first representation will probably be easier from a coding point of view. This 

then gives: 

As for the other term, 

Combining these two terms we have: 

Now removing w, from the terms: 



Again the second-to-last term may be easier to work with computationally. This last item 

follows from the lognormal assumptions regarding w,. In particular these assumptions 

imply that: 

( 1 Qwc p -lognormal((-$f(ps2).P2sr2) 

Thus the expectation: 

f( 11 f-p p =exp((-+)(spr2)++sp’r’) 

For p = 1 this gives an expectation of unity, giving the above formula. Similarly for the 

variance term: 

Va($) = Var, (E(T(w,)) + Ew,(Var(T(uzw,)) 

Taking the terms one at a time: 
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Again, from the lognormal assumptions: 

Var(n-~)=E([~wr)‘jE(gw.)’ 
= exp(-+)(2sr2)+$(4sr2)) - expi2((-t)(d) ++‘)) 

= exp(sr’ j - 1 

We thus obtain: 

As for the second term we have: 

Now from the lognormality assumptions 
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- lognormal[(- $2m r2 + (n -m)? j,4m? + (n - m)r2), thus 

lpQ2 - lognormal~(- +x(n t m)r’),(n + 3m)r’) 

This then gives 

E[fpQ,~) = exkf- +)((n + m)r2) + -((n + 3m)r’)) 

T: exp(mr2) 

This results in. 

Addlng these two terms together we obtaln. 

Finally we eliminate u from the formulae. Flrst 
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E(T) = E$(T(u)) 
=E”(i~b:~u[acl-q:,>,Ecy”i) 
=C~b:,[~(1-q;,))Ejys)4ui 
= ~~b;s(fl(l-q:,))E(f) 

As for the variance formula we have: 

Var(T) = Var,(E(Tju)) + E,(Var@)) 

Again we consider the two poftions separately 

Since u is lognormal with mean 1 we have 

Var(u) = exp(02) - 1 

We thus obtain: 

As for the second term we have: 



= +2)f&‘:@(l - ‘+(y’))2(exp(s~‘) -1) 

+E(u~)~ex~sr’)(~b:,[~(l-q:,)))z(~Y”) - E(Y’)‘j 
Sil x II-o 

Since u is lognormal, i.e 

u -lognormal(-~~2.~2) 

then u2 is also lognormal and 

u’ - lognormal(-õ2,42) 

Thus we have 

E(u2) = exd(-02) + f(4.2 j) = exp(u2) 

This then gives: 



Finally putting the ko terms together we obtain: 
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In this appendix we show the denvation of formulae (3.19) for payments in a particular 

year. As with the total mean and variance we begin with the mean and variance for fixed 

parameter values and then, step, by step, remove dependency on the various 

uncertainty parameters. Without any uncertainty and dropping the explicit i subscript. 

(2.7) and (2 8) give: 

E(T,/Certainty) = ~aIS~P1, 
I I I 

Thus, Incorporating cost escalation, discountlng, and our uncertainty variables, we have: 

As with the aggregate, 

Var(,T,Jf?,u.w~:) = Var CX,jO.u,w, 
( 7 1 

= C Var(X,jll,u, w, j 

The last sum holds since we assumed the claims are tndependent for fixed 0. u, and w, 

We thus need only consider the variance for a single clalm We thus have 

Breaking this into parts then we have: 

and 
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Hence we have 

=(bb’@‘s)‘[ ‘-’ )( ‘-’ YpI:,) 1-Yy-pc) ) 
This then gives: 

Var(T,Ru,w,)=~[b,unw,)2[y’~(l-91:,))(l-~;,)) 
r I 1 

We now use the Bayeslan relationships to work down the conditional variables. First we 

remove the Odependence. 

In calculations. the second-to-last representation is probably easier to manage. The 

variance estimate follows too. 

From the above relationships: 
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From Appendix C we have: 

-s-l 

t 

(fo + 2)j2 + i + ij 

var(ys)= n(z+l,“+i.,) )í ,,;,(z~l)(n+i~2)-~,z+l,,+;.2) 

?yp+2)(z+i+l) ~~‘(n+2)jz+i+l) 

1 

Again. the first representation will probably be easier from a coding point of view. This 

then gives: 

As for the other term. 

E,,(Var(T,ID,u,W,)~ = E, c b’ ufi ( , [ IS ,-( w,)l(Y~~(l-.:,))(l-Y~~(l-q:!lji 

=~(b~~~~w,~E,((Ys~(l-q~,))-[Yzs~(1-~~~)2j) 

=~(b;~u~W,)‘(~(l-~~~))jqy’)-dy7i)(~~1-~~~~2~~ 

Combining these two terms we have: 

Now removing W, from the terms: 
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Again the second-to-last term may be easier to work with computationally. This last item 

follows from the lognormal assumptions regarding w, as in Appendix C. 

Similarly for the variance term: 

Var(T,lu)- Var,,(~EIT,lu.w,:l)+E,(var(T,lu.w,)) 

Taking fhe terms one at a time, using the lognormal relaGonsh¡ps in Appendix C: 

As for the second term we have: 



Adding these two terms together we obtaln 

Flnally we ellminate u from the formulae Flrst 

As for the variance formula we have: 



Var(T,) = Var,(E(J$)) + E,(Var(T,b)) 

Again we considel the two portions separateiy. 

As for the second term we have- 

E,(Var(Tlu)) = E, +expjsri)u2[ xbL( ~(14,)))2[4v2s)-dv’ji 
r 

126 



Finally putting the two terms together we obtain: 
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APPENDIX E 

We will calculate the mean and variance of J in stages. We first consider IBNR claims. 

As with Heckman & Meyers, Algorithm 3.3 gives: 

E(N) = E,(U?+)) = E,(.k) = J-E,(x) = 2 

and we also have, 

WV = Ez(Var(NIx)) + Var(E(qz)) 

= E,(G) + V=,(Q) 

= 2 E,(X) + 2.’ Vay 

= A + CA2 

To ease the notatlon In what follows we will assume that the clalms 

x &.l, X,,& XN&*, are independently selected from a distribution wlth mean 

E(X) = E(J$ertainty)/N, 

and variance 

Var(X) = Var(T,lCertaintyj/N, 

Th6 last relationship follows since 

= CVar(X,ICertainty) 
/ 1 

Now fixing b, <, and ywe have, 

= E&(N, E(X) + 0’4 E(X) + flE(X))) 
=/?(NR+.&+y~)E(X) 
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For the variance in this case we have- 

= E,jp’(,Var(T,!Certainty) + N,C2 Var(X) + Ny2 Var(X))) 

+ Var,,(P(Nn E(Xj + N,<E(X) + Ny E(X))) 

= ,L?‘(N, Var(X) 1 NB;’ Var(X)+E,(N]y’Var(X))+ @Y’E(X\~ Var,(N) 

=/I’jN, tN,c +i.í’!Var(X)+P’y’qXj’i/. -cÁ’) 

Stmilarly we have. for a flxed values of pand < we have 

E(T1P.S) = E,(E(qPm~z<j) 

= E,.(P(A’, +irv, +;d)E(X!j 

=/l(NR +gV3 +aE.)E(X) 

For the variance in this case we have: 

Var(qfl,i) = EF(Var(J(p.y.ij) + VarF(E(Jl,Kly,ij) 
= E,(,G’(N, + NS<’ ~L;/2)Var(Xj+,LI’;~‘E~X)Z(,J +~A~))+Var~~[~fl(N~ i-<NB +yi.jE(Xj) 

= E,W(p2(N, -I NB<’ )Var(X) + ,v2fi2(E(X)?(,? * cA2] i 2 Var(X)]) + Vaf? (/?(A$ + &?il, + yA)E(X)) I. 

= ,&(NR + N,<‘)Var(X’i + E.(~‘)p’(E!X)‘(2 + ci2) + i Var(X))-t$A’E(X) Var.,[y) 

= p2(N, + N,i’)Var(X) c (d + a2)/î2(E(X)‘(A -4 cJ2) + 2 Var(Xj) + /3?ñ2 E(X)‘d 

= p’((N, + N,c2 + (d + a 2jA)Var(X)+([d ia’)(:E. +cJ?j + 12d)E(X)2) 
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Now for a fixed p we have: 

Tl4 = E,(E(W)) 
= E;(P& + 4% + Y+O)) 
= p(N, + rN, + ad)E(X) 

The variance calculation also follows: 

var(TiPj = E,(Var(Jkj) + Var.(E(JjLK)) 
= E,[,!J2((N, + IV&’ + (d + a’)A)Var(X) + ((d + a’)(A +cA’)+ A2d)E(X)‘)) + VarL(flNR + p, +aA)E(Xl 

= j?‘((fV, + NBEi(j2) + (d + a’)A)Var(X) + ((d + a’)( ñ + CA’) + A2d)E$X)2) +E(X)2Nz/12 VarJc) 

= p2((NR + N,(z + r2) + (d + a’)A)Var(X) + (( d + a*)(A + cl’) + A’d)E(X)?) -+ zfl’~Vi E(X)2 

= p2((NR +N,(z +r2)+(d+aZ)A)Var(X)+((d+a2~A+c~2)+n-’d+z~~)E(X)2) 

Thus, combining these results, we have: 

E( JI = b(E(Jl~)) 
= E,(p(fv, + r/v, +aAjE(x)) 

= E,,cpXNR + fN, + aA)E(Xj 

= (NR + rN, + aA)EjX) 

Finally we have. 



Var( Tl = Ea( Var(qP)) + “ar,( E(‘-lP)) 
=EB(p’((N, +N,(z +r’)+(d +a’)ñ)Var(X)+((d+a2XA+cA2)+ A2d +zN~)~X)~)) 

+Var,(p(N, +rfV, +aA)E(X)) 

= EB(P2X(NR +N,(z + r’) + (d + a’)ñ)Var(X) +((d + a’)(A + cA*) + A*d + zNi)E(X)‘) 

+Var#)(& + fN, +aA)2 E(Xj2 

= (b + lj((N, + N,(z + r2) + (d + a’)A)Var(X) + ((d + a’)(A +cA2) + A2d + zNi)E(X)‘) 

+b(N, + rN, + aA)’ E(X)’ 

=(b+ l)(& + N,(~+r*)+(d+a~)A)Var(X) 

+((b + l)((d + a’)(A + cA2) + A*d + ZN:) + b(N, + rNB + aA)‘)E(X)’ 

Thus, in terms of estimates for case reserved claims without parameter uncertainty: 

Var(T) = (b + l)(N, + NB(z + r2) + (d + a2)1) 
Var(T,/No uncertalntyj 

NR 

E(T,INo uncertainty) ’ 
+((b + Ix(d + a’)(A + CA*) + A*d + ZN:) + b( NR + rN, + aA>‘) 

47 

NB(z+r2)+(d+a2)A. 

NR 
Var(T,INo uncertainty) 

(b + lf(d + a’)(A + c;l’) + A’d + ZN:) + b 

NR2 
E(T,INo uncertainty)’ 
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