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The Balancing of Ratemaking Assumptions and
Annual Financial Planning Assumptions

by Scott Anderson, FCAS



"THE BALANCING OF RATEMAKING ASSUMPTIONS AND ANNUAL
FINANCIAL PLANNING ASSUMPTIONS."

Submitted by Scott Anderson. FCAS
with Prologue by Martha Winslow. FCAS

Abstract

When an elaborate operational and financial plan is prepared for the following
vear. including assumptions regarding prospective rate changes. goals are made
with regard to premium levels and profitability. [f certain assumptions such as
catastrophe loads. loss trends and the cffects of variability arc not explicitly linked
to the assumptions used for ratemaking on the product and state level, a built-in
bias may be created for cither rate inadequacy or rate redundancy that does not
deliver the results as shown in a financial plan for a business segment. The goal of
this paper is 1o show some of the pitfalls and provide basic idcas for balancing the
ongoing ratemaking eftfort to the annual financial plan. This is particularly
important in the current environment of changing catastrophe expectations and the

increasing involvement of actuaries in financial planning.



Prologue

The premise of this paper is that for a given segment of business the assumptions
that underlie the ratemaking calculations should be reconciled with the
assumptions underlying the financial projections that arc a part of the annual
operational plan. As actuaries get more and more involved in the running of the
business they need to become more than just purveyors of actuarial technigue.
They need to think like business people and understand the implications of their

various work products and how they tie together.

A company's annual operational plan will consist of objectives fo;' the year,
initiatives designed to help the company achieve those objectives and a translation
of all that into premium, loss and expense projections for the upcoming year. It is
highly likely that the company actuary will be asked to do this translation. The
work will consist of taking current experience and projecting it forward making
various assumptions about rate and value changes, loss trend, cost of the operation,
etc. Reflected in those assumptions will be the expected effect of the various

initiatives on the specific actuarial assumptions.



At another time of the year the company actuary will be asked to calculate the
indicated rate need for the business. Again, the actuary will use actuarial
assumptions to project historical experience into the future. In this exercise the
goal is to determine the rate level needed to attain the profit levels required by the
company. Business executives will use these indications to make decisions about

what rates to file for the product in the states that it is oftered.

Using the loss trend as an example, how might the loss trend used to develop the
operational plan and the loss trend used to develop the rate indications compare?
Presumably since the two work products are done at ditferent times in the vear,
would not the actuary want to reflect the very most recent information available
for each? Would the actuary reflect all the same estimated ctfects of the planned
initiatives in the rate indication even before there was enough experience to
determine whether the action had the intended effect? How should the loss trend
be handled if ratemaking is done at a finer level of detail than the financial plan?
These and other questions would all have to be answered situationally by the
actuary doing the work. The point here is not that the assumptions used in the
financial plan and ratemaking need to be identical. but that the actuary necds to

understand why the assumptions are either the same or different.



The operational plan and its attendant financial objectives are intended to be met
each year. In order to make that happen business exccutives need to make
decisions consistent with that plan. When the actuary promulgates an indicted rate
need, the company executives need to understand how that rate indication relates
back to the operational plan. It is with that understanding that they will be able to
meet their financial goals. The actuary needs to understand this link. S/he can
play a vital role in meeting the company's objectives by providing the analysis that

allows the operational plan to be reconciled with the rate indications.

The key assumptions that need to be reconciled include the expected level of

profitability, the Joss trend, the load for catastrophes, any large losses that are

smoothed, and expenses. These are all assumptions that will either change from
one work product to another cither because of the time period used or the

analytical technique used.

‘The paper that follows walks through the specifics of how this reconciliation can
be done for these key assumptions. Being cognizant of the need for the
reconciliation is one thing and executing it is another. This paper addresses the

cxecution of the premise described in this prologue.




"THE BALANCING OF RATEMAKING ASSUMPTIONS AND ANNUAL
FINANCIAL PLANNING ASSUMPTIONS.”

When an elaborate operational and financial plan is prepared for the following
year, including assumptions regarding prospective rate changes. goals are made
with regard to premium levels and profitability. If certain assumptions such as
catastrophe loads, loss trends and the eftfects of variability are not explicitly linked
to the assumptions used for ratemaking on the product and state level. a built-in
bias may be created for either rate inadequacy or rate redundancy that does not
deliver the results as shown in a financial plan for a business segment. My goal is
to show some of the pitfalls and provide basic ideas for balancing the ongoing
ratemaking effort to the annual financial plan. This is particularly important in the
current environment of changing catastrophe expectations and the increasing
involvement of actuaries in financial planning. The following is an actual project,

some of the details have been changed to protect confidentiality.

Introduction

This paper is based around a generic model for calculating a rate indication. The

mode! selected uses the loss ratio method and is fairly standard among mid-sized



personal insurance carriers. All segments of the book are analyzed at the
state/product/coverage level and certain elements are aggregated to similar levels
as the financial plan. If done at the appropriate time of year, this allows for
comparison to the annual financial plan as opposed to the typical state by state
analysis done throughout the year. Excluded from this discussion are any specific
comments regarding the calculation of the permissible loss ratio and any other
issues not related to the development of expected losses and their effects. [ will
discuss some of the specific elements that we found to be at issue. Many elements
such as Loss Development are not discussed but are assumed to be in agreement
with financial planning assumptions. The specific elements would vary based on
the type of products and the size of book that is analyzed. The products we are
looking at are all considered personal lines therefore we can immediately exclude
such issues as retro premiums and any analysis of actual premiums versus manual
premium. Any issues concerning actual versus projected premiums are considered
exposure equivalents and should not have an effect on the projected loss level,
although premium plans do have an effect on expenses and profit projections. We
are looking at as many as one million policies in a medium sized book, so the view
that we are taking is high level and only as detailed as state/product/coverage

group.



Following are the specific elements discussed in this paper: Selected Trends,
Complement of Credibility, Catastrophe Loading and/or Excess Wind and Water
Loads, Large Loss Loading and Indicated Rate Need. These elements are
aggregated to match the same level of detail as used in the financial planning

process to allow for comparison.

Selected Trends

The information includes: industry trends by coverage for state and countrywide.
internal company trends by coverage and program for state and countrywide,

selected trends by state and program.

The programs include: non-standard auto, standard auto, preferred auto. standard
homeowners, preferred homeowners, packaged policies with all personal lines

coverages offered.

All of the indications were trended to a common new business eftective date, this

allows the mathematics to be straight forward when comparing to a financial plan



on an annual basis. Additional trend will accrue on changes taken at later dates,

this can be easily adjusted on a state by state basis.

TABLE 1

S Preferred _Standard ~ Industry

Coverage  Observed  Selected Observed Selected  Trends
BI 2.8% 2.3% 2.5% 23% -1.9%
PD 8.0% 7.5% 8.5% 8.2% 7.5%
MED 3.2% 2.3% 2.9% 23% see Bl
UM 3.1% 2.3% 3.3% 2.3% see BI
PIP 3.5% 2.3% 3.8% 2.3% 3.2%
LIABILITY 4.1% 3.3% 4.0% 3.5% 1.6%
COMP 5.0% 4.9% 4.8% 4.6% 4.1%
COLL 7.7% 7.5% 7.8% 7.4% 7.5%
PHY DAM 6.7% 6.5% 6.7% 6.4% 7.5%
TOTAL 4.8% 4.2% 4.7% 4.3% 3.2%

The SELECTED above in Tablc | is the weighted totals of the selected trends used
in the calculation of the indications in each program. state and coverage. The
OBSERVED above is the observed countrywide trend determined on an aggregate
countrywide basis with the effects of large losses and catastrophes removed. The
observed trend on aggregate data is often not the weighted average of trends that

are determined at a more homogenous level.

A significant difference may exist between the indicated rate need as projected

versus the financial "plan”. The financial plan includes anticipated changes in



claims and undenvriting processes. these changes are only included in the historic
trend as those effects become part of the experience. For that reason, additional
analysis is needed to adjust for planned and expected future changes to the loss
trend. In order to explicitly separate these discretionary internal forces from the
projection of profitability we calculated the indications such that the “pure”
indication does not include anticipated internal eftects. An adjustment is then
needed that allows for these anticipated effects to be explicitly demonstrated to
management. The prospective rate change decision can then be made intelligently

as part of the entire product management process.

There is a significant level of uncertainty in calculating the effect of underwriting
and claim actions. The nceded effect is more often known. while the actions are
created to meet those needed effects. Action plans usually include a significant
amount of negotiation. management accountabilities should be set targeting the
desired effects. The difference between projection and optimistic planning needs
to be understood and facts need to be separated from wishful thinking during the

estimation process.

To explicitly determine the adjustment to the indication for a prospective change in

the trend. a minor modification to the model that allows for the selection of

10



separate historic and prospective trends was made. Sensitivity testing with time
periods held constant, varying levels of loss and varying selected historic trends
indicated that there is a very robust relationship between the change in the
indication and the difference between the two selected trends. Given our specific
policy terms and implementation lags. we found this relationshiptobe a 1 t0 1.6

ratio. The following is an example using humbers:

The selected historic trend is 4%.
The resulting indication is +3%.

The selected prospective trend is +5.5%

The resulting change in the indication is: (5.5% - 4.0%) * 1.6 = +2.4%

The indication adjusted for this differing planned prospective trend is now 5.4%,

3% + 2.4%, due to the expectation of a higher trend in the future versus the

empirical trend. These adjustments can be used to account for expected changes in

the book of business, claims handling practices or industry aggregate information.

[t should be noted that the ratio stated above, 1 to 1.6, is dependent on the

permissible loss ratio and issues regarding fixed expense versus variable expense

1



as well as time lags and policy terms. The ratio for a particular product should be

determined as explained above with varying inputs.

We found that the weighted averages of the selected trends were significantly
lower than the aggregate trends. The aggregate trends were more stable. and were
considered more applicable from a financial planning viewpoint. This indicated
that our bias was toward assuming that there has been and would be an overall
trend in the future that was less than actually projected. This is often due to a bias
in the selection of a trend based on many different sources but rarely ever selecting
from the high end of the range. It must be decided if the average of the selected
trends is appropriate given our actual experience and the plan for the following

years. Ifa difference is appropriate. documentation should support the reasons.

Complement of Credibility

Credibility weighted indications are used when, due to the amount of variability.
the data analyzed will not give a significant answer. A credibility weighted

indication will be an answer that falls between the actual indication and a



complement of credibility. How close this Iinal answer is (o the initial indication

depends on the volume and variability of data used in the analysis,

A common practice of using the annual trend as the complement of credibility
assumes that rates are currently adequate. This assumes that the current rate,
increased by trend. would be a reasonable default it credibility was lound o be

zero. This may be taulty and is biased if rates were not adequatc.

In our previous methodology, the selected annual trend was used for the
complement of credibility. If the total indication is greater than the selected
trends, the following holds truc.

(Total before Credibility > Total after Credibility > Total of Trends)

Adjusting ftor this bias caused issues when discussing with non-actuaries. Many
states with small business volume and low levels ot actual loss activity received

significant swings due to this change.

This entire book ol products analyzed over five years is considered well above the

standard of credibility. Thercefore. the total indication after credibility standards
arc applied should not be less than the total indication before credibility standards

are applied. (Total before Credibility = Total after Credibility)



For this reason. the complement of credibility selected is the countrywide
indication for that program and coverage. If the countrywide indication is still not
considered credible. the total across all programs for that coverage is used. 1f that
total 1s still not considered credible. the total of all coverages is used. In any case.
a credibility complement is available that allows the total indication for the book

of products to remain the same.

This choice of the complement of credibility was not used in the past due to the
lack of availability of the countrywide totals with consistent loss periods and
effective dates. We believe this new choice removes the bias inherent in other

choices of the credibility complement.

Catastrophe loading and/or Excess Wind and Water Loads

The following detail is offered to explain the difference in indications and the
financial plan that is due to the varied methods of smoothing and handling weather
related losses. An cxplicit number should be developed that compares the net

difference of using the two different loading procedures.

14



TABLE 2

Process .. _LossesSelected =~ Dewil
Financial Plan Excess Wind and Water State Specific
Rate Indications Defined by Catastrophe # Countrywide

Our indication model uses the ISO Excess Wind and Water methodology. Our
financial plan separates losses using the presence or absence of a Catastrophe
number on the claim record. We had decided that due to the changing dollar
threshold on the assignment of a Catastrophe number, we would plan catastrophe
along with certain weather related causes of loss. While these two methodologies
are not in perfect synchronization, we can attempt to balance the two and
determine if the two different smoothing methodologies are both setting equivalent

smoothed Joads.

The financial plan for catastrophe and weather related losses is determined on a
countrywide basis. This high level of detail created issues when reviewing a state
with a higher probability of this type of loss. In the current indication analysis. the
18O Excess Wind and Water Loads by state are used. This differentiates between
the different loss potential in the different states and product lines. The ISO loads

used are as published in the appropriate Circular.

15



The etfect of smoothing will either have a net effect of removing loss dollars from
the analysis or adding loss dollars to the analysis. To define the differences
between the two methodologies. the net effects of cach of the two smoothing
methods were calculated. Loss dollars used for this calculation are undeveloped
losses valued at 12,31/96. The calculation was done separatcly for coverages and

products.

The catastrophe loading. or smoothing. should not significantly change the level of

loss on a sizable book of business when looked at in total over time. Any bias

should be understood and adjusted.

Large Loss Loading

The large loss loading. or smoothing. should not significantly change the level of
loss on a sizable book of business when looked at in total. Given the size of our
book, we wanted to determine if the large foss load actually balanced with the total
of our large losses for the previous years. Then we needed 10 determine if this
level of loss is what would be expected in the coming years that are shown in the

financial plan.



The Large Loss Loads in the past were calculated countrywide. This high level of
detail created issues when reviewing a state with a possibility of large loss less
than countrywide. In the current analysis, regional loads are determined separately
for each program. This analysis differentiates between the different large loss

potential in the different regions of the country and product lines.

TABLE 3

Region Standard  Preferred  Package
Great Lakes 107 109 1.18
South 1.02 1.04 1.16
Coastal 1.04 1.08 1.14
North 1.02 1.04 1.12

The Large Loss Loads are equivalent to our actual large losses over the five year
period. This ensures integrity with our financial plan and our view that our total

large losses are considered credible over a five year period.

Indicated Rate Need

The financial plan includes a planned rate and valuc change over each of the
following years. Both the written and the earned elfects of the rate changes are

explicit in the plan. These rate change plans are based on the countrywide line of



business data used in the financial planning process. We need to know if the rate
making model is now giving us ditferent rate indications when determined at the

program/state/coverage level.

The rate changes are totaled and compared to the plan. If we have done the
exercises above and know that we have removed any biases from our
mecthodologies. the more detailed view should be providing us with the more
credible answers. 1f we then compare these new indicated rate actions with our
financial plan we should be able to tie together rate actions, claim actions.

underwriting actions and cxpected profitability.

Summary of Findings

As we went through this process for the first time, we found significant differences
between the definitions and applications of our assumptions. Of significant note

were the catastrophe smoothing. loss trend and the complement of credibility.

The differing methods of handling catastrophces are based on the different uses of

data. One view is to explain past experience and the expected future effects on the



following year’s finances. The other view is the expected values used in the
pricing models for the existing book and mix of business. Both views need to be

used, but an understanding and method of translating must be determined.

The trend is critical in the calculation of the indication, it is all too easy to insert
expectations into the selection process. Any planned expectations different from
projections should he documented and the underlying actions understood. None of
us want to project a large trend that is not realized as well as vice versa. Selected
trends were adjusted in the final output to reflect the overall trend level, this was

done to remove bias.

The complement of credibility was determinable after all of these indications were
completed. Other choices are definitely available, but the financial plan must link

to the final selection.

A note to data integrity, many small data issues can leverage themselves into
significant issues. Determining certain ratios without ALAE and then using those
numbers against losses including ALAE can have a noticeable effect on the final
indication. Care must be taken to think through. test and document assumptions to

determine if material differences could arise.

19



The gains from this exercise were significant:

- We have a better understanding of our trend and factor selection methods.

- We are able to show specific opportunities for attainment of the financial plan.

- We are much more prepared to explain the ditferences as viewed by underwriting

professionals and financial professionals.
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Pricing the Hurricane Peril - Change is Overdue

by David R. Chernick, FCAS

Introduction

The hurricane peril is currently a very hot topic at Casualty Actuarial Society meetings and
seminars. The advent of this interest occurred in the afiermath of Hurricane Andrew, which made
landfall in Homestead, Florida on August 24, 1992. Hurricane Andrew damaged or destroyed thousands
of buildings and caused an estimated $16 billion in insured losses. Insured damage of this proportion
was unprecedented, and could have been much greater had the hurricane taken a slightly different but
equally likely track. In response, actuaries began to seriously reevaluate their ratemaking procedures for
this peril.

In this paper I will document the history of ratemaking techniques used for the hurricane peril.
Non-insurance data will be presented to show that historical techniques and typical insurance incurred
loss data are inappropriate to properly price this peril. I will concentrate on expected loss costs for
hurricanes, or in other words the mean of the potential loss distribution. The concept of risk load will be
left to other authors in our society.

History

The hurricane peril has historically been covered under various property insurance products,
including but not limited to extended coverage, commercial multi-peril and homeowners. The first
reference to wind ratemaking that I found in the Casualty Actuarial Society journals was in 1951, Mr.
M.H. McConnell wrote: “Similar exposure to catastrophic losses exists with respect to other coverages
written by Fire Insurance Companies such as Extended Coverage. The November 25, 1950 windstorm
affecting thousands of policyholders in New England and the Middle Atlantic States is a recent example

of such a catastrophe. The estimated losses for this storm are almost $200,000,000 and the number of

24



claims may reach 500,000. Because of low frequency, slavish adherence to indicated rate levels might
result in violent fluctuations in rates as well as violent fluctuations in refativity. To achieve a desirable
degree of stability, exercise of underwriting judgment is required in selecting rate levels.” !

Hurricanes are definitely low frequency, potentially high severity events. Even though the
November 25, 1950 storm was not officially a hurricane, there is evidence that members of the society
were concerned with the impact this type of event could have on ratemaking. Although it is difficult to
determine how many years of ratemaking data were used to generate rate level indications for extended
coverage policies at that time, it appears that the number of years used to price the wind peril was small.
Mr. McConnell’s solution is that underwriting judgment be used in selecting rate levels to account for
the low frequency of severe storms.

In 1949, Mr. J. H. Finnegan documents the beginning of catastrophe coding. “For the purpose
of obtaining information on the losses paid for the various tornadoes, hurricanes and similar catastrophes
which occur each year, the National Board began in April, 1949 the practice of assigning a catastrophe
serial number for all such occurrences. Such numbers are assigned whenever preliminary estimates
indicate that the loss will amount to $1,000,000 or more in any state.” > Clearly, insurance data for
hurricanes is not available prior to 1949. Even after 1949, it has been my experience that detailed
company data for individual hurricanes has not been kept until recently. In any case, historical
ratemaking data for the hurricane peril is limited.

In 1959, Laurence H. Longley-Cook documents for the first time in the records of our society
the number of years used in pricing the “windstorm” peril for extended coverage policies. Ten years of
historical experience was used. “Rate making for extended coverage abounds with interesting actuarial
problems many of which have received little attention. Since windstorm is by far the major peril, it is

important to realize that owing to the correlation between losses - one storm involving many thousands

' M. H. McConnell - “A Casualty Man Looks at Fire Insurance Rate Making” PCAS Volume XXXVIII, 1951, pp. 103~
104.
2 J. H. Finnegan - “Statistics of the National Board of Fire Underwriters” PCAS Volume XLIIL, 1956, pp. 93.
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of losses - normal standards of credibility do not apply. This is being recognized by using 10 years
rather than 5 years loss experience for rate adjustment. However, in states exposed to hurricanes, the
10-year loss experience may have an abnormal or subnormal number of such storms, and even longer
term weather studies make it difficult to establish the normal frequency of hurricanes. The problem is
further complicated by the conflicting views of weather men on the relative bearing on trends of sunspot

» 3 Mr. Longley-Cook cautions that a 10 year experience period

cycles and longer term climatic changes.
for hurricanes is not long enough for ratemaking, but does not offer a solution.

In 1960 Ernest T. Berkley wrote, “The seminar concentrated on a Homeowners policy on an
indivisible premium basis as a prime example of a multiple peril policy.... The removal of the
restrictions of the Appleton Rule in 1949 made it possible to combine fire and extended coverage, theft
and liability coverages in a single policy which could be written by either a casualty or a fire company....
After covering the foregoing historical aspects the seminar proceeded with a discussion of the principal
points brought out in the paper and review, which may be summarized as follows: 1.... ... 5. Several
miscellaneous points including the variation in loss frequency for windstorm versus other coverages and
the associated windstorm catastrophe hazard.” *

In this paper we leamn that prior to 1949 the Appleton rule prevented combining coverages, and
removal of restrictions led to the creation of multi-peril policies which included the hurricane peril. Mr.
Berkeley writes about a seminar that concentrated on homeowners multi-peril policies and stated that
there were concerns regarding windstorm frequency and windstorm catastrophe potential. Again, the
issue of the wind peril was discussed, but no solutions were offered.

Prior to 1957, rates for multi-peril policies were developed by combining rates for the
component coverages. Beginning in 1957, at least one company began using its own homeowners only

data for ratemaking. Today, many companies use company specific data for homeowners ratemaking.

% Laurence H. Longley-Cook - “Notes on Some Actuarial Problems of Property Insurance” PCAS Volume XLVI, 1959, pp.
80.
“ Ernest T. Berkeley - “Rate Making and Statistics for Multiple Peril Policies” PCAS Volume XLVII, 1960, pp. 231-233.

26



A cite of LeRoy J. Simon from his 1961 paper follows: “Referring to Homeowners rating history, it
started as a sum of components and remained this way for some time. As component rates changed, so
did the Homeowners rate change. In 1957 at least one company swung over to using Homeowners
experience to set the Homeowners rates.... Two important features that couldn’t be discussed too
thoroughly were reinsurance problems and the catastrophe problem. The latter question arose in
connection with rate making for all the property coverages as a single unit. The presence of a hurricane
in two years would distort the figures, so would the absence of a hurricane in two years distort the
figures.” * Again frequency variation for the hurricane peril was a major concern. Yet again, no solution
was offered.

In 1962 Edward S. Allen described another seminar on package policy ratemaking. “A
discussion of principles for package policy ratemaking at the present stage of package policy
development will obviously produce more questions than answers. ... Since discussions in the two
sessions of the seminar developed in quite different directions, it might be of interest to the participants
as well as others, to list some of the comments and opinions expressed incidental to the general
conclusions as summarized above. An abbreviated list is as follows:

1.

8. Catastrophe coverage and small loss coverage should be treated differently.” 8
Consistent with prior authors Mr. Allen suggested that catastrophe coverage be treated differently.

Frederic J. Hunt, Jr.’s paper “Homeowners - The First Decade” was published in the Proceedings
in 1962. This paper gives an excellent overview of the actuarial perspective of the first ten years of the
homeowners policy. A relevant section follows: “The question of credibility and the treatment of

catastrophes in Homeowners rate-making, together with some related problems, need actuarial study

* LeRoy J. Simon - “Rate Making for Package Policies™ PCAS Volume XLVIII, 1961, pp. 205-206.
¢ Edward S. Allen - “Package Policy Ratemaking™ PCAS Volume XLIX, 1962, pp. 6667.
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and I am hopeful that, at least when the history of the second decade of Homeowners is written, it will
include an account of the satisfactory disposition of these items.” ’

The challenge of Mr. Hunt to find solutions to the problems of credibility and treatment of
catastrophes was not answered. Maybe the lack of major hurricanes or other catastrophes caused this or
maybe our Society had more pressing issues to address. Surprisingly, in the twenty five years between
1963 and 1989, only one property insurance paper was published in the journals of the CAS. That was
Michael A. Walters’ paper, “Homeowners Insurance Ratemaking”, published in 1974. This paper is near
and dear to actuaries of my generation since it was the major property insurance article on the principles
of ratemaking exam syllabus. “By the same token, if no hurricanes or other catastrophes have occurred
during the experience period under review (now five years in Homeowners insurance), it would also be a
mistake to assume that the potential for catastrophe has vanished. Therefore, an averaging process is
utilized whereby the actual incurred losses from catastrophic events during the experience period are
removed and substituted by the expected value of such losses based upon a long range view of at least
twenty years experience for that state.” ®

Mr. Walters continued the caution from the 1960’s. He articulated the hurricane frequency
problem quite well. In 1974 the standard homeowners ratemaking base was 5 years of data. However,
Mr. Walters stressed that for catastrophes, at least 20 years of ratemaking type data should be used.

An attempt to address the ratemaking problems of the hurricane peril was I1SO’s excess wind
procedure. This procedure was developed by ISO and first used in ratemaking sometime prior to 1990.
Simply described, the ISO excess wind procedure developed an expected wind pure premium by splitting
actual data into basic wind and excess wind components. The expected basic wind component is derived
by a long term average (Non excess wind losses / Non wind losses). The expected excess wind

component is derived by taking the ratio of excess wind to non-excess wind losses over a longer period

7 Frederic J. Hunt, Ir. - “Homeowners - The First Decade™ PCAS Volume XLIX, 1962, pp- 39.
¥ Michacl A. Walters - “Homeowners Insurance Ratemaking” PCAS Volume LXI, 1974, pp. 23-24.
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of time and supplementing state data with regional data. The ISO excess wind procedure is just a
slightly more sophisticated technique that still uses a limited historical period of time.

The following quote is from Mark Homan’s 1990 paper, “Homeowner Insurance Pricing.” “The
first adjustment made to these losses is for catastrophic losses. Catastrophe losses are relatively
infrequent and do not affect each year similarly. The indicated rate level should include a provision for
expected catastrophes, instead of those that happened to occur in the experience period. To make this
adjustment, a longer time period, and possibly a larger body of data, is used to compensate for the
infrequent nature of these losses. The procedure described here is very similar to the ISO excess wind
procedure.” ®

Mr. Homan, although not directly referring to the hurricane peril, again warns a longer period of
time is needed in the development of a ratemaking provision for catastrophes. He goes on to state for
the first time in our actuarial literature that “a larger body of data” is “possibly” a solution. I believe it is
self evident that a larger body of data (i.e. non-insurance data) is necessary to properly price the
hurricane peril. Note that even after Hurricane Hugo in 1989, Mr. Homan advocated using the ISO
excess wind procedure to price the hurricane peril.

Also in 1990, David H. Hays and W. Scott Farris directly addressed the hurricane peril in their
paper “Pricing the Catastrophe Exposure in Property Insurance Ratemaking”. A specific adjustment is
suggested to bring the actual hurricane frequency to the frequency level indicated by 120 years of
meteorological data and to bring the recorded severity to current cost and exposure levels.

“A company’s hurricane data may be sparse. Therefore, it may be appropriate to modify
company data or to substitute data from other sources. External data can be either historical or
simulated.... One easy adjustment to a company’s hurricane data that can be made is to adjust the
frequencies of the various hurricanes in the company sample to reflect known historical frequencies over

a longer period. The number of hurricane occurrences by wind speed and landfall is available from

® Mark J. Homan - “Homeowners Insurance Pricing” Casualty Actuarial Society 1990 Discussion Paper Program, pp. 727.
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various sources for at least 122 years. If a company can identify the wind speed and the landfall for the
hurricanes in its data, the adjustment to known frequencies can be accomplished by the following

formula:

F*Y
E(h)=H*

N™*100

Where,

E(h) = Expected Dollars of loss for an individual hurricane

H = Dollars of loss for the hurricane adjusted to current inflation and exposure
distribution

Y = Number of years in the sample data

N = Observed number of occurrences by intensity and windspeed

F = Expected 100 year frequency from external sources.” "

I will comment on this procedure more specifically in the frequency section of this paper.

In 1992, John Bradshaw and Mark Homan in their paper “Homeowners Excess Wind Loads”
wrote: “The ISO procedure has its flaws. However, due to the difficulty in obtaining a sufficient
volume of credible data for any other method, it remains the most widely used method. The adjustment
outlined in this paper allows for the elimination of one of the major flaws in the ISO procedure, namely
its reliance on past history as a representative sample of possible losses. ...

An additional shortcoming of the ISO procedure is that it fails to adjust for demographic shifts.

In particular, it does not consider the increase in coastal exposures. The adjustment of the model

19 David H. Hays & W. Scott Farris - “Pricing the Catastrophe Exposure in Property Insurance Ratemaking,” Casualty
Actuarial Socicty 1990 Discussion Paper Program, pp. 491-492.
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reflects the current distribution of a company’s book and can be updated periodically to reflect any
shifts. This does not eliminate the ISO shortfalls since many of the years are still based purely on
history. However, the additional year from the model will dampen this problem with the ISO

procedure.”"!

Messers. Bradshaw and Homan’s contribution to CAS ratemaking procedures is basically
that the ISO excess wind procedure can be improved by adding a year that represents a one in 50 year
storm. The authors point our many flaws in the ISO wind procedure and there are other limitations not
mentioned in this paper. Even the authors admit the adjustment will only “dampen” the “problem™ with
the ISO procedure. Simply put, the ISO excess wind procedure is not an appropriate tool for pricing the
hurricane peril.

In 1996 Burger, Fitzgerald, White and Woods published a paper titled “Incorporating a
Hurricane Model into Property Ratemaking,” where they explain that 1SO had decided to replace their
excess wind procedure with data from a computer simulation model. They concluded: “After evaluating
the limitations of the traditional loss smoothing approaches, ISO decided to use a computer simulation
modeling approach for measuring the hurricane catastrophe peril ”*

Also in 1996, Michael A. Walters and Francois Morin published “Catastrophe Ratemaking
Revisited.” They endorse using computer simulation models as a ratemaking tool, and conclude: “In
summary, computer models are now capable of simulating catastrophic events and creating probabilistic
models of reality that can be used to generated expected loss costs for catastrophe perils.”'® In the next

sections of this paper I will expound on the limitations of using traditional insurance data to price the

hurricane peril.

" John Bradshaw & Mark J. Homan - “Homeowners Excess Wind Loads: Augmenting the ISO Wind Procedure,” Casualty
Actuarial Society Forum, Spring 1992, pp. 49.

'* Burger, Fitzgerald, White and Woods - “Incorporating a Hurricane Model into Property Ratemaking,” Casualty
Actuarial Socicty Forum Winter 1996, pp. 141.

' Michael A. Walters & Francois Morin - “Catastrophe Ratemaking Revisited (Use of Computer Models to Estimate Loss
Costs),” Casualty Actuarial Society Forum Winter 1996, p.364.
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Non-Insurance Data

Various meteorological data exists on Atlantic hurricanes since the late 1800’s. The primary
source of this meteorological data is the National Weather Service, specifically, publications NOAA
Technical Report NWS23" and NOAA Technical Report NWS$38". In addition, “Tropical Cyclones of
the North Atlantic Ocean 1871-1980”'® was valuable. The quality and amount of data available is more
extensive and more accurate for recent storms. Messers. Hays and Farris in their paper referred to 122
years of data, implying back to 1871. My analysis requires accurate landfall locations and identification
of Saffir/Simpson category. Hurricanes prior to 1899 are not covered in the NWS reports, and thus I
have decided to use the 98 years from 1899 to 1996 for this paper. Using National Weather Service
reports and several other sources, I compiled Exhibit 1.

Exhibit 1 is a chart of the number of hurricanes that made landfall on the Gulf or Atlantic coasts
of the United States for each year since 1899, broken down by Saffir/Simpson category. Some
hurricanes made landfall more than once. For the purpose of this exhibit, a hurricane is counted each
time it made landfall at hurricane strength. For example, Hurricane Andrew was counted twice, once in
Florida and once in Louisiana. The assignment of a Saffir/Simpson category at landfall cannot be
determined precisely and often requires some judgment. In addition, two storms listed in the National
Weather Service publications were not counted in this list because it was determined that one actually
made landfall in Mexico and the other in Canada.

In many years there were no hurricanes making landfall in the United States. In 1985, the most
landfalls occurred (seven). In the 98 years listed, there were 176 landfalls or an average of 1.8 landfalls

per

'* NOAA Technical Report NWS 23, “Meteorological Criteria for Standard Project Hurricane and Probable Maximum
Hurricane Windfields, Gulf and East Coasts of the United States,” Washington, DC, September 1979, U.S. Department of
Commerce, National Occanic and Atmospheric Administration, National Weather Service,

' NOAA Technical Report NWS 38, “Hurricane Climatology for the Atlantic and Gulf Coasts of the United States,”
Silver Spring, MD, April 1987, U.S. Depaniment of Commerce, National Oceanic and Atmospheric Administration,
National Weather Scrvice.



year. Only two storms were categorized as 5 on the Saffir/Simpson scale, These were a 1935 storm
that made landfall in Monroe County, Florida and Camille in 1969 which made landfall in Hancock
County, Mississippi.
Frequency

Is 10 or 20 or 30 years of typical ratemaking data enough to accurately price the hurricane peril?
To test this, the data on Exhibit 1 was analyzed. Exhibit 2 was created from the data on Exhibit 1 and
shows the number of landfalling hurricanes by decade. The 1990°s are not yet a full decade and the two
1899 storms were not included in Exhibit 2. Even though we would not directly use this data for
individual state ratemaking since it is for all states combined, it clearly demonstrates the variability of
hurricane frequency. The number of hurricane landfalls in a decade varies from a high of 27 to a low of
14. Most experts agree that more intense storms cause proportionally more damage than less intense
storms. Thus, from a ratemaking perspective a large portion of the loss cost will be attributable to the
more intense storms. For the purpose of categorization, a major hurricane is defined as one of category
3 or higher on the Saffir/Simpson scale. The variation in hurricane landfall frequency is even more
pronounced for major hurricanes, ranging from a low of 4 to a high of 10.

Turning now to state data, the variation in hurricane frequency is even greater. In the United
States, rates are regulated by state. Ideally, from a ratemaking perspective rates should be made for
homogeneous subsets of a state, (i.¢. territories). Exhibit 3 is included for reference, and is a
consolidation of all storms listed in Exhibit 1 by state of landfall. Hurricane landfall frequency differs
significantly by state. To analyze this further I have selected Texas and South Carolina. Exhibits 4 and 5
show the hurricane landfall data for these states in the same format as Exhibit 2. For my simple analysis

I have not counted hurricanes making landfall outside of Texas or South Carolina but causing damage to

¥ “Tropical Cycloncs of the North Atlantic Ocean”, NOAA, Asheville, NC, June 1978, Revised July 1981, Prepared by the
National Climatic Center, Asheville, NC in cooperation with the National Hurricane Center and National Hurricane
Research Laboratory, Coral Gables, FL.
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properties located within those states. However, the potential for hurricanes making landfall outside the
state being priced but causing damage in that state should be considered in determining rates.

I have added several rows of summary data to Exhibits 4 and 5. T have shown the total number
of hurricanes making landfall in the latest 27 years (1970-1996). Also shown are rows labeled high and
low. These are the sum of the three consecutive decades that had the highest and lowest number of
hurricane landfalls, respectively. In order to more easily compare frequency I have added a row showing
the annual frequency for the 97 year total and each of the three time periods just described. In 97 years
there have been 32 hurricanes making landfall in Texas for an annual frequency of .330, or just less than
1 every 3 years. If we were to use historical insurance data from 1920 to 1949 the underlying frequency
was .433 or 31.2% greater than the 97 year history. From 1950 to 1979 the underlying frequency was
.200 or 39.3% less than the 97 year history.

Exhibit 5 displays the same type of data for South Carolina. The variation in frequency is similar
to Texas, but the overall frequency is much lower. On average, a hurricane makes landfall in South
Carolina once every eight years, and a major hurricane occurs about once every twenty years. Asin
Texas, when the shorter time periods are compared, there is significant variation in hurricane frequency.

On a statewide basis the hurricane frequency in a single 20 or 30 year period of data can differ
significantly from the longer term mean. If the data for hurricane frequency is refined further to county
or rating territory, the variation is even greater. There are many areas that had devastating damage from
a hurricane in one year and long periods of no storms. This variation in landfall frequency is shown
graphically on Exhibits 6 through 10, which display the tracks of major hurricanes by decade, beginning
with the 1940’s.

In the 1940’s, 5 of the 8 major hurricanes made landfall in Florida (Exhibit 6). In the 1950’s
most of the activity was on the East Coast with only two storms making landfall in Florida (Exhibit 7).

In the 1960’s the activity moved to the Gulf of Mexico, with only Donna moving up the east coast after
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an initial landfall in the Florida Guif (Exhibit 8). All four major hurricane landfalls occurred in the Gulf
of Mexico during the 1970"s (Exhibit 9). In fact, between 1961 and 1983 no hurricane made landfall on
the eastern coast of the United States north of Monroe County, Florida. Finally, in the 1980’s the six
major storms were well dispersed (Exhibit 10).

Where will the next Atlantic hurricane make landfall? Going back to the hurricane history of
South Carolina, Exhibit 11 displays the tracks of the 3 major hurricanes prior to 1989. No major
hurricane on record made landfall near Charleston, SC. Exhibit 12 shows what the South Carolina major
hurricane landfalls look like after 1989. This demonstrates that new and unique landfalls are possible,
presenting an exposure to loss which historical ratemaking data will never capture.

Clearly, hurricane landfall frequency varies widely over time. The smaller the geographic area
being considered, the greater the variation. Ten or twenty or even thirty years of historical data will not
adequately capture the true underlying probability of a hurricane making landfall. In addition, for smaller
geographical areas such as rating territories, 98 or even 122 years will not capture the true underlying
frequency potential.

In their paper, Messers. Hays and Farris state that we can adjust for hurricane frequency.
Essentially, their method adjusts the observed frequency for a finite number of years of rate making data
to a long term frequency. The “adjusted” frequency is then applied to “current level” losses for each
hurricane in the experience period. This procedure is clearly better than blindly using ratemaking data,
yet it is still inadequate. Strictly from a frequency perspective, this adjustment method may produce
appropriate frequency estimates for large geographic regions. However, if used for smaller geographic
areas such as rating territories, even 122 years of data is not enough to capture the true underlying
frequency. This method will also fail to account for new and unique landfalls. More importantly, this
frequency adjustment does not account for the even greater variation in storm severity and the impact of

a changing exposure base,
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Severity

Reliance on historical ratemaking data to price the hurricane peril fails to accurately reflect
expected severity for two major reasons. These are a changing exposure base and the large variation in
severity of hurricanes. Several authors have presented possible techniques to adjust for the changing
exposure base. 1 will not specifically comment on the adjustments suggested. However, in general if
historical traditional ratemaking data is used in pricing the hurricane peril, the issue of a changing
exposure base requires attention by the ratemaking actuary.

Traditional ratemaking techniques developed a catastrophe provision by using historical ratios of
catastrophe losses to non-catastrophe losses. More recently I have seen the catastrophe provision
calculated by comparing catastrophe losses to amount of insurance years. The second method is more
responstve to one aspect of a changing exposure base (i.e. total amount of insurance). However, neither
of these methods can properly capture the expected loss of the hurricane peril.

No book of business stays the same over a 10 year period, let alone 20 or 30 years. For
illustrative purposes, assume you are using 25 years of actual insurance ratemaking data to price the
hurricane peril. Assume further that the only hurricane to produce losses in this period in the state being
priced was Zelda, a category 3 storm 20 years ago. Would the exact same storm today cause the same
insured losses relative to either non-catastrophe losses or amount of insurance years? The answer is no.

A company’s distribution of business by distance to the coast changes over time. The amount of
insured damage Zelda caused twenty years ago is known, and it is related to the amount of business that
was in areas of high winds. If a greater percent of the total business is closer to the coast today than it

was when Zelda made landfall, then the loss per exposure will be greater (all other things equal). The
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loss per exposure will be less, if a lower percent of the total business is closer to the coast than it was at
the time of Zelda.

Population density in coastal areas is increasing. Since windspeeds of a hurricane are greater
closer to the coast, and the number of dwellings closer to the coast is increasing, it follows that solely
because of this factor Zelda will cause more damage today than it did twenty years ago.

The type and quality of construction change over time. This can have both positive and negative
effects on the amount of damage Zelda will cause today relative to 20 years ago. Building materials are
different today, some of which are more wind resistant and some are less. Building codes change over
time, as does their enforcement. If Zelda were to make landfall today it would have a different effect on
any dwelling built in the last twenty years than is captured in the loss data from twenty years ago.

The amount and type of coverage provided in a policy change over time. Recent examples
include guaranteed replacement cost, law and ordinance coverage, and exclusions to non-attached
structures. There has also been a movement 1o higher wind-only deductibles or hurricane-only
deductibles. These include both percentage options and higher dollar deductibles. Any of these changes
to coverage will make the losses caused by Zelda less predictive of the potential loss for today’s book of
business. The true exposure to the hurricane peril in a current book of business can be far different than
it was twenty years ago. While adding more years of experience may improve the ability to estimate
hurricane frequency, it will also introduce significant exposure changes.

The changing exposure base issues are important reasons historical ratemaking data is
inappropriate for pricing the hurricane peril. Just as important is the potential variation in the strength of
a hurricane and how much damage a single storm will cause. History tells us that hurricanes making
landfalls vary in strength from Category 1 storms with sustained wind speeds of 74 mph to Category 5
storms like Camille with sustained wind speeds in excess of 150 mph. At any given landfall, a full

spectrum of possible storm strengths exists, which translate into a tremendous range of possible damage



to property. Even within a given Saffir/Simpson category of storms, other factors also introduce
variability into the potential total damage to property. These include the radius of maximum winds,
track direction, forward speed and surrounding meteorological conditions. Additionally, similar storms
can cause significantly different damage to property when they make landfall at different locations. This
is where factors such as population density, building codes, construction quality, terrain, and other
geographic features come into play. In any given state it would take thousands of storm observations to
begin to approach a sample of storms that reflected the true potential distribution of storm severity over
all potential landfalls.

Each hurricane is unique. No two storms, no matter how similar, will cause the same amount of
damage relative to the exposure base. In a 25 year traditional ratemaking data base, will one storm such
as Zelda be representative of potential future hurricane damage in the state? Can one or two, or even
ten storms in a given experience period ever truly reflect the complete spectrum of possible event
severity? Absolutely not.

South Carolina history is a good example of the problems with using historical data and methods
to price the hurricane peril. If property insurance rates made in 1988 in South Carolina included a
catastrophe provision based on 25 years of insurance data, the only hurricane reflected in the rates would
have been Bob, a small category 1 storm in 1985. The next year Hurricane Hugo made landfall just
north of Charleston as a category 4 storm resulting in unprecedented property damage.

Loss Costs

Before addressing the solution, there is one other problem with using traditional ratemaking
techniques and data. Using historical insurance ratemaking data to price the hurricane peril can cause
large swings in rates simply because a significant event occurred in the recent past. The best example of
this is Hurricane Andrew. Using data from a 1991 Allstate rate filing, I have estimated the impact on

rates the year before and after Andrew. The average premium for homeowners insurance in Florida
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prior to Andrew was approximately $260. Of this, $4 was the provision for the hurricane peril. The
catastrophe provision was based on twenty years of data, a period when there were no major hurricane
losses. The catastrophe provision was calculated by using a ratio of catastrophe losses to non-
catastrophe losses. If the same rate level indication methodology was used, only updating for one
additional year of catastrophe data, the indicated average rate would be $434, including a hurricane
provision of $170. The true underlying loss cost for a given exposure does not change when a hurricane
makes landfall. Our actuarial techniques need to change.
More History i

Before concluding, there are two more references I would like to make, In 1981, David A. Arata |
wrote, “This paper argues that computer simulation is an underappreciated and, therefore, underutilized
casualty actuarial resource”.'” Further in his paper Mr. Arata wrote, “Computer simulation can also be
used to improve pricing of exposures for which historical information is unavailable or not indicative of
future experience.”'® The second published paper, “A Formal Approach to Catastrophe Risk
Assessment in Management”, written by Karen M. Clark makes the following conclusion: “The model-
generated expected loss estimates can be used to calculate Catastrophe premium loadings.”'® As early
as 1981 the concept of using models to help ratemakers price insurance products was contained in the
Proceedings of the CAS. For the next decade actuaries continued to rely on the historical techniques
using historical ratemaking data to price the hurricane peril.
Conclusion

After considering the techniques currently used to price the hurricane peril, I conclude that the
only tool available that captures a reasonable estimate of average annual costs is a computer simulation

model. From a frequency perspective, short periods of historical data do not give accurate estimates of

" David A. Arata, FCAS, “Computer Simulation and the Actuary: A study in Realizable potential,” PCAS LXVII, 1981,
Page 24.

¥ Ibid., page 43.

19 Karen M. Clark, “A Formal Approach to Catastrophe Risk Assessment in Management,” PCAS LXXIII, 1986, page 88.
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the true underlying storm frequency. This problem exists on a statewide basis, but is even more acute
for rating territories.

Also, new and unique landfalls are not captured by using historical experience. Computer simulation
models can adequately address these issues.

The 98 year history of storm frequency displayed in Exhibits 1 through 10 demonstrates that
there is great year to year variation in hurricane landfall frequency at all levels of geographic detail. T
conclude that all available hurricane data should be used to compute hurricane frequency. This is easily
accomplished in a hurricane simulation model. Any good model will incorporate a probability
distribution at many landfall locations that is derived from the available history. The models can easily
reflect the fact that new and unique landfalls are possible. Estimates for geographic areas as small as
rating territories will be accurate if enough iterations are accounted for in the model.

From a severity perspective, the major problems with using a limited period of historical data to
price the hurricane peril are a changing exposure base and the almost infinite possible severity of storms.
Under the category of changing exposure base are the issues of distance to coast, density, coverage in
force, type of construction, building codes, enforcement of building codes and policy provisions.
Computer simulation models are able to eliminate or account for all of the problems associated with a
changing exposure base.

Exposure changes over time become moot because the current distribution of business is the
input for any model. Thus, the model output is reflective of the current distribution of business. The
issues of distance to coast, density and coverage in force changing over the experience period become
non-issues because all model output is reflective of the current book of business.

The models can account for type of construction, the effect of new construction and building
codes, and the enforcement of building codes. These factors impact damage ratios for individual

buildings in different ways. As an input to computer models, geo-coding of a company’s current book
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of business will allow the impact of these factors on individual buildings to be reflected . Changes in
policy provisions are also easily handled by models. The models can be run for current policy provisions
and can also be run to estimate the impact of changes in policy provisions by comparing the output of
different input assumptions. In fact, the models can be used to approximate the value of any type of
mitigation effort.

Most importantly the problems of variation in severity are easily overcome by computer
simulation models. A whole spectrum of possible storms with a full range of severities can be generated
at any landfall. There is no longer a need to base a rate on only one or two observations.

The problem of rate instability discussed in the loss cost section is solved by using computer
simulation models. If properly incorporated into base rates, the hurricane portion of individual rates
based on computer simulation models will be stable. The occurrence of a major storm will not cause
large rate increases, as it would if actual data were used to make rates.

Our profession has been extremely slow to react to a problem first documented in our literature
in 1951. An analogy comes to mind between any ratemaker that continues to rely on historical
ratemaking data and techniques and the ostrich that sticks its head in the sand. The time to change our

methodology is now.

Refl: 9197draftpaper



LANDFALLING HURRICANES 1899-1996 EXHIBIT 1
EASTERN AND GULF COASTS OF THE UNITED STATES

SAFFIR/SIM TEGORY TOTAL MAJOR
YEAR 1 2 3 4 5  HURRICANES HURRICANES
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LANDFALLING HURRICANES 1899-1996 Exms;;e;
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EXHIBIT 2

U.S. HURRICANE LANDFALLS BY DECADE
1900 THROUGH 1996

SAFFIR/SIMPSON CATEGORY TOTAL MAJOR
DECADE 1 2 3 4 5 HURRICANES HURRICANES
1900's 6 3 4 2 0 15 6
1910's 9 3 5 3 0 20 8
1920's 6 5 4 2 0 17 6
1930's 6 5 6 1 1 19 8
1940's 8 9 9 1 0 27 10
1950's 8 2 7 2 0 19 9
1960's 4 5 6 2 1 18 9
1970's 7 3 4 0 0 14 4
1980's 9 1 6 1 0 17 7
1990's 1 3 3 1 0 8 4
TOTAL 64 39 54 15 2 174 71




197

U.S. HURRICANE LANDFALLS BY STATE
1899 THROUGH 1996

EXHIBIT 3

SAFFIR/SIMPSON CATAGORY TOTAL MAJOR
STATE 1 2 3 4 5 HURRICANES HURRICANES
TEXAS 12 6 9 5 32 14
LOUISIANA 9 4 9 3 25 12
MISSISSIPPI 1 1 2 2
ALABAMA 3 1 2 6 2
FLORIDA 19 19 17 5 1 61 23
GEORGIA 2 2 0
SOUTH CAROLINA 5 3 3 2 13 5
NORTH CAROLINA 10 4 8 22 8
VIRGINIA 0 0
MARYLAND 0 0
DELAWARE 0 0
NEW JERSEY 1 1 0
NEW YORK 2 5 7 5
CONNECTICUT 0 0
RHODE ISLAND 1 1 0
MASSACHUSETTS 1 1 2 1
NEW HAMPSHIRE 0 0
MAINE 2 2 0
TOTAL 64 40 | 55 15 2 176 72 |
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TEXAS HURRICANE LANDFALLS BY DECADE
1900 THROUGH 1996

SAFFIR/SIMPSON CATAGORY TOTAL MAJOR
DECADE 1 2 3 4 5 HURRICANES HURRICANES

1800's 0 0 1 1 0 2 2
1910's 2 1 1 2 0 6 3
1920's 1 1 0 0 0 2 0
1930's 1 1 1 1 0 4 2
1940's 2 3 2 0 0 7 2
1950's 1 0 0 0 0 1 0
1960's 1 0 1 1 0 3 2
1970's 1 0 1 0 0 2 1
1980's 3 0 2 0 0 5 2
1990's Y 0 0 0 0 0 0
TOTAL 12 6 9 5 0 32 14
AVERAGE| 0.124 0.062 0.093 0.052 0.000 0.330 0.144
1970-1996 4 0 3 0 0 7 3
AVERAGE| 0.148 0.000 0.111 0.000 0.000 0.259 0.111
HIGH* 4 5 3 1 0 13 4
AVERAGE| 0.133 0.167 0.100 0.033 0.000 0.433 0.133
Low* 3 0 2 1 0 6 3
AVERAGE| 0.100 0.000 0.067 0.033 0.000 0.200 0.100

*Based on total hurricane landfalls for three consecutive decades

EXHIBIT 4
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SOUTH CAROLINA HURRICANE LANDFALLS BY DECADE
1900 THROUGH 1996

SAFFIR/SIMPSON CATAGORY TOTAL MAJOR
DECADE 1 2 3 4 5 HURRICANES HURRICANES
1900's 1 0 1 0 0 2 1
1910's 1 1 0 0 0 2 0
1920's 0 0 0 0 0 i 0
1930's 0 0 0 0 0 0 0
1940's 0 1 0 0 0 1 0
1950's 2 0 1 1 0 4 2
1960's 0 0 0 0 0 0 0
1970's 0 0 0 0 0 0 0
1980's 1 0 0 1 0 2 1
1990's 0 0 1 0 0 1 1
TOTAL 5 2 3 2 0 12 5
AVERAGE| 0.052 0.021 0.031 0.021 0.000 0.124 0.052
1970-199 1 0 1 1 0 3 2
AVERAGE| 0.037 0.000 0.037 0.037 0.000 0.111 0.074
HIGH* 2 1 1 1 0 5 2
AVERAGE| 0.067 0.033 0.033 0.033 0.000 0.167 0.067
LOW* 0 1 0 0 0 1 0
AVERAGE| 0.000 0.033 0.000 0.000 0.000 0.033 0.000

*Based on total hurricane landfalls for three consecutive decades
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The Usefulness of the R* Statistic

Introduction:

Almost every Actuarial Department uses least square regression to fit frequency, severity, or pure
premium data to determine loss trends. Many actuaries use the R statistic to measure the
goodness-of-fit of the trend. Actually, the R’ statistic measures how significantly the slope of the
fitted line differs from zero, which is not the same as a good fit.

In the Fall, 1991 Casualty Actuarial Society Forum, D. Lee Barclay wrote A Statistical Note On
Trend Factors: The Meaning of R-Squared Through simple graphical examples, Barclay showed
that the coefficient of variation (R?) is, by itself, a poor measure of goodness-of-fit. Barclay's
numerical examples provide additional support for this argument. But, his paper did not analyze
the formulas used in regression analysis.

By understanding the formulas and what they describe, we can further understand why the R?
statistic is not a reliable measure of a good fit. This paper will analyze these formulas important to
regression analysis: (1) the basic linear regression model, (2) the Analysis of Variance sum of
squares formulas, and (3) the R” formula in terms of the sum of squares. With an understanding of
these formulas and what they measure, actuaries can properly use the R” value to best determine
the forecasted trend.

Formulas:
The Analysis of Variance (ANOVA) approach to regression analysis is based on partitioning the
Total Sum of Squares into the Error Sum of Squares and Regression Sum of Squares.

(1) The basic linear regression model is stated as: Y, =B, + B1 X;
where Y, = the observed dependent variable

X; = the independent variable in the ith trial

Y. = the fitted dependent variable for the independent variable X,

Y =mean Y;=) Yi/n

(2) Analysis of Variance (ANOVA) Approach to Regression Analysis

SSTO = Total Sum of Squares =¥ (Yi- ¥ Y’

= Measure of the variation of the observed values around the mean
SSE = Error Sum of Squares = Y (Y;- ¥,)*

= Measure of the variation of the observed values around the regression line.
SSR = Regression Sum of Squares = ¥ (¥-¥ )

= Measure of the variation of the fitted regression values around the mean

= 8STO - SSE = Difference between Total and Error Sum of Squares.

(3) Coefficient of Determination: R” = (S§STO - SSE)/SSTO = SSR/SSTO.
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What the ANOVA formulas measure when R*=] and R*= 0.

From the above formulas, we see the relevance of R* =1. If all of the observed values (Y ) fall on
the fitted regression line: then Y,= ¥;, SSE = Y(Y;- Yi)’= 0, and R* =1 Since there is no
variation of the actual observations from the fitted values, the independent variable accounts for

all of the variation in the observations Y; .

Conversely, if the slope of the regression line is B, =0, then Y.=Y, SSR= ¥ Y- ¥ =0, and
R* =0 Because the SSR measures the variation in the fitted values around the mean, no variation
tells us that all of the variation is explained by the mean. So the linear regression model does not
tell us anything additional when the data is completely explained by the mean.

R’ (SSR/SSTO) measures the proportion of the variation of the observations around the mean
that is explained by the fitted regression model The closer R” is to 1, the greater the degree of
association between X and Y. Conversely, if all of the variation is explained by the mean, then R?
=0, but this should not mean that the data is not useful for forecasting purposes.

Numercal Examples:

We can use the numerical examples from Barclay's paper to examine the ANOVA formula values
when R?=0 and R?=1. Example #1 will show that even when R? =0, an appropriate forecast can
be made by examining the data from the ANOVA formulas

Barclay generates data from a normal distribution with a mean of 50 and vanance 1 to get the
observations in Example #1 The line of best fit has B, = 49 38813 and B, = 0366667.

Example #] Y observed Y fitted Error (residuals) Total Regression

X Y, be Y,- Y. Y- b Y-t
1 48746 49 425 - 0679 -(1.844 -0.165
2 49914 49.461 (1.453 0324 -0 128
3 49.246 49.498 -0.252 -0.344 -0.092
4 50297 49.535 0.762 0.707 -0.055
5 48455 49.571 -L116 -1.135 -0018
6 50.088 49.608 0.480 0.498 Q.018
7 50.559 19,645 0914 0.969 0.055
8 50173 49681 0492 0.583 0.092
9 49.336 49.718 -0.382 -0.254 0128
10 49.084 49.755 0671 -0.506 0.165

Sum 495,898 493 898 0.000 0.000 0000

Mean 49.5898 49.590

Sum of Squares (SSE) 4460 | (SSTO)4.571 (SSR) 0.111

R'= 0024
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The ANOVA formulas have these properties for a regression fit with a slope close to zero

N Y; = ¥, note the values in column Y fitted (Y) are not far from ¥ = 49.590.
(2)  SSE = §STO
The analysis of variance sum of squares are:
SSTO =Y (Y-¥)* =457l
SSE =Y (Y,-¥)’=4.460
SSR =Y (V-7 ) =0.111
The variation around the regression line (SSE) is not much better (smaller) than the
total variation (SSTO).
(3) R*= (SSTO- SSE)/ SSTO = SSR /SSTO
= (4.571-4.460) 4571 = 0.111/4.571 = 024

Because the SSE is not much less than the SSTO, the R? value is close to 0. For SSR to be large,
there needs to be a lot of variation of the fitted values around the mean. So anytime there is not a
lot of variation in the data, the R* = 0 While this means that not much additional is explained by
the fitted model, the “fit” may reasonably represent the data. And projecting with a slope of zero
may be an appropriate forecast. Of course, you don't need regression to project a slope of zero,
you can just forecast the mean.

In Example #2, Barclay adds O to the first Y observed, one to the second Y observed, two to the
third, etc. The line of best fit has Bo = 48.38813, and B, = 1.036667. This provides an interesting
example for comparing the fit and the numerical values in the ANOVA formulas.

Example #2 Y observed Y fitted Error (residuals) Total Regression

X Y, b Y, -Y. Y,- ¥ Y-
1 48.746 49.425 -0.679 -5.344 -4.665
2 50914 50.461 0.453 -3.176 -3.628
3 51.246 51.498 -0.252 -2.844 -2.592
4 53.297 52.535 0.762 -0.793 -1.555
5 52,455 33.571 -1.116 -1.635 -0.518
6 55088 54608 0.480 0.998 0518
7 56.559 55.645 0914 2,469 1.555
8 57.173 56.681 0492 3.083 2.592
9 57.336 57718 -0.382 3.246 3.628
10 58.084 58.755 -0.671 3.994 4.665

Sum 540.898 540.898 0.000 0.000 0.000

Mean 540898 54.090

Sum of Squares (SSE) 4460 | (SSTO)93.121 (SSR) 88.661

R'= 0952




The interesting part of this example is that the residuals (Y;-¥; ) are exactly the same as in
Example #1. So the SSE is the same. Recall that Linear Regression minimizes the sum of the
squared residuals. Should the lines in Example #1 and Example #2 have the same fit?

Let's look at the ANOV A formulas to see the properties of a "good fit" as measured by R*=1:

8 Y, = Y, ; the fitted values (Y, column) are close to the observed (Y, column), a “good fit.”

Here we decide that Y; = Y, , in favor of Y, = V', because there is more variation in the
observations from the mean. We choose Y, = Y, even though we have the same values
for the residuals as in Example #1.
{2y SSE=0.
The analysis of variance sum of squares are:
SSTO =Y (Y;-Y )’ =93.121
SSE =7 (Y;-¥i)* = 4.460
SSR =Y (¥,-7 ) =88.66]
The variation around the regression line (SSE) is much better (smaller) than the total
vanation (SSTO).
(3) R? =(SSTO -SSE)/SSTO= SSR /SSTO
=(93.121- 4.460)/93.121 = 88.661/93.121 =952

The SSE is much less than the SSTO. So a large proportion of the variation of the actual
observations around the mean is being explained by the fitted line. With the SSE close to zero,

most of the observations are on the fitted line. However, you will note that this is relative, because

we have the same SSE as in Example #1. It is because a large proportion of the SSTO is
explained by the fitted line, that we decide there is a good fit.

What does the R? statistic measure?

The R? statistic is a useful tool to determine whether or not B, = 0. For in regression, if By= 0,
there is no good reason to use the fitted line. As actuaries, we are often trying to forecast. If the
slope is zero (B; = 0), then we ¢an use the mean to forecast the fitted value.

In fact, the formula for B, can be written as a function of R%;
2. 2 g2 >
Br=[XY,-Y )/ XXX ) ]"F. where ¥ = £V R’ with the sign the same as the slope.
So when B;=0, then R?=0; and when R?=0, then B,=0.

Both Example #1 and Example #2 have the same residuals, or SSE. From one perspective, each

line has the same fit. The reason for the difference between the R* values was that in Example #2,

the fitted slope is much different from zero and explains proportionally more of the larger
variation in the SSTO.
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In the first example, the low R® value would have us reject the fitted line. Should we reject the
data, in favor of some other measure, like a medical CPI? I don't think so, because we can
reasonably forecast that subsequent observations will be close to 49.5 (the mean). In Example #2,
we get a good fit and would use B; = 1.036667. But, will the forecast of subsequent observations
be any better than the forecast in Example #1? Unlikely.

The usefulness of the R statistic is to measure the significance of the slope of the regression line.
Since the R is not a good measure of the goodness-of-fit, when the R? is not higher than some
arbitrary benchmark, we should not just reject the data and look for other information to trend. If
the slope is not significant (R? =0) there could be a good “fit" as explained by the mean. We can
see this by considering the values from the ANOVA formulas (SSE, SSR, and SSTO) which show
how much of the variation is explained by the model relative to the mean. There are many other
factors to be considered before accepting or rejecting the regression fit, such as patterns in the
residuals. It is always useful to graph the fitted line against the observed values to look for these
patterns.

Additional Formulas
The method of least squares finds values of B, and B; that minimize Q,
where Q=Y (Y,- ¥)* =Y (Y- Bo -By X)*

Residuals e, = Y,- ¥; =Y, - Be- B1 X,
ANOVA formula relationship.

Note: The sum of the components and
the sum of the squared deviations have the same relationship:

Y,- Y = Yi—y + Y.-Yi
Total = Deviation of fitted regression +  Deviation around the
deviation value around the mean regression line
and  SSTO = SSR + SSE
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Statistical Models and Credibility

Leigh J. Halliwell, FCAS, MAAA

Abstract

The theory of credibility is a cornerstone of actuarial science. Actuaries commonly use it.
and with some pride regard it as their own invention. something which surpasses statistical
theory and sets actuaries apart from statisticians. Nevertheless. the development of
statistical models by statisticians and econometricians in the latter half of this century is
very relevant to credibility theory: it can ground as well as generalize much of the theory.
particularly the branch thereof known as least-squares credibility. It is the purpose of this
paper to show how the theory and practice of credibility can benefit from statistical
modeling.

The first half of the paper consists of eleven sections, notes, references, and twenty exhibits.
The technical content is subdued. and readers may content themselves with this half. But
the technically inclined are invited to study the six appendices (A through F) of the second
half. Due to space limitations of the Call Paper Program, some of the appendices may be
deleted. If this should happen. the deleted appendices can be obtained by calling the author
at (201) 278-8860.

The author is grateful to Kenneth Kasner, FCAS. MAAA, for his thoughtful and kind
review of the draft of this paper.

Mr. Halliwell is a Fellow of the Casualty Actuarial Society and a member of the American
Academy of Actuaries. In August 1997 he became a consultant at the New York office of
Milliman and Robertson. For two years prior to that he lived in Mexico City as the
Regional Actuary of Latin America for the Zurich Insurance Group. And prior to that he
was the Chief Actuary of the Louisiana Workers' Compensation Corporation, Baton Rouge,
LA. His actuarial career began at the National Council on Compensation Insurance in Boca
Raton, FL.
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1. Introduction

Throughout the twentieth century actuaries have been practicing something that they call
credibility.  Although acknowledging some connections with statistics, especially with
repard to Bayesian credibility, actuaries have tended to regard credibility as transcending
statistics. This is illustrated in the historical sketch of the following section. But this paper
will proceed to show that advances in statistical modeling during the latter half of this
century legitimate and deepen typical uses of credibility. In order not to presume on the
readers’ knowledge of modemn statistics, Sections 3, 4, and 5 will outline and illustrate the
linear statistical model. The treatment of credibility per se will begin in Section 6, where
we will show how to introduce prior (or non-sample) information into the statistical model.
It is hoped that the reader will be persuaded that to express credibility in statistical terms is
not only possible, but also advantageous. Six appendices at the end of the paper provide

mathematical foundations for much of what is glossed over in the sections.

2. An Historical Perspective on Credibility

To Matthew Rodermund was entrusted the formidable task of writing the introduction to
the textbook Foundations of Casualty Actuarial Science. The task was formidable because
it demanded a engaging history of the casualty actuarial profession and a distillation of its
essence. Rodermund states, “It is the concept of credibility that has been the casualty

actuaries’ most important and most enduring contribution to casualty actuarial science.”
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[11:3].7  After recounting the accomplishments of actuaries in experience rating,
retrospective rating, merit rating, ratemaking, and reserving — all with an eye on credibility,
he asks, “Readers who have come this far may conclude from what they’ve read that
casualty actuarial science is the study and application of the theory of credibility, and that’s
all. Isitall?” [11:19] An affirmative answer is implied. And almost thirty years earlier L.
H. Longley-Cook, although more reserved than Rodermund, prefaced his famous
monograph on credibility with the words “Credibility Theory is one of the cornerstones of

actuarial science ...” [9:3]

The “Statement of Principles Regarding Property and Casualty Ratemaking,” adopted by
the Casualty Actuarial Society in 1988, defines credibility to be “a measure of the predictive

»]

value that an actuary attaches to a particular body of data. Actuaries often speak
equivalently of the “weight” given to a body of data. The language of attaching or giving
credibility to data is suggestive of an important point made by Longley-Cook:

... the amount of credibility to be attached to a given body of data is not entirely an intrinsic
property of the data. For example, there is always stated or implied in any measure of
credibility the purpose to which data are to be used.

Hence, we see that credibility is not a simple property of data which can be calculated by
some mathematical formula ... [9; 4]

If credibility is not entirely intrinsic to the data, then it is at least partially extrinsic. In
practice, credibjlity is largely, if not entirely, extrinsic to the data. And what is extrinsic to
the data pertains to informed judgment; so it is fitting that Longley-Cook concluded his
monograph as follows:

It is perhaps necessary to stress that credibility procedures are not a substitute for informed
judgment, but an aid thereto. Of necessity so many practical considerations must enter into

* In the ‘[#:p]" format ‘n’ is the reference number and *p’ gives the page number(s).
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any actuarial work that the student cannot substitute the blind application of a credibility
formula for the careful consideration of all aspects of an actuarial problem. [9:25] (also
quoted in [11:10f])

Since the credibility of data is the predictive value or weight given to the data, the question
arises what to do when the actuary judges the data not to have enough predictive value or
weight. The answer is to weight the answer which is based on the data with an answer
based on informed judgment; so it is natural for actuaries to speak of credibility~-weighting

the empirical answer with another source of information.

One great teacher and apologist of credibility was Arthur L. Bailey. Writing between 1945
and 1950, he claimed that certain credibility procedures conflicted with current statistical
theory; in fact, statistical training could hinder someone from accepting these procedures:

The basis for these credibility formulas has been a profound mystery to most people who have
come in contact with them. The actuary finds them difficult to explain and, in some cases,
even difficult to understand. Paradoxical as it may be, the more contact a person has had with
statistical practices in other fields or the more training a person has had in the theory of
mathematical statistics, the more difficult it has been to understand these credibility
procedures or the validity of their application. [3:7]

Bailey listed as three offending credibility procedures (1) the use of prior hypotheses in
estimation, (2) an estimation of groups together which is more accurate than estimating
each group separately, and (3) estimating for an individual that belongs to a heterogeneous
population [4:59f.]. Speaking from his own experience and with the ardor of a convert. he

wrote:

I personally entered the casualty insurance field from the completely unassociated field of
statistical research in the banana business. The first year or so I spent proving to myself that
all of the fancy actuarial procedures of the casualty business were mathematically unsound.
They are unsound, if one is bound 1o accept the restrictions implied or specifically placed on
the development of the classical statistical methods. Later on | realized that the hard-shelled
underwriters were recognizing certain facts of life neglected by the statistical theorists. Now I
am convinced that casualty insurance statisticians are a step ahead of those in most fields.
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This is because there has been a truly epistemological review of the basic conditions of which
their statistics are measurements. [ can only urge a similar review be made by statisticians in
other fields. {4:61]

Bailey [3] sought to ground these procedures in what later became known as Bayesian
analysis. No doubt, in his day statistical theory could not accommodate certain actuarial
ideas. Therefore, he saw the actuarial profession as in “revolt,” as for example when he
wrote:

Philosophers have recently discussed the credibilities to be given to various elements of
knowledge, thus undermining the accepted philosophy of the statisticians. However, it
appears to be only in the actuarial field that there has been an organized revolt against
discarding all prior knowledge when an estimate is to be made using newly acquired data.
[3:9f])

But a revolt involving Bayesian analysis was soon to happen among the statisticians, as
Allen Mayerson remarked in 1964:

Statistical theory has now caught up with the actuary’s problems. Starting with the 1954
book by Savage, and buttressed by the 1959 volume by Schiaifer and the 1961 book by
Raiffa and Schlaifer, there has been, among probabilists and statisticians, an organized
revolt against the classical approach and a trend toward the use of prior knowledge for
statistical inference.

The relationship between Bayes™ theorem and credibility was first noticed by Arthur
Bailey, who showed that the formula Z4+(]-Z)B can be derived from Bayes’ theorem ...

It seems appropriate, in view of the growing interest among statisticians in the Bayesian
point of view, to attempt to continue the work started 15 vears ago by Bailey, and, using
modem probability concepts, try to develop a theory of credibility which will bridge the
gap that now separates the actuarial from the statistical world. [10:85f]

Bayesian analysis has continued to be a popular basis of credibility theory. [t plays a
prominent role in Gary Venter's momentous chapter on credibility in the Foundations
textbook [13]. But Bailey’s seminal idea was a “‘greatest accuracy credibility” [2:20]. of

which Venter writes:
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The most well developed approach to greatest accuracy credibility is least squares
credibility, which seeks to minimize the expected value of the square of the estimation
error ...

More recent statistical theory, Bayesian analysis for example, also addresses the use of
data to update previous estimates, and this will be introduced later below. Credibility
theory shares with Bayesian analysis the outlook toward data as strictly a source to update
prior knowledge. Credibility, particularly least squares credibility is sometimes labeled
Bayesian or empirical Bayesian for this reason. It also gives the sate result as Bayesian
analysis in some circumstances, although credibility theory can be developed within the
frequentist view of probability ...

Frequentist refers to an interpretation of probability as solely an expression of the relative
frequency of events, in contrast to a subjectivist view which regards probability as a
quantification of opinion. This latter view is a hallmark of Bayesian analysis. [13:384]

This quotation clearly indicates that Bayesian analysis is not the be-all and end-all of
credibility theory. Rather, despite some similarities, greatest accuracy credibility is
independent from Bayesian analysis, and especially from the on-going philosophical debate
between the frequentists and the subjectivists. With all the limelight on Bayesian analysis,
actuaries have not realized that statistical theory now has some non-Bayesian things to say
about credibility. In particular, modern statistical modeling can accommodate the three
“otfending” credibility procedures mentioned above; moreover, it provides a richer world of

ideas than the one-dimensional formula Z4+({-Z)B.

3. An Overview of the Linear Statistical Model

In an earlier paper (7] the author treated the best linear unbiased estimation (BLUE) of the
linear statistical model. That treatment was detailed and self-contained; so the author will
assume it, rather than derive it. In Appendix C of that paper the author compared BLUE

with Gary Venter's formulation of least-squares credibility [13:418], and concluded:

Thus Venter is essentially doing best linear unbiased estimation on a linear model. The
author hopes that actuaries will begin to see the subject of credibility from the perspective
of statistical modeling. [7:335]
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It is for the purpose of realizing that hope that the present paper is written.

The form of a linear? statistical model is y = XB +e, where Var[e]=E =o’®. In this
model y and e are (rx1) vectors. X is a (fxk) matrix, P is a (kx1) vector, and Z and P are
(rxf) matrices. The design matrix X is known, or posited; y is observed. Although the
parameter vector B is not known, it is not random; an estimator of f§ is random, but [ itself
is not. What injects randomness into the vector y is the error term e. e is not observable:
however, E[e] = 0., and Var[e] is known, or posited, at least to within a proportionality

constant, i.e., Var[e] c ®. No assumption is made as to the probability distribution of e.

Most presentations of the linear statistical model dwell on how to estimate 3, but there is a
wider approach. Suppose that the ¢ rows of the y are of two types, those which have been
observed and those which have not. The observed portion of y we will call y, and say that
it is (f;x1); the unobserved will be y, and (,x1). Of course, 1; + 1, =t. We can also arrange
the rows of the model so that the observed portion comes first. Similarly partition X and e,
so that the model looks like:

y, =XBte l:ﬁ:l l:zn z]z] 2 zliq)n (Dlz}
, where Var =X = =g'db=c
Y, = X,B+e, €, Ly Zy D, D,

Since variance matrices are symmetric (cf. [7:304] and [8:43]), £y; = Z;2" and @, = D"

Being unobserved, y» contains missing values. The problem is to formulate an estimator of

y2 based on yy, X, and X. In particular, we want the estimator to be linear in yy, to be
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unbiased, and to be in some way best; i.e.,, we want the best linear unbiased estimator

(BLUE) of y2. In Appendix C of the earlier paper [7] it is shown that the BLUE of y; is:

¥, = X,B+ 2,200 (y, - X,B)
Varly, - ¥.]= Ly = EnZ0 5, +(X, - £, X0 X, Var[BI(X, - E,,Z;/X,)’, where
B=(xlz;3x,)"x;2,‘1‘y, and
Var[B] = (X;Z,{ X))

This is equivalent to:

¥, =X [5+CD,,(DH y,-X B)
Varly, - §,]=6*(®,, — 0,0 ®D,) +(X, - D, (D”X)Var[B](X -, ®;'X,), where
ﬁ =(X®'X,) "' X!y, and
Var[f] = o* (X 0;X,)"

JUPIREI
1 _ ed ¢

. where &, =y, —X,ﬁ

If 6% is not known, it can be unbiasedly estimated as &

(7:333f].

What does it mean for ¥, to be best? As explained in Appendix A, of two competing linear
unbiased estimators the best estimator is the one the variance of whose prediction error is
smaller:

Varly, -y,].<. Vary, -¥,]. o
O'S-vaI[YQ -¥,]- Varly, —)’3]

This means that the right-hand side of the second inequality is a non-negative definite
matrix. The estimator with the caret is at least as good as the one with the tilde; and if the

expression is non-zero, it is better.
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Before applying this overview to credibility, the next two sections will warm the reader up

with two simple linear models. Prior to riding a horse it is wise to practice on ponies.
4, The Simplest Statistical Model (Example 1)

Suppose that we have seven non-covarying and identically distributed observations of a
random variable: 6.164, 11.103, 9.663, 12.998, 10,329, 9.564. and 9.602. A simple model
of the i observation (i = 1, ... . 7) is y. = B + e, where Varfe] = . The matrix
formulation is:

(6164 1
11103 I
9.663 1
12998 =y =Xp+e=|!

10329 1
9.564 1

1 9.602 | 1]

B+e

Since the observations are non-covarying and identically distributed, Varfe] = 6’l;. In this

Zl*}'i

simple example fi =(X'X)'(X'y)= Zl*l =y =9.917. So the parameter is the mean of

the observations. and the estimator of o is the sample variance ( = 4.240). One might react
that this is like using a sledgehammer to crack a walnut: “Why go to all this trouble when
the mean and the variance are the obvious solutions from the start?”’ The answer., however,
deserves to be pondered: This model, the simplest of all, undergirds the mean and variance
functions; these functions are in reality pre-packaged solutions of the simplest linear

model.
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Exhibits 1 and 2 present and solve this model. The seven observations are contained in y;.
Since these observations are non-covarying, the off-diagonal elements of @, are zero; since
they are identically distributed, the diagonal elements of @, are equal (ones). Thus,
according to the formulas of the previous section (which are repeated in the exhibits), # and

its variance may be estimated.

However, in this example we have chosen to estimate. or to predict, a certain (11x1) vector
y2 = X5B + e;. What y; estimates is determined by X,, @3, and ®. The first seven
elements of y, have the same variance as e; and are perfectly correlated with e;. This
means that as far as this statistical model is concerned, these seven elements are
indiscernible from e, and hence are e;. The eighth element of y, models the constant 0.
The ninth element models a new error term, i.e., an error term which has the same variance
as ¢; but does not covary with e;. The last two elements of y, model § without an error
term and with a new error term. Exhibit 2 derives the estimate of y, and the variance of its

prediction error.

5. Another Simple Statistical Model (Example 2)

Exhibits 3 and 4 concern a slightly less simple example. We have actual utility expenses

for thirteen months (Sep93-Sep96). For each of these months there is a suitable utility

index. We desire to estimate the expenses for the next three months (Oct96-Dec96), and

are comfortable with 160, 162, and 168 as predictions of the utility index.
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Many actuaries would simply rescale the last month’s expenses. For example, Oct96
expenses are expected to be 2,192*(160/156.779) = 2,237. But this ignores the information
from the earlier months. If one were to do a similar calculation for the other twelve months,
one would then have thirteen estimates in need of combination. If this combination were

performed correctly, one would be doing a statistical mode! in a roundabout manner.

Exhibit 4 tackles the problem directly. The observed expenses are equal to P times the
utility index plus a error term. However, ®|; is not of constant variance. It seems
reasonable for the standard deviation of expenses to be proportional to the utility index
(e.g., if prices were to double, the expense swings would double). This causes the variances
of the expenses to be proportional to the squares of the utility indices, which squares are
found along the diagonals of @y, and ®;. Each month’s error is assumed not to covary
with the other months’ errors. In this exhibit B and y; are estimated in accordance with the

formulas already mentioned. One can also take linear combinations of y; and of the

2,339
variance of its prediction error. For example [1 1 l]ﬁz =[1 1 1] 2,368 =[7,163] is
2,456

the estimated expense for the entire fourth quarter. Moreover, the variance of its prediction

1 40672 2941 3050 |1
error is [1 1 1Varly,-9,]1[=[1 1 1] 2941 41695 3089 | 1|=[145370], for a
I 3050 3089 44841 1

standard deviation of 381.
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6. A Simple Example of 2 Model with Prior Information (Example 3)

Now that we have warmed up on two simple models, let us see how to express credibility in
a statistical model. We rcturn again to the seven observations of Example 1 (Exhibit 1).
The numbers 6.164, ... , 9.602 were actually generated as random numbers with mean {0
and variance 4. Therefore, the mean and variance estimates of 9.917 and 4.240 are close.

Of course, if one knew the true parameters, they would not need to be estimated.

But suppose that prior to observation we believed (for whatever reason) that the mean is 11
and the variance is 3. Could we benefit from combining observation with our prior belief?
(We will assume that the prior belief is well-founded, so that it is prior information, rather
than prior misinformation.) The answer is “Yes;” it is possible, even advisable, to combine

prior information with observation.

One way of combining is Bayesian inference (Appendix B). But a simpler way is to treat
the prior information as if it had been observed. Therefore, in Exhibit 5 the prior
information is appended to the observations as an eighth row (separated from the genuine
observations by a light line). In an earlier paper the author referred to prior information as
quasi-observation [7:Section 6 and Appendix E]. Judge [8] refers to observation as sample
information and to prior information as non-sample information. Combining the two is
called mixed estimation [8:877]. Our formulation of this hybrid model, which differs only

slightly from Judge’s, is:
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So the best linear unbiased estimator of B is:

(9 SR e I
o P e s LT

= (X' X+ RVIR) (XEy + RV )

I

Il

Certain properties of this estimator are explored in Appendices A and B. In particular, the
estimator is a matrix-weighted average of more familiar estimators and has a smaller
variance. These properties depend on the block diagonality of the hybrid variance matrix.
le.. that e and v do not covary. This is a natural assumption; however, the estimator can

accommeodate covariance if these properties are surrendered.

Exhibit 5 works out the mixed estimate of B as 10.099. This is equivalent to what actuaries
would call a weighted-average of the data with the prior hypothesis, where the weight of the
data, 0.832. results from the well-known n/(n+k) formula. It is interesting. perhaps
surprising, that the variance of the mixed estimator, 0.904. is less than both the variance
from the unmixed model (4.240) and the variance of the prior hypothesis (3.000). This

synergy of combination is analyzed in Appendix A.
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One complicating detail of this model has to do with the variance matrix. Usually we
specify the variance matrix not absolutely, but relatively, or to within a proportionality
constant. In other words, in the model y = Xp+e, where Var[e] = & = o°®, the estimator of
B is invariant to the scale of £. So we usually specify @, calculate the estimator of B, and
then derive an estimate of 2. In the unusual event that V/o* is known (or, V is known to
within the same proportionality constant to within which Z is known), then one can use the
mixed estimator with the relative hybrid variance matrix. However, the usual case is that V

is known absolutely and ¥ is known relatively. In this case the author recommends that o’
6,2
be estimated in the unmixed model, and that the absolute matrix [ V} be used in the

mixed model. (This implies that one should solve the unmixed model as a prelude to
solving the mixed.) This was done in Exhibit 5, where the 4.240 down the diagonal of &y,
is the estimate of the a® of Example 1. Using an estimate of the absolute variance for the
absolute variance itself disturbs the optimality (the “bestness™ of “best linear unbiased™) of
the estimator; however, statisticians and econometricians feel that this is a small price to
pay for the benefit derived from combining observation with prior information. Moreover,
the estimate of ¢* in the mixed model (0.904 in Exhibit 5) will not significantly differ from
1 if the absolute variance matrix is correct. Therefore, one can assume the estimator of o°
in the mixed madel to be a chi-square random variable with df degrees of freedom divided
by df (i.e., a gamma random variable with mean | and variance 2/df) and can perform a
significance test. But seldom is there a problem, and this will not be mentioned again in the

following examples.
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7. A Statistical Model of Merit Rating (Example 4)

A simple method of merit rating a driver is to make the premium proportional to the
expected number of accidents. This ignores differences of severity, e.g., driver A is half as
likely to have an accident as driver B, but perhaps his accidents are likely to be twice as
severe. However, as with experience rating in workers’ compensation, it is natural to
suppose that the insured has more control over whether an accident will happen than over
how severe it will be. So we wish to estimate a driver’s accident frequency, and the
problem is to determine how much a driver’s accident record should differentiate him from

his peers.

Lester Dropkin paved the way for a Bayesian solution, viz., that every driver has his own

accident frequency m, and that the number of his claims is Poisson distributed with mean m.

-m 3

- . .om . .
Therefore, the probability of x claims is —e. Moreover, the frequencies of the drivers
X

of a certain class are gamma-distributed with parameters » and ¢ [5:392f]. So the

r

probability density function of the ms is a—e“”"m"'. and the ms are distributed with

r{r)
mean r/a and variance r/a®. As Dropkin showed [5:399], the claim count distribution of a

driver randomly selected from the class is negative binomial with mean r/a and variance

ra+l

a a
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But the posterior density of a driver’s one-period m given x; . ... | x, accidents in n previous

periods is proportional or equal to:

T
o glermimy, 2]

reva .
) e T

Fr+¥x)
This posterior density is gamma with parameters r'=r+Yx and o' =a+n. The

posterior mean, to which the merit-rated premium should be proportional, is a weighted
average of the prior mean (r/a) and the empirical mean (cf. also [10:99-101 1y

r-*‘-?x
205

»
a  a+n

a+n

a—+n=—

r X,
a n

a+n

r =
a—+tnx
a
atn

The same result is obtained from the following linear model:

o] [1] [e e] [rfa 0 0 : 0
Ll B+ : . where Var Ho| oo 0o

X, 1 e, e, 0 0 sa D

rla 1 v J v 0 0 0 rfd’
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Each x, is explained as some mean value P plus an error, where the error is like a Poisson
random variable (with parameter r/a) centered about zero. But the last row is a quasi-
observation: it is as if B had been observed as r/a but obfuscated with an error whose

variance is #/a°. The mixed estimator is:

bo||’ 0 .0 0 1o 0 0
1 0 0 rla © 1 {0 0 rlfa © x,
1jo o o sl 1]l [1]{0 0 0 rla’]|r/a
afr 0 0 0 I’ afr 0 0 0 Tx
0 . 0 0| 0 . 0 o lI:
=t - 1] [I - 1 1]
0 0 a/r 0 |1 0 0 a/r 0 |x,
0 0 0 a'/r|l 0 0 0 d*fr|r/a
a ar
-t t-x t——
= ¥ r a
a a U:
S S
¥ ¥ 14

The statistical model reaches the same conclusion without assuming a distributional form.

Exhibit 6 shows another example of merit rating. A driver had one accident in the second
of three periods (years). The variance of his yearly accidents is assumed to be 0.0625
(standard deviation of 0.25). But there is prior information that drivers of this class are
expected to have 0.25 claims per period with a variance of 0.0225 (standard deviation of
0.15). In Part A of the exhibit the three years are three onc-year observations. But in Part B

they are summarized into one three-year observation. The estimates are the same in both
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parts, but their variances differ. This hints that summarization is attended with loss of
information about prediction error variance. An amount of 1 over three years could mean
1/3 each year and no apparent variance. Or it could mean widely varying positive and
negative amounts by year and an arbitrarily large variance. If actuaries wish to speak of

variances, then they should know where to stop summarizing the data.

8. Stochastic and Exact Constraints (Example 5)

The prior information, or the quasi-observation, r = RB+v is a stochastic constraint since v
does not have to be zero. However, as V = Var[v] approaches a zero matrix, the constraint
behaves more and more like the exact constraint r = RB. In an earlier paper [6:26] the
author filled out a loss triangle by means of estimated pure premiums by payout year. But
the pure premiums by year were exactly constrained so that the sum of the first seven of
them (the pure premium of payments before 84 months) was 7.213. Exhibit 7 shows that
the same result is obtained by adding a quasi-observation that this sum is 7.213 with a error
whose variance is 107 relative to the variances of the observations.’ Exhibit 8 shows how
different the estimate is when the constraint is relaxed. (One should not suppose that the
estimates of o in the two exhibits are equal; they differ by about six million.) Appendix C
proves that the mixed model (stochastically constrained model) approaches the (non-

stochastically) constrained model as V approaches zero.
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9. Credibility and Random Effects (Example 6)

So far, credibility has been statistically modeled by adding quasi-observations to
observations, i.e., by mixing non-sample with sample information. The non-sample
information is aptly considered to be logically prior to, if not also temporally prior to, the
sample information. It too may have been derived from a sample; but if so, its sample is a
different sample. If the two samples are grouped into a grand statistical model, such as the
first grand model of Appendix A, the submodels are naturally considered as non-
simultaneous, or temporally extensive or longitudinal. For example, if we begin observing
the pure premium of State X with the prior opinion that it is 0.10 with a standard deviation
of 0.02, we opine thus because in the past we have observed the pure premiums of similar

States A, B, ... .

But credibility may also involve the simultaneous modeling of similar entities. Each entity
has its own model, and the models are grouped into a grand model; however, the
(sub)models are simultaneous, or temporally intensive or latitudinal. Example 6, which
begins with Exhibit 9, will illustrate this concept. This example, taken from Venter
[13:433], consists of six observations of a pure premium from each of nine states. If the
pure premi-ums wetre unrelated, then one could do no better than to solve nine independent
models (to take nine averages). If the pure premiums had to be equal, then one could do no
better than to average the fifty-four observations. But an actuary would rightly feel that the
truth lies in between these two extremes: the pure premiums of the states are neither

unrelated nor identical. The pure premium of one state is related with those of the other
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states, but it also has some identity of its own. A natural way of expressing this is to
assume that the pure premiums deviate randomly from a common value, e.g., B, = o * V.
Bo is the (fixed) effect common to all the states, and v, is the (random) effect which
differentiates State / from the other states. Each v, is distributed with mean zero and some
{known or unknown) variance V, and the v,s do not covary one with another. It is this

assumption of being distributed that makes the effect random.

For the moment we will abstract from the example. In general we have n models, each of
the form y, = X3, + e, where Var[e,] = £, and the es do not covary. At this point we have »
independent models. But now we introduce the random-effects linkage, viz., that §, = Bg +

v,. Now each mode! becomes:

v, =XB, Te,

=X, (B, +v,)+e,
=XB, +(X,v, +e,)
=XpBotr,,

where E[t, ] =X E[v, |+ E[e, |
=0

and Var[t, J= X,Var[v,]Xj + Var[e‘]
=X VX' +Z,
=’]"

The formula for Var[t,] assumes that v, and e, do not covary. Moreover, since v, and ¢, do
not covary across groups, the t.s do not covary one with another. Thus we have the grand

Y, X, T T T,
model in Bo: | © |=| ¢ [Bo+| i |, where Var| © |= . The solution of this
Y, X T T T,

n n n n

model presents no difficulties, as long as V is known.” Hence, the only difficulty of this
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form of credibility is to estimate V, the random-effects variance, if one has no prior

information about it.

So the difficult task of Example 6 is 10 estimate the P, and their common variance.® This
involves first solving the model as if it were a fixed-effects model, as in Exhibit 10. The
estimate of B in this exhibit contains the nine group means, which are carried over to
Exhibit 11. The estimate of the grand mean P is 0.563, and the variance of the group
means about B is 0.0662.7 It would be a mistake to think that this represents the random-
effects variance, because we have calculated the variance of the estimaies of the B s. rather
than the variance of the B,s themselves. Unlike the s themselves, the estimates of the B.s
are affected by the error terms, the es. So 0.0662 has two variance components, one from
the v,s and one from the e;s, which is the reason for labeling it Var[v+e]. Back in Exhibit 10
the variance of [} was estimated as if the model were a fixed-effects model. The vartance of
the grand parameter of a fixed-effects model must be (kxk) block diagonal (here & cquals
one); and it is reasonable to attribute these variances to the es. Since the v,s and the es do
not covary, one can estimate V by averaging the differences of these variances from
Var[v+e]; thus V is estimated to be 0.0067.% Exhibit 11 goes on to show that we have
derived the expected value of the process variance (EVPV) and the variance of the
hypothetical means (VHM). which implies to an actuary that the credibility of each group is

10.1%. This will be checked at the end of the example.

But now we can estimate Var[X v, +e |= Var[1,]= X, VX +Z, . which the exhibit calls

the @ for each group. In Exhibit 12 the random-effects model is solved for the grand



parameter By, and the variance matrix of this model is block diagonal in ¢. But we are
more interested in estimating the B,s (where 8, = B¢ + v,) than we are in estimating fo. S0
in Exhibit 13 we formulate y; as an estimator of these 3,5 (we also leave an estimator of fg

1
in its first row): y, =|:|B,, and the covariance matrix O, takes the v;s into account. (See
1

the discussion of the covariance matrix Tz, in Appendix E for details.) So the estimate of
vz is obtained from the familiar formula ¥, = X,B, +(D21®l'l'{yl —Xlﬁo). The exhibit
illustrates that this estimator is equivalent to giving the fixed-effects estimators 10.1%

credibility against the grand mean, as well as that the simple average of the ﬁ,s is ﬁo.

Appendix E backs up these specific illustrations with general proofs.

The results are the same as Venter's [13:432f]. One might question whether anything has
been gained by the setting up of a statistical model. Venter’s discussion of credibility is
hard enough for actuaries to understand; statistically modeling credibility may seem even
harder. However, after developing some familiarity with best linear unbiased estimation,
one will find it to be the more natural and more powerful way of handling credibility.
Three reasons for its being more powerful are; 1) statistical modeling preserves two
moments (the variance as well as the mean), 2) combinations of the parameter estimates can
be estimated, and 3) it allows for multidimensional credibility. The third reason will be

illustrated in the following trend model.
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10. Random-Effects Credibility and Trend Modeling (Example 7)

A simulation of loss ratios for nine states over a six-year period is shown in Exhibit 14, and
is graphed in Exhibit 15. Simulating nine states makes for a cluttered graph; however, as a
practical matter, the reliable estimation of a random-effects variance requires enough data
to distinguish the groups from one another. This requires a fair number of groups and/or a
fair number of observations per group. The author knows of no rule as to what is a “fair”
number, but a “fair” number of groups is probably not much less than the nine of this and

the previous example. An upward trend is evident in the graph; but the states obviously

have different slopes and intercepts. In fact, State G seems to have a negative slope.

Exhibit 16 solves the problem as a fixed-effects model, with the (18x1) [% containing the
(2x1) trend parameters of the nine states. The variance of the error matrix (®) is lss, which

00011 —0.0003}

simplifies the formulas. Va:[fi] is diagonal in the same (2x2) block
-0.0003  0.0001

which, as mentioned in the previous section, means that the model is balanced. The trend
parameters vary widely by state, and State G is showing a negative slope. But will the

negative slope be credible?

The random-effects variance is estimated in Exhibit 17. The mean state parameter is

{42.3%

0.0033 -0.0005
2.7% ’

, and the individual states’ t bout it b
} and the individual states’ parameters vary about it by |:—0.0005 0.0006

Removing the effect of the error term, we are left with the estimated random-effects
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0.0022 -0.0003

—0.0003 0.0005} 2 The variance of the intercept is greater than that of the

variance V = [

slope (0.0022 versus 0.0005). Also, the intercept and the slope negatively covary (—0.0003,
or a correlation coefficient of —-27.0%). This is common in random-effects trend models:
there seems to be a centroid through which every group pivots. So a higher than average
intercept tends to pair with a lower than average slope. and vice versa. The exhibit then

derives the @ matrix for the random-effects model.

The random-effects trend model is set up and solved in Exhibit 18. From the previous

section and Appendix E, and because of the balance, it comes as no surprise that the grand

» [42.3%

parameter B, = 2 7% ] , the simple average of the fixed-effects parameters. But we really
. 0

want to estimate the states’ trends, which are sums of the grand parameter and the random
effects. This is accomplished in Exhibit 19, in which the most difficult concept is @,;. The

blocks of this matrix represent how B, =B, + v, covaries withy, = X B, +e,:

Cov[[}, , y,]=Cov[B0 +v,, X, (Bs +v,)+e,]
= Cov[[?»o +v,, XB, t X, +e,]
= Cov[v, , X, v, +e,]
=Cov[v,, X,v,]+Cov]v, ,e,]
=Cov[v,, X,v,]
=Covv,, v, |X;
= Varv,|X;
= VX!

The usual formula for ¥, yields the random-effects trend parameters by state. State G

remains with a negative slope, though less negative than before.
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In Appendix E the relationship between the fixed-effects and random-effects estimators is

explored. One result is the discovery of a (k*k) matrix Z such that:
Random - effects B, = 7, = Z(Fixed -effects ﬁ) +(I, - Z)ﬁ(,

This is the k-dimensional extension of the well-known scalar (or 1-dimensional) credibility
formula. Exhibit 20 expresses the random-eftects estimates in this Z form. As remarked in
Appendix A, a matrix-weighted average of two vectors is usually not collinear with the two
vectors. But somewhat surprising is that occasionally the matrix-weighted average can fall
outside the range of the two vectors. For example, the posterior slope of State A (5.9%) is
outside the range of the prior and empirical slopes (2.7% and 5.7%). This happens also
with the intercept of State F and with the slope of State H. Non-zero off-diagonal ¢lements

of Z make this possible.
11. Conclusion

Practice precedes theory and systematization. For example, the Egyptians were doing
geometry for centuries before Euclid wrote the Elements. Euclid didn’t discover Geometry;
he didn’t correct it; he may not even have contributed much in the way of new theorems.
But he systematized it, made it rigorous, and enabled centuries of mathematicians to
develop it further. So too, actuaries have been practicing beneficial things under the name
of credibility largely in ignorance of statistical theory. But just as Euclid made Geometry

better, so too the theory of statistical modeling makes credibility better.
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How does credibility benefit? As mentioned at the ends of the Introduction and of Section
9, statistical modeling furnishes the actuary with the variances as well as with the means;
and from this the actuary can work with combinations of estimates. But perhaps most
important, statistical theory and modeling are as at home in » dimensions as in one. When
the author began to study statistics and econometrics he erroneously believed that his linear
algebra and multivariate calculus were sufficient for statistical work. As his background
was typical for an actuary, he can “speak from his own experience and with the ardor of a
convert” (as did Arthur Bailey in a quote of Section 2) that most of us actuaries, even the
technically inclined, are Flatlanders as regards our statistical skills. As our problems
become more complex. as well as the tools with which to solve them, this defect will

become more grievous.

Bailey’s three offending credibility procedures (cf. Section 2) were statistically ahead of
their time. But times have changed, and now it is incumbent upon actuaries to keep up with
the times. The examples of this paper show how these procedures are legitimated and
generalized by current statistical theory. For the use of prior hypotheses in estimation see
Examples 3, 4, and 5. For the estimation of groups together which is more accurate than
cstimating each separately see Examples 6 and 7. And the estimation of an individual that
belongs to a heterogeneous population is in essence a disguised use of a prior hypothesis;
but see especially Section 7. The appendices of the paper lay the theoretical groundwork

for the examples, a groundwork from which credibility has much to gain.
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Notes

! Longley-Cook’s definition is similar: “The word credibility was originally introduced into
actuarial science as a measure of the credence that the actuary believes should be attached
to a particular body of experience for ratemaking purposes.” [9:3] “Predictive value” in the
CAS statement has a more precise meaning that Longley-Cook’s noun “credence.” One
reason for not giving credence to data is that it is suspected of being erroneous. But in
credibility theory the quality of the data is not at issue; it is supposed to be valid data. What
is at issue is the value of the data for predicting.

2 The title of this paper is “Statistical Models and Credibility,” but only /inear statistical
models will be treated. In the earlier paper [7:325f.] the author argued that due to the
multivariate Taylor’s expansion, linearity is not much of a restriction. The interested reader
can refer to Judge, who devotes a chapter of his book to non-linear statistical models
[8:508-511].

? There is an easy way to derive the form of the Poisson distribution with parameter m. One
need only to remember the Taylor series for e™:

* Of course, the results are not really the same, only very close (to within the decimals
shown in the exhibit). Reducing the variance of the quasi-observation still more will at
some point run up against computational problems, and the results will stray. The author
recommends that a tight stochastic constraint should not be substituted for an exact
constraint.

5 As in Section 6, either the Is are known absolutely, in which case V must be known
absolutely, dr the Z,s are known relatively, in which case V must be known to within the
same proportionality constant to within which the s are known.

§ Since in this example the B.s are the means of the groups (the hypothetical means), their
common variance is what actuaries call the variance of the hypothetical means. But in
general, the B,s are (kx1) parameters; so their common variance could be called the variance
of the hypothetical parameters.
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’ Appendix D derives the formulas for the sample mean and variance of n identically
distributed non-covarying (kx1) random vectors.

¥ The fixed-effects model is an instance of the first grand model of Appendix A, where it is
- - -1
B [valBy (xizi'x,)
proved that Var’B] =Var| : [= = - .
B, varlB, | (xizx, )
When the n blocks of this matrix are equal, the submodels are equally influential in the
determination of V. In this situation the corresponding random-effects model is said to be
balanced. Both Examples 6 and 7 are balanced. The estimation of V by variance
components is particularly suited to balanced models. The estimate of the V of an
unbalanced model can be thrown off by the more volatile groups, and can easily end up not
being non-negative definite. Nothing preciudes positing V by prior information, and this
recourse is the more recommended according as the model is the more unbalanced. Also,
Appendix F mentions that V can be estimated by maximum likelihood, which despite its
complexity is sometimes a useful alternative to variance components.
® Compare these estimates with the true values used in the simulation:
40.0% _ 0.0025 -0.0001875
° 71 3.0%]* Y T|-0.0001875  0.000225

bivariate normal random vectors with mean B¢ and variance V, the true B,s were:

} (so p = -25%). And by generating

[ 47.7%
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Normal random variables with a standard d;viation of 4.0% were added to the resulting
trend lines to form the fifty-four loss ratios of Exhibit 14.
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Exhibit 1

Example 1: The Simplest Statistical Model

=g'd

Xp + o, where Varle]

y=

¥, - X.B

Dy,

Y1
6.164

11.103

-3.754
1.185
-0.255

3.080
0.411

-0.315

P

D

X

12.998
10.329

9.602

¥y2

91

of =tk
5
4 240

Xy
G

TR
0.143

X|‘®|1-‘X|

9.917

[ 69.421]

Xl"b‘f'y‘

varfs)
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X — =
7) x @
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Exhibit 2

Example 1. The Simplest Statistical Model (Cont'd)

©2®r Xy DDy LI
1 1 Q Q0 Q Q Q Q 1 o 0 0 Q 0 Q Q 0 Q Q
1 0 1 0 a o 0 0 o] 1 [+ 0 0 0 c o 0 1] 0
1 0 o) 1 0 0 ) 0 0 0 1 0 [} o 0 [¢] 0 0 vl
1 ) o [¢] 1 0 0 [¢] 0 0 Q 1 o [/} 0 Q o [+] 0
1 0 0 0 0 1 Q 0. 0 0 0 [ 1 0 [s] o 0 D) Q
1 1] o [} o 0 1 0 0 o 0 o] o 1 0 o] o] ¢ o
1 D) 0 0 D) 0 o} 1 D) o [ 0 0 0 1 0 [¢] 0 [}
o o [ 4] Q 0 0 ] [} Q 0 0 [} [+] o 0 o 0 4]
0 D 0 0 0 [+ 0 0 0 [} ") 0 0 0 0 0 0 4] 0
0, V) v V] 0 0 0 0 0 0 o o V) 0 0 ] 0 0 o
0| 4] Q Q 0 0 0 0 0 Q 0 Q0 0 0 0 0 Q Q 0

Xz @1y "X, Doy Dy "Dy

-1 o 0 V) 0 0 0 0 0 b 0 )
-1 o] o 4] o 0 0 0 Q 0 Q 0
-1 ] [} Q a Q 1} 4] ] Q Q Q
-1 [} 0 [+ o 0 0 1] 0 Q ] 4
-1 o 0 0 0 0 [} Q o [+] 0 Q
-1 a 0 0 Q 0 0 o Q 0 0 [
-1 Q0 0 o] 0 0 0 0 0 [} 0 0
0 0 ) 0 0 [} 0 [} ) 0 [ 0
0 0 4] o] s o] 0 0 4] 1 0 0
1 0 0 0 o [+] 0 0 0 [} o o
1 4] 0 a0 [+ 0 0 0 0 0 0 1

¥ Varly, -¥,]
-3.754 606 0606 0606 0606 0.606 DE06 0.606 o 0 -0.606 -0606
1.185 0606 0606 0606 0606 0606 0.606 0.606 0 0 -0606 -0.606!
-0.255 0.606 0606 0606 0606 0606 0606 0.606 ] 0 0606 -0.606
3.080 0606 0606 0606 0606 0606 0606 0.606 [ 0 -0606 -0606
0411 0606 0606 0606 0606 0606 0606 0606 [} 0 -0.606 -0606
-0.353 0606 0606 0606 0606 0606 0606 0606 0 0 .0.606 -0606
-0.315 0606 0606 0606 0606 0606 0606 0606 o] 0 -0.606 -0.606
0.000 0 0 0 0 0 [} a [} 0 0 0
0.000 0 0 h) 0 0 0 [¢] 0 4.240 0 [0}
9917 -0.606 -0.606 -0606 -0606 -0606 -0606 -0.606 0 0 0606 0606
9.917 -0.606 -0.606 -0.606 -0606 -0606 -0.606 -0.606 Q 0 0606 4846

Y. = X;fi +(D21¢’\-\1(y‘ - Xvé)

Var[v: ‘92]2 6:(‘])22 —<D2|<D|"'¢,2)+(X2 —®7,®1:X‘)Var[[§](xz ‘®2|®1-|1X|J




Month
95:09
95:10
95:11
95:12
96:01
96:02
96:03
96:04
96:05
96.06
96:07
96:08
96:09
§6:10
96:11
98:12

Index Expense

132.545
134.440
134.820
139.690
146.572
146.745
150.687
155.983
151.240
154.417
158.616
158.302
156.779

160

162

168

1,714
1,804
1,862
2,265
2,553
2,170
2315
2217
2,279
2,293
2,171
2,263
2,192

Expense

170
160

150

130 Y

Exhibit 3

Example 2: Expense Model

Utility Index

2,000

1,500

1.000

500

0 50 100 150 200
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Exhibit 4
Example 2: Expense Mode! {Cont'd)

y = Xp + e, where Vare] = a’®

Y1 X4 Dy D,y ¥y, - XB
1714 132545 17568 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 224
1,804 134.440 0 18074 0 0 0 o 0 0 ] 0 0 0 0 0 0 0 -161
1,862 134.820 0 0 18176 0 0 0 0 0 0 0 0 0 0 0 0 0 -109
2,265 139.690 0 0 0 19513 0 0 0 0 0 0 0 0 0 0 0 0 223
2,553 146.572 0 0 0 0 21483 0 0 0 0 0 0 0 0 0 0 0 410
2,170 148.745 0 0 ! 0 Q21534 0 0 0 0 0 0 0 a 0 0 25
2,315 150.687 0 0 0 0 0 0 22707 0 0 0 0 0 0 0 0 0 112
2,217 155.983 0 o 0 0 0 0 0 24331 0 0 0 0 0 0 0 0 53
2,279 151.240 0 0 0 0 0 0 0 0 22874 0 0 o 0 0 0 0 68
2,293 154,417 0 0 0 0 0 0 0 0 0 23845 0 0 0 0 0 0 36
2,171 158.616 0 0 0 0 0 0 0 0 0 0 25159 0 0 0 0 o} -148
2,263 158.302 0 0 0 0 0 0 0 0 0 0 0 25060 0 0 0 0 51
2,192 156.779 0 0 0 0 0 o 0 0 0 0 0 0 24580 0 0 0 -100
¥z X2 @21 @2
- 160 0 0 0 0 0 0 0 0 0 0 0 0 0 25600 0 0
- 162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26244 0
- 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28224
Xi'®yy"y, Xy @', X'y df =tk
[190.039] | 13] [0.008 0007 0.007 0007 0.007 0007 0.007 0006 0.007 0006 0006 0.006 0006|
B Xidy'xy?! &’
[ 1asi8) [ 0077] 1475
Var [B ]
;'z Vatyz _921
2,339 40672 2941 3050
2,368 2941 41695 3089

2,456

3050 3089 44841
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Exhibit &
Example 3: Example 1 with Prior Information

y = X + e, where Var{e] = o’®

|4 X 28 yi- X ‘,j
6.164 1 4240 0 0 0 0 0 0 0 -3.936
11.103 1 0 4240 0 0 0 0 0 0 1.004
9.663 1 0 0 4.240 0 0 0 0 0 -0.437
12.998 1 0 0 0 4240 0 0 0 0 2.898
10.329 1 0 0 0 0 4.240 o} 0 0 0.229
9.564 1 0 0 0 0 0 4.240 0 0 -0.535
9602 1 0 0 o 0 0 04240 0 -0.497
11.000 i 0 0 0 0 0 0 0 3.000 0.901
X1'¢‘n_1)'1 X1'®""X1 Xllwﬂ.‘ df =tk
[ 20.038] [1.984155] [0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.333] | 71
B (Xeon Xy G?
[ 10099 [ 0.504] 0.904
Va r[B ]
Credibility-Weighed Estimate Credibility Weight
Prior 11.000 0.168 EVPV (67 4.240
Empirical 9.917 Z= 0832 VHM (1) 3.000
Posterior 10.099 1.000 k = EVPVVHM 1413
n 7
Z = nl(n+k) 0.832




Exhibit 6
Example 4: Merit Rating

A. Separate Observations

Ys X, Dy D1 ¥, - X B
0 1 0.0625 0 0 0 0 -0.293
1 1 0 0.0625 0 0 0 0.707
of | Il 0 000625 0 o| |-0.293
| 025 1] | 0 0 0 0.0225 0 -0.043
Y2 Xz ®; D2
[ -1 EI 0 0 0 0] [0.0625
X1'¢11"y1 X,'KD”"X' X1'<I’n-‘l df =tk
[(27711] [9244444] [ 16 16 16_44.444]
B X'y X! 6t
| 0293 [ o0011] 3.600
Va r[[] ]
0.039 .
92 Va'[yz "Y2]
B. Summarized Observations
Y1 X1 d’1'! d:'21 Y- X1ﬁ
1 3 0.1875 0 0 0.120
625 [ 1| [ o 00228 0 -0.043
Y2 X2 Dy, ®z
[ -1 [ 1 [ 0 [ 0.0625
X1‘¢‘11-|Y1 X1'°11-1X1 X1'®11-1 df = ty-k
[27.111] [92.44444] 16_44.444]
. ﬁ (Xy'Dy'X)"! 5!
[ 0283 [ o0.011] 0.160
Va r[ﬁ ]
:
A Vary, -¥,]
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Exhibit 7

Example 5: Stochastic Constraint for Exact Constraint

Year Age y X o y-Xp
1988 12[ 268,354 131332 1 32,538
1688 24{ 186572 131332 1 : -88,489
1988 38| 32,329 131332 i -133,541
1988 48] 53,810 131332 59,763
1988 80| 8,124 131332 63,069
1988 72| 16,924 131332 44,381
1988 84| 39,108 131332 -7.552
1988 12| 248,981 141872 -5.244
1080 24| 359,380 141672 84,237
1989 38| 229,016 141872 50,087
1989 48] 89,539, 141872 52,780
1989 80| 118,835 141672 41,837
1988 72| 100,292 141872 34,150
1980 12[ 203,178 141677 48,056
1990 24| 375,768 141877 100.815
1950 38} 276,847 141877 97.882
1990 48| 74,812 141677 47,392
1990 80| 86428 141677 2827
1891 12| 385,830 142578 141,793
1981 24| 260,843 142578 18,259
1991 38| 167709 142578 : 12,384
1981 48] 270.882 142578 147,611
1992 12| 207.8¢8 143288 ' 47,399
1992 24| 174815 143288 103,661
1992 38| 162,840 143286 18,327
1993 12 167,689 138262 -78.472
1993 24| 280,178/ 138262 11,659
1994 12| 215740 121858 _ . _ L Ao -1,208
R FIE R T R D P eSS 9.92E-07
Xo'y XX xo' =tk
7.21E415 1E+15  1E+15  1E+15  1E«15  1E+15  1E+15  1E+1S 1E+05 1E+05 1E+15
7.21E+15 1E+15  1€+415  {E+15 1E#15  1E+15  1E+15  1E+15 1E+05 1E+15
7.21E+15 1E+15  1E+15  1E415  1E+15  1E+15 1E+15  1E+15 1E+15
7.21E+15 1E+15  1E+15  1E+15  1E+15  1E#15  1E+15  1E#15 1E+15
7.21E+15 1E+15  1E+15  1EMS5  1E+15  1E»15  1E+15  1E+15 1E+15
7.21E+15 1E+15  1E+15  1E+15  1E+15  1E+15  1E#15  1E+1S 1E+15
721E+5 1E+15 1E+15 1E+15 1E+15 1E+15 1E+15 1E+15 1E+15
§ ey
1.780 7.16E-12 4 6E-13 -54E-13 -69E-13 8.3E-13 .14E-12
1.842 48E-13 BO1E-12 8.1E-13 -78E-13 -11E-12 -1.8E-12
1.263 -5.4E-13 B1E-13 9.45E-12 93E13 -1.3E-12 -19E12
0.863 -8.6E-13 -7.8E-13 -0.3E-13 1.17E-11 -16E-12 -24E-12
0.542 -8.3E-13 -1.1E-12 -1.3E42 -16E-12 1.53E-11 .3.3E-12
0.487 -14E.12 -1.BE-12 -1.9E-12 -24E-12 -3.3E-12 217E.-11
0.355 31612 -3.5E-12 4.2E-12 -5.3E-12 -7.1E-12 -1.1E-A1
7.213 R
Vu[ﬂ]
0.04490 -0.00288 -0.00342 -0.00432 -0.00585 -0.00899 -0.01948
-0.00288 0.05021 -0.00385 -0.00488 -D.00559 -0.01013 -0.02182
-0.00342 -0.00385 0.05624 -0.00581 .0.00787 -0.01210 .0 02619
-0.00432 -0.00486 .0.00581 0.07335 -0.00885 -0.01530 -0.03310
-0.00585 -0.00659 -0.00787 -0.00995 0.09581 -0.02072 -0.04483
-0.00809 -0.01013 -0.01210 -0.01530 -0.02072 0.13819 -0.06894
-0.01946 -002192 -0.026819 -0.03310 -D.044B3 -0.08884 0.21445
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Exhibit 8

Example 5: Stochastic Constraint for Exact Constraint (Cont'd)

Year Age y X o) y-Xp
1988 12[ 266,354 131332 1 33523
1988 24 166,572 131332 1 -87.379
1988 36| 32,329 131332 -132.215
1988 48| 53,610 131332 -58,087
1988 60| 8,124 131332 60,799
1988 72| 16,924 131332 40900
1988 84) 29,108 131332 0
1989 12| 246.981 141672 4,181
1889 24| 358,380 141672 85.434
1989 36| 229.016 141672 51517
1989 48| 69,539 141672 -50.952
1989 60| 118.635 141672 44,285
1989 72| 100,292 141672 37.915
1990 12| 203.178 141677 47.993
1950 24| 375768 141677 101.813
1990 36| 276,617 141677 99.112
1980 48| 74,912 141677 45,584
1980 60| 86,428 141677 12,076
1991 12| 395,630 142578 142,862
1991 24| 260843 142578 -15.054
1991 36] 167.708 142578 -10.925
1991 48| 270,692 142578 149,430
1992 12{ 207.898 143286 46.324
1992 24| 174615 143286 +102,450
1992 36| 162,640 143286 -16.880
1993 12| 167.681 138262 -77.435
1993 24| 280,178 138262 12,827
1994 12| 215740 121858 1 -294
1213 1 1 1 1 i i 1 1 0140171
xely x0'% X0’ ot =1k
23E+11)  [T32E+11 1 7 1 T 1 1 [iE+os TE+05 1 22
2276411 t 7B 1 1 1 1 t 1E+05 1
123E+1) 1 1 983E+10 i ' 1 1 '
661E+10 1 1 1 777E+10 1 1 ' 1
301E+10 1 1 s 1 574E+10 1 1 1
164E+10 1 1 1 1 1 373E+10 1 1
5 14E+09 i 1 1 1 1 1 1726410 1
B xo'x) " 5°
1773 756E-12 -64E-23 77E-23 -97E-23 -13E-22 2627 -44E-22
1934 64E:23 862E42 BTE2 -1IE2 5E22 2IER AN
1253 77E23 -B7E23 102611 -13E-22 -18E-22 -27E-22 -59E-22
0850 BTE23 11622 -13E-22 120€-11 22622 -34E-22 7 5E-22
0525 1.3E-22 -15E22 -1.8E-22 -22E-22 174E-11 47E-22  -1E-2T
0440 -2E-22 -23E-22 -27E-22 -34E-22 47E-22 268E-11 -16E-21
0298 44E-22 49E-22 -59E-22 -7.5E-22 -1E-21 -16E-21 58E.1S
7073 "
varlB]
004739 000000 000000 000000 000000 0.00000 000000
000000 005338 000000 000000 000000 000000 0.00000
000000 000000 006377 000000 0.00000 000000 000000
0.00D0O 0ODCOO 0O0ODCO ©OBOBT  .0000C 0 0DDOD  0.0ODOD
0.00000 000000 000000 000000 0.10917 0.00000 000000
000000 000000 000000 0.00000 0.00000 0.16788 000000
000000 000000 000000 0.00000 000000 000000 036325
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Example 6: The Simplest Random-Effects Model

Exhibit 9

Preliminary Fixed-Effects Model

y
0.430
0378
2.341
0175
1.016
0.466
0.247
1.587
1.939
0712
0.054
0.261
0.661
0.237
0.063
0.260
0.602
0.700
0.182
0.351
0.011
0.022
0.019
0.262
0.311
0.664
1.002
0.038
0.370
2.502
0301
0.253

0.109
2.105
0.891
0219
1.186
0.431
1.405
0.241
0.804
0.002
0.088
0.235
0.018
0713
0.208
0.796
0.260
0.932
0.857

0.129
0.349

- s

[ Y

A o

[

a4 s

s

a4 aa s A

- e

A s a
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Exhibit 10

Example 6: The Simplest Random-Effects Model (Cont'd)

Solution of Fixed Effects

Xy XX
4.803 6 0 0 0 0 0 0 0 0
4.800 0 6 0 0 0 0 0 0 0
2513 0 0 6 0 0 0 0 0 0
0.837 0 0 0 6 0 0 0 0 0
4.887 0 0 0 0 6 ) 0 0 0
3.703 0 0 0 0 0 6 0 0 0
4.286 0 0 0 0 0 0 6 0 0
1.234 0 0 0 0 0 0 0 6 0
3.323 0 0 0 0 0 0 0 0 6
B XXy
0.804 0.16667 0 0 ) 0 0 0 0 )
0.800 0 0.16667 0 0 0 0 0 0 0
0.419 0 0 0.16667 0 0 0 0 0 0
0.140 0 0 0 0.16667 0 0 0 0 0
0.815 0 0 0 0 0.16667 0 0 0 0
0.617 0 0 0 0 0 0.16667 0 0 0
0.714 0 0 0 0 0 0 0.16667 0 0
0.206 0 0 0 0 0 0 0 0.16667 0
0.554 0 0 0 0 0 0 0 0 0.16667
t 54
k 9
df=t-k 45
&t 0.357
Var[ﬁ]

0.0595 0 0 0 0 0 0 0 0

0 0.0595 0 0 0 0 0 0 0

0 0 0.0595 0 0 0 0 0 0

0 0 0 0.0595 0 0 0 0 0

0 0 0 0 0.0595 0 0 0 0

0 0 0 0 0 0.0595 0 0 0

0 0 0 0 0 0 0.0595 0 0

0 0 0 0 0 0 0 0.0595 0

0 0 0 0 0 0 0 0 0.0595
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Exhibit 11
Example 6: The Simplest Random-Effects Model (Cont'd)
Estimation of the Variance of the Random Effects

B B-B, (|3 - Bn)(ﬁ ~ ﬁo) Varfvte] - Varfe] =Var[v]
0.801 0.238 0.0565 0.0662 0.0595 0.0067
0.800 0.237 0.0563 0.0662) (0.0595 0.0067
0.419 -0.144 0.0207 0.0662 0.0595 0.0067
0.140 -0.423 0.1791 0.0662 0.0595 0.0067
0.815 0.252 0.0634 0.0662 0.0595 0.0087
0.617 0.054 0.003 0.0662 0.0595 0.0067
0.714 0.152 0.023 0.0652 0.0595 0.0067
0.206 -0.357 0.1275 0.0662 0.0595 0.0067
0.554 -0.009 8E-05 0.0662 0.0595 0.0067

Bo Variv+e] vV = Variv]

Mean:
Credibility Weight
EVPV (c?) 0.3570
VHM (V) 0.0067
k = EVPVVHM 53.332
n 6
Z = nl(n+k) 10.1%

@ for each group

0.3637 0.0087 0.0067 0.0067 0.0067 0.0067
0.0067 0.3637 0.0067 0.0067 0.0067 0.0067
0.0067 0.0067 0.3637 0.0067 0.0067 0.0067
0.0067 0.0067 0.0067 0.3637 0.0067 0.0067
0.0067 0.0067 0.0067 0.0067 0.3637 0.0067
0.0067 0.0067 0.0067 0.0067 0.0067 0.3637

&' for each group
2.754 -0.047 -0.047 -0.047 -0.047 -0.047
-0.047 2.754 -0.047 -0.047 -0.047 -0.047
~0.047 -0.047 2.754 -0.047 -0.047 -0.047
-0.047 -0.047 -0.047 2.754 -0.047 -0.047
-0.047 -0.047 -0.047 -0.047 2.754 -0.047
-0.047 -0.047 -0.047 -0.047 -0.047 2,754
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Exhibit 12

Example 6. The Simplest Random-Effects Model (Cont'd)

Estimation of the General Mean B,

¥1 Xi oy, -X.f, o,
0.430 1 0.133 2753812 -0.04721 -0.04721 004721 004721 -0.04721 0 0
0.375 1 -0.188 -0.04721 2753812 -0.04721 -0.04721 -0.04721 -0.04721 0 [
2.341 1 1.778 -0.04721 004721 2753812 -0.04721 -0.04721 -004721 [} 0
0.175 1 -0.388 -0.04721 -0.04721 -004721 2753812 .0.04721 .0.04721 0 0
1.016 1 0.453 -0.04721 -0.04721 -004721 -0.04721 2753812 -004721 0 [
0.466 1 -0.097 -0.04721 -0.04721 -004721 -0.04721 -0 04721 2753812 4 0
0.247 1 -0.316, 0 0 0 0 0 0 2753812 -004721
1.587 1 1.024 0 0 0 0 0 0 -0.04721 2753812
1.939 1 1.376 0 0 0 0 0 0 .0.04721 -004721
0.712 1 0.149, [ 0 0 [ 0 0 -0.04721 -004721
0.054 1 -0.509 0 0 o 0 [ 0 -0.04721 -0.04721
0261 1 -0.302 0 ] 0 0 0 0 -0.04721 -0.04721
0.661 1 0.098 o 0 0 [ o 0 0 0
0237 1 -0.326 0 0 0 0 0 [ 0 0
0.063 1 -0.500 0 0 0 0 0 0 0 0
0.250 1 0.313 0 0 0 o [ 0 0 [
0.802 1 0039 0 0 0 0 0 0 0 0
0.700 1 0.137 0 [ 0 0 [ 0 0 0
0.182l 1 -0.381 a 0 0 o [ [ 0 [
0.381 1 0.212 0 0 ] 0 0 0 0 0
0011 1 -0.552 0 0 0 0 0 0 0 0
0022 1 -0.541 0 0 0 0 [ o 0 [
0.019 1 0544 0 0 0 0 0 0 o 0
0.252 1 0.311 [ 0 0 [ 0 [ 0 0
0.311 1 -0 262 0 0 0 0 0 [ 0 [
0664 1 0.101 0 0 0 0 0 [ [ 0
1.002 1 0.439 0 0 0 0 [ 0 0 [
0038 1 -0.525, 0 o 0 0 0 0 o 0
0370 1 <0.193 0 Q 0 ) ¢} 0 0 0
2502 1 1939 0 0 0 Q 0 0 0 0
0301 1 -0262 0 0 0 0 0 [ [ 0
0253 1 0310 0 0 0 0 [ 0 0 0
0.044 1 0519 [ 0 0 [ 0 0 0 0
0.109 1 -0 454 0 o} [ [4] 0 4] [} [
2105 1 1542 0 [ 0 0 0 [ 4] 0
0.891 1 02328 0 0 0 0 0 0 o} 0
0.219 1 0.344 1} o o ¢ 9 [} o o
1186 1 0.623 0 0 0 0 o 0 0 0
0.431 1 0132 0 0 0 0 a 0 0 0
1.405 1 0.842 [\ 0 [ 0 a [ 2 5
0.241 1 0.322 0 0 0 0 0 0 0 0
0.804 1 0.241 0 Q [} o [+ 0 4] 0
0.002 1 -0.561 Q 0 0 Q Q [} 0 Q
0.058 1 -0.505, 0 0 0 0 0 0 0 0
0.235 1 -0.328 0 0 0 0 o 0 0 0
0018 1 -0 545 0 0 0 0 0 Q 0 Q
0.713 1 0.150 0 0 0 0 0 0 o 0
0.208 1 -0.355 0 0 0 0 o 0 0 0
0796 1 0.233 [« 0 Q 0 0 0 [¢] 0
0.260] 1 -0.303 4] 0 0 [} 0 [ Q 0
0932 1 0.369 0 [ 0 0 [ 0 0 [
0857 1 0294 0 Q 0 0 0 0 0 0
0129 1 0434 0 0 0 0 0 0 0 o
0.349 1 0214 0 [} 0 [ 0 0 o [
X'y Xeoy X df Xy’ @y
[7s508] {135.96] [ (2517766 2517766 2517766 2517766 2.517766 2517766 2517766 2.517766
XDy %) g’

Var{Ba
0.0074
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Exhibit 13

Example 6: The Simplest Random-Effects Model (Cont'd}

Estimation of the Group Means

Y2 X2 D1
- 1 [i] 0 0 o] 0 0 0 0
1 0.0067 0.0067 0.0067 0.0067 00067 00067 0 0
- 1 0 0 0 0 0 0 00067 00067
1 0 0 0 0 0 o} 0 0
- 1 a 0 0 0 0 0 0 0
- 1 3} 0 0 0 0 s} 0 0
- 1 1} 0 o Q 0 0 0 0
- 1 0 0 0 0 0 0 0 a
- 1 0 0 0 2] 0 0 ] Q
- 1 0 0 0 0 0 o 0 0
92 ®21®||-‘
0.563 0 0 0 0 0 0 0 0
0.587 0.016854 0016854 0.016854 0.016854 0.016854 0.016854 0 0
0.587 0 0 0 0 o] 0 0.016854 0.016854
0.548 0 0 0 0 0 0 0 0
0.520 0 0 0 0 0 0 0 0
0.588 0 0 0 0 0 0 0 0
0.568 0 0 0 s 0 0 0 0
0.578 0 0 0 a 0 0 0 0
0.527 0 0 0 0 0 0 0 0
0.562 0 0 0 0 0 0 0 0
Credibility-Weighed Esti
Group 1-Z Prior Z| Empirical{ Posterior|
1 0.899 0.563 0.101 0.801 0.587
2 0.563 0.800 0.587
3 0.563 0.418 0.548
4 0.563 0.140 0.520
5 0.563 0.815 0.588
6 0.563 0.617 0.568
7 0.563 0.714 0.578
8 0.563 0.206 0.527
9 0.563 0.554 0.562
Unweighted Mean 0.563
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Exhibit 14
Example 7: Random-Effects Trend Model

Preliminary Fixed-Effects Model

Loss| N
State| Year| Ratio v, X y - XB
A 1] 54.3% EE 1.8%
A 2| 57.2% 12 -1.1%
A 3| 64.6% 103 0.6%
A 4| B7.6% 14 2.2%
A 5| 73.5% 15 -2.0%
A 6] 84.1% 1 8 2.9%
B 1| 44.2% 11 0.6%
B 2| 48.8% 12 1.0%
B 3| 54.8% 13 3.2%
B 4| 48.2% 1 4 7.4%
8 5| 57.7% 1t 5 -1.9%
B 6| 68.2% 186 4.5%
c 1| 53.9% 101 0.1%
C 2) 57.0% 12 1.9%
c 3| 54.8% 1 3 -1.8%
c 4| 50.9% 1 4 2.0%
c 5| 52.7% 105 -6.6%
c 6| 65.2% 1 8 4.5%
D 1] 41.8% 101 -2.0%
D 2| 45.2% 12 1.2%
D 3| 45.1% 103 0.8%
D 4| 48.4% 1 4 1.9%
D 5| 43.9% 15 -0.9%
D 6| 44.0% 1 6 -1.0%
E 1| 46.3% 11 1.5%
E 2| 48.6% 102 -2.4%
E 3| 57.6% 103 0.5%
E 4| 63.3% 14 0.1%
E 5] 69.6% 105 0.3%
E 6| 75.4% 106 0.1%
F 1| 46.9% 101 3.6%
F 2| 38.4% 1 2 6.3%
F 3| 48.1% 1 3 1.9%
F 4| 46.0% 1 4 1.6%
F 5( 53.4% 1 5 4.4%
F 6| 48.2% 1 8 2.1%
G 1| 45.7% 101 -0.6%
G 2| 44.5% 12 -0.8%
G 3| 44.2% 103 -0.2%
G 4| 46.7% 1 4 3.2%
G 5| 43.2% 105 0.6%
G 8 39.5% 1 8 -2.2%
H 1| 38.2% 101 0.8%
H 2| 42.0% 102 23%
H 3| 36.8% 103 5.4%
H 4] 48.1% 1 4 1.4%
H 5| 47.3% 1 5 0.2%
H 8] 50.2% 1.6 0.7%
| 1| 43.1% [ 3.2%
| 2| 44.8% 12 0.8%
' 3] 47.3% 1 3 -0.9%
1 4| 46.4% 14 £.0%
! 5] 52.5% 15 4.1%
i 6] 67.9% 16 7.1%
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Exhibit 15
Example 7: Random-Effects Trend Model (Cont'd)

Loss Ratios by State and Year

S0l

90%
80%
70% N
—e—State A 1!
60% . ——State B
| —A—State C }f
|
50% ' —3—State D
—¥—State E |
40% | —@— State F \ i
| —+=—_State G |
30% |—e=—State H i :
| ——em— State |
20% }
10%
0% . ; S— ]
3 4 5 6

Year



Exhibt 16
Example 7 Random-Effects Trend Model (Cont'd)

Solton of Fued Eftects

arg =~

XX
3 21
2 91
6 21
21 N
2
21 91
6 1
2 91
& 21
21 91
& 2
21 a
- 21
21 N
6 21
21 91
21
21 ot}
xx)"
08667 0 2000
£2000 00571
08667 -0 2000
02000 00571
08667 02000
02000 00T
08667 02000
02000 00571
08667 - 2000
©2000 00571
08667 02000
02000 00571
08867 02000
02000 COST1
08667 -0 2000
02000 00571
08667 -02000
[ 02000 00571
varfd]
00011 00003 0 [} o 0 q 3 0 3 ] 0 3 0 o 0 CEEE!
0003 €000 © o o ) © 0 o [ [ ° [ o o [ S o
0 9 00011 00003 o [ 0 0 0 0 0 0 [ 0 0 [ 0 0
0 0 00003 00001 4 0 [ 0 o 0 [ 0 0 o 0 0 o 0
0 [ [ O 0001 00003 [ 0 [ [ v o ° o o 0 o 0
0 0 0 0 -00003 00001 o 0 0 0 0 [ 0 0 0 [ 0 0
o 0 0 0 0 0 00011 -00003 0 0 0 o o 0 0 0 [ 0
0 0 0 [ 0 0 00003 00001 o 0 0 [ 0 o 0 0 0 0
[ [ 0 0 0 [ 0 0 00011 00003 0 0 0 0 [ 0 o 0
o [ 0 [ [ [ 9 0 £0003 Q0901 [\ 9 0 o [ [ ] 0
0 0 [ 0 0 ° o 0 o 0 00011 -00003 [ 0 0 0 0 0
0 o 0 0 o 0 4 [} 0 0 00003 0000 0 0 [ [ 0 [
0 o] 0 Q 0 o Q 0 ¢} o 0 0 00011 Q0003 ] 0 o 0
[\ 0 0 [ [ 0 0 [ 0 0 0 0 00003 00001 0 o 0 o
0 0 o 0 [ ° 4 0 0 o 0 0 0 0 00011 00003 0 o
c Q 0 ] [ o Qo 0 0 ] o 0 o 0 00003 00001 o [+)
0 [ [ [ 0 0 0 0 4 0 [ 0 0 0 0 0 00011 00003
© [ © s ° 0 o ) o b [ o 0 [ 2 0 08003 DOOCY)
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Exhibit 17

Example 7: Random-Effects Trend Model (Cont'd)

Estimation of the Variance of the Random Effects

(B-B.)B-.)

Var{v+e] - Var{e] = Var{v]
A 46.8% 4.5% 0.0020 0.0013 0.0033 -0.0005{ 0.0011 -0.0003( 0.0022 -0.0003
5.7% 3.0% 0.0013 0.0008 -0.0005 0.0006| -0.0003 0.0001]| -0.0003 0.0005
B 39.6% -2.7% 0.0007 -0.0003 0.0033 -0.0005| 0.0011 -0.0003| 0.0022 -0.0003
4.0% 1.3% -0.0003 0.0002 -0.0005 0.0006| -0.0003 0.0001| -0.0003 0.0005
c 52.4% 10.1% 0.0102 -0.0014 0.0033 -0.0005| 0.0011 -0.0003} 0.0022 -0.0003
1.4% -1.3% -0.0014 0.0002 -0.0005 0.0006] -0.0003 0.0001( -0.0003 0.0005
B 43.6% 1.3% 0.0002 -0.0003 0.0033 -0.0005] 0.0011 -0.0003| 0.0022 -0.0003
0.2% -2.5% -0.0003 0.0006 -0.0005 0.0006{ -0.0003 0.0001] -0.0003 0.0005
E 38.7% -3.6% 0.0013 -0.0012 0.0033 -0.0005( 0.0011 -0.0003( 0.0022 -0.0003
6.1% 3.4% -0.0012 0.0011 -0.0005 0.0006( -0.0003 0.0001| -0.0003 0.0005
F 41.9% -0.4% 0.0000 0.0001 0.0033 -0.0005| 0.0011 -0.0003| 0.0022 -0.0003
1.4% -1.3% 0.0001 0.0002 -0.0005 0.0006| -0.0003 0.0001} -0.0003 0.0005
G 47.2% 4.9% 0.0024 -0.0018 0.0033 -0.0005| 0.0011 -0.0003| 0.0022 -0.0003
-0.9% -3.7% -0.0018 0.0013 -0.0005 0.0008f -0.0003 0.0001| -0.0003 0.0005
H 34.9% -7.4% 0.0055 0.0002 0.0033 -0.0005| 0.0011 -0.0003( 0.0022 -0.0003
2.4% -0.3% 0.0002 0.0000 -0.0005 0.0006| -0.0003 0.0001| -0.0003 0.0005
| 357% -8.6% 0.0043 -0.0010 0.0033 -0.0005] 0.0011 -0.0003] 0.0022 -0.0003
4.2% 1.4% -0.0010 0.0002 -0.0005 0.0006| -0.0003 0.0001( -0.0003 0.0005
B Varjv+e) V = Varjv)
Mean| 42.3%)] 0.0033 -0.0005 0.0022 -0.0003
2.7%' -0.0005 0.0006 -0.0003 0.0005
® = X,VX! + d:I,_,)
@ for each group
0.0034 0.0024 0.0026 0.0029 0.0031 0.0033
0.0024 00044 0.0035 0.0046 0.0054 0.0062
0.0026 0.0039 0.0064 0.0064 0.0077 0.0090
0.0029 0.0046 0.0064 0.0095 0.0100 0.0118
0.0031 0.0054 0.0077 0.0100 00136 0.0147
0.0033 0.0062 0.0090 0.0118 0.0147 0.0188
o' for each group
509.28 -204.33 -134.11 -63.89 6.34 76.56
-204.33 618.15 -127.04 -88.39 4975 -11.10
-134.11 -127.04 66387 -11290 -10583 -98.76
-63.89 -88.39 -112.90 646.43 -161.91 -186.42
6.34 -49.75 -10583 -161.91 56584 -274.08
76.56 -11.10 -88.76 -186.42 -274.08 42210
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Exhibit 18

Example 7: Random-Effects Trend Model (Cont'd)

Estmation of the General Parameter o

State| Year| g
e W e e RS
A 3 % 508928 20433 1041
A 2| &2 : § 9.4%| | -20433 81815 -12701 _’22‘23 4634 e o
: s 1 2 ::;; 13411 12704 88357 -112.90 .w:;: .;;';g o
4 78 ! ‘ o 5389 8839 11250 54543 16191 186, o
A | T 17.5% 634 4975 -1 161, ‘o4 2408 o
A o] 84.1% 1 s 25.4% 7656 -11.10 -ggfgg -:;2; J40s 47210 o
: i 1 2 4% s 0 s -tz .274.08 42210 0
; 2 o | ! oo 0 0 0 0 0 0 50028
B 4| 48.2% 1 : o . : 0 : 0 o e
B 5| 57.7% 1 Tt o 4 o o : o e
B 8| s8.2% 1 : oo 0 i o o ° o e
c 1] 53.9% 1 1 S o 0 o o : o e
c 2| 57.0% 1 o2 o 0 o o ; :
¢ 2 57.0% 1 2 9.2% 0 0 0 o o 0
c 4] 59.0% 1 : o o . o g ; : :
c 5| 52.7% 1 5 byl o o o 0 ; : :
c 3 27 1 s -33% 0 0 0 0 o o o
c of es.2% X 6.5% 0 ) 0 0 o o o
p | e ! 1 3.2% 0 0 ) o o o
o 2| 452% ! 2 26% ) 0 0 0 0 o 0
0 3 481 1 3 -5.4% 0 0 0 g 0 o o
D 5| a3.0% 1 ; hota o o o 0 : : :
o 5| 420 1 s 12.1% ) 0 0 0 o 0 o
0 of 0% 1 147% ) 0 0 o 0 o
; 1] 403 1 1 1.3% 0 0 0 g o o o
: 2| soo% 1 2 0.8% 0 0 0 N 0 o o
; 3| 6% 1 3 7.4% 0 0 0 0 0 0
£ o 3 ‘ 4 104% 0 0 0 o 5 o o
; 5| sas% ! 5 117% 0 0 0 0 0 o o
F 1| 46.9% 1 : o o 4 o ; 0 : :
F 1| dos% 1 1 1.8% 0 0 0 g o o o
F 3| 48.1% 1 : e 5 6 o : : :
F 4| 46.0% 1 . e o 0 o : : : :
F 5{ 53.4% 1 :. o o o o g ; : ;
F 6| 48.2% 1 6 o o o o o : : :
| £ o| 40 2% ! ° 10.5% 0 0 0 0 0 o ;
| G 2| a4.5% 1 2 o o o 0 0 : : :
| G 3| 4a2% oo 5 o : ; ;
| 1 3 3% 0 o 0 o
| G 4| 487% 1 4 o o . o ;
| G s| 432% 1 5 2 a0 6 o o 6 0 : 0
G 8| 30.5% 1 oo 0 0 0 o ; : :
o of so5% ! 6 19.2% 0 0 0 0 o o 0
H 2| 42.0% 1 12 P o ; o o : ; 0
H 2| s20% 1 2 57% 0 0 0 0 0 o o
H 3 e 1 3 137% 0 0 0 0 o o o
H 5| 47.3% 1 o o : o : ; ;
" 5 1 5 8.7% 0 0 o o 0 o o
| of soz 1 8 -85% 0 0 0 g o o o
! 1o 1 1 -20% 0 0 0 o o 0
! 2 % 1 2 29% 0 0 0 g 0 0 o
! 3 473% 1 3 32% 0 0 0 0 6 o 6
! 4| 404 1 -58% 0 0 0 0 0 o 0
i 8] 67.9% 1 Z o 5 . 0 0 0 : ;
9.2% 0 0 0 0 g g 5
):'4:9 v X0u'X o Xy 0
3 3780 2025
2% Seo” zzs 5 1::353 137541 85228 32915 -18.308 71711 189.653
221 -18.064 30.002  78.248 126.404 174.560 -66.221
(XD %) G? |

108



Exhibit 19
Example 7: Random-Effects Trend Model (Cont'd)

Estimation of the Group Parameters

Estimations

State Y2 X2 Dy
A - 1 0 D.0019 ©0.0016 0.0013 0.0011 0.0008 0.0005 0
- 0 1 0.0002 0.0008 0.0013 0.0018 0.0023 0.0028 0
B - 1 0 0 0 0 0 0 0 0.0019
- o] 1 [¢] [¢] 0 0 0 0 0.0002
C - 1 0 0 4] 0 0 o] 0 o]
- 0 1 0 0 0 0 0 0 0
D - 1 Q 0 [4] 4] [4] g 0 0
- 4] 1 0 0 Q 0 0 0 o]
E - 1 0 0 0 0 0 0 0 0
- 0 1 0 o] 4] 4] Q Q 0
F - 1 0 0 0 0 0 0 0 0
- 0 1 4] 0 0 0 0 0 0
G - 1 0 0 0 0 V] 0 0 0
0 1 0 0 0 0 0 0 0
H - 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
{ - 1 0 4] 0 0 0 0 0 0
- 0 1 0 0 0 0 0 0 0

¥, =X1Bn+¢11®|-||()'|'xxﬁo) ¢2|¢11-l

A 45.8% 0.4399 0.31 0.1801 0.0502 -0.0796 -0.2085 0
5.9% -0.0896 -0.0493 -0.009 0.0313 0.0715 0.1118 0
B 40.6% ] 0 0 0 0 0 04399
3.8% 0 0 0 0 g J -0.0896
(o 49.1% 0 0 0 0 0 Q 0
2.1% 0 0 [ 0 0 0 0
D 42.8% 0 0 0 Q 0 Q 0
0.5% 0 Q Q 0 ¢ Q 0
E 40.3% 0 0 0 0 0 0 0
5.7% 0 0 4] 0 0 0 0
F 41.8% 0 0 0 0 V] V] 0
1.5% 0 0 0 0 0 0 0
G 45.2% 0 0 0 0 0 0 0
-0.4% 0 0 0 0 0 0 0
H 37.1% 0 0 0 0 v} 0 0
2.0% Q (4] a Q 0 Q g
| 38.0% 0 0 0 0 0 M} 0
3.6% 0 0 0 0 0 0 0
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Example 7: Random-Effects Trend Model (Cont'd)

Credibility-Weighted Estimates

Exhibit 20

X,
1 1
1 2
1 3
1 4
1 5
1 6
T = (X VX + L)
509.28 -204 .33 -134.11 -£53.89 6.34 76.56
-204.33 618.15 -127.04 -88.39 -49.75 -11.10
-134.11 -127.04 663.87 -112.90 -105.83 -98.76
-63.89 -88.39 -112.90 646.43  -161.91 -186.42
6.34 4975  -10583  -161.91 565.84 -274.08
76.56 -11.10 -98.76 -186.42 -274.08 422.10
X'TX 2, = VX1,
354.43 325.02 0.691 0.146
325.02  1980.29 0.067 0.939
State (/) 1,-2; Prior Z, Empirical] Posterior
A 0.309 -0.146 42.3% 0.691 0.1486 46.8% 45.8%
-0.067 0.061 2.7% 0067 0.839 57% 5.9%
B 42.3% 39.6% 40.6%
2.7% 4.0% 3.8%
Cc 42.3% 52.4% 49.1%
2.7% 14% 2.1%
D 42.3% 43.6% 42.8%
2.7% 0.2% 0.5%
E 42.3% 38.7% 40.3%
2.7% 6.1% 5.7%
F 42.3% 41.9% 41.8%
27% 1.4% 1.5%
G 42.3% 47.2% 45.2%
2.7% -0.9% -0.4%
H 42.3% 34.9% 37.1%
2.7% 2.4% 2.0%
| 42.3% 35.7% 38.0%
2.7% 4.2% 3.6%
Unweighted Mean 42.3%
2.7%
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Appendix A

Groups of Statistical Models

The basis of credibility is a grand statistical model which is a group of statistical
submodels. Suppose that we have »n linear models of the form
y, = X,B, +e,, where Var[e,]= Z,, fori =1, ..., n. As to the dimensions of the matrices,
y. and e, are (1,x1), X, is (£xk). P, is (kx1), and I, is (tx¢). We assume that ¢ach Z, is non-
singular and that each X, is of full column rank, i.e., rank(X)) = &. These assumptions

ensure that each X', 'X, is non-singular. The best linear unbiased estimator [7:Appendix C)

of cach B, is B, =(X'Z'X,)” X/E'y,, and Var[p,]=(x:2]'X,) "

Lett=1+...+t,and k=k + ... + k. The first model of models is as follows:

Yoy = KBy T €y

Y X, i €
s o R R R
Yn X, 1B, ] Le,
e,—| z,
where Varle]= Var| | |= =T
e, z,

The best linear unbiased estimator of B is:
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B=(xz'X)"x'zy

' -1 ]
X, z, 1'%, ] X, z, } Y,
L X, z,] X, 1) X, ] Ly,
r - - -1
X [z X, X; F;' Y,
i x; | £ | X, xa_\[ £y,
XIIE'IIXJ _lpxiz-llyx
XX, [ (X2,
(Xllzllxl) XIEIlYI
L (xiz'x,)" Xz,

[(xizyx,) " x5y,

[(%.2X,)" x5}y, |

(X;Eilxl)_] Va:[é,]
Also, Var[|=(x'7%) " = = . In
(x:5%,)" VarB, |

this grand model the submodels appear together, but they are unrelated.
But this leads us to a second model of models, the one that forms the basis of credibility.

Instead of n models and n betas, let there be n models and one beta. In this model k=&, =

=k
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Yty = RianyP ety T €ap)

Y X, €
=l B,
Yol [ Xa e,
€ Z
where Var[e]= Var| | |= =Z -
e, z,
The estimator of B is:
B=(xz7%)"xTy
' -1 .
. -1
xl Z| XI xl zl ‘I yl
X, Z,] X, X, ZJ Ya
s . - -
z X, = Y,
=[xy - X - [x; - X :
L I X, z) |y,

=(XZiX, #. 4K K, (XS Y, 44X Sy,

a=ndn

=(x;:;‘x,+,,_+x;z:xn)"(x;z;'x,(x;z;‘xl)"x;z;'y,+...+x;>:;’x"(x;z;'x")"X'Z"v )

~{var o ovar ) v B o over f.J.

={Var 3] ver [B.]p, . +var [, 5.
The estimator of this grand model is a matrix-weighted average of the estimators of the
submodels. The weights themselves, which are (kxk) matrices, are the inverses of the
variances of the estimators. This is a #&-dimensional form of the well-known rule that non-
covarying estimates of the same parameter are best averaged according to weights inversely
proportional to their variances. Judge [8:287] notes that a matrix-weighted average of two
vectors need not be collinear with the two vectors, unlike a scalar-weighted average, which

must be collinear.
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A third model of models looks like the first, but has a general variance matrix:

Yo = XpoPy + ey
yil % W Be| |e
= . ol B
Y, XnJ B,1 Le.
e Fz“ Z.,
where Var[e] = Var| : ]: : .o 1 =Ziun
e, | o oo 2o

Because we are accustomed to regarding the variance matrix as block diagonal, as in the
first grand model, the submodels are seemingly unrelated. Models of seemingly unrelated

models are discussed in [7:Appendix H} and [8:444-466].

The remainder of this appendix will be devoted to proving that the estimator of the second
grand model is better than the estimators of its submodels. Both the proof itself and the
precise meaning of ‘better’ require a discussion of non-negative definitc and positive
definite matrices. In an earlier paper [7:Appendix A] the author discussed such matrices,
and developed many basic theorems concerning them (cf. also [1:459-461] and [8:960f]).
This discussion dovetails with that of the earlier paper, and anything simply asserted here

will be found proven there.

Let A and B be square matrices of the same dimension, say (rnxr). and let x be an (nx1)

vector. The (1x1) matrices x'Ax and x'Bx are called quadratic forms in x (Judge {8:959]).

Let ‘~* stand for one of the five following comparison relations among the real numbers:

114



<, =T %27, and >°. What might ‘A ~ B’ mean? In the case of equality, we know
that ‘A = B’ means that corresponding elements are A and B are equal (elementwise
equality). So it would be natural to define ‘A ~ B” as elementwise *~’, as is already the case

with ‘=",

But there is another very useful definition: A ~ B if and only if for every non-zero x,
{x'Ax}i1 ~ {x'Bx}i. (Of course, a zero x will result in equality.) The operator {}, vields
the i/ element of the matrix inside the brackets, which is a scalar result. Being (1x1)
matrices, X'Ax and x'Bx have only one element; thus, {*};; makes quadratic forms
comparable on a scalar basis. According to this definition, A ~ B depends on the mairices
A and B, rather than on the elements of A and B. But the matrices must be reduced to the
definite level of (1x1) quadratic forms in order to invite comparison. If ‘~" in the first sense

[}

is elementwise comparison, we might say that in the second sense is definite
comparison, perhaps distinguishing it with dots ‘~.". Therefore, A .~. B if and only if for

every non-zero X, {X'Ax}; ~ {x'Bx}y.

Let C be an (nxn) matrix. Obviously, if for all non-zero x, {x'Ax}; ~ {x'Bx},;, and for all
non-zero X, {x'Bx}i ~ {x'Cx}i, then for all non-zero x, {x'Ax}1 ~ {X'Cx},i. So the five
definite comparisons are transitive. Also, adding or subtracting the same amount from both

sides of a scalar comparison does not affect the comparison. Hence,
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A~ B Vxz0, x'Ax .~ x'Bx
< Ux 20, (X'Ax - x'Bx) .~. (x'Bx —x'Bx}
o Vx =0, x'(A-B)x .~ x'(B-B)x
o Ux=0, x'(A-B)x .~ X0, X
=(A-B) .~ 0

So A compares definitely with B as (A — B) compares definitely with the zero matrix.
Similarly, multiplying or dividing both sides of a scalar comparison by a positive scalar

does not affect the comparison; so if £ > 0, then kA ~. kB.

As for inequalities, if A <. [>.]B,thenB > [[<]A. Andif A < BandB < A, then A
.=. B. So far, definite comparisons behave like scalar comparisons. But the scalar
comparison ‘a < b’ is equivalent to ‘(@ < b) or (@ = b)'. It is different with the definite
comparison; ‘A .<. B’ means ‘for all x, {x'Ax}; < {x'Bx};". It is possible that for some
values of x the relation is ‘<’ and for other values it is ‘=". Thus ‘A .<. B” is not equivalent
to ‘(A .<. B) or (A = B)’. One must be cautious in handling the compound comparisons
‘<. and ‘.2.’; for instance, it is tempting but fallacious to argue that if A .<. B and not (A
= B), then A .<. B. In a similar vein, according to the law of trichotomy, for any two
scalars @ and b, (a < b) or (a = b) or (a > b). But it is not true that for any two (nxn)

matrices A and B, (A .<. B)or (A .=.B) or (A >. B).
As for equalities, since every (1x1) matrix is symmetric, x'Ax = (x'Ax)' = x'A'x. So, for all

non-zero X, {X'Ax}; = {x'A'x}y, implying that A .= A' and that (A — A") .= 0. Moreover,

if A =. 0, then A'= —-A (skew symmetry). Forif A .=. 0, then for all non-zero x, {x'Ax};; =
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0. But {x'Ax}; = ZZa,}x,xl . If one of the xs (say x.) equals one and the rest are zero,
=1 y=1

then {xX'Ax} 1 = aux’ = gu = 0. And if two of the xs (say x: and x;) equal one and the rest are
zero, then {x'Ax} = A + auxd F auex + axt = a taut aet = aut au=0. Forall k
and /, a; = — au, which makes A skew symmetric. Conversely, if A is skew symmetric then
A= (A+AN2 .= (A-(-A)2 .= (A-A"Y2 .= 0/2 = 0. Therefore, A .= 0ifand only if
A is skew symmetric. Moreover, if A is symmetric and A .=. 0, then A is both symmetric
(A" = A) and skew symmetric (A' = —A), which implies that A = —~A = 0. Finally, if A and
B are symmetric and A .=. B, then A - B is both symmetric and .=. 0. Hence, A-B=0;

so A =B.

A matrix A is non-negative definite positive definite] if and only if A is symmetric and A
2. [.>] 0. Obviously, if A is positive definite then it is non-negative definite. but not
necessarily vice versa. It is a theorem that if A is a non-negative definite matrix, then A is
positive definite if and only if A™ exists (or A is non-singular). Another theorem is that A is
non-negative definite if and only if there exists a square matrix W, such that A = WW"
Such a W is sometimes called a square root matrix of A. If A is positive definite, then it is
non-singular and every square root matrix of it must be non-singular. In such
circumstances, A7 = (WW'y! = (W) (Wy! = (W'y(W™), which is non-negative definite.
But since A™' is non-singular, it must also be positive definite. Therefore, if A is positive

definite, then so too is A™.
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If x is an (nx1) random vector with Var[x] = X, and A is an (mxn) non-stochastic matrix,
then Ax is an (mx1) random vector with Var[Ax] = AZA' If A is (Ixn), then Ax isa (1x])
random vector. whose element must be non-negative. Hence. a variance matrix, which
must be symmetric, must also be .>. 0: otherwise some non-zero linear combination of the
elements of the random vector would imply a scalar random variable with a negative

variance. In other words, every variance matrix is non-negative definite.

We would like to compare two (nxn) variance matrices Var[x,] = Z; and Var[x;] = Z,. If
Z;.<.[.£.] Z,. then the variance of every non-zero linear combination of x; is less than }less
than or equal to] the variance of the same linear combination of x5, If X, and X, are the
variance matrices of two estimates of an unknown parameter and Z; .<. Z,, then Z; is the
better estimate. [f £, .< Z,. then £, may not be better; however. it is at least as good. But

if, in addition, £, # Z,. then not (£, .=. £,) and Z, is again better.

So, turning back to the second grand model, we will prove that Vi,Var[[i].<.Var[[§,].
which is equivalent to Var[fi,]— Va.r[fﬂ.>.0. This too is equivalent to the statement that

Var[B,]- Var[p] is positive definite.

As above, Var[f&] =(Va:"[f3,]+...+Var"[f3"” Yo Var"[ﬁ]= Var"[ﬁ1]+...+Var"[f$"] . Being
a variance matrix, each Var"[f},] is non-negative definite. And being non-singular, each is

positive definite. Therefore, Var"[fi] - Var"[f},] is positive definite. So there exists a non-

118



singular (kxk) matrix W such that Var"[f&]=Va:"[f3,] +WW'=Var"[ﬁ,] +WI, W', or

] (v 5] ]

Now it is a theorem that if D' + CA™'B exists and is non-singular, then (A + BDC)" = Al -
ATB(DT+ CA'B)'CA™. As the first part of the proof:

(A+ B[)C)(A Lo ATB(D'+CA'B)'CA" = AR~ AR B(D" +CAB) CA
+BDCA" - BDCA'B(D" +CA'B)" cA"
= 1-B(D" +CA'B) A"
+BDCA" - BDCA'B(D" +CA"'B)'CA"
=1-BOLY{D +CA'B) CA
+BDCA" - BDCA'B(D" +CA "B CA?
=1+BDCA"
~BD(D" +CA'B)D" + CA"B) 'CA "
=1+BDCA™" - BDCA"
=

Reversing the order of the multiplication is the second and final part of the proof:

(A" - A'B(D ~CA"B)'CA” A +BDC) = A"A + A'BDC
-A"B(D” +CA"B)'CA"A - A”B(D +CA'B)'CA'BDC
=1+A"'BDC
-A"B(D” +CA"B)'C- A7B(D" + CA"B) 'CA'BDC
=1+A"B(D" +Ca'B)'(D" +CA'B)DC
-A"B(D" +CA"B) C- A B(D" +CA "B CA"BDC
=1+A"B{D"' +CA"B)'(D")DC - A'B(D" + CA"B) C
=1+A"B(D" +CA"B)'C-A'B(D" ~CA"B) C
-1

Therefore, using this theorem:
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vaf]-(var ] +w1,w)’
= (var (8]} - (var [ ]) Wl w(var'[B.) w) w(var'[B. ]
Vo) - va Juft, + e Jo) wva)
= vap | (v Y1, + wvad o) (vap Jw)
.<.var[é,]
Some explanation is in order: var[fs,] is positive definite and thus factorable as, say, UU".

So 1, +W'Var[f5,]W=Ik +WUU'W=I, +WU(W'U) . The identity matrix is positive

definite, and to it is added a non-negative definite matrix. Hence, I, +W'Var[ﬁ,]W is

positive definite. It follows that {1, + W'Var@, |W s positive definite and factorable as,
£ B

say, VV', where V is non-singular. Thus, (Var[f},]w)(lk +W’Var[f3,]w)_l(\/ar[fi,]w)lis

[ ’

factorable as (Var[fi,]W)W’(Var[fi,]W) =(Var[fi,]WV)(Var[ﬁ,]Wv) This is a non-

negative definite matrix. But inasmuch as the square root matrix consists of the product of

three non-singular matrices, the root itself is non-singular, and so too is the root times its
transpose,  Therefore, (Var[ﬁ,]W)W’(Var[f},]w)’ =(Var[ﬁ,.]wv)(vm[é‘]wv)' is positive

definite, and so Va:[fi].<. Var[ﬁ,].

So the grand model is better than every submodel. But an even more powerful statement
can be made. Consider a partial grand model, consisting of some, but not all, of the

submodels. Let B be the estimator of the partial model. Then
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var"[ﬁ] = vm"[§]+_,,+z Vm“[ﬁ,], where the subscript i is ranges over the submodels left

out of the partial grand model. Then, by similar reasoning, Va:"[ﬁ].<.Var“[E]. This goes

to show that the more submodels, the better the estimate.

Var“{ﬁ] = Var"[f&,]+...+\/ar“[é"] is called a harmonic sum. It is a k-dimensional equation.

But there is an interesting 1-dimensional analogue in electricity, which may help the reader
to understand the meaning of the statement ‘the more submodels, the better the estimate’.

A group of n resistors in parallel, whose resistances are ry, ... , r., has an overall resistance

11 [
R such that z =—+ --+r— (a harmonic sum). Every extra resistor added in parallel allows

1 n
a little more current to flow through group, which in effect reduces the overall resistance. If
the extra resistor is of high resistance (almost an insulator), then the reduction is small; if it
is of low resistance (almost a short), then the reduction is great. The variance of an
additional submodel is like the resistance of an additional resistor: when the variance is
high, the extra group provides little additional information, so the reduction of variance of
the estimate of the grand model is small (but a reduction nonetheless). When the variance
is low, the extra group provides much additional information, with a great reduction of
overall variance. Of course, the assumption implicit throughout is that each submodel is an

appropriate model; otherwise, information could be created ex nihilo.

The case of a grand model in which some X,Z'X, may be singular deserves a discussion.

We will consider a model with only two submodels, in which \/a:[i.;)l]=(Xl'Z,“'Xl)_l
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exists, but Xy'%,"'X, may be singular. In this case, the second submodel, though
informative, may not be sufficiently informative for a unique estimate of . For example, if
B were (2x1), the second submode! might be a non-sample judgment that the first element
of B has a mean of 1 and a variance of 2:

y: = X,Bte,

[1]=]1 Op~+e,.
where Varfe;] = ¥; = [2]. In this example, B cannot be uniquely estimated because

v [ opry 17207
X;27'X, (:0}[2] [1 0] [0 0J_.v»}'uchlssmgular.

Xg'Zz"Xz is non-negative definite; therefore, for all non-zero u, {u'(Xz'Zz"Xz)u} 120, We
will define a set Z. possibly empty, of all non-zero u such that {u'(Xz‘Zz"Xz)u}H =0. But
U(X2Zy ' Xa)u = (Xau)Zy ' (Xou). Since X7 is positive definite, {(Xu)Ey (Xou)}y, = 0 if
and only if X,u = 0. Therefore, u € Z if and only if u is non-zero and X;u = 0. Recall that
X3 is (12%k). At the beginning of the appendix it was assumed that rank(X3) = £, but now
we will relax this assumption. Let rank(X;) =/ < k. Then the set of all u such that X,u =0
is a (k — j)-dimensional linear subspace of k-space. Z is this subspace less the zero vector

(so if rank(X;) =/ = k, then Z is empty and Xy'Z;'X; is positive definite).
p

Therefore. in the grand model:
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Var[ﬁ]=(Var"[;§,] +x;z;xz)" |
=(Var-'[f3,])" -(Var-’[éx])"x;((x;)“ + xz(Var"B.)"x;]' xz(Var"[é,])

= Var ﬁ,]- Var[é,,]x;('z2 + XZVar[f},]X;)q X, Varlf,|

-1

v
-1

s |-l 1 ol e vl
.s.var[fi,]

'

The incquality follows from the fact that (X, VarlB, ]} (5, + X Varlf x| (x,varlf]) is
non-negative definite. But strict inequality, which represents an efficiency gain, depends on
{u:(xzvf,:{@,])'(zz +xzVa,[a,]x;)"(x,w[@,])u}u vo. Since (5, + X, vaf xi] i
positive definite, strict inequality is thwarted only when XZVar[ﬁl]u=0. And

XZVar[fi,]u =0 if and only if Va_r{fi,]u €Z. Since V;u{ﬁ,] is non-singular, there exists a
{k - j)-dimensional subspace of k-space, Z', formed by premultiplying each member of Z by

Var"[f},]. When rank(X;) = 7 < &, Var[ﬁ].<. Var[ﬁl] except in the (k ~ j)-dimensional

subspace Z', within which Var[é].; Var[é,] (so Var[é] = Var[fil] ).
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Appendix B

A Bayesian Interpretation of Prior Information

Consider the model y.;, = X,.)B ) + €,y - What makes this model Bayesian is that B is

stochastic. Let us assume that B is muliivariate normal with mean o and variance V, i.e,,
~ N(Bg, V). We will assume also that e ~ N(0, Z), and that e is independent of 3. Being
variance matrices, £ and V must be non-negative definite. But we will further assume that
both matrices are positive definite, which implies that their inverses exist and that their

determinants are positive.

The probability density function of B ~N(Bo, V) is [8:49f.}:

Kb ey vie- oepa) v(5-
Jo(®) = @m) 2V Te BBl VI-Bo) 5(580) v (0-B0)

As for the random vector y given that § =f, or y|p = f:

vip=B=(XB +e)}p=p
= XB+(ep = B)
=Xp+e

The last equation follows from e’s being independent of . Hence, y|f = ~ N(XpB, Z): so
its probability density function is:

L R I R TR N )
xLe

Fipp¥)=2m) 2zl 2e

Therefore, according to Bayes’ theorem, the probability density function of Bly =y is:



L (NS (B)
Doy ® == < Lips DB

( —é(yxu)'z'(y—xul)( —l(u~ﬂu)'V“(u—ﬂn)J
x| e e -

« e-%((y—xﬂl' £ y=X0)+(8-8) V"{B-Bo))

We will now expand the exponent of this density function:

(y-XB) ="y~ xB) +(8-8o) V'(B-By)=y'T "y —{xp) £y —y'z™{(x) + () z"(xp)
+B VBB, VBB VB, +B, VB,
=yEy-pXETy -y I XB+BX T
B VBB, VBB VB, By VB
=—pX'Tly -y’ IXB + BXEXP
+B VBB, VBB VB, +e
The two terms of the expansion which did not involve B were absorbed into the term c,

which will be a catch-all for all terms not involving p.

Next we will perform a multivariate “completion of the square” with respect to . To do
this we must recognize that since V is positive definite, V"' exists and is positive definite. It
is similar with T, so X'T"X exists and is non-negative definite. This implies that X'Z"'X +
V! is positive definite. Therefore, there exists a nonsingular (kxk) matrix W such that W'W

=X'T'X + V! So we continue:
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(y=XB) 'y - XB) +(B-B,) V'(B-B) = -p'X'T !y -y T IXB+BXEIXB
*BVIB-B, VIB-PV B, +c
SP(XEX VB -P(XE Ty + VB,
—(y'z X *Bu'v");wc
=B(xs X+ v)p-p(xzy+vp,)
(X vIR) e
=BWWB-BWAW)(XE 'y + VB,

(s v e

- (o) wp- )(w (w' V)
sy v w

- (wp) wp- () (W‘) XTly+Vp,)

((w (x'cy+vp,

(

(WB wp~(wp) (W 3x y VB

(s s ) o

(v (s v )( xv‘wv'M)
(w mw's,,)) (W) vy v )
(wa-(w sy e vin) (we-(w) ez - v,
(1w xv*ymsn))'(( Vs y v e

‘ ~(wp-(w) (xzy+ v B))'( B-(w) (X2 y +vp,)) +c

| In the last equation a term not involving B has been absorbed into the catch-all term ¢. Now

we can simplify:

{y-xB) =y - xp)+ (B-p,) v'(B-8,) = (wn (W) [y v*'p,,))v(:wn - (w'-')'(X'z",- ‘v '[3“)) +e

= (WD Swwr(w) (xsy v*‘p,,)) [WB S W) (x0T ty v 'n,,)) ve
=(wp- wiwwy'(xz 'y + v"gn))'(wg- WIW WY (XL ly+ V) +c

-(p-twwy{xey - V"B‘,))’W’W(ﬂ —(WW(XE Ty VB ) e
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Therefore, the probability density function of Bly =y is:

(- x0) 25X} (p-8,) V71 (p-Bo))

AMORE

3o wwy (o ty vy )) wow(p-(wowr (x4 v 5, o)
< e

~~1([3f(W'W)'I(X'Z"y*V’lﬁ\wn'W‘W[B—(W’\V‘l'](X‘Z"lyi—\,"'l[}n)) e
oce ? : e ?

,;(g_(w'w)"(xt' 'y+V"Bﬂ)).W'\’('(B—(W'“""(X':"’yi-V"Bnn

%(;}-lW'W)"(X'E 'y+V"ﬂo))'((W'\V)") (B-(wwi(xz7y+vipy))

The term having ¢ in the exponent was absorbed into the proportionality, since ¢ does not
depend on 3. This function is proportional to the probability density function of a normal

-1
N

random vector whose mean is (W’W)"(X'Z"y + V“Bo)a.nd whose variance is (W'W)
therefore, Bly =y ~ N((WW) (X'£y + VB, ), (W'W)"), or:

Bly =y~ N((X'Z"X + V) (X + VIB,), (XEX+ V) )

This is the same result as that obtained from the mixed linear statistical model:

L el

which mixes the sample information y = X8 + e with the non-sample information B¢ = +
v. Because the results are the same, Judge says that estimating the B of such a model, i.e.,

mixed estimation, is a “quasi-Bayesian approach” [8:877].
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It may seem when R is not an identity matrix that the mixed model

y_X+e h"’c—Z h Bayesian i i H if R
Y B v | Where Var| = y | has no Bayesian interpretation. However, i

is of full row rank (which is not a restrictive condition), there exists an S such that

R
[Sjl = Q4 1 NON-singular. Add to the non-sample information thus:

y X e e z
r|=({RB+|v, | where Var| v, [= \/
s S v, v, Vv,

Letting y = QP, a one-to-one transformation because p = Q''y, we can transform:
X ¢
B+ Vi
vy
HAN
0 o [”' ]
L,

y

s

v,

e z
XQ
] vi ||, where Var{| Y1 ||= v,
1, v, v,

The transformed model does admit of a Bayesian interpretation. Both the mixed estimator

and the Bayesian estimator are the same:
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s v, -1y -l - v, -1

7‘=((XQ") Z"(XQ")+[ VJ ] ((XQ") Z'yw{ VJ [ZD
_( I—IXIE~IX -1 + VI"‘ _l[ ,—IXIE—I + V]_l r
- Q Q v2_| Q Yy v27| s

-1 -1 1 -1 \/l_1 -l h -1 -1 Vl_I r
=(Q’ X'EZTXQ +Q Q'[ V‘]QQ) [Q' X'Z Y*{ V_I}LD
— L/Xr —IX+ ,Fvl—l 1 \J—! ,/ IAIX, -1 +i_vlil ﬂrr—‘\
-qxzix-Q| "Ll Q[Q xly+| VJM)
- (X' X ! VI_l ]_I 1yt , VI_l r
=qxzixrQ| " Llef [xEheT L],

Therefore:

B=Q'y

(X'Z"X+Q'[V‘l v}..}q}_l(x'z-‘yw{v" V}KD
=(X'Z"X+[R' s[v‘_] sz}{ﬂjq(xrz-lw[w s'][\"l Vz"j}m]

= (X'T X+ RV, R+8V,78) (X y + RV, "r+ 87V, s)
However, this model has extraneous non-sample information. But if Vs, the variance of the
extraneous non-sample information, is allowed to approach infinity, this extrancous
information will have no effect. Hence:
Jm = Jim b

= V}imn(X’):"X FRV,TRHS'V,S) (XS Ty + RV, 481V, )

= (X=X +RV,R) (X'Zy +RV, )
Thus, in general, a Bayesian formulation, suitably transformed and taken to a limit, can be

made equivalent to the mixed model.
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Appendix C

The Limiting Behavior of a Stochastic Constraint

y X e e z . .
The model| ™ |= B+| | where Var| |= . contains the stochastic constraint r
r R v v \Y%

=Rp + v. The constraint loosens as Var[v] = V increases, and tightens as it decreases. In
the limit, as V approaches 0, the constraint is non-stochastic, or absolute. The problem of
estimating B in the model y = XB + e subject to the non-stochastic constraint that Rp = r has
been solved by many authors, e.g., [1:20-23], [6:35-42], and [8:235-240]. In this appendix
we will demonstrate that that the same solution obtains from a stochastically constrained

model as the variance of the constraint approaches zero.

. yu‘n" Xt € € Z
Consider the model =R Bt T o . where Var| |= .
r(/-nJ ek} Vi v Vik-n

We will assume that both £ and V are positive definite, so that their inverses exist. Also,
assume that R is of full row rank, i.e., rank(R) = j. This means that the j constraints on 3
contain no redundancy. We will also assume that the (kxk) matrix X'£'X has an inverse.
Normally this is guaranteed by assuming that X is of full column rank. From these
assumptions it follows that the (j%j) matrix R(X'Z'X) 'R’ has an inverse, which inverse we

will call H = (R(X'Z'X)'RY".

The best linear unbiased estimator of B, sometimes in this context called the mixed

estimator ([1:25] and [8:877]), is:
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- JE e
ool LT o )

=(X’£'X+R'VR) ' (X'Zy +R'V'r)
The expectation of the estimator is B (hence unbiased), and the variance thereof is
(X’='X+R'V'R)".  Therefore, f§= Var[[g](X’E"y +R’V7'r).  Evaluating this
expression as V approaches 0 is complicated due to the fact that as V approaches 0, v
approaches infinity. Thus, P = Var[ﬁ](X'E"y +R'V7'r) > ()0, an indeterminate

form. The trick is to transform the expression so as to remove V™.

In Appendix A we proved that (A + BDC)' = A™ = A'B(D" + CA"'B) 'CA™, provided

that the inverses exist. We can apply this theorem to the variance of the estimator:

varl| = (X=X + R'V'R)”

~1

=(xz7'X) -(X’):"x)"‘R'((V“)“+R()(’E“x)"R')’IR(X"X‘X)’l

=(x=7'%)" - (s x) RV R(X2X) R R(X'ETX)”
Because of the assumptions, all the inverses exist; in particular, V + RX'T'X)'R' is the
sum of positive definite V and non-negative definite R(X'S'X)'R". Therefore, it is positive

definite, and hence non-singular. This expression has no V™', so:

lim Var] = (x'2X)” —(x'z*'x)"R'(R(x'z-‘x)"R')’l R(X'Z7X)”

=(xzX)" -(xz7X)" R'HR(x'2"'X)”
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Also worth noting is:

{mRVar|p] =R im V] ]
= R((x'z"x)" -(X'Z“x)"R’(R(x'z"‘x)"R')"'R(X'z"x)")
=R(X'z7X)" -R(X'z"X)" RHR(X'Z'X)"

-1

(
(x'z7X)" -H'HR(X'z"'X)
(

R
R
R(X'Z'X)" -R(X'E7X)
0

Now we are ready to remove the remaining V! from the estimator:

B = Var[é](x'z-'y+ R'V'r)
= Var[é]X’E"y + Var[f&]R’V r

=Var[[§]x'z"y+((x'z"x) -(x'z7'x) R'(V+R(x'z"x) R’)_IR(X’E"X)_IJR’V"r

= Var[fs]x'z"y+(x'>:“x)" R'V'r
~(x2X) "RV +R(x27X) "R ) R(X'Z7'X) RV 'r

= Var[fs]x'z"y+(x'z"x)" R'[v + R(x'z"x)" R’] _I(v+ R(x'z"x)" R’)V"'r
~(xz7x) " R(V+R(x'Z %) R') ) R(X'Z"X) RV 'r

- Var[ﬁ]x'z"w(x'z"x)” R'(v+ R(X'z X)'R') R

- Var[ﬁ]x'z"y+(x'z"x)"' R'(V “R(xzx)" R’] Ty

Therefore:
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tim B = lim( Var[B[x'z 'y + (x'27x) " R(V + R(x'z'[x)"R')"r)

Vo0

im(Var[ﬁ]x'z y)+pim(x 2 x) T R(v+ R(XZX) TR r

-0

lim [ﬁ])x'L‘"y +(x'>:"x)"R'(R(X'z"x)"‘R')—’r

it

10Var[B])XE y+(XZ X) R'Hr

[
v
(xzx)" - (xzx)" R’HR(X'E”‘X)_I)X’Z"y+(X'E“X)_IR‘Hr

In the limit the non-stochastic constraint is satisfied:

= Li_TO(R(Var[B]X'Z"y +(x'zx)" R'(v + R(X’E"X)"R')" rj)

,_.
=
hoFY
I

tim(Rvar[f]x £y )+ limR(x2X) " R(v + R(X'E"'X)"R") r
(Li_rpoRVar[[gDX'Z“'y+ R(x2X) R(R(x"2"X)"R") s
(O)X'z 'y +1r

=T

In an earlier paper [6:35f.] the author derived the formula for the non-stochastically
constrained estimator 3* = (l, - (xxy" R'HR)(X’X)" X'y +{X'X)"'R'Hr. We see
that the formulas are identical except for the presence of £ in the middle of X'X and X'y.
(Remember too that H contains an X'X.) But the earlier paper simplistically assumed
Var[e] = £ to be some scalar multiple of an identity matrix, i.c., ol [6:35]. The general
mode! can be reduced to the simpler model by a transformation [8:329f.]: If Var[e] =

cl(b, where @ is positive definite, then @' is also positive definite and there exists a non-

singular W such that &' = W'W (cf. Appendix A). Transform the general model by
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premultiplying it by W (a one-to-one transformation): Wy = WX + We, where Var[We]
= WVar[e]W' = Wo?OW' = c"W(W'W)'W' = ZWW ' (WY'W' = 6%l The transformed
model (Wy) = (WX)B + (We) has the scalar-identity variance of the simpler model, so the
term corresponding to X'X is (WX)(WX) = X'W'WX = X' 'X. Similarly, the term
corresponding to X'y is (WX)'(Wy) = X'<D'1y. The formula for B* is so constructed as to be

invariant to the scale of ®; hence, ® can be replaced by T with the result:
p* = (1, ~(xzx)” R'HR)(X'E"X)"’ XEly +(X'T'X) RHr,

where H = (R(X'Z"X)']R')'l. Therefore, we have demonstrated that the non-stochasticalty

constrained model is a limiting case of the stochastically constrained model.

Amemiya [1:25f] performs a similar demonstration, but with the simplistic assumption that

e i
Va:‘: :\= o’ 1 . (His notation is different, but this is in effect his reasoning.)
v L

The limiting case results from letting A? approach infinity. Our demonstration is more
powerful, since it allows Var[v] to approach zero in any manner, not just as a shrinking

scalar multiple of an identity matrix.
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Appendix D

Estimating the Mean and the Variance of a Multivariate Random Sample

The variance of the error term of a linear statistical model is usually assumed to be known
to within a proportionality constant, i.e., Var[e] = &. But in the case of a multivariate
random sample the entire variance can be estimated. We start with n (k= 1) random vectors
¥i- .-, ¥.. which are randomly sampled from a population of unknown mean and variance,

p and Z.  According to the definition of variance ([7:Appendix A] and [8:43]),

£=Valy,|= E{(y. —uy, - u)}

The mean and the variance will be estimated from the linear model:

Y i € € z
: = By ¥ , where Var| : |=

Yo Jutnty L {nkxk) €n Jienry n Z (nk k)
The variance matrix is block diagonal in Z, because random sampling implies independent,
identically distributed trials. The best linear unbiased estimator of p happens not to depend

on the unknown :



L Z B I, I, (= B M
= s
I, Z I, I, L Z Yn
- le— " z Y1
= - 1] | I | PR
=L =y,

=(z+.42) (2, A2y,
(nZ“')“l(E‘ly,+...+Z"y")

25y, 45,

I |- x|—

(vi++y,)
(That the true Z might be singular does not impugn the validity of the estimator.) Since the

estimator is unbiased, E[ﬁ] = . The variance is:

L= I,

vai] =6l G-wa-w) || || ] -2

1, z| 1,

n

For future reference it is noted here that i(y, - ﬁ) =0 and zn:(y, - p.) = Z(ﬁ - p),
1 1 1

'

Now consider the function W{(v) = Z(y, ~ v}(y, - v) . This function can be minimized:
|
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w(v)= E::()’. vy, =)
=Sy, - ) - (v- Ny, - &) ~(v-i))

=2l -y, ) -3l -0 -2 - Tv- iy )+ S -dv-R)

" . "

= #(5)- 2y, - R)v-8) -2 (- i)y, - ) + D v-v-i)

i

@)~ (Slo. - ov-1) - Sl )} - o)

"

=91~ O)v~B) - (v= )0+ L (v-R)v-5)
= 9(3)+ 2 (v - Y -i)

= (@) + nlv-p)v- i)
2.%(3)

The matrix inequality (cf. Appendix A) holds because n(v - ﬁ)(v - ﬁ) is non-negative
definite, with equality obtaining if and only if v =[i . Due to the existence and uniqueness
of this minimum, we could have defined }i as the minimizing argument of \Y, rather than as

the best linear unbiased estimator of the model above.

The minimum of ¥ is:
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‘*‘(ﬁ)=i(y, -y, - i)
= (v, )~ G, - )= (5 -)
=i(y,-u)(y.—u) —Z(y - - ) Z(u wy, ~w) +Z(u Wi - )
=$(Y.—u)(y.-u) —[Z ) Z ] i - )
-305 ks, ) —(z(u—uﬂ(u—») —(»—u)[zm-u) ]*Z(u—u)(uw)
=200, - k. -w) - S -n) S -n) Do)
R AN SRV
:Z:(y. ~fy, —n) - - )

But the importance of this minimum lies in its expected value:

(@) - ]S, . 1) i) |
- Sty -y, ) |-l
= Z.: E[(y. -u)y, - u)'} - nE[(ﬁ - )i - u)l]

= il Var[y, ] - nVar[ﬁ]

Therefore, & = —]—]‘P(p) ! : i(y, - ﬁ)(y, - }1) is an unbiased estimator of T.
n-1
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Appendix E

Credibility and the Random-Effects Model

Appendix A introduced groups of statistical models. The first model consisted of » linear
models of the form y, =X ,B, +e,, where Varfe, ]=XZ,, fori =1, ..., n. ¥y and e were
(tx1), X. was (t.xk), B. is (kx1), and Z, was (t,xt). Each I, was non-singular, and each X,
was of full column rank, i.e., rank(X) = k, which ensured that each (X/£'X)) ' existed.

These specifications will be adopted here, but with the additional specification that all the

ks are equal: k= k; = ... = k.. The model then appears as:
M X, B, €
D= D+
Y] L X, B4 Le.
(e»— h):l
where Var] @ |= .
_eﬂ_ L ZPI

As shown in Appendix A, the best linear unbiased estimator of B is:
] el RETI R el
B iEix)TxE, || VadB Xy,
B= = : = :
R rge-l -t -1 A -1
B, |(xEix,) " Xogly, | | varl, X 2]y,

This is called a fixed-effects model because every submodel is given its own P..

The second model of models was like the first, but with the constraint that all the Bs be

equal: Bp =, = ... = B.. The model then appears as:
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yl | ’—Xl el
D=l Bo +] :
Y.l (X, e,
€ ] MEI
where Var| : |= .
e [ z,

Again, as shown in Appendix A, the best linear unbiased estimator of 3 is:
Bo=(X1ZiX, v #X 20X, ) (X 2y, +. X2y, )

(v o ovae . e v .5

- (Vs J(var [, o, ovar . J.)

This too is a fixed-effects model, but with only one fixed effect.

Now an attractive basis of a credibility model is the belief that the parameters (here y.s)
constitute a random sample from a distribution of mean y; and variance V. Soy, =y, + v.
where E[v,] = 0, Var[v,] =V, and the v;s do not covary either with each other or with the es.

This transforms the fixed-effects model into the random-effects model (with estimations):

yl XI el
v, x| e,
= L : +
7:1 i [70+vn .
Yn I, LO
X, X,v, +e
X, X,v,+e,
= o ’
I, M
1, A\
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Instead of each submodel having its own fixed effect v, there is one fixed-effect (yp) for the
whole model and each submodel has its own random effect v.. Therefore, the estimations of

this random-effects model have a non-zero error term, and the variance matrix is:

[X,v, +e,] [X,VX|+Z, P X,V ]

X,v, +e, X, VX, +Z, XV [T, T.]
Yi VXi -V T, TZ:J

| v, J i VX, \ J

The best linear unbiased estimations are:

Y L, Y X,
S B 5 U P B B B P N
Y. L1 .l X,
' -1 ’
X, XI- X M
where ¥, =|| I | T;)| ST
X, XL, Y.

Let us define the nblocks of Ty as T,,, = X, VX' + £, T,;. is {¢.x1) and positive definite.

We will also use the shorthand expression of ‘T." for *Ty;.”. Then the estimations may be

written as:
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’9] -Ik M XI
SlE o+ T Ty -1 Yo
.in _lk Y. X, J
—YAo VX| TT: “-]r)ﬁ ‘"XIYAO-
= |+ :
_YAO VX::_L TnJ LYn _Xn?o_
~'}70 I_VX; W TI“ j—yl _XI}:D1
=1+ - - :
»90_] |_ VX;J_ T’l.]__)'n —XnYAOJ
o~ . . -
70+VX|T]l(yI _Xl'/o)

’-XI T, —’) X, X 1T l Y
where 7, = : :
[Xn TrJ Xn X" l_ T" Y.
T, [, ! T, v,
=([X; - X X o X
T X, T |y,

= (XTI X, ) (KT X0 T )
= Var[on](_X;T,"y, * .+X:1Tr;]yn)

The penultimate expression for v, looks like the expression for 8, except that it contains

terms with T' instead of terms with £'. But this small difference has great effects, which
must be investigated. As a beginning, borrowing a theorem from Appendix A, viz., that (A

+BDCY = AT - ATR(D! + CA'B)'CA”, we have:
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T =(2, +X,VX!)'
T - (VXX ) X

Then X/T'X, = X/Z/'X, - X;Z'X, (V' +X/2;'X,) X/Z/'X,. Morcover:

XTIy, = X5y, - XEX (V! +XEX,) XIE] Y,
= X/EX (XX, ) XiEty, - XX (VU x;z;‘x,)"x;z;‘x,(x;z;‘x,)"x;z;’y,

=(x;z;‘x, SXEX, (VI x;x;'x,)"x;z;‘x,)(x,'z;‘x,)"x;z;‘y

= XX, (XZX,) Xz,
=X/T,'X,B,

And finally:

Jo = (XX, + X TIX, ) (KT 44X Ty, )
= (XX XTI, ) (XX B X TX B, )

= Varl§ [ XIT;'X B, +-+X,T,'X,B,)
Therefore, the estimator of the grand parameter of this credibility model (y) is like the
cstimator of the grand parameter of the non-credibility model (o) in that both are weighted
averages of the estimators of the fixed-effects model (the B,s). The difference is that the
weights of the credibility model are X'T;'X,, whereas those of the non-credibility model

are X'Z'X,.

There is a danger of using the fixed-effects estimators ]3, = (X,’Z,"'X,)_l X'E 'y, in this

random-effects model. Whichever model is assumed:
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Va:[ﬁ,] = Var[(x,'z,"x, ) x,'z,"y,]
=(Xz'%, ) Xz Varly, |5 X, (x5 X,)

However, under the fixed-effects model:

Va:[fs,]: Xz, ) X Varly, 57X, (X2, 'X,)

'
'

XZ'X

1

X%, (xzx,)”

)
) XTI Xz X,)
v
XZ'X,)

(
(
(x2;'x,
(

But under the random-effects model:

Var[ﬁ,] =(X12'%,) X2 Varly, |57 X, (X2 'X, )
= (=%, XETEX (XEX,)
i(x;z;'x,)" XIZ(X, VX + z,)z;'x,(x;z;‘x,)"
= (3= ) XX VR (X ) ()X R (X,
=V (XX ) RETX (XX )
=v+(xzrx,)”

Further manipulation (again, using the theorem from Appendix A cited above) yields:
Var[ﬁ, ] =v+(xg'x,)"
-1 -
=(((x;z,“x,) +v) J
_ -1

=(x;z;'x, -XEX (V! XX, ‘x;z;’x,)

=(xi1'x,)"
So, the variance of this estimator under the random-effects model differs from that under
the fixed-effects model either by the addition of V to the latter or by the substitution of T

for Z in the latter. With the use of the correct variance, the true formula for Var[f ,,] results:
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Var[,] = Var[(X{T,"Xl+---+X,’,T,;"X,,)"(X;Tl"X,ﬁl +...+x;T;‘x,f3n)]

=(x;T,-'x,+...+x;r;'x")"Var{x,'T,"x,é,+...+x;rn"x,én]
(6T X, X T X, )

=(X’;T-,"Xi+'-~+XLT,]'X ( XV ﬁ.} X A XOTX v&{g }Y T )
(X1 X+ X T X, )

= (X[TX, ++X T, X ) '(xr X (x; T,"x,)"x,'T,"x,+---rx;T,"Xn(X;T;'X,)"X;T;'Xn)
(XX, +x0TX, )

=(XTX X T, ) (XiTX X T )
(XTX, XX, )

= (X% X T, )

Limiting cases for V of the random-effects model are important. The first limiting case, as

V = 0, is simple. AsV — 0, the v.s — zero vectors, and model approaches:

[y, ] rXl ] rel | [X,] (€]
: . 40 :
Y, X7 e (% e,
. = . F : + = L 'Y0+ .
I 0 I 0
Y:1 ‘ ' _Y°+0 . k :
yad L L ] _OJ UkJ L O]

But this is the fixed-effects model with the constraint that all the ys be equal: yo=y; = ... =
Y. AndasV — 0, T, — Z, and:
P . - T - T T o
!,'_%Y 0= LI_TB(XITI X, +"'+XnTnIXn) ()\1T1 'y, +”-+XnTn]yn)
=(XZX 4 XX ) (X2, 44X 2y, )
= Varl B |(X; 2}y, +-+X, 5}y, )
=B

In typical actuarial parlance, the submodels of this case have no credibility.
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The opposite limiting case is for V to approach infinity. But the more precise meaning is

that V' — 0. It is best to see what happens toj, in this case. Inasmuch as
= (XX, XTI ) (XX B X TIXB, ) and XITX, > 0as V! 50,

the limit is the indeterminate form 0"'0. However, since V +(X,’2,"X,)7] = (X,’T,"X,)_l

XT X, :(v +(x;‘z;'x,)")'l

- ((Ik +(x;*z;'x,)"v")v)'l
= V"(Ik +(X;z;‘x,)"v-')"
=V,

Therefore:

VU +v"Un)"(v-'U|ﬁl+~-+V*U"f¥,.)

o=
(VU #r,) (VO (0B +4U,8,))
(
=

Uy, ) VYU o005,
U +oetU ) (U|[-3]+.'.+Unﬁn)

-1

- -1 -
But lim U = lim (1‘ +(x/2'X,) 'v-') = lim (Ik H(xz7x,) 'o) =1,. Hence:
v oo v'o0 viog

\!.i.Tn‘?n = \}ilr}’l()(U,+'--+U")-l(U][”3.‘ +"'+U,,ﬁn)
:(lk+'“+lk)>l(lkﬁ]A#.‘.J'—Ikﬁn)

I/a R

L, h.)

In actuarial parlance, the submodels of this case have full credibility. Therefore, it makes

sense here for 7, to be the simple average of the fixed-effects estimators.
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We turn now to the credibility estimators, and elaborate the formula:

?1 §'°+VX;T'l(y _XI?O)

Fal [Fo+ VX, (y" X, 7o)
l:'Yo‘*‘VXT Y1 - VXIT' X7,

Yo+ VXIT —VX;T,;'X,,?O
7o+ VX(T'X ﬁl VXIT'X ¥,
Yo+ VX, T,'X B - VX, T,'X,¥,
VXIT,'X,B, + ( - VXX
VX, T'X,B, +(1, - VXITX, ),

—Zlﬁl +(Ik _ZI)?O

2B, +(1, -2,)7,
So the credibility estimators are matrix-weighted averages of the fixed-effects estimators
and the estimator of the grand parameter. This is a k-dimensional generalization of what

actuaries call credibility weighting. {(See the remark in Appendix A on how matrix-

weighted averages differ from scalar-weighted averages.)

In the first limiting case, limZ, = lim VX, T'X' = 0X,Z'X! = 0; so, {,in{l)?, =v,. Thisis

to say that as the submodels lose credibility, random-effects model approaches the

constrained fixed-effects model, or the one-fixed-effect model. In the opposite limiting

case, 11m Z = VX,T'X! = lim VV'U, = lim U, =1, so, lim ¥, =ﬁ,. This means
Vi Vi viso
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that as the submodels gain credibility, the random-effects model approaches the n-fixed-

effects model.

In the linear model y = X3 + e, where Var[e] = Z, |§ = (X’).‘."X)_] X'T'y. Therefore:

x'z"(y-xé)=x'z"y—x'z"xﬁ
ry -l re-l gl -l -l
=X2ly-XEX(XE'X) X2y
=XzT'y-X1zly
=0

We will apply this identity in the following derivation:
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'?l .?0 VX; Tl ! Y|"X|?o
(1. Ll =[x L)+ :
?n ?0 VX:: Tn yn_xn’?o
Yo
=1, L) :
L?o
VX; T) ! yl_X)?lJ
+[1, I, . :
VX, T Y.~ X%,
?o— T, N Y= X¥o
=1, L) ¢ H[vx: - VX, - :
‘S;o_l T, Yo _Xni;o
?o— Tl ! YI_XI?O
=L - L] ev[x oo xi] :
Y‘OJ Tn yn—xnfﬂ
|

Yo
D VXIT(y - X¥,)

Yol

'ro’
=, - L]t [+V(0)

Yol

7o
=[I, L}

Yo

This shows that the simple average of the credibility estimators equals the grand parameter.

Earlier we saw that in the fixed effects mode, éowas a weighted average of the é,s, the
weights being proportional to the inverses of the variances of the [i,s. This average is

aristocratic in that the better B s (i.e., those with the smaller variances) receive more

weight. But in the random effects model, ¥ ,is a simple average of the 7,s. This suggests
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an interpretation of credibility: credibility democratizes submodels. Afier a credibility
adjustment, every submodel is entitled to one vote in determining the grand parameter. Of

course, the weaker submodels are adjusted more vigorously.
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Appendix F

A SAS® Procedure for Credibility Problems

According to Appendix E, many credibility problems can be expressed as random-effects
statistical models. There is a SAS® procedure, PROC MIXED, which is very versatile with

random-ceffects models.  This procedure formulates the model as [12:575f, 634]

Xp+2 here E| Y 0 dv Y 0 Z is th 1

= + —+ r = = . +

y B+2Zy +¢e, where c of & ar c 0 R y + € is the total error term,
with a mean of 0 and a variance of V = ZGZ' + R. We know that the best linear unbiased

estimator of B is (X'V'X)'X'V'ly. To estimate y, we would use the estimator equation
¥ =0B +7; s07 = 0B +Cov[y, Zy +&]V" (y , xﬁ) = GZ'V"(y -XB) [(12:641]. But the

most powerful feature of this procedure is that the variance matrices may be specified with
an unknown parameter vector, viz., G(0) and R(8). The procedure will estimate 8, whether
by variance components or by maximum likelihood [12:588, 639f.]. This model is more
general than the random-effects examples of this paper; and estimating 0 is a more general
problem than estimating the random-effects variance of those examples. The following
code succinetly solves the problem posed by Gary Venter [13] and treated as Example 5 of

this paper:

/** This SAS program uses PROC MIXED to solve the problem on page 433 **/
/** of Gary Venter's "Credibility," Foundations of Casualty Actuarial **/

/** Science, Casualty Actuarial Society, 1990. **/
data datal;

input risk year1-years;

cards;

1 0.430 0.375 2.341 0.175 1.016 0.466
2 0.247 1.587 1.939 0.712 0.054 0.261
3 0.661 0.237 0.063 0.250 0.802 0.700
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4 0.182 0.351 0.011 0.022 0.019 0.252
5 0.311 0.664 1.002 0.038 0.370 2.502
6 0.301 0.253 0.044 0.109 2.105 0.891
7 0.219 1.186 0.431 1,405 0.241 0.804
8 0.002 0.058 0.235 0.018 0.713 0.208
9 0.796 0.260 0.932 0.857 0.129 0.349

proc transpose data=datal out=datat (rename=(_name_=time coli=x));
by risk;

proc mixed data=datai;

class risk;

model x= /p s;

random intercept /g s subject=risk;
run;

Once the time is invested to learn how to use routines like PROC MIXED, many
complicated problems can be solved easily and quickly. However, it is possible to go
overboard and to pose problems that are so complicated that one might unknowingly misuse
the software. In such cases, a wrong answer may go undetected because intuition has been

overwhelmed by the complexity.
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The Analysis of the Effect of Tort Reform
Legislation on Expected Liability Insurance
Losses

by Allan Kerin, FCAS, MAAA,
and Jason Israel, ACAS
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Abstract:

This paper presents 3 framework for possible methodologies 1o evaluate the effect of tort reform
legislation on expected liability insurance losscs and loss adjustment expense. An analysis of the most
common types of reforms and the difficultics that may be encountered when evaluating their effects is
presented. The direct{non-behavioral) effect on General Liability losses of a hypothetical reform which
caps punitive damages and non-economic compensatory losses and which eliminates joint and several

liability is analyzed using methodologies developed at 1SO.
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Note:

Duc to the highly subjective naturc of many tort reforms and their often complex influence on potential
litigants' behavior, it is extremely difficult to predict their impact. In the past, many actuaries have taken
the view that the best way to approach tort reform is to let the effect of highly subjective reforms be
reflected in the loss experience. This is a valid approach since the real impact of the reform will be
reflected in the actual experience. ISO has been studying this issuce and is in the process of trying to
develop a methodology which will permit the reflection of the effect of highly subjective reforms upon
losscs carlier and with greater precision. In this paper we provide an overview of common types of tort
reforms and a discussion of the difficulties encountered when evaluating the impact of these reforms. We
also discuss a methodology that is being evaluated at ISO to reflect the direct(non-behavioral) effect on
General Liability losses of a hypothetical reform, which caps punitive damages and non-cconomic
compensatory damages and eliminates joint and several liability. Thesc analyses producc only
preliminary estimates for only certain tvpes of reforms. We caution against overestimating either the

precision of the results presented here or the broadness of their application
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BACKGROUND

During the last scveral vears a number of individuals and groups have expressed concern about
rising liability insurance costs and about the possibly detrimental effect of high levels of litigation
on our national cconomic efficiency and on the rate of technological innovation in some industries
(c.g.. pharmaceuticals, aviation). They have proposed statutory changes in the tort system intended
to reduce or stabilize litigation expenses, especially for businesses and government agencies. These
proposed statutes, which are intended to medify existing statutes and cxisting case law, have
commonly been referred to as tort reforms. Although few such reforms have been enacted at the
federal level a number of states have cnacted tort reforms. Some reforms have been applicable to
cenatn types of cases, such as. Medical Malpractice and Employer Liability, while others have

affected o wide range of cascs.

Many of these reforms, to the extent that they are effective, will affect insurance liability losses.
The actuarial question of how to prospectively cstimate the effect of these reforms on expected
losses (including loss adjustment expense) is. therefore, onc of increasing importance. For reasons
that will be discussed 1n greater detail below the effect of most reforms can only be estimated by
making a numbcr of judgmental modeling assumptions. In some cases data based analyses are not

possible at all and polling of attorncys and other experts might produce the best estimates.

Work on tlus subject performed 1n several actuarial arcas in SO during the last vear has
helped form a framework for the analysis of the effect of several different types of reforms. In this
paper we will discuss the 1ssues encountered when analyzing tort reforms. We will also provide an

example of an analysis of the direct impact of several reforms on General Liability losses.
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I} TYPES OF TORT REFORMS

Most tort reform provisions that have been cnacted in the past scveral years can be

characterized as falling in onc of the following categories:

I) Limiting the amount of specific type(s) of damages that can be paid to a claimant in total or
by a specific tortfeasor. Such as:
a) Monetary caps on damages or on specific kinds of damages (e.g., punitive damages,
non-economic compensatory damages).
b) Changes to comparative negligence statutes and/or case law.

c) Changes to joint and several liability statutes and/or casc law.

2) Restricting the conditions under which specific type(s) of damages can be paid. Such as:
a) Changing definitions of types/degrees of negligence.
b) Changing type/degree of negligence (e.g., gross negligence, intentional acts) required to
award specific types of damages (e.g., punitive damages).
¢) Changing contributory negligence statutes and/or case law.

d) Changing statuies of limitation and/or repose.

3) Modifying the rules of evidence. Such as:
a) Changing standards of proof.
b) Changing types of evidence that may be considered in determining fault or evaluating

damages (e.g., information on available collateral sources of recovery).

4) Other changes to legal procedures intended to change potenual litigants behavior. Such as:
a) Revised limits on contingency fec percentages
b) Making the losing side in a civil trial responsible for the legal expenses of the winner

¢) Encouraging or mandating mediation or arbitration
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Of these four major categorics of tort reforms limitations on the amount of damages is the area that
is most readily analyzed. Statistically reported insusance data can be used 10 caleulate claim size
distributions for all indemnity losses combined. For some lincs of insurance there is a limited amount
of closed claim data that can be used to support assumptions about the distribution of these losses by
type of award (cconomic, general, punitive, etc.), by number of tortfeasors and by degree of contributory
negligence. The primary generally available multi-state source that we have found for this type of

information is the bicnmal NAIC Closed Claim Survey for Commercial General Liability. To the

cxtent that additional closed claim data sources are not available for other lincs of insurance the effect
of tort reforms on these lincs must be evaluated indircctly by making judgmental adjustments to the

results obtained for General Liability.

Even for lines of insurance wherc closed claim data is available to evaluate specific reforms. two
major conceptual and practical hmitations exist. First, in many cases detailed information is only
available for claims that go to trial and arg resolved by a verdict. This is a small minority of the actual
claims that enter the svstem since most claims are resolved by negotiated settlement at an earlier stage
in litigation or after the initial verdict while appeals arc pending.  Therefore, assumnptions about the
rclationship between the size and composition of awards directed by verdicts and the size and
composition of negotiated settlements must be of major importance in any tort reform analysis. Second,
any static analysis of this relationship between awards and settlements made under existing conditions
must be further adjusted to reflect behavioral changes on the part of claimants, defendants and attorneys
resulting from the changes in the risk/benefit scenartos that they face as a result of the reforms. (By
risk/benefit scenario we mican the set of possible favorable and unfavorable outcomes faced by each

potcntial participant in the liability claim process and the probability associated with each outcome.)
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[I) BEHAVIORAL CHANGES: AN EXAMPLE OF THE LIMITATIONS ON PRECISION OF

TORT REFORM ESTIMATES

Even when the direct effects of a reform can be accuratelv estimated using closed claim and
statistically reported data. indirect “behavioral”™ effects of that reform . which may be of far greater
maghitude. may be subject to a far less precise degree of analysis. A very clear example of this

situation can be seen i any monetary cap on punitive damages.

As noted above. most cascs do not go 1o trial. Most are resolved by negotiated settlements rather
than by verdicts. Punitive damages are only awarded in cascs that are resolved by a verdict. We can
assumc as a working hvpothesis that cases that arc resolved by scttlements have an average implicit
provision for punitive damages. that is a specific function of the average punitive damage award that is
included n verdicts for sitmilar cases. Of course. the choice of this function may rely largely on

informed judgment.

Even if the implicit provision for punitive damages in cases that are resolved by settlements can be
accurately estimated under pre-reform conditions. a potenuially more sigmficant factor will be even
more difficult to estimate. This is the behavioral effect that might result from imposing monetary caps
on punitive damages. This effect will be manifest 1n at least three aspects of the process. The first is
the propensity of potential claimants to pursue claims. The sccond is the propensity of claimants and
defendants to go to trial rather than to negotiate. The third is comprised of the possible changes that
may occur in the functional relationship between verdict size and composition for cases that go to trial

and negotiated settlement amounts for similar cases that do not go to trial.

In short, even when the change in expected losses resulting from a reform can be estimated
analytically from data under the assumption that participants’ behavior will not change, the actual
change in expecied losses may be highly dependent on behavioral changes induced by changes in the

risk/benefit scenarios faced by the participants. The effects of these behavioral changes may be
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cstimable only through an analysis that includes a number of important judgmentally chosen

assumptions,

The significance of behavioral changes is often stressed by proponents of specific reforms,
including those advocating monctary caps on punitive damages. Defenders of the status quo have
pointed out that only a very small number of claims go to trial and that only a minority of those claims
result in awards of punitive damages. Onc argument that opponents of restrictions on punitive damages
make s that the overall effect of punitive damages is grossly cxaggerated and that punitive damages do
not adversely affect cconomic efficicncy but rather serve to deter the most egregious forms of conduct at
a relatively small cost to the entire liability system'. Proponents of additional limitations on punitive
damages respond that the possibility of large punitive damage awards, especially for cases where
potential compensatory damages are relatively low, significantly affects the risk/benefit scenarios faced
by plaintiffs, defendants and attorneys. They maintain that punitive damages greatly enhance the
bargaining position of plaintiffs resulting in a greater propensity by potential claimants to make claims
and a greater willingness by defendants to scttle claims rather than risk potentially ruinous punitive

damages that could result if they insisted on going (o trial.”

Some proponents of punitive damage caps and other tort reforms claim that these behavioral
effects are the truly significant factors that must be considered when cvaluating the possible monetary
effects of tort reforms. To the extent that this is true. we as actuarics, arc faced with the difficulty of
having to rely on the least quantifiable and verifiable aspect of our analyses to measurc what may be

among the quantitatively most significant factors.

! Robin, Topping, “Around the Island Crime & Courts Law and Order: Contract Still Open on
Litigation Reform™, Newsday , 24 May 1994,

: Steven Hayward, “The Role of Punitive Damages in Civil Litigation: New Evidence from
Lawsuit Filings", (San Francisco: Pacific Research Institute for Public Policy),8.
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IV) ALLOCATED LOSS ADJUSTMENT EXPENSE(ALAE)

Many reforms may affect expected ALAE in different ways than expected indemnity losses.
Both the direct and behavioral effects of cach tort reform on expected ALAE must be considered.
Consider an cxample where the major resuft of an enacted tort reform (c.g., [oser pays winner’s
cxpenses) is a behavioral change resulting in fewer frivolous claims being made. If most of these
claims were formerly successfully contested the effect on expected ALAE may be proportionally much
greater than the effect on cxpected indemnity losses. However, if most of the claims were formerly
settled by the defendant to avoid court costs the effect of the reform on ALAE may be proportionally
much smaller than the effect on expected indemnity losses. The relationship between indemnity losses

and ALAE must be modeled throughout every stage of a thorough tort reform analysis.

V) OUTLINE OF PROCEDURE FOR ANALYZING THE EFFECT OF TORT REFORM

LEGISLATION ON EXPECTED LIABILITY LOSSES AND ALAE

The analysis of the effect of tort reforms on liability losses can be divided into the following seven

steps.

1) Analyze the content of the tont reform legislation.

2) Evaluate the possible interactions among the various reforms that were concurrently enacted.

3) Evaluate data sources available to aid in the analysis of each reform and develop the best

strategy for analyzing each reform as well as for measuring the effect of any interactions found

in Step 2.
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4) Perform the analyses designed in Step 3 and test results for reasonablcness and consistency. If

possible compare with the results of past reforms in the same or different jurisdiction.

5)  Evaluate the effect of behavioral changes that may result from changes in the risk/benefit
scenarios faced by potential claimants, defendants and attorneys. Modify the analyses

performed in Step 4 10 reflect this analysis.

6) Evaluate the probability of specific provisions of the reform being overturned or modified
under judicial review of the relevant appellate courts. If necessary modify short term pricing

decisions to reflect these contingencies.

7) Evaluate any mitigating factors that might temper the cffects of the above analysis. such as

changes in tactics by plaintiffs’ atiorneys to circumvent the impact of the reforms.

A discussion of each of these seven steps follows.

STEP 1: ANALYZE THE CONTENT OF THE TORT REFORM LEGISLATION

This is a significant and often a difficult task. The present changes in the statutes have to be
analyzed and any carlicr changes that might affect prior loss expericnce used in the tort reform
analysis must be identified. A legislative and judicial history cxtending scveral vears into the past
is often necded. It 15 often necessary to consult with attorneys that arc knowledgeable in this area.

This may add considerably to the expense of the analysis

Tracking the changes in the language of all of the relevant statutes may be an arduous and
expensive job. However, this is often far casier than interpreting the interactions between the
changes in the statutes and case law and judicial practice. In this arca local legal experience may

be especially valuable. This is a key part of the analysis both retrospectively (in interpreting the
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history of past reforms, as well as the current legal environment in the jurisdiction) and
prospectively in evaluating how the statutory provisions of the current reforms will be interpreted
by tnial and appellate courts. In somc cascs reform statutes may be, knowingly or not, largely

cosmetic 1n that they may just codifv the existing case taw.

It is optimal when analyzing significant tort reform legislation to have an effective working
relationship between actuaries and attorneys. In-house attorneys who are experts in insurance law
may provide a great deal of guidance. Consultation with local attorneys may also be desirable in

order to accurately analyze the history of procedures in civil trials in the relevant jurisdiction.

Thesc tssues are compounded when multi-state data is used in analyses of tort reform statutes.
The relevant aspects of the legal environment in each statc whose data is wcluded in the analysis

should be evaluated throughout the experience period of the study.

STEP 2: EVALUATE THE POSSIBLE INTERACTIONS AMONG THE VARIOUS

REFORMS THAT WERE CONCURRENTLY ENACTED

There are a number of possible different interactions. These should be carcfully analvzed by
the actuary. where necessary in consultation with an attorney. Comparative negligence provisions
arc closcly related to joint and several hability provisions. Monetary caps on specific types of
damages may often interact with other reforms that affect those damages. Numerous other

interaclions arc possibic.
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STEP 3: EVALUATE DATA SOURCES AVAILABLE TO AID IN THE ANALYSIS OF EACH
REFORM AND PLAN THE BEST STRATEGY FOR ANALYZING EACH REFORM AS WELL

AS FOR MEASURING THE EFFECT OF THE INTERACTIONS FOUND IN STEP 2.

As noted in the carlier sections of this paper, data may exist that can be incorporated into the
analysis of some reforms, such as monetary caps on damages. However, other reforms may only be
subject to a non-data based analysis. Inforrmed assumptions, expert opinions of knowledgeable
partics (c.g.. local attorneys and claims adjusters) and analogies to reforms with more readily
quantifiable cffects are among the strategies that may have to be employed for these reforms.
Comparison with changes in loss levels in other jurisdictions afier similar reforms may be possible.

However, in these cases it may be difficult to control for other factors affecting loss levels.

If data from a longer time period than originally expected and or from additional states is

included in the analysis then the legal historics produced in Step 1 will have to be extended.

STEP 4: PERFORM THE ANALYSES DESIGNED IN STEP 3 AND TEST THE RESULTS

FOR REASONABLENESS AND CONSISTENCY.

Reasonablencss can be examined by analyzing the effects of past reforms in the same or
diffcrent jurisdictions when such information is available. In some cascs comparisons may be made
with loss levels in states that have legal systems that are similar to the post reform system in the
statc being studied. Of course, controlling for other factors may be difficuit when making historical
analogics or making direct comparisons with other jurisdictions. Hopefully, as more reforms are
cvaluated actuarics will benefit from the experience gained and will be better able to analyze the

reasonablencss of results.
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STEP 5: EVALUATE THE EFFECT OF BEHAVIORAL CHANGES THAT MAY RESULT
FROM CHANGES IN THE RISK-BENEFIT SCENARIOS FACED BY POTENTIAL
CLAIMANTS, DEFENDANTS AND ATTORNEYS. MODIFY THE ANALYSES

PERFORMED IN STEP 4 TO REFLECT THIS ANALYSIS.

This is one of the most difficult and important aspects of tort reform analysis. (A discussion of
possible behavioral changes related to monetary caps on punitive damage awards can be found in
Section I1I of this paper.) Almost any reform can be expected to have some behavioral effect. An
effective reform will change the probabilities of recovery and/or the expense of pursuing a legal
claim for at least some potential claimants. These changes can influence the decisions of
prospective claimants, defendants and attorneys on whether or not to pursue specific claims,
defenses and negotiations. In fact, many proponents of tort reform stress the importance of
behavioral changes. In their opinion the current tort system encourages frivolous litigation which
is detrimental to efficiency and serves as a disincentive to technological innovation. A stated goal
of many proponents of tort reform is to make it more risky and on average less profitable to pursue

frivolous claims and thereby to deter legal action through behavioral change.

STEP 6: EVALUATE THE PROBABILITY OF SPECIFIC PROVISIONS OF THE REFORM
BEING OVERTURNED OR MODIFIED UNDER JUDICIAL REVIEW OF THE APPELLATE
COURTS. IF NECESSARY MODIFY SHORT TERM PRICING DECISIONS TO REFLECT

THESE CONTINGENCIES.

Tort reform legislation is often challenged in the courts. Frequently these challenges are at least
partially successful. Even when challenges are not successful, they may significantly delay the full
impact of the reforms. For example, consider the extensive tort reform statute that was enacted in
ilinois during 1995. Iilinois courts overturned major provisions of this act in decisions that were issued

in February, May and September of 1996. The February ruling struck a section of the statute that gave
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defendants greater access to the medical records of plaintiffs in many cascs >.  The May ruling found
the act’s $500.000 cap on pain and suffering awards to be unconstitutional’. The September decision
struck down provisions dealing with suits concerning unsafe products *. Thc ultimate fate of these and

other provisions will probably depend on subscquent decisions by higher appellate courts.

When a reform is passed that scems to have a significant probability of being successfully
challenged in the courts a delayed implementation of revisions to insurance prices might be appropriate.
Allcrnatively. a loss cost or premium discount might be adjusted to reflect the likelihood that the tort
reform provisions might be rescinded or significantly modificd. It may be possiblc to cstimate the
probability of various outcomes to court challenges and the percent of the total expected savings that
would be associated with each outcome. An average expected saving that reflects the probability of
successful challenges could then be calculated and used in place of the full savings cstimated under the
assumption that the entire reform is upheld. This strategy adds an additional layer of complexity to the
analysis. Additionally, it may not be favorably vicwed by rcgulators  In using this strategy a more
complex sct of assumptions are substituted for the simpler assumption that the provisions of the act will
not be significantly modified by judicial action. In either case. the cffect of the enacted tort reform

should be reevaluated after all significant court challenges are resolved

STEP 7: EVALUATE ANY MITIGATING FACTORS THAT MIGHT TEMPER THE
EFFECTS PREDICTED BY THE ABOVE ANALYSIS, SUCH AS CHANGES IN TACTICS BY

PLAINTIFF'S ATTORNEYS TO CIRCUMVENT THE IMPACT OF THE REFORMS.

After cnactment of any tort reform provision. plainuff™s attorneys will re-cvaluate their legal

strategics. In some cases there may be alternate legal strategies that prove cffective in at least

Andrew Fepelman. “Judge Overturns Tort Reform on Medical Record Access.”. The Chicago
Triburne, 28 February 1996.

Andrew Fegelman & Rick Pearson. “State Cap on Jury Awards Removed: Judge Rules Law
Unconstitutional.”, The Chicago Tribune. 23 May 1996

Andrew Fegelman, * Another Tornt Change Knocked Down: Product Liability Provision Ruled
Unconstitutional.”, The Chicago Tribunc. 18 September 1996

1

4
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partially mitigating the effect of the enacted reforms. For example. the recent restriction on Federal
sults for sccurities fraud has been followed by an mcreased number of these cases being brought in
the state courts. Changes in the jurisdiction. the legal grounds for a claim. types of damages or the
choice of defendants may at times help the clamant to partially or totally avoid the impact of

cnacted reforms on expected compensation”.

The rules of the civil justice system arc comprised of an intricatehy entwined mixture of statute
and case law. in some cascs including principles of common fuw that go back to colonial times.
Even when laws are not successfully challenged in an appelfate court the details of their actual
implementation may not be completely deternmned until a number of cases have been tried. [t is
possibie that a court charged with interpreting newly cnacted tort reforms will interpret them

narrowly in order to preserve rights that existed under former law

Juries” attttudes may also mitigate the effect of some tort reforms. [n cases where there 15 a
great deal of svmpathy for the claimant and/or a sense of repugnance at the conduct of the
defendant. the jurors” sense of justice may result in decisions that at least partially offset the
practical cffect of the enacted reforms. For example. limitations on or abolition of pumtive
damages may cause junes in some cascs to award larger amounts in compensatory damages than

they would have formerly

Evaluating these factors 1s extremcly difficult. The legal philosophy of the appellate judges in
the state. as well as popular attitudes toward a number of 1ssues can have a decisive effect on how
judges and junes shape the post-tort reform svstem and on the resuluing degree of effectiveness of

the enacted reforms.

Beckett. Paul, “Reform Rings Hollow for Firms Worried About Class Action Law Suits™. Wall
Street Journal. 4 Apnil 1997
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VI) ALTERNATE ANALYTICAL STRATEGIES

We have considered two ways in which to analyze individual tort reform provisions (i.e., in
which to perform Steps 3 and 4 of the analysis outlined above). The first such strategy is to use any
available data to model the loss gencration process before and after the enactment of the reforms
and to calculate an cffect of the reform as a function of the ratio of the post reform losses to the pre-
reform losscs. When adequate data for such an analysis does not exist expert opinion, historical
analogtes and logical arguments are relied upon. Our work to date has centered on developing

applications of this strategy to price specific reforms..

An alternative strategy. that we have not yet attempted, would fit a least squares model for loss
cost levels to multi-state data where the various states included represent a broad range of legal
environments. The fitted values of the regression cocfTicients for categorical variables identifying
different types of civil law procedures could theoretically serve as the basis for estimates of the
differences in loss levels that would occur under specific alternative civil law provisions. Other
factors that could also influence differcnces in loss levels among states would also be included in
order to remove their effect on state specific loss lcvels from the analysis. The categoncal
variables would be evaluated on a state-by-statc and year-by-year basis in order to identify
differences in levels of factors that occur over time within specific states, as well as among states.

The difficultics of performing such an analysis include:

1) Needing to perform an accurate statutory and case law history for each state included in the

analysis throughout the experience period used

2) The number of different provisions that could be directly modeled would be restricted by the

current and historical variation in provisions among states, although some degree of

extrapolation might be valid
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3) The difficulty of identifying and controlling for ail major extraneous factors, such as

sociological, political and economic differences among states

VII} EFFECT ON INCREASED LIMITS COVERAGE

Many tort reforms impact different size claims differently. This is most obvious for monetary
caps, which gencrally will have a minimal effect on small claims Larger claims are more likely to
involve punitive damages and joint and several liability and are thereforc more likely to be affected
by reforms in these areas. In many cases the most accurate reflection of changes in expected losses

due to tort reforms would be to revise both base loss costs or rates and increased limits tables.

Revising increased limits tables to reflect the effect of tort reforms on expected losses raises
several practical and theoretical questions. For credibility reasons increased limits tables are often
calculated on a countrywide or multi-state (e.g., all ton states for Pcrsonal Auto Bl) basis. Revising
increased limits tables to reflect individual state tort reforms could resuit in an explosion in the
number of such tables. Individual state increased limits tables may in many cases depend on
sparse claim size detail data and require new credibility procedures. The additional cost of
computing, updating and applying a significantly increased number of tables must be considered

and weighed against the possible increase in accuracy attainable, in light of credibility limitations.

An alternative 1o individual state increased limnits tables is grouping states by tort system. 1SO
alrcady does this 1o a limited extent for Personal Auto Bedily Injury Liability by grouping states
into a tort state group and five groups of No-Fault states. Refining this systcm for Personal Auto

(breaking up the tort state group) and extending it to other lines is theoretically possible.

Grouping by tort system is certainly preferable to ad-hoc adjustments to countrywide or multi-

state tables to reflect tort reforms cnacted in individual states. Such ad-hoc adjustments can lead to
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severe inconsistencies. For example. State A might still have a more “plainuff friendly™ tort system
even after the enactment of tort reforms than State B does in the absence of any such reforms. If
modifications arc made to give Statc A a less steep increased table and State B remains on the
countrvwide table an obvious inequity would result. In summary. the current countrywide and
multi-state increased tables are not pre-reform tables. Instead they arc tables that reflect the
averages of losses by claim and/or occurrence size incurred under a wide range of legal and other
variables among and often within states. Treating these tables as a pre-reform base that can be
adjusted incrementally. without tempening, 1o reflect recently enacied tort reforms can result in

significant inaccuracies.

Evaluating tncreased limits that vary by state group to reflect diffcrences in Icgal systems
among the states is. therefore. an area that deserves further research. Such tables may be more
accurate both 1n a static legal environment and as a way of dealing with tort reforms whose

proportional effect differs by loss size. However. the following factors must be considered

1) Grouping states by legal system for the purpose of calculating increased limits factors
requircs a thorough state-by-state analysis of each state’s tort syslem including any changes
that have occurred during the experience period uscd for increased limits reviews. Even a
thorough review of current and past statutes may not be sufficicnt due to the importance of casc

law and judicial procedures in determining the frequency and disposition of claims.

2) Many other factors which may affect loss sizc distributions significantly differ among (and
within) states besides the relevant componcents of the legal system. Some examples include,
types of industry, conditions of roads, level of traffic and safety enforcement, levels of past
pollution, income distribution, unemployment levels, political and social attitudes that may be

reflected in decisions by juries, judges and other participants in the tort process, etc.
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VII) EXAMPLE OF THE EVALUATION OF THE EFFECT OF THREE TORT

REFORM PROVISIONS ON GENERAL LIABILITY LOSSES

Up to this point we have discussed in considerable detail the difficulties that are faced when
cvaluating the effect of tort reforms on expected losses. Now we will. more optimistically, present
an example of an analysis of the dircer (non-behavioral) cffect of several of the more readily

cvaluated reforms on expected General Liabiliy losses

Given the considerations discussed above we have hnuted the scope of this analysis in the

following wavs

We have analyzed only the direct. non-behavioral, effects of the reforms.

-

We have restricted our atiention to reforms that are representative of the first category of
reforms described in Section I Limiting the amount of specific tvpe(s) of damages that

can be paid to a claimant in total or by a specific onfeasor.”

[s)

We have analyzed the effect of the modeled reforms only for premises and operations

General Liability(GL) claims.

3

We have restricted our analysis to indemnity losses.

The three reform tvpes that we have analyzed are

1) Cap on Non-Economic Damage Awards

2) Cap on Punitive Damage Awards
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3) Repeal of Joint & Several Liability.

This analysis produces rough estimates for only certain types of reforms. We caution

against over-cstimating cither the precision of the results, or the broadness of its applicability.

METHODOLOGY

We use simulation to model the effect of these reforms. This aflows us more flexibility than
a purely analytic method in integrating data from different sources from which the probability
distributions of a number of variables are cstimated using a vanety of discrete and continuous

functions.

The ISO occurrence indemnity size distributions provide the framework for our simulation.
(Since, a high percentage of these occurrences have a single claimant. we used this occurrence
distribution as a proxy for a General Liability premises and operations claim size distribution.)
For simplicity, we use the truncated Pareto approximation, rather than the full mixed Pareto
mode! which is used in ISO’s General Liability increased limits reviews. Although experience
has shown us that the truncatcd Pareto distribution is a reasonable model for liability occurrence
and claim size distributions and that it fits the ISO General Liability occurrence size data well,
we recommend cvaluating alternate distributions when other data sources are used.  'We can
invert the truncated Parcto. using formulas shown in Exhibit 1. This inverted function is used to
generate the sizes of our simulated claims. (A similar analysis can be done if a distribution other
than the truncated Pareto is used to model occurrence or claim size.) The 1SO data was also used
1o estimate the pereent of total losses that are attributable to bodily injury (Bl) rather than

property damage (PD) by loss size interval

For all other information we turned to the 1991, 1993 and 1995 NAIC closed claim

surveys. Using them we can make assumptions and estimates about our simulated claims.
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Unfortunately. the NAIC surveys only include sizable bodily injury settlements and verdicts. For

property damage, we have no such resource.

As noted above, a fundamental problem is that most GL claims are settled by negotiation
and do not result in a verdict. However, a breakdown of damages by type (punitive, non-
economic, cconomic) is only available for the small portion of claims that are resolved by verdict.
If a reform caps a portion of an award, we must determine what indircct impact it will have on
the settlements. While it seems reasonable that a scttlement reflects an expected average verdict
for that claim, we know that settlements tend to be smaller than verdicts. Is this a reflection of
the possibility of a $0 verdict (which would not get into our average), or is it a different body of
claims? Here we assume reforms impact settlements of $X the same as verdicts of $X.

We have cstimated the following quantitics using the NAIC closed claim data:

fawy

Ratio of average claim size for claims with a punitive damage component to average claim

size for all claims.

2

-~

Ratio of average claim size for multiple defendant claims impacted by joint and several

liability to average claim size for all multiple defendant claims.

3) Probability of a claim involving multiple defendants.

4

=

Probability of a multiple defendant claim being impacted by joint and several fability.

"
=

Probability distribution of non-gconomic loss amount as a percent of total compensatory

amount.

The population of claims available in the NAIC surveys is relatively sparse and for ccrtain

important categories of claims it is extremely small. Information is only available for 19 verdicts
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that itemized punitive damages in the combined data from the 1991, 1993 and 1995 surveys.
This limited data source does not support detailed modeling of many of the relationships among
the different variables being studied. Many assumptions about these relationships and hence
many aspects of the structure of the model that we have developed to evaluate the effect of these
reforms are based largely on judgment. We hope that additional data sources will become

available that will support further testing and refinement of these assumptions.

Using data from itemized verdicts, we made the following assumptions:

=

Largc total awards arc more likely to have a punitive damage component.

2

If there is a punitive component. the portion of the total indemnity that it comprises is

uniformly distributed from 0% to 100%.

For General Liability. the ratio of non-cconomic 1o cconomic damages 1s independent of

w

award sizc.

4) Large awards with multiple defendants are more likcly to involve joint and several

f

liability.

In addition based on judgment we have assumed:

1) The probability of a claim being BI varics by size of loss.

2) PD claims have no significant chance of involving punitive or non-cconomic awards.

3) The likclihood that multiple defendants are involved and the number of defendants

15 independent of the modeled defendant’s pre-reform award amount.
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4

The claim size distribution of clams with a punitive damage component represents a
scalar expansion of the claim size distribution for all claims (i. ¢.. If ¢ is the ratio of the
average claim size for claims including a punitive damage component to the average claim
siz¢ for all claims and $X 15 the value of the nth percentile (for any real number n,
0<n<100) of the claim size distribution for all ¢laims then ScX( ¢ tumes $X) is the nth
percentile of the claim size distribution for claims including a pumtive damage

component.)

t

) The claim size distribution of multiple defendant claims impacted by joint and several
liability represents a scalar expansion of the claim size distribution for all muitiple

dcfendant occurrences

We could simulate cach probabilistic characteristic of cach simulated claim. Instead we
choose to only simulate claim size from the inverted truncated Parcto distribution. For each
simulated claim. we model cach possible combination of valucs of the other vanables and weigh
all of the resulting combinations by weights derived from the empirical probability distributions
cstimated from the closed cdmm study data. This event tree structure embedded 1n the simulation
reduces the risk of significant bias resulting from a very large claim having an extreme value of

one or more of the variables other than claim sizc.

For cach simulated claim, 168 scenarios representing possible combinations of values of
the other modeled variables are weighed together Lo produce the estimated loss before and after
cach combination of the reforms being analyzed. The variables that arc represented by these 168

SCENArios arc.

1) Blvs. PD
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2) Single vs. Multiple Defendant

3) Impacted by Joint and Scveral Liability vs. not Impacted

4) Percent of award comprised by a punitive damages (the mode of this distribution is 0%)

5) Percent of compensatory damages that are non-economic.

Each possible combination of reform provisions are applied to the simulated claims. For

this analysis we model a reform comprised of the following components:

1) Cap on Non-Economic Damage Awards -$250,000 per plaintiff.

2) Cap on Punitive Awards -Greater of $100,000 or 3 x Economic per plaintiff

3) Repeal of Joint & Several Liability - Total

Exhibit 2 shows the impact on onc simulated claim.

Finally, we apply policy limits to the simulated claim, both before and after the reform. A

reform that limits large losses may have little effect if the policy limits are often exceeded both

before and after the application of the reform.

We generated a large number of claims undcr the 168 scenarios. For cach combination we
calculated the average indemnity impact on the above reform package at several policy limits.

Exhibit 3 summarizes the results of this analysis.
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EFFICIENCY OF SIMULATION

Differences in the provisions of the reforms and 1n characteristics of the population of
insurance policies being considered will affect the convergence rate of the simulation. Evaluating
the cffect on policics with higher limits of liability will often requirc more iterations since more

variation is present further out in the tail of the claim size distribution.

QOur early simulations required at least hundred thousand occurrences to produce
convergence for the relative impact. Millions of simulations were necessary for severity

convergenge, requiring over a week on a personal computer.

We improved the efficiency of our simulation using two related techniques, re-weighting
and stratified sampling. Re-weighting entailed generating more occurrences of larger size, but
giving them proportionally less weight. This is accomplished by modifying the function which
assigns a Pareto distribution value to cach randomly generated uniform distribution value. A
compensating weighting function is applicd to avoid the introduction of bias in the resulting claim

size distribution.

Stratified sampling involves fixing the number of simulations within intervals. We cycled
‘our generation of uniform random values within 500 equal probability intervals. This ensures

adequatc coverage of cvery part of the distribution.

ADDITIONAL AREAS FOR RESEARCH

There are a number of areas that require further research. We must develop methodologies

to evaluatc additional types of reforms. We need to develop methodologies to estimate the impact
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of the behaviaral effects of reforms. We need to incorporate a consideration of the tikelihood and
potential impact of repeal or reinterpretation. Certainly, efforts to develop or find new or

cxisting data sources should be pursued.

1X) CONCLUSION

Actuarics are often called upon to evaluate the effect of law changes on expected insurance
losscs. The imposition. modification and on occasion climination of automobile No-Fault systems
in a number of slates: changes in uninsured/under-insured motorist statutes; and mandated
changes in Workers' Compensation benefit levels are common examples of such situations. The
changes which arc now referred to as tort reforms are often less well defined in thetr scope and .
impact than the above examples. They also. often. affect all lines of insurance rather than specific
lines and coverages. They may often have minimal effect. At times they may only represent the
codification of existing casc law. At other times their effect may be significant, but only indirectly
manifested. through behavioral changes that may or may not have been intended by the drafters
and proponents of the legislation. The accurate analysis of tort reforms niay be diflicult and
costly. The limits on accuracy may be significant even when talent and expense are not limiting

factors

However. in many cascs waiting may not be an acceptable initial pricing strategy. First,
msurcrs mav be required by statute and/or regulation to reflect the effect of reforms immediately or
by a specified data Sccond. duc to the slow development of some hability claims it may take a
number of yvears for the full effeet of changes to enter into the data. Third. some changes may
have significant effects and the potential crror resulting from delaying reflection of the change

may be greater than the potential error resulting from analyses based on limited or imperfect data.

There may be political and regulatory pressure to reflect changes, even if their cffect is at

first questionable. Trade groups for a number of industrics as well as Think Tanks, political
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groups and clected officials have made substantial. perhaps somctimes overstated. claims about

the cost savings and other benefits that might result from the reforms that they support. When

such reforms are enacted (even if they have been weakened significantly by amendment) clected
officials and the public expect significant savings to be realized quickly. Actuarics must

cvaluate these changes as accurately as possible using the limited information that is available.

We hope that his paper contributes 1o the continuing evolution of more accurate methods

of anulszing the cffect of tort reforms and other changes 1n the legal environment on expected

tnsurance losscs.
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VII) EXHIBITS

1 - Truncated Pareto Formulas

2 - Impact of Sample Reform on onc simulated claim.

3 - Avcrage Impact of Sample Reform by Policy Limit.
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Exhibit 1
Page |

Truncated Pareto Formulas

Definitions
B.Q = Pareto parameters
T = truncation point
P = probability that an occurrence is less than T
§ = average size of an occurrence less than T
ABT BBT = exponential fit parameters (from P,S and T)

Formulas for Truncated Pareto:

(1) Probability Density Function:

AR for0< ¥ <T Exponential fit
hX)= } QU-P)T+B) for Te ¥ Pareto distribution above T
NS A to distribution abov
(X+ B or T< areto distribution above

(2) Cumulative Distribution Function:

( ABT X L BRT
{4 — forO< X<T
H(X) =

fT+BY
1-(1-P) YviB for T« X

(3) Average Loss Size when Losses are limited to Policy Limit K
(Limited Average Severity):

A8T K

" "-1-481 K"

K- ABT?

for0<K<T
LAS = E{min(X.K)) = p D
1>S+(g_l)[(B+QT)-(B+K)(§I,I<] } for (T < K) and (Q # 1)

© Copyright, Insurance Services Office, Inc., 1997
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Exhibit 1
Page 2
Inversion of Truncated Pareto Formulas

Starting with the cumulative distribution function.
(e,m'r-x _ l)esm'
ABT

Q
1—(1—P)(/\T/+l;) for T< X
+

for0< X<T.
H(X) =

Solving for X in terms of H gives us:

In(1+ABT H-€ 2T
ABT

1- PY'
(B+T)(T7) ~-B forP<H<I1.

for0< H<P.
X(H)=

By generating uniform random values for H (from 0 to 1), X(H) gives us simulated indemnity
values for our truncated Pareto distribution.

© Copyright, Insurance Services Office, Inc., 1997
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The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses Exhibit 2
Impact on One Simulated Occurrence Page 1

Notation and Parameters

Occurrence Indemnity Size Model - Truncated Pareto Distribution

B 33,947.174 Pareto Scalar

Q 1.300 Pareto Thinness of Tail

P 0.869 Probability of an Occurrence being less than T.

S 2,925.631 Average (indemnity) size of an Occurrence less than T.
T 10,000 Truncation point of Model

ABT -0.0002797 1st Parameter below truncation point (from P,S, T)
BBT -8.2591837 2nd Parameter below truncation point (from P,S,T)

From Prem-Ops Table 2.

Non-Economic Damages Model: Cycle %NE through empirical quantiles:
0.0% 18.2% 38.6% 56.5% 70.0% 82.7% 93.4% 100.0%

Blwt 0.87 Avg. Weight of BI, in layer above $100,000.
0.60 Avg Weight of BI, in layer below $100,000.

Pun_sz 2.0 = AvgSev(occurrences with punitive)/AvgSev(All occurrence)

Pun_a 5.0% Overall Probability of a BI occurrence having a punitive component.

Mult 0.40 Chance of a claim involving Multiple defendants

JS sz 1.20 Relative Size of J&S claims. (From Closed claim study: $280k / $231k)

JS a 15.0% Overall J&S Prob, given a BI occurrence with multiple defendants.

Xc 250,000 Parameter in Estimates of Total Size of All-defendant award and J&S impact.
Js_Sm 0.60 Impact of (Elimination of) J&S on claims smaller than Xc.

Is_Lg 0.30 Marginal Impact of (Elimination of) J&S on claims larger than Xc.

©Copyright, Insurance Services Office, Inc., 1997
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Impact on One Simulated Occurrence

I. Simulate One Occurrence

I H= Random Variable underlying simulated indemnity size.
We could generate this from a uniform distribution from O to 1.
For our study we used stratified sampling:
generating one from 0 1o 0.002, the next from 0.002 to 0.004, ctc.
We also used reweighting to generate more large values of H, but giving each less weight
= 0.989988

2 X = Indemnity. Uncensored, Pre-reform.
We invert the CDF representing the Occurrence Size Distribution.
For this study we used a Truncated Pareto Approximation (Sec Exhibit 1)
X= Ln(1+abt H Exp(-bbt))/abt OR (B+T)[(1-P)/(1-H)]"(1/Q) -B.
= 283,640

3 PunProb= probability that a BI occurrence of size X involves punitive damages.
= p(punlx)
= p(pun) * [f(x|pun) / f(x)]
Assuming that the pdf of f(x|pun) represents a scalar expansion of f(x)
(that the distribution of punitives is the same, except for a constant multiplier):
f(x|pun) = f{x / Pun_sz) / Pun_sz

= (Pun_a/Pun_sz) * [f{(x/Pun_sz) / f{x)]

= (Pun_a/Pun_sz) * [Q(1-P)(T+B)Q([X/Pun_sz]+B)-(Q+1) / Q(1-PX(T+B)Q(X+B)-(Q+1) ]
| = (Pun_a/Pun_sz) * [([X/Pun_sz]+B)-(Q+1) / (X+B)-(Q+1) ]

= (Pun_a/Pun_sz) * (X+B)/ ([X/Pun_sz]+B)] Q+!
: (0.05/200) * 390
\ = 0.09747

{ 4 JSProb= Probability that an occurrence of sizc X 1s impacted by Joint & Several Liability,
| given that it has multiple defendants.
‘ Using the same assumptions as in PunProb.
= p(JS) * [f(x1JS) / f(x)]
(JS_a/JS_sz) * [f(x/IS_sz) / f(x)]
(JS_a/IS sz) * [(X+B) / ([X/JS_sz] +B) |¥™!
(0.15/ 1.20) * 145
= 018109

I
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The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses  Exhibit 2
Impact on One Simulated Occurrence Page 3
3 Simulate various scenarios underlying this occurrence.
Singie Defendant. Multiple Defendants w/o Joint Liability, Multiple Defendants with J&S.
Each of the those 3 are broken into 7 possiblitics
If B), assume six possibilities. with varying punitive components:
One with No Punitive (Punitive = 0% of Award)
Five with Varying Punitives of 10%, 30%, 50%. 70% or 90%
If PD, assume only one possiblilty, punitive of 0%
Each of the above 21 are then calculated with 8 values of NE%
If BI. percentage of non-punitive (compensatory) damages given by non-cconomic damages
For PD. we currently assume the entire damages are cconomic, so NE% has no cffect.
The Following 8 values of NE% arc used with equal weight:
00% 18.2% 38.6% 56.5% 70.0% 82.7% 93.4% 100.0%
This makes 168 (=3x7x8) distinct scenarios:

Here we display the calculations for four (of the 168) scenarios:

A) BI, Single Defendant, No Punitive
If the insured 1s the only defendant, then Joint and Several cannot apply.

B) BI, Single Defendant, 90% Punitive
As "A" above, but the same size loss now consists mostly of pumtive

C) BI, Muitiple Defendants, but without Joint & Several, 50% Punitive
Now the insured’s loss 1s part of a larger verdict The verdict is half-punitive.

D) BI, Multiple Defendants, Joint & Several invoked, 50% Punitive
Similar to "C", but part of the insured’s loss was from other defendants.

Duc to reform (repeal) of the J&S doctrine, this extra amount is now a savings.

Eachuses  56.5% for NE%

C.Copyright, Insurance Services Office, Inc., 1997

187



The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses Exhibit 2

Impact on One Simulated Occurrence Page 4
Scenario: A B C D
Defendants Single Single Multiple Multiple
J&S Applies n/a n/a No Yes
Punitive Damages 0% 90% 50% 50%
Weight (BI vs PD) 0.8700 0.8700 0.8700 0.8700  Blwt or 1-Blwt
Weight (of # of Def) 0.6000 0.6000 0.4000 0.4000  Mult or 1-Mult,
Weight (of J&S) 1.0000 1.0000 0.8189 0.1811 1,1S_Prob or 1-JS_Prob.
Weight {of Punitive) 09023 0.0195 0.0195 00195  =PunProb/5 or 1-PunProb
Weight (of NE%) 0.1250 0.1250 0.1250 0.1250 =1/ (# of NE quantiles)
6 Scenario Weight** 0.0589 0.0013 0.0007 0.0002  Product of weights

* For cases with punitive. Otherwise Weight = 1-PunProb
** The weights for the twenty-one scenarios with this NE% add up to .125.
The weights for all 168 sccnarios add up to 1.000.

7 Verdict Size= 283,640 283,640 542,051 542,051
Total award (verdict or settiement) to plaintiff from ALL defendants.
If Single Defendant = X
If Multi-Defendant = X * 2 (if X< Xc)
Xc*2 + (X-Xc)*1.25 (if X> Xc)

8 X)s = 283,640 283,640 283,640 160,092
Loss: &S reduced If J&S impacted this occurrence, how large would it have been without it?
If Multi-Defendant = X * JS_Sm (if X < Xc)
Xc*IS Sm + (X-Xc)* JS_Lg (if X > Xc)

9 PunOld (after J&S)= - 255,276 141,820 80,046
Punitive calculated as our scenario %, of the post-Joint & Several loss.
= Xjs * Pun%

10 NeOld(after J&S)= 160,257 16,026 80,128 45,226
Non-Economic = Xjs * (1-Pun%) * NE%

11 EcoOld(after J&S)= 123,384 12,338 61,692 34,820
Economic = Xjs - N¢Old- PunOld

©Copyright, Insurance Services Office, Inc., 1997

188



The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses  Exhibit 2

Impact on One Simulated Occurrence Page 5
Scenario: A B C D
12 Cap on Non-Eco
0*Economic Variable Cap
Min. Cap 250,000 Minimum Cap
Max Cap Maximum Cap
Net Cap per plaintiff 250,000 250,000 250,000 250,000
Cap by defendant 250,000 250,000 130,818 [30,8[8 = Net Cap * (X/Verdict)

13 Cap on Punitive
3*Economic 370,151 37,015 353,688 353,688 Variable Cap

Min Cap 100,000 Minimum Cap

Max Cap Maximum Cap
Net Cap per plaintiff 370,151 100,000 353,688 353,688

Cap by defendant 370.151 100,000 185,075 185,075 Entire punitive cap
14 Capped Punitive - 100,000 141,820 80,046
15 Capped Non-Eco 160,257 16,026 80,128 45,226
16 Xref = 283,640 128,364 283,640 160.092
Post Reform Loss: =EcoOld + Capped Punitive + Capped Non-Eco

17 Calculate the Limited Loss, and calculate the average weighted across all 168 scenarios
(We cannot just calculate the Limited Average, we need the average of the Limited)

We calculate these Average Limited Losscs for Five Sample Policy Limits:

$100,00 500,000 1,000,000 10,000.000 unlimited

We should calculate these values reflecting vanous combinations of reforms.
Elimination of Joint&Several.
J&S + Cap on Non-Economic Damages
All three (J&S, Non-Eco and Punitive) reforms.

©OCopyright, Insurance Services Office, Inc., 1997
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The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses Exhibit 2
Impact on One Simulated Occurrence Page 6

Weighted Avg of!.
Displayed All

A B C D 11 168
Post-Reform
Min(Xref, 100k)= 100,000 100,000 100,000 100,000 99 893 99.608
Min(Xref,500k)= 283,640 128,364 283,640 160,092 261,946 249 422
Min(Xref, 1 M)= 283,640 128,364 283.640 160,092 261,946 249,422
Pre-Reform
Min( X, 100k)= 100,000 100,000 100.000 100,000 100,000 100,000
Min( X , 500k)= 283,640 283,640 283,640 283.640 283.640 283,640
Min( X, 1 M)= 283.640 283,640 283.640 283,640 283.640 283,640

Note that all 168 scenartos will be identical under pre-reform conditions.

Repeat simulation until results converge.
For each of limited loss in step one, calculate the Mean value

100,000 random simulations 1s sufficient to generate stable % changes at cach relevant hmit.
But more arc needed for Limited Average Severitics stable in absolute dollars.

We uscd reweighting and stratificd sampling to improve our efficicncy

©Copyright, Insurance Services Office, Inc.. 1997
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The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses Fxhbit 2

Impact on One Simulated Occurrence Page 7
H X(H) Which P(Pun>0 | x) Total Losses before caps Limited to:

Pareto Old Indem. Non-Eco NE/NP  punprob J&s Prob $100,000 $1,000,000 Unlimited

0.9900 283,640 56.50% 0.0974694 0.181091 100,000 283,640 283,640
BlProb 87.0%
Entire Verdict Ratio of Several to Joint Total Losses after J&S Reform Limited fo:
If Single Defendant 283,640 if Joint applies: 0.5644 100,000 274,691 274,691
If Multi Defendants 542,051 if not: 1.0000
Scenario Losses before Cap (but after J&S) Losses after Caps Tolal Losses after caps Limited to:

Punitive Weight Economic Non-Eco Punitive Non-Eco Punitive $100,000 $1.000,000 Unlimited
Bi 0.0% 0.05889 123,384 160,257 - 160,257 - 100,000 283,640 283,640
Single 10.0% 0.00127 111,045 144231 28,364 144,231 28,364 100,000 283,640 283,640
Defend 30.0% 0.00127 86,369 112,180 85,092 112,180 85,092 100,000 283,640 283,640
50.0% 0.00127 61,692 80,128 141,820 80,128 141,820 100,000 283,640 283,640
70.0% 0.00127 37,015 48,077 198,548 48,077 111,045 100,000 196,137 196,137
90.0% 0.00127 12,338 16,026 255.276 16,026 100,000 100,000 128,364 128,364
BI 0.0% 0.03215 123,384 160,257 - 130,818 - 100,000 254,202 254,202
Multi- 10.0% 0.00069 111,045 144,231 28,364 130,818 28,364 100,000 270,228 270,228
Defend 30.0% 0.00069 86,369 112,180 85,092 112,180 85,092 100,000 283,640 283,640
No J&S  50.0% 0.00068 61,692 80,128 141,820 80,128 141,820 100,000 283,640 283,640
70.0% 0.00068 37,015 48,077 198,548 48,077 111,045 100,000 196,137 196,137
90.0% 0.00069 12,338 16,026 255,276 16,026 52,327 80,691 80,691 80,691
Bl 0.0% 0.00711 69,640 80,452 - 73,836 - 100,000 143,476 143 476
Multi- 10.0% 0.00015 62,676 81,407 16,009 73,836 16,009 100,000 152,522 152,522
Defend 30.0% 0.00015 43,748 63,316 48,028 63,316 48,028 100,000 160,092 160,092
50.0% 0.00015 34,820 45,226 80,046 45,226 80,046 100,000 160,092 160,092
J&Ss 70.0% 0.00015 20,892 27136 112,064 27,136 62,676 100,000 110,704 110,704
90.0% 0.00015 48,748 63,316 48,028 63,316 48,028 100,000 160,092 160,092

PD

Single 0.0% 0.00975 283,640 100,000 283,640 283,640
No J&S  0.0% 0.00532 283,640 100,000 283,640 283,640
J&S 0.0% 0.00118 } -~ 160,692 100,000 160,092 160,092
Weighted Total  0.12500 16,831 16,0684 1,441 14,989 923 12,487 32,743 32,743
{Normalized) 134,652 - 128,511 11,529 119,910 7.384 99,893 261,946 261,946

Numbers in shaded regions include reduction for impact of J&S.

© Copyright, Insurance Services Ofhice, Inc, 1997




Extubit 3

The Analysis of the Effect of Tort Reform Legislation on Expected Liability Insurance Losses

Overall Effect on Average Severity

Unlimited Indemnity’, by Component

Reforms: J&S and
Component None J&S Only Non-Eco All
Economic 3 12,037 $ 11,591 $ 11,591  § 11,591
Non-Economic 9,956 9,562 4,901 4,901
Punitive 885 840 840 487
Total 22,878 21,993 17,331 16,978
Limited Average Indemnity Severity'
Reforms: J&S and
Policy Limit None J&S Only Non-Eco All
$100,000 $ 9,304 § 9,157 % 9,131 $ 9,126
$500,000 13,967 13,656 12,958 12,859
$1,000,000 15,599 15,199 13,889 13,740
$10,000,000 19,281 18,645 16,553 16,246
Unlimited 22,878 21,993 17,331 16,978
% Change in Limited Average Severity’
Reforms: J&S and
Policy Limit None J&S Only Non-Eco All
$100,000 n/a -1.6% -1.9% -1.9%
$500,000 na ~2.2% -72% -7.9%
$1,000,000 n/a -2.6% -11.0% -11.9%
$10,000,000 na -3.3% -14.1% -15.7%
Unlimited n/a -3.9% -24 2% -25.8%

* Result of 160,000 simulated Premises and Opcrations occurrences.

**  Simulated Reforms:
Complete abolishment of Joint & Several Liability.
Unconditional cap of $250,000 on Non-Economic awards.

Cap on Punitive awards of greater of $100,000 or 3xeconomic.

© Copyright, Insurance Services Office, Inc., 1997
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The Concentration Charge:

Reflecting Catastrophe Exposure Accumulation in Rates
Donald Mango, F.C.A.S.
Crum & Forster Insurance

Abstract

Diversification of exposure concentration means geographical balancing amongst
capacity providers -- insurers, reinsurers, or capital market participants. But how to
diversify those exposures is still unsettled. Efforts to this point have focused on
balancing the exposures which have already been written by insurers -- via catastrophe
reinsurance (regular or securitized), several proposed catastrophe indices, even direct
exposure exchanges. This paper proposes an alternative approach: exposure
balancing at the point of sale using an insurance pricing structure which reflects the
insurer's exposure level or "portfolio state" -- what can be called portfolio state
dependent pricing. Instead of one set of filed loss costs and loss cost multipliers,
insurers would quote a manual rate which included a surcharge which reflects their
exposure level in the area where the potential insured is located. If all carriers were
required to quote on a similar basis, had similar loss costs and multipliers, a potential
insured's desire to be charged the lowest premium would lead them to choose the
carrier who was least exposed in their area.

Biography

Mr. Mango is with Zurich Centre ReSource in New York City. Prior to that he was with
Crum & Forster Insurance in Morristown, New Jersey, where he was responsible for
Catastrophe Management, Ceded Reinsurance, and Umbrella pricing and reserving. He
holds a B.S. degree in Mechanical Engineering from Rice University.
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The Concentration Charge:

Reflecting Catastrophe Exposure Accumulation in Rates’
Donald Mango, F.C.A.S.
Crum & Forster Insurance

Section 1: Introduction

This paper will present a method for reflecting exposure concentration in property
catastrophe rates via a "concentration charge" -- an additional charge on top of the
manual rate which varies based on the insurer's exposure level in the area where the
potential insured is located.

On first glance one might well ask why have a concentration charge? In a perfectly
functioning economy, with plentiful reinsurance and capital market capacity, insurers
would be able to diversify away exposure concentration problems. Since the market
does not reward diversifiable risks, it would appear a “charge” or return for exposure
concentration risks could be an arbitrage cpportunity. Insurers would collect the
additional money for their concentration problems, then diversify those problems away,
presumably for less cost than they collected in concentration charges. Competitive
markets would not allow such an arbitrage engine to exist for long. So why continue this
paper?

Because the situation is not as simple as that. Diversification of exposure concentration
means geographical balancing amongst capacity providers -- insurers, reinsurers, or
capital market participants. But how to diversify those exposures is still unsetiled.
Efforts to this point have focused on balancing the exposures which have already been
written by insurers -- via catastrophe reinsurance (regular or securitized), several
proposed catastrophe indices, even direct exposure exchanges.

This paper proposes an alternative approach: exposure balancing at the point of sale
using an insurance pricing structure which reflects the insurer's exposure level or
"portfolio state" -- what can be called portfalio state dependent pricing. Instead of one
set of filed loss costs and loss cost multipliers, insurers would quote a manual rate
which includes a surcharge reflecting their exposure level in the area where the
potential insured is located. If all carriers were required to quote on a similar basis, had
similar loss costs and multipliers, a potential insured's desire to be charged the lowest
premium? would lead them to choose the carrier who was least exposed in their area.

| would like to thank Gary Blumsohn, Matt Mosher, Clive Keatinge and Paul Kneuer for their
(in)voluntary efforts providing needed peer review and feedback. | would also like to thank the anonymous
reviewers on the CAS Ratemaking Committee for their helpful comments.

2 Ignoring for discussion purposes issues such as insurer security levels, services and/or other
coverages provided, personal relationships,....

1
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This is an important distinction: the concentration charge proposed here is not a reward
for bearing a risk which can be diversified away, it is a means to let the market forces at
the point of sale do the diversifying.

This approach is a departure from the current ratemaking paradigm, and significant
issues stand in the way of implementation. There is no place in the current filed loss
cost/LCM paradigm for PSD pricing. Adoption would require fundamental changes to
the concepts underlying insurance pricing. PSD pricing is also computationally intensive
and complex. Personal lines carriers with hundreds of thousands or millions of
policyholders may feel the additional costs outweigh any marginal benefits. However,
as will be discussed below, these are not insurmountable problems.

Perhaps the biggest concern though is unfair discrimination. Under PSD pricing
potential insureds could be quoted different rates based on the month, week, or day
they come in. Such apparently arbitrary pricing does not seem appropriate for an
economic necessity such as insurance.

However, PSD pricing need not appear arbitrary. The public could be made aware of
the concentration charge's intended purpose. It could be broken out and quoted
separately from the "regular” premium. Policyholders would have a strong incentive to
shop around and get several quotes. They may even feel empowered rather than
powerless in tight insurance markets such as Florida. They become an active
participant in improving the insurance market rather than a passive recipient of what
may seem arbitrary capacity decisions by carriers.

The remainder of this paper is organized as follows. Section 2 develops the needed
surplus distribution, derived from the modeled loss distribution and available funds for
payment of catastrophe losses. Section 3 introduces the concept of surplus tiers, which
are ranges of percent of total policyholders surplus. In Section 4 we look at the costs of
exposure accumulation and the concentration charge, an annual "payback” charge
which takes the form of an expense load to be applied to the new account’s loss cost.
In Section 5 we combine all these concepts into an approach for pricing new business.
We conclude in Section 6 with a discussion of PSD pricing in relation to the provisions
in the CAS "Statement of Principles Regarding Property and Casualty Insurance
Ratemaking” [1].

Section 2: Needed Surplus Distribution

What is the relationship between surplus and the payment of catastrophe losses? The
company has some collected funds on hand with which to pay catastrophe losses. It
may be a planned or budgeted annual cat loss load, or the sum of collected loss cost
provisions for catastrophe coverage (e.g. the wind load portion of the Basic Group 2
loss cost for Commercial Multi Peril). These funds will be referred to as the catastrophe
fund (CF).
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For events whose losses are less than or equal to the CF, no surplus is needed.
However, surplus will be needed to cover losses in excess of the CF. This needed
surplus is equivalent to the catastrophe loss net of a deductible equal to the CF
amount. Each modeled event loss will require a different surplus amount. This means
given a CF amount and a modeled loss distribution, one can develop a needed surpius
distribution.

Using a modeled occurrence size of loss distribution® with event identifiers i, the event
probabilities p, and modeled loss amounts L*, the needed surplus distribution by event
NS, is:

NS, =Max|[L,-CF, 0] [2.1]
where L, = modeled loss for event i

It will prove more convenient going forward to express NS, as a percentage of PHS:

NS, =Max (L -CF. 0]
PHS [2.2]

The needed surplus distribution tells us what percentage of the available surplus will be
depleted by each modeled event. But different amounts of depletion can have
qualitatively different impacts upon a company's ability to continue functioning
post-event. To better discuss the different amounts of depletion we introduce the
concept of surplus tiers.

Section 3: Surplus Tiers

An insurer of reasonable size should be able to withstand an event-based depletion of
say -10%" of available surplus without significant disturbance to ongoing operations.
This amount might be considered the limit of "acceptable variation”: there will be no
regulatory intervention, ratings downgrades, or loss of market position or viability.

Between -10% and -20%, the company may begin to attract the attention of regulators
and rating agencies. Between -20% and -30%, regulatory bodies may step in to
oversee operations and protect the interests of other policyholders; guaranty funds may
be put on alert; ratings downgrades are almost certain, and with thermm comes possibly
irreparable damage to market position and viability. Between -30% and -50%, the
company would almost certainly fall under direct regulatory control. Beyond -50%, the
company is in all likelihood headed for major reorganization, runoff, or even insolvency.

Annual aggregate loss distioutions could also be used.
See Appendix A for a discussion of possible modifications to modeled losses which a company
may want to consider before calculating the needed surplus distribution.

| have selected these breakpoints arbitrarily for discussion purposes.

®
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These highlighted "ranges" demarcate what | call surplus tiers:

Surplus tiers are ranges of surplus bounded by selected percentiles within which
the ongoing operating status of the company is considered "constant.”

Movement from one tier to the next reflects a qualitative change in the ongoing
operating status of the company.

We will be using this sample set of surplus tiers throughout the remainder of the paper:

Table 1 - Sample Surplus Tiers

Surplus | Percentile o o
Tier Range Impact
1 0-10% None - Acceptable Variation
2 10-20% Regulatory and Rating Watch
3 20-30% Regulatory Oversight, Ratings Downgrade
4 30-50% Regulatory Intervention
5 50-100% Reorganization, Runoff or Insolvency

(Note the convention that "higher" numbered tiers of surplus represent deeper shocks
and more severe impairment to the company.)

This means that each modeled event has both a needed surplus amount NS, and a
corresponding surplus tier . Events can even be referred to by their tiers -- a very
severe event might be "Tier 4." These tier references are both company specific and
portfolio state dependent. They will change as the exposure levels, collected premiums,
and surplus of the company change.

Now that we have a framework for relating exposure levels and surplus via tiers, we
turn our attention to the development of an appropriate concentration charge.

Section 4: The Concentration Charge

Should the concentration charge just be another form of risk load? If the answer is yes,
then an application of one of the well known risk load methods -- from Kreps [2] or
Meyers [3], for example -- would suffice. Both methods would give larger charges for
adding a risk to a more exposed area, which makes intuitive sense.

However, these methods would generate a concentration charge for the addition of a

risk to any geographic area, even those with Tier 1 exposure. This expands the
concentration charge's definition beyond its intended focus: reflection of exposure
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accumulation beyond critical amounts. Also, these methods while being theoretically
sound may not be acceptable to a regulator as support for additional surcharges. The
issue of additional (marginal) surplus and an appropriate return thereon have yet to be
satisfactorily resolved in the public farum.

This may be a purely semantic distinction, but | intended for the concentration charge to
serve as more of an economic indicator than as a reward for bearing risk. | had hoped
this approach could be filed and used to develop portfolio state dependent rates for
catastrophe coverage. | believe this requires a concentration charge which is
economically sound yet understandable and acceptable to both regulators and the
public.

In that light, [ propose a formula for the concentration charge which focuses on the
reparation of impairment by requiring depleted surplus to be replenished in order for the
company to continue operating as a viable going concern. The time frame for
replenishment would depend on the tier: higher tiers would need to be replenished
more quickly than lower. Tier 2 surplus need not be repiaced within one year, but
maybe over five years. Depletion to the Tier 4 level may mean regulatory supervision,
s0 a two year turnaround may be mandated just to restore viability.

Each tier will be assigned a replenishment period. Since each event has a tier
associated with it, it too will have a replenishment period. That means an incremental
dollar of loss to that event exposes a dollar of surplus which must be replenished within
the appropriate time period. To accomplish this replenishment, that loss dollar would
need to carry an accompanying annual surplus replenishment load (as a percent of that
dollar of loss) equal to the inverse of the replenishment period (in years). This expense
load shall be referred to as the concentration charge (CC):

Table 2 - Sample Surplus Tiers and Concentration Charges

Surplus 1 Percentile Replenishment { Concentration
Tier Range Period Charge (CC)
1 0-10% - -
2 10-20% 5 Years 1/5 = 20%
3 20-30% 3 Years 1/3=33%
4 30-50% 2 Years 1/2 =50%
5 50-100% 1 Year 171 =100%

Summary
Before proceeding it may be helpful to review the new components to the approach:
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+ The needed surplus distribution by modeled event, expressed as a percentage of
total surplus, associates a surplus tier with each event.

+ Surplus tiers are percentile ranges of surplus within which the company’s
operational status is considered constant, but between which material changes in
operational status are assumed to occur.

« Each tier has a different replenishment period associated with it, based on the
severity of the predicament.

« The inverse of the replenishment period yields a surplus replenishment load called
the concentration charge which is applied to any additional loss dollars added to
that event by a new account.

These new components will now be combined into a pricing approach for a new
account.
Section 5: Pricing A New Account

The first step in pricing a new account is creation of its own occurrence size-of-loss
distribution, consisting of loss amounts n, by event. The concentration charge dollars by
event (CC$) for the new account then equals

CC$ =[CC, *n] [5.1]
where CC, = concentration charge for event |
These dollars represent the replenishment costs of the additional loss to each event.
For Tier 1 events, this charge is 0. For Tier 5 events, it is according to our example
equal to an additional 100% of modeled loss for the new account -- a 100% surcharge

to pay for exposure concentration.

The expected concentration charge dollars over all events (CC$) equals
CC$ =X, [CC$, " p,] (5.2)

where Zi = sum over all events

The concentration charge (CC) -- the expense provision to be applied to the
catastrophe loss cost -- is calculated as follows:

cC= CC$ / 2, [n"*p] 5.3]

where Zi [ n * p. 1 =modeled expected loss for new account



This assumes that the ratio of

expected concentration charge dollars
modeled expected loss

is a suitabte proxy for the required concentration charge to be applied to the filed
catastrophe® loss cost.

Example: Homeowners

One might deem this detailed approach to be "continuous" PSD pricing. Computational
and regulatory restrictions for a line like homeowners might call for more of a "discrete”
or approximate method. An example would be territorial foss cost multipliers.

Begin by calculating the concentration charge for a sample policy added to each of the
company's territories (could be bureau defined, county, zipcode,...}. This concentration
charge would be a loss-based expense to be included with the company's other
expenses in developing loss cost multipliers. For example, say a company had two
territories, Y and Z. Territory Z is more heavily exposed than Territory Y. Their expense
loads and loss cost multipliers would be:

Table 3 - Example of Homeowners Territorial LCM's

Expense item Ter.Y | Temr.Z |
4] Premium-Based Expense Load 31% 31%
! (2) Concentration Charge 15% 30%
[ (3) } Loss Cost Multiplier 1.667 1.884 |
=[1.00+(2))/ ! |
| [1.00-(1)] |

(Note: the formula in (3) assumes the concentration charge is included as part of
premium for determination of taxes, commission and other variable expense provisions.
It could easily be madified to accommodate different treatments -- e.g. surcharge.)

Territorial LCM's do represent a compromise position between PSi and PSD pricing.
They would still be on file with the insurance department. An insured would be quoted
the same manual rate independent of portiolio state for the period the LCM's are in
effect. However, they do represent a step forward in their explicit recognition in the loss
cost multiplier of the cost of exposure accumulation.

6 Clearly the introduction of separate catastrophe loss costs and multipliers represents yet another
regulatory hurdle to be avercome before this approach can be implemented. However, many cat-prone
states are pushing companies to provide a cat/non-cat breakout of their "indivisible" package premiums
(HO or CMP). See Walters and Morin (4] for more on separate cat rates.
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Example: Large Commercial Account

Companies may wish to use the "continuous™ approach when pricing a larger
commercial account. The addition of a large account will fikely have a substantial
impact on the portfolia state, so it may be worth the extra effort to get the more exact
answer from the continuous method over the approximate territorial method. Also, the
locations may be so geographically dispersed that the territorial LCM method cannot be
effectively applied.

Table 3 shows highlights of an example’ showing the difference in concentration charge

for adding a new account to two portfolios, LOW and HIGH. To reflect the differences in
exposures, | set LOW's modeled losses equal to 50% of HIGH's by event.

Table 4 - Example of Adding a New Large Account

Item Identifier Low HIGH |

N Expected Loss Zi [n*p] $151.78 $151.78
(2) | Expected Concentration Charge CCs $9.73 | $33.38 |
I Dollars | R »_—a'

(3) | Concentration Charge CcC 6.41% 21.99%
[ =@7(M | A R ]

Holding all else constant, the difference between the LOW and RIGH concentration
charges is due to the lower tiers exposure (see Columns (7) and (15) on Table 5).

Section 6: Portfolio State Dependent Pricing and
the CAS Ratemaking Principles
Before giving PSD cat pricing further consideration, we might ask how it compares to
the recommendations of the CAS "Statement of Principles Regarding Property and
Casualty Insurance Ratemaking" (3].
It is important that proper actuarial procedures be employed to derive rates that protect
the insurance system's financial soundness and promote equity and availability for

insurance consumers.

PSD pricing produces rates which directly reflect threats to a company's financial
soundness due to exposure accumulation. PSD pricing is equitable among

A full version of the example is included at the end of the paper in Table 5.
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policyholders covered under different lines of business and/or different states,
the collectibility of whose insurance is threatened by exposure accumulation. In
counterpoint to the discriminatory charge against PSD pricing, one could argue
that portfolio state independent pricing represents an implicit subsidy among
property cat policyholders in high exposure areas and policyholders in other
states and/or lines of business and/or companies. Excessive exposure
accumulation also threatens the availability of insurance. If the exposure
balancing promise of PSD pricing were fuffilled, it may actually lead to more
availability.

Principle 1: A rate is an estimate of the expected value of future costs.
Principle 2: A rate provides for all costs associated with the transfer of risk.
Principle 3: A rate provides for the costs associated with an individual risk transfer.

PSD pricing is based on the view that the cost of adding a new cat policy
depends not only on the characteristics of the policyholder (transfer of risk) but
also on the state of the portfolio at the time it is written (individual risk transfer).

Principle 4: A rate is reasonable and not excessive, inadequate, or unfairly
discriminatory if it is [based on Principles 1-3].

A PSD pricing process can be as objective and fair as a PSl process if itis
systematic, based on sound economic principles, objectively applied, auditable,
and not subject to distortion or fraud. it is not by definition unfairly discriminatory,
instead reflecting the consumption and availability of a limited resource -~
underwriting capacity as represented by surplus.

(It} is desirable to encourage experimentation and innovation in ratemaking.

That is the intent of this paper.

Section 7: Conclusion
The outlined approach provides a connection between

current portfolio exposure levels,

modeled losses,

the resulting exposure of surplus,

the costs of that surplus exposure, and

required pricing for a new account based on the current portfolio state.

* + ¢ &+ @

It reflects exposure accumulation in the rates, but requires a ratemaking paradigm shift
to portfolio state dependent pricing. There are unresolved regulatory and social issues
of fairness and order dependency which clearly must be addressed for this approach to
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ever be implemented. Still, it is meant to be a forward-looking paper, providing a
conceptual framework for discussion and advancement of the science.
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Appendix A
Possible Adjustments to Modeled Losses and Surplus

The needed surplus distribution should reflect all payments related to a large
catastrophe net of all budgeted funds. There are several cost components which a
company may want to consider in addition to the modeled loss amounts produced by
their catastrophe models:

1. Reinsurance recoveries (including non-recoverables and Catastrophe
reinsurance reinstatement premiumy;

2. Model adjustments -- demand surge, fire following earthquake;

3. Non-voluntary and guaranty fund assessments;

4, Bond losses due to forced liquidation.

(1) Reinsurance Recoveries

Needed surplus will be reduced by the recoveries from reinsurance programs,
particularly catastrophe treaties. These recoveries and those from per risk treaties as
well as facultative can be built directly into many catastrophe models to give accurate
net loss numbers.

However, care should be taken to reflect reasonable non-recoverabie provisions. It may

not be realistic to expect full recovery in a $50B industry event for example. Also, cat
treaty recoveries should be net of any reinstatement premium.

(2) Model Adjustments

Demand surge (the localized inflation of materials and labor after an event) and fire
following earthquake are just two examples of adjustments to modeled results which
may warrant reflection, depending on a company's conservatism and faith ir the
modeled results.

(3) Non-voluntary and Guaranty Fund Assessments

Both of these represent costs which will vary with industry event size and company
participation. The assessments could be substantial and should not be ignored.
Non-voluntary pools in cat-prone states have gone from insurers of last resort to first
choice providers for the difficult to insure. Insurers and the public need to know the
non-voluntary facilities' exposure tevels.

(4) Bond Losses Due To Forced Liquidation

This item differs from the others in that instead of increasing losses it would act to
decrease asset value and thus surplus. The P-C insurance industry could flood the
capital markets in the aftermath of a large catastrophe in their demand for cash. This
create a self-feeding downward pricing spiral, causing material losses to asset value.
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Notes for Table 5
Concentration Charge Example - Large Account

Column (1) = the event identifier i
Column (2) = the event probability p,
Column (3) = the current losses for the HIGH portfolio H,
Column (4) = the collected catastrophe loss cost amount CF of $10MM
Column (5) = the needed surplus by event NS, for the HIGH portfolio
= the maximum of [(3) - (4)] and O

Column (6) = the needed surplus by event as a % of PHS (= $500MM).
Column (7) = HIGH surplus tier from Table 2

Column (8) = HIGH congcentration charge CC, from Table 2

Column (9) = the New account loss n,.

Column (10) = the HIGH concentrahon charge dollars CC$, by event

=[(8)* (9

Column (11) = the current losses for the LOW portfolio L,

Column (12) = Column (4)

Column (13) = the needed surpius by event NS, for the LOW portfolio
= the maximum of [(11) - (12)] and 0

Column (14) = the needed surplus by event as a % of PHS (= $500MM).

Column (15) = LOW surplus tier from Table 2

Column (16) = LOW concentration charge CC, from Table 2

Column (17) = Column (9)

Column (18) = the LOW concentration charge dollars CC$, by event

=[(18) * (17)]

Expected losses for the New account = Zi (2" 9]
Expected CC$ for the HIGH portfolio = 22 [ (2) * (10
HIGH Concentration Charge CC =33.38/151.78 = 21.99%

Expected CC$ for the LOW portfolio = 2, [ (2) * (18) ]
LLOW Concentration Charge CC =9.73/151.78 =6.41%
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A Frequency Based Model for Excess Wind in
Property Ratemaking

by Tim McCarthy
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ABSTRACT

In some geographic areas the most significant cause of variation in total dollar losses
are fortuitous, non-hurricane storms. Many of the models developed to address the
issue of such excess wind losses use dollar loss data only. The traditional models
may muddy the distinction between large loss procedures and excess wind models,
particularly in territorial analysis. Additionally, as new models are developed which
address the hurricane-type risks only, overlap between the hurricane and
non-hurricane losses in the traditional procedure degrades the utility of the historical
database. A frequency based model far excess wind is proposed. A frequency based
model has the benefit of both providing an appropriate load for non-hurricane excess

wind, and making the company's intemal property data more suitable for trend analysis.
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A Frequency Based Model
for Excess Wind in Property Ratemaking

OVERVIEW
Increasingly, property coverages are having a portion of their catastrophic losses
estimated through the use of loss simulation procedures. These modeling procedures
provide the long term expected losses for major catastrophic events, like hurricanes.
However, they generally make no provision for smalier wind catastrophes which can
represent a more significant component of a line's annual expected catastrophic

losses on an ongoing basis.

As the hurricane models become more widely accepted, a data gap can exist betwesn
the historical excess wind model, which generally considered non-hurricane events
along with humricane losses, and the hurricane only loss procedure. This paper
provides a procedure to develop a catastrophe or excess wind provision for
non-hurricane fosses. [t develops a catastrophe [oad based upon the non-hurricane
wind loss frequency. The model as developed enables data in a property book to be

used for loss trend analysis.

CURRENT PROCEDURES
There are currently a number of procedures used. Most applications are variants of a
procedure described by Homan [1]. He describes a procedure which ratios wind losses

to total losses excluding wind. He takes historic losses over a long period (27 years)



and determines the median ratio of wind to non-wind losses over the period. If a year's
wind to non-wind losses are 150% or greater than the median ratio, then the excess
wind ratio for the particular year is calculated as the difference between the year's
excess wind ratio and the median. The excess wind ratios are totaled and divided by
the number of years (27) to produce an average excess wind factor. This average
excess wind factor is used to develop the excess wind loading for the year's under

review.

Many excess wind procedures are variations on Homan's procedure. Chemick [2]
describes a procedure where catastrophe events are identified in the database, and a
catastrophe loading is developed with the defined catastrophe losses. Fitzgerald [3]
provides an example where the total losses for each calendar year are ratioed to

premium.

Problems with the Current Procedures

There are a number of problems with the cumrent procedures. Among the problems are:

1. Hurricane Losses Included in the Data

2. Mix of Different Policy Forms

3. Historical Premium Adequacy

4. Changing Definitions of Historical Catastrophes

5. Geographic Distribution Changes

212



6. Application to Territorial Analysis

7. Applicability of the Procedure to New Products

Hurricane Losses Included in the Data

The excess wind losses using the traditional 30 year catastrophe period include
hurricane (major catastrophic wind) losses which are increasingly accounted for in rate
development with modeled hurricane losses. A company, with an exposure base which
is susceptible to both frequent wind / hail storms and hurricane losses, may have [ost
some of the value of an excess wind databass if it is unable to separate hurricanes
from the remainder of wind losses. While such segregation may be possible tor most
recent years, frequently the detail from older years no longer is available. Fitzgerald
[3] notes that the ISO historical database lacks information for removing hurricanes

from older years.

Mix of Different Policy Forms

Coverage changes occur over time, and the applicability of the traditional excess loss
procedure to older years is unknown. For example, in Homeowners many companies
had a different distributional mix of Actual Cash Value (ACV) policies and Replacement
Cost Coverage (RCC) policies in older years than exist during the experience period
under review. Do RCC policies produce proportionally larger or smaller losses than

ACV policies, given the fundamental coverage differences?
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Historical Premium Adequacy

The ISO excess procedure for Extended Coverage ratios losses to premiums. When
excess loss ratios are used, problems can exist with the historical premium base. How
does the adequacy of the historical premium base compare with current adequacy?
That is, does a particular year appear to have excess losses solely due to the
inadequacy of the premiums?  Even if the historical premiums were adequate, if
companies have been reducing expenses over time (including policyholder dividends),

the older years' premiums are excessive at today's levels.

The Changing Definitions of Historical Catastrophes

In the procedure described by Chemick [2], catastrophes are described in the
database. How are such catastrophes defined? It Property Claims Service (PCS)
defined catastrophes are used, then the actuary needs to be sensitive to the long term
definition changes of catastrophes. Prior to the 1980's an event was defined as a
catastrophe if it produced over $1 million in insurance industry losses. Untit recently a
$5 million industrywide loss would be defined as a PCS catastrophe. Now, the storm
must generate $25 million in losses to be defined as a catastrophe. A number of

issues are raised by the use of such a standard.

1. How does a company's distribution of risks compare to the industry's? If it

has a lesser concentration of risks than the industry, then the industrywide

catastrophe may not have produced many losses for the company.
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Contrariwise, a company with a much greater concentration of risks in a
particular area may experience significant losses to its book, yet the storm may

not qualify as an industry catastrophe.

2. How well does a national catastrophe standard translate to state pricing?
This is a problem which is akin to the geographic issue raised above. The PCS
catastrophe standard is a countrywide standard. A state on the periphery of the
system generating an industry catastrophe may experience few losses.
Similarly, a storm which generates relatively large losses for a particular state

may not surpass the threshold for it to be defined as a countrywide industry loss.

3. How does one redefine older catastrophes at the new total dollar level?
That is, under the PCS definition in 1993, a storm would have needed to
generate losses of $5 million to qualify as a catastrophe. In 1997 the break
point is $25 million. What should the level of losses have been in the 1993
storm to still qualify as a catastrophe? $25 million? Some interpolated dollar

amount between the time of the last definition and the most recent definition?

Geaographic Distribution Changes
The traditional method does not account for geographic distributional shifts which occur
over time. Fitzgerald [3] notes that there has been a population shift to areas impacted

by hurricanes over the last 30 years. Have shifts occurrad to or away from areas




impacted by wind, hail, and tomadoes? If so, then the historical excess loss model will

not adequately reflect the prospective catastrophe risk being priced.

Application to Territorial Analysis

The traditional method advanced by Homan [1] performs territorial analysis by
assuming that the excess catastrophes are distributed evenly across all territories. He
does state that territorial catastrophe factors can be developed, but the specifics of
such a procedure are not outlined in detail. Thus, the historical procedure does not

allow for area catastrophic losses to be recognized in territorial analysis.

Applicability of the Procedure to New Products

The current procedures require the availability of many years of data since the variance
is a function of a serles of full years' losses. When a new product is introduced if its
geographic spread or susceptibility to wind losses are different than other product lines,
the applicability of the current procedures to the new product may be difficult to

establish.

RECOMMENDED ALTERNATIVE
The proposed altemnative is to develop a catastrophe procedure based on the wind
claim frequency of particular dates of loss. Why use a frequency based model versus

total doflars of loss?

216



Whils total dollars of foss produce the variation in the experience of any insurer, it is
generally the variation in the underiying number of claims which generates the variation
in the total dollars of loss. Catastrophe procedures, which rely upcn the excess loss
dollars to develop a catastrophe loading, are utilizing a surrogate for the variation in
claim counts. By placing reliance upon the frequency, the surrogate is being replaced
by a more accurate measure of the source of variation. if a frequency model more
accurately accounts for catastrophic variation, then the accuracy of the actuarial model

is enhanced.

Using a frequency based wind cause of {oss procedure eliminates distortions to the
catastrophe factor which can be generated by other causes of loss. That is, in many
traditional methods, the wind claims are raticed to the non-wind claims. Suppose that
in a particular year the wind experienca is somewhat worse than usual, but that theft
and fire losses have declined considerably in the particular year. In such a year, the
wind losses may be considered "excess” more by virtue of the good fire and theft
experience than as & result of poor wind experience. The converse can hold, wherein
all, or most, causes of loss detericrating in a particular year can exciude that particutar

year's wind losses from consideration in the catastrophe factor development.

THE FREQUENCY MODEL
The proposed alternative is to consider the relative quarterly frequency of wind losses
to detsrmine the catastrophe loading. That is, summarize the wind claims and losses,

by day of loss, over the experience periad. Calculate the frequency of the wind losses




by dividing each day's wind claim counts by the quarterly earned exposures. The 2.5%
of days with the highest frequency are selected to be catastrophe days'. The losses
associated with these claims are ratioed to the historical total fosses excluding the

catastrophe claims to develop a catastrophe factor.

Exhibit 1 provides an example of this procedure applied to a recently introduced
product line which was introduced in 1988.2 The underlying database contains all days
with wind losses, the number of earned exposures (units insured) for the quarter, the
number of claims generated on the day, and the cumulative paid losses for claims
generated on the day through the most recent valuation quarter. The frequency and
severity are calculated from the data on the exhibit. In the exhibit, 39 days are
summarized, which represent the 2.5% of worst wind days. Over an approximate eight
and a half year period (approximately 3,100 coverage days) the wind claims on these
39 days generated 14.3% of the total claims which represented 20.5% of the total loss

dollars. From these data a catastrophe factor of 1. 2601 was generated.®

The derivation of this 2.5% criterion is discussed in the section "Catastrophe Cutoff” baginning
on page 11,

2 Only 8 and 1/2 years of data are refiected in this exhibit. The number of years used to devsicp a
catastrophe factor generally can and should sxceed this period. This axhibit reflects the experience for a
racantly introduced product line. This recently introduced product line was selected for this paper:

1. to show the applicability of the procadure to recently introduced product lines; and

2. to keep the example simpie by including all the data on one page.

While more years are needed to develop a reliable axcess wind factor, the specific length of
experience to be examined has not been determined satisfactorily. One could arguse that a period of
approximately 15 years is reliable given that underwriting practices, coverage and geographic
distributional changes render the applicability of data older than this suspect.

3 If one examines the exhibit closely, he / she will notice that the seventh catastropha date
(1988-09-16) has only 5 claims. Because this is a recently introduced product line one could justify
excluding the first or second year of data from the detenmination of the catastrophe load due to the
instability which could be introduced to the frequencies from the rapid axposure growth. All data are



To price with this factor, the payments and reserves associated with the catastrophe
days should be excluded from the calendar or accident years in the review. The factor
should be applied to the incurred losses, without excess wind, to develop the
prospective losses with catastrophes. Figure 1, below, demonstrates how the
procedure would be applied to indications developed using calendar year data.* it
summarizes the application of the catastrophe procedure to calendar year 1995 and

1996 incurred losses.

Figure 1°

- - - Incurred Losses - - -
Total Excl Total
Calendar Excess Excess{ Excess Adjusted
Year Total Wind Wind| Factor Incurred

1995 12,519,591 3,611,313 8,908,278 1.2601 | 11,225,321
1996 7403814 681,212 6,722,602] 1.2601 8,471,151
Total | 19,923,405 4,292,525 15,630,088f N/A 19,696,472

There are additional adjustments which need to be made to the data to properly price a

product.

included in Exhibit 1 to smphasize the advantage of this procedure over the current procedures. That
is, the catastrophes are selectad not by the total losses they generate (which in the case of this particular
date may seem to be ridiculously small), but based upon how many claims are generated by an event
relative ta the book's overall size.

N Exhibit 2 shows how the excluded excess lossas are determined for calendar years 1985 and

1996. The example shown haere is for illustrative purposes, and intended to show only how the
catastrophe losses are removed from the experience period losses, and how the excess loss factor is
applied. Application of trend, hunicane costs, and change in IBNR issues have been ignored, A more
complete example would include the hurricans cost loading. Homan {4] discusses one such procedure.
Finally, while calendar year losses are shown, the procedure can be applied o accident year losses,

3 The data in the table are consistent with procedures used historically in the development of loss
ratio indications. Following the saction on trend, an alternative procedure using the application of the
frequency based model with pure premiums is developed.
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1. Reinsurance -- For an individual company, the excess wind losses which will be
covered by an aggregate occurrence treaty should be excluded. This does not
necessarily mean that losses which were covered by catastrophe reinsurance
contracts should be excluded. If historically the company had a treaty which
provided cover for losses excess $1 million, and in the prospective rate period
aggregate losses excess $2 million will be covered, then losses exceeding the
prospective coverage retention should be excluded from the calculation of the
catastrophe loading. (This presupposes that the "cost” of such a reinsurance

trealy is handled as cost of doing business.)

Aggregate occurrence reinsurance issues complicate the analysis. Should the
historical losses be trended so that aggregate occurrences be excluded? 1t will

be necessary to have long term average coverage amounts to accomplish this.

2. Use Multiple Days of Loss -- Aggregate catastrophe contracts covering excess
wind _generally consider events generating losses which occur over a 72 hour
period. Rather than selecting single days, one could aggregate the days into 3
or 4 day clusters. This would provide a better matching for the adjustment noted

above.



3. Incorporating with a Hurricane Model -- Increasingly, expected losses from
hurricanes are incorporated in pricing models. If the expected losses from
hurricanes are included in the indications, then all hurricane losses should be
excluded from this procedure. The pricing actuary needs to understand how the
expected losses from hurricanes are estimated. If only hurricanes which make
landfall are considered in the hurricane model, then hurricanes which do not
make landfall, but which generate insurance losses, would need to be kept in the
excess wind database used in this catastrophe model. Similarly, if the hurricane
model considers only "true” hurricanes (e.g. Saffir - Simpson scale 1 or greater),

then tropical storms need to be retained in the excess wind database.

Catastrophe Cutoft

How was the 2.5% of worst days cutoff criterion selected?

Initially, this value was selected arbitrarily as an acceptable cutoff point.® However,
subsequent analysis tended to support this selection. The coefficient of variation
between the frequency of wind losses, excluding catastrophes, was compared to the
coefficient of variation on non-wind losses. If one assumes that once the variation in
wind frequency due to catastrophes is removed, that the random variation in claims is

the same between wind and non-wind losses, then the ideal percentage cutoff would

¢ An alternative | have considered, but not amployed, is to establish a cutoff frequency which is

considered "catastrophic”. That s, if the wind frequency for a particular day exceeds, say, 4% then that
day would be considered catastrophic. Thus, the total catastrophic losses would be the sum of the
losses, in this axample, where the daily wind frequency exceeded 4%.
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occur when the coefficient of variation was the same between the frequency for the

wind losses excluding catastrophe losses and the non-wind losses.

Different cutoff percentages for various products were examined to determine the cutoff
point. No ideal cutoff point has been developed. Aithough some such equivalence
could be found at the 2.5% cutoff point, the ideal cutoff point has not been conclusively
identified. The inability to develop a perfect match between these coefficients of
variation probably result from a violation of the underlying assumption. That is, the
randomness attributabie to the non-cat wind claims and the non-wind claims are
probably not the same. For example, if underwriting was concentrating on a reduction
in fire losses over the experience period, then the company would have introduced a
systematic influence on the random variation in fire claims while not simultaneously

influencing the wind claims,

However, given the improvement in the loss trend data discussed in the next section
that the 2.5% cutoff criterion generated, | believe a reasonable cutoff point has been

established,

APPLICATION TO TREND
It is common for the trend used in property indications to be derived from external data.
Homan [1] develops trend factors using Boeckh factors and the modified CPI. He
states that these factors are surrogates for the historical and prospective changes to

severity. He presents no procedure to consider changes in loss frequency.
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ASB 13 [5] states that the most reliable data to be used in the development of trend is
the data internal to the book of business. Historically, the use of internal data for
pricing in property lines is complicated by the variance that excess wind and water
introduce to the calendar year losses and claims. The frequency based catastrophe
procedure sliminates much of the variance which generally makes internal data difficult

to apply in the development of property loss trends.

Figure 2 below summarizes the historical calendar year frequency for the product

whose catastrophe factor is developed in Exhibit 1.

Figure 2

Frequency

4 Incl Cats -g-Excl Cats

Without analyzing any statistics associated with the chart above, it appears that the
data excluding catastrophes are more stable than the data including catastrophes.

Figure 3, below, summarizes the calendar year severity for the line.
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Figure 4, below, is a table which summarizes the R-squareds from linear regression

performed on the data underlying the charts above.

Figure 4
R-Squareds Includlng and Excluding Catastrophes
- - - Frequency - - - - - - Severity - - -
"Fit" Incl Cats Exd Cats | Incl Cats Excl Cats

12 Point 0.2383 0.4362 0.6816 0.7804
20 Point 0.5134 0.8032 0.8399 0.8466

In each case above the quality of the fit is better using the data excluding catastrophes.

One might note that the severity has a "spike” in 1993, It should be noted that the data

used in this regression include large non-catastrophic losses which are generally

removed before the regression procedures are performed. They are not removed here
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as a complete discussion of the application of a large loss procedure is outside the

scope of this paper.’

Analysis of the frequency excluding catastrophes may be providing insight here which
is helpfuf in the development of equitable rates. This is a new product, Often the
frequency on less mature business is greater than the frequency on mature business.
The dedline in frequency may be a reflection of a maturing in the bock, so that
developing rates which account for the lower frequency could produce lower and more

equitable indications than would be developed with frequency being ignored.®

The more recent decline in frequency opens other areas of consideration in the
development of indications. The actuary may wish to examine the source of these
improvements. Has there been a shift to larger deductibles? If so, then the premium
trend may need to make a provision for such a shift. Indeed, one of the advantages to
using external loss trends based upon external indices which are linked to coverage

amounts is that the premium trend analysis is greatly simplified. The use of intemal

? Although a fargs loss procedure is not discussed in this paper, a general commaent about the

inclusion of such a procedure is in order. Large lossas should be analyzed after the selection of the
catastrophe days. If analyzed prior to the selection of the catastrophe days, then a large loss might be
excluded twice if it is a large wind loss which occurs on a selected catastrophe date.

In the example above the 1993 large lossas which would be excluded from the severity trend
analysis are more than 120% greater than the 1992 and 1994 excluded losses. When the largs loss
procedure is employed the R-squared is increased.

s Because this is a new, rapidly growing product, one may want to examine the impact the

exposure base is exerting on the frequency. Frequency has been calculated using eamed exposures in
the denominater. For this product, the exposure base may be trailing the claim counts during the rapid
growth. It may be more appropriate to use an exposure base which is a weighted average of in force
policies and samed expasures during the period of rapid growth. Such a weighting may provide a more
accurate reflection of the frequancy. If one concludes that such a weighting is needed in developing the
frequency trends, then one should revisit the exposures used in determining the catastrophe days.
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data in property lines will require more sophisticated analysis of the premium trend so

that there is a complete matching of the trended premiums and trended losses.®

If the internal data provide a more accurate projection of the current and prospective
loss costs, then more accurate indications will be developed. For this product, the
trends that are generated by the intemal data are greater than those derived using the
external indices commonly employed for the line. If the intemnal trends truly are more
accurate, then a parameter error would have been introduced to the indications. f the
relationship holds over time that the internal trends are larger than the trends
developed using external indices, then a systematic downward bias would exist in

property indications.'

AN ALTERNATIVE APPLICATION OF THE FREQUENCY BASED
CATASTROPHE LOAD USING PURE PREMIUMS

Figure 1 showed how the application of frequency based catastrophe load could be

applied to obtain untrended calendar year losses without the hurricane catastrophe

® A discussion of all the analysis needed to develop the correct premium trend is outside the

scope of this paper. However, it must be emphasized that if the internal rends are to be used in the
developmaent of the indications then the actuary must be aware that distributional shifts occurring in, say,
deductibles, territory, and amount of insurance are contributing to the loss trend. Since each of the items
is a rating variable, premiums are also being impacted by the distributional shifts.

Ideally, an analysis of the changes in the average relativities for sach of the rating variables
which can be impacting the loss trends should be performed. In the absence of ime or data to
adequately analyze how each relativity is impacting loss trand, the average premiums at present rates
can be used to develop premium trend.

10 A.M. Best [6] racently noted for the Homeowners line that "Although baseline costs (excluding
catastrophe) would clearly show rate inadequacy, many regulators and even some companies are
reluctant to increase rates.” If companies' internal rends are generally greater than the trends
developed using external data, then companies and regulators may be unaware of the full magnitude of
rate deficiencies.
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load. Figure 5 below provides summaries of the 1995 and 1996 calendar year

incurred losses for the excess wind, non-excess wind, and non-wind causes of loss.

Figure 5

Year Total |Excess Wind| Other WindjOther Causesﬂ

1995 12,519,591| 3,611,313] 3,395,122 5,513,156
1996 7,304,814 681,212 2,859,190 3,764,412

In 1995 "Other Wind" lo {wind lo not defined to be catastrophic) were

approximately $550 thousand greater than the 1996 "Other Wind" losses. The "Other
Causes" losses (all losses other than those caused by wind) were approximately $1.75
million greater than the 1996 "Other Causes" losses. 1996's earmed exposures were
approximately 2% lower than the 1995 exposures. The catastrophe load as developed
in Exhibit 1 is 26.01%. Should 1995's untrended, non-hurricane catastrophe loading be
approximately $450 thousand ($1.75 million X 26.01%) greater than 1996's untrended
catastrophe losses? Put differently, should increased non-wind related losses increase
the level of the non-hurricane excess losses?'' In general the answer is no. However,
when one is developing indications using five years of data, the variation in the
non-wind losses from year to year should offset sufficiently to limit the bias caused by

this type of loading.

If one wishes to load the indications with a non-hurricane excess wind factor which is

not a function of the non-excess losses, then a pure premium approach can be used.

u Note that the $450 thousand does not consider the non-excess wind losses. If they are

considered then 1995's untrended non-hurricane excess wind losses are approximately $800 thousand
greater than 1995's { ($1.75 miillion + $550 thousand) x 26.01% }.
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The ability to develop fong term severity trends with internal data enables a reasonable

pure premium method to be developed. The table below outlines the pure premium

approach.
Figure 6
Mm@ ©) @ ®) 6

Days Trended C.Y.
of Excess Severity Excess Excess
C.Y. Loss PurePrem Trend Pure Prem Pure Prem

1998 2 1.20 1.851 222 71.81
1989 11 175.48 1.714 300.77 77.55
1990 2 42.61 1.587 67.62 83.76

1991 2 48.88 1.469 71.80 90.48
1992 3 155.68 1.360 211.72 97.74

1993 5 81.52 1.259 102.63 105.58

1994 4 125.66 1.166 146.52 114.00

1995 7 217.98 1.080 235.42 123.07

1996 3 57.59 1.000 57.59 132.92

Average Excess Pure Premium: 132.92

The pure premiums in column 3 are developed by taking the cumulative paid losses
from the catastrophe dates within a year and dividing them by the year's earned
exposures. An annual 8 percent severity trend has been developed from the intemal

data.'? Column 5 contains the trended pure premiums. The average pure premium is

2 Bacause of the nature of the losses a stable non-hurricane excess wind trend cannot be obtained
from the excess wind data. It is assumed that the non-hurricane excess wind losses will be impacted by
the same inflationary influences which impact the non-excess wind losses and the long term non-excess
severity trend has been selected.

Since the wind losses are fortuitous, generally one would anticipate only applying a severity
trend to the pure premiums. Howevaer, if one believes that the policy mix at the beginning of the period is
sufficiently different than the policy mix at the end of the period by a rating variable which would impact
historical frequency of excess wind claims (such as a shift to higher deductibles), then one could apply a
frequency adjustment to the sevaerity trend.
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calculated using the average pure premiums in column 5. For each calendar year,
multiply the calendar year earned exposures by the overall average excess pure
premium to obtain the total non-hurricane excess wind losses at current levels. To
obtain the total losses at current levels the non-catastrophe experience losses (trended
to curent levels) are added to the non-hurricane excess losses and the hurricane

expected losses.

The pure premium based frequency load is not as critical for developing the overall
statewide indication as one might initially believe, The table below summarizes the

differences between the total non-hurricane losses before trending to current levels.

Fgure 7
) 2 3) (4) (5) (6) ]
[(1) x (2)] [(B)+(B)] 4+ (9]
cY. Excess Excess Total Excl Pure Prem Factor|
Eamed Excess Using Pure Derived w/ Excess Total Total
C.Y. Exp Pure Prem Prem Factor Wind Losses Losses

1995 16,280  123.07 2,003,580 2,317,043 8,920,587 10,924,167 11,225,321
1896 15,921 13292 2,116,219 1,748,549 6,722,602 8,838,821 8,471,983
Total 4,119,799 4,065,864 19,762,988 19,696,472

The C.Y. Excess Pure Prem in Figure 7 (column 2) is taken from column 6 of Figure 6.
The data in column 4 are derived from the loss data in Figure 1. There is an
approximate 1/2% difference between the untrended losses developed using the factor

derived in Exhibit 1 and the pure premium method just presented. When more years of

b To maintain consistency with the issues discussed previously , the 1988 pure premiums are

shown here and trended. If 1988 were excluded from the average pure premium calculation, the
average non-hurricane excess pure premium for 1989 through 1996 is $149.26.




data are considered and the expected losses are added into the above losses trended

to current levels, the percentage difference between the two methods should decline.

An advantage to the pure premium excess process just introduced is that it eliminates
the leveraging effect the non-wind and non-excess wind losses generate on the excess
wind factor. A disadvantage is that the average pure premium is dependent upon the
selected trend factor. In the example used thus far, less than 10 years of data are used
to develop the catastrophe factor. If the catastrophe factor is developed with 15 to 20
years of data, any inaccuracy of the trend factor will greatly impact the older trended
pure premiums. The more inaccurate the selected trend factor is, the more inaccurate

the averagse pure premium will be.

However, in performing analysis for other rating variables, the non-wind losses can
have a greater leveraging effect on the factor application of non-hurricane excess loss

load within particular cells, and the pure premium method is probably preferable.

APPLICABILITY TO OTHER PRICING ISSUES
The catastrophe procedure developed here can enhance the equitable pricing of

property rating variables.

Fitzgerald [3] notes that the application of the hurricane loss models in the

development of property rates has eliminated some cross subsidization across property

rating territories. Historically, the hurricane losses were apportioned throughout the
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state, whereas the new modsling techniques enable the loading of such losses to be
more accurately assigned to the proper rating territory. This frequency based model
similarly enables catastrophic non-hurricane losses to be more equitably assigned to

the appropriate rating territory.

In performing territorial analysis, the same catastrophe dates selected for the statewide
indication are selected in determining the catastrophe loads by territory. However,
catastrophe loadings are developed for areas of territories separately using the ratios
for the excess wind losses versus the total losses excluding excess wind within each
rating territory. The determination of these area, excess wind factors is shown in
Exhibit 3. The range of factors ranges from 1.0096 in Area 1 to 1.4646 in Area 3. In
developing the territorial indications, the catastrophe dates are removed from the
experience period and the area excess loss factors are applied following the same
process shown in Figure 1. This should generate a more equitable distribution of
catastrophes to the appropriate territories and a more accurate rate. Again, a

hurricane loss loading is needed for each area or territory, but is not explored here.

The historical procedure had catastrophe losses removed proportionally from the
losses in each territory and the same catastrophe load was applied to each territory.
This produces inaccurate indications. Consider only those territories subject to higher
long term catastrophic losses. If over the experience period in the review these

territories had abnormally low losses (relative to the long term historical average) then
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loading the average statewide catastrophe load will understate the needed rate level in

these territories.

Protection class relativities can be more equitably priced with this procedure. This is
particularly important if the distribution of policies by protection class varies by territory.
If catastrophe losses have not been removed, and then accounted for with a
catastrophe load, then the protection classes are developed with the random error from

catastrophes.

It the historical catastrophe procedure has been used, then the unprotected properties’
relativity is too high. Since a higher protection class indicates an increased fire risk,
applying the overall catastrophe factor overstates the total losses by protection class as
the average catastrophe factor is being leveraged by the higher fire losses. Similarly,
the lower fire losses in protected areas understate the catastrophe losses when the
average statewide factor is applied. Developing catastrophe loadings by protection
class using the frequency based procedure would produce more accurate protection

relativities.

Finally, the use of the frequency based procedure could facilitate the application of
accident year loss data in the development of indications. When the frequency
catastrophe procedure is employed, the development factors for the 15 to 27 link ratios

are generally smaller with less variance.



ADVANTAGES OF PROPOSED PROCEDURE
OVER CURRENT PROCEDURES

A summary of the advantages and disadvantages of the proposed method to the

methods currently employed is made below.

Advantages

1. The procedure enhances the usabllity of internal data for loss trend analysis.

2. Hurricane losses are not considered in the database, so that the proposed
procedure can be used more readily with hurricane models than the current
procedures.

3. The procedure enables catastrophe analysis to be performed on new product
lines.

4, The development of the loading is not a function of other causes of loss, which
have the potential to distort the loading.

5. The development of the loading is not a function of premium, which has the
potential to distort the loading.

6. The development of the loading is not dependent upon multi-state industry
catastrophe definitions, which can distort the loading.

7. The procedure enables territorial and protection class indications to have
catastrophe loadings which can be developed for each analyzed cell.

8. The above advantages develop a more equitable rate.



Disadvantages

1. The proposed procedure is more complex than those currently employed.

2. The initial development of the database may be time consuming and costly. A
company may not have data which goes back very far past the years used in
developing indications. Thus, it will need to build the data prospectively. Even if
the data exist in an electronic archive (most probably tape), system resources
will need to be utilized to retrieve the archived data.

3. Itis change. It will require time to explain to people within the company and
outside it. It will require changes to spreadsheets and or programs used to
develop indications and filings. These issues are time consuming and can
sometimes create emotional upset with individuals who have taken pride in their
past work product and perceive change not as an evolutionary improvement but

as an indictment of their previous work product.

CONCLUSION
Although significant problems have been identified with the current excess wind
methods used in property ratemaking, in the absence of available data and alternative
procedures they served the ratemaking process weil. The evolution of information
technology has made the application of the theory presented herein practical. Prior to
the 70's much of the available claim information was highly summarized. Even when

more detailed information began to be stored, obtaining summarized data in a form
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usable for the actuary required extensive work with the data processing department.
Because of the man-hours involved in establishing an initial report process revising
reports to obtain better information was difficult to schedule. Only recently with
inexpensive electronic storage costs and powerful computers, which enable direct

analysis by the actuary, has the proposed procedure been feasible.

There are areas which need to be explored further.

1. When a geographic distributional shift is occurring how should this be accounted
for in determining statewide excess losses? Should the exposure base be
adjusted to reflect the distributional shift?

2. What are the optimal number of years to which this procedure should be
applied? The historic use of thirty years of data was developed to account for
both excess non-hurricane wind losses and excess hurricane losses. With the
advent of modeling techniques which enable expected hurricane losses to be
considered separately from non-hurricane losses are thirty years of data still

needed? Does the optimal number of years vary by state?

The current procedures for developing excess wind losses for property losses are
undergoing a transformation. The introduction of modeled hurricane losses into the
rate development procedures necessitates some degree of revision to the
non-hurricane excess wind procedure. The recommended procedure compliments the

incorporation of modeled hurricane losses into rate development, It also provides the
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added benefit of making the intemal data for the product line useful for loss trend

analysis.
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QTR
19922
19892
19892
19912
19892
19892
19883
19942
19952
19942
19952
19951
19952
19892
19934
19952
19902
19952
19902
19892
19931
19941
19934
19892
19942
19893
19962
19892
19892
19932
19911
19892
19931
19922
19951
19961
19884
19964
19922

“Excess”
Overall Wind

D.O.L.
1992-04-28
1989-05-04
1989-05-16
1991-04-29
1989-06-06
1989-06-07
1988-09-16
1994-04-25
1995-05-05
1994-04-26
1995-04-29
1995-01-18
1995-05-07
1989-05-05
1993-10-18
1995-05-28
1990-04-05
1995-06-27
1990-04-27
1989-05-13
1993-03-29
1994-03-27
1993-10-17
1989-05-15
1994-05-13
1989-07-02
1996-05-25
1989-04-29
1989-06-02
1993-05-05
1991-02-18
1989-05-01
1993-03-25
1992-04-29
1995-03-25
1996-01-17
1988-11-15
1996-10-21
1992-06-04

“Excess” [ Overall Wind

Total All Causes
“Excess” | Total

Excess Wind

Factor =

Development of Excess Wind Factor
Accident Years 1988 through 1996

Evaluated as of March 31, 1997

Payments
1,901,667
445,312
457,659
562,473
439,654
191,922
6,969
767,533
605,320
565,209
622,121
534,098
485,685
114,283
430,694
692,207
279,598
312,902
175,090
117,219
286,444
246,397
251,317
119,477
243,544
138,967
356,492
67,829
163,785
295,454
168,999
96,471
150,975
229,651
314,271
132,113
9,202
228,517
260,750

13,468,271
33,981,642
39.63%

65,252,655
20.64%

Claims
382
137
113
167

74
74
5
131
137
125
127
115
106
42
93
97
67
87
61
33
65
69
68
30
68
40
65
27
27
57
53
26
53
54
60
61
10
57
50

3,113
9,337
33.34%

21,711
14.34%

Exposure
3,550
1,672
1,672
3,427
1,672
1,672

143
3,830
4,064
3,830
4,064
3,951
4,064
1,672
3,740
4,064
3,071
4,064
3,071
1,672
3,469
3,712
3,740
1,672
3,830
2,266
3,991
1,672
1,672
3,560
3,329
1,672
3,469
3,550
3,951
4,020

678
3,936
3,550

NA
NA

Sevetity
4,978.19
3,250.45
4,050.08
3,368.10
5,941.28
2,593.54
1,393.83
5,859.03
4,418.39
4,521.67
4,898.59
4,644.33
4,581.93
2,721.03
4,631.12
7,136.16
4,173.11
3,596.57
2,870.33
3,552.08
4,406.83
3,570.97
3,695.84
3,982.55
3,581.53
3,474.19
5,484.49
2,512.20
6,066.11
5,183.41
3,188.67
3,710.40
2,848.59
4,252.80
5,237.85
2,165.79

920.18
4,009.07
5,215.00

4,326.46
3,639.46
118.88%

3,005.51
143.95%

Exhibit ]

Frequency
0.1076
0.0819
0.0676
0.0487
0.0443
0.0443
0.0350
0.0342
0.0337
0.0326
0.0313
0.0291
0.0261
0.0251
0.0249
0.0239
0.0218
0.0214
0.0199
0.0197
0.0187
0.0186
0.0182
0.0179
0.0178
0.0177
0.0163
0.0161
0.0161
0.0160
0.0159
0.0156
0.0153
0.0152
0.0152
0.0152
0.0147
0.0145
0.0141

1 + [13,468,271 [ (65,252,655 - 13,468,271 )] = 1.2601
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Determination of Excess Wind Amounts
Calendar Years 1995 & 1996

Exhibit 2

---CY. Paid - - - - - - C.Y. Ending Reserves - - - ---C.Y. Incurred - - -

Accident Date 1995 1996 1994 1995 1996 1995 1996
1993-05-05 10,559 0 0 0 0 10,559 0
1993-10-17 5,220 0 1,000 0 0 4,220 0
1993-10-18 2,733 2,188 2,995 3,500 ] 3,238 (1,312)
1994-03-27 55,330 0 40,310 0 0 15,020 0
1994-04-25 16,495 1,080 46,615 0 0 (30,120) 1,080
1994-04-26 34,840 6,627 34,485 0 800 355 7427
1994-05-13 12,661 0 31,270 0 0 (18,609) 0
1995-01-18 526,779 7,320 0 36,630 0 563,409 (29,310
1995-03-25 309,636 4,635 0 24,840 0 334,476 (20,205
1995-04-29 583,306 33,815 0 47,300 0 630,606 (8,485
1995-05-05 581,170 24,150 0 54,080 0 635,250 (29,930
1995-05-07 456,512 29,525 0 47475 0 503,987 (17,950
1995-05-28 590,584 100,736 0 45,105 1,495 635,689 57,126
1995-06-27 284,713 27,363 0 38,520 0 323,233 (11,157
1996-01-17 0 134,208 0 0 7,140 0 141,438
1996-05-25 0 350,402 0 0 35,785 0 386,187
1996-10-21 (¢} 174,468 [ 0 31,835 0 206,303
Total 3,470,538 901,607| 156,675 297,450 77,055 3,611,313 681,212
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Year
1988
1989
1990
1991
1992
1993
1994
1995
1996

Total

Year
1988
1989
1990
1991
1992
1993
1994
1995
1996

Total

Excess Wind
Factor

Development of Area Excess Wind Factors

Accident Years 1988 through 1996

1

7,294
456,417
191,891
815,174
491,388
1,053,979
989,041
822,881
393,363

5,221,428

3,122

5923
39,473

650

380

49,548

1.0096
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Valued as of March 31, 1997
Total Paid Losses
----- Rating Areas - - - - -
2 3 4
25,251 92,205 60,309
791,114 2,172,721 2,061,930
642,777 2,081,750 1,242,218
1,746,683 2,316,482 2,007,986
1,336,373 3,831,662 2,373,489
800,521 1,817,877 2,397,582
871,581 2,755,530 3,121,772
834,691 4,520,362 2,703,439
846,549 2,101,594 1,566,133
7,895,540 21,690,183 17,534,858
Excess Wind Paid Losses
----- Rating Areas - - - - -
2 3 4
2,128 9,135 779
7,818 913,756 790,462
51,108 378,241 16,764
521,146 0 170,853
0 1,726,972 404,767
8,306 532,172 510,505
4203 1,131,626 638,350
9,980 1,958,300 764,024
11,636 229,922 108,175
616,325 6,880,124 3,404,679
1.0847 1.4646 1.2410

5

26,072
1,103,032
716,310
1,317,641
1,814,160
2,158,609
1,412,900
2,270,943
2,090,981

12,910,648

5

1,007
640,542
2,653

0
260,330
363,251
48,503
833,921
367,390

2,517,597

1.2422

Total
211,131
6,585,214
4,874,946
8,203,966
9,847,072
8,228,568
9,150,824
11,152,316
6,998,620

65,252,657

Total
16,171
2,352,578
454,689
731,472
2,392,069
1,414,884
1,822,682
3,566,605
717,123

13,468,273

1.2601

Exhibit 3



Actuarial Implications of Texas Tort Reform

by Michael J. Miller, FCAS, MAAA and
Jerrold W. Rapp, FCAS, MAAA



Abstract

Tort reforms are generally difficult to evaluate because historical claim loss data are rarely
available in a format to facilitate analysis and because the tort reform itself may change
plaintifT"s behavior in a way that renders historical data unpredictive of the future. In this paper
we describe our attempt to calculate the effects of tort reform in Texas using a combination of

claims data. focus group information and judgment.
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Background
[n early 1995, a series of legislation was passed in Texas which reformed the civil justice system
in ways intended to reduce the cost of litigation and the size of judgments. The key preces of
legislation pertained to punitive damages. joint and several Liability. venue. frivolous lawsuits.

the Deceptive Trade Practices Act and medical malpractice.

Subsequent to the passage of this series of tort reforms. the Texas Legislature passed House Bill
1988 in May 1995, 11.B.1988 required the Insurance Commissioner to hold a hearing and. based
on the evidenee presented at the hearing. mandate by October 1. 1993 appropriate rate reductions
for each line of insurance effected by the tort reforms. The rate reductions mandated by the
Commissioner were to be effective for all new and renewal policies on January 1. 1996. The
Commissioner was further required to annually review the rate reductions and make any
appropriate changes to the reductions. [f the Commissioner failed to order rate reductions by
October. 1995, certain default reductions as set torth in H.B. 1988 were to be automatically

applied. The default reductions are presented in Exhibit 1.

The Commissioner did hold a hearing and received evidence on the anticipated impact of the tort
reforms in July. 1993, As a result of that hearing. the Commissioner ordered the rate reductions
presented in Exhibit 1 be implemented effective January 1. 1996. The Commissioner has
annually reviewed the ordered rate reductions and to date has made no moditications to his
original order. It does now appear that the rate reductions may be increased in 1998 as a resuft

of the 1997 hearing. but that decision was not published as of this writing.

Summary of Tort Reforms

Senate Bill 25 limited the amount of punitive damages to the yreater of $200.000 or twice the
amount ol economic damages plus non-economic damages not to exceed $750.000. The
standard for awarding punitive damages was raised from gross negligence to malice. Malice was

defined to mean a specific intent to cause substantial injury or an act which involved extreme risk

243




of which the defendant was aware, but nevertheless proceeded. This reform took effect on

causes of action that occurred on or after September 1. 1995.

Senate Bill 28. effective on causes of action on or after September 1. 1995, revised the law so
that a defendant would be held jointly and severally liable for damages caused by others only it
the defendant was more than 50% liable. Previously a defendant could be held jointly and
severally liable for damages caused by others even it the defendant was at least 11% liable. This
revision meant that no more than one liable party could be held jointly and severally liable.
Senate Bill 28 included an exception for toxic tort cases in which the joint and several threshold

was set at 15%, rather than 50%. Previously the law provided no threshold for toxic tort cases.

Senate Bill 28 also allowed the extent of a person’s liability to be included in the evidence to the
jury. Previously. a person that was only 60% liable could be held 100% liable by a jury that was
never told about the defendant’s degree of liability. The revised law created the possibility that
the jury might reduce the award to reflect the 60% liability factor. The downside to this reform
was the threat from plaintif(s® lawyers that they would now sue all liable parties to an accident to

ensure that 100% of the damages were recovered. thereby increasing defense costs.

Senate Bill 32 required a plaintiff to bring suit only in the county in which all, or a substantial
part. of the insured event occurred. or in the county of the defendant’s residence. or in the county
of the defendant’s principal office. Only if none of the previous conditions applied. could the
suit be brought in the plaintiff”s county of residence. Previously. suits could be inmitiated in any
county in which there was some nexus to the insured event. Examples of abuse were the
initiation of Jawsuits against an insurer in any county in which the insurer had an agent. or the
initiation of a lawsuit for a plaintiff in the proper county. but then joining of multiple plaintiffs
from throughout Texas or countrywide. A person will no longer be able to join as a plaintift
unless the venue is proper as to that specific plaintiff. The intent of the new venue rules was to

curb shopping for forums which had a reputation for large injury awards. This act took effect on
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suits brought under the Federal Employers™ Liability Act and the Jones Act on January 1, 1996

and on all other suits commenced on or after September 1. 1995,

Scnate Bill 31 was pauerned after Federal Rule 11 and attempted to restrict frivolous pleadings
and motions in a lawsuit. A frivolous lawsuit is defined as one in which there is no evidentiary
support or legal basis for the pleading or is filed for an improper purpose (i.e. harassment). Suits
involving trivolous pleadings and motions can and will still be litigated. There will supposedly
now be an avenue to complain to the court. and the court may apply sanctions against the
offending attorney or plaintiff. But Senate Bill 31 will not in itself eliminate a frivolous suit

from the system. This act was effective on suits commenced on or after September 1, 1995,

The Deceptive Trade Practices Act (DTPA) generally reformed the conditions for awarding
damages when a consutner is harmed by deceptive practices. The new law requires a showing
that the consumer relied on the misleading or deceptive practices before damages can be
awarded. There is a potential for a DTPA award against the insurer. but if there were such an
award, it would not ordinarily be included in the ratemaking process, because it would not be

expected to recur in the future,

House Bill 971. effective 9/1/94, was intended to discourage trivolous medical malpractice
claims and reduce the number of defendants in cach suit. This law provided new deadlines for
filing expert reports and attempted to eliminate “junk science™ by setting certain standards for

expert medical testimony.

&
5
-
o

The primary sources of data underlying the actuarial costing of the tort reforms were the Texas
Liability Insurance Closed Claim Annual Report and a series of special data calls designed by the

Texas Department of Insurance (TDI).
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In accordance with its statutory mandate. the TDI annually collects information concerning
closed bodily injury claims relating to the tollowing categories of insurance: general liability,
medical professional liability. other professional liability. commercial auto liability and the
liability portion of commercial multi-peril. These closed claim data are regularly published in
the Annual Report. Throughout this paper this report is reterred to as the “regular closed claim

survev.”

Because the regular closed claim survey neither covered all lines of insurance nor contained all
the information needed to cost all the tort reforms. it was necessary for the TDI 1o issuc a series
of special data calls. One such call. attached as Appendix A. applied to the following lines of
insurance: private passenger auto. homeowners. farmowners. personal umbrella. general liability.
other protessional liability, commercial auto garage. commercial multi-peril and product liability.
Throughout this paper. this special call for data is referred to as the “special closed claim

survey.”

There was also a special call for employers’ liability claim data addressed to workers’
compensation insurers (Appendi B) and a special call for information pertaining to deceptive

trade practices and venue data (Appendix C).

In addition to the data call information. the following data were also relied upon in costing the

tort reforms.

. Size of loss data for products liability prepared by the Insurance Services Oftice

and released by the TDI.

. Annual Statement Page 14 data compiled by the TDL
. Cause of loss data for homeowners. farmowners and tenants provided by the TDI
. Information concerning the anticipated changes in lawsuit procedures gathered

trom a focus group discussion with Texas attorneys.
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Punitive Damages

The actuarial impact of Senate Bill 25 was caleulated by individually analyzing cach claim in the
TDI's regular and special closed claim survevs so as to determine the amount of punitive
datmages. These amounts were individually capped to the greater ot $200.000 or twice the
amaount of economic loss plus the non-economic loss (with the non-cconomic loss limited to
$750.000). The difference between the capped amount of punitive damages and the actual
punitive damages represented the estimated savings arising from the new cap (see Line 1.

Exhibit 2).

The savings due to the elimination of the gross negligence standard and the introduction of the
malice standard were judged to be approximately 25% of the capped punitive damage amount.
The 23% reduction factor. shown on Line 4 of Exhibit 2, was based on information gathered at

the focus group discussion with Texas attorneys.

The ¢laims data in the TDI's closed claim survey included the total claim costs. only a portion of
which was below policy limits and insured. Since the purpose of the actuanal calculations was
to determine the savings to the Insurance systern. it was necessary 1o divide the claims data into
the primary insured portion of the claim and the excess portion. The totul savings for each claim
was tirst applied to the amount of the claim in excess of insurance and then any remaining
savings was applied to the insured portion of the claim. For example. assume a $1 million claim
settlement of which S800.000 was insured by the primary carrier. {f the punitive damage savings
was 10%. the capped claim would have been $900.000. In this case. there would have been no
savings to the primary insurance system and no impact on the primary insurance rate. The claim

amounts in excess of policy limits are shown on Line 6 of Exhibit 2.
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The savings arising from Senate Bill 25 were calculated separately for each line of insurance.
The calculations for private passenger auto and general liability are presented in Exhibit 2 as

illustrations of the calculations performed for each line of insurance.

Joint and Several Liability

The impact of Senate Bill 28 was determined using two different analysis techniques. For those
lines of insurance included in the regular closed claim survey, each claim in the survey affected
by the joint and several rules was individually analyzed for possible savings. 1f the plaintiff was
more than 50% at-fault, then it was assumed that none of the insured defendants would be jointly

and severally responsible and the entire settlement would be saved.

The savings estimates were calculated so as to reflect the fact that some settlements will exceed
insurance policy limits. In those cases. the savings to losses in excess of policy limits will have

no effect on the insurance rates.

In cases involving multiple defendants, the new joint and several rules reduced the financial
liability of onc of the insured defendants while causing an increase in the financial liability of
another insured defendant. Due to these “dissavings™. a 25% reduction factor was judgmentally

applied to the otherwise calculated savings (see Line 23 of Exhibit 3).

The calculations for general liability and commercial auto are presented in Exhibit 3 as

illustrations of this first analysis technique.

For those lines of insurance included in the special closed claim survey, a different analysis
approach was followed becausc of data credibility concerns. When the data in the special call
were stratified by claim size, the data in each cell lacked sufficient credibility for reliable
analysis. For the lines of insurance in the special call, the estimated savings provided by the
respondees (see Question 4K of Appendix A) to the special call were utilized without further

adjustment. These estimated savings by the respondees were on a combined basis for the joint
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and several, venue, deceptive trade practices and frivolous suit reforms. Examples of the

calculations are shown in Exhibit 4 for the homeowners and products liability lines of insurance.

Venue

The actuarial analysis was based on claims data from the regular closed claim survey for the
product liability and the environmental liability lines of insurance. Data from the TDI’s special
venue data call {(see Appendix C) were the basis for the analysis of the general liability.
commercial auto, commercial multi-peril, medical professional and other professional lines of

insurance.

The first step in the analysis was to divide the claims information for each county between those

events which occurred inside the county and those which occurred outside the county.

For products liability and environmental liability, the number of expected “venue” claims for
each county was determined as a function of the ratio of claims from outside the county to the
total number of claims for the county. If the “outside™ claim ratio for the county exceeded 110%
of the statewide average “outside” claim ratio, the excess number of claims for the county were
considered to be “venue” claims. As an example of this calculation, consider the products
liability calculation for Travis County. From Exhibit 3, page 2, one can determine that 35% (7 of
20) of the Travis County products liability claims arose from outside the county. The statewide
average “outside” claim ratio was only 16% (127 of 794). The Travis County ratio exceeded
110% of the statewide average ratio by 17.4% (.35 - .16 x 1.1). The excess number of “outside”
claims (.174 x 20 = 3.48 claims) is shown on page 3 of Exhibit 5. To account for losses in
excess of policy limits, the number of excess claims were then judgmentally reduced by 25% to
determine the number of claims for Travis County which were expected to be effected by the
venue reforms. The estimated dollar savings were then calculated by multiplying the number of
“venue” claims by the dollar difference between the average settlements outside the county and

the statewide average settlements inside the county.
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The basis for the savings cstimates for general liability. commercial auto liability. commercial
multi-peril and professional liability. were the responses to the special venue data call (see
Question 2d. Appendix C). An example of the calculations using the special venue data call is

shown for general liability in Exhibit 5. page 1.

For those lines of insurance not covered by the special venue data call. the estimated savings
provided by the respondees to the special closed claim survey were utilized as presented in
Exhibit 4. Again, these savings were estimated by the respondees on a combined basis for the

joint and several. venue. deceptive trade practices and frivolous suit reforms.

Frivolous Pleadings and Motions

The TDI's regular closed claim survey did not include information upon which to calculate the
savings from the Senate Bill 31 restrictions on frivolous pleadings and motions.  No meaningful
claims data were available to calculate the impact on insurance losses. Information gathered in
tocus group discussions suggested no significant savings on insurance losses. An estimate of 0%
savings was used for the lines of insurance in the TDI's regular closed claim survey. For those
lines of insurance included in the special closed claim survey. the responses to Question 4K (see
Appendix A) were used as the basis for the savings estimates. Those estimates were on a
combined basis for the joint and several, venue, deceptive trade practices, and frivolous suit

reforms and are summarized in Exhibit 4,

Deceptive Trade Practices Act (DTPA)

Since awards under the DTPA are generally not covered by insurance. it was assumed that any
savings from this reform would have negligible impact on insurance rates. Responses to the
special closed claim survey tended to confirm this judgment of negligible savings to the
insurance system. No explicit savings were included in the cost estimates for the DTPA reforms.

But to the extent that respondecs included DTPA savings when answering the special closed

250



claim survey. some savings were included in the caleulations for the lines of insurance covered

by the special closed claim survey (see Exhibit 4),

Medical Negligence

House Bill 971 was intended 10 discourage frivolous medical malpractice claims and reduce the
number of defendants in cach suit. This reform was considered in the same context as the
restrictions on frivolous suits in Senate Bill 31, Discussions in the focus group sessions
indicated negligible savings were anticipated. No explicit measurement of savings was included

in the calculations.

Qut-of-State Lawsuits

Some policies i1ssued on Texas risks give rise to claims and lawsuits outside Texas. Examples of
this can be found in the auto liability and products liability coverages. These out-of-state claims

are reported as Texas losses because theyv are associated with Texas insureds.

The Texas closed claim data upon which the savings calculations were based reportedly did not
include out-of-state losses. As a result. the savings estimates derived from the data should have
been applied only to that portion of the premium dollar. or to that portion of the losses. which
represent in-state premiums or losses.  Data published by the Insurance Research Council
indicated that approximately 3% of the private passenger auto liability losses were out-of-state.
Similar data were not available for commercial auto liability or products liability. but it was

anticipated that the percentage was substantially greater than 3%.
One possible methed of adjusting the savings estimates for the out-of-state losses would have

been to judgmentally reduce the punitive damage savings by a tactor of .97 for private passenger

auto liability and a factor of .90 for commercial auto liability and products liability. Another
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reasonable approach would have been to analyze a range of estimates and select a savings from

the lower end of the range.

The rate reductions which were finally ordered were generally above the range of savings
indicated by the closed claim data. It was difticult to determine if any recognition. even implicit

recognition, was given to the impact of out-of-state losscs.

Allocated L.oss Adjustment Expenses

With the possible exception of the venue reform, the various tort reforms were not expected to

result in any measurable savings to allocated loss adjustment expenses (ALAE).

In the case of the joint and several reform, a greater incentive to vigorously defend a claim to
avoid paying more than the insured’s degree of fault was anticipated. Prior to the reforms. the

precise degree of fault of each claimant was not as relevant as atter the reforms.

For the punitive damage reforms, the caps on awards were anticipated to result in the injured
party secking greater amounts for economic and non-economic damages so as to increase the
amount of the potential punitive damage award. This will take more effort to defend against.

thus defense costs were anticipated to increase.

It is possible that there will be some ALAE savings on claims affected by the venue reforms. [t
was assumed the portion of ALAE savings from the venue reforms would be approximately

equal to the percentage of loss savings.
With the potential for increases in ALAE arising from the joint and several and punitive damage

reforms and the potential savings coming from the venue reforms, it was judged that there would

be no overall savings in ALAE.
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Range of Estimates

Exhibit 6 summarizes the authors’ indicated savings by linc of insurance and compares those

results 1o the savings determined by the TDI actuaries.

Even though we used different procedures in some cases and the TDI included savings for
behavorial changes for some lines of insurance of as much as 2.5%. our results were often very
close to those of the TD! actuaries. We believe the similarity of results suggests the

reasonableness of both sets of calculations.

However, there are a few areas where the differences are significant enough to be of concern.

We are convinced that the TDI overestimated the savings pertaining to the venue reforms for the
general liability. commercial auto, commercial multi-peril and homeowners/farmowners lines of
insurance. This overestimate results primarily because the TDI assumed that Harris County was
an attractive “venue” county and that the venue reforms would reduce tawsuits in that county.
But the information we have from attorneys is that Harris County was not a “venue™ county. Our
analysis reflected information from the special venue data call and confirmed that the savings in
Harris County could be expected to be considerably less than those indicated by the TDI
analysis. If the TDI's calculations were adjusted to reflect the information in the special venue

data call, its results would have been very similar to ours.

We are also concerned that the TDI overestimated the savings from the joint and several liability
reforms for product liability (non-Bl). The TDI’s calculations were based on only 4 claims from
the special closed claim survey where joint and several liability reform would have impacted the
result. Four claims is not a sufficient base to conclude that a 16.3% savings is indicated for this

line.
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With these exceptions, we believe the TDI's calculations generally confirmed the reasonableness

of our results and vice versa.

Commissioners Decision

In 1995 the Commissioner received testimony from several parties and ultimately ordered the
rate reductions set forth in Exhibit 1. The ordered rate reductions were generally higher than the
range of actuarial indications because of a subjective judgment that the tort reforms would cause
a change in the claiming behavior of the plaintiffs. The authors™ actuarial estimates were derived
by reviewing past claims and adjusting the data for the impact of the new rules on those claims.
with no explicit recognition of potential behavioral changes. The TDI actuaries developed
estimates with some explicit recognition of behavioral changes. but even those estimates were

overridden in the final order.

The danger of factoring “behavioral modifications™ or other “unintended consequences™ into the
actuarial calculations is that such assumptions are necessarily arbitrary. Basing cost estimates on
arbitrary assumptions can completely overshadow the actuarial cost estimates and convert

objective calculations into pure guesses. On the other hand, not considering potential behavioral

changes can cause the estimates to nmiss the mark. Whether the miss is high or low is the puzzle.

Whether or not the promised savings from the Texas tort reforms are ever realized may never be
known because there are a myriad of factors affecting liability claims. [t is nearly impossible to
determine with certainty whether changes in claims severity or claim frequency arise from tort
reform or some other phenomenon. In the recent 1997 hearing concerning the impact of these
tort reforms, updated closed claim data for the year 1996 were introduced into evidence. These
more recent data did not yet indicate tort reform savings different from the actuarial indications

submitted in the 1995 hearing. If the 1997 hearing results in a decision to an increase the
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mandated rate reductions, it will be because of anticipated behavioral changes. not because of

actual savings materializing in the claims data,
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House Bill 1988
Rate Reductions

Default
Coverage Rate Reduction

Professional Liability

Physicians, Other Health Care Provider 30%

Hospital 30%
Commercial Liability - Products/Completed
Operations 25%
Private Passenger Auto B.1. Liability 15%
Commercial Auto B.I. Liability 20%
Personal Umbrella and Excess Liability 20%
Homeowners and Renters Liability 5%
Farm/Ranch Owners Liability 5%
Liability Portion of CMP 10%
Employer’s Liability Portion of Work. Comp. 10%
Other Commercial Liability

Umbrella 15%

Excess Liab. For G.L.. Auto. Products 15%

Excess Med. Prof. - Physicians 15%

Excess Med. Prof. - Hospitals 15%

Excess Med. Prof. - Other 15%

Misc. 15%

o Varics by subline
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Varies by accurrence v. Claims made and timing of suits

Exhibit 1

Ordered
Rate Reduction

3.5% to 11.5%*
3.5%t0 15.0% *

12.5%

7.5%
12.0%
7.5%
0%
10%
12.5%
0%

18%

18%
4.5%1t0 15% *
4.5% 10 20% *
0.5%1017.5% *

1% to 12.5% **



Q

Total Savings Resulting From
Caps on Awards

B

Total Punitive Damages

3

Remaining Punitive Damages
(2)- (M

(4

Estimated Savings Resulting

From Elimination of Gross Negligence
Standard and Adoption of Clear and
Convincing Standard of Proof
(3)x0.25

(5

Total Estimated Savings
(1) +(4}

(6) Savings Attributable to Excess
of Policy Limits

(7) Net Savings to Insurance System
(5)~ (6)

8

Total Primary Insurance System Paid
Losses within Interval based on Survey
(Special Survey, Q7a + Q7d)

(9

Aggregate Paid Losses in Interval
for All Companies Responding to Survey

Exhibit 2

Page 1
Impact of Punitive Damages Reform
Private Passenger Automobile Bodily Injury Liability
(Including UM/UIM)
All Claims
Settlement Range
Less Than $20,001- $50,001- Over wtd
$20.000 $50.000 $100.000 $100.000 Average
$ $ 4,050,000 - 3 82,527
4,000 4,358,383 228,977 733,873
4,000 308,383 228,977 651,345
1.000 77,096 57,244 162,837
1.000 4,127,096 57,244 245,364
- 4,111,250 23,387 48,000
1.000 15,846 33.857 197,364
1,813,379 8,689,387 21.279.076 27.594,028
593,823,708 313,240,391 93,763,324 58,633,424
0.1% 0.2% 0.2% 0.7% 0.1%

(10) Estimated Percentage Loss Savings
In Interval based on Survey
(7)/(8) Wt'd is based on
aggregate paid in line (9)

Source: Special Texas Closed Claim Survey
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5)

7

8)

Exhibit 2

Page 2
Impact Ot Punitive Damages Reform
General Liability - Non Toxic
Bodily Injury Liability

1991 1992 1993 Total
Total Savings Resulting From Caps
on Awards 16,008,543 6,502,515 10,030,125 32,541,183
Total Purutive Damages 30,402,613 24,841,918 23,358,465 78,602,996
Remaining Punitive Damages 14,394,070 18,339.403 13,328.340 46,061,813
@- )
Estimated Savings Resulting 3,598,518 4,584,851 3,332,085 11.515.453
From Elimination of Gross Negligence
Standard and Adoption of Clear
and Convincing Standard of Proof
(3)x025
Total Estimated Savings 19.607,061 11.087,366 13,362,210 44,056,636
{13+ )
Savings Atinbutable to Excess 10,239,367 1,960,750 6,927,000 19,127 116
of Policy Limits
Net Savings to Insurance System
(5)- (6) 9.367.694 9,126,616 6,435,210 24,928,520
Total Primary Insurance System 367,905558 342.958,174 387,622,846 1,098.486578
Paid Losses
(Line 33 from Jaint and Several Exhibit)
Ratio of Insured Savings to 2.5% 2.7% 1.7% 2.3%
Totat Pamary lasurance System Losses
(7)7(8)

Source. Regular Texas Closed Claim Survey
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2)

3)

4)

6)

10

11

L.osses Paid on Cla ms with Complete
Settlement Informaticn and Greater than
$25.000 that were affected by Jomnt and
Several Liabiity

a) Pnmary Insurer

b) Deductible Applied to Claims

c) Excess Qver Polcy Limits

d) Other Insurers

e) Total

Total Savings

a) Primary Insured
b) Other Insured
¢) Total

Amount of Pnimary Insured Savings
Attributable to Excess of Palicy Limits

Net Savings - Primary Insured
i2a)- (3)

Est:mated Savings - Uther Insurec.
Net of Excess Porl:cn
(201 [(4) / (23)]

Portian of Primary Insureds Losses Excess
of Policy Limits
(1¢)/{1a+1b+ 1c)

Estimated Payments on Behaif of
Other Insureds. Net of Excess Pertion
[1-({6)x 075)) x {1q)

Total Primary Insured Losses
{1a) + (1b) + (7)

Ratio of Savings
to Pnimary Insured Losses
{t4) + (5} /18)

Loss Paid on Claims Greater than
$25.000 with Incamp'ete Settlement
a) Pnmary Insurer

b) Deductible Applied to Claims

Estimated Payments on Behalf of
Other Insureds. Net of Excess Portion
(10a) x [(7) / (1a))

Estimated Total Net Primary
Insurance System Paid Losses
(10a) + (10b) + (11)

Estimated Total Net Primary
Insurance System Savings

Exhibit 3

Page 1
Impact Of Joint And Several Reform
General Liability - Non Toxic
Badily injury Liability
1991 1992 1993 Total
29.874.219 29,917,003 17,905,902 77697124
841.537 1,891,134 460,000 3.192.671
5.069.412 3.321.104 6.850,444 15,240,960
35,850,853 29,724,073 39,470,189 105,045,115
71.636.021 64,853.314 64 686,535 201,175,870
8.835.300 6,347,199 4,457,500 19.639,999
1.935.048 1,763,059 5,063,066 8,761,173
10,770,348 §.110,258 9,520,566 28,401,172
1.202,301 1,000,000 1,195,000 3,397.301
7.632.999 5,347,199 3,262,500 16.242.698
1,671,728 1,485,289 3.705.721 7.245.677
0142 0.095 0272 0159
32,041.815 27,616.497 31,428,134 92 554,406
62,757,571 59,424,634 49.794.036 173.444,201
14 8% 1 5% 14.0% 13.5%
24.440.468 18.961.395 17.903.77¢ 61.305,642
972.256 1,547,100 214,030 2,733,386
26,213,805 17,503,334 31,424 408 73,028,537
51,626,529 38,011,829 49,542,217 137.067.565
7.654,387 4,370,500 6,932,982 18,562,133

(12) x (9)

Source: Regular Texas Closed Claim Survey
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14)

16)

17)

19)

20)

21)

22)

23)

Losses Paid on Claims with Complete
Settiement Information and Greater than
$25.000 that were not affected by Joint
and Several Liability

a) Pnmary Insurer

b) Deductidle Appied to Claims

c) Excess Over Policy Limils

d) Other Insurers

e) Total

Ratio of Pnimary Insured Excess Payments
to Tota! Primary Insured Payments
(14c)/{14a + 14b + 14c)

Estimated Payments on Behall of
Other Insureds. Net of Excess Portion
[1-{(15) x 0.75)} x {14d)

Total Net Pnimary insurance System of
Paid Losses
(14a) + (14b) + (16)

Estimated Total Net Pnmary
Insurance System Savings

Exhibit 3

Losses Pad on Claims with Complete Settlement

Infarmation and Between $10.000 and $25.000

that had Muttiple Defendants

a) Pnmary Insurer

b) Deductble Applied to Claims
c) Excess Over Policy Limits

d) Other Insurers

e} Total

Ratio of Primary Insured Excess Payments
to Total Primary Insured Payments
(19c)/(19a + 19b + 19¢)

Estmated Payments on Behalf of
Other Insureds. Net of Excess Portion
[1-((20) x 0 75)} x (19d)

Total Net Primary Insurance System of
Paid Losses
(19a) + (19D) + (21)

Estimated Total Net Pnmary
Insurance System Savings

Page 2
Impact Of Joint And Several Reform
General Liability - Non Toxic
Bodily Injury Liability
1991 1992 1993 Total
171,409,015 166,994,663 187,240,735 625,644,413
6,004,449 7.873.253 15,839,907 29,717,609
23,597,461 32,228,004 22,171,523 77,996,988
33,948,702 35,230,315 55,712,005 124,891,022
234,959,627 242,326,235 280,964,170 758,250,032
0.117 0.156 0.098 0.123
30,959.674 31,118,442 51,599,214 113,355,949
208,373,138 205,986,358 254.679,856 668,717,971
0 o] 0 0
444,982 385,435 472,220 1,302,637
15,500 23,500 5,000 44,000
0 0 0 0
252,406 241,272 275,883 769,561
712,888 650,207 753,103 2,116,198
0.000 0.000 0.000 0.000
252,406 241,272 275.883 769,561
712,888 650,207 753,103 2,116,198
26,424 18,690 26,347 71,646

(22) x(9)x0.28

Source: Regular Texas Closed Claim Survey
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24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

Impact Of Joint And Several Reform
General Liability - Non Toxic

Losses Paid on Claims with Incomplete Settlement
Information and Between $10,000 and $25,000
that had Multiple Defendants

a) Pnmary Insurer

b) Deductible Applied to Claims

Estmated Payments on Behalf ot
Other Insureds. Net of Excess Portion
(24a) x [(21) / (19a)}

Estimated Total Net Primary
Insurance System Paid Losses
(242) + (24b) + (25)

Estimated Total Net Primary
insurance System Savings
(28) x(9) %025

Losses Paid on Claims Between $10,000
and $25,000 with Single Defendant

a) Pnmary Insurer

b) Deductible Applied to Claims

Total Net Primary Insurance System of
Paid Losses,
(28a) + (28b)

Estimated Tolal Net Primary
Insurance Sysiem Savings

Losses Paid an Claims $10,000 and Under
a) Total Paid

Total Savings

Estimated Total Net Primary
Insurance System Paid Losses
(B) + (12) + (17) + (22) + (26) + (29) + (31)

Estimated Total Net Pnmary

Insurance System Savings

(4) + (5) + (13) + (18} + (23) + (27} + (30) + (32)]
x 075

Ratio of Net Primary Insurance Savings
to Total Net Primary Insurance System
of Pad Losses

(34) 1 (33)

Source: Regular Texas Closed Claim Survey

Bodily Injury Liability

1991

503,010
20,000

285,321

808,331

29,962

13.343.411
420,156

13,763,567

29,863,534

387,905,558

12,761,625

35%

261

1992

533,188
28,599

333,761

895,548

25,742

14,044,104
624,077

14,668,181

23,321,416

342.958,174

8,435.565

2.5%

-
<O
[

625,637
250

365,513

991,400

12,557,939
579.252

13,137,191

18,725,043

387,622,846

10,471,676

27%

Exhibit 3
Page 3

1,661,835
48,849

981,765

2,692,448

91,155

39,945,454
1,623,485

41,568,939

71,909,993

1.097,517.315

31,659,982

29%



L)

2)

3)

4)

5)

7)

8)

9)

12)

13)

Impact Of Joint And Several Reform
Commercial Automobile - Non Toxic

Losses Paid on Claims with Complete
Settiement Information and Greater than
$25,000 that were affected by Joint and
Several Liabinty

a) Primary Insurer

b) Deductible Applred to Claims

c) Excess Over Policy Limits

dj Other Insurers

e) Total

Total Savings

a) Primary Insured
b} Other Insured
¢) Total

Amount of Primary insured Savings
Attnbutable to Excess of Policy Limits

Net Savings - Primary Insured
(2a) - (3}

Estimated Savings - Other Insured,
Net of Excess Portion
{20) x [(4) / {2a)]

Portion of Pnimary Insureds Losses Excess
of Policy Limits
(1cyf(ta+ 1b+ 1c)

Estimated Payments on Behalt of
Other Insureds, Ne' f Excess Portion
[1-{(6) x 0 75)] x (1d)

Total Pnmary Insured Losses
(1a) + (1b} + (7)

Ratio of Savings
to Primary Insured Losses
[(4) + (511 / (8)

Loss Paid on Claims Greater than
$25.000 with incomplete Settiement
a) Prmary Insurer

b) Deductiple Apphed to Claims

Estimated Payments on Behalf of
Other Insureds, Net of Excess Portion
(10a) x {(7) / (1))

Estimated Total Net Pnimary
Insurance System Paid Losses
(10a) + {10b) + (11}

Estimated Total Net Primary
Insurance System Savings
(12) x (9)

Source' Regular Texas Closed Claim Survey

Bodily Injury Liability

1991

17.196.115
1,500
4,161,950
4,390,022
25,749.587

6.734,638
354,485
7.089,123

2,040,250

4,694,388

247,094

0195

3,748,469

20,946,084

236%

6,612,509
34,875

1,441,418

8,088,802

1.908.265

Exhibit 3

Page 4
1992 1693 Total
19,514,296 13,350,760 50.061,171
250 683,500 685,250
4,672,080 1,447,173 10,281,203
8,819,068 6,324,825 19,533,915
33,005,694 21.806,258 80,561,539
7.234,346 3,919,848 17,895,941
476,889 1,083,281 2,155 148
7,711,235 5,003,129 20,051,089
2,416,670 75.000 4,546,750
4,817,676 3,844,848 13,349,191
317 582 1,062,554 1,607 598
0.193 0.093 0.168
7.541,397 5.881,401 17,065.785
27.055.943 19,915,661 67,812,206
19.0% 24 6% 22.1%
8,064,724 10,684,862 25,362.095
500,000 251,000 785,875
3,116,653 4,706.995 8,645,904
11,681,377 15.642.857 34,793,874
2,217,143 3,854 544 7.674.203



15)

18)

20)

21)

22)

23)

Losses Paid on Claims with Complete
Setlement Information and Greater than
$25.000 that were nol affected by Joint
and Several Liability

a) Pnmary Insurer

b) Deductble Appied to Claims

¢} Excess Over Pohcy Limits

d) Otner Insurers

e) Total

Ratio of Primary Insured Excess Payments
to Total Primary Insured Payments
(14¢)/ (14a + 14b + 14¢)

Estimated Payments on Behalf of
Other Insureds. Net of Excess Portion
[1-((15) x 0.75)] x (14d)

Total Net Primary insurance System of
Paid Losses
(14a) + (14b) + (16)

Estrmated Total Net Pnmary
Insurance System Savings

Exhibit 3

Losses Pa:d on Claims with Complete Settlenent
Information and Between $10.000 and $25.000

that nad Multiple Defendants

a) Pnmary Insurer

b} Deductible Apphed 1o Claims
¢) Excess Over Policy Limits

d) Other Insurers

e) Total

Ratio of Pnmary Insured Excess Payments
to Total Primary Insured Payments
{18¢)/ (19a + 19b + 15¢)

Estimaled Payments on Behalf of
Other insureds. Net of Excess Poruon
{1 - {{20) x 0.75)] x {15d)

Total Net Prmary Insurance System of
Paid Losses
(19a) + (19b) + (21}

Estimated Total Net Prmary
Insurance System Savings

pPage 5
Impact Of Joint And Several Reform
Commercial Automobile - Non Toxic
Bodily Injury Liability
1991 1992 1993 Total
259,710,240 304,880,531 302,641,336 867,232,167
11.909.996 9,839,276 14,750,546 36.499.818
22,886,526 43,392,330 40,356,727 106.636,583
10,745,143 11,630,342 11,814 408 34,189,893
305,251,905 369,742,479 369,563,077 1,044,557 461
0.078 0.121 0.113 0.106
10,118,878 10,573,408 10.814.843 31.483 557
281,738,114 325293215 328,206,785 935,215,542
0 0 0
231,770 274,786 277,061 783617
0 0 12,500 12,500
0 o] 0 0
86,481 154,738 127,000 368,219
318,251 429,524 416.561 1,164,336
0.000 0 000 0.000 0.000
86.481 154,738 127.000 368,219
318,251 429524 416,561 1.164.336
18,770 20.381 25,661 64,202

(22) x(9)x 0.25

Source: Regular Texas Closed Claim Survey
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Exhibit 4

Page 2
Combined impact of Venue, DTPA,
Frivolous and Joint & Several Damages Reforms
Products Liability Non-BI Claims
All Claims
Primary Insurer Settelment Range
Less Than Over Weighted
$25.000 $25,000 Average
Amount of Reduced Payments $ 22,000 $ 44,000
( Special Survey Q4k )
Savings Attributable to Excess - -
Net Savings to Primary Insurer 22,000 44,000
Total Primary Insurance Paid 293173 4,929,870
Losses within Interval based on Survey
(Special Survey, Q7a)
Aggregate Paid Losses in Interval 1.307.450 4,929,870
for All Companies Responding to Survey
Estimated Percentage Loss Savings 7.5% 0.9% 2.3%

Source' Special Texas Closed Claim Survey
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Impact of Venue Reform
General Liability
Bodily Injury Claims

County

Bexar
Harris
Jim Wells
Nuces
Panola
Rusk

(1) Total Savings For Claims 1n Survey
{2) Total Settlernent Amounts For Qutside
Claims in Special Venue Survey

{3) Overall Savings For Claims in Survey
M2

(4) Total amount of Seftlements for Qutside Claims
>$100.000 thal were not responded to in survey

(5) Expected Savings on No Response Claims
(3 x{4)

{6} Total Estimated Venue Savings
(1 +(5)

(7) Total 1993 Settlement Amounts
including amount Paid < $10.000

(8) Estimated % Venue Savings
(8)1(7)

“ Per response 2d. Used lowest response if % range was given. no offset for excess
Excludes claims where injury occured out-of-state and proper venue indicated in Q2a and Q2b

Source: Special Venue Data Cail for 1993 - Claims Over $100.000
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Exhibit 5
Page 1

Estimated
Venue
Savings*

$200.000
$665.250
$462,500
$40.000
$70.000
$2.293.546

$3.731.296

$54.466.493

6.9%

$12,123.898

$830,563

$4.561.859

5413.095 311
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Aamng wieD pasa|) sexs | selenbay :90inog

Total
1991 -
1993

County Claims from Inside County Claims from Quiside County All Claims

Suit Filed Number Total Settlement  Average Settlement| Number  Total Settlement  Average Settlement | Number  Total Settlement  Average Settlement
Anderson 1 1.6001.000 1.000.000 0 0 [ 1 1,600,000 1,600,000
Andrews 2 186,040 93.023 t 40,000 40,000 3 226046 75349
Angelina 4 TIR433 194,608 0 a Q 4 778433 194608
Aransus Y] Q o 0 0 Qo 0 0 0
Archer 1] 9 0 O 0 0 0 U 0
Armstrong 0 0 0 Y 1 4] Q o 0
Atascosu 0 o 0 0 Dl ¢} o 0 0
Austin ] 30,000 30.000 [ [¢] 0 1 Jnone 30,000
Bailey 0 [ 0 0 0 0 0 0 [
Bandera 0 0 8] Q Q 4] 9 V) i)
Bustrop J 0 0 (] 4] 0 0 0 0
“Travis 13 4.739.019 364,540 7 4.763.000 680,429 20 9.502.019 475,101
Trinity 1 235,000 235.000 0 0 0 1 235,000 235,000
Tyler 1 450,000 450,000 0 0 0 i 450,000 450,000
Upshur I 17,500 37.500 0 0 0 | 37.500 37,500
Upton 0 0 0 0 0 0 0 0 0
Uvalde 0 0 i} 3 0 0 0 0 0
Val Verde 4 730,210 187.553 0 0 0 4 750.210 187,553
Van Zands Qo 4] 0 Q 0 4] Q 0 0
Vicloria 2 355658 177.829 1 30,000 30.000 3 385,658 128,553
Walker 0 0 0 il 0 ¢ 0 0 0
Waller 0 0 0 0 0 0 0 0 ]
Ward [ 0 0 0 0 0 4] 0 0
Wushington 0 0 0 0 0 0 0 0 0
Webb 4 281,705 70426 0 1} 0 4 281,705 70,426
Wharton 0 0 0 Q 0 0 0 0 Q
Wheeler 2 678,464 339232 0 0 0 2 678 464 339232
Wichila 2 475.000 237,500 3 1034,263 344754 5 1.509.263 301,853
Wilbarger 0 0 0 0 0 o] 0 0 0
Willacy L 70.000 70.000 Q 0 0 1 70.000 70,000
Williamson 0 4] 0 0 4] 0 1] 0 )
Winkler 0 0 0 0 o} 0 0 0 0
Wise 2 132500 6250 ¢ 0 0 2 132,500 66,250
Wood 0 0 0 0 0 © 0 0 0
Yoakum 0 v 0 o 0 0 0 0 0
Young Q 0 0 0 0 0 0 0 0
Zapata 1 240.000 240,000 a 0 0 t 240.000 240,000
Zavala 1 300,000 300,000 ¢ 0 0 | 300.000 300,000
Statewide 607 253713841 380,381 127 65,404,391 514,995 94 319.118.232 401912
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697

Total
1991 -
1993

Frequency Ratios Severity Ratios Qutside # Excess #
Ratio 1: Ratio 2: Ratio 3: Ratio 4: Rativ §; Ratio 6: Ratio 7 Claims Excess # Reduced
County # Outside to  # Outside to  # [nside fv  # Outside to Ratio T te | AllAvg.to  Out Avg. to ] in Selected| Outside | By 25% For Estimated
Suit Filed # Inside # Total Population  Population  SW Ratio | | SW AH Avg. SW In Avg. | Counties Claims | Excess Loss Savings
Anderson 0.0% 0.0% 2.1% 00% 0.0% 398 1% 0.0% - - - -
Andrews 50 0% 33.3% 13.9% 7.0% 262 6% 18 7% 10.5% - - -
Angeling 00% (% 5.7% 00% 00% 48.4% 0.0% -
Aransas 00% U.0¥% 0.0% 00% 00% 0.0% 0.0% - -
Archer 0.0% 0.0% 0.0% 0 0% 0 0% 00% 0.0% -
Armslrong 00% 0.0% 00% 00% 0.0% 0.0% 0.0% - -
Atascosa 00% 0 0% 00% 00% 0.0% 0.0% 0.0% - - -
Austin 00% 0.0%% 50% 0.0% G0% 15% 0 0% - - -
Bailey 0 0% [aX+ 00% 0.0% 0% 00% 0.0% - - -
UBandera 00% 0.0% 0.0% 00% 0.0% 0.0% 0.0% -
Bustrop 00% 0 0% 00% .0% 0.0% 0.0% 0.0% - - -
Fravis 53.8% 350% 2 3% 12% 282 8% 118.2% 178 9% 7.00 348 26l 83378
Trinity 0.0% 00% 8.7% 00% 0.0% 58 5% 0.0% - - -
Tyler 00% 00% 6.0% 0% 0.0% 1120% 0.0% - - - -
Vipshur (1 (%% 0.0% 32% 00% 0 0% 93% 0.0% - -
Upton 0% 0.0% 0% 0oL (1.0% 0.0% 40% -
Uvalde Ju% 0.0% 00% O U 0.0% 0.0% 0.0% - - -
Val Verde 00% 00% 10 3% 0% 00% 46.7% 00% - - - -
Van Zandt 00% 00% 00% 0.0% 0.0% 0.0% 0.0% - - - -
Victoria 50 0% 33 3% 27% 1.3% 262.6% 32.0% 7.9% - - -
Walker 00% 00% 00% 0.0% 0.0% 0.0% 00% -
Waller U.0% 0 0% 00% U 0% 0.0% 0.0% 0.0% - - -
Ward 0.0% 00% 0.0% 0u% 0.0% 0.0% 00% - - -
Washington 00 00% 0.0% 00% 00% 00% 00% - -
Webb 00% 00% 30% 0.0% 00% 17 5% 0.0% - -
Wharton 00% 0.0% 0.0% 0.0% 0.0% D 0% 0.0% - - -
Wheeler 00% 00% 34 0% [e03 00% 81.4% 0.0% - -
Wichita 150 0% 60.0% 1 6% 235% 787 8% 75.1% Y0.6% - -
Wilbarger 00% 0.0% 0 0% 0 0% 0% 0.0% 00% - -
Willacy 0.0% 0 0% 5 6% 0 0% 00% 17.4% 0.0% - - -
Witlianson 0.0% 00% U 0.0% 0.0% G 0% 0.0% - -
Winkber 00% 0 0% 0.0% Q0% 00% 00% G.0% - -
Wise 0.0% (% 3 K% 0.0% 0.0% 16 5% 0.0% -
Wood (0% 0 0% 0.0% 0 0% 0.0% 0 0% 0 0% - -
Yoakum 0.0% 00 00% 0 0% 10.0% % 00%
Young 00% 00% 0 0% 0% 0 0% 0% 0 0% - -
Zapata V0% 0 0% 10 8% 00% (0% 59.7% 00% - -
Zavala V0% 0.0% 82% 00% 0 0% 14.6% 00% - -
Statewide 19 G% 16 (% 3% 1.7% 141 0% 10602 1354% 3¢ 14 bR OU75.857

tatal Settiement Amount For Claims = $25.000

323731699
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Source: Regular Texas Closed Claim Survey

Impact of Venue Reform
Environmental Liability Bodily Injury Losses
Summary of Estimated Savings For Claims > $25,000

Estimated Venue Savings $49,959
Total Sellement Amount For Claims > $25,000 $74.292,911
0.1%

Estimated Percentage Savings
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Exhibit 6

Average Paid ALAE Per Claim
By Primary Insured's % of Fault
1991-1993 Data

Primary Insured's Average
% Number Paid

Line of Fault of Claims ALAE
General Liability 0-10 409 43,990
11-25 487 44,504
26-50 1,157 31,941
51-75 879 27,636
76-90 667 25,868
91-100 1,794 29,141
Total 5,393 31,605
Commercial Auto 0-10 319 13,337
11-25 120 24,007
26-50 471 21,891
51-75 539 18,558
768-90 677 13,839
91-100 6,233 8,877
Total 8,359 11,024
Commercial 0-10 198 49,507
Multi-Peril 11-25 235 31171
26-50 723 25102
51-75 599 18.298
76-90 454 15,325
91-100 1,191 17,882
Total 3.400 21,909
Medical Professional 0-10 232 31,616
11-25 199 44 418
26-50 466 42,923
51-75 253 44.148
76-90 155 35.230
91-100 1.421 32,011
Total 2726 36,058
Other Professional 0-10 10 42,755
11-25 16 39,187
26-50 19 127,346
51-75 12 35,421
76-90 8 68,663
91-100 125 23,520
Total 190 38,887

Source: Regular Texas Closed Claim Survey
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Exhibit 6

Average Paid ALAE Per Claim
By Primary lnsured's % of Fauit
1991-1993 Data

Primary Insured's Average
% Number Paid

Line of Fault of Ciaims ALAE
General Liability 010 409 43,990
11-25 487 44,504
26-50 1157 31,941
51-75 879 27.636
76-90 667 25,868
91-100 1,794 28,141
Totat 5.393 31,605
Commercial Auto 6-10 318 13.337
11-25 120 24,007
286-50 471 21,891
51-75 539 18,558
76-90 677 13,839
81-100 6,233 8.877
Totat 8,359 11.024
Commercial 0-10 198 49,507
Multi-Peril 11-25 235 31,171
26-50 723 25,102
51-75 599 18.298
76-90 454 15,325
G1-100 1,191 17,382
Total 3,400 21,909
Medical Professional 0-10 232 31616
11-25 199 44 418
26-50 466 42,923
51-75 253 44,148
76-90 155 35230
91-100 1.421 32.0%1
Totat 2,726 36,058
Other Professional 0-10 10 42,755
11.25 16 39,187
26-50 19 127.346
51-75 12 35421
76-90 8 68.663
91-100 125 23520
Total 140 38,887

Source: Regutar Texas Closed Claim Survey
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Appendix A
Page 1

TEXAS DEPARTMENT OF INSURANCE

SPECIAL CLOSED CLAIM SURVEY FORM

Company Name and Address:

NAIC Company Code: NAIC Group Code:
Claim File ldentification: Claimant Suffix:
Form Compieted By: Tel:

Form Reviewed by (Coordinator): Tel:

Reserved for State Use: (Do not write in this area).

272



IC Co. Code: NAIC Group Code:, Claim File ID:

Appendix A
Page 2

1te information:

7

d

Complete the following items:

Date ol injury ..o e
Date suit filed (indicate N/A if not applicable) ........................
Dateofsettlement ... ... ... ... ...

Dateclaimalosed . ....... ... ... i i

MM /DD 7YY

2.

a.

b.

. Private passenger auto liability (including UM/UIM coverage)
Homegowners muitiple peril

. Farmowners/Ranchowners multiple peril

. Personal umbrelia

. Product fiability

. Monoline general liabiity

. Commercial auto liability

. Commercial multi-peril iability (inciuding TCPP and TBOP)

. Other professional liability

WOND! AL

Indicate the code for the fine of business that the claim was reported on under
the Annual Statement.  (ChOOSEONB) .. v vt i ittt i i i,

030 - Farmowners muitiple perit

040 - Homeowners muitiple peril

052 - Commercial multiple peril (liability portion)
170 - Other liabitity

180 - Preduct Hability

182 - Other private passenger auto liability

194 - Other commercial auto hability

What is the per person policy imit? (indicate N/A if not applicable) ........
What is the per occurrence policy limit? {indicate N/A if not applicable) .....

What is the aggregate policy limit? (indicate N/A if not applicable) .........

What is the deductible/self-insured retention limit? (indicate N/A if not

applicable) . ... e

Poticy Type  (GNO0SE ON8) . .« i it ittt i i e e

[Veri e

3.

a.

Indicate the county number where the insured's principal oftice is located it a
commerciat entity, or the insured's principal place of residence if not a

commersial Bntity. ... ... ittt

indicate the county number where the injury was alieged to have occurred.. . .
indicate the county number of piaintiff's residence at the time of the incident..
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Appendix A

Page 3
NAIC Co. Code: NAIC Group Code: Cfaim Fife ID:
d. Indicate the county number where suit was initially filed (indicate N/A if not
applicable). . ... ... e
e. Indicate the county number where the trial was held (indicate N/A if not
appicabIe). . . . e
f. i the new law affecting choice of venue had been in effect when this claim
was made, would it have impacted the settlement of this ¢laim?®  ......... [ Junk{ JY[ IN
[*Civil Justice and General information: - 1
4. a. What stage of the legal system was a setilement reached or an award made?
il
1. Alternative dispute resolution
2. Settlement, no suit filed
3. Suit filed, settlement reached before trial
4. During trial, before court verdict
5. Court verdict
6. Settlement reached after verdict
b. Was yourinsured a business? ... .. ...l [ 1Y{ IN
¢. {fyes toitem 4(b), indicate what type of business? (indicate N/A if not
applicable)
d. Did this claim arise from the rendering of a professional service? . ...... ... { 1Y[ IN
e. Wastheclaimantabusiness? ... ... . ... i [ JUnk{ Y[ IN
t. Were there any defendants (tort feasors) other than your insured involved in
refation o this Claim? ... .. i i i ittt { 1Y[ IN
g. Have all of the other defendants {tort feasors) settled relative to this claim? [ JUnk{ 1Y IN
h. Did this claim allege Deceptive Trade Practices Act (DTPA) violations against
YoUrinsUred? . . ... i [ 1Y{ IN
If yes to item 4(h), answer items 1 and 2:
1. Were any payments for this claim due to DTPA allegations against your
11T - I N [ 31Y[ IN
2. it the new law limiting DTPA actions had been in eftect when this claim
was made, would it have impacted the settlement of this claim?®  ....... { JUnk] 1Y[ IN

*Use your most professional opmnion.
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Appendix A

. ) Page 4
AlC Co. Code: NAIC Group Code: Claim File ID;
i. I the new law punishing parties for fiing frivolous pleadings had been in effect
when this claim was made, would it have impacted the settiermnent of this
M e e e { Junk[ 1Y[ IN
j.  If the new law limiting payments for joint and several liability claims had been
in effect when this Claim was made, would it have impacted the setlement of
IS ClaIM T e { junk{ JY[ N
k. it any of the responses to items 3(f), 4(h).2, 4(i), or 4(j) were Yes, estimate the
amount that your payment would have been reduced? (indicate "Unknown" if
apPiCabIE)” e e $ S
| Aliccated Loss Adjusiment Expensas: j : 1
Loss adjustment expenses must be aflocated on a per claim basis. Round all amounts to dollars.
5. a. Were there any allocated loss adjustment expenses paid relating to this claim? [ 1YL IN
b. Indicate the amount paid for defense counse! (either outside or in-house). .. %
¢. Indicate the amount of all other affocated loss adjustment expense. ....... 3

d. Indicate the total aliocated loss adjustment expense [sum of items 5(b} + 5(c)]. $
| Afocation of Damages: : N : : - ]
Damages must be allocated based on the total indemnity amount indicated in item 7(e).*

6. a8 1 ECONOMIC I0SSES ...ttt i i e e e $
2. NON-8CONOMICIOSSES ..o ittt aee i it ie e nns $
3. Exemplary GaMageS . ... e $
A eIt L e e 3
B TOtal L $

The percentage of tault allocations do not have o agree with the percentage of the settlement paid by that party.
Round percentages to whole numbers.*

b. Estimated percentage of faylt assigned to:

Todnjured pary .. %
2. Yourinsured ... e %
3. O eI PaMBS ... ittt %
AoTotal L e e 100%
[ Settiament information: R T : : ]

Indicate the following dollar amounts for indemnity payments as applicable to this claim. Indicate unknown where
applicable. Do ngt indicate unknown in item 7(e). Round all amounts to doliars.

7. Amounts paid on behalf of your insured [items 7{a) through 7(c)}
a. Amount paid under the policy covering thisloss  ...................... §
b.  Amount paid by either the insured or an insurer for underlying coverage .... $
¢. Amount paid by either the insured or an insurer for coverage exceeding your
policy imMits .. L. $
d. Amounts paidon behalfof otherparties . ... . $
e. Total AmountofSettlement ........... ... i iiiiiiiiieiiiniina.n $

“Use your most professional opinion.
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TEXAS DEPARTMENT OF INSURANCE

SPECIAL EMPLOYERS' LIABILITY CLAIM SURVEY FORM

Company Name and Address:

NAIC Company Code: NAIC Group Code:
Claim File fdentification: Claimant Suffix:
Form Completed By: Tel: { }
Form Reviewed by (Coordinator): Tel: ( J

Reserved for State Use: (Do not write in this area).
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NAIC Co. Code: NAIC Group Code: Claim File ID:

Appendix B
Page 2

e information:

1

Complete the following items:

MM /DD /YY

1. a Dateotinury ... i i Y S S
b. Date suit filed (indicate N/A if notapplicable) .........coivevinininn.. / /
¢. Date of settiement of employers' fiability claim (indicate N/A if not applicable) / /
d. Isthe employers’ liability claim stilfopen? .. ..... ... ..o OYON
e. s the corresponding workers' compensation claim stilt open?  ............ OYON
[ Poticy intormation: ' ]
2. a. What s the employers’ liability poficy fimit? ... ........ ... ... ...
b. What is the deductible/self-insured retention limit? {indicate N/A if not
oo 1T 1 G
| Venue iInformation: |
3. a. Indicate the county number where the insured's principal office is located.
b. Indicate the county number where the injury was alleged to have occurred. . . .
c. Indicate the county number of plaintiff's principal office is logated if a
commercial entity, or the ptaintiff’s principat place of residence, 2t the ime of
e el = R
d. Indicate the county number where suit was initially filed (indicate N/A if not
applicable). . ..o e e e
e. Indicate the county number where the trial was held (indicate N/A if not
APPICAD ) . L e i e
f. il the new law aflecting choice of venue had been in eflect when this claim
was made, would it have impacted the settiement of this claim?® .. ,...... QUnkQYON
| Civil Justice and General Information: ]
4. a. "Indicate the type of business of your insured.
b. Wastheclaimant a busingss? ... ... ... it QUROYON
c. Were there any defendants (tort feasors) other than your insured involved in
relation 1o this laim? ... i i e QYON
d. Have gl of the other defendants (tort feasors) settied relative 1o this claim? OUnkOYQN

*Use your most professional opinion.
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Appendi:

NAIC Co. Code: NAIC Group Code: Claim File ID: __ Page 3
e. Did this claim allege Deceptive Trade Practices Act (DTPA) violations against
4oLV 41TV g OO ayt
it yes to item 4(e), answer items 1 and 2;
1. Were any payments for this claim due to DTPA allegations against your
L1 =1 PP avyo
2. if the new law limiting DTPA actions had been in etfect when this claim
was made, would it have impacted the settiement of this claim?® ... .... aunk@Qvyan
f. Did the payment on this claim include exemplary {punitive) damages? ..... QYQnN
it yes to 4(f), would the new law capping exemplary damages, replacing the
gross negligence standard with one of malice, and changing the required level
of proof from the preponderance of the evidence to clear and convincing
evidence, have impacted this settlement? .. ... ... .. . e OYON
g. fthe new law punishing parties for filing frivolous pleadings had been in effect
when this claim was made, would it have impacied the settlement of this
I L et e e e QurkQYQN
h. Ifthe new law limiting payments for joint and several liability claims had been
in eflect when this claim was made, would it have impacted the settiement of
IS ClBIM T e OUnkOYON
i. If any of the responses to items 3(f), 4(e).2, 4(f). 4(g) or 4(h) were Yes,
estimate the amount that your payment would have been reduced? (indicate
"Unknown" if applicable}” %
j. Describe the nature of the injury
k. Did the claim involve a hold harmiess agreement? ... ... ... ... . .. ... OYQanN
I Didthe claiminvolve action over? . . e QvYQOaN
*Use your most professionat opinion.
| Allocated Loss Adjustment Expenses:
Loss adjustment expenses must be allocated on a per claim basis. Round all amounts to dollars.
5. a. Were there any allocated loss adjustment expenses paid relating to the
employers’ liability portion of this claim? QyYanN

b. indicate the amount paid for defense counsel (either outside or in-house). 3

c. Indicate the amount of all other allocated loss adjustment expense. . ...... 3

*Use your most professional opimion.
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NAIC Co. Code: NAIC Group Code: Claim File 1D:

location of Damages: : i : 1

d. Indicate the total allocated loss adjustment expense [sum of items 5(b) + 5(c)}. &

amages must be aliocated based on the tota! indemnity amount indicated in item 7(e).”

6. 2. 1. ECONDMICIOSSES .ttt e e $
2. NON-BCONOMIC I0SSBS  « « vt it ittt iie e crneaes i ianseeanns $
3. Exemplary Jamages ..ot s $
L T =T T OO 3
SR o3 v 3

The percentage of tault atlocations do not have to agree with the percentage of the settlement paid by that party.
Round percentages to whole numbers.*

b. Esiimaled percentage of faull assigned to:

1onjured Pany i s %
2. YOUTINSUIBA . ottt st ittt ettt caaeen i e %
3. e Paries . o i et i it iy %
T o - 100%
[ Settiement information: . . ) ]

Indicate the following dollar amounts for indemnity payments as applicable to this claim. Indicate unknown where
applicable. Do ngt indicate unknown in item 7{e). Round alt amounts to dollars.

7. Ampunts paid pn behalf of your insured {items 7(a} through 7{c))
a.  Amount paid under the policy covering this 1085 ...v.. ..o nann $ )
b. Amount paid by enher the insured or an insurer {or underlying coverage  .... §
c. Amount paid by either the insured or an insurer for coverage exceeding your
Fo L1 o 1o o P $
d. Amounts paid on behail of other parties .. ........ . ... .. .. eieen. $
e. Total AmountofSettlement . ..... ... .. . . i ittt 3

‘Use your most professiona! opiion.
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TEXAS DEPARTMENT OF INSURANCE

SPECIAL DTPA AND VENUE CLAIM SURVEY FORM

Company Name and Address:

Appendix C
Page 1

NAIC Company Code: NAIC Group Code:
Claim File Identification: Claimant Suffix:
Form Completed By: Tel: { )i
Form Reviewed by (Coordinator): Tel: { )i

Reserved for State Use: (Do not write in this area),
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Complete the Foliowing items:

Did this claim allege Deceptive Trade Practices Act (DTPA) violations
against your insured?

f your answer is "no", go to question 2; otherwise answer the
following:

Were any payments for this claim due to DTPA allegations against
your insured?

Was the amount of settlement affected by the DTPA allegations?

If the response to "a” or "b” was "yes”, piease estimate the amount of
by which it affected the cost of the claim (use your most professional
opinion).

if the new law limiting DTPA actions had been in effect when this claim
was made, would it have impacted the settlement of this claim (use
your most professional opinion)?

Indicate county number where the insured's principal office is located.

Indicate county number of the plaintiff's residence at the time of the
incident if plaintiff is a natural person.

if multiple defendants, would the plaintiff have been able to establish
venue under the new law against any defendant in the county in which
the original suit was actually filed?

If yes, give basis

Appendix C
Page 2

Oy QN

QY ON

QY UN

Qunk OY ON

QY an

It the new law governing venue had been in effect and the county of
suit of this claim would not qualify as proper venue, estimate the
impact of the settlement.

Was the suit filed in Federal or State Count?

281
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