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Abstract

Stochastic scenario generators for assets and liabilities are critical components of a robust DFA
model. Vital to any stochastic scenario generation system is the selection of the underlying
parameters. The process of parameter estimation is second only to model structure in the quest
for generating reasonable results. If the model is simple, we can use standard statistical methods
such as maximum likelihood to estimate parameters. However, for very complex models, we
need to establish criteria for evaluation and find the parameters that are best with respect to those
criteria.

In this paper, we discuss a parameter estimation system called American Re-Insurance
Company’s Constraint Evaluator System. This system allows modelers to define a multitude of
targets and to assign a weight to each target to create a comprehensive objective function. Each
target represents a quality that the model should possess with an assigned level of significance
(weight). The targets are based on historical analysis or on some rational vision for future
relationships. We discuss the analysis involved in setting appropriate targets including the
monitoring of relationships between variables in a multi-period environment.

Our goal is to minimize the deviation between the user-defined targets and the model output.
This is a non-convex optimization problem, which we use a combination of techniques to solve.
Finally, we study the robustness of our parameter estimates as it refates to the number of
scenarios and the observed mode! outputs.
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1. Introduction

Stochastic scenario generators for assets and liabilities are important compenents of a robust DFA
system. These generators will forecast asset and liability distributions over time as part of the
development of income statement and balance sheet projections. These forecasts are developed
as a collection of individual scenarios. Cach scenario represents one possible future, and by
looking at many scenarios, distributions can be calculated at any point in time. Examples of such
systems can be found in Berger and Mulvey (1998), Dempster and Thorlacius (1998), Wilkie
(1986), and Mulvey and Thorlacius (1998).

In developing this scenario-based approach, modeliers try to understand fundamental econamic
and assct market structures, For example. when inflation is increasing, how will the stock and
bond markeis react? By understanding fundamental relationships, more realistic scenarios can be
generated. These relationships can be modeled with mathematical equations, thus grounding the
model in some amount of economic theory. The danger, however, i3 that the resulting scenarios
don’t exhibit characteristics seen in the market historically. For instance, we would not want a
maodel that produces scenarios with negative interest rates.

After the underlying economic relationships are determined and modeled. we control the scenario
output by the sclection of model parameters, called calibrating the model, or calibration. Model
parameters could include mean reversion level for interest rates, volatility for stock returns, and
expected inflation growth. For simple models, standard statistical methods such as maximum
likelihood estimation are appropriate. For complex models, we need to employ more
sophisticated methods to determine the best parameters.

The calibration method described in this paper allows the user to specify characteristics the
scenarios should have, referred 1o as targets. Each target represents a quality that the scenarios
should exhibit, such as a range of bond returns over time, and an accompanying level of
signiticance (weight). The targets can be based on historical analysis or some rational vision of
future relationships. We then utilize an optimization procedure to determine best parameter
settings Lo meet the targets,

This paper focuses on an economic scenario generator and the calibration process employed by
American Re-Insurance Company headquartered in Princeton, NJ. In the next section, we briefly
describe the entire DIFA system, of which the scenario generation is one important piece. Section
3 Tocuses on the economic modeling system, the different types of economic models, and
characteristics of a good model. In Section 4. we discuss how to set targets for the calibration
process. Section 5 presents an example of the calibration process, utilizing software developed
by Lattice Financial. Some final thoughts are in Section 6.

2. A Dynamic Financial Analysis System

American Re-Insurance Company’s Risk Management System (ARMS) is an integrated
compilation of models. The system is applied to determine internal capital allocation for the
Company. The system is also used to assist both Munich Re' and American Re-Insurance
Company clients in evaluating and setting up cfficient re-insurance structures. The structure of
the system is laid out in Figure 1.

' American Re-Insurance Company is a member of the Munich Re Group

L
L]



ARMS Structure

Tnput A Mode! Calibration & Optimization

Financial

Market Asset

Model

Economic

-—

Underwriting

[9POJA ssauisng

Liability

Liability &
S Re-

Insurance

todel

l (19po14; 1wouory
129012)) IKAD

Y10MOWEL] SUNUNoIIY

ystem (ARMS) is an integrated
compilation of models. Historical data from financial and economic markets, underwriting decision
processes, and insurance market trends are inputs to the system (left). Output includes balance sheet and
income statements, optimal investment mixes and reinsurance structures.

The Global Economic Model® generates plausible time series outcomes of future economies
based on user specifications and parameter settings. The user specifications are inputs reflecting
the current economic environment and expectations for long-term median trends. The parameter
settings are referred to as calibration parameters and those are set via the Constraint Evaluator
System.

Each of the economic time series scenarios are fed to the Asset Model as well as the Liability
and Re-insurance Model. These two models project different asset and liability classes along
each economic scenario. [t is important to recognize that the economic scenario generator lays
the foundation for the calibration of the liability and asset models. Although the liability losses
are based on fitted frequency and severity distributions (see Hogg & Klugman (1984), Panjer &
Willmot (1992)), our analysis of loss data shows dependency on inflation for many lines of
business. Therefore, inflation scenarios from the economic model define the trend in the
prospective severity distributions over time. Similarly, the prospective premium is trended with
inflation. Any discounting for future pricing purposes is based on output from the economic
model. We consider thousands of scenarios for many years in the future and thus develop
distributions for our underlying asset and liability returns in a multi-period environment.

‘The Business Model considers the underlying strategy of the business managers. It maodels the
decisions we make as the business moves forward through time. For example, how will the

? Global Economic Model (GEM) is under development. At the time of writing and for the foreseeable
future, the only country modeled is the United States.
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business grow if gross margins are reduced by 10% next year? This also includes any change in
asset allocation or in re-insurance structure.

The Accounting Framework refers not only to accounting but also to tax implications. There
are several advantages to separating this functionality. They include the facilitation of operating
in a multi-country (and therefor multi-regulatory) environment.

Wrapped around all this functionality is a non-convex optimization engine — the driving force
behind the Constraint Evaluator System. Since each of these models must be calibrated in one
form or another, access to a non-convex optimization system minimizes traditional trial and error
attempts to ensure the reasonability of results. Ideally, we want to back-test the models with
historical data and ensure optimal performance before we start modeling prospectively.

To better understand the calibration process, we will focus on calibrating the economic scenario
generator. A description of the generator in the context of previous modeling efforts is in the next
section.

3. Scenario Generator
3.1 What Makes A Good Scenario Generator?

Unfortunately, there are no agreed upon standards for scenario generation techniques. For some,
the model must be a series of mathematical equations that arc solved analytically (e.g., Black-
Scholes option pricing model). Others have a more empirical approach, preferring to forecast
future returns directly on current and past conditions (c.g., vector auto-regressive and kernel
regression approaches).

The Global Economic Model (GEM) scenario generator strikes a balance between the two.
Relationships among economic variables are modeled with explicit stochastic difference
equations and the equation parameters are based on historical data via the calibration process’.
The set of equations is too complex to have a closed form solution. Thus, Monte Carlo simulation
is utilized to generate a multitude of paths (scenarios).

American Re-insurance defined the following criteria for the GEM system:

2 Must be logically defensible - relationships among the economic variables must be consistent
with economic theory and be statistically defensible given historical data.

Q Must produce the proper relationships over time - movements in the economic variables must
be reasonable across long time horizons and across different time steps. That is, the statistical
propertics of the factors must be consistent whether the model is run monthly, quarterty, or
annually.

A good model must be able to capture risk both within and across time. This can be
accomplished with a multi-period model. As a counter-example, the traditional Markowitz model
is a one-period asset allocation model based on statistical observations of means, variances and
correlations and as such, the Markowitz model does not address risk over time. One of the key

* We could calibrate for pricing purposes, but in our experience this does not gencrate reasonable results for
future economies.
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statistics for risk over time is serial correlation (sometimes referred to as auto-correlation) which
is any time series correlation with itself lagged one (or more) time periods.

The Markowitz model also does not create a direct link between underlying economic variables
and the asset model. Thus, the Markowitz model cannot consistently create an asset liability
framework as there is no direct link between assets and liabilities. A more preferable approach is
to build an underlying economic framework and then evaluate both assets and liabilities based on
that framework. As an example, an increasing inflation environment will affect both equity
markets and certain insurance liabilities.

Many interest rate models do not build a term structure per sc, but rather build short-term rates
and short-term forward rates. The forward rates imply a term structure at a given point in the
future, and the term structure implied based on forward rates today can be viewed as the market’s
expectation of the future yield curve. However, this is not necessarily a good predictor or even
estimator of future yield curves.

Brennan and Schwartz (1979) propose using stochastic differential equations to price bonds.
They start with a model for short-term interest rates and long-term interest rates with some inter-
dependencies. Based on these two models, they apply Ito’s Lemma to derive the necessary
structure of the stochastic equations to create a no-arbitrage condition. This is a pricing
application.

While the approach we propose is similar in some regards, we do not solve algebraically to create
no-arbitrage stochastic equations. Rather, we monitor the modeled results for reasonability and
arbitrage opportunities. Clearly any model that creates persistent and significant arbitrage
opportunities must be questioned.

Though the yield curve today is a poor predictor of future rates, it is reasonable to assume that the
short-term rate will co-move to some extent with the long-term rate, as the long-term rate holds
information about the future expected values of the short-term rate. Brennan-Schwarz captures
this through a joint Gauss-Markov process and this reflects both the pure expectations hypothesis
and the liquidity premium hypothesis. GEM utilizes a similar methodology - though employing it
with forward rates rather than with yields or spot rates.

The Wilkic interest rate model breaks interest rates into two components, specifically a real
interest rate, which tends to be fairly stable, and inflation, which can be quite volatile at times.
Wilkie notes that equity dividend yields and inflation tend to be highly correlated. 1e views
inflation as driving interest rates rather than the opposite. Note, that Brennan-Schwartz does not
consider inflation or other indicators in a larger economic context.

Heath-Jarrow-Morton (Heath et al., 1990) has received much attention during the past few years.
The HIM model is a more recent extension of the arbitrage-free pricing model. HIM cleverly
extends the single factor (short interest rate only) to a multi-factor environment (two or threc) but
the complexity increases dramatically. In addition, just because the market expects a given term
structure in the future does not by any means suggest that this is at all a reasonable estimator of
the future. The market changes its expectations almost instantaneously and continuously. The
HIM model is based on forward rates from which spot rates and yields can be derived. There are
some advantages to basing a stochastic model (pricing or strategic) on forward rates. Namely, if
a reasonable forward rate curve is modeled, it is likely that spot rates and yields look reasonable
as well. The reverse is not true (Tilley, 1992).
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The GEM system incorporates ideas from all of the above. In addition, we have complemented
with our own analysis as shown in the pages that follow.

3.2 Types of Models

We distinguish between two types of asset modeling approaches. Pricing models are entirely
based on the notion that any risk-free profit (above the risk-free rate — this is known as arbitrage)
will be exploited in the market place until it no longer exists. The very nature of this action
eliminates the risk-free profit. Pricing models generally work in the risk-neutral world, which is
particularly useful for pricing liquid contingent options that can be replicated through other
vehicles that are also liguid (and can be shorted). But the risk-neutral approach falls short when
trying to determine reasonable returns for asset classes and interest rates in general over multiple
time horizons. Specifically, the inherent assumptions that all assct classes return the risk-free
rate' is not satisfactory for a risk management system where one at least should have the option 1o
specity different risk premia for different asset classes. There are also practical implications in
terms of "exploding" lattice models, which require a geometrically increasing number of branches
with increasing number of time periods.

Strategic models consider an almost infinite series of possibilitics. The more scenarios one
creates through the Monte Carlo simulation, the more possibilities one can explore. These
scenarios depict plausible paths for the future. Some paths have high equity returns, some have
low returns. Some have rising interest rates. Some have falling interest rates. On average, the
asset class returns retlect the risk-premiums associated with the economic environments under
which they are modeled. There is no reason that this should be the risk-free rate — just like in the
real world.

Pricing models give a pricing snap-shot at a point in time of certain contingent claims. Strategic
models provide a view over time that can be used to design strategies that manage risk and return.
The GEM system utilizes Monte Carlo simulations.

3.3 Global Economic Modcl

The Global Economic Model (GEM) is based on a series of stochastic difference equations, The
difference equations have an underlying structure as graphed below (Figure 2). We adopt this
structure as a way to capture the complex relationships that the rea! world offers.

The structure demonstrates how the model is developed within each time period. Although the
time increments in the model are flexible, the default is monthly. Each month the system
simulates values for each item in accordance with this structure.

We use stochastic differential equations to build our underlying tramework. The examples in
Figure 3 below show the most basic form of Brownian motion. The “dZ” is a Wiencr process,
which is generated from a standard normal distribution. *1,” represents the long interest rate (for
cxample, the one-period 30 year forward rate) and 1, is the long-term equilibrium for I, "™ and
“o;" are calibration parameters. They control the movement and overall volatility of the
stochastic process. g, is often referred to as the “mean reversion parameter”, while oy is the

* Arguably one could replace the risk-neutral probabilities with “real-world” probabilities to gencrate “real-
world” scenarios
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Figure 2. The economic framework underlying GEM. Each variable is modeled via stochastic difference
equations. Asterisks indicate variables that could have links to other countries.

volatility parameter. Note, that we are modeling the difference from one time period to the next.
This captures the basic notion that economic time series tend to exhibit significant serial
correlation over time, while any change in the series tend to be more independently distributed.
Similar observations apply to the short rate process shown below the Jong rate process.

Figure 3:

Long interest rates

dl =afll, -1 )t +1,0,d2,
Short interest rates

dr, = a,(rﬂ -, )d{ +ro,dZ,

We normally start the process with the economic environment today (for prospective
simulations). Specifically, we get | and the rest of the starting yield curve from publicly available
data. When calibrating the model (back-testing), however, we start the model in the economic
environment that matches the data starting point.

Generally, we will define a stable long-term economic environment that looks very much like the
current environment except for a change in the short interest rate to create a more normal looking
yield curve. The normal yield curve spread is assumed to be 150 basis point (bp), and short real
yiclds are assumed to be 200 bp. Based on this inforination, we develop our base line simulation
(“base™). We calibrate to fit our targets to the base.



Once the base has been fitted, we change the long-term median assumptions. Clients will often
want to explore the risk they are facing if the median environment differs from the one assumed.
What happens if interest rates are most likely to increase over the next ten years? What if they
are most likely to fall? We can explore all of these options separately or together, and we must
ensure that the model holds up to thesc stress tests and still generates acceptable resuits (Mulvey
and Madsen, 1999).

4. Setting Targets

Targets are properties we would like the generated scenarios to possess. The statistic is the actual
value calculated from the scenarios. To fix the idea, a target could be the average value (across
scenarios) for the annualized standard deviation of stock prices, such as 20%. The statistic would
be the calculated average standard deviation of stock prices from the generated scenarios, which
we would hope would be close to 20%. Our goal could be to have the statistic as closc as possible
to the target. Alternatively, we can specify a range of acceptable values and penalize statistics
outside the target range.

Some targets we specify are:

Arithmetic means

Compound means

Standard deviations

Skewness and kurtosis (though we generally place less weight on these)
Tails of non-normal distributions

Minimum and maximum observations

Corrclations

Serial correlations

Yield curve statistics

ocoopoQopDoOoocoD

David Becker of Lincoln National studied US interest rates (Becker, 1995). He used the period
1955 --1994 and made a number of interesting observations. Based on his observations, he
developed a number of “stylized facts” that an interest rate model should possess:

Rates are non-negative

Rates do not go to zero nor do they go low and stay low

Rates do not go to infinity nor do they go high and stay high

Rates neither increase nor decrease rapidly with significant frequency

Rates have the appearance of a random walk

Rates have the appearance of mean reversion, i.c. when rates fall they rebound to “normal”

levels, and similarly when rates rise

Rates tend to cluster in trading ranges, or narrow bands, before breaking out to a higher or

lower range

O  Periodic movements in rates are not independent, but arc correlated to a limited nunber of
prior period movements

0 Levels of serial correlation tend to decrease with maturity

Short term and long term rates are highly correlated, but not perfectly correlated

0 Generally, rates tend to rise and fall together. Thus, shifts in term structure arc largely

“parallel”

o Doooooo
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Higher absolute interest rate levels are associated with higher absolute interest rate volatility
Rate volatility declines with maturity

Yield curve inversions:

0 Frequency: Less than 16% absolute

o Infrequent and of limited duration

@ Occur during severe economic stress, peopolitical and/or policy volatility

Yicld spreads decrease with maturity, i.c. | year — 3 month spread > 3 year — 1 year spread
and so on

Correlation between increase in CPI and Treasuries declines as maturity increases

In general, as rates rise spreads narrow such that the yield curve flattens; and as rates fall,
spreads widen such that the yield curve steepens

We designed our model targets to capture these stylized facts as well as other calibration targets.

Cash tends to have a high serial correlation as does inflation, whereas stocks tend to have slightly
negative serial correlation. Even these general observations, however, change over time as is
illustrated by the example below.

Example of Target:

The correlation between long-term yields and inflation has ranged from -35% to 70%
(Figure 4).

10 Year Correlation Between LT Yields and Inflation

Figure 4. Historical correlation between long-term govemment bond yields and inflation.

How do we set a reasonable target based on this information? Our target becomes a
distribution with an expected value of 30%-40%. We still create some paths with
correlation of —40%, but they occur less frequently than paths with 30% correlation
between the two variables (Figure 5).

60



Anruial Corelation of nSation and 30 Yr T-Bond Yisid

*# Simulations

V-N% B0% -70% 0% -S0% 0% MON -X0% -10% 0% 10% 20% 0% 40% 50% 0% TON  80% 90% 100%
Cotralation
Figure 5. Simulated correlation between long-term government bond yields and inflation (distribution
looks “choppy” as only 100 simulations were run).

5. Calibration Methodology

Calibration targets can be monthly, annual or any other time period. A penalty is assigned for
each deviation from a target. The goal is to calibrate the model to minimize the assigned
penalties. AmRe’s Constraint Evaluator System is used in this process. The Constraint Evaluator
System utilizes a non-convex optimizer developed by Lattice Financial. See Berger et al. (1998)
for an algorithm overview and Berger (1999) for technical information.

Model parameters are set to initial values using linear multiple regression. We take historical
data, set up the difference equation, perform the regression, and utilize the results as the starting
point for the analysis.

Calibration Example #1:

Af, = A-A, +B-AY,+C-Au, + D-Jt - AZ'*

Here f represents the 3-month one-period forward rate, / represents inflation, ¥
represents the 30 year one-period forward rate, u represents the inflation adjusted mean
reversion process, and dZ is Wiener term and ¢ is time unit. A, B, C, and D are the
calibration parameters for this difference equation. A controls the effect inflation has on
the 3 month forward rate and B controls the relationship with the long end of the forward
rate curve. C controls the rate of reversion, while D reflects the volatility added to the
stochastic process.

Regressing this on monthly historical data from 1974 through 1998 (Figure 6), we get
{A, B, C} ={0.015, 1.3, -0.015}. All parameters have significant t-statistics with 90%

* The difference equation offered here is actually a two-part log-linear process.
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confidence, and the R? is 58%. D is added after reviewing the residual standard error,
which is 0.004. The ratio of the residual standard error to the mean is 0.06. Since this is a
log-finear process, D is 1.06.
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Figure 6. Lincar regression resufts (using historical data) of regressing the change in 3 month yield versus the
change in 30 year yield, change in monthly inflation rate, and real inflation-adjusted mean reversion

Now we need to incorporate the regressed results with our simulation goals and simulated
data. We have a number of criteria that we monitor with respect to the generated time
series. Is serial correlation high enough for shorter term yields? Are we generating a
reasonable number of recessions? Are recessions characterized by both inverted yield
curves and drops in real GDP? The list goes on to include basic statistics of the modeled
indicators.

We code our targets and perform the following optimization described below. Notice that
each time series depends on the calibration vector. Specifically, changing the values of
{A, B, C, D} will give us different time serics, as the difference equations change. We
use our regression as a starting point and we want the calibration vector that comes
closest to our targets. We run the following optimization:
Scenarioy T argens 2
Minimize Z z w, -(S!atistic,_, —Target, )

’

T A

In this case, the result is {0.75, 0.5, -0.04, 1.05}, and we utilize these new values to
generate the economic scenarios. The main vector changes were:

u  shift weight from the 30 year rate to inflation to increase the correlation between
inflation and the 3 month treasury bill



a increase the level of inflation-adjusted mean reversion to avoid “run-away” scenarios
(tails were overstated using regression scenarios)
0 decrease volatility slightly

If we had wanted to maintain a closer correspondence with the historical regression
parameters, we could have penalized deviations from our initial calculated values. In this

example, we were more concerned with matching our other calibration targets.

Calibration Example #2:

The optimization {(minimize penalties by changing the calibration parameter set — see
equation above) can be reviewed from other perspectives as well. We take a closer look
at inflation in the calibration. The starting vectors (except for monetary growth, which is
at the top of the structure — Figure 2) are all based on linear regressions using historical
data. In this particular case, we can see from the chart below (Figure 7) that the volatility
of inflation associated with our starting calibration parameters is understated compared
with the historical data.

Frequency of Monthly Inflation

a50% -

Frequency

-10% -05% 0.0% 2.5% 10% 15% 20%
Inflation

Figure 7. Distribution of monthly inflation levels in generated scenarios based on regression vector has a
higher mean and tighter range compared with historical observations from 1974 through 1998.

The differences between simulated and historical results are due to a number of factors.
There are sources of variation that are not represented in the regressed data. In addition,
estimating the error term from the regression in terms of difference equations is often
tricky. Further, statistics such as serial correlation is not monitored through regression,
and the relationship may not be perfectly linear. In the graph above, we note that the tails
based on historical inflation are much wider.

To address this discrepancy, we specify the volatility of inflation as a calibration target.
The historical volatility is 0.33% (3.2% annually) and the volatility from the simulated
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scenarios above is much less. We specify the historical volatility of 0.33% as a target for
the optimization. After optimizing, the resulting inflation levels are shown in Figure 8.
The distribution is now much closer to the historical observations. Note that we were
able to accomplish this by specifying only one parameter of the distribution (volatility).
If this still did not produce the desired results, or if we wish to match more closely, we
could specify quantiles on the distribution as targets.

Frequency of Monthly Inflation

Frequency

—+— Simulated
| 8- Actual

STO% -0 5% 0% a5% 10% 15% 20%
inflation

Figure 8. Distribution of monthly inflation levels in generated scenarios based on optimized vector now
matches historical observalions.

The optimizer helps us fit our model to the available data. Thus, we are able to maintain our
economic framework, which is consistently applied to our loss simulation and our asset
simulations. We are simultaneously capturing data we would otherwise only be able to capture
with more limited methodologies.

In practice, we work with up to 245 calibration parameters for the US model though
approximately 50 parameters capture the main process. Optimizing on all these at once has not
been practical. Rather, we work our way down the structure shown in Figure 2. We initially
calibrate the parameters associated with monetary growth and velocity. Then we calibrate
inflation and so on.

6. Conclusion

In this paper, we have discussed the scenario generation component of a dynamic financial
analysis system. The goal is to produce coherent and comprehensive scenarios for use in
modeling an insurance company’s financial position over time. American Re-Insurance’s GEM
system is an example of a generator grounded in economic theory, but one which produces
scenarios consistent with historical observations. The calibration process is the mechanism for
achieving this: Model parameters are chosen so that the generated scenarios have statistics
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consistent with user-specified targets. Lattice Financial’s optimization software automates the
process of determining the best model parameters to meet the desired targets.
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