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Abstract

In order to be complete dynamic financial analysis (DFA) models should deal with both
the amount and timing of future loss and loss adjustment expense payments. Even
more than asset cash flows, these future payments are very uncertain.

This paper begins by estimating both process and parameter uncertainty in reserves for
annuity-type benefits such as available in some automobile no-fault states or in workers
compensation. Arguably, such reserves have underlying distributions (inherent in the
mortality models) that may be more easily understood and treated than many other
casualty coverages. We explore the estimation of both process and parameter
uncertainty for this example. In the process we derive formulae that can be used to
model uncertainty in other applications, once the various parameters are estimated.
Many of the estimation methods covered should generalize to non-annuity applications.

There is also a companion of this paper, titled “Modeling Parameter Uncertainty in Cash
Flow Projections” that provides motivation for the estimates contained in this paper. In
that paper we discuss approaches to modeling future cash flows and argue for
separation of parameter and process uncertainty as well as describing methods to model
them both.
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ESTIMATING UNCERTAINTY IN CASH FLOW PROJECTIONS

1. Introduction

There have been a number of papers and articles dealing with uncertainty in loss
reserve estimates. However, dynamic financial analysis for risk bearing entities requires
more than simply the distribution of reserves. Also of critical importance is the timing of

those future payments and their distribution.

A simple example may clarify the point. Suppose two insurers, Short Tail Insurance
Company and Long Tail Insurance Company are identical in all aspects except for the
timing of future payments. Both companies are in runoff, both have $1 million in assets
invested in the bank yielding 3% interest, and both will settle all losses in a single

payment according to the following distribution:

Table 1: Hypothetical Distribution of Payments

Probability Amount
20% $ 500,000
20% 750,000
20% 1,000,000
20% 1,250,000
20% 1,500,000

The only difference is that Long Tail will not pay this amount for 10 years, while Short
Tail must pay it at the end of this year. Even though both insurers have the same assets
and face the same distribution of reserves, Short Tail would face insolvency 40% of the
time while Long Tail will only be insolvent 20% of the time (since 1,000,000 x 1.03 =
1,030,000 and 1,000,000 x 1.03'°=1,343,916). Though timing may not be everything, it
is substantial.

Thus knowing the distribution of the reserves is necessary to mode! the financial
condition of a risk bearing entity, but it is not sufficient. Rather, to appropriately model
the future cash flows we need to know the distributicn of payments in each future year.
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In addition, economic conditions and unanticipated changes in cost inflation often impact
reserves and contribute to the variability in both reserves and future payments as well as
on assets. Thus, in dynamic financial analysis (DFA) applications where economic
assumptions may be used as a "linkage” between asset and liability models, 1t will
probably be necessary to separate the contributions of these economic factors from
others in modeling liabilities.

In this paper we will begin with an example of how estimates of the means and
variances of payment distributions by year can be made. This first example will focus on
claims involving lifetime payments, such as for certain workers compensation claims or
unlimited no-fault medical claims. Unlike many casualty claims, the fact that payments
are contingent on survival actually provides us with an underlying probability structure for
the payments on individual claims and makes discussion of many of the topics we will
address more accessible. However, unlike many life coverages, the future payments

are contingent not only on the claimant’s survival, but on uncertain future costs.

We will then consider how to carry these concepts over to other coverages. These
concepts aiso can be useful in constructing models for use in dynamic financial analysis.

2. A Relatively Simple Example

Suppose our insurer only has a fixed book of life pension workers’ compensation

indemnity claims and does not need to fund for the medical portion of these losses.
Further, 1o keep this first example reiatively simple, we also assume:

2.1 We have mortality tables that appropriately reflect survival probabilities for these

claimants.

2.2 There is no escalation of benefits for individual claimants due to inflation or some

other index.
2.3 Future annual payments for each claimant are fixed and known.
2.4 We are not currently interested in the time value of money (i.e. no discounting).

2.5 The various claimants are statisticaily independent.
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Here the expected future payments for any individual claim can easily be calculated
using a life annuity. Not only can we use the mortality tables to obtain expected costs,
but we can also use them to review the expected distribution of payments for our

population in any particular future year.
To see this we let:

a denote the payment for claimant x in year ¢t in current dollars,

xt

P denote the probability that claimant x lives for ¢ years and then dies or otherwise

exits the claim population.
It is easy to see the distribution of payments in any future year s is given by:

Table 2: Payment Distribution for a Single Claim
Probabitity Amount

2 P a,
1.5

1_prl 0

From this it is easy to see the payments in year s, have expected value

@1 €(X,)=0.3 5.
and variance
Var(X,) = E(X?) -E(X,)’
2.2) -al3 e, —a[zp]
afgn v 20)

This is the result we would expect from the binomial distribution for the payments in year
s.
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In addition, from our assumptions we see that the future payments for this claimant will

t
have a discrete distribution with payments totaling Za" , occurring with probability p,, .

s=1

Thus the total expected future payment for this claimant is given by:

© 1 £ w
(2.3) E(X)=3 Pud.d=2.8,9 Pu
t=1 =1 51 i-s

The second is simply the total expected payments in each future year.

Similarly we can also calculate the variance.

(2.4) Var(X):iZa,sa,,[ ip,,)[‘l-[ ip,,]]

o
s=1r=1 1- max({r.s) {=min{r,s)

Although this formula may not be immediately obvious it is not difficult to derive. We
show the derivation in Appendix A.

Thus for a single claimant we can easily obtain the distribution of future payments, its
mean and variance as well as the distribution of payments in any future year. We can
still explicitly determine the distributions for multiple claimants, however, the calculations
become more complex (such calculations may be necessary if, for example, reinsurance
attaches on a per incident not per claimant level). For example, for two independent

claimants, x and y, the payments in year s have the following discrete distribution:

Table 3: Payment Distribution for Two Claims

Probability Amount

()E)
(Zel-ge) e
[-ZelEn)
(e 2

We could derive a similar table for the distribution of total future payments for two

[

xs T ays

claimants. Rather than having simply four separate points, the resulting table would
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have nxm points where n denotes the number of future years having non-zero
probabilities for claimant x and m the number for claimant y. Although we can exactly
calculate the resulting distributions for many claimants, the resulting exponential growth
in size makes such calculations prohibitive.

On a practical level, however, the problem of combining twe distributions is simply one of
calculating the aggregate loss distribution for two distributions. Heckman & Meyers[1]
provide one means of performing these calculations, Robertson[2] gives another.

We can also approximate the aggregate distrbution of the discrete distributions
iteratively. We first calculate the aggregate distribution of two distributions exactly,
resulting in mxn cells. We then compress this large distribution ta, say, m cells and
repeat the process with the next distribution. Straightforward combination of cells will
usually result in a reduction in the variance in the final distribution while maintaining the
mean. The following is an example of this approach.

Consider the two distributions:

Table 4: Distributions for Convolution Example

Variable 1 Variable 2
Probability = Amount Probability Amount
0.60 100 0.20 250
0.40 300 0.80 500

The resulting aggregate distribution is:

Table 5: Distribution of the Sum of Variables

Probability Amount
0.12 350
0.08 550
0.48 600
0.32 800

A possible compression of this aggregate distribution is:

Table 6: Collapsed Distribution of Sum

Probability  Amount
0.20 430
0.80 680
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Here 0.20=0.12+.0.08, 430=(0.12x350+0.08x550)/0.20, and so forth. Note the expected
value of 830 is preserved in the compressed distribution but the variance of the exact
distribution is 22,240 while that of the compressed distribution is 10,000. There is some
flexibility in this method, however, in that the algorithm used to combine the cells could
take into account the purpose of the modeling. For example, if the interest is in
probabilities of high loss amounts, then we could maintain more detail in the “tail” of the
distribution by combining more cells with smaller loss amounts with less combination of
higher loss cells. In the above example, the following is another compression:

Table 7: Alternative Collapsed Distribution

Probability Amount
0.68 550
0.32 800

The mean is again preserved but the variance is now 13,600, closer to that of the exact

distribution.

Another possible approximation would be to assume that the aggregate distribution
follows a smooth distribution with a limited number of parameters. We could then “back
into” the aggregate distribution making use of moments of the true aggregate
distribution. For this, however, we need to be able to calculate those moments. For our
simple example, however, the calculations follow very simply from (2.3) and (2.4) if we
assume that individual claims are independent from one another. Given the fact that the
distributions are based on survival probabilities, and our assumption that the
probabilities themselves are correct, this is probably not too restrictive in practice.

In this case, letting T denote the random variable corresponding to the aggregate
distribution, we see that, assuming we have N claims, the expected aggregate loss is

given by:
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&7)=

(2.5)

m
x

M= ,—m—\
_MZ

a,Y P

1=

"MZ
e

@

Similarly, because we assumed the claims are independent, we can calculate the
variance for the aggregate distribution as:

N
Var(T) - Var| ¥ X,]

(2.6) i_v:Var(X )

3350 50 £

I-max(r.s) t-mintr sy

Similar calculations based on (2.1) and (2.2) will give us the mean and variance of the
total expected annual payments:

N
E(T,) = }:xg]
-t

.7 = 2 EX,)
I;JI )
=2 8,50 Py
Var(T,) = Var[iXyJ
i-1
(2.8) :iVar(_Xy)

N
=ZaZs(Zp,.}[1 Zp,.]
We note we can calculate the exact distribution for payments in any particular year as
with the aggregate distribution for the total. However, in this case, there will “only” be 2"
cells in the distribution. Again, we could use a compression algorithm to obtain
approximate distributions.
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3. Introducing Some Uncertainty

The problem thus far considers only random fluctuations due to the fact that the exact
time of exit from the claimant population is unknown. We have assumed that ali other
aspects of the problem are known. In short, we have only discussed process uncertainty
thus far, i.e., that uncertainty remaining in the situation even if the process itself is known
with certainty.

in the real world models used are generally approximations of the underlying process,
subject to uncertainty either in their parameters or even whether or not they are
appropriate. {n this section we begin to introduce uncertainty into the assumptions from

section 2.

The first restriction we will relax will be the assumption that underlying survival
probabilities for individual claimants are known. In reality payments will often be
contingent on the survival of an individual who is already injured and whose injuries may
significantly impair chances for continued survival. Thus it may not be appropriate to
use standard mortality tables to determine the survival probabilities. It is possible that
the tables that are used will be modified or based in some way on popuilations of injured

claimants and thus subject to estimation error.

In addition, it is possible that a claimant will sufficiently recover from his or her injuries so
as not to require additional payments from the insurer. Thus exit from the population
could occur for reasons other than death. We may need additional modeling to study
the effects of such recoveries on exits from the population by claimants.

Since most such analyses focus on the mortality in a year, we let

q,. denote the probability that claimant x will die in year ¢, given survival through year

1.

These are the standard mortality probabilities. In terms of the p,, variables defined

above we have (possibly mixing notation somewhat):
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-1

Py = q:.ln(1_qx.:)

i=
f-1

@.1) =(1-(1-q.))[ 10 -9..)

i=0
t

IL;[1 q..)-[101-4..)

=0

Very conveniently, these collapse in the sum to yield:

s

S .= ([10-0.)-1]0-0..))

10-0.)-T]01-4..)

i=0

T
3

3

(3.2)

5

3 =

=[](1-q,.)

=1

In addition to allowing uncertainty in the survival probabilities we will also aliow the
annual benefits to change over time with economic conditions and allow for discounting
of the reserves, as would be the case for the medical portion of workers’ compensation
or certain automobile no-fault benefits. We will allow the combined economic effect of
inflation and discounting to be uncertain. Finally we will allow for some uncertainty in the
annual payment estimates for individual claimants. Specifically we will relax our various
assumptions to the following:

3.1 The relative survival probabilities among various claimants are known, however, the
absolute probabilities are based on an analysis of n exposures. Analyticailly, we

assume that there is a random variable y and constants g;,, such that for all x and t

Xt

values:
(3.3) 1-q,=(1-4q5 )y

3.2 The a, values are stated in current dollars. There is escalation in those amounts
between time -1 and time ¢ in the amount of 1+f,. This escalation will be the same
for all claimants but may vary from year to year. The 1+, amounts are not known

with certainty.
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3.3 The present value of 1 at time {-7is 1+v, at time {. The 1+v, amounts are not

known with certainty.

3.4 There is a random variable u and constants a;, such that for all claimants x and time

t, the following holds:
(3.4) a, =ayu
3.5 The various claimants are statistically independent.

3.6 There are random variables w, and constants £’, and v, such that, for all ¢ values:

1+£ 1+

3.5 =
3:5) T+v, 1+v]

t

The variable y in 3.1 could be considered as a global load, reflecting the uncertainty in
estimating the overall closure rate from experience. We recognize that this does not
consider the uncertainty regarding the relative closure probabilities. For example, it is
likely that younger claimants will experience a greater reduction in survival chances due
to the injury causing the claim than older claimants will. Thus, except in the simplest
situations, the variable y probably should not be considered as a montality load, but

rather a global uncertainty parameter.

We can estimate the degree of uncertainty arising from the sample size of n life-years
used to estimate the survival or closure probabilities. For this we use sample theory and
an application of Bayes' Theorem. In fact, if we assume:

1. The random variable y has a binomial distribution with expected value 6.

2. The random variable @itself has a uniform distribution between 0 and 1 (i.e. we have

no prior knowledge of the appropriate value of &).
3. Qur sample size is n.

4. We observe z claims remaining open after one year from our sample.
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If we make the more general assumption in 2 above that ¢ has a beta distribution with
parameters ¢ and g it turns out that ¢ given the observations has a beta distribution with

parameters z+a and n-z+4. \We show this in Appendix B. in particular, then,

' = ‘Mﬁ zerea fpq -2 A1
E(O IZ)_,[or(z+a)r(n_z+ﬁ)o (1 0)

MNMa+p+n 1 nz.pA
B r(z +(a)1"(/r}7 - z)+ﬂf)J'og“*°*’(1_g) ’
Ma+p+n) Mz+r+a)(n-z+f)
Nz+a)(n-z+p) Tla+r+p+n)
_Tla+pB+nl(z+r+a)
T(z+a) (a+r+p+n)

(3.8)

Thus, in particular,

. Ha+pg+nl(z+1+a)
Bdz)= Mz+a)(a+1+ f+n)
_ HMa«prni(z+a)z+a)
- r(z+t;)[‘(a+ﬂ+ nYa+ pg+n)
Z+a
:a+ﬂ;+7r>7"

3.7

Thus we have:

E'( 6. ] _E0e)
E0) ) Eoz)
:[a+ﬂ+n]’rl‘(a+ﬁ+n)r(z+r+a)
Nz+a)(a+r+p+n)

(3.8)

Z+a

Now, the specia!l case we will consider is no preference in the prior distribution for 6.

This is simply a special case of the beta distribution with « = #=1. In this case we have:
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0
E(o

E(y')=

/_L\

n+2) T(n+2)0(z+r+1)
1) T(z+ 0 (r+n+2)
n+2)z+i+1)

Nn+i+2)

(3.9)
Z

+

1l
Camm)

.

—_

L
—
N

The last equation follows from the recursive properties of the gamma function and
makes calculation easier in practice. In terms of the survival probabilities we have:

SR

(3.10) oy

As one would expect, the first term in the last product tends to unity as the sample size n
becomes large if

(3.11) hm—:O
v )

for some vatue 0. The proof is shown in Appendix B.

Assumptions 3.2 and 3.4 deal with cost escalation and discounting and 3.6 relates the
two. We assume that the combined impact of inflation and discounting is uncertain with
the variables w, providing that uncertainty.
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Finally we will modify the assumption that alf future payments (at current cost levels) are
known to one wherein there is “global” uncertainty regarding future payments. This is
reflected in the variable u.

For simplicity we will assume that the variables w, and v all have independent lognormal
distributions, and that the distribution for the various w, have the same means and

variances. In particular we will assume that all these variables are independent and:

u~ lognormal(— 1 cr’,az) and
(3.12) '
w, ~lognormal{- £ ¢7,7%) for all t.

Here and throughout this paper we wilt use the normal-transformed parameterization of
the lognormal distribution. For example, (3.12) assumes that the normal variable In u

has a normal distribution with mean —%az and variance o?. More generally when we

say
(3.13) x ~lognormal(y, o*)
we mean that the random variable x has the probability density function

(inx - p)
P [ 257

(3.14) f(x) = oy

With this parameterization, then we have:

E(X)=exp(u +307)
(3.15) Var(X) = exp(2u + o (exp(0?) - 1)

Var(X -
v.(X)= E(a;gr)z) = yexp(a?)-1

This last relationship shows that, with this parameterization, the coefficient of variation

{ratio of standard deviation to the mean) depends only on the o° parameter.
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It could be argued quite convincingly that v would not be the same for all claimants or for
all years. That is clearly a refinement to the methodology we present here. However, to
keep the calculations to a manageable level, we have elected to make this simplifying
assumption here. However, the assumption of lognormality for the economic variables is
probably much more plausible, although the assumption of constant variance may be
somewhat restrictive. In both cases, here, we note that the expected values of both

distributions are unity, that is both v and the w, variables are assumed to represent

random shocks to our overall expectations.

We are now ready to calculate the mean and variance of the total population reserve.
The calculation makes repeated applications of the following relationships that held for
independent conditional distributions:

E(Z)=E,(E(Zl¢))
Var(Z) = E,(Var(Z|¢)) + Var, (g )

(3.16)

In this case we assume that the distribution of the random variable Z with probability
density function f(z,£) that depends on a parameter ¢ which itself is a random variable
with probability density function g(£). These assumptions result in the following formulae

for the mean and variance of the total distribution:

E(T)=Zib:s[“ . ,,)]ﬁ (n+2fzsi+1)

o (z+ ) (n+i+2)

it-a50)etr) oter)
(3.17) +exp(o? )i[}:bs[ﬁ q,,)JJ[ (v*)exp{se?) -E[y")')
rexp(c?)S S S bib, exp(min(r,s)rz)[maﬁw(‘l - q;,)J

x s-1r=1 10

x[E(y“"""”") - E(y"s)(mmﬁ) (1= :')U

-0

<<

)

ﬂ
/_'\

™
gt

o
A

.Q

In these formulae we have taken
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+

“

(3.18) b, =a;[]

!
s 1+ V,

ary

These are the present value of future payments without consideration of uncertainty or
the probability of payment. As a practical matter, the value of ¢’ is not needed in the
detailed calculations. We can calculate the various terms in (3.17) that involve individual
claim information separately, and then include the value of % in a fairly simple

calculation.

If, now, we assume that there is no uncertainty in any of the estimates then o =7 =0
and the expectations of all powers of y are 1 (infinite sample size) the first three terms in

the variance sum vanish leaving:

c max(rsj 3 minir si-1
13.19) VaqUCenamty’;:EZZb;sb;,[ I (_Lq;,)][p 1 (1_q:’))

© s 1 ro e

Here. and throughout this paper, we use the term "Certainty” in the formulae to denote
the situation where there is no parameter uncertainty. We use this shorthand to help

keep the formulae as simple as possible.

Thus incorporating uncertainty regarding the closure rates adds 1o the expected value of
the total. With this we see that E(T) will equal the reserve estimates calculated by the
model if the survival rate were based on an infinite population, otherwise said, if we are

certain about the annual survival rate.

If we define

[

(3.20) p.=1101-9.)

5-0

Then this last formula becomes the standard variance formuia.



Var(TiCertainty) = 3 Z bl Yo )[ >0 ]

I max{r.s) t-min(r.s)

o, B 5]
S} 25 805 5

t max(r.s) x osa10-1

(3.21) :ZZZDSD,

i
s
=2
a
o
., ’———\‘ I

The actual calculations in deriving (3.17) are quite lengthy and are contained in
Appendix C. Similarly we have the following formulae for the mean and variance of
payments in year s, as shown in detail in Appendix D.

5" li_[‘ (n+2)z+i+ 1)
ro(z+ Y (n+i+2)

(3.22) Var(T, [st[_s' -q., ]J (exp(n vsrt)E(y*) - (y‘)z)
+exp(o’ +st° b,;[ls_i 1-q;, ]LE(y‘)—E(y’s)(s>1(1_q:,)jj

to 1:0
Although, to maintain some simplicity we have not substituted from formula (3.9) in the
variance formula in either (3.17) or (3.22), both formulae, with this substitution, no tonger

depend on the conditional variables. It can be easily seen that in the case of no

uncertainty (i.e. o=r =0, E(ysi) =1) the formulae in (3.22) reduce to (2.7) and (2.8). We

also see that the expected total reserve in (3.17) is simply the sum of the expected
payments by future year from (3.22). However, as we would expect, the variance terms
are much less comparable. This is due to the nature of the dependencies we introduced

with some of the uncertainty variables.

Thus, for the relatively simple case of known lifetime care claimants we can calculate the
mean and variance for both the total reserves and the payments in each future year. We

can incorporate at least some parameter uncertainty in these calculations.
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In short, these calculations provide a way to estimate the mean and variance of case
reserves, including a potential provision for uncertainty in the case estimates as
evidenced by the parameter v, but do not consider uncertainty regarding claims that are
incurred but not reported. it aiso does not consider reported claims that are not yet
recognized as potential lifetime care claimants or for which there is not sufficient

information available to establish estimates of future claim and medical costs.

4. Additional Areas of Uncertainty
We consider three categories of claims.

1. Those having annual cost estimates with case reserves calculated using the annuity
model described in sections 2 and 3 above.

2. Claims reported but for which annual cost information is not yet available, and
3. Claims incurred but not reported (true IBNR).

Continuing with our development we have implicitly incorporated additional development
in case reserves, along with its corresponding uncertainty, in the estimates in section 3.
Thus there is increasing uncertainty as we move through these categories of claims. In
the first instance we have information regarding individual claims with uncertainty
regarding inflation, investment, exit from the population, and some uncertainty regarding
the accuracy of the annual cost estimates. All these elements of uncertainty are present
in the second category along with additional uncertainty as to the overall average for the
claims themselves. Finally the third category incorporates all this uncertainty as well as
uncertainty as 1o the number of claims 1o ultimately be reported.

In order to reflect this uncertainty we will use the following notation. Let:
Ne denote the number of claims having annual cost estimates
Ny denote the number of reported claims without specific annual cost estimates

A denote the expected number of IBNR claims
denote a random variable with E(y)=1 and Var(y)=c

B denote a random variable with E(/)=1 and Var(#)=b
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¥ denote a random variable with E(»)=a and Var(y)=d
4 denote a random variable with E(¢)=r and Var(¢)=z

With this notation, we will use a modification of Algorithm 3.3 from the Heckman &
Meyers[1] paper

1. Select claims with case reserves, X,, X,, ..., X

2. Randomiy select a value for z.
3. Randomly select N from a Poisson distribution with expected value Ay.

4. Randomly select independent claims X, ., Xy ,. ... Xy_.,.» from the same

distribution having the mean and variance equal to that of the case reserved claims.
5. Randomly setfect values for £, ¢, and ;.

8. Calculate the aggregate reserve as

Ne Ng +Ng Ng+Ng+ N
41) T=f83 X+ 3 X +y ZX,).
1 1-Ng+1 ; Ne+Nget

Here y incorporates uncertainty regarding the claim count estimate, g global uncertainty
regarding the overall estimates, ¢ additional uncertainty and scaling for known but not-
case-reserved claims, and y additional uncertainty and scaling for IBNR claims. We will
assume in the following, that claims other than those with case reserves, except for the
scaling values a and s, will have the same mean and variance as those with individual

case reserves.

If we consider the case where there are no IBNR claims and that we have case reserve

estimates for all claims, (4.1) becomes:
Ne

42) T=p3 X,
-1

From this we can calculate the mean as:
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o3

(4.3) - El,[ﬂiE(X,)]
= Eﬂ(ﬂ)iE(X,) = iE(X_,) = N, E(X)

11

Since we are assuming all the claims are independent, this last term denotes the

expected claim costs with no parameter uncertainty. This can be calculated using (3.17)

by letting the sample size tend to infinity. Now if we let all the uncertainty above be

expressed in the parameter S, then we have

Var(T, (Var (7, \,B)+ Var,(E (TR]ﬂ))

:E,,[var[ﬂgx,)]war 48]
BAGSA

(4.4)
=E 5 r[‘\ix ]+Var /j)E[zx,)
)

=(Var,(f) +E, ﬁ)2 Var i&‘ ]+Varl,(ﬁ)E[§X‘]‘

1

= (b + 1) Var{T,|Certainty) + bE(Ty|Centainty)’
Solving for b we obtain:

Var(T, ) - Var(T|Certainty)

(4.5) =
Var( Tr[Certainty) + E(T, |Certaxnty)

We can then use (3.17) or (3.22) to derive a value for b that will explicitly incorporate
parameter uncertainty into this algorithm. Assuming, in addition, that estimates for the
second and third claim categories depend on case reserves, we are able to quantify a

level of global uncertainty inherent in the estimates.

We use calculations similar to those led us to the mean and variance estimates in

Appendices C and D to obtain the following:
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E(T) = (Ng + N, +aA)E(T;|Certainty) /N,
No(z+r)+(d+a*)a

(4.6)Var(T)=(b+1) 1+ N,

]Var(TR]Certainty)

b+ W(d +a?)(A +ca)+ Ad + ZN2 :
i (b+ )(( +a’)( A:'f )+ Ad+z B)+b[1+¥) E(TR|(:ertainty)2
R R

These are shown in detail in Appendix E.

Thus, under the above assumpticns, we can express the mean and variance of the
distribution of total claims in terms of the mean and variance of the distribution of case
reserved claims, without parameter uncertainty, and the various parameters specified
above.

On review of that analysis we see that we did not specifically assume that the
calculations were for total reserves. Thus a similar formula holds for payments in a

particular year:

E(T,) = (Ne + 1N, + a4)E(T,,|Certainty) /N,
No(z+r?)+{d+a’)2
Ne

(@.7)Var(T,)=(b+ 1|1+ ]Var(TRS|Certainty)

(b+1)(d+a* )1 +ca)+ Xd + 2N} N +aiY

n { X _ ) ) b1+ e re E(TRS|Certain’(y)2
N N ’

Inherent in these calculations is that we can use the same uncertainty variables for both

the aggregate reserves and for the payments in each year.

We note that, although the genesis of (4.6) and (4.7) were based on a book of life-
pension claims, there is nothing in the derivation that requires such a book. If we can
separate our reserving problem into the three categories above and are willing to make
the assumptions indicated above, we can calculate the variance of the aggregate
distribution.
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5. Estimating the Parameters

We will consider parameter estimation in two phases, we will first address the b
parameter and then the remaining ones. Again, the discussion will begin with the life

annuity model and then move to potential for generalization.
5.1 Estimating the b Parameter

We have already hinted at an approach that we could use to estimate the b parameter.
Using (4.5) all we need are estimates of the variance of reserved claims with and without
parameter uncertainty. The estimate without parameter uncertainty follows directly from
the annuity calculations as given in (3.19) or (3.21). Using (3.17) and the assumptions
going into that estimate we can derive an estimate of the variance for claims having case

reserves if we can estimate:

E(y*) Uncertainty regarding the mortality assumptions
r? Uncertainty regarding (composite) economic estimates
o? Uncertainty regarding the annual cost estimates

5.1.1 Mortality Considerations

There are other practical issues in the use of mortality assumptions, especially in usual
applications in property and casualty insurance. In almost every situation property and
casualty claimants eligible for lifetime care will be physically impaired in some manner,
either by trauma or disease. Often one may expect the impairment to affect the
claimant’s future survival chances as compared to the general population. In addition,

we could expect different injuries to have different effects on survival probabilities.

There has been substantial research on the effect of spinal cord injuries on survival
rates. As opposed to head trauma, spinal cord injuries are relatively easy to categorize
and are relatively uniform from patient to patient, and generally do not change during a
claimant's life. For example, the following table, attributed to the National Spinal Cord
Injury Statistical Center, University of Alabama at Birmingham, shows differences in life

expectancies for various levels of spinat cord injury[3):
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Table 8: Life Expectancies by Age and Spinal Cord Injury
Life Expectancy

Motor
Function
Current Ventilator High Low at Any
Age Normal Dependent Tetraplegic Tetraplegic Paraplegic Level
20 56.3 19.9 32.8 386 448 49.0
30 46.9 15.9 26.8 30.7 36.7 40.5
40 376 12.4 20.9 236 28.8 31.7
50 286 93 15.5 17.0 21.2 23.4

We have not been able to locate similar statistics for traumatic head injuries. Analysis
for such injuries are complicated by the fact that head injuries are more difficult to
categorize than spinal cord injuries and, in contrast to spinal cord injuries usually
identified by the location and degree of lesion in the spinal column. In addition, the level
of severity of a head injury can change substantially during the course of treatment.

Other property and casualty claimants could have still different mortality profiles. For
example, a back injury, though disabling a person from employment, may have little or
no effect on that person’s future life expectancy. Conversely, heart conditions or stress
related illnesses could have a substantial impact on future survival chances.
Compounding difficulties are the effects of medical treatment on the claimant's survival
chances, especially in situations where there is no limit on the amount that can be
expended for medical treatment. Thus, unlike many situations where mortality is a

consideration, the appropriate survival functions are often uncertain.

For this reason, it may be useful to consider construction or modification of mortality
tables to reflect the injured population. In this case the table could be based on a fairly

small sample, though could stifl produce reasonable results. [n this case formula (3.9)

gives an estimate of E(y“] under the assumption that uncertainty in the mortality tabie is

uniform across all claimants and ages and depends only on the sample size used in
estimating the mortality table and the overall average mortality for the population.
However, the considerations above would seem to indicate that (3.9) may only produce
a lower bound on the level of uncertainty inherent in the selection of mortality

assumptions.
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5.1.2 Uncentainty in Economic Assumptions

We note in (3.5) and (3.12) we have made the simplifying assumptions that the net
discount rates (ratio of annual cost inflation to annual interest rate) are independent from
year to year. In addition, we assumed that the distributions of the rates in each year all

have the same coefficient of variation.

There has been much attention recently devoted to modeling economic scenarios in
canjunction with dynamic financial analysis, for example Daykin et.al.{4] If we were

using such models one could estimate the value of 7 using the results of those models.

Although the modeis can be quite complex, actual economic conditions have
experienced some rather spectacular swings, even over the past twenty to thirty years.
For example, the hospital room component of the U.S. Consumer Price Index for Urban
Wage Earners (CPI-W) increased by 15.7% during 1981 and by only 3.5% during 1996.
Interest rates also experienced similar swings during that same time with the average 1
year United States Treasury Bill moving from 14.8% in 1981 to 5.5% in 1996.

We could also use this historic volatility to estimate . For this we review the historical
volatility in the quantity:
Ieh g

51
e 1+v,

Here we use f” to denote the annual change in the medical care cost component of
the U.S. Consumer Price Index for Urban Wage Eamers measured from month ¢-12 to
month ¢ and v, to denote the average yield for 1 Year U.S. Treasury Bills during month ¢.

Of course, if we assume that claim costs would experience a different market basket

than medical costs in general then we would re-weight them accordingly.

We also somewhat randomly selected the 1-Year U.S. Treasury Bill rate for this
example. Again, unique characteristics of the company's investment portfolio may
dictate a different measure for investment return. These values should be illustrative of
the degree of variation we could expect in our applications. The following graph shows
values of {5.1) for each month from April 1953 through July 1997,
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Since we have assumed that uncertainty in future net discount will show a lognormal
distortion we can estimate the 7 parameter as the variance of the natural logarithms of

the amounts in (5.1), plus 1. In this case the resultis 7 = 0.000457.

5.1.3 Uncertainty in Cost Assumptions

The third area of uncertainty reflected in (3.17) deals with the fact that a,, the annual
payment amounts in current dolflars, may themselves be uncertain. In workers
compensation claims the indemnity amounts are often specified by statute, so the
amounts of those payments for life pension cases may not be subject to change.
However, one would probably not expect the same degree of cerainty in medical
payments either for workers compensation or no-fault benefits.

As noted in Section 3. Introducing Some Uncertainty, we have assumed that claim
annual cost estimates in current dollars have the same uncertainty distribution as
reflected by the random variable v. In addition to u, the (present value of) annual
payments are also affected by the w; random variables. From a practical viewpoint, this
effectively separates two factors that affect the accuracy of estimates of future costs;
unexpected levels of inflation (and/or investment return) and actual costs (or services)
differing from what had been expected for reasons other than economic conditions.
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This dichotomy suggests a way to estimate the parameter o°. We could compare actual
annual payments with the forecasts made in previous analyses, after adjustment for
trend in the form of some index reflecting underlying cost changes. The following table
provides an example of such an approach.

Table 9: Actual vs. Expected Payments

Payment Forecast Annual Payment
Year Year Actual Estimated In(A/E)

1 0 $ 50,000 $ 45000 0.1054
2 o] 40,000 35,000 0.1335
2 1 40,000 45,000 -0.1178
3 0 30,000 25,000 0.1823
3 1 30,000 35,000 -0.1542
3 2 30,000 30,000 0.0000

Average 0.0249

In this example, for a single claim, we have actual payments of $50,000, $40,000, and
$30,000 in each of the first three years of a claim. In the first analysis (at the beginning
of year 1) we estimated payments of $45,000, $35,000, and $25,000 trended to future
levels using the selected cost index. The second analysis we adjusted the forecasts for
years 2 and 3 to $45,000 and $35,000 respectively, while for the third analysis we
estimated $30,000 for the third year.

Since the sample mean of the natural logarithms is the maximum likelihood estimator for
the first parameter of a lognormal distribution in our parameterization, and the sample
variance is a minimum variance estimator for the second parameter, we could use the
sample variance for as an estimator of the ¢ parameter. We note here that the average
does not satisfy the relationship assumed in (3.12). in particular the expected value of
the resulting lognormal variable is not unity. Hence our estimates are biased and we
should adjust the forecast estimates to remove this indicated bias. Such an adjustment

would leave the o parameter unchanged.

This approach ignores any "aging” considerations. For example, one would expect
short-term forecasts to be more accurate than long term ones, all other things being
equal. In addition, the longer-term estimates carry less weight in the reserve forecasts
due to discounting for mortality if not for investment income.



Also, for medical payments on seriously injured claimants, one would often expect
payments in the first years after the accident to be much higher than those in later years
after the claimant has medically stabilized. In addition, it could be argued that payments
rise during the time just before a claimant's death. The approach we outlined gives
equal weight to all forecast errors in estimating the o” parameter. It does, however, have

the appeal of a direct comparison of actual versus expected results.

An altemative approach would be to consider the development of claim estimates over
time. In such an approach, as in usual incurred loss development, annual cost
estimates are gradually replaced by actual payments over the development period. If we
take this approach we must keep in mind that we want to separate economic influences

from the measurement of movement of claim costs over time.

One such approach would involve recalculating all expected incurred losses each year,
replacing expected future payments with actual payments in the annuity caiculations and
reviewing the development. This would be the most consistent way to handle changes
in economic assumptions in the valuations. However, it could be quite time-consuming,
especially in situations where there are many claims evaluated over many different
development periods, not to mention the need to maintain records of past annuat cost

estimates for individual claims.

There is an approximation, however, that would allow for the separation of changes in
economic assumptions from development in estimates from other causes. At this point
we only consider claims having annual cost estimates, since we are trying to quantify the
uncertainty in those annual cost estimates. Thus we do not want the development
patterns we obtain to be influenced by emergence of new claims, hence aggregation by

accident period would not be useful.

This may suggest grouping by report period. However, in that grouping there could be
claims reported but which do not yet have individual annual cost estimates attached.
The manner in which reserves are set on those claims could influence the review of
development on claims having annual cost estimates. Hence report period grouping

also seems to be lacking for this purpose.

We thus consider a third alternative, akin to report period. For this we group claims by
the period in which they are first case reserved, calling this a reserve period grouping. In
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the case that there are no "formula” reserves for known claims, this alternative would be
equivalent to a report period grouping.

Once claims are grouped in this fashion, we can consider the development of expected
incurred losses (calcufated using the annuity approach of (2.3)) on fixed groups of claims
using a development array format. However, we are faced with several additional
difficulties if we wish to focus on the movement and variability in the individual annual
cost estimates (the focus of the o parameter). Those difficulties arise because our
reserve estimates may be discounted and because changes in economic or mortality
assumptions will cause changes in the expected armounts during the calendar peried
containing the change and should not be considered when evaluating the variability
inherent in the individual annual cost estimates.

Even without changes in underlying assumptions, we are faced with the “unwinding of
the discount” phencmenon. By this we mean the fact that incurred losses calculated
with discounted reserves will continue to develop upward due to a decreasing effect of
discounting, even if all underlying assumptions prove exactly correct. To deal with the
unwinding of the discount we discount all amounts to the beginning of the reserve
period. This discounting includes the discounting of all payments made to date, as well
as discounting of reserves. For convenience we discount to the beginning of the reserve

period we are evaluating

An obvious alternative at this juncture would be to not discount at all. The appeal of
discounting at this point, however, is the decreasing influence of remote payments have
on the final reserve calculated. As noted above, these remote amounts are probably
subject to greater uncertainty. The author recognizes at this point the current
discussions regarding the appropriateness of caiculating reserves on a discounted basis.
None of the methods or results presented here rely on the discount rate being positive.
Thus if reserves are carried on a undiscounted basis all the above analysis will apply.
However, if the discount rate is negative (implying a significant risk-adjustment due to
uncertainty) later payments are given increasing weight in the final expected value

calculations.

In any event, however, if we were to discount all amounts to the beginning of the reserve
period and if all estimates were exactly correct we would see no development in these

amounts over time. In addition, if economic conditions (and assumptions regarding
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future conditions) remain unchanged all movement in total incurred amounts would
refiect changes in future annual cost estimates making up the case reserve estimates.
Hence we could quantify variation in those estimates over time, using, for example,
techniques developed in Hayne[5], Mack[6] or others.

A practical consideration still remains, however. In reality, assessments of future
economic conditions change over time. For example, in the 1980’s it may not have been
unreasonable to assume that medical cost inflation would remain quite high over a fairly
long period of time. However, given the situation in the late 1980's, we may be hard
pressed to justify estimates of future inflation at levels experienced in the 1980's. As
noted above, such changes would appear as calendar period effects in the development

patterns and could mislead estimate of uncertainty in claim cost estimates.

Specific changes such as those in assumed future economic conditions will affect
reserve estimates similar to those of currency fluctuations on losses denominated in
more than one currency. Borrowing technigues develeoped to handle such changes, as
presented in Duncan and Hayne[7] we can consider a type of two-step development
array.

Table 10: Example Two-Stage Development

Months of Development

Reserve 12 24 36
Year Current Prior Current Prior Current
1995 $100,000 $110,000 $105,000 $107,100 $109,500
1996 125,000 143,750 137,500

1997 175,000

Development Factors
24/12 36/24
1995 1.10 1.02

In this two-stage approach we use “Current” to denote the assumptions inherent in the
final selected analysis at the indicated valuation date. For example, $105,000 indicates
the total incurred (discounted to the beginning of 1995) using the economic assumptions
at the 1996 valuation. Similarly $109,500 represents the discounted incurred {again to

the beginning of 1995) using the 1997 economic assumptions.
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The “Prior” amounts denote the calculations using the economic assumptions from the
prior analysis. For example, the $110,000 represents the forecasts for 1995 claims,
using 1996 claim information, but using the economic assumptions inherent in the 1995
(prior) analysis. Thus the difference between $100,000 (1995 at 12 months) and
$110,000 is due to the evaluation of the individual claims and not due to different
economic assumptions used in calculating the losses. The development factors are then
comparisons between the “Prior” at one stage of development with the “Current” at the
previous stage. In effect, then, the development isolates changes in economic

assumptions from development in underlying cost estimates.

From this point we could use the variation inherent in these development factors to

estimate uncertainty in annual cost estimates, and thus the o parameter.
5.2 Estimating the r and z Parameters

The next portion of total reserves in our consideration is that for known but not-case-
reserved claims. If we assume that there is no inherent difference between these claims
and those already reported, we could assume their distribution is the same as that for

known claims and take r=1and z= 0.

However, there may be other factors considered in setting the formula reserves for these
claims. The r and z parameters can then be used to account for these factors and
resulting additional uncertainty. For example, assume the formula reserves are set only
during the first three years after ctaim occurrence, using only the most recent three
accident years, without any adjustment for trend or differences by report lag. The
following then shows one approach to estimating r and z in this case:
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Table 11: Estimate of r and z Parameters

Loss
Accident Report Reported Standard
Year Year Losses Claims Average Deviation
1995 1995 $ 5,000 200 $ 25000 § 27,500
1995 1996 5,100 300 17,000 15,300
1995 1997 5,500 250 22,000 23,100
1996 1996 9,800 350 28,000 22,400
1996 1997 4,180 220 19,000 20,900
1997 1997 10,500 350 30,000 31,500
Total $ 40,080 1,670 $ 24000 $ 248635
Expected Without Uncertainty $ 20,000 $ 18,000
Parameter Estimates:
r 1.20
z 0.19

The estimate for ris simply the ratio of the average for the “formula” reserved claims to
the expected average (without parameter uncertainty). The estimate of z foliows from
the assumptions regarding the form of uncertainty for these formula reserves. In
particular, assuming the random variable Y is defined using the notation in Section 4.

Additional Areas of Uncertainty as:
(5.2) Y=¢X
We then have the following formula for the variance of Y:

Var(Y) = E,('Var(

<))+ Var, ([E(X[¢))

= E,(Var(X¢)) + Var.(E(X¢))

=E. (¢ Var(X))+ Var.([E(X))

= Var(X E(( Var(()

= Var(X)(Var(¢) + E(¢)") + E(X)" Var(¢)

= Var(X)(z +r*) +E(X)"z

Solving for z we obtain:
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”- Var(¥) - r? Var(X)

(5.3) :
Var(X)+E(X)’

5.3 Estimating the ¢, a, and d Parameters

The final portion of total reserves is for claims that are incurred but not reported. As with
known claims with formula reserves, if IBNR reserves are estimated using averages for
known claims we could estimate the a and ¢ parameters similar to the way we estimated
the rand z parameters as described in Section 5.2, Estimating the r and z Parameters.

We could estimate the ¢ parameter in several ways. One approach starts with the
assumption that the number of IBNR claims has a Poisson distribution with a “contagion”
parameter similar to that used by Heckman and Meyers.[1] With that assumption we
see from Appendix E that with our notation above if N denotes the number of IBNR

claims:

(5.4) E[N)=4 and

(5.5) Var(N)=A+c
Solving (5.5) for ¢ we obtain:

oo variN) -4

(5.6) .

If we estimated the number of IBNR claims using development of reported claims then
Hayne[5) provides an approach we could use to estimate total variance in the IBNR
estimates, if we are willing to assume independence among the various accident (or

exposure) years. Consider the following example:
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Accident
Year
1989
1990
1991
1992
1993
1994
1995
1996

Table 12: Example Reported Count Development

Months of Development

12

24
176
314
178
323
264
253
137
304

36
363
384
294
472
492
419
324
415

48
417
519
382
535
506
441
410

60
477
524
405
590
572
495

500
550
425
620
600

500
550
425
620

Following Hayne, and assuming independence of the age-to-age factors (to keep the

calculations simple) we calculate the natural logarithms of the age-to-age factors, their

means and standard deviations as parameter estimates for the lognormal distributions of

the age-to-age factors. Also, given independence the parameters for the age-to-ultimate

factors can then be determined from the parameters of the age-to-age factors by simply

summing the means and variances. The following shows these calculations:

Table 13: Logarithms of Claim Age-to-Age Factors

Accident
Year

Mean

Months of Development

1989
1990
1991
1992
1993
1994
1995
1996

Std.Dev.

Cumulative:

Mean

24/12 36/24 48/36 60/48 72/60
0.7239 0.1387 0.1344 0.0471 0.0000
0.2012 0.3013 0.0096 0.0484 0.0000
0.5018 0.2618 0.0585 0.0482 0.0000
0.3793 0.1253 0.0979 0.049%6 0.0000
06225 0.0281 0.1226 0.0478
0.5045 0.0512 0.1155
0.8608 0.2354
0.3113
0.5132 0.1631 0.0897 0.0482 0.0000
0.2182 0.1056 0.0473 0.0009 0.0000
0.8142 0.3011 0.1380 0.0482 0.0000

Finally, using standard formulae for the lognormal we obtain the following projected

number of claims and their corresponding variance:



Table 14: Estimate of ¢ Parameter

Accident Cumulative Parameters  Reported Forecast
Year Mean Std.Dev. Claims Mean Std.Dev.

1989 0.0000 0.0000 500 500 -
1990 0.0000 0.0000 550 550 -
1991 0.0000 0.0000 425 425 -
1992 0.0000 0.0000 620 620 -
1993 0.0000 0.0000 600 600 -
1994 0.0482 0.0009 495 519 0.5
1995 0.1380 0.0474 410 471 223
1996 0.3011 0.1157 415 565 85.5
1997 0.8142 0.2470 282 656 164.6

Total 4,297 4,906 178.6

Indicated IBNR 609 178.6

Indicated ¢ Value: 0.084

6. Conclusion

In this paper we have set out one approach that can be used to systematically estimate
variation in both total reserve estimates and in payments in individual future years. In
explicitly accounting for various components of uncertainty the actuary can adapt these
estimates to be used in DFA applications. In such applications economic conditions can
form a link between asset and liability models. Explicit recognition of the influence of
such factors on loss reserve and payment uncertainty in the liability models will prevent
“double counting” of its effect and result in potentiatly more realistic DFA models.

We have presented this as a first step. There are obviously many simplifying
assumptions even in this rather complex presentation. We hope this framework can
provide a useful starting point to build and parameterize models of the amount and
timing of insured liabilities.
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APPENDIX A

In this appendix we derive the formula for the variance for an individual life pension
claimant, formula (2.4). From our definitions we have:
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We also have:
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Thus we have:
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Var(X) = E(X?) - E(X)*
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APPENDIX B

In this appendix we derive the conditional distribution of g given z observed open claims
from our population of n claims. We also review the asymptotic behavior of this
distribution.

1. Conditional Distribution of 0

We first assume that the number of claims remaining open from one year to the next has
a binomial distribution with parameter 9. Although we will assume that & will be
uniformly distributed between @ and 1, the following result holds in the more general
case when @ has with a beta distribution with parameters « and £. In this case z, the

number of “successes” (or claims remaining open) is given by:
n n
f(z) = (2)0’(1— )

The parameter 8then has the distribution:

h(6) = I'a +B)

a-t7q4 _ mA!
“Tar’ Y

The joint distribution for z and @is then given by:

k(z,8) = gz)n(6)

- [Z }ol( 1-g)"" *—FF((Z); (/;)) 0= (1- )"

n) [ n-z248-
:( ] (a+p) 01«;.-1(1*0) 7+ 8-1
z)[{a)T(B)

We will take y = 6/E(6). Now we need to get the distribution of & given cur observed

annuai closure rate, or conversely, rate of claims that remain open. From Bayes
Theorem we obtain:

k(8.z)

)= [ K(0.2)d0
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The integral in the denominator becomes:

J.;k(g.l)d(): J;(:)—[%;%ella—1(1_ ()-)n—z.ﬁ-1d0

_[(PYT(@*B) ¢t perarq  pyo-ees
_(er(a)r(ﬁ).l.ug (1-0) do

:[n] Ma+p) Tz+a)l(n-z+p)

z

(@)r(g)  Tla+p+n)

This then gives:

') e+ p) Zea-1(q  p\0-2eA-1
LerTa}F(F)O (1=0)

k(glz) = (n) Cla+ ) V(z+a){(n -7+ f8)

z

@) () Tla+p+n)
~ M(a + 0 +n)
TMz+a)(n-z+p)

n-z.01

0" (1= 9)

Thatis, k(f}z) has a beta distribution with parameters z+a and n-z+4.

2. Asymptotic Behavior

We first assume that if the portion of claims remaining open tends to a finite limit as the
sample size increases then the expected adjustment in (3.16) tends to unity. With this

assumption, then, we consider

i (n+2)5 F(n+2)r(z+s+1)
el 7 41

Mz+NM(s+n+2)

For this evaluation we will use Stirling's approximation for the gamma function for large

values of n:
r(n+ 1):,/27#)(2—)

Using this approximation we have:
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As n gets large we have;

Iim

vl

(z+1)(s+n+1)

[ (n+2)z +s) J

The limits for the other two terms foliow from an alternative definition for the exponential

n
: . r4
e’ = I|m[1+—)
-1 n

function:

We thus have:
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lim = lim 1+—
N—rn)] z PETE Z Z

z
= lim(1 + i) Iim(1 + i) =e°
2ol Z 2] Z

Thus we obtain:

=e’e* =1

. (n+2Y T(n+2)[(z +s+1)
|'m(z+‘1) T(z+ N (s+n+2)

n—so0
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APPENDIX C

In this appendix we derive formulae (3.17), using repeated application of the
relationships in (3.186). First, we consider (3.16). From the definitions of the conditional
distributions it is clear that

= ” zf(2|¢) g £)dzd &
= Ec(E(Zlg))

As for the variance we have
Var(Z) = [ [ 22 1(z[¢) g(g)arzdg-fz(z)2
:(E(Zzlf)
(var(Zle E(Z|£ ) -E,(E218)
E,(Var(zle))+£,(E(2e)" -E,(EZ8) )
{(Var(Z|¢)) + var, (E(2]2))

E.

1]
m

§

From our assumptions we have

Emguwlzgjb,s[“( q,n)]( 1'”]

-1 1=0

Similarly, we can compute

Var(T|g.u.w,)= Var[z X|6,u,w, J

=Y Var(X|g.uw,)

The last sum holds since we assumed the claims are independent for fixed 8, u, and w,.

We thus need only consider the variance for a single claim. We thus have:
var(X|6,u.w,) =E(X?|6,u,w,) - E(X|6,u,w,)’

From this we have
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We also have

N w ' s 2
E(X|o.u.w)’ = [z o3 b w,]
=1 s=1 r=1
(SurTwgen )
s=1 r=1 t=5
:ZZ[U Wasz' XS][UI_IW prr xr]
s.tr-1 =1
a o s Is Ea x
=ZZ[~2 wanl][ ,sZp,.][b;,zp,,)
s g-1 21 t=s t=r
_ z[zb;sb;,uznw: nw,[zp,,)[zp,,]]+[ 3. s [wi [ 50 Zp.,])
s=1\ r=% q-1 z=ri1 t=s t.r rassl g-1 2-8s1 t=s 1=r
Thus

K q-t z 1 -3 t
o YV o
+( S bLpLu?[]wl [Tw. Zp,,{kZp,]]
r=se1 a- 1 r-a+1 t-r =5
o w© min(r.5) max(r,3
=2 2 bt [Twg HW.
3=1r=1 q=1 2=mn(r 8}+1\ t-max(s,

min(rs)  max{r.s)

:iib,,b Hw IIw.|¥

st z-min(r )1

/ﬁ/-”_\
!
P
=
1 -
2
s
\;/

=g e = )



Which gives:

@ o mun(ls) max(s.s) max{r.s)-1 min{r.s)-1
Var(Tig,uw) = 333 007 1% ﬂw[ Y <1—q1v>]{"(”'"‘”' 1§t ﬁ-q:&)]

x s-tr=t q-1 z=munfr,s)e 1 t-0 t=0

We will apply the Bayesian relationships above for each variable in succession so to as

to appropriately track the various dependencies. First we remove the & dependence:

E(Tluw, )= (E(T[()‘u,w,))

In calculations, the second-to-last representation is probably easier to manage. The

variance estimate follows tco:

Var(Tju,w,) = Var,(E(TI6.u.w, )} + E,(Var(Tl0.u.w, )

From the above relationships:

From the definitions of y we have
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Var(y*) = E{y**) -E(y*)
M n+2)z+i+) S"(n+2)(z+i+1)2
_,-_0(z+1)(n+i+2)—[H(z+1)(n+i+2)]
stn+2)z+i+ N2 (n+2{z+i+1) &=

:[g(z+1)(n+i+2)J[,=s (Z+Nn+i+2) &

(n+2)z+i+1)
(z+1)(n+l+2)]

&

Again, the first representation will probably be easier from a coding point of view. This

then gives:

i

verde(roan)= 5o (o1 0-00)) (e6)-))

51 x t=0

As for the other term,

s = minfes)  max(r.s) max{s.g)-1 7 mm(/.() 1
Ea(Varme.u.w»)ie[zzz o Tz T y="1] (1-"?')11‘[”"(”) B
x 3 1 1 =0

q= z=min(r,3)+1 1
e = mn( s} max(r.s) . max(r,:) 1 mn(l Y (r.:)1
-w e Tl Tiwel (o1 -0 s -a.)
x 1 q::1 z=mn(r.s}+1 1= t=0

”ﬁ’iv: "ﬁ"w,[“ﬁ"'o—q:,>]x[E(y"""“)—E(y"*)[ (1" 0-a:1)

q-1 z=rmin{r2)«1 t=

RN

EMs

Combining these two terms we have:

Var(Tlu.w, ) = i[uﬁ W,] (Z b.(s([!‘@ qn))}?(E(yzs) - E(ys)z)

s-1 r=

m inir.s) max(r s) [max(r.s)-!

w55 e T Tlwf 1] (1—q:,>][Ea(y""‘“"")~Es<y'*)[""'”ﬁ"(1~q:,)]]

X os=1r=1 Z=min(r,s)«1 t=0 1=0

Now removing w, from the terms:
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(x5 s(f fo-enferte o)
b,su[“o a3) ety e{TTw
f(1-a2) et

szt (n +2)( 1
-y ,,“u( (1-a;) JH(M_Z_)
x s=t t-0

ia(Z+N(n+i+2)

Again the second-to-last term may be easier to work with computationaily. This last item
follows from the lognormal assumptions regarding w,. In particular these assumptions

imply that:

(ﬁ w,] ~lognormaf((- 1) pst?).p*s7?)
1

r=

Thus the expectation:

E([ﬂw] ]—exp( Yspr?) ++sp’c?)

For p = 1 this gives an expectation of unity, giving the above formula. Similarly for the

variance term:

Var(Tlu) = Var,, (E(T]u,w, )) +E,, (Var(‘l’(u,w, ))

Taking the terms one at a time:
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vec, (& Tas) - Ver, (50, [H( )J(unw )E(y )
8l e
- Soven (11w Jei [0 oty
el obor i
Again, rom th lognormal assumptions
vl ({1 | {11

= exp((— 12sr?)+ %(45#]) - exp(iz((— 3 se?)+ %82'2))
=exp(st?)-1

We thus obtain:

var, (E(Tlu,w,)) = g[zx: b,‘s[g[ (1-qx ))u E(ys)]Z(exp(Srz) -1)

As for the second term we have:

e (% b([n ]] E(y')z)
XYbe ﬂ I(‘[ . ](E(y 1 ]

Sl oz [n i) (=)-°)
EE e T ][n o)) T -

Now from the lognormality assumptions
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[we Tiw. ~ |ognormal((—%)(Zmr2 +(n-myr*ldmr +(n- m)rz), thus
q Toml

ﬁwg ﬁw, ~ lognormal{- +)(n -+ m)r*}(n + 3m)r2)

qg-1 2-ms1

This then gives

E[ﬁ w? ij,] = exp{(- P(n+m)r? )+ H{(n + 3m)r2))

o
o
i
@
x
ol
3
3
=
~
n
)
e
3
o
= -
—
iy
|
Ka)
I
SNoee
A
m
—_—
<
E
—
m
—
~<‘
o
i

Adding these two terms together we obtain:

5»1

Var(Tju) = uZ;[Z b,'s(

,I'O

-q. )]E(y J exp(sr?)- 1)

..,uzsz;exp(sr )[S“b ([‘[( -q; )]J (Elv™)-y))

x s=1+01 !

Finally we eliminate u from the formulae. First

17

ttan(rs) -

+u° ZZZDSb"exp min(r,s)r (ma( «1 a; ][E(ymams,)_ ( /s)(
o}

[

t-0

v



E(T) = E, (E(T1u))

e, 25 enaf [ 0-02) )

=0
S[

(1- q,,)je(w)au’)
(

( -qy )]E(ys)
As for the variance formula we have:

1
M%“Ma’ W
B
:1““ 2

;.o

1l
P

nMs

Z
Z

si{n+2)(z+i+1)
Z )JH (z+n+i+2)

0

&

Var(T) = Var,(E(Tju)} + E,(Var(Tu))

Again we consider the two portions separately.

Var, (g(Tlu)) = Varu[z i (fi ]E(,V )]

= Var, [uZZbS(S [(- q,,)JE( )J

X 5=1 =0
-1 2

= (;;b“(f_gu - q;,)]E(ys)] Var(u)

Since v is lognormal with mean 1 we have
Var(u) = exp{c?) - 1
We thus obtain:

s-1

Var, (E(Tju)) = [ZZ b;[{ I (1- q;,))E(ys)T(exp(a?) -1)

As for the second term we have:
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uZ[Zb( (630 el foels?)
E,(Var(Tlv)) =E,| +u ZeXp(s )[Zb [ (1-g; )]]( (y x),E(ys)?)
+u g;;u,,b,,exp(mm .$ )(mﬁl-‘@—q:.)]{E(ymw.s))_E(yn,)[m*"ﬁ"(1—q;,)]]

ez fj- et emtsr)
+E(u2)§exp(s#)[gb;[ﬁ(1 -q; ))T(E(Y”) -E(y")')
CE{u? )ZZbe exp(min(r, s)72 )[mﬁ“U - q;,))[e(y”a“"’)) - E(y"‘)(mﬁJ ‘(1 -, )}]

Since v is lognormal, i.e.

u ~lognormal(-$o*,o7)
then u? is also lognormal and
u® ~lognormal(-o” 40 )
Thus we have
(o) = oxl{-o7)  40)) = 0(o)

This then gives:
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E, (Va r(T]u))

()Z[Zb {Fio-a) ey ](exo(s )-9)

om0

vexp(a”). 5 3 bt explmintrs)r )[ 1-a. IE(y )[ﬂ(w)ﬂ
gar{slivfor gl
onfer)Soolor'| 201 [r-0)] e07) - omlo?}S ot )[Zb' ft-a)) e
veole L5 S0 exrirar| 1] I )ty T -
- o) (12| (et )t ) el

vexplo? )S_;;;b,,b"e xp{min(r. s)r 2)[”",'(';1’“(1-q:,)I'e(y"’"’)-e(y,.s)[""”ﬁ”(1-q;.)n

Finally putting the two terms together we obtain:

s S5 S e )
¥ s=1r=1 =0 -0
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APPENDIX D

In this appendix we show the derivation of formulae (3.19) for payments in a particular
year. As with the total mean and variance we begin with the mean and variance for fixed
parameter values and then, step, by step, remove dependency on the various
uncertainty parameters. Without any uncertainty and dropping the explicit / subscript,
(2.7) and (2.8) give:

E(T,[Certainty) = Za,SZp,,

Var(T!Certainty) = Zafs[}: P, ][1 - Z o ]
x ts i=s

Thus, incorporating cost escalation, discounting, and our uncertainty variables, we have:

As with the aggregate,

Var(T,|0.uw,) = Var[z XJ0.uw, )

=% Var(X |duw,)

The last sum holds since we assumed the claims are independent for fixed & v, and w,.

We thus need only consider the variance for a single claim. We thus have:
Var(X,|0,u,w,) = E(XZ6,u.w, ) - E(X,|0.u.w, ¥

Breaking this into parts then we have:

e{cinu)= (el | (T (1-40)

-0

and
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This then gives:

5

Var(T.|6,u.w,) = Z [bISUIj ws)z[y‘ﬁﬁ -5 ))[1 v (1-q; ))

1=0 t-0

We now use the Bayesian relationships to work down the conditionai variables. First we

remove the 0dependence.

XAy (R )j(uﬁw,)ﬁ (022)z i+

o (Z+ Y (n+i+2)

In calculations, the second-to-last representation is probably easier to manage. The

variance estimate follows too:
var(T,|u,w,) = Var,(E(T|6,u,w, )) + E,,(Var(T$|0,u, w, ))

From the above relationships:



Var, (BT 0.uw,)- Var{); e[ fo-a Tl w]]
e )
e s

From Appendix G we have:

n+2)z+i+1) n+2§z+i+1)

(n+2)(z+i+1)) 23
Var(y) [H(z+1)(n+/+2)}(H(z+1)(n+/+2) Hz+1)(n+/+2)J

Again, the first representation will probably be easier from a coding point of view. This

then gives:
Var, (E(T,|0.u,w,)) = (un W, )2[leb;s(ﬁ(1 - q;,)))z(E(y") - E(y‘)g)
As for the other term,
e veriow) - 5 sl o [ o)1= -9
ot fdetie o))
st (H- e - )
Combining these two terms we have:
Var(T,|u.w, ) (unw ) ( (Q( )]]2
o5 (ssal T (F100-02) o) - - )

Now removing w, from the terms:



E(T.Ju) = E, (E(TeJu.wi))

=Zb.;u('s (1-q;,))s f(n+2)z+i+1)

o (z+n+i+2)

Again the second-to-last term may be easier to work with computationally. This last item

follows from the lognormal assumptions regarding w, as in Appendix C.

Simitarly for the variance term:
Var(T,|u) = Var,, (:E(Ts|u,w, )) +E,, (Var(Ts]u,w, ))

Taking the terms one at a time, using the lognormal relationships in Appendix C:

Var,, (E(Ts|u.w, )) = Var,, {[uﬁ W,jzb 5(5 1 (1-95 ) )J

x 0

van, (I S22 f -0 b))

[zb,-s -] ve{ )

x t o r-1

_ [ (
[z fr o)) (o)

2 1=0

As for the second term we have:
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Adding these two terms together we obtain:

Var(T ju} = L [”(1 q; }JE(y ] exp(Sr) }

s 26 [0 o ]]( ) ey )

0
+7b u” exp(st’ (HU g ))( ) Ely* )(n(
[}
Finally we eliminate v from the formulae. First
E(7,) = E,(E(T.w)]

- Eu[; b:su[frj (1-g, ~)}E(y5)'J
1

o[- a2) ey e
= Zb,}[ﬁ[_‘] 45 JE(y"
zol [l TG

As for the variance formula we have:

)



Var(T,) = Varu(E(Ts]u)) + EU(Var(Tslu))

Again we considet the two portions separately.

Var, (E(T,|u)) = Var, [Zb u[ ]E(y ]
)

= Var [qu u( 1 q:

(51 JVa,
1z J )

As for the second term we have:

Eu(Var(Tlu)) =E,

[): b;s(ij(j - q;,‘)}JE(yS))z(exp(sr’) 1)
+exp(sr2)u2(z':b;s[ﬁ(1—q;,)le(E(yzs)—E(ys)z)
+;b;§u2exp(sf)[ﬁ(vq;,)][e(w)-E(y“)[ﬁu—q;,))]

- o[ 1) o) otor’)
+E(u® exp(sr? )(Z b:s[ﬁﬁ -a;, )DZ(E(Y“) - E(ys)z)
()3 exp(srz)[ﬁ(w:f)][E(W) - E(y”)[fjﬁ-q:l)n




I iginal
esslo”enslss*| s [H( n( =)
renfo”)S 63 exsfsr?) 11 J(E(y - -4
- expla?) ( ( J ))
vesslo?)S iz exelse” [ (1-4 )[( -Ey? )( fjo-a))

Finally putting the two terms together we obtain:

Var(T,) - [Z b:{ﬁ@ —q;)]E(y’)Jz(exp(ff?)“ )

+exp(az)(gb;s[ﬁ(1—q;,)]) (ool ey)’)
exo{e |3 o exelse” - )](E(V ~Ey’ )[H“ e )J
-(zi{fo- ))} (explo)exelss?)E(y)-(y*) )
ol 65 o) [ - )[EM )(““ )
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APPENDIX E

We will calculate the mean and variance of T in stages. We first consider IBNR claims.
As with Heckman & Meyers, Algorithm 3.3 gives:

E(N) =E,(E(Nz)) =E,(r) = AE,(x)= 4
and we also have:

Var(N) = E, (Var(Nly)) + Var, (E(My))
=E,(Ax)+ Var,(Ay)
= AE,(x)+ A Var,(y)
=A+ck

To ease the notation in what follows we will assume that the claims

Xoeore Xugozi oo Xnon,.n a@re independently selected from a distribution with mean

E(X) = E(T,|Certainty) /N,
and variance
Var(X) = Var(T,|Certainty) /N,

This last relationship follows since
. Na Ne
Var(T,[Certainty) = Var[z X,|Certainty] = Var({X |Certainty)
-1 i

Now fixing B, ¢, and y we have:

E(T|,U,y.g”\) = EN(E(ﬂ(IX! + Xyt Xy, + ‘:(XNR«‘!+'“+XNR-N5 ) + 7(:XNR-/‘/E~1+‘ "+XN~>Nst))))

Sl IR SO S )|

= EN(/}(NR E(X) + (N E(X) + WE(X)))
= B(Ng +¢Ng + pA)E(X)
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For the variance in this case we have:
Var(T|p.y.{)=E (Var TIB.7.¢. N“;)+ VarN(E(np r.d N
[Var[ ZX +£ZXN ,+YZX~. Nyt J

J
vl B S x|
z

B )

+Var~[:E[E(ixr } . E(cZ XN,‘,j+E[ri‘ XNJ}]

= E,(#(Var(T:Certainty) + No¢? Var(X) + Ny ? Var(X)))

+Var (BN E(X} + NeGE(X) + Ny E(X)))
= BN, Var{ X+ Noo™ Var(X) + Ep{N)72 Var( X)) + £757 E{X)" Vary(N)
= PH(Ng + No&™ + 277 Var(X) + g7 E(X Y (2 +c4?)

Similarly we have, for a fixed values of gand £ we have:

E(TI5.) = E, (E(T18.7.£))
=E,(B(Ny +¢Ns + 7A)E(X))
= PNy + Ny +ad)E(X)

For the variance in this case we have:

var(Tip.¢) = E,(Var(Tlp.7.¢)) + Var, [E(T|8.7.¢))

H(Ng + No¢® + 372 )Var(X) + g2 E(X) (2 + 02 )} + Var, (B{Ng + N + 74 )E(X))

II

v

E,

n

2Ny + Npg? JVar(X)+ p 2 F(E(XY (2 + c&”) + A var(X))) + Var, ({(N, + Ny + yA)E(X))

1i

YNy + No¢?)Var(X) « (o +a? )8 (E(X) (4 + 2 )+,1.Var(x))+ﬁzfg(xfd

1

E(
E (£
s
B2(Ne + Ngg?)Var(X) + E, (7 * )5 ([E(X)(2 + c22) + 4 Var(X)) + g* 2 E(X)" Var, ()
B
BN+ Ngg? + (0 +a?)a)var(X) + ((d + a2} 2 + o) + FA)E(X)’)

n
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Now for a fixed gwe have:

E(718) = E,(E(TIA.0))
=E(B(Ng + N, +7A)E(X))
= B(Ng + Ny +aR)E(X)

The variance calculation also follows:

var(T]p) = E-(Var(Tl4.)) + Var{E(T]4.0))
E{ F((Ne + Nog? +(d + a*)2)Var(X) + (d + 82)( A + o) + Azd)E(x)’)) + Var,(A(Nq + N, +aA)E(X)
((Ne +N,E(¢?)+(d +a ) 1)var(X) + (0 +a?)(2 + e2?) + Pd)E(X)") +E(X) N2 5* Var,(¢)
(Ne + Na(z +72) +(d +a%)2) Var(X) + ((d + &* {2 + c2*) + 2A)E(X)") + 28 N2 E(X)’
(

(N + Na(z+72) + (d +@%)2) Var(X) + ((d + &7 {2 + 022} + 2% + ZNZ)E(X)*)

Thus, combining these resuits, we have:

E(T) = E,(E(T15))
= E,(B(Ng + N + aA)E(X))
=E,(BYNg + Ny +al)E(X)
=(Ng + Ny +ad)E(X)

Finally we have:
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Var(T (Var(T] )) + Var (E(T],B))

( ((Ng +No(z +12) +(d + a*)) Var(X) +((d +a? ) 4 + o) + 2o + zNg)E(X)z))
+Var,(B(N, + Ny +a}.)E(X))
=E, (82 Y(Na + No(z+ 1)+ (@ +@)2) Var(X) +((d + a*)(2 + c2) + P + 2N JE(X)')
+Var,(B)(Ng + Ny +a2) (XY’
= (b+(Ne + Ng(z + %)+ (d+ %)) Var(X) + ({0 + 872+ cA?) + 22 + N3 )E(X)')
+b(N + N, +aA) E(X)
=(b+ )Ny + Na(z +77) +(d +a%)2) Var(X)

{0+ W(d+a?)(A +cA)+ Ao+ 2N )+ B(Ng + N + a2)’ JE(x)’

Thus, in terms of estimates for case reserved claims without parameter uncertainty:

Var(T,[No uncertainty)
NR

var(T) = (b +1) (N + NB(z + rz) + (d + az),l)

E(Tz|No uncertainty) ’
NR

H{(b+Y(d+a°)(A+ca)+ Fd + ZNG) + b(Ng + N, +a;¢)’)[

Ne(z+r?)+(d+a)a
Ng

=(b+ 1)[1+

]Var(TR|No uncertainty)

R

(b+1(d A+ch)+ Ad + N2 : 2
J{ +(d+a’) N+2C )+ Ad + 2NG) b(ﬂrNBN;aA] ]E(TR[NO uncertainty)’
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