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Abstract 

Stochastic scenario generators for assets and liabilities are critica1 components of a robust DFA 
model. Vital to any stochastic scenario generation system is the selection of the underlying 
parameters. The process of parameter estimation is second only to model structure in the quest 
for generating reasonable results. If the model is simple, we can use standard statistical methods 
such as maximum likelihood to estimate parameters. However, for very complex models, we 
need to establish criteria for evaluation and fmd the parameters that are best with respect to those 
criteria. 

In this paper, we discuss a parameter estimation system called Ameritan Re-lnsurance 
Company’s Constraint Evaluator System. This system allows modelers to define a multitude of 
targets and to assign a weight to each target to create a comprehensive objective function. Each 
target represents a quality that the model should possess with an assigned leve1 of significance 
(weight). The targets are based on historical analysis or on some rational vision for future 
relationships. We discuss the analysis involved in setting appropriate targets including the 
monitoring of relationships between variables in a multi-period environment. 

Our goal is to minimize the deviation between the user-defined targets and the model output. 
This is a non-convex optimization problem, which we use a combination of techniques to solve. 
Finally, we study the robustness of our parameter estimates as it relates to the number of 
scenarios and the obscrved model outputs. 
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1. Introduction 

Stochastic sccnario generators for asscts and liabilitics are imponnnt componcnts of n robuît DFA 
systen. These generators will forecnst asset and liability distributions over time as part of the 
drvrlopmcnt of incomr statemcnt and balance sheet proJections. Thrsr forccahts are dc\elupcd 
as a collectinn of individual scenarios. Each scenario rcprescnth onc possihlc futurr, and by 
looking at many scenarios. distributions can be calculated at any point in time. Esamplcs of such 
systcms can be found in Berger and Mulvey (19%). Dcmpster nnd I horlaciw (I998), Wilkic 
(1986). nnd Mulvcy and Thorlacius (1998). 

In developing this scenario-bascd approach. modclcrs try to undrrstand hmdamcntal economic 
2nd ass market structnrcs. For csample. when inflation is incrrwing. h(w will thc stock and 
bond markrls rcact? 13~ w~derstandinp fundamental relationshlps, morc rcalistic sccnarios can he 
generntcd. These rclationahips can hc modelcd with mathetnatical equations. thus yrounding thc 
modcl in somc amount of rconomic theory. The dangcr. hwcvcr, is that thc resulting scenarinî 
don’t cxhibit charactcri~tics seen in the markct historicnlly. For in\tance. wc brould not wnnt a 
modcl thnt pr”duccs sccnarios with ncgative intcrcst ratcs. 

After the undcrlqing economic relstionships are determmcd and modelcd. wc control (he cccnnrio 
output by thc sclcction of modcl parameters, called ~rr/rhw/r~~ fhc wo&l. or ~r/i/wo/io~. Model 
paramrrers could include mean reversion levcl for interest rates, volatility Iòr stock returns, and 
espcctcd intlntion yrowth. For simple models, standard statistical methods such as maximum 
likelihood cstimation are approprinte. For complex modck. we nccd to employ morc 
sophisticated methnds tn detrrminc the hect paramckrr. 

Thr cnlibration mcthod described in this papcr allows thc usar 10 bpecify characteristics thc 
scenarios should havc, referred lo as targets. Each target reprcscnts a quality that the scenarios 
should cshibit. such as a range of bond returns over time. and un accompanying level of 
si~nikance (\\eight! The tagcts can he based un historicnl nnalysir or some rational vision of 
l‘uturc relatlonships. We then utilix an optimiration prnccdure to dcterminc best paramctcr 
srttingb 10 meet thc tarpcts. 

This papcr focuses on un economic scenarin generator and the calibration process employcd by 
.American Re-lnsurancc Company hcadquartered in Princeton. NJ. In the ncst sectmn. we hriefly 
describe thr cntire DFA sybtcm. of which the sccnario generation is onc important piece. Yection 
.> lixx~scs on thc cconomic Imodcling s>stem, the different typcs of economic models, and 
characteristics of a good model. In Section 4, we discuss how to set targets for the calihration 
proccss. Section 5 presents an esamplc afthe calibration process, utilizing software developcd 
hy Lake FinanciaI. Some final thoughts are in Section 6. 

2. A Dynamic Financia1 Analvsis Svstem 

Amrrican Re-lnsurance Conrpany’s Risk Management Systcm (ARMS) is an integratcd 
compilation uf models. The system is applied to determine intcrnal capital allocation for the 
i‘ompany. The system is also used to assist both Munich Re’ and Ameritan Re-lnsurance 
Compa+ clients in evaluating and wtting up cfficient re-inburancc structwes. Thc structurr of 
the system is hud nut in Figure 1. 

’ Anvxican Re-lnsurance Company IS a member of the Munich Re Group 



ARMS Structure 

Figure 1. Ameritan Re-lnsurancc Company’s Risk Management System (ARMS) is an integrated 
compilation of models. Historical data from tinancial and economic markets. underwriting decision 

procerses, and insurance market trends are inputs to the system (left). Output includes balance sheet and 
income statements. optinral investment mires and reinsurance structures. 

The Global Economic Model’ generates plausible time series outcomes of future economies 
basrd on user specitications and parameter settings. The user specitications are inputs reflectirtg 
the current economic environment and expectations for long-term median trends. The parameter 
settings are referred to as calibration parameters and those are set via the Constraint Evaluator 
System. 

Each of the economic time series scenarios are fed to the Asset Model as well as the Liability 
snd Re-insurance Model. These two models project different asret and liability classes along 
each economic scenario. It is important to recognize that the economic scenario generator lays 
the foundation for the calibration of the liability and asset models. Although the liability tosses 
are based on fítted frequency and severity distributions (see Hogg & Klugman (1984). Panjer & 
Willmot (l992)), our analysis of loss data shows dependency on inflation for many lines of 
business. Thcrcfore, intlation scenarios from the economic model define the trend in the 
prospectivc severity distributions over time. Simitarty. the prospcctive premium is trended with 
inflation. Any discounting for future pricing purposes is based on output from the economic 
model. WC consider thousands of scenarios for many years in the future and thus develop 
distributions for our undcrlying asset and liabitity returns in a multi-period environment. 

The Busincss hlodel considers the underlying strategy of the business managers. It models the 
decisions we make as the business moves fonvard through time. por example, how witl the 

’ Global Economic Model (GEM) is under development. At the time of writing and for the foreseeahle 
future. the only country modelrd is the United States. 
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business grow if gross margins are reduced by 10% next year? This also includes any change in 
asset altocation or in re-insurance structure. 

The Accounting Framework refers not only ta accounting but also ta tax implications. There 
are severa1 advantages ta separating this functionality Thcy inctude the facilitation of opcrating 
in a multi-counby (and therefor multi-regulatory) environment. 

Wrapped around all this fimctionality is a non-convex optimization engine - the driving forte 
behind the Coostraint Evaluator System. Since each ofthese models must be calibrated in one 
form or another, access ta a non-convex optimization system minimizes traditional trial and error 
attempts ta ensure the reasonability of results. Idealty, we want ta back-test the models with 
historical data and ensure optima1 perfomtancc before we start modeting prospectively. 

Ta better understand the catibration process, we witl focus on calibrating the economic scenario 
generator. A description of tbe generator in the context of previous modeling efforts is in tbe next 
section. 

3. Scenario Generator 

3.1 What Makes A Good Scenario Generator? 

Unforhmatety, there are no agreed upan standards for scenario generation techniques. For some, 
the modet must be a series ofmathematical equations that am solved analytically (e.g.. Btack- 
Scholes option pricing model). Others have a more empirical approach. preferring ta forecast 
frtture returns directly on current and past conditions (cg., vector auto-regressivc and kerncl 
rcgression approaches). 

The Global Economic Model (GEM) scenario generator strikes a balance behveen the hvo. 
Retationships among economic variables are modeted with explicit stochastic difference 
equations and the equation parameters are based on historical data via the calibration process’. 
Thc set of equations is toa complex to llavea clascd form solution. Thus, Monte Carlo simulation 
is utitized to gencrate a multitude of paths (scenarios). 

Ameritan Re-insurance defined the following criteria for the GEM system: 

KI Must be logically defensible - relationships among the economic variables must bc consistcnt 
with economic theory and be statistically defensible given historical data 

o Must produce the proper relationships over time - movements in the economic variables must 
be reasonable across long time horizons and across different time steps. That is, the statistical 
properties ofthe factors must be consistent whether the modet is run monthly, quartcrty, or 
annualty. 

A good modet must be able ta capture risk both within and across time. This can be 
accomplished with a mutti-period modet. As a counter-exampte, the traditional Markowitz model 
is a one-period asset attocation model based on statistical observations of means, variances and 
correlations and as such. the Markowitz model does not address risk over time. One of the key 

’ We could calibrate for pricing pumoscs, but in our experience this does not gcncrate reasonable results for 
lüuture economies. 
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statistics for risk over time is serial correlation (sometimes referred to as auto-correlation) which 
is any time series correlation with itself lagged ene (or more) time periods. 

The Markowitz model also does not create a direct link behveen underlying economic variables 
and the asset model. Thus, the Markowitz model cannot consistently create an asset liability 
framework as there is no direct link behveen assets and liabilities. A more preferable approach is 
to build atr underlying economic framework and then evaluate both assets and liabilities based on 
that framework. As an example, an increasing inflation environment will affect both equity 
markets and certain insurance liabilities. 

Many interest rate models do not build a term structure per SC, but rather build short-term rates 
and short-trrm forward rates. The forward rates imply a tcrm structure ata given point in the 
future, and the term structure implied based on forward rates today can be viewed as the market’s 
expectation of the future yield curve. However, this is not necessarily a good predictor or even 
estimator of future yield curves. 

Brennan and Schwartz (1979) propose using stochastic differential equations to price bonds. 
Thcy start with a model for short-term interest rates and long-term interest rates with some inter- 
dependencies. Based OII these two models. they apply Ito’s Lemma to derive the necessary 
structure ofthe stochastic equations to create a no-arbitrage condition. This is a pricing 
application. 

While the approach vve proposc is similar in some regards, we do not solve algebraically to create 
no-arbitrage stochastic equations. Rather. we monitor thc modeled results for reasonability and 
arbitrage opportunitirs. C‘learly arry model that crcates persistetu arrd sigrriticant arbitrage 
opportunitirs must be questioned. 

Though the yield curve today is a peor prcdictor of future rates, it is reasonahle to assume that the 
short-term rate will co-move to some extent with the long-term ratc, as the long-term rate holds 
informatiotr ahout the future expected values of the short-term ratc. Brennan-Schwarz captures 
this through a joint Gauss-Markov process and this retlects both the pure expectations hypothesis 
and the liquidity prcmium hypothesis. GEM utilizes a similar mcthodology - though employing it 
with forwnrd rates rather than with yields or spot rates. 

Thr Wilkic interest rate model breaks intcrcst rates into two components, sprcitically a real 
interest rate, which tends to be fairly stable, and inflation. which can be quite volatile al times. 
Wilkic notes that equity dividend yields and inflation tend to he highly corrclated. lle virws 
inflation as driving interest rates rather than the opposite. Note, that Brennan-Schwartz does not 
consider inflation or other indicators in a largar economic context. 

Heath-Jarro\r,-Morton (Heath et al., 1990) has received much attention during the past few years. 
Thc HJM model is a more recent extension of the arbitrage-free pricing model. HJM cleverly 
estends thc sinule factor (short interest rate only) to a multi-factor environment (two or thrcc) hut 
the con,plcsity‘i~~creases dramatically. In addition, just because thc market espects a giverr term 
structure irr the future does not hy any means suggest that this is at all a reasonable estrmator of 
the future. Thc markrt changes its expectations ahnost instantaneously and continuously. The 
HJM modcl is bascd on forward rates from which spot rates and yields can be derived. There are 
some advantages to hasing a stochastic model (pricing or strategic) on forward rates. Namely, if 
a reasonable forward ratc curve is modeled. it is likely that spot ratcs and yields look reasonable 
as well. The reverse is not true (Tilley, 1992). 
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The GEM system incorporates ideas from all of the ahove. In addition. we have complemented 
with our own analysis as shown in the pages that follow. 

3.2 Types of Models 

WC distinguish heh\ccn two types of assct modcling approaches. Pricing models are entirely 
bascd on thc notion that any rrsk-frcc profit (above the risk-liee rntc - this is known as arbitrage) 
will bc exploitcd in the markct place until it no louger exists. The very nature of this action 
eliminatcs the risk-free protit. Pricing models generally work in thc risk-neutral world. which is 
pnrtv.xlarly useful for pricing liquid contiugcnt options that cau be replicatcd through other 
vchiclcs that are alco liquid (and can be shorted). Hut ihe rish-neutral approach falls short whcn 
trying to dctcrminc reasonahle returns for asset classes nnd intcrcst rates in gcncral ovcr multiple 
time horizons. Specitically, the inhcrcut assumptions that all assct classes return the risk-free 
rate’ is not satisfactory for a risk management systcm whcrc onc al Icast should have the option to 
spccify diffcrent rish premia for different asset classes. ‘There are also practica1 implications in 
termn 01’“rsploding” lattice models, which require a geometrically increasing numbcr ofhranches 
v,ith incrcasing number of time pcrinds. 

Stratcgic models cousider an almost infirme series of possibilitics. The more scenarios oue 
creates through the Monte Carlo simulation. the more possibilities ene can explore. Thcse 
sccnarios dcpict plausible paths for the future. Somc paths have high cquity returns, somc have 
Icnv rcturns. Somc havc risiug interest rates. Some havc falling intcrest rates. On average. the 
asset class rcturns rctlect the risk-premiums associatcd wuh 111~ economic environments undcr 
which thcy are modclcd. There is no reason that this should bc thc risk-free ratc - just libe in thc 
real world 

I’riciug models give a pricing snap-shot at a point in time ofcertain contingeut claims. Strategic 
modrlr provide a vicw over time that can hc usad to dcsign strategies that manage risk and return. 
Thc GEM system utilizes Monte Carlo simulations. 

3.3 (iloba Economic Modcl 

The Global Economic Model (GEM) is based on a series of stochastic differcucc equations. Thc 
diffcrcncc equatwus havc an underlying structure as graphed bclo\! (IYigurc 2). We adopt this 
structure as a way to capture the complex relationships that the real waorld offers. 

l‘he structurc demonstrates how me model is developed within ench time period. Although thc 
time iucrements in the model are flexible, the default is monthly. Each month the system 
simulates values for ench itcm in accordance witb this structurc. 

We use stochastic differential equations to build our undcrlying tiamcwork. The esamplcs iu 
Figure 3 below show the most basic form of Brownian motion. The “dZ” is a Wiener process. 
which is generared from a standard normal distribution. “l,.’ rcpreseuts the long interest ratc (for 

examplc. thc ene-period 30 year forward ratc) and “I,, ” is thc long-tc:‘m cquilihrium for 1,. “al” aud 
“o,” are calibration parameters. They control the movement and overall volatility ofthe 

stochastic process. a, is often rcferred to as the “mean rcversion parameter”. whilc o, is thc 
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Figure ?. Thc economic Framework underlying GEM. Each variable is modeled via srochastic difference 
equatlons Asterisks indicate variables that could have tinks 10 other countries. 

volatilitg parameter. Note, that we are modeling the difference from one time period to the next. 
This captures the basic notion that economic time series tend to exhibit significant serial 
correlntion over time, while any change in the series tend to be more independently distributed. 
Similar observations apply to the short rafe process shown below the long rate process. 

Figure 3: 

Long interest rates 

tiI, = Ll, (Ir - 1, )df + l,a,dZ, 

Shon interest rales 

dr; = a,(ry -r, )df + r,o,dZ, 

We normatly staTt the procrss with the economic environment today (for prospectivc 
simulations). Specitically, we get lo and the rest of the starting yield curve from publicly available 
data. When calibrating the model jback-testing). however. \+e start the model in theeconomic 
enviromnent that matches the data starting point. 

Gcnerally, we sill define a stable long-tenn economic environment that looks very much like the 
current environment escept for a change in the short interest rate to create a more normal looking 
yield curve. The normal yield curve spread is assumed to be 150 basis point (bp), and short real 
yiclds are assumed to be 200 bp. Based on this information. rve develop our base line simulation 
(“base”). We calibrate to tit our targets to the base. 
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Once the base has been fitted, we change the long-term median assumptions. Clients will often 
want to explore the risk they are facing if the median environment differs from the one assumed. 
What happens if interest rates are most likely to increase ovcr the next ten years? What if they 
are most likely to fall? We can explore all of these options separately or together, and we must 
ensure that the model holds up to thesc stress tests and still generates acceptable results (Mulvey 
and Madsen. 1999). 

4. Settiw Tarpets 

Targets are properties we would like the generated scenarios to possess. The statistic is the actual 
value calculated from the scenarios. To fix the idea, a target could be the average value (across 
scenarios) for the annualized standard deviation of stock prices, such as 20%. The statistic would 
be the calculated average standard deviation of stock prices from the generated scenarios. which 
H’C would hope would be close to 20%. Our goal could be to have the statistic as closc as possible 
to the target. Alternatively, we can specify a range of acceptable values and penalize statistics 
outside the target range. 

Sotne targets we specify are: 

q Arithmetic means 
o Compound means 
o Standard deviations 
o Skewness and kurtosis (though we generally place less weight on these) 
q Tails of non-normal distributions 
LI Minimum and maximum observations 
0 Corrclations 
0 Serial correlations 
o Yield curve statistics 

David Recker of Lincoln National studied US interest rates (Recker, 1995). He uscd the period 
1955 --I 994 and made a number of interesting obscrvations. Bascd on his observations, hc 
developed a number of “stylized facts” that an interest rate model should posscss: 

0 

0 

Cl 

0 

0 

0 

0 

3 

0 

0 

0 

Rates are non-negative 
Rates do not go to zero nor do they go low and stay lo\\ 
Rates do not go to infinity nor do they go high and stay high 
Ratcs ncither increase nor decrease rapidly with signilicant frequency 
Rates have the appearance of a random walk 
Rates have the appearance of mean reversion, ix. whcn ratcs fall they rebound to “normal” 
Icvcls, and similarly when rates rise 
Rates tend to cluster in trading ranges, or narrow bands, before breaking out to a highcr or 
lower range 
Pcriodic movements in rates are not independent, but are correlated to a limited numher of 
prior period movements 
Lcvels of serial correlation tend to decrease with maturity 
Short term and long term rates are highly correlated, but not perfectly correla~ed 
Generally, rates tend to rise and fall together. Thus. shifts in term structure are largcly 
“parallel” 
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O Hipher absolute interest rate levels are associated with higher ahsolute interest rate volatility 
o Rate volatility declines with maturity 
O Y ield curve inversions: 

o Frequency: Less than 16% absolute 
o Infrequent and of limited duration 
o Occur during severe economic stress, geopolitical and/or policy volatility 

o Yicld spreads decrease with maturity, i.c. 1 year - 3 month spread > 3 year - 1 year spread 
nnd so on 

o Correlation hetween increase in CPI and Treasuries declines as maturity increases 
o In general. as rates rise spreads narrow such that the yield curve flattens; and as rates fall, 

spreads widen such that the yield curve steepens 

We designed our model targets IO capture these stylized facts as wcll as othcr calibration targets. 

Cash tends to have a high serial correlation as does inflation. whereas stocks tcnd to have slightly 
negative serial correlation. Even these general observations. however, change over time as is 
illustrated by the example below. 

Example of Target: 

Thc corrrlation between long-term yiclds and intlation has ranged from -35% to 70% 
(Figure 4). 

10 Year Correlation Belween LT Yields and Inflation 

-- 

Figure 4. Historicnl correlation hehveen long-term govemmenr bond yields and inflation. 

How do we set a reasonable target basad on this information? Our target becomes a 
distribution with an ekpected value of 30%.40%. We still create some paths with 
correlation of -40%. but they occur less frequently than paths with 30% correlation 
hetween the two variables (Figure 5). 
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Figure 5. Slmulated correlalion between long-term govemment bond yields and inflation (distribution 
looks “choppy” as only 100 simulations were tun). 

5. Calibration Methodolom 

Calibration targets can be rnonthly. annual or any other time period. A penalty is assigned for 
each deviation from a target. The goal is to calihrate the model to minimizz the assigned 
penalties. AmRe’s Constraint Evaluator System is used in this process. The Constraint Evaluator 
System utilizes a non-convex optimizer developed hy Lattice Financia]. See Berger et al. (1998) 
for an algorithm overview and Berger (1999) for technical information. 

Model parameters are set to initial values using linear multiple regression. We take historicai 
data, set up the difference equation, perform the regression, and utilize the results as the starting 
point for the analysis. 

Calihration Examole #l: 

/lf, =A.hl, +B.AY, +C.Au, +D,,h.AZz” 

Hcref represents the 3-month ene-period forward rate, I represents inflation, Y 
represents the 30 year one-period fonvard rate, u represents the inflation adjusted mean 
reversion process. and dZ is Wiener term and I is time unit. A, B, C, and D are the 
calibration parameters for this difference equation. A controls the effect inflation has on 
the 3 month forward rate and B controls the relationship with the long end of the forward 
rate curve. C controls the rate of reversion. while D reflects the volatility added to the 
stochastic process. 

Regressing this on monthly historieal data from 1974 through 1998 (Figure 6), we get 
(A, B, C) = (0.015, 1.3, -O.OlS}. All parameters have significant t-statistics with 90% 

’ The difference equation offered here is actually a two-pti log-linear process 
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contidence, and the R’ is 58%. D is added after reviewing the residual standard error, 
which is 0.004. The ratio of the residual standard error to the mean is 0.06. Since this is a 
log-linear process, D is 1.06. 

Now wc need to incorporate the regressed results with our simulation goals and simulated 
data. We have a number of criteria that we monitor with respect to the generated time 
series. Is serial correlation high enough for shorter term yields? Are we generating a 
reasonahle number of recessions? Are recessions characterized hy hoth inverted yield 
curves and drops in real GDP? The list goes on to include basic statistics of the modeled 
indicators. 

Wr code our targets and perfonn the following optimization descrihed below. Notice that 
each time series depends on the calibration vector. Specitically, changing the values of 
(A, B, C. D) will give us different time series, as the difference equations change. We 
use our regression as a starting point and we want the calibration vector that comes 
closest to our targets. We run the following optimization: 

In this case, the result is {0.75,0.5, -0.04, I .OS), and we utilize these new values to 
generate the economic scenarios. The main vector changes were: 

u shift wcight from the 30 year rate to inflation to increase the correlation between 
inflation and the 3 month treasury bill 
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o increase the level of intlation-adjusted mean reversion to avoid “tun-away” scenarios 
(tails were overstated using regression scenarios) 

o decrease volatility slightly 

If we had wanted to maintain a closer correspondence with the historical regression 
parameters, we could have penalized deviations from our initial calculated values. In this 
esample. we were more concemed with matching our other calibration targets. 

Calibration Examole #2: 

The optimization (minimize penalties by changing the calibration parameter set - see 
equation above) can be reviewed from other perspectives as well. We take a closer look 
at inflation in the calibration. The starting vectors (cxcept for monetary growth. which is 
at the top of the structure - Figure 2) are all based on linear regressions using historical 
data. In this particular case, we can see from the chti below (Figure 7) that the volatility 
of inflation associated with our staning catibratiou parameters is understatcd compared 
with the historicat data. 

The differences between simulated and historical results are dueto a nnmber of factors. 
There are sources of variation that are not represented in the regressed data. In addition, 
estimating the error term from the regression in terms of difference equations is oftcn 
tricky. Further, statistics such as serial correlation is not monitored through regression, 
and the relationship may not be perfectly linear. In the graph above, we note that the tails 
based on historical inflation are much wider. 

To address this discrepancy, we specify the volatility of inflation as a calibration target 
The historical volatility is 0.33% (3.2% annually) and the volatility from the simulated 
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scenarios above is much less. We speci@ the historical volatility of 0.33% as a target for 
the optimization. Afier optimizing, the resulting inflation levels are shown in Figure 8. 
The distribution is now much closer to the historical observations. Note that we were 
able to accomplish this by spccifying only one parameter of the distribution (volatility). 
If this still did not produce the desired results, or if we wish to match more closely, we 
could specify quantiles on the distribution as targets. 

The optimizer helps us tit our model to the available data. Thus, we are able to maintain our 
economic framework, which is consistently applied to our loss simulation and our asset 
simulations. We are simultaneously capturing data we would otherwise only be able to capture 
with more limited methodologics. 

In practice. we work with up fo 245 calibration parameters for the US model though 
approximately 50 parameters capture the main process. Optimizing on all these at once has not 
been practical. Rather, we work our way down the structure shown in Figure 2. We initially 
calibrate the parameters associated with monetary grotith and velocity Then we calibrate 
inflation and so on. 

6. Conclusion 

In this paper, we have discussed the scenario generation component of a dynamic linancial 
analysis s)xtem. The goal is to produce coherent and comprehensive scenarios for use in 
modeling an insurance company’s financia1 position over time. Ameritan Re-lnsurance’s GEM 
system is an esample of a generator grounded in economic theory, but one which produces 
scenarios consistent with historical observations. The calibration process is the mechanism for 
achieving rhis: Model parameters are chosen so that the generated scenarios have statistics 
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consistent with user-specified targets. Lattice Financial’s optimization software automates the 
process of determining the best model parameters to meet the desired targets. 
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