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Abstract 

The theory of credibility is a cornerstone of actuarial science. Actuaries commonly use it. 
and with some pride regard it as their own invention. something which surpasses statistical 
theory and sets actuaries apart from statisticians. Nevertheless. the development of 
statistical models by statisticians and econometricians in the latter half of this century is 
very relevant to credibility theory: it can ground as well as generalize much of the theory. 
particularly the branch thereof known as least-squares credibility. It is the purpose of this 
paper to show how the theory and practice of credibility can benefit from statistical 
modeling. 

The first half of the paper consists of eleven sections. notes, references. and twenty exhibits. 
The technical content is subdued. and readers may content themselves with this half. But 
the technically inclined are invited to study the six appendices (A through F) of the second 
half. Due to space limitations of the Call Paper Program. some of the appendices may be 
deleted. If this should happen, the deleted appendices can be obtained by calling the author 
at (201) 278-8860. 

The author is grateful to Kenneth Kasner, FCAS. MAAA. for his thoughtful and kind 
review of the draft of this paper. 

Mr. Halliwell is a Fellow of the Casualty Actuarial Society and a member of the American 
Academy of Actuaries. In August 1997 he became a consultant at the New York office of 
Milliman and Robertson. For two years prior to that he lived in Mexico City as the 
Regional Actuary of Latin America for the Zurich Insurance Group. And prior to that he 
was the Chief Actuary of the Louisiana Workers’ Compensation Corporation, Baton Rouge. 
LA. His actuarial career began at the National Council on Compensation Insurance in Boca 
Raton. FL. 
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I. Introduction 

Throughout the twentieth century actuaries have been practicing something that they call 

credibility. Although acknowledging some connections with statistics, especially with 

regard to Bayesian credibility, actuaries have tended to regard credibility as transcending 

statistics. This is illustrated in the historical sketch of the following section. But this paper 

will proceed to show that advances in statistical modeling during the latter half of this 

century legitimate and deepen typical uses of credibility. In order not to presume on the 

readers’ knowledge of modem statistics, Sections 3, 4, and 5 will outline and illustrate the 

linear statistical model. The treatment of credibility per SE will begin in Section 6, where 

we will show how to introduce prior (or non-sample) information into the statistical model. 

It is hoped that the reader will be persuaded that to express credibility in statistical terms is 

not only possible, but also advantageous. Six appendices at the end of the paper provide 

mathematical foundations for much of what is glossed over in the sections. 

2. An Historical Perspective on Credibility 

To Matthew Rodermund was entrusted the formidable task of writing the introduction to 

the textbook Foundations ofCasualty Actuarial Science. The task was formidable because 

it demanded a engaging history of the casualty actuarial profession and a distillation of its 

essence. Rodetmund states, “It is the concept of credibility that has been the casualty 

actuaries’ most important and most enduring contribution to casualty actuarial science.” 
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[11:3].’ After recounting the accomplishments of actuaries in experience rating, 

retrospective rating, merit rating, ratemaking, and reserving - all with an eye on credibility, 

he asks, “Readers who have come this far may conclude from what they’ve read that 

casualty actuarial science is the study and application of the theory of credibility, and that’s 

all. Is it all?’ [I 1: 191 An affirmative answer is implied. And almost thirty years earlier L. 

H. Longley-Cook, although more reserved than Rodennund, prefaced his famous 

monograph on credibility with the words “Credibility Theory is one of the cornerstones of 

actuarial science . .” [9:3] 

The “Statement of Principles Regarding Property and Casualty Ratemaking,” adopted by 

the Casualty Actuarial Society in 1988, defines credibility to be ‘&a measure of the predictive 

value that an actuary attaches to a particular body of data.“’ Actuaries often speak 

equivalently of the “weight” given to a body of data. The language of arraching or giving 

credibility to data is suggestive of an important point made by Longley-Cook: 

the amount of credibility to be attached to a given body of data is not entirely an intrinsic 
property of the data. For example, there is always stated or implied in any measure of 
credibility the purpose to which data are to be used. 

Hence, we see that credibility is not a simple property of data which can be calculated by 
some mathematical formula [9: 41 

If credibility is not entirely intrinsic to the data, then it is at least partially extrinsic. In 

practice, credibility is largely, if not entirely, extrinsic to the data. And what is extrinsic to 

the data pertains to informed judgment; so it is fitting that Longley-Cook concluded his 

monograph as follows: 

it is perhaps necessary to stress rhat credibility procedures are not a substitute for informed 
judgment, but an aid thereto. Of necessity so many practical considerations must enter into 

’ In the ‘[n:p]’ format ‘n’ is the reference number and ‘p’ gives the page number(s). 
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any actuarial work that the student cannot substitute the blind application of a credibility 
formula for the careful consideration of all aspects of an actuarial problem. [9:25] (also 
quoted in [I I : 1 Of.]) 

Since the credibility of data is the predictive value or weight given to the data, the question 

arises what to do when the actuary judges the data not to have enough predictive value or 

weight. The answer is to weight the answer which is based on the data with an answer 

based on informed judgment; so it is natural for actuaries to speak of credibility-weighting 

the empirical answer with another source of information. 

One great teacher and apologist of credibility was Arthur L. Bailey. Writing between 1945 

and 1950, he claimed that certain credibility procedures conflicted with current statistical 

theory; in fact, statistical training could hinder someone from accepting these procedures: 

The basis for these credibility formulas has been a profound mystery to most people who have 
come in contact with them. The actuary finds them difiicult to explain and, in some cases, 
even difficult to understand. Paradoxical as it may be, the more contact a person has had with 
statistical practices in other fields or the more training a person has had in the theory of 
mathematical statistics, the more difftcult it has been to understand these credibility 
procedures or the validity of their application. [3:7] 

Bailey listed as three offending credibility procedures (1) the use of prior hypotheses in 

estimation. (2) an estimation of groups together which is more accurate than estimating 

each group separately, and (3) estimating for an individual that belongs to a heterogeneous 

population [4:59f.]. Speaking from his own experience and with the ardor of a convert. he 

wrote: 

I personally entered the casualty insurance field from the completely unassociated tield of 
statistical research in the banana business. The first year or so I spent proving to myself that 
all of the fancy actuarial procedures of the casualty business were mathematically unsound. 
They are unsound, if one is bound to accept the restrictions implied or specifically placed on 
the development of the classical statistical methods. Later on I realized that the hard-shelled 
underwriters were recognizing certain facts of life neglected by the statistical theorists Now I 
am convinced that casualty insurance statisticians are a step ahead of those in most fields. 
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This is because there has been a truly epistemological review of the basic conditions of which 
their statistics are measurements. I can only urge a similar review be made by statisticians in 
other fields. [4:6 I ] 

Bailey [3] sought to ground these procedures in what later became known as Bayesian 

analysis. No doubt, in his day statistical theory could not accommodate certain actuarial 

ideas. Therefore. he saw the actuarial profession as in “revolt,” as for example when he 

wrote: 

Philosophers have recently discussed the credibilities to be given to various elements of 
knowledge. thus undermining the accepted philosophy of the statisticians. However, it 
appears to be only in the achwial field that there has been an organized revolt against 
discarding all prior knowledge when an estimate is to be made using newly acquired data. 
[3:9f.) 

But a revolt involving Bayesian analysis was soon to happen among the statisticians. as 

Allen Maycrson remarked in 1964: 

Statistical theory has now caught up with the actuary’s problems. Stamng with the 1954 
book by Savage, and buttressed by the 1959 volume by Schlaifer and the 1961 book by 
Raiffa and Schlaifer. there has been. among probabilists and statisticians, an organized 
rev011 against the classical approach and a trend toward the use of prior knowledge for 
statistical inference. 

The relationship between Bayes’ theorem and credibihty was first noticed by Arthur 
Bailey, who showed that the formula %4+/l-2)8 can be dewed from Bayes’ theorem 

It seems appropriate, in view of the growing interest among statisticians in the Bay&an 
point of view. to anempt to contmue the work started 15 years ago by Bailey, and, using 
modem probability concepts, try to develop a throy of credibility which will bridge the 
gap that now separates the actuarial from the statistical world. [lO:BSf.l 

Bayesian analysis has continued to be a popular basis of credibility theory It plays a 

prominent role in Gary Venter’s momentous chapter on credibility in the I;o~rndurion.s 

textbook [ 131. But Bailey’s seminal idea was a “greatest accuracy credibility” (2:20]. of 

which Venter writes: 
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The most well developed approach to greatest accuracy credibility is lrasf squares 
crrdihilrry, which seeks to mmimize the expected value of the square of the estimation 
error ._. 

More recent statistical theory. Bay&an analysis for example, also addresses the use of 
data to update previous estimates, and this will be introduced later below. Credibility 
theory shares with Bayesian analysis the outlook toward data as strictly a source to update 
prior knowledge. Credibility, particularly least squares credibility is sometimes labeled 
Bayesian or empirical Bayesian for this reason. It also gives thr same result as Bayesian 
analysis in some circumstances, although credibility theory can be devrloped within the 
frequentist view of probability ._. 

Frequentist refers to an interpretation of probability as solely an expression of the relative 
frequency of events, in contrast to a subjectivist view which regards probability as a 
quantification ofopinion. This latter view is a hallmark of Bayesian analysis. [13:384] 

This quotation clearly indicates that Bayesian analysis is not the be-all and end-all of 

credibility theory. Rather, despite some similarities. greatest accuracy credibility is 

independent from Bayesian analysis, and especially from the on-going philosophical debate 

between the frequentists and the sub.jectivists. With all the limelight on Bayesian analysis, 

actuaries have not realized that statistical theory now has some non-Bayesian things to say 

about credibility. In particular, modem statistical modeling can accommodate the three 

“offending” credibility procedures mentioned above; moreover, it provides a richer world of 

ideas than the one-dimensional formula ,UT~I-Z)B. 

3. An Overview of the Linear Statistical Model 

In an earlier paper [7] the author treated the best linear unbiased estimation (BLUE) of the 

linear statistical model. That treatment was detailed and self-contained; so the author will 

assume it, rather than derive it. In Appendix C of that paper the author compared BLUE 

with Gary Venter’s formulation of least-squares credibility [ 13:418], and concluded: 

Thus Venter is essentially doing best linear unbiased estimation on a linear model. The 
author hopes that actuaries will begin to see the subject of credibility from the perspective 
of statistical modeling. [7:335] 
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It is for the purpose of realizing that hope that the present paper is written. 

The form of a linear’ statistical model is y = Xp + e, where Var[e] = Z = 0’0. In this 

model y and e are (PI) vectors. X is a (txk) matrix, j3 is a (kxl) vector, and C and 4, are 

(fxr) matrices. The design matrix X is known. or posited; y is observed. Although the 

parameter vector p is not known, it is not random; an estimator of p is random, but p itself 

is not. What injects randomness into the vector y is the error term e. e is not observable: 

however, E[e] = Oc,,r,, and Var[e] is known, or posited, at least to within a proportionality 

constant, i.e., Var[e] oc @ No assumption is made as to the probability distribution of e. 

Most presentations of the linear statistical model dwell on how to estimate p, but there is a 

wider approach. Suppose that the I rows of the y are of two types, those which have been 

observed and those which have not. The observed portion of y we will call yr and say that 

it is (11x I); the unobserved will be y2 and (rrx I j. Of course, I, + 12 = I. We can also arrange 

the rows of the model so that the observed portion comes first. Similarly partition X and e. 

so that the model looks like: 

Y, =X,D+e, 

y2 = X,P+e, 
, whereVar[:j]=Z;[~~: ~::1-02*=02[~: :l] 

Since variance matrices are symmetric (cf. [7:304] and [8:43]). 121 = CIZ’ and 021 = @I:‘. 

Being unobserved, yr contains missing values. The problem is to formulate an estimator of 

y2 based on yt, X, and Z. In particular, we want the estimator to be linear in yt, to be 
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unbiased, and to be in some way best; i.e., we want the best linear unbiased estimator 

(BLUE) of yz. In Appendix C of the earlier paper [7] it is shown that the BLIJE ofyz is: 

3, = x,P +&,G(Y, - x,ib 

Var[y, -9: ] = ZZ2 - C,,C;,‘C,, +(X1 - Z,,C;,rX,)Var[fi](X2 - Z,,.&‘X,)‘, where 

i = (X:C;:X,) ‘X;X;,‘y, and 

Var[b] = (x;x,;x,,-’ 

This is equivalent to: 

$2 = x,/3 + a,qI;‘(y, - X,P! 

Var[y2 -$,I= 02(Q2 -U%,O,~‘CP,,)+(X, -02,0,;‘X,)Var[~](XL -Q,@,;‘X,)‘. where 

b = (X;O,,‘X,)-‘X;O;,‘y, and 

Var[b] = 02(x;q~x,)-’ 

If oz is not known, it can be unbiasedly estimated as 6’ = U 
t,-k ' 

where 6, = y, - X,b 

[7:333f.] 

What does it mean for ji2 to be best? As explained in Appendix A. of two competing linear 

unbiased estimators the best estimator is the one the variance of whose prediction error is 

smaller: 

This means that the right-hand side of the second inequality is a non-negative definite 

matrix. The estimator with the caret is at least as good as the one with the tilde; and if the 

expression is non-zero, it is better 
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Before applying this overview to credibility. the next two sections will warm the reader up 

with two simple linear models. Prior to riding a horse it is wise to practice on ponies. 

4. The Simplest Statistical Model (Example I) 

Suppose that we have seven non-covarying and identically distributed observations of a 

random variable: 6.164. 11.103. 9.663, 12.998. 10.329. 9.564. and 9.602. A simple model 

of the i* observation (i = I. . 7) is y, = fi + e,. where Var[e,] = c?. The matrix 

formulation is: 

6.164 
I I.103 
9.663 

11.998 
IO.329 

9.564 

9.602 

=y=xp+e= 

I- 
I 
I 

1 B+e 
1 
I 

‘J 

Since the observations are non-covaqing and identically distributed. Var[e] = 0’1,. In this 

C’*.v, _ ~_ simple example rj = (X’X).’ (X’y) = - 
Cl+’ 

- y - 9.917. So the parameter is the mean of 

the observations. and the estimator of 0’ is the sample variance ( = 4.240). One might react 

that this is like using a sledgehammer to crack a walnut: “Why go IO all this trouble when 

the mean and the variance are the obvious solutions from the start?” The answer, however, 

deserves to be pondered: This model. the simplest of all. undergirds the mean and variance 

functions; these functions are in reality pre-packaged solutions of the simplest linear 

model. 
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Exhibits I and 2 present and solve this model. The seven observations are contained in YI. 

Since these observations are non-covatying, the off-diagonal elements of @,I r are zero; since 

they are identically distributed. the diagonal elements of Qtt are equal (ones). Thus. 

according to the formulas of the previous section (which are repeated in the exhibits). p and 

its variance may be estimated. 

However. in this example we have chosen to estimate. or to predict, a certain (1 I xl) vector 

yz = X$ + er. What y2 estimates is determined by XI, (&t, and @2. The first seven 

elements of y2 have the same variance as el and are perfectly correlated with er. This 

means that as far as this statistical model is concerned, these seven elements are 

indiscernible from et, and hence nre et. The eighth element of yz models the constant 0. 

The ninth element models a new error term, i.e., an error term which has the same variance 

as el but does not covary with et. The last two elements of y2 model 0 without an error 

term and with a new error term. Exhibit 2 derives the estimate of y2 and the variance of its 

prediction error. 

5. Another Simple Statistical Model (Example 2) 

Exhibits 3 and 4 concern a slightly less simple example. We have actual utility expenses 

for thirteen months (Sep95-Sep96). For each of these months there is a suitable utility 

index. We desire to estimate the expenses for the next three months (Oct96-Dec96), and 

are comfortable with 160, 162, and 168 as predictions of the utility index. 
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Many actuaries would simply rescale the last month’s expenses. For example, Oct96 

expenses are expected to be 2,192*(160/156.779) = 2,237. But this ignores the information 

from the earlier months. If one were to do a similar calculation for the other twelve months. 

one would then have thirteen estimates in need of combination. If this combination were 

performed correctly, one would be doing a statistical model in a roundabout manner. 

Exhibit 4 tackles the problem directly. The observed expenses are equal to !3 times the 

utility index plus a error term. However, 011 is not of constant variance. It seems 

reasonable for the standard deviation of expenses to be proportional to the utility index 

(e.g., if prices were to double, the expense swings would double). This causes the variances 

of the expenses to be proportional to the squares of the utility indices. which squares are 

found along the diagonals of @,I and 011. Each month’s error is assumed not to covary 

with the other months’ errors. In this exhibit I3 and yz are estimated in accordance with the 

formulas already mentioned. One can also take linear combinations of yz and of the 

2,339 
variance of its prediction error. For example [l I l]i2 =[I 1 I] 2,368 =[7.163] is 

I 1 2,456 

the estimated expense for the entire fourth quarter. Moreover, the variance of its prediction 

1 r40672 2941 3050 
2941 41695 3089 
3050 3089 44841 iI 

1 
1 

1 1 =[145370], for a 

standard deviation of 38 I. 
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6. A Simple Example of a Model wirh Prior Information (Example 3) 

Now that we have warmed up on two simple models, let us see how to express credibility in 

a statistical model. We return again to the seven observations of Ecxample I (Exhibit I ). 

The numbers 6.164, , 9.602 were actually generated as random numbers with mean IO 

and variance 4. Therefore. the mean and variance estimates of 9.917 and 4.240 are close. 

Of course, if one knew the true parameters, they would not need to be estimated. 

But suppose that prior to observation we believed (for w,hatever reason) that the mean is 1 1 

and the variance is 3. Could we benefit from combining observation with our prior belief? 

(We will assume that the prior belief is well-founded, so that it is prior information. rather 

than prior misinformation.) The answer is “Yes;” it is possible, even advisable, to combine 

prior information with observation. 

One way of combining is Bayesian inference (Appendix B). But a simpler way is to treat 

the prior information as if it had been observed. Therefore, in Exhibit 5 the prior 

information is appended to the observations as an eighth row (separated from the genuine 

observations by a light line). In an earlier paper the author referred to prior information as 

quasi-observation [‘l:Section 6 and Appendix E]. Judge [8] refers to observation as sample 

information and to prior information as non-sample information. Combining the two is 

called mixed estimation [8:877]. Our formulation of this hybrid model, which differs onl) 

slightly from Judge’s, is: 
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So the best linear unbiased estimator of D is: 

= (XZ’X + R’V-‘R)-‘(X’C-‘y + R’V.‘r) 

Certain properties of this estimator are explored in Appendices A and B. In particular. the 

estimator is a matrix-weighted average of more familiar estimators and has a smaller 

variance. These properties depend on the block diagonality of the hybrid variance matrix. 

i.e.. that e and v do not covary This is a natural assumption; however, the estimator can 

accommodate covariancc if these properties are surrendered. 

Exhibit 5 works out the mixed estimate of p as 10.099. This is equivalent to what actuaries 

would call a weighted-average of the data with the prior hypothesis. where the weight of the 

data, 0.832. results from the well-known nl(n+k) formula. It is interesting. perhaps 

surprising, that the variance of the mised estimator. 0.904. is less than both the \.ariance 

from the unmixed model (4.240) and the variance of the prior hypothesis (3.000). This 

synergy of combination is analyzed in Appendix A. 

74 



One complicating detail of this model has to do with the variance matrix. Usually we 

specify the variance matrix not absolutely, but relatively, or to within a proportionality 

constant. In other words, in the model y = Xp+e, where Var[e] = C = 020, the estimator of 

p is invariant to the scale of C. So we usually specify Q,. calculate the estimator of p, and 

then derive an estimate of 02, In the unusual event that V/c? is known [or, V is known to 

within the same proportionality constant to within which C is known), then one can use the 

mixed estimator with the relative hybrid variance matrix. However. the usual case is that V 

is known absolutely and Z is known relatively. In this case the author recommends that o2 

be estimated in the unmixed model, and that the absolute matrix 
6% [ 1 be used in the 

V 

mixed model. (This implies that one should solve the unmixed model as a prelude to 

solving the mixed.) This was done in Exhibit 5, where the 4.240 down the diagonal of Qtt 

is the estimate of the o2 of Example I Using an estimate of the absolute variance for the 

absolute variance itself disturbs the optimality (the “bestness” of “best linear unbiased”) of 

the estimator; however. statisticians and econometricians feel that this is a small price to 

pay for the benefit derived from combining observation with prior information. Moreover, 

the estimate of o2 in the mixed model (0.904 in Exhibit 5) will not significantly differ from 

1 if the absolute variance matrix is correct, Therefore. one can assume the estimator of c? 

in the mixed model to be a chi-square random variable with #degrees of freedom divided 

by #(i.e., a gamma random variable with mean I and variance 2/dfl and can perform a 

significance test. But seldom is there a problem. and this will not be mentioned again in the 

following examples. 
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7. A Statistical Model of Merit Rating (Example 4) 

A simple method of merit rating a driver is to make the premium proportional to the 

expected number of accidents. This ignores differences of severity, e.g., driver A is half as 

likely to have an accident as driver B, but perhaps his accidents are likely to be twice as 

severe. However, as with experience rating in workers’ compensation, it is natural to 

suppose that the insured has more control over whether an accident will happen than over 

how severe it will be. So we wish to estimate a driver’s accident frequency, and the 

problem is to determine how much a driver’s accident record should differentiate him from 

his peers. 

Lester Dropkin paved the way for a Bayesian solution, viz., that every driver has his own 

accident frequency m, and that the number of his claims is Poisson distributed with mean m. 

Therefore, the probability of x claims is me-, .s 
X! 

Moreover, the frequencies of the drivers 

of a certain class are gamma-distributed with parameters P and u [5:392f.]. So the 

probability density function of the ms is -Ummrm’, and the ms are distributed with 

mean r/u and variance r/a2. As Dropkin showed [5:399]. the claim count distribution of a 

driver randomly selected from the class is negative binomial with mean r/u and variance 

ra+l 
a a 
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But the posterior density of a driver’s one-period m given x, . . I,, accidents in n previous 

periods is proportional or equal to: 

This posterior density is gamma with parameters r’ = r i-11, and u’ = 0 +n. The 

posterior mean, to which the merit-rated premium should be proportional, is a weighted 

average of the prior mean (r/a) and the empirical mean (cf. also [10:99-l 0 1 ] ): 

I-’ r-r., 
o1 u+n 

The same result is obtained from the following linear model: 
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Each X, is explained as some mean value p plus an error, where the error is like a Poisson 

random variable (with parameter t-la) centered about zero. But the last row is a quasi- 

observation: it is as if !3 had been observed as r/u but obfuscated with an error whose 

variance is rla2. The mixed estimator is: 

I ' \ 
1 r/a 0 0 0 

rj= j ; ',. 0 ; ; 
0 r/a 

I 0 0 0 r/a2 

:;: -' I 

1 

II r/a 0 0 '_ 0 0 .o r/u 0 0 0 0 

U 
FY x, +. .+ - x, +f-’ 

CL r r a 

f+...+‘+U 
r r , 

= I, +. ,.+x, + r 

1+...+1 +a 

The statistical model reaches the same conclusion without assuming a distributional form. 

Exhibit 6 shous another example of merit rating. A driver had one accident in the second 

of three periods (years). The variance of his yearly accidents is assumed to be 0.0625 

(standard deviation of 0.25). But there is prior information that drivers of this class are 

expected to have 0.25 claims per period with a variance of 0.0225 (standard deviation of 

0.15). In Part A of the exhibit the three years are three one-year observations. But in Part B 

they are summarized into one three-year observation. The estimates are the same in both 
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parts, but their variances differ. This hints that summarization is attended with loss of 

information about prediction error variance. An amount of 1 over three years could mean 

l/3 each year and no apparent variance. Or it could mean widely varying positive and 

negative amounts by year and an arbitrarily large variance. If actuaries \vish to speak of 

variances, then they should know where to stop summarizing the data. 

8. Stochastic and Exact Constraints (Example 5) 

The prior information. or the quasi-observation, r = RP+v is a stochastic constraint since v 

does not have to be zero. However, as V = Var[v] approaches a zero matrix, the constraint 

behaves more and more like the exact constraint r = RD. In an earlier paper [6:26] the 

author filled out a loss triangle by means of estimated pure premiums by payout year. But 

the pure premiums by year were exactly constrained so that the sum of the first seven of 

them (the pure premium of payments before 84 months) was 7.213. Exhibit 7 shows that 

the same result is obtained by adding a quasi-observation that this sum is 7.213 with a error 

whose variance is IO-” relative to the variances of the observations.’ Exhibit 8 shows how 

different the estimate is when the constraint is relaxed. (One should not suppose that the 

estimates of a2 in the two exhibits are equal; they differ by about six million.) Appendix C 

proves that the mixed model (stochastically constrained model) approaches the (non- 

stochastically) constrained model as V approaches zero. 
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9. Credibility and Random Effects (Example 6) 

So far. credibility has been statistically modeled by adding quasi-observations to 

observations. i.e., by mixing non-sample with sample information. The non-sample 

information is aptly considered to be logically prior to, if not also temporally prior to, the 

sample information. It too may have been derived from a sample; but if so, its sample is a 

different sample. If the two samples are grouped into a grand statistical model, such as the 

first grand model of Appendix A, the submodels are naturally considered as non- 

simultaneous. or temporally extensive or longitudinal. For esample. if we begin observing 

the pure premium of State X with the prior opinion that it is 0.10 with a standard deviation 

of 0.02, we opine thus because in the past we have observed the pure premiums of similar 

States A, B, 

But credibility may also involve the simultaneous modeling of similar entities. Each entity 

has its own model, and the models are grouped into a grand model; however. the 

(sub)models are simultaneous, or temporally intensive or latitl~dinul. Example 6, which 

begins with Exhibit 9, will illustrate this concept. This example, taken from Venter 

[ 13:433], consists of six observations of a pure premium from each of nine states. If the 

pure premiums were unrelated, then one could do no better than to solve nine independent 

models (to take nine averages). If the pure premiums had to be equal, then one could do no 

better than to average the fifty-four observations. But an actuary would rightly feel that the 

truth lies in between these two extremes: the pure premiums of the states are neither 

unrelated nor identical. The pure premium of one state is related with those of the other 
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states, but it also has some identity of its own. A natural way of expressing this is to 

assume that the pure premiums deviate randomly from a common value, e.g., B, = PCJ f v,. 

PO is the (fixed) effect common to all the states, and v, is the (random) effect which 

differentiates State i from the other states. Each v, is distributed with mean zero and some 

(known or unknown) variance V. and the v,s do not covary one with another. It is this 

assumption of being distributed that makes the effect random. 

For the moment we will abstract from the example. In general we have n models: each of 

the form y, = X$, + e,, where Var[e,] = Z, and the e,s do not covary. At this point we have n 

independent models. But now we introduce the random-effects linkage, viz., that 0, = Ba + 

v,. Now each model becomes: 

Y, = X,P, + e, 

=X,(h+v,)+e, 

= X,P, +(X,v, +e,) 
=X,p,+T,> 

where E[r,]= X,E[v,]+ E[e,] 

=O 

and Var[r,] = X,Var[v,]X: + Var[e,] 

= x,vx: + z, 
= T, 

The formula for Var[r,] assumes that v, and e, do not covary. Moreover, since v, and e, do 

not covary across groups, the 7,s do not covary one with another. Thus we have the grand 

modelinpa: 1,‘:1=[::]~0 +[:I], whereVar[I:]=r ‘,. Tj. Thesolutionofthis 

model presents no difficulties, as long as V is known.’ Hence, the only difficulty of this 
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form of credibility is to estimate V, the random-effects variance, if one has no prior 

information about it. 

So the difficult task of Example 6 is to estimate the B,s and their common variance.6 This 

involves first solving the model as if it were a fixed-effects model, as in Exhibit 10. The 

estimate of B in this exhibit contains the nine group means, which are carried over to 

Exhibit 11. The estimate of the grand mean fia is 0.563, and the variance of the group 

means about j30 is 0.0662.’ It would be a mistake to think that this represents the random- 

effects variance, because we have calculated the variance of the esfimares of the B,s. rather 

than the variance of the B,s themselves. Unlike the B,s themselves, the estimates of the g,s 

are affected by the error terms. the e,s. So 0.0662 has two variance components, one from 

the v,s and one from the es. which is the reason for labeling it Var[v+e]. Back in Exhibit 10 

the variance of 15 was estimated as if the model were a fixed-effects model. The variance of 

the grand parameter of a fixed-effects model must be (kxk) block diagonal (here k equals 

one); and it is reasonable to attribute these variances to the e,s. Since the v,s and the e,s do 

not covary. one can estimate V by averaging the differences of these variances from 

Var[v+e]; thus V is estimated to be 0.0067.’ Exhibit I I goes on to show that we have 

derived the expected value of the process variance (EVPV) and the variance of the 

hypothetical means (VHM), which implies to an actuary that the credibility of each group is 

10.1%. This will be checked at the end of the example. 

But now we can estimate Var[X,v, + e,] = Var[r,] = X,VX: + Z,, which the exhibit calls 

the 0 for each group. In Exhibit I2 the random-effects model is solved for the grand 
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parameter pa. and the variance matrix of this model is block diagonal in @. But we are 

more interested in estimating the p,s (where p, = 00 + v,) than we are in estimating pa. SO 

in Exhibit 13 we formulate y2 as an estimator of these b,s (we also leave an estimator of PII 

I 

in its first row): y2 = i 

[1 

/?I,, and the covariance matrix 021 takes the v,s into account. (See 
I 

the discussion of the covariance matrix T2t in Appendix E for details.) So the estimate of 

y2 is obtained from the familiar formula yz = X&, +@z,O[;(y, -X,6,). The exhibit 

illustrates that this estimator is equivalent to giving the fixed-effects estimators 10.1% 

credibility against the grand mean, as well as that the simple average of the b,s is 6,. 

Appendix E backs up these specific illustrations with general proofs. 

The results are the same as Venter’s [13:432f.]. One might question whether anything has 

been gained by the setting up of a statistical model. Venter’s discussion of credibility is 

hard enough for actuaries to understand; statistically modeling credibility may seem even 

harder. However, after developing some familiarity with best linear unbiased estimation, 

one will find it to be the more natural and more powerful way of handling credibility. 

Three reasons for its being more powerfil are: I) statistical modeling preserves two 

moments (the variance as well as the mean). 2) combinations of the parameter estimates can 

be estimated, and 3) it allows for multidimensional credibility. The third reason will be 

illustrated in the following trend model. 
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10. Random-Effects Credibility and Trend Modeling (Example 7) 

A simulation of loss ratios for nine states over a six-year period is shown in Exhibit 14, and 

is graphed in Exhibit 15. Simulating nine states makes for a cluttered graph; however, as a 

practical matter, the reliable estimation of a random-effects variance requires enough data 

to distinguish the groups from one another. This requires a fair number of groups and/or a 

fair number of observations per group. The author knows of no rule as to what is a “fair” 

number, but a “fair” number of groups is probably not much less than the nine of this and 

the previous example. An upward trend is evident in the graph; but the states obviously 

have different slopes and intercepts. In fact, State G seems to have a negative slope. 

Exhibit 16 solves the problem as a fixed-effects model. with the (18x1) b containing the 

(2x1) trend parameters of the nine states. The variance of the error matrix (UJ) is 1j4. which 

simplifies the formulas. Var b is diagonal in the same (2x2) block 
[I 

0.001 I -0.0003 
-0.0003 1 0.0001 ’ 

which, as mentioned in the previous section, means that the model is balanced. The trend 

parameters vary widely by state, and State G is showing a negative slope. But will the 

negative slope be credible? 

The random-effects variance is estimated in Exhibit 17. The mean state parameter is 

and the individual states’ parameters vary about it by 
0.0033 -0.0005 

-0.0005 1 0.0006 

Removing the effect of the error term. we are left with the estimated random-effects 
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0.0022 -0.0003 
variance V = 

-0.0003 1 0.0005 
’ The variance of the intercept is greater than that of the 

slope (0.0022 versus 0.0005). Also, the intercept Land the slope negatively covary (-0.0003. 

or a correlation coefficient of -27.0%). This is common in random-effects trend models: 

there seems to be a centroid through which every group pivots. So a higher than average 

intercept tends to pair with a lower than average slope. and vice vcrsu. The exhibit then 

derives the 0 matrix for the random-effects model 

The random-effects trend model is set up and solved in Exhibit 18. From the previous 

section and Appendix E, and because of the balance, it comes as no surprise that the grand 

parameter b, = 
42.3% [ 1 2.70/ . the simple average of the fixed-effects parameters. But we really 

0 

want to estimate the states’ trends, which are sums of the grand parameter and the random 

effects. This is accomplished in Exhibit 19, in which the most difficult concept is @I. The 

blocks of this matrix represent how p, = p, + v, covaries with y, = X,p, + e, : 

Cov[P,, ~,]=cov[P, +v, 1 X,(Po +v,)+e,] 

= cov[p, + v, , W-b + TV, +e,] 

= Cov[v, , X,v, +e,] 

=Cov[v,, X,v,]+Cov[v,,e,] 

= cov[v, , x,v,] 

= cov[v, , v,]x: 

= vaI[v,]x: 

= vx: 

The usual formula for 9, yields the random-effects trend parameters by state. State G 

remains with a negative slope, though less negative than before. 
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In Appendix E the relationship between the fixed-effects and random-effects estimators is 

explored. One result is the discovery of a (kxk) matrix Z such that: 

Random-effects b, =f, = Z(Fixed-effectsi,)+@, -Z$,, 

This is the k-dimensional extension of the well-known scalar (or l-dimensional) credibility 

formula. Exhibit 20 expresses the random-effects estimates in this Z form. As remarked in 

Appendix A. a matrix-weighted average of two vectors is usually not collinear with the two 

vectors. But somewhat surprising is that occasionally the matrix-weighted average can fall 

outside the range of the two vectors. For example. the posterior slope of State A (5.9%) is 

outside the range of the prior and empirical slopes (2.7% and 5.7%). This happens also 

with the intercept of State F and with the slope of State H. Non-zero off-diagonal elements 

of Z make this possible. 

I I. Conclusion 

Practice precedes theory and systematization. For example, the Egyptians were doing 

geometry for centuries before Euclid wrote the Elements. Euclid didn’t discover Geometry; 

he didn’t correct it; he may not even have contributed much in the way of new theorems. 

But he systematized it, made it rigorous, and enabled centuries of mathematicians to 

develop it further. So too. actuaries have been practicing beneficial things under the name 

of credibility largely in ignorance of statistical theory. But just as Euclid made Geometry 

better, so too the theory of statistical modeling makes credibility better. 
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How does credibility benefit? As mentioned at the ends of the Introduction and of Section 

9. statistical modeling furnishes the actuary with the variances as well as with the means; 

and from this the actuary can work with combinations of estimates. But perhaps most 

important, statistical theory and modeling are as at home in n dimensions as in one. When 

the author began to study statistics and econometrics he erroneously believed that his linear 

algebra and multivariate calculus were sufficient for statistical work. As his background 

was typical for an actuary, he can “speak from his own experience and with the ardor of a 

convert” (as did Arthur Bailey in a quote of Section 2) that most of us actuaries, even the 

technically inclined, are Flatlanders as regards our statistical skills. As our problems 

become more complex. as well as the tools with which to solve them, this defect will 

become more grievous. 

Bailey’s three offending credibility procedures (cf. Section 2) were statistically ahead of 

their time. But times have changed. and now it is incumbent upon actuaries to keep up with 

the times. The examples of this paper show how these procedures are legitimated and 

generalized by current statistical theory. For the use of prior hypotheses in estimation see 

Examples 3, 4, and 5. For the estimation of groups together which is more accurate than 

estimating each separately see Examples 6 and 7. And the estimation of an individual that 

belongs to a heterogeneous population is in essence a disguised use of a prior hypothesis; 

but see especially Section 7. The appendices of the paper lay the theoretical groundwork 

for the examples, a groundwork from which credibility has much to gain. 
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Notes 

’ Langley-Cook’s definition is similar: “The word credibility was originally introduced into 
actuarial science as a measure of the credence that the actuary believes should be attached 
to a particular body of experience for ratemaking purposes.” [9:3] “Predictive value” in the 
CAS statement has a more precise meaning that Langley-Cook’s noun “credence.” One 
reason for not giving credence to data is that it is suspected of being erroneous. But in 
credibility theory the quality of the data is not at issue; it is supposed to be valid data. What 
is at issue is the value of the data for predicting. 

2 The title of this paper is “Statistical Models and Credibility,” but only linear statistical 
models will be treated. In the earlier paper [7:325f.] the author argued that due to the 
multivariate Taylor’s expansion, linearity is not much of a restriction. The interested reader 
can refer to Judge, who devotes a chapter of his book to non-linear statistical models 
[8:508-511 J. 

3 There is an easy way to derive the form of the Poisson distribution with parameter m. One 
need only to remember the Taylor series for p”: 

1 = eme-m 

= fi$ e-m ( 1 

4 Of course, the results are not really the same, only very close (to within the decimals 
shown in the exhibit). Reducing the variance of the quasi-observation still more will at 
some point run up against computational problems, and the results will stray. The author 
recommends that a tight stochastic constraint should not be substituted for an exact 
constraint. 

5 As in Section 6, either the Z,s are known absolutely, in which case V must be known 
absolutely, or the Z,s are known relatively, in which case V must be known to within the 
same proportionality constant to within which the Z,s are known, 

6 Since in this example the p,s are the means of the groups (the hypothetical means), their 
common variance is what actuaries call the variance of the hypothetical means. But in 
general, the p,s are @xl) parameters; so their common variance could be called the variance 
of the hypothetical parameters. 
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’ Appendix D derives the formulas for the sample mean and variance of n identically 
distributed non-covarying (kx 1) random vectors, 

s The fixed-effects model is an instance of the first grand model of Appendix A. where it is 

iI 

’ ‘Ii 

VW4 
proved that Var p] = Var i = 

I I 
(x;q’x,)~’ 

‘._ = ‘_ 

Ii var Ii 1 1 Ii I (x:z”xJ 
When the n blocks of this matrix are equal. the submodels are equally influential in the 
determination of V. In this situation the corresponding random-effects model is said to be 
balanced. Both Examples 6 and 7 are balanced. The estimation of V by variance 
components is particularly suited to balanced models. The estimate of the V of an 
unbalanced model can be thrown off by the more volatile groups, and can easily end up not 
being non-negative definite. Nothing precludes positing V by prior information, and this 
recourse is the more recommended according as the model is the more unbalanced. Also, 
Appendix F mentions that V can be estimated by maximum likelihood. which despite its 
complexity is sometimes a useful alternative to variance components, 

9 Compare these estimates with the true values used in the simulation: 

p, =[ 4i::E] and V = [-~:~~~:875 -~:~~~~~~5] (so p = -25%). And by generating 

bivariate normal random vectors with mean 1 and variance V, the true p,s were: 
47.7%1 

5.4% 

41.5% 

3.8 % 
47.3% 

3.1% 

39.3% 

0.8% 

44.0%. 

5.1% 

37.1% 

2.9% 

46.1% 

- 0.8% / 
38.8% 

1.5% 
3X.1% 

3.8% 

Normal random variables with a standard deviation of 4.0% were added to the resulting 
trend lines to form the fifty-four loss ratios of Exhibit 14. 
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Exhlbll 1 

Example 1. The Simplest Slal~strA Model 

y = Xp + e, where Vafle] = 0’0 

flmi 
X2 021 

0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0010000 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 

LIEI 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
1 a 0 0 0 0 0 0 

vi 

%2 
10 0 0 0 0 0 0 0 0 0 
01000000000 
0 0 10 0 0 0 0 0 0 0 
0 0 0 10 0 0 0 0 0 0 
0 0 0 0 10 0 0 0 0 0 
0 0 0 0 0 to 0 0 0 0 
00000010000 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 10 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 

df = 1,-k 



%%‘% 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 

WMV. -0.1 

0 -0606 -0606 
0 4 606 -0.606 
0 -0606 -OWL?+ 
0 -0606 -0606 
0 -0606 -0606 

1 

0 4606 -0606 
0 -0.606 -0606 
0 0 0 

4 240 0 0 
0 0606 0605 
0 0606 4846 



95:09 132.545 
9510 134.440 
95:ll 134620 
95:lZ 139.690 
96:Ol 146.572 
96:02 146.745 
96:03 150.687 
96:04 155.983 
96:05 151.240 
96:06 154.417 
96:07 158.616 
96:08 158.302 
96:09 156.779 
96:lO 160 
96:ll 162 
96:12 168 

Month Index Expense 
1,714 
1,804 
1.862 
2,265 
2,553 
2.170 
2,315 
2,217 
2,279 
2,293 
2,171 
2,263 
2.192 

170 

~ 160 

150 

140 

130 

120 

110 

~ 100 

Exhibit 3 

Example 2: Expense Model 

Utility Index 
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Exhibit4 

Example2.ExpenseModel(ConTd) 

y = Xfi + e, where Var[e]= 0'0 

* Y II - x,i ._ 
7566 0 0 0 0 0 0 0 0 0 0 0 0 

018074 0 0 0 0 0 0 0 0 0 0 0 

0 0 16176 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 19513 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 21483 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 021534 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 22707 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 24331 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 22874 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 023845 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 25159 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 25060 0 
0 0 0 0 0 0 0 0 0 0 0 0 24560 

% % 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 26244 0 
0 0 0 0 0 0 0 0 0 0 0 0 

X,‘Oj,.’ 

IO.006 0007 0007 0007 0007 0007 0007 0006 0007 0006 0006 0006 00061 

df = t,-k 
1 



Exhibit 5 

Yl x, 
1 
1 
1 
1 Ll 1 
1 
1 
1 

Example 3: Example 1 with Prior lnformahon 

y = Xp + e. where Var[e] = ~‘0 

0 0 0 0 0 0 0 3.000 

X,‘%‘Y, X,‘O,,“X, X,‘@,,.’ df = t,-k 

j-?i%%j -1 (0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.3331 -1 

Credibility-Weighed Estimate 
Prior 11 .ooo 0.168 
Empirical 9.917 z = 0.832 
Posterior 10.099 1 .ooo k = EVPVNHM 



Exhibit 6 

Example 4: Merit Rating 

A. Separate Observations 

B. Summarized Observations 

x,‘@,l-‘Y, X,‘O,,“X, XI@,,” 
(27.111) -1 1 16 44.444] 

var[i] 

p&, 

r--mq 

96 



v-xi 
7 32,536 

-60.480 
133.541 
-59,763 
43.060 
44.301 

-7.552 
-5.244 
81.23, 
50.067 

-62.760 
41.83, 
34.150 

-40.056 
100.615 

07.662 
47.302 

0.627 
141,703 
-16,250 
-12.384 
147.611 
-47.300 
103.661 
-16.327 
-18.472 
11.650 

1 -1.206 
IE-, l92b07 

XP ' dl = ,-* 
,E+lS 1mt5 ,E+,5 1E+15 
IE+15 1E115 lE*15 ,E1,5 
IE+,5 ,E115 ,E*,5 lEIl5 ,2,E+15 

I II 
lE115 IE+15 lE*15 ,E1,5 lE+,5 lE115 1E+15 ,E+IS 

721m15 1Et15 ,E+15 ,E*15 ,E1,5 1E*,5 1E115 ,EHS IE1,5 
7 21E*15 lEtI ,E1,5 lEM5 lE115 ,E115 1E+15 ,E+15 I I ,EllS 

(721E1151[ IS15 YE+15 lEb15 lE115 ,E+,5 lE'15 ,E+15 1E+15 

4 BE-13 .5.4E.13 4.08-13 -O.SE-I3 .I GE-12 -3 ,E-12 
601E-12 4.jE.13 -,.OE-13 -1 lE-12 -1 6E.12 -3 5E-12 
4 IE-,l 0.45E.12 -OJE-13 -1 X-,2 -1.BE.12 4 ZE-12 

-6OE.13 -7.5E-13 -0fE.13 ,.l,E-,, -1 BE-12 .2.4E-12 -5 3E-12 
-0 ,E-I3 -7 IE-42 -1 ,E-12 -WE-12 1 BE-11 -3.JE.12 .7 ,E-12 
-1.4E.12 .1 BE-12 -1 OE.12 -2.G.12 -33E-12 2.17E.1, ., ,E-,, 
-3 ,E-12 -3.5E.12 4.2E.12 -5.3E-12 -,.lE-12 -1 1E.11 342E-1, 

“al I 
I 0.04400 -00026-5 -000342 -000432 4.00585 -0W600 -00~04el 

4.00288 005021 -0.00365 -000400 0.00550 -DO,013 -002102 
-0.00342 -0W365 0.05024 -0005*1 -0.00767 -00,ZlO -002610 
-0.co432 ~Occ406 .O.W58, 007335 -0.00005 -0.0,630 -003310 
-0 cm66 -0.cm50 -0.0076, -0.00005 00056, -002072 .o c-u63 
-000600 -0.0,013 -00,210 -0.01530 402072 0 13610 .0.06604 
-001046 -0ono2 .0026,0 -0.03310 -0.04463 -0ceBY 0.21445 
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ITi& 
1 0375 
1 2.341 
1 0175 
1 1016 
1 0.466 
2 0247 
2 I.587 
2 1.939 
2 0712 
2 0054 
2 0.261 
3 0661 
3 0237 
3 0.063 
3 0250 
3 0602 
3 0700 
4 0.162 
4 0351 
4 0011 
4 0.022 
4 0019 
4 0.252 
5 0311 
5 066-I 
5 1.002 
5 0.038 
5 0370 
5 2502 
6 0301 
6 0253 
6 0.044 
6 0109 
6 2105 
6 0.691 
7 0219 
7 1.186 
7 0431 
7 1.405 
7 0.241 
7 0804 
8 0.002 
8 0.056 
8 0.235 
a 0.018 
8 0.713 
8 0.206 
9 0.796 
9 0260 
9 0.932 
9 0.057 
9 0.129 
9 0.349 

Exhlbil9 

Example6:TheSimpleslRandom-Effects Model 

Preliminary Faxed-Effects Model 

Y 

1 

1 

1 

1 

1 
1 

- xi 

0.371 
0.426 
1.541 
0.626 
0216 
0.335 
0.553 
0.767 
1139 
0.088 
.o 746 
.o 539 
0.242 
0162 
0.356 
.0.169 
0.183 
0261 
o.w3 
0.212 
-0 129 
.0118 
-0121 
0.113 

0.504 
4151 
0.188 

.0777 
-0.445 
1.666 

0316 
-0.364 
-0573 
-0 506 
1460 
0.274 

-0 495 
0.472 

-0.283 
0.691 

-0.473 
0.090 

0.204 
-0.148 
0.029 

4.188 
0.507 
0.002 
0.242 

-0.294 
0.376 
0.303 

-0425 
-0.205 

99 



Exhibit 10 

Example 6: The Simplest Random-Effects Model (Cont'd) 

Solution of Fixed Effects 

t 
k 
df=t-k 
62 

XX 
6 0 0 0 0 0 0 0 0 
0 6 0 0 0 0 0 0 0 
0 0 6 0 0 0 0 0 0 
0 0 0 6 0 0 0 0 0 
0 0 0 0 6 0 0 0 0 
0 0 0 0 0 6 0 0 0 
0 0 0 0 0 0 6 0 0 
0 0 0 0 0 0 0 6 0 
0 0 0 0 0 0 0 0 6, 

(XX)-' 
0.16667 0 0 0 0 0 0 0 0 

0 0.16667 0 0 0 0 0 0 0 
0 0 0.16667 0 0 0 0 0 0 
0 0 0 0.16667 0 0 0 0 0 
0 0 0 0 0.16667 0 0 0 0 
0 0 0 0 0 0.16667 0 0 0 
0 0 0 0 0 0 0.16667 0 0 
0 0 0 0 0 0 0 0.16667 0 
0 0 0 0 0 0 0 0 0 16667 

54 
9 

45 
0.357 

v+] 
0.0595 0 0 0 

0 0.0595 0 0 
0 0 0.0595 0 
0 0 0 0.0595 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0.0595 0 0 0 
0 0.0595 0 0 
0 0 0.0595 0 
0 0 0 0.0595 

0 
0 
0 
0 1 0 
0 
0 
0 

0 0 0 0 0 0 0 0 0.05951 
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Exhlblt 11 

Example6:TheSimplestRandom-Effects Model(Cont'd) 

Estimation ofthe Variance of the Random Effects 

C-P, (P-P,)(i-L) Var[v+e] - Vafle] = Var[v] 
0.2381 1 0.06621 0.05951 0 00671 

0.0595 
0.0595 
0.0595 
0.0595 A 0.0595 
0.0595 
0.0595 
0.0595 

Credibility Weight 

EVPV (d) 0.3570 

0 for each group 
IO.3637 0.0067 0.0067 0.0067 0.0067 0.00671 

ti'foreachgroup 
1 2.754 -0.047 -0.047 -0.047 -0.047 -0.0471 
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Exhlblt 13 

Example 6 The Simplest Random-Effects Model (Cont'd) 

Estimation of the Group Means 

PI? 
0 0 0 0 0 0 0 0 

0.0067 0.0067 0 0067 0 0067 0 0067 OK67 0 0 
0 0 0 0 0 0 0.0067 0 0067 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

m,.m..-' 

0 0 0 0 0 0 0 0 
0016854 0016854 0.016854 0.016854 0016854 0 016854 0 0 

0 0 0 0 0 0 0.016854 0016854 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Credibility-Weighed Eslimales 
Group 1 1 -ZI Pnorl Z( Empiricall Postenor 
1 1 0 8991 0.5631 0.1011 0 801I 0 587 

0.563 0 800 0.587 
0.563 0419 0 548 
0 563 0 140 0.520 
0.563 0815 0.588 
0 563 0.617 0 568 
0.563 0714 0 578 
0 563 0206 0.527 

9 ( 055-31 1 0.554( 0562 
Unweighted Mean 0 563 



Sta 
A 
A 
A 
A 
A 
A 
B 
B 
6 
B 
8 
B 
C 
C 
C 
C 
C 
C 
D 
D 
D 
D 
D 
D 
E 
E 
E 
E 
E 
E 
F 
F 
F 
F 
F 
F 
G 
G 
G 
G 
G 
G 
H 
H 
H 
H 
H 
H 
I 
I 
I 
I 
I 
, 

LOSS 
ear Ralio y: 

1 543% 
2 57.2% 
3 64.6% 
4 67.6% 
5 73.5% 
6 641% 
1 442% 
2 40.6% 
3 548% 
4 46.2% 
5 57.7X 
6 66.2% 
1 53.9% 
2 57.0% 
3 54.6% 
4 599% 
5 52.7% 
0 65.2% 
1 418% 
2 45.2% 
3 45.1x 
4 40.4x 
5 43.9x 
6 44.0% 
1 46.396 
2 46 6% 
3 57.6% 
4 63.3-A 
5 696% 
6 76.4% 
1 46.91 
2 36.4% 
3 46.lOA 
4 46.0% 
5 53.4% 
6 462% 
1 45.7% 
2 445% 
3 442% 
4 46 7O6 
5 43.22 
6 39.5’A 
1 36.2QA 
2 420X 
3 36.61 
4 461X 
5 47 3% 
6 50 2% 
1 43.1* 
2 440% 
3 47.3QA 
4 46.4% 
5 52.5% 
6 67 VA 
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Example 7: Random-Effects Trend Model 

Preliminary Fixed-Eflecls Model 

x 
1 7 
1 2 
1 3 
1 4 
1 5 
1 6 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

1 2 
3 
4 
5 
6 

1 I 
1 2 
1 3 
1 4 
1 5 
1 6 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 

V-Xi 

3.2% 
-7 4% 
-1.9% 
4 556 
01% 
1.9% 

-1 CA 
20% 

-6.6U 
4.5X 

-2 0-A 
1.2% 
0.0X 
1 9% 

-0.9% 
-1 .O% 
1.5% 

-2.4U 
0 5X 
0.1% 
0 3% 

-0 1% 
3.6% 

-6 35b 
1.9% 

-,.6X 
4.4% 

-2 loA 
-0.6U 
-0.8% 
-0.2% 
32% 
0 60/o 

-2.256 
08% 
2 3-A 

-5.4% 
1.4% 
0 2x 
0 7U 
32% 
0.0% 
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Exhibit 15 
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Example 7: Random-Effects Trend Model (Cont’d) 

Loss Ratios by State and Year 

I -State 

; -State 

20% 

10% 

0% 

1 2 3 Year 4 5 6 



10fJ 



6 
46.8s 

5.7% 

39.6% 

4.0% 

52.4% 

1.4% 

43.6% 

0.2% 

38.7% 

! 
6.1% 

41.9% 

1.4% 

47.2% 

-0.9% 

34.9% 

2.4% 

35.7% 

4.2% 
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Example7: Random-EffectsTrend Model(Cont'd) 

EstimationoftheVarianceoftheRandomEffects 

0.0020 0.0013 

0.0013 0.0009 

0.0007 -0.0003 

-0.0003 0.0002 

0.0102 -0.0014 

-0.0014 0.0002 

0.0002 -0.0003 

-0.0003 0.0006 

0.0013 -0.0012 

-0.0012 0.0011 

0.0000 0.0001 

0.0001 0.0002 

0.0024 -0.0018 

-0.0018 0.0013 

0.0055 0.0002 

0.0002 0.0000 

0.0043 -0.0010 

-0.0010 0.0002 

Va@+e] 

I] 

Var[v+e] -Var[e] = Var[v] 

0.0033 -0.0005 0.0011 -0.0003 0.0022 -0.0003 

-0.0005 0.0006 -0.0003 0.0001 -0.0003 0.0005 

0.0033 -0.0005 00011 -0.0003 0.0022 -0.0003 

-0.0005 0.0006 -0.0003 0.0001 -0.0003 0.0005 

0.0033 -0.0005 0.0011 -0.0003 0.0022 -0.0003 

v = Varpd] 

-1 

f@ =X.VX’+O’l.~ 
0foreach 9roup ' -' 

1 0.0034 00024 0.0026 0.0029 0.0031 0.00331 

0.0024 00044 0.0039 0.0046 0.0054 0.0062 

0.0026 00039 0.0064 00064 0.0077 0.0090 

0.0029 0.0046 0.0064 0.0095 0.0100 0.0118 

0.0031 0.0054 0.0077 0.0100 0.0136 0.0147 

0.0033 0.0062 0.0090 0.0118 0.0147 0.0186 

6' for each group 

-134.11 -127.04 663.87 -112.90 -105.83 

-88.39 -112.90 646.43 -161.91 -186.42 

6.34 49.75 -105.83 -161.91 565.84 -274.08 

-98.76 -186.42 -274.08 422.10 
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Esl 
State 

A 

B 

C 

D 

9 
E 

F 

G 

H 

Exhibit 19 

Example T:Random-EffectsTrend Model(Ccnt'd) 

Estimationofthe Group Parameters 

X2 % 
1 0 0.0019 0.0016 0 0013 0.0011 0.0008 0.0005 0 

0 1 0.0002 0.0008 00013 0.0016 0.0023 0.0028 0 
1 0 0 0 0 0 0 0 00019 

0 1 0 0 0 0 0 0 0.0002 
1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

_. ,. 

0.4399 0.31 0.1801 0.0502 -0.0796 -0.2095 0 

-0.0896 -0.0493 -0.009 0.0313 0.0715 0.1118 0 

0 0 0 0 0 0 04399 

0 0 0 0 0 0 -0 0896 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
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Exhibit 20 

Example 7. Random-Effects Trend Model (Cont’d) 

Credibility-Weighted Estimates 

State (I) 

A 

0 

C 

D 

E 

F 

G 

H 

I 

X, 
1 I 
1 2 
1 3 

LJ 1 4 
I 5 
1 6 

T;’ = (X,VX,’ + 2,)” 

I 509.28 -204 33 -134 I1 -63.89 6.34 76.561 

w, 
0 309 -0.14E 

-0 067 0 061 

Unweighted Mean 

Prior 

42 3% 
2.7% 

42 3% 
2.7% 

42.3% 
2.7% 

42.3% 
27% 

42 3% 
2 7% 

42.3% 
2.7% 

42.3% 
2.7% 

42.3% 
2.7% 

42.3% 
2.7% 

Z 
0691 0.14f 
0 067 0.936 

Empirical Posterior 

46.8% 45.6% 
5.7% 5.9% 

39.6% 40.6% 
40% 3.8% 

52 4% 49 1% 
14% 2.1% 

43.6% 42.8% 
0 2% 0.5% 

38.7% 40 3% 
6.1% 5.7% 

41.9% 41.8% 
1.4% 1.5% 

47.2% 45.2% 
-0.9% -0.4% 
34.9% 37.1% 

2.4% 2.0% 
35 7% 38.0% 

4 2% 3 6% 
42.3% 

2.7%] 
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Appendix A 

Groups of Statistical Models 

The basis of credibility is a grand statistical model which is a group of statistical 

submodels. Suppose that we have n linear models of the form 

Y) = X,P, +e,, where Var[e, ] = E, 1 for i = I, ., n. As to the dimensions of the matrices, 

y, and e, are (f,xlj. X, is (r,xk,). p, is (k,xl), and 1, is (!,*I,). We assume that each 2, is non- 

singular and that each X, is of full column rank, i.e., rank(X,) = k. These assumptions 

ensure that each X,‘Z,“X, is non-singular. The best linear unbiased estimator [7:Appendix C] 

of each p, is c, = (X:Z;‘X,)-’ X:C;‘y, I and Var[p,] = (X:Zy’X,)-’ 

Let / = fl + + 1., and k = k~ + + L. The first model of models is as follows: 

where Var[ e] = Var i 

en 

The best linear unbiased estimator of fl is: 
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Also,Var[b]=(X’C-‘X)-I = 

i 

(x;z;‘x,)-’ 

this grand model the submodels appear together, but they are unrelated. 

But this leads us to a second model of models, the one that forms the basis of credibility. 

Instead of n models and n betas, let there be n models and one beta. In this model k = k, = 

=k: 
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Y(,.~) = Xo.,)P~k.I) i-q,.,) 

Yl Xl [I[ 1 : = p+?, : H Y, X, en 
= =,,x,y 

The estimator of B is: 

~+px)-‘x’py 

.I 

The estimator of this grand model is a matrix-weighted average of the estimators of the 

submodels. The weights themselves, which are (kxk) matrices, are the inverses of the 

variances of the estimators. This is a k-dimensional form of the well-known rule that non- 

covarying estimates of the same parameter are best averaged according to weights inversely 

proportional to their variances. Judge [8:287] notes that a matrix-weighted average of two 

vectors need not be collinear with the two vectors, unlike a scalar-weighted average, which 

must be collinear. 

113 



A third model of models looks like the first, but has a general variance matrix: 

Because we are accustomed to regarding the variance matris as block diagonal, as in the 

first grand model, the submodels are seemingly unrelated. Models of seemingly unrelated 

models are discussed in [7:Appendix Hj and [8:444-4661 

The remainder of’ this appendix will be devoted to proving that the estimator of the second 

grand model is better than the estimators of its submodels. Roth the proof itself and the 

precise meaning of ‘better’ require a discussion of non-negative definite and positive 

definite matrices. In an earlier paper [7:Appendis A] the author discussed such matrices, 

and developed many basic theorems concerning them (cf. also [1:459-4611 and [8:96Ofj). 

This discussion dovetails with that of the earlier paper. and anything simply asserted here 

will be found proLen thcrc. 

Let A and B be square matrices of the same dimension. say (nrn). and let s be an 07x1) 

vector. The (I x 1) matrices x’Ax and x’Bx are called quadratic forms in x (Judge [8:9591). 

Let ‘-’ stand for one of the five follorving comparison relations among the real numbers: 

114 



‘i’, ‘<‘, ‘=., ‘>‘, and ‘>‘. What might ‘A - B’ mean? In the case of equality, we know 

that ‘A = B‘ means that corresponding elements are A and B are equal (elementwise 

equality). So it would be natural to define ‘A - B’ as elementwise ‘-‘, as is already the case 

with ‘=‘_ 

But there is another very useful definition: A - B if and only if for every non-zero x, 

{x’Ax}tt - (x’Bx;tt. (Of course, a zero x will result in equality.) The operator (m),, yields 

the ij* element of the matrix inside the brackets, which is a scalar result. Being (1 x 1 j 

matrices, x’Ax and x’Bx have only one element; thus, {*)I, makes quadratic forms 

comparable on a scalar basis. According to this definition, A - B depends on the manices 

A and B, rather than on the elemenfs of A and B. But the matrices must be reduced to the 

definife level of (1 xl) quadratic forms in order to invite comparison. If ‘-’ in the first sense 

is elementwise comparison, we might say that ‘-’ in the second sense is definite 

comparison, perhaps distinguishing it with dots ‘_-,‘. Therefore, A _-. B if and only if for 

every non-zero x, (x’Ax) 1, - (x’Bx} t t. 

Let C be an (nxn) matrix. Obviously, if for all non-zero x. (x’Ax)rl - {x’Bx} I 1. and for all 

non-zero x, {x’Bx:lt - {x’Cx)tl, then for all non-zero x, {x’Ax}tt - {x’Cx}rl. So the five 

definite comparisons are transitive. Also, adding or subtracting the same amount from both 

sides of a scalar compdson does not affect the comparison. Hence, 
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A .-, 0 a t/x # 0, x’Ax .-. x’Bx 

c=r Vx f 0, (x’Ax - x’Bx) .-. (x’Bx - x’Bx) 

ca Vx f 0, x’(A - B)x .-. x’(B - B)x 

a Vx z 0, x’(A - B)x .-. x’O+~x 

-(A-B) .-. 0 

So A compares definitely with B as (A - B) compares definitely with the zero matrix. 

Similarly, multiplying or dividing both sides of a scalar comparison by a positive scalar 

does not affect the comparison; so if k > 0, then kA _-. kB. 

As for inequalities, if A 5. [.?.I B, then B 2. [.<.I A. And if A .1. B and B 5. A, then A 

.=. B. So far, definite comparisons behave like scalar comparisons. But the scalar 

comparison ‘u 5 b’ is equivalent to ‘(a < b) or (a = b)‘. It is different with the definite 

comparison: ‘A .1. B’ means ‘for all x, {x’Ax}rt 2 {x’Bx}tt’. It is possible that for some 

values of x the relation is ‘4 and for other values it is ‘=‘. Thus ‘A .1. B’ is not equivalent 

to ‘(A .<. B) or (A ,=. B)‘. One must be cautious in handling the compound comparisons 

‘5. and ‘2.‘; for instance, it is tempting but fallacious to argue that if A 5. B and not (A 

.=. B), then A .<. B. In a similar vein, according to the law of trichotomy, for any two 

scalars 0 and b, (a < b) or (a = b) or (a > b). But it is not true that for any two (nxn) 

matrices A and B, (A S. B) or (A .=. B) or (A .>. B). 

As for equalities, since every (1 x 1) matrix is symmetric, x’Ax = (x’Axj’ = x’A’x. So, for all 

non-zero x, { x’Ax} 1, = (x’A’x} t t, implying that A .=. A’ and that (A - A’) .=. 0. Moreover, 

if A .=. 0, then A’ = -A (skew symmetry). For if A .=. 0, then for all non-zero x, {x’Ax} 1 I = 
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0. But {x’Ax},, = 22 aBx,x, If one of the xs (say x,) equals one and the rest are zero. 
,=I ,:I 

then {x’Ax} t t = udtZ = a,, = 0. And if two of the xs (say X~ and x,j equal one and the rest are 

zero, then { x’Ax} t t = CI,J,’ + ai,rx, + (I,XX~ + o x , ,2 = au + nu + or, + a,, = au+ a,, = 0. For all k 

and 1, CI,~ = - at,. which makes A skew symmetric. Conversely, if A is skew symmetric then 

A .=. (A + A)/2 .=. (A - (-A))/2 .==. (A - A’)/2 .=. O/2 .=. 0. Therefore, .4 .=. 0 ifand only if 

A is skew symmetric. Moreover, if A is symmetric and A .=_ 0. then A is both symmetric 

(A’ = A) and skew symmetric (A’ = -A), which implies that A = -A = 0. Finally, if A and 

B are symmetric and A .=. B, then A - 0 is both symmetric and .=. 0. Hence, A - 0 = 0; 

so A = B. 

A matrix A is non-negalive d&i& [posilive definite] if and only if A is symmetric and A 

.2. [.>.I 0. Obviously, if A is positive definite then it is non-negative definite. but not 

necessarily vice versa. It is a theorem that if A is a non-negative definite matrix, then A is 

positive definite if and only if A-’ exists (or A is non-singular). Another theorem is that A is 

non-negative definite if and only if there exists a square matrix W, such that A = WW’. 

Such a W is sometimes called a square root matrix of A. If A is positive definite, then it is 

non-singular and every square root matrix of it must be non-singular. In such 

circumstances, A-’ = (WW’j-’ = (w?-‘(W)- = (We’jf(W-‘), which is non-negative definite. 

But since A” is non-singular, it must also be positive definite. Therefore, if A is positive 

definite, then so too is A-‘. 
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If x is an (nx I j random vector with Var[x] = E. and A is an (nzxn) non-stochastic matrix. 

then Ax is an (mx I) random vector with Var[Ax] = ACA’. If A is (1 in), then Ax is a (1 x I) 

random vector. whose element must bc non-negative. Hence. a variance matrix. which 

must be symmetric. must also be 2. 0: otherwise some non-zero linear combination of the 

elements of the random vector would imply a scalar random variable with a negative 

variance. In other words, every variance matrix is non-negative definite. 

We would like to compare two (nxn) variance matrices Var[xi] = Z;i and Var[xr] = 12, If 

ZI .<. [.<.I Z?. then the variance of every non-zero linear combination of XI is less than Iless 

than or equal to] the variance of the same linear combination of x2. If ZI and 12 are the 

variance matrices of two estimates of an unknown parameter and 11 .i. Cz. then Cl is the 

better estimate. If Zi .2. CZ. then Cl may not be better: however. it is at least as good. But 

if. in addition Cr # X2. then not (1, .=. Xl) and 1, is again better. 

So, turning back to the second grand model. we will prove that bi,Var[g].<. Var[b, 1. 

which is equivalent to Var[i,]- Var[bj.> 0. This too is equivalent to the statement that 

Var[p, ] Var[p] is positive definite. 

AS above. ~~[ri]=(Var-‘[ic,]+...+Var-‘(~“I) ’ . or Var.‘[fi]= Var.‘[~,]+...+Var.‘[~“] Being 

a variance matrix, each var.‘[fi,] ts non-negative definite. And being non-singular, each is 

positive definite. Therefore. Var.‘[ p] - Var.‘[ p,] IS positive definite. So there exists a non- 
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singular (kxk) matrix W such that ~ar-l[fi]=~~-~[~,] +ww'=~ar.'[jj,] +wI,w'. or 

va+]=(v,,-$3,] + Wl,Wj'. 

how it is a theorem that if De’ + CA-‘!3 exists and is non-singular. then (A + BDC)“ _ A-’ - 

A-‘B(,D.’ + CA”B)-‘CA-‘. As the first part of the proof: 

(A 4, BDC)(A ’ A.‘B(D ’ +CX%).‘W’) = A,\ A,\ ‘R(L).’ + CA %)‘CA I 

+BDC,\ ’ - BDCA ‘B(D ’ +CA%l) ‘CA” 

= I - R(I) ’ + CA-‘B) ‘CA ’ 

+BDC,l ’ - BDCA.‘B(D ’ +cA.%‘CA-1 

= I - BDD ‘(n-’ + CA.‘B)~iA ’ 

+BDCA.’ - BDCA ‘H(D.’ +CA %i“C.4 ’ 

= I +BDCA.’ 

-PD(D.’ +CA-‘BHD” + CA”+% ’ 

= I + BDCA’ - BDCA“ 

I 

Reversing the order of the multiplication is the second and final part of the proof: 

(A ’ - A-‘B(D-’ .:,CA %]‘,A-‘)(,4 + RDC) = /\‘A + A.‘BDC 

-A-!+I-’ +CA.!B).‘CA.‘A - ,I-‘B(D-’ +CA.‘B)‘CA ‘BDC 

= I + A.‘BDC 

-A+l(D- +c’A ‘B)-‘C- A”B(D.’ +W’f3)h%DC 

= I +A.‘B(D” +CA ‘B)“(D-’ +C.4-‘B)DC 

-A.‘@’ +cA-‘B)‘C - A.‘“(D” +CA ‘B)“Ch-‘BDC 

= , ,- A.‘B(D ’ +CA”B)‘(D ‘)DC - A.‘t)(D.’ +CA-‘B)‘C 

= I + A”B(D-’ + CA.‘D).‘C - A.‘B(D ’ + CA ‘B) ‘c 

Therefore, using this theorem: 
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va$]=(var+i,] +wI,w’)-’ 

Some explanation is in order: Var[j,] is p ositive definite and thus factorable as, say, UU’. 

so I, +w’var[i3,]w=I, + WYJLJ’W=I, +W’U(W’IJ) The identity matrix is positive 

definite, and to it is added a non-negative definite matrix. Hence, I, + WrVar[G,]W is 

positive definite. It follows that (Ii + W’Var[b,]W)“ is positive definite and factorable as, 

say, VV’, where V is non-singular. Thus, (v~[fi,]w)(I, +w’var[P,]W)~‘(var[P,]W)‘is 

factorable as (Var[p,]W)W’(Var[~,]W)’ =(vx[&]wv)(v~~(&]wv)‘. This is a non- 

negative definite matrix. But inasmuch as the square root matrix consists of the product of 

three non-singular matrices, the root itself is non-singular, and so too is the root times its 

transpose. Therefore, (va[~,]w)vv( h[&]w)’ =(v~[~,]wv)(V~[&]wv)’ is positive 

definite, and so Var[b].<.Var[fi,]. 

So the grand model is better than every submodel. But an even more powerful statement 

can be made. Consider a partial grand model, consisting of some, but not all, of the 

submodels. Let fi be the estimator of the partial model. Then 



var-‘[~]=v~.‘[~~...+cv~.l[a,], where the subscript i is ranges over the submodels left 

out of the partial grand model. Then, by similar reasoning, ~m-~[Ij].<.~ar.l[p]. This goes 

to show that the more submodels. the better the estimate. 

v~-~[rj]=v~~‘[rj,~...+var.l[~,] IS called a harmonic sum. It is a /c-dimensional equation. 

But there is an interesting l-dimensional analogue in electricity. which may help the reader 

to understand the meaning of the statement ‘the more submodels, the better the estimate’. 

A group of n resistors in parallel, whose resistances are t-1: _. , r”, has an overall resistance 

R such that $ = b +. ..+ L (a harmonic sum). Every extra resistor added in parallel allows 
1 rn 

a little more current to flow through group, which in effect reduces the overall resistance. If 

the extra resistor is of high resistance (almost an insulator), then the reduction is small; if it 

is of low resistance (almost a short), then the reduction is great. The variance of an 

additional submodel is like the resistance of an additional resistor: when the variance is 

high, the extra group provides little additional information, so the reduction of variance of 

the estimate of the grand model is small (but a reduction nonetheless). When the variance 

is low, the extra group provides much additional information, with a great reduction of 

overall variance. Of course, the assumption implicit throughout is that each submodel is an 

appropriate model; otherwise. information could be created ex nihilo. 

The case of a grand model in which some X,‘C,-‘X may be singular deserves a discussion. 

We will consider a model with only two submodels, in which Var[fi,]= (XlI;‘X,)-’ 
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exists, but X~‘Z>-‘XZ may be singular. In this case, the second submodel, though 

informative, may not be sufficiently informative for a unique estimate of 0. For example, if 

p were (2x I), the second submodel might be a non-sample judgment that the first element 

of p has a mean of I and a variance of 2: 

y2 = X,!3+e2 

[I]=[1 O]P+e,. 

where Var[ez] = rz = [2]. In this example, p cam-tot be uniquely estimated because 

0] = [’ i’ i], which is singular. 

XZ’&“XZ is non-negative definite; therefore. for all non-zero u, {LI’(X~‘CJ-‘X+I}, I 2 0. We 

will define a set Z. possibly empty. of all non-zero u such that { u’(Xz’&-‘Xl)u}, , = 0. But 

u’(X~‘CZ-‘XZ)U = (XZU)‘~J-‘(X~U). Since 12.’ is positive definite, ((X~U)‘C~.‘(X~U)} 11 = 0 if 

and only if XZU = 0. Therefore. u E Z if and only if u is non-zero and X?u = 0. Recall that 

X: is (clxk). At the beginning of the appendix it was assumed that rank(X1) = k, but now 

we will relax this assumption. Let rank(X2) =i 5 k. Then the set of all u such that Xzu = 0 

is a (k -j)-dimensional linear subspace of k-space. Z. is this subspace less the zero vector 

(so if rank(Xz) =i = k, then Z is empty and X2’)3l.‘Xl is positive definite). 

Therefore. in the grand model: 
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Var[B]=(Var-‘[/?,I +X~~2’XL)~’ 

=(var-‘[~,]~ -(Var-‘[~,])-‘X;((Z;I).’ -~X,(Var~‘B,)~‘X~).‘X~(VaT.‘[~ll)’ 

=Var[lj,]-V3+[~,]X;(~2 +XzVar[~,]Xr).‘X~Var[PII 

=v~[ii,]-jX,Var[il,])‘[ 1, +,,v~[~,jx;)-‘(x,v~[~,]) 

.s.var a, 
I I 

The inequality follows from the fact that ,])‘(I: + X,V,[P,Ixr)-‘(XIV~(~~]) is 

non-negative definite. But strict inequality, which represents an efficiency gain, depends on 

{ +*qs,l)‘( c, +x,v,lil,ix:i'ix,v~[b,l)~} >o. Since (x1 +XIvjid]X;r is 
II 

positive definite, strict inequality is thwarted only when XiVar[&]u=O. And 

X,Var[fj,]u=O if and only if Vj&]u ~2. Since Vjfi,] is non-singular, there exists a 

(k -j)-dimensional subspace of k-space, Z’, formed by premultiplying each member of Z by 

Var.‘[e,] When rank(X2) = j 5 k, Var[fi].<.Var[bl] except in the (k -J-dimensional 

subspace Z*. within which Var[fi].=.Var[&] (so Var[fi]= Var[&]). 
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Appendix B 

A Bayesian Interpretation of Prior Information 

Consider the model Y(,~~~ = Xc,.,,P+,I +e+,). What makes this model Bayesian is that j3 is 

stochastic. Let us assume that j3 is multivariate normal with mean j30 and variance V. i.e., p 

- N(Po, V). We will assume also that e - N(0, C), and that e is independent of p. Being 

variance matrices, C and V must be non-negative definite. But we will further assume that 

both matrices are positive definite, which implies that their inverses exist and that their 

determinants are positive. 

The probability density function of /3 - N(ao, V) is [8:49f.J: 

As for the random vector y given that j3 = j3. or y@ = p: 

YlP=P=(W+e]P=P 

=W+(el~=~) 
=Xp+e 

The last equation follows from e’s being independent of p. Hence, y//3 = p - N(XP, 1); so 

its probability density function is: 

Therefore, according to Bayes’ theorem, the probability density fknction of ply = y is: 
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We will now expand the exponent of this density function: 

The two terms of the expansion which did not involve p were absorbed into the term c. 

which will be a catch-all for all terms not involving p. 

Next we will perform a multivariate “completion of the square” with respect to fl, To do 

this we must recognize that since V is positive definite, V’ exists and is positive definite. It 

is similar with Z, so x’Z“X exists and is non-negative definite. This implies that XY’X + 

V“ is positive definite. Therefore, there exists a nonsingular (kxk) matrix W such that W’W 

= X9X + V’. So we continue: 
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(y-xp)z~‘(y-xp)+(p-po)V~1(p-p~);-P’X’Z~’y-y’z’xp+B’x’z~‘xp 

+p v-y-p, v ‘p-p v ‘p, +c 
=P’(x*r ‘x -v~‘)p-pqxpy + V~‘P,,) 

+I ‘X + p,+)p + c 

= p’(xT ‘x + vqp - P’(X’Py + v ‘P,,) 

-(xsz~l, + v~lp,j~ +c 
= p~wwp - p*w’(w’) ‘(XT ‘y + v ‘P,) 

-(xPy + q3,) w-‘wp + c 

;(wp)‘wp-(wp)‘(w-‘)‘(X,Z ‘y+V ‘P”) 

(xyy + v ‘(3,) w.‘( wp) + c 

-= (wp)’ wp - (wp)‘( w.‘)‘( X’5 ‘y + VP,‘) 

-((w ‘j(Wy + v-‘P,))‘(WP) + c 

=(wp)‘w~-(~g)‘(~~j(~~~ I?+V 9,) 

-((wq’(Yr ‘y+V ‘P,))‘(WP) 

-((w.~)‘(xax~~y + v-~p,):l’((w ~)‘(xze~~y + iI Ip,,j) 

-((w.l)‘(x’x-ly+” ‘p,,))‘((w-‘).(x.z~ly+ v IP,,)) +c 

: (wp-(w~~j(x~z ‘y + PP,,)) (wp--(w a,‘(x’raY + v &)) 

In the last equation a term not involving p has been absorbed into the catch-all term c. NOW 

we can simplify: 

(Y-Xp)~‘(?~Xp)+(p~p”)“~~(II-p,,)-(W,~.-(W~)’(.Y~L’,+V~P,))’~Wp~(W~~)~(X~E’~Iv~p,,))+c 

-(wp- ww-qw q’(xPy + V~‘P,,))‘(WB-ww.‘(w-‘).(x,r ‘y+ v I$,,,) +c 

r (wp- w(w~w)~‘(x~r ‘y + v 1p.))‘(wp- W(WfW)~‘(XT ‘y + v ‘P”)) + C 

-(pm (W’W) ‘(XT’y * v Q”))‘ww(p - (W’W) ‘(XT ‘y + wp,)) +c 
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Therefore. the probability density function of ply = y is: 

The term having c in the exponent was absorbed into the proportionality, since c does not 

depend on p. This function is proportional to the probability density function of a normal 

random vector whose mean is (W’W).‘(XY’y + V’P,)and whose variance is (W’W)‘; 

therefore. p/y = y - N((.W’W)-‘(X’C“y +V’&,), (W*W)-I), or: 

This is the same result as that obtained from the mixed linear statistical model: 

which mixes the sample information y = Xp + e with the non-sample information PO = p + 

v. Because the results are the same, Judge says that estimating the p of such a model, i.e., 

mixed estimation. is a “quasi-Bayesian approach” [8:877]. 
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It may seem when R is not an identity matrix that the mixed model 

[‘;]=[i]P+[:], whereVaf:]=[’ “1 , has no Bayesian interpretation. However, if R 

is of full row rank (which is not a restrictive condition), there exists an S such that 

,kXxj is non-singular. Add to the non-sample information thus: 

1 = 
Letting y = Qp, a one-to-one transformation because P = Q’r, we can transform: 

Y 

[il P 
S 

The transformed model does admit of a Bayesian interpretation. Both the mixed estimator 

and the Bayesian estimator are the same: 
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Therefore: 

However. this model has extraneous non-sample information. But if “1, the variance of the 

extraneous non-sample information. is allowed to approach infinity, this extraneous 

information will have no effect. Hence: 

zz lim 
V2~‘4 

(X’C-‘X + R’V,-‘R +S’V,m’S)m’(X’Cm’y+ R’V,.‘r +S’Vze’~) 

= (Xfc-‘X -t R’V,-‘R)‘‘(XT’y +R’V;‘r) 

Thus, in general, a Bayesian formulation, suitably transformed and taken to a limit, can be 

made equivalent to the mixed model. 
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Appendix C 

The Limiting Behavior of a Stochastic Constraint 

Themodel[:]=[t]l3+[:]. whereVar[:]=[’ v]. contains the stochastic constraint r 

= Rl3 + v. The constraint loosens as Var[v] = V increases, and tightens as it decreases. In 

the limit, as V approaches 0, the constraint is non-stochastic, or absolute. The problem of 

estimating p in the model y = Xl3 + e subject to the non-stochastic constraint that Rl3 = r has 

been solved by many authors, e.g., [I :20-231. [6:35-421, and [8:235-2401. In this appendix 

we will demonstrate that that the same solution obtains from a stochastically constrained 

model as the variance of the constraint approaches zero. 

We will assume that both C and V are positive definite, so that their inverses exist. Also, 

assume that R is of full row rank. i.e., rank(R) =j. This means that thel constraints on l3 

contain no redundancy. We will also assume that the (kxk) matrix X’K’X has an inverse. 

Normally this is guaranteed by assuming that X is of full column rank. From these 

assumptions it follows that the (ixj) matrix R(X’~‘X)~‘R’ has an inverse. which inverse we 

will call H = (R(X’Z-‘X)“R’)“. 

The best linear unbiased estimator of p. sometimes in this context called the mixed 

estimator ([I:251 and [8:877]), is: 
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=([X’ R’][‘-’ v-,][$[X’ R’][‘-’ v-,][:] 
= (X’Z-‘X + R’V-‘R)-‘(X’T-‘y + R’V-‘r) 

The expectation of the estimator is p (hence unbiased), and the variance thereof is 

(X’C-‘X+ R’V-‘R)-‘. Therefore. ffi = Var[@X’C-‘y + R’V-‘I-). Evaluating this 

expression as V approaches 0 is complicated due to the fact that as V approaches 0, V” 

approaches infinity. Thus, fi = var[b](x’~-‘y + R’V’r) -+ (UJ-‘co. an indeterminate 

form. The trick is to transform the expression so as to remove V-’ 

In Appendix A we proved that (A + BDC).’ = A-’ - A-‘B(D-’ + CA’B) -‘CA-‘, provided 

that the inverses exist. We can apply this theorem to the variance of the estimator: 

Var[i] = (XY’X + R’V-‘R)-’ 

= (Xgx-‘X)-’ -(Xl,-IX)--‘,‘((V-I)-’ +,(,‘,-‘,)-‘Rf)~‘R(X’~-‘X)~’ 

=(xPx)-’ -(XPX)~‘R~(V+R(XPX)‘R~)-‘R(XPX)-’ 

Because of the assumptions, all the inverses exist; in particular, V + R(X’L’X)-‘R’ is the 

sum of positive definite V and non-negative definite R(X’Z-‘X).‘R’. Therefore, it is positive 

definite, and hence non-singular. This expression has no V”, so: 

liiVar[B]=(X’x-‘X)-l -(X~~~‘X)-‘R’(R(X’T-‘X)~‘R’)~‘R(X’X-’X)-I 

= (X’C-‘X)-l -(X’C-IX)-’ R’HR(X’C-‘X)-l 
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Also worth noting is: 

= R(XT-‘X)-l - R(XT’X)-‘R’HR(X’C-IX)-’ 

= R(X’Z-IX)-’ - H-‘HR(X’Z-‘X)-I 

= R(X’C-‘X)-l - R(XT-IX)-’ 

= 0 

Now we are ready to remove the remaining V’ from the estimator: 

~=Var[fi](X’Z-‘y+R’V-‘r) 

= Var 6 
II 

X’Cm’ytVar [I 6 R’V-‘r 

=Var p X Cm yt 
L-1 I ’ ( 

(X’Z-‘X)-‘-(X’Z~‘X)~‘R’(VtR(X.Z’X)~’R~~~’R(X~~~‘X)I)K.V~‘~ 

= Var[B]X’X-‘y+(X’~-‘X)~‘R~V-‘~ 

-(~,Z-IX)‘R,(V+R(X,Z-IX)~‘R’)~‘R(~,ZI~)~’R~V-~~ 

=Var[~]X’Z-‘y+(Xf~~‘X)-‘R’(V+R(x”‘-1X)-’R’)-’(”+R(X’r’X)-’R’)”-’r 

-(X~Z-IX)~‘R~(V+R(X~T~IX)~‘R~)~‘R(X~ZIX)~’R,V-~~ 

=“ar[~]X’Z-‘y+(X’T’X)-‘R’(V+R(X’~~’X)~’R’)-’VV-‘r 

=Var[~]X’Z-‘yt(X’T-IX)-‘R.(Y+R(X’T~’X)~’R’)-’r 

Therefore: 
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In the limit the non-stochastic constraint is satisfied: 

{,i,moRi = ~~O(R(Var[~]X’C-‘y+(X’Z-lX)~‘R’(V + R(X’YL-IX)-‘R’)-‘r)) 

= ?i~~(RVar[P]X’~-‘y)+IIVm_,(X’L-IX)-’R’(V + R(X’X-IX)-‘R’)-‘r 

= (~~ORVar[p~X’E-‘y+ R(X’I:-IX)-‘R’(R(X’Z-IX)-‘R’).‘r 

= (0)x3 -‘y + I,,r 
r 

In an earlier paper [6:35f.] the author derived the formula for the non-stochastically 

constrained estimator p*=(~, -(x’x)~‘R’HR)(x*x)-‘x’~+(x~x)-‘R*H~. We see 

that the formulas are identical except for the presence of Z-’ in the middle of X’X and X’y. 

(Remember too that H contains an XIX.) But the earlier paper simplistically assumed 

Var[e] = I: to be some scalar multiple of an identity matrix, i.e., 0’1, [6:35]. The general 

model can be reduced to the simpler model by a transformation [8:329f.]: If Var[e] = C = 

0’0, where b, is positive definite. then @-’ is also positive definite and there exists a non- 

singular W such that 0.’ = W’W (cf. Appendix A). Transform the general model by 
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premultiplying it by W (a one-to-one transformation): Wy = WXP + We. where Var[We] 

= WVar[e]W’ = Wo’OW = 02W(W’W)“W’ = 02WW.‘(W’)‘W’ = 0’1,. The transformed 

model (WY) = (WX)(3 + (We) has the scalar-identity variance of the simpler model. so the 

term corresponding to X’X is (WX)‘(WX) = X’W’WX = X’@,“X. Similarly, the term 

corresponding to X’y is (WX)‘(Wy) = X’O-‘y. The formula for p* is so constructed as to be 

invariant to the scale of 0’; hence, Q can be replaced by E with the result: 

P*=(~,-(x,z-~X)-'R,HR)(X'T.'X) 'x~-1~t(xPx) 'Rwr, 

where H = (R(X’Z”X)-‘R’)“. Therefore, we have demonstrated that the non-stochastically 

constrained model is a limiting case of the stochastically constrained model. 

Amemiya [ 1:25f.] performs a similar demonstration, but with the simplistic assumption that 

(His notation is different. but this is in effect his reasoning.) 

The limiting case results from letting k2 approach infinity. Our demonstration is more 

powerful. since it allows Var[v] to approach zero in any manner. not just as a shrinking 

scalar multiple of an identity matrix. 
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Appendix D 

Estimating the Mean and the Variance of a Multivariate Random Sample 

The variance of the error term of a linear statistical model is usually assumed to be known 

to within a proportionality constant, i.e., Var[e] x a. But in the case of a multivariate 

random sample the entire variance can be estimated. We start with n (kx 1) random vectors 

y I. , y”. which are randomly sampled from a population of unknown mean and variance, 

p and 1. According to the definition of variance ([7:Appendix A] and [8:43]). 

C = V~[Y,] = E[(Y. -I& - ,,‘I. 

The mean and the variance will be estimated from the linear model: 

The variance matrix is block diagonal in Z, because random sampling implies independent. 

identically distributed trials. The best linear unbiased estimator of p happens not to depend 

on the unknown Z: 
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(That the true Z might be singular does not impugn the validity of the estimator.) Since the 

estimator is unbiased, E[fi] = p The variance is: 

For future reference it is noted here that $(y, -i) = 0 and q(y, - p) = $(fi - p) 

Now consider the function Y(v) = &y, - v)(y, -v)’ This function can be minimized: 
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m-h -V)(Y, -v)’ 

=Y(~)+~(v-go(~-~)’ 

=Y(fi)+tl(v-fi)(“-Ji)’ 
.Z.Y(r;) 

The matrix inequality (cf. Appendix A) holds because .(v- i)(v- b)‘is non-negative 

definite. with equality obtaining if and only if v = fi Due to the existence and uniqueness 

of this minimum, we could have defined fi as the minimizing argument of Y, rather than as 

the best linear unbiased estimator of the model above. 

The minimum of Y is: 
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But the importance of this minimum lies in its expected value: 

+(i;)]=+, -P)(Y, -P)' -+&-I')'] 
I 

= E[$ (Y, - P)(Y) - P)' ] - E[n(lr - d(i - ~1' ] 

= $ E[(Y, -P')(Y) -P)'] -+ -I&-P)'] 
n 

= C Var[y,] - nVar[i] 

Therefore, i = hII’( $$(y, - ^)( , - ^)’ p y p IS an unbiased estimator of 1 
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Appendix E 

Credibility and the Random-Effects Model 

Appendix A introduced groups of statistical models. The first model consisted of n linear 

models of the form y, = XJ, + e, , where Var[e, ] = C, , for i = I, .., n. y, and e, were 

(LX I), X, was (LX/G), p, is (k,xl), and Z, was (IN,). Each Z, was non-singular, and each X, 

was of full column rank, i.e., rank(X) = k,. which ensured that each (X,‘C,-‘X,) -’ existed. 

These specifications will be adopted here, but with the additional specification that all the 

ks are equal: k = kl = = k.. The model then appears as: 

e, =, 
where Var il[ i = ‘. 

en 1 C” 

As shown in Appendix A, the best linear unbiased estimator of p is: 

This is called a fixed-effects model because every submodel is given its own p., 

The second model of models was like the first, but w?th the constraint that all the p,s be 

equal: PO = j3t = = p.. The model then appears as: 
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e1 c, 
wherevar i = .._ 

HI I em L 

Again, as shown in Appendix A, the best linear unbiased estimator of PO is: 

This too is a fixed-effects model, but with only one fixed effect. 

Now an attractive basis of 3 credibility model is the belief that the parameters (here y,s) 

constitute a random sample from a distribution of mean yo and variance V. So y, = yo + v,. 

where E[v,] = 0. Var[v,] = V, and the v,s do not covary either with each other or with the es. 

This transforms the fixed-effects model into the random-effects model (with estimations): 

YI 

Y. 
YI 

X, 
. . 

-yo +v, 
X” z 

1, 
. . 1 : Yo f”” I + 

1Y.I 1 41 

e, 

en 
0 

101 
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Instead of each submodel having its own fixed effect y,, there is one fixed-effect (~0) for the 

whole model and each submodel has its own random effect v,. Therefore, the estimations of 

this random-effects model have a non-zero error term, and the variance matrix is: 

r TV, + e, 

Xnvn + en 
var 

VI 

1 V” 

The best linear unbiased estimations are: 

= Var[,,] 

XIV 

X”\ 
V’ 

V 

Let us define the n blocks of Tt I as T,! i = X;VX,’ + C; T 1 I is (1,x1,) and positive definite. 

We will also use the shorthand espression of ‘T,’ for ‘T r 1,‘. Then the estimations may be 

written as: 
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=(x;T;'x,+...+~,T-'x n I, n 

= Var[$,](X;T,-‘y, +..,+X:Ti’y,) 

(X;T;‘y, +...+X:T,‘y,,) 

The penultimate expression for 7 li looks like the expression for 6, except that it contains 

terms with T,” instead of terms with C,.‘. But this small difference has great effects, which 

must be investigated. As a beginning. borrowing a theorem from Appendix A, viz.. that (A 

+ BDC)” = A“ - A-‘B(D“ + CA”B)“CA”, we have: 
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T;’ = (I, + X,VX:)-’ 

= c;’ - x;‘x,(v-’ +x:x;‘x,)~‘x:z;’ 

Then X:T;‘X, = X:Z;‘X, - X:Z;‘X,(V-’ + X:Z;‘X,)-‘X:Z;‘X, Moreover: 

X’T.‘v = X:x;‘y, .- X;)-;‘X V-’ + X:z.-’ / I .I ,( I X,)k~h 

= x:~;‘x,(x:z;‘x,)“x:c;‘y, - x:,qx,(v-’ + x;c;‘x,).‘x:s;‘x,(x:z;‘x,)“x:z;‘y, 

=(x:Z;xx, - x:‘Y;‘x,(v-’ + x:lz;‘x,)“x:z;‘x, )(x:z;qx:z;‘y, 

= X:T;‘X,(X:C;‘X,).‘X:C;‘y, 

= x:-r,-‘xj, 

And finally: 

Therefore, the estimator of the grand parameter of this credibility model (~0) is like the 

estimator of the grand parameter of the non-credibility model (00) in that both are weighted 

averages of the estimators of the fixed-effects model (the 6,s). The difference is that the 

weights of the credibility model are X:T;‘X, , whereas those of the non-credibility model 

are X:Z;‘X,. 

There is a danger of using the fixed-effects estimators 6, = (X:Z;‘X,)-‘X:Z;‘y, in this 

random-effects model. Whichever model is assumed: 
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vz+,] = var[(x:x;‘x,)-‘x:~;‘y,] 

=(x;zl’x,).‘X:r;‘var[y,]~l’x,(x:~;’x,)-’ 

However, under the fixed-effects model: 

vx[P,] =(x:~;‘x,).‘x~~;‘var[y,]~;‘x:(x:z,’x,)-’ 
= (x:x;‘x,)- ‘x:z;‘z,~;‘x,(x:~;‘x,)~’ 
= (x:z;‘x,)~’ x:z;‘x,(x:z;‘x,)’ 
= (x:c;‘x,)~’ 

But under the random-effects model: 

Further manipulation (again. using the theorem from Appendix A cited above) yields: 

Var[b,]= V +(X:C;‘X,)-’ 

= (((x:z;‘x,)-’ + vr’) -’ 
= x;c;‘x, - x:c;‘x,(v ’ -k x:z;lx,)-‘x:r;‘x,)-’ 

= (X;T, IX,)-’ 

So. the variance of this estimator under the random-effects model differs from that under 

the fixed-effects model either by the addition of V to the latter or by the substitution of T 

for I: in the latter. With the use of the correct variance, the true formula for Var[y “1 results: 
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Limiting cases for V of the random-effects model are important. The first limiting case, as 

V -+ 0, is simple. As V + 0. the v,s + zero vectors, and model approaches: 

YI 

Y. 

Yl 

-Y” 

= 

X, ‘_ 1 
X” 

: i 

Yo+O 

1, “. i 
‘_ YofO 

1, _ 

5 

en 

I # 
+ 0 

0 

= 

But this is the fixed-effects model with the constraint that all the y,s be equal: y. = y, = _. = 

y”. And as V -+ 0, T, + C,, and: 

limf, Y-r0 = ~~(X;T;'X,+---+X:T'X.)'j>;lr;'y,+...+X~T~'y~) 

=(x;c;'x,+...tx:z~x")-'(x;~:;'y,+...+X:C,'y,) 

= Var[~,](XI~;‘y,+.,.+X:Z;ly”) 

In typical actuarial parlance, the submodels of this case have no credibility. 
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The opposite limiting case is for V to approach infinity. But the more precise meaning is 

that V’ + 0. It is best to see what happens to?, in this case. Inasmuch as 

f, =(X;T;‘X,+...+X:T;1X,)-‘(X~T;‘X,~,+...+X,T,.1X~~~) and X;T;‘X, + 0 asV-’ -+ 0, 

the limit is the indeterminate form 0.‘0. However, since V +(X:C;‘X,)-’ = (X:T,-IX,).‘: 

X:T;‘X, =(V +(X:Z;‘X,r’)’ 

= ((Ii + (x:r;~x,)~‘v-‘)v).’ 

= v-jr, +(x:~;‘x,)-‘v-‘~’ 

= v-‘u 

Therefore: 

= (U,+...+u~)~‘VV-~(U,~,+...+U,P~) 

=(U,+...+U,) ‘(u,P,+...+uj) 

But ?i,m,,U, = ?i,mO(l, +(X:Z;‘X,)-‘V-I)’ = lim (I1 Y ‘4 
+(X~2;‘X,)~‘O]~’ = I,. Hence: 

Ji,yc, i ,, = ~i,~,~U,+~~~+U,)~‘(U,~.,t.~~+~J,,~,,) 

= (l,+...+I,)~‘(l,i(, -+...‘I,Q 

= ;(P,+...+q 

In actuarial parlance. the submodels of this case have full credibilit). Therefore. it makes 

sense here for q o to be the simple average of the fixed-effects estimators 
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We turn now to the credibility estimators, and elaborate the formula: 

i, + =;T;‘(Y, -X,7,) 

i,+ W’L’(Y, -X,?,) 

: 

fo+ VX;T;‘y, -VX;T;‘X,y, 
= 

7 o + VXLT,’ y, - VX:T;‘X,y 0 1 

i, + VX;T;‘X,6, - VX;T;‘X,?, 
= 

i 

VX;T;IX,& + (II -VX;T;‘X,)y, 
= 

VX:T,‘X,p” +(I, - VX:T,‘X,,)y^, 

So the credibility estimators are matrix-weighted averages of the fixed-effects estimators 

and the estimator of the grand parameter. This is a k-dimensional generalization of what 

actuaries call credibility weighting. (See the remark in Appendix A on how matrix- 

weighted averages differ from scalar-weighted averages.) 

In the first limiting case, t;?Z, = lJyVX,T;‘X: = OX,Z;‘X: = 0; so. lvitni, = f,. This is 4 

to say that as the submodels lose credibility. random-effects model approaches the 

constrained fixed-effects model, or the one-fixed-effect model. In the opposite limiting 

case. ;jm”Z, = $nOVXCT;‘X: = vli,mOVV-‘U, = J&U, = I, ; so. $nO?, = P,. This means 
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that as the submodels gain credibility, the random-effects model approaches the n-fixed- 

effects model. 

In the linear model y = Xp + e, where Var[e] = X, b = (X’Z.‘X)-‘ XT’y Therefore: 

XT-‘(y - xi) = X’Py - XPX~ 

= x’~~‘y-x’~-‘x(x’~-~x)~‘x’~-~y 

= ypy _ xyy 

=o 

We will apply this identity in the following derivation: 
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This shows that the simple average of the credibility estimators equals the grand parameter. 

Earlier we saw that in the fixed effects model, i, was a weighted average of the i,s, the 

weights being proportional to the inverses of the variances of the 6,s. This average is 

aristocratic in that the better p,s (i.e., those with the smaller variances) receive more 

weight. But in the random effects model, 5 o is a simple average of the 7 ,s This suggests 
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an interpretation of credibility: credibility democratizes submodels. After a credibility 

adjustment, every submodel is entitled to one vote in determining the grand parameter. Of 

course. the weaker submodcls are adjusted more vigorously. 
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Appendix F 

A SAS”~ Procedure for Credibility Problems 

According to Appendix E. many credibility problems can be expressed as random-effects 

statistical models. There is a SAS’ procedure. PROC MIXED, which is very versatile with 

random-effects models. This procedure formulates the model as [12:575f.. 6341 

y=Xb+Zy+c,where E[:]=[i],andVar[:]=[i i]. Zy+sisthetotalerrorteml, 

with a mean of 0 and a variance of V = ZGZ’ + R. We know that the best linear unbiased 

estimator of p is (X’V’X)-‘X’V’y. To estimate y, we would use the estimator equation 

‘r’=Op+y; so$=Ol?+Cov[y,Zy+c]V-‘(y-Xb)=GZ’V-’(y-Xl?) [12:641]. But the 

most powerful feature of this procedure is that the variance matrices may be specified with 

an unknown parameter vector, viz., G(B) and R(B). The procedure will estimate 8, whether 

by variance components or by maximum likelihood [12:588, 639f.l. This model is more 

general than the random-effects examples of this paper; and estimating 9 is a more general 

problem than estimating the random-effects variance of those examples. The following 

code succinctly solves the problem posed by Gary Venter [ 131 and treated as Example 5 of 

this paper: 

/" This SAS program uses PROC MIXED to solve the problem on page 433 "'1 
1” of Gary Venter's ‘Credibility,’ Foundations of Casualty Actuarial “*/ 
/” Science, Casualty Actuarial Society, 1990. l */ 

data datal; 
input risk year1 -yearB; 
cards; 

1 0.430 0.375 2.341 0.175 1.016 0.466 

2 0.247 1.567 1.939 0.712 0.054 0.261 
3 0.661 0.237 0.063 0.250 0.602 0.700 
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4 0.162 0.351 0.011 0.022 0.019 0.252 
5 0.311 0.664 1.002 0.038 0.370 2.502 
6 0.301 0.253 0.044 0.109 2.105 0.691 
7 0.219 1.166 0.431 1.405 0.241 0.604 
6 0.002 0.056 0.235 0.016 0.713 0.206 
9 0.796 0.260 0.932 0.657 0.129 0.349 

proc transpose data=datal aut=datal (rename-name-=time coll=x)); 
by risk; 

proc mixed data=datal; 
class risk; 
model x= /p s; 
random intercept 19 s subject=risk; 

run ; 

Once the time is invested to learn how to use routines like PROC MIXED, many 

complicated problems can be solved easily and quickly. However, it is possible to go 

overboard and to pose problems that are so complicated that one might unknowingly misuse 

the software. In such cases, a wrong answer may go undetected because intuition has been 

overwhelmed by the complexity 

152 


