
The UsqUrzess of the R2 Statistic 

by Ross Fonticella, ACAS 



The Usefulness of the R’ Statistic 

Introduction, 
Almost every Actuarial Department uses least square regression to tit frequency, severity, or pure 
premium data to determine loss trends Many actuaries use the R2 statistic to measure the 
goodness-of-fit of the trend. Actually, the R’ statistic measures how significantly the slope of the 
fitted line differs from zero, which is not the same as a good fit 

In the Fall, 1991 Casualty Actuarial Society Forum, D Lee Barclay wrote A Statistical Note On 
Trend Factors, The Meaning of R-Squared Through simple graphical examples, Barclay showed 
that the coeffkient of variation (R’) is, by itself, a poor measure of goodness-of-fit. Barclay’s 
numerical examples provide additional support for this argument But, his paper did not analyze 
the formulas used in regression analysis 

By understanding the formulas and what they describe, we can further understand why the R’ 
statistic is not a reliable measure of a good fit This paper will analyze these formulas important to 
regression analysis, (1) the basic linear regression model, (2) the Analysis of Variance sum of 
squares formulas, and (3) the R2 formula in terms of the sum of squares With an understanding of 
these formulas and what they measure, actuaries can properly use the R2 value to best determine 
the forecasted trend 

Formulas- 
The Analysis of Variance (ANOVA) approach to regression analysis is based on partitioning the 
Total Sum of Squares into the Error Sum of Squares and Regression Sum of Squares 

(1) The basic linear regression model is stated as’ Y, = Bo + B, X, 
where Y, = the observed dependent variable 

X, = the independent variable in the ith trial 
Y, = the fitted dependent variable for the independent variable X, 
Y = mean Y, = C Y, / n 

(4 

(3) 

Analvsis of Variance (ANOVA) Annroach to Regression Analysis 
SST0 = Total Sum of Squares = 1 (Y, - r )’ 

= Measure of the variation of the observed values around the mean 
SSE = Error Sum of Squares = C(YI - Y,)’ 

= Measure of the variation of the observed values around the regression line. 
SSR = Regression Sum of Squares = 1 (Y,-? )2 

= Measure of the variation ofthe fitted regression values around the mean 
= SST0 - SSE = Difference between Total and Error Sum of Squares 

Coefficient of Determination, R2 = (SST0 - SSE)/SSTO = SSRISSTO. 
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What the ANOVA formulas measure when. R’= 1 and R’= 0. 
From the above formulas, we see the relevance of R’ = I. If all of the observed values (Y, ) fall on 
the fitted regression lure. then Y, = Y, , SSE = x(Y, - k,)2 = 0, and R’ =l Since there is no 
variation of the actual observations from the fitted values, the independent variable accounts for 
all of the variation in the observations Y, 

Conversely, ifthe slope of the regression line is B, =O. then Y, = ?, SSR = 1 (Y,-?)’ = 0. and 
R’ :: 0 Because the SSR measures the variation in the fitted values around the mean, no variation 
tells us that all of the variation is explained by the mean So the linear regression model does not 
tell us anything additional when the data is completely explained by the mean. 

R’ (SSWSSTO) measures the proportion of the variation of the observations around the mean 
that is explained by the fitted regression model The closer R’ is to 1, the greater the degree of 
association between X and Y Conversely, if all of the variation is explained by the mean, then R2 
=O. but this should not mean that the data is not useful for forecasting purposes 

Nurerical Examples. 
We can use the numerical examples from Barclay’s paper to examine the ANOVA formula values 
when R2 =O and R’ -I. Example #I will show that even when R2 - -0, an appropriate forecast can 
be made by examining the data from the ANOVA formulas 

Barclay generates data from a normal distribution with a mean of 50 and variance I to get the 
observations in Example #I The line of best fit has B0 = 49 38813 and BI = 0366667 

f’umple # 1 Y obsm cd Y fitted llrror (rcsrdunls) Total Ksgrcssml 

X Yl p, Y,-9, Y,- ,T Y,-i 

I 4874fl .I9425 0679 4 8‘14 -0 165 

I 2 I 4991-l I 39461 I (1 453 (I324 I -0 12x I 

sum of Squares 
/ / 

(SSI:) 4 160 (SS’fW 4 57 I (SSR) 0 I I I 

I R’= 0024 I 
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The ANOVA formulas have these properties for a regression fit with a slope close to zero 

(1) Y, = ?, note the values in column Y fitted (fi) are not far from v = 49.590. 
(2) SSE = SST0 

The analysis of variance sum of squares are: 
SST0 = C (Y,-r;)* = 4.571 
SSE = 1 (Y,-Y,)* = 4.460 
SSR = 1 (Y,-?)2 = 0.111 
The variation around the regression line (SSE) is not much better (smaller) than the 
total variation (SSTO) 

(3) R2 = (SST0 - SSE)/ SST0 = SSR I SST0 
= (4571-4460)/ 4571 = 0.111/4.571 = 024 

Because the SSE is not much less than the SSTO, the R2 value is close to 0. For SSR to be large, 
there needs to be a lot of variation of the fitted values around the mean So anytime there is not a 
lot of variation in the data, the R2 = 0 While this means that not much additional is explained by 
the fitted model, the “fit” may reasonably represent the data And projecting with a slope of zero 
may be an appropriate forecast Of course, you don’t need regression to project a slope of zero, 
you can just forecast the mean 

In Example #2. Barclay adds 0 to the first Y observed, one to the second Y observed, two to the 
third, etc The line of best fit has Bo = 48.38813, and B, = I .036667 This provides an interesting 
example for comparing the fit and the numerical values in the ANOVA formulas. 

I 48 746 49 425 -0.679 -5 344 -4 665 

2 SO 914 50461 0 453 -3 176 -3 62X 

3 Sl 246 Sl39Y -0 252 -2 x44 -2 S92 

I 4 I 53.297 I 52 535 0762 1 -0793 I -1.555 I 

I 0 5x OR4 5X 7SS -0671 3 994 4 665 

Sum 540 X9X 540 898 0 000 0 000 0.000 

MCill s4 0898 54 090 

1 Sum of Squares I I I (SSE) 4 460 ) (SSTO)93 I21 I (SSR)XX.661 1 

I I<‘= 0952 I I 



The interesting part of this example is that the residuals (Y, -9, ) are exactly the same as in 
Example til. So the SSE is the same. Recall that Linear Regression minimizes the sum of the 
squared residuals. Should the lines in Example # 1 and Example #2 have the same fit? 

Let’s look at the ANOVA formulas to see the properties of a “good lit” as measured by R’ = 1: 
(1) Y, = Y, ; the fitted values (9, column) are close to the observed (Y, column), a “good lit.” 

Here we decide that Yi = Y, , in favor of Y, = ?, because there is more variation in the 
observations from the mean We choose Y, = Y, , even though we have the same values 
for the residuals as in Example # 1, 

(2) SSE = 0. 
The analysis of variance sum of squares are: 
SSTO=x(Y,-Y)*=93.121 
SSE = 1 (Y, -9,)’ = 4.460 
SSR = 1 (%‘I-r)‘= 88.661 
The variation around the regression line (SSE) is much better (smaller) than the total 
variation (SSTO). 

(3) R2 = (SST0 - SSE ) /SST0 = SSR I SST0 
=(93.121-4.460)/93.121 = 88.661/93.121 =.952 

The SSE is much less than the SST0 So a large proportion of the variation of the actual 
observations around the mean is being explained by the fitted line. With the SSE close to zero, 
most of the observations are on the fitted line. However, you will note that this is relative, because 
w-e have the same SSE as in Example #I. It is because a large proportion of the SST0 is 
explained by the fitted line, that we decide there is a good lit. 

What does the R* statistic measure? 
The R* statistic is a useful tool to determine whether or not BI = 0 For in regression, if B, = 0, 
there is no good reason to use the fitted line. As actuaries, we are often trying to forecast. If the 
slope is zero (Bi = 0), then we can use the mean to forecast the fitted value. 

In fact, the formula for Br can be written as a function of R’: 

B,-[~(Y,-Y)‘;‘C/X,-X)‘11’2r, where r ~~ * F. K wrth the sign the same as the slope 

So when Br=O, then R’=O; and when R’=O, then B,=O 

Both Example #I and Example #2 have the same residuals, or SSE. From one perspective, each 
line has the same fit. The reason for the difference between the R’ values was that in Example #2, 
the fitted slope is much different from zero and explains proportionally more of the larger 
variation in the SSTO. 
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In the first example, the low R2 value would have us reject the fitted line Should we reject the 
data, in favor of some other measure, like a medical CPI? I don’t think so, because we can 
reasonably forecast that subsequent observations wilt be close to 49 5 (the mean) In Example #2, 
we get a good lit and would use Bi = I 036667 But, will the forecast of subsequent observations 
be any better than the forecast in Example #I 3 Unlikely 

The usefulness of the R2 statistic is to measure the significance of the slope of the regression line 
Since the R1 is not a good measure of the goodness-of-fit, when the R’ is not higher than some 
arbitrary benchmark, we should not just reject the data and look for other information to trend If 
the slope is not significant (R’ =0) there could be a good “tit” as explained by the mean We can 
see this by considering the values from the ANOVA formulas (SSE, SSR, and SSTO) which show 
how much of the variation is explained by the model relative to the mean There are many other 
factors to be considered before accepting or rejecting the regression fit, such as patterns in the 
residuals. It is always useful to graph the fitted tine against the observed values to look for these 
patterns 

Additional Formulas 
The method of least squares finds values of B. and Bi that minimize Q, 
where Q = 1 (Y, - Y,)2 = 1 (Y, - B0 -B, X,)’ 

Residuals e, = Y, - Y, = Y, - Bo- Bi X, 

ANOVA formula relationship 
Note The sum of the components and 

the sum of the squared deviations have the same relationship 
y,-y = P,- r + Y, - k, 

Total = Deviation of fitted regression + Deviation around the 
deviation value around the mean regression line 

and SST0 = SSR + SSE 
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