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A Portfolio Management System for
Catastrophe Property Liabilities

by Adam J. Berger, Ph.D., John M. Mulvey,
Kevin Nish, and Robert Rush



Abstract

As catastrophe modeling systems become morc sophisticated. the property i e portfolio can
receive better account loss information than ever before. We describe a software system caltled
SmartWriter which effectively processes this information for the portfolio manager. Specifically. the
system determines:

Appropriate pricing for an account

Which accounts to remove from a portfolio to maximize risk-adjusted return

How to merge two books of busincss

o  Where to grow or shrink business geographically to achieve maximum diversification benefits

We utilize a number of optimization techniques to address these issucs. We formulate the problem asa
large mathematical program with numerous loss scenarios (10,000 or morc). We then describe an
algorithm to solve the resulting stochastic optimization problem in order to maximize risk-adjusted retum,
expected utility. or other user-defined performance measures.

The SmantWriter system is a PC-based Windows application. USF&G. a large property and casuaity
insurance company. currently employs SmartWriter as an integral part of its decision making process.




1. Introduction

The insurance portfolio manager and underwriter require sophisticated analytical tools to assist
decision making. Just as an asset portfolio manager, such as a mutual fund director, can
immediately see the effects of adding a security or option to his portfolio’s risk and retum profile,
the insurance portfolio manager needs to understand the effects of adding an additional account to
the business line. In addition, there are many other issues the manager must address, such as: (1)
Should an existing account be renewed and, if so, at what price? (2) Where are the best areas to
expand the current portfolio? (3) How can two books of business be merged profitably?

We have developed a decision support system, called SmartWriter, which answers these
questions for one application area, the catastrophe property business. SmartWriter employs data
from earthquake and hurricane modeling systems to show the effects of adding a new account or
subtracting an existing account from the current portfolio. In addition, SmartWriter optimizes the
portfolio composition to produce a portfolio meeting user-specified characteristics. Although we
are describing SmartWriter in the context of catastrophe property, the methodology applies to
Directors & Officers, Errors & Omissions, Workers Compensation, and other insurance lines.

The paper proceeds as follows. Section 2 describes the method for evaluating an incremental
account and the retumn on capital methodology. Section 3 lays out the optimization model to
address the questions raised above. The algorithm for solving the problem is described in Section
4, and results are presented in'section 5. We conclude with some next steps in Section 6.

2. Modeling an incremental account

Suppose we have a portfolio of insurance liabilities. As an example, we look at a portfolio of
commercial businesses insured against earthquakes in California by USF&G, a large property and
casualty insurance company. A potential new piece of business is presented to the portfolio
manager, who must decide whether to write the account or reject it. Of course, some negotiating
with the insurance broker who presents the account is possible, so the portfolio manager would
also like to know the required premium to meet a profitability hurdle. Before analyzing the
incremental business, we need to define a profitability measure for the existing portfolio. Two
measures are return on allocated capital and expected utility.

2.1 Retum on Capital

In this method, capital is assigned to a portfolio (or business unit) based on the risk of the
portfolio. Risk is calculated based on characteristics of the cumulative loss distribution and
portfolio profitability. For the catastrophe property business, capital is often a function of points
in the tail of the distribution, similar to Value at Risk (VAR). For simplicity, we focus on a single
point of the loss distribution, the 99® percentile, and calculate the capital requirements as the
funds needed to pay the loss incurred at the 99™ percentile. This is referred to as the **1-in-100
year loss”, since one would expect the loss to be as bad or worse than this level once every
hundred years. More complex formulas based on multiple points of interest on the loss
distribution are possible (see Mulvey et al, 1997). Equation 1 shows the allocated capital
calculation:



capital = p F'(0.99) - (p — €) )

where p is a discount factor, F is the cumulative distribution function for the loss, p is the
premium received and e is the non-catastrophe expenses. The discount factor p is necessary since
we receive premiums and pay out expenses (6.8. commissions) at the beginning of the year, and
losses are incurred during the year. Thus, we calculate the capital required at the beginning of the
year, and discount losses, so that all terms are on the same basis.

To calculate retum, we first define expected catastrophe loss as the expected value of the loss
distribution. Expected margin is simply premium less expense less expected cat loss. Expected
return on capital (ROC) is calculated by dividing expected margin by the allocated capital:

ROC = (p —e - Efi{x)) / capital @)
where f{x) is the loss distribution and Ef{x) is the expected value of the distribution.

We define the marginal capital for an account as the difference in capital required for the
portfolio with the account and the portfolio without the account. Return on marginally allocated
capital (ROMAC) has the same expected margin for the numerator and marginal capital in the
denominator. Define c, as the capital required for the portfolio with the account and ¢, as the
capital for the portfolio excluding the account. Then the marginal capital m. and the retum on
marginal capital (ROMAC) is defined as:

m=c- ¢ 3)
ROMAC = (p- e~ Efix)) / m, @

ROMAC captures the diversification benefit of the account with respect to the portfolio. An
account with a high ROMAC doesn’t require much additional capital allocation for the portfolio
as a whole, and thus is a good diversifier. Conversely, an account may have a high return on
capital on a stand-alone basis, but a low ROMAC, and thus is most likely located in an area of
high concentration.

To facilitate combining loss distributions, we discretize the sample space and create numerous
scenarios. Each scenario represents a year's worth of catastrophes. We can then determine losses
for the account in each scenario and combine accounts scenario by scenario to determine portfolio
losses. Although it is not necessary to have scenarios for the above calculations (since capital
with and without an account can be calculated separately with no need for combining accounts), it
will be important in performing the optimization described in Section 3.

2.2 Expected Utility

An alternative approach to allocated capital is expected utility. Given an asset position for a
business line (or company) at the start of a year, define a von Neumann-Moregnstern utility
function over the range of possible asset positions at the end of the year (see Bell [1995] for an
example). Each portfolio will then have an expected utility value calculated from its loss
distribution. Portfolios can be compared simply on expected utility, with higher expected utility
being more desirable. To see whether to add an account to a portfolio, compare the expected
utility before and after the addition.




There are advantages and disadvantages to the return on capital and expected utility approaches.
Retum on capital is a familiar financial ratio and is easily explained. Allocating capital based on
points on the loss distribution is straightforward and captures, to some extent, the risk inherent in
the business. Unlike expected utility, however, the retum on capital does not provide a definitive
answer on whether to add a new piece of business (e.g., if a new account has below average
retum on capital and above average ROMAC). The expected utility framework takes into
account all points of the loss distribution whereas return on capital methods generally incorporate
only a fow. Expected utility provides a definitive recommendation, but does not have an
immediately intuitive interpretation. For example, a portfolio manager can appreciate that adding
a new account will boost retum on capital from 12.0% to 12.5%, but may not as readily interpret
increasing expected utility from 3.45 to 3.47. Depending on the model, expected utility can be
easier to solve (see Berger [1995]) since it fits more easily into a mathematical programming
framework than return on capital, which requires sorting a discrete distribution; Sections 3 and 4
discuss this issue further. This comparison is summarized in Table 1.

. Advantages Disadvantages
Allocated Capital - Easy to explain - Extra work to sort discrete distributions
- Returnshave intuitive meaning | -  Limited points on loss distribution
Expected Utility - Handle entire loss distn. at once | -  Hard to determine utility function
- Convex math program - Results not intuitive

Table 1: Comparison of allocated capital and expected utility objective functions

2.3 Sample Decision

We present SmartWriter analysis (Table 2) of an account recently offered to USF&G's
commercial property business. Although we have altered the raw output to protect
confidentiality, the retumns are consistent with the actual analysis.

New Account | Current Portfolio | Combined
Premium $980 $3,800 $£4,780
Expenses $2904 $1,140 $1,434
Expected Catastrophe Loss $71 $615 $686
Expected Profit $615 $2,045 $2,660
Loss at 99%% = F'(0.99) $5,200 $14,300 $18,100
Capital Required $4,200 $11,600 $14,700
Retum on Capital: ROC 14.6% 17.6% 18.1%
Ret. on Marginal: ROMAC 19.8%

Table 2: New account analysis. All numbers in (5000), except where indicated.

The SmartWriter output is divided into three columns. The first column is the new account as a
stand alone business. The expected income for the account, after taking expenses and expected
catastrophe losses from the premium, is $615,000. The new account requires $4,200,000 in
capital based on the 1-in-100 year loss of $5,200,000. This yields a retum of 14.6%, which is
below our hurdle rate of 15%.




The second column contains data on the portfolio as it stands today, and the finat column is the
portfolio performance if the new account were added. Note that the capital requirement for the
combined portfolio is less than the sum of the new account and current portfolio capital: This
indicates that the new account will diversify the business to some extent. Two additional items
help quantify this diversification. The ROMAC for the new account is 19.8%, which means that
the marginal retum for adding the account divided by the marginal capital is significantly over the
hurdle rate. The second item to note is the increase in the ROC for the portfolio from 17.6% to
18.1% if the account is added. For these reasons, the account was considered a good prospect,
even though on a stand alone basis it was slightly below the hurdle rate.

3. Optimization Model

Optimization is the process of finding good solutions to a mathematical model. In the context of
insurance underwriting, several problems are amenable to optimization. For a portfolio of large
commercial accounts, the optimizer could locate the five accounts most in need of repricing, or
the subset of the current portfolio which maximizes retum. For a homeowners portfolio, the book
of business is managed less on a home-by-home basis and more on a zip code, county, or state
level; the optimizer can focus on which counties to expand market penetration and which zip
codes to reduce premium volume. The next section describes SmartWriter optimization for
commercial portfolios, and the following section for homeowner books.

3.1 Commercial Portfolios

Section 2 defined a method for comparing portfolios of accounts, either with return on capital or
expected utility. We can now formulate an optimization model for choosing an optimal subset of
accounts for the given portfolio. As mentioned above, we will define a discrete set of scenarios,
where each scenario represents a number of catastrophes for a year. This facilitates the problem
of combining loss distributions. For general continuous loss distributions, there is no simple
method that can be used.

3.1.1 Vanables and Objective

Define the following sets:

{1, 2, ... N} - set of accounts in the portfolio
{1, 2, ... S} —set of loss scenarios

Define the following input parameters:
pi = premium for account i
¢; = non-catstrophe expense for account i
I, = loss (in dollars) for account i in scenario s
=, = probability of scenario s
p = discount factor
Define the following decision variables:

%;, i=1,...,N —amount of account i in the portfolio

Our objective is to maximize retumn on capital:




Max Zoeis Ty 7 (% (i - & — 1)) / [p F'(0.99) ~ sum x; (p; — &) €))
where F'(0.99) is calculated from the revised loss distribution x;*1;,.
Note that correlations are implicitly captured in the analysis. Since the entire loss distribution is
calculated for the objective function, the correlation among accounts will affect the return on
capital.
3.1.2 Constraints

The following are constraints that can be added to the model.
An account can either be in the portfolio or out of the portfolio so we add a binary constraint

X; € {0, 1 }
If one or more properties must be retained, we add:

X; = 1
The total premium for the portfolio can not be reduced past a specified level, MinPrem:

Ziain(x; * pi) >= MinPrem
The expected income on the portfolio can not be reduced past a specified level, MinInc:

Ziin (% *(pi— & - ) > Minlnc
3.2 Expansion problem
Another problem facing insurers is where to grow a portfolio of a large number of small accounts,
for example the homeowners market in California. These portfolios can not be analyzed account
by account, since underwriters do not have the flexibility of choosing to write one home and not
another. Accounts must be aggregated to a meaningful level: not too large so that accounts
within a group possess similar characteristics, but not too small so that they can be managed
effectively, such as with target marketing. The following model chose the zip code level as a
reasonable trade-off between these competing demands. The objective function remains the
same, but we change a few variable and constraint definitions. Our emphasis now is determining
how much premium to retrieve from each zip code. We assume that the loss characteristics
within a zip code are constant. Zip codes where this is not the case can be broken down into
smaller units.
Define the following sets:
{1, 2, ... Z} - set of zip codes in the region
{1,2

, ... S} — set of loss scenarios

Define the following input parameters:



e = non-catstrophe expense ratio

1, = loss per dollar of premium in zip code z in scenario s
i, = probability of scenario s

p = discount factor

Define the following decision variables:

X,, z=1,...,Z — amount of premium from zip code z in the portfolio
Qur objective is to maximize return on capital:

Max Z,is Ziz T (K- €% X, — 1n* X)) / [p F1(0.99) - Z.n12 (X2 - €* X,)]
where F(0.99) is calculated from the revised loss distribution 1,* x,.

Constraints similar to the ones in the pruning example above can be added; we give a few
examples here. The premium level across zip codes can be bounded between two values,
MinPrem and MaxPrem:

MinPrem < x, < MaxPrem
Alternatively, the total expansion of the portfolio can be limited to a dollar value, MaxPort:

Iz X, <= MaxPort

4. Solution Procedure

The models described in the previous section are not easily solved with traditional mathematical
programming procedures, due to the necessity of the sorting during the capital allocation
calculation. We employ a number of metaheuristic search procedures to find the global optimum
value for the problem. For all of these, it is important to find good starting points, which we
describe first, followed by the search algorithm.

4.1 Elite Solutions

Elite solutions are points in the decision space which are believed to be good locations for a local
search (also called intensification, since the local area is being explored thoroughly). One method
for generating elite solutions for this example depends on the profitability of the portfolio as a
whole and on the individual accounts. Ifthe portfolio is profitable, then a candidate elite solution
would be the entire portfolio, or the portfolio with a small subset of poor performing accounts
removed. Altematively, for a poorly performing portfolio, a candidate elite solution could be a
small subset of profitable accounts, or no accounts at all. Ancther approach ranks accounts by
profitability and correlation with the portfolio as a whole; an account with high profitability and
low correlation would be included in an elite portfolio.

A more profitable approach relies on problem-specific information. Suppose the optimization
procedure is run monthly or quarterly. Optimal solutions from previous runs can be stored and
will provide good elite solutions, even if the portfolio has changed measurably since the last run.




Of course, accounts no longer in the portfolio but in the previous optimal solution must be
removed.

After a number of elite solutions have been generated using some or all of the methods above, the
solutions are ranked in terms of attractiveness. This ranking will then determine the order for the
local searches (see next section). Ranking can be based on objective function value alone, but to
fully explore promising areas of the decision space we can use a weighted average of the
objective function and the distance from higher ranked elite solutions. As more solutions are
ranked, the benefit for diversification increases.

4.2 Tabu Search

Tabu search was originally developed by Glover and has proven highly effective for solving
combinatorial optimization problems. (See Glover [1989] for an introduction). The procedure
searches a feasible region by monitoring key attributes of the points that comprise the search
history. Potential search iterates possessing attributes that are undesirable with respect to those
already visited become tabu; appropriate penalties discourage the search from visiting them. We
provide details below.

Consider a general non-convex optimization problem of the form:

minimize fix), x € X
x

where the function f{x) corresponds to the retum on capital objective in Equation 5.

Our adaptation of tabu search has three basic elements:

¢ afunction g(x) = f{x) + d(x) + t(x). The function d(x) penalizes x for infeasibility. The
function t(x) penalizes x for being labeled tabu.

¢ the current iterate x.,

¢ aneighborhood of the current point N..

The procedure generates a new iterate X.. by selecting the element of N, for which g(x) is
smallest. The tabu restrictions represented in t(x), can address short-, intermediate-, and long-
term components of the search history. Short-term monitoring is designed to prevent the search
from retuming to recently visited points, allowing the procedure to “climb out of valleys”
associated with local minima. Short-term monitoring can also serve as a rudimentary
diversification vehicle. Intermediate- and long-term monitoring techniques provide for a much
more effective diversification of search over the feasible region. In addition, the elite solutions
described previously also provide diversification. See Glover [1990] for additional details.

Details of four processes are required to define our adaptation of tabu search: formation of the
neighborhood of the current point, assignment of tabu penalties, termination of search procedure,
and greedy selection of the new iterate from the neighborhood of potential moves.

Neighborhood formation proceeds as follows. Let xo = (xyq, ..., Xo) be the current point; the
decision vector thus has n components. For the example in Section 3.1, this would be a vector of
zeros and ones, where a “one” indicates the account is in the portfolio. Each member of the
neighborhood of x,, N,, is formed by modifying one of its components either up or down by an
amount equal to some value step_size. Note that this operation implicitly defines a discretization



of the continuous feasible region. There are thus 2n members of N.. We call each of these
members a potential move, one of these will become the new iteraté, i.e. - the actual move. Each
potential move is characterized by two move attributes: index changed and new value. Attribute
index changed is equal to j, where x;. is the component of x, whose value is changed by the
potential move; new value is the value that the component being changed by the potential move
assumes (formally: new value = x;,, such that j = index changed).

The manner in which we assign tabu penalties -- and thus define the function t(x) -- to each
potential move relies on exploitation of short-term search history; the methodology is based on
the technique developed in Glover, Mulvey, and Hoyland [1996]. The assignment is based on a
comparison of the move attributes of each potential move and those of the iterates comprising the
recent search history. The maintenance of two data structures is necessary: 1) the tabu list, and
2) time of last change list. The tabu list is composed of the attributes of the T most recent
search iterates: 1abn list is thus a T x 2 array where T =TABU LIST SIZE. The

time of last change listis annx | array. where time of last change list;= the last iteration
during which the actual move's index changed attribute equaled j. We also define fpest as the
best objective value (in terms of minimization) found by the procedure at any point in the search
process.

Three criteria govern our assessment of the tabu status of each potential move (x,):

Condition 1: do the move attributes of x, match any of those in the tabu /fist?
Condition 2: is length of stay < REQUIRED STAY, where length of stay

= current iteration — time of last change; where j = index changed?
Condition 3: is flx,) < figs and x, € X?

If either of the first two Conditions are true, we assign an appropriate tabu penalty to the potential
move, discouraging the search from moving to x,. Condition | prevents the search from
revisiting a point whose move attributes match those of points recently visited. It is this operation
that allows the search process to move away from local minima, as we described earlier.
Condition 2 insures that a variable is not changed too soon after it becomes the basis for an actual
move; it thus is a vehicle for short-term search intensification If the final condition is satisfied,
we eliminate the tabu penalty for x,: this allows the search to move to a tabu point if the objective
value associated with this point is better than that of the best point found thus far. (This is our
implementation of the concept of aspiration criteria; we refer the reader to Glover [1990] for
details.)

We present three termination criteria;

1) Total time exceeds a preset maximum

2) Total iterations exceed a preset maximum

3) The amount of time spent without any improvement in the solution exceeds a preset
maximum

Finally we address the greedy criterion for selecting from the set of potential moves the actual
move, and thus the new iterate. The standard approach for selecting the new iterate is to find the
point in the neighborhood of the current iterate for which g(x) = f{x) + d(x} + t(x) is smallest, a
process that by definition requires evaluation of every member of the neighborhood. This
strategy can degrade the effectiveness of the search when the computational effort required to
evaluate f{x) 1s prohibitive. The greedy search strategy addresses this difficulty. It calls for the
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evaluation of the set of potential moves to cease when a neighbor fax is found which f{x) < f{x)
and d(x)=t(x)= 0, i.e. — x is feasible, not tabu, and shows improvement.

5. Results

Below is the SmartWriter output for a California earthquake portfolio with 173 accounts. The
results are from real company data, but the numbers have been disguised to protect client
confidentiality. We ran the analysis on a Windows 95-based PC with 64MB of memory, with run
time between 5 and 10 minutes, depending on parameter settings.

The optimizer recommended the removal of 16 accounts from the portfolio. Table 3 shows
summary information before and after the optimization for the portfolio as a whole.

On the whole, this was a profitable book of business, but there were a small number of poorly
performing accounts. Not only did these accounts have a poor expected retum, but they had a
severe effect in the tail of the distribution. Expected income only decreased by $100,000 (3%),
but the loss at the 99* percentile decreased by over $15MM. Return on capital jumped from
14.7%to 37.5%. We have seen this with other books of business as well: a small percentage of
accounts represent a large portion of the tail of the loss distribution.

iiitdid 3 1Sk o i £k bk idbad-EROfolioaoddy, ny «@ptimized Port:
Number of accounts 173 157
Premium $5,600 $5,200
Expenses $1,700 $1,600
Expected Cat Loss $500 $300
Expected Income $3,400 $3,300
Loss at 99“% = F'(0.99) $28,600 $12,900
Capital Required $23,200 $8,800
Return on Capital: ROC 14.7% 37.5%

TFable 3: Portfolio before and after optimization. Unless otherwise noted, numbers are in (000).

Ideally, the portfolio manager should reprice these accounts upon renewal instead of terminating
them. Although market conditions will determine the extent to which this is feasible,
SmantWriter provides output cn all the accounts targeted by the optimizer. Table 4 contains
information for one of these accounts.
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Account A
Premium $20
Expenses $6
Expected Cat Loss $12
Expected Profit $2
Loss at 99%% = F(0.99) $780
Capital Required $740
Return on Capital: ROC 0.3%
Ret. on Marginal: ROMAC 0.4%
Premium needed to meet 15% ROC hurdle $150
Premium needed to meet 15% ROMAC hurdle $145

Table 4: Account targeted for removal or repricing by optimizer.

For this example, the premium needed to meet the stand alone retum on capital hurdle of 15% is
$150,000, much greater than the curtent premium of $20,000. Repricing is most likely not an
option for this account, but for examples where the current ROC is closer to the hurdle rate,
repricing can be viable.

5.1 Portfolio Expansion

As with the pruning portfolio example above, portfolio financials are available before and after
optimization. Rather than repeat the above tables, we display the graphical output available from
SmartWriter. Since the analysis was conducted at a zip code level, financials can be displayed in
map form for quick understanding. We show an example below.

Figure 1 shows profitability by zip code, if each zip code 1s evaluated on a stand alone basis, for
the San Francisco Bay area. Dark green indicates zip codes with a high expected ROC per home,
light green less profitable, and red low profitability. These maps can be generated for expected
income, marginal capital, and for the results of the optimization: optimal concentration by zip
code. For confidentiality reasons, we do not give the recommended map for concentration, but it
overlaps the map below to a large extent. Most zips that are low profitability the optimizer
recommends moving away from, and for zips with high profitability, the optimizer recommends a
greater penetration. The optimizer takes into account, however, the problems with
overproducing in a number of closely located zip codes which all may be affected by the same
earthquake.
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Figure 1: Expected return on capital by dp code for the San Francisco bay area. Dark green indicates most
profitable zip codes, red indicates poor performing zip codes.

6. Next Steps

The portfolio management system can be readily extended to account for overlapping risks across
business lines and asset investment categories. The concept is to develop a price of risk for each
product-location under each scenario at each time period. These prices are available directly
from the optimal decision variables for the strategic planning system. See Mulvey et al. (1998).

Ideally, one would like to link the liability decision with the asset investment strategy. In this
paper we focused on the day-to-day underwriting decisions and take the asset return as a fixed
input. In the future, one could tailor the asset portfolio in conjunction with the liability portfolio,
such as purchasing catastrophe options or catastrophe-linked bonds for the property business line.

Another extension is the addition of multi-year contracts. As the catastrophe market continues to
soften, these contracts may become more desirable for insurer and insured: They provide price
protection for both parties. These can be linked with capital market projections which produce a
range of possibilities (scenarios) a number of years ahead, such as the Towers Perrin CAP:Link
system.

Finally, reinsurance decisions can be directly integrated into the optimization model. A desired
profit distribution could be entered along with the current portfolio and a range of reinsurance

13



options and treaties, and the optimizer would choose the best reinsurance options to match the
desired profit distribution as closely as possible.

References

Bell, D., 1995, “Risk, Retumn, and Utility”, Management Science, 41, 23-30.

Berger, A., 1995, “Large Scale Stochastic Optimization with Applications to Finance,” Ph.D. Thesis,
Princeton University.

Glover, F., 1989, “Tabu Search — Part I”", ORSA Journal on Computing, 1, 190-206.

Glover, F., 1990, “Tabu Search —a Tutorial”, /nferfaces, 20, 74-94.

Glover, F., J. M. Mulvey, and K. Hoyland, 1996, “Solving Dynamic Stochastic Control Prablems in
Finance Using Tabu Search with Variable Scaling”, in Meta-Heuristics: Theory and Applications,
1. H. Osman and J. P. Kelly (eds.), Boston (MA): Kluwer Academic Publishers.

Mulvey, 1., S. Correnti, and J. Lummis, 1997, “Total Integrated Risk Management: Insurance Elements,”
Princeton University Technical Report SOR-97-2.

Mulvey, J., C. Madsen, and F. Morin, 1998, “Linking Strategic and Tactical Planning Systems,” DFA ~

Mulvey, J., D. Rosenbaum, and B. Shetty, 1996, “Integrated Parameter Estimation in Stochastic Scenario
Generation Systems”, Princeton University Technical Report: SOR-96-15.

14




Applying A DFA Model To Improve Strategic
Business Decisions

by Salvatore Correnti, CFA,
Stephen M. Sonlin, CFA,
and Daniel B. Isaac, FCAS, MAAA

15



Published in response to the CAS Call for Papers

Applying a DFA Model to Improve Strategic Business Decisions

Salvatore Correnti, CFA
Executive Vice President, Falcon Asset Management, Inc.,
Vice President-Asset/Liability Management, USF&G Corporation;
Stephen M. Sonlin, CFA
Vice President, Falcon Asset Management, Inc.
Daniel B. Isaac, FCAS
Vice President, Falcon Asset Management, Inc.;

6225 Smith Avenue
Baltimore, Maryland 21209

Telephone: 410/205-6400
FAX: 410/205-6406
e-mail: ssonlin@falconasset.com

ABSTRACT

Until recently, insurance companies were forced to evaluate business decisions
at the functional level. With the advancement in computing power and
understanding of advanced financial mathematics, company’s are now able to
integrate all of the various operational functions into a total company model,
and evaluate the impact of various business decisions on the total company's
risk/reward profile. This paper describes an approach for using “decomposition
of risk” as part of a comprehensive ALM analysis for an insurance company.
The objective is to identify and quantify the major factors that contribute to a
company's total risk. Isolating each component of risk allows a company to
better understand its total risk and thus develop strategies to improve its
risk/reward profile. As a result, management can assimilate the relative and
combined risk of assets, liabilities, and capital markets into a set of stochastic
financial statements, thereby providing the information necessary to improve

strategic investment, operating and capital allocation decisions.
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Applying a DFA Model to Improve Strategic Business Decisions

Until recently, insurance companies were forced to evaluate business decisions
at the functional level. For example, Actuarial and Underwriting departments
focused on the liability side of the operations, Investment departments
concentrated on the risk and rewards of alternative asset strategies and asset
classes, Treasury evaluated capital allocation decisions, and the Reinsurance
unit explored the impact of various reinsurance treaties. With the advancement
in computing power and understanding of advanced financial mathematics,
company’s are now able to integrate all of the various operational functions into
a total company model, and evaluate the impact of various business decisions

on the total company’s risk/reward profile.

The risk management process developed at Falcon Asset Management, called
Falcon Integrated Risk Management (FIRM™), is an example of a total
company model that uses sophisticated techniques and gives management the
ability to analyze problems at the total company level in a completely integrated
framework (i.e., combining liabilities, assets and economic factors). As a result,
management can analyze their key profit/cost centers, such as investment
management, corporate finance/capital management, underwriting and
reinsurance functions, on a consistent basis. An integrated risk management
model uses simulation analysis of the aforementioned business functions and
their key drivers to develop a comprehensive risk/reward profile for the

company.
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Many articles and papers have been written showing the benefits of including
an insurance company's liabilities into its asset allocation decisions, including
Sweeney and Correnti [1994) and Carino, et al. [1994]. Figure 1 expands on
these concepts and gives a schematic view of an integrated risk management
process. Total integrated risk management builds on traditional asset/liability
analysis in that it explicitly conéiders strategic decisions impacting both
operations and investment activities within a holistic framework . Once the key
factors contributing to the overall risk of the company are identified and
quantified, management has the ability to “loop” through the process by
selecting either the investment loop (e.g., asset allocation, derivatives and
capital allocation) or through the operations loop (e.g., business mix,

reinsurance strategy and merger & acquisition analysis).

Traditional asset/liability analysis has been used to explore asset issues
relating to asset allocation and derivative strategies only. An integrated risk
management approach combines a more complete set of asset, liability,
economic and capital market factors at the total company level giving
management the ability to investigate the risk/reward tradeoffs of a wide range
of alternative strategic business decisions. In addition the company is able to
evaluate the joint impact of multiple strategic decisions through their

interrelationships on the total company risk/reward profile.




Figure 1

Falcon's Integrated Risk Management Process
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For example, management can now evaluate various reinsurance strategies
and quantify their impact on the company’s financial objectives. The cost for
the reinsurance protection can be compared to the reduction in risk provided by
the reinsurance program and decisions concerning the appropriate level of
reinsurance can be made. In addition, the integrated risk management
approach provides management with a consistent framework to access the
myriad of problems that they face. Whether deciding on an appropriate asset
allocation strategy, reinsurance programs or corporate finance issues,
management can use the integrated risk management process to perform the

necessary analysis under a consistent risk/reward framework.
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This paper will focus on the decomposition of risk step and how this information

to assist a company with their strategic business decisions.

Economic and Capital Market Modeling

The first step in evaluating the asset allocation strategy for an insurance
company is to evaluate the economy and the capital markets. This is Step 1 in
the integrated risk management framework presented in Figure 1. For asset-
only analysis over a single time period mean/variance models can be used
effectively (see Markowitz {1987]). These models require inputs concerning the
mean, standard deviation and correlations related to a particular set of asset
categories being considered in the analysis. While effective for single period,
asset-only analysis, these models are not adequate for more advanced
asset/liability analysis or for use within a total integrated risk management
framework. This is due to the fact that there is no explicit modeling of the
underlying economic environment such as interest rates and inflation. The
implicit economic environment that underlies a mean variance model can lead
to interest rates that both explode to unreasonably high levels and even more

undesirable, become negative.
Asset/liability management relies on.the consistent relationship of both asset

and liability movements to the underlying economic environment. Thus it is

critical to model the economic variables explicitly to ensure reasonable future
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economic projections. The best models available for this purpose are models
that utilize stochastic differential equations to describe the dynamics of the
interest rate and inflation rate movements. For a more compiete discussion of
stochastic diffusion models see Mulvey and Thorlacius {1997]. Figure 2 shows
twenty simulations corresponding to a three year projection of short-term
interest rates that were generated from a stochastic diffusion model. This

picture shows the year to year movements of the short-term interest rates

together with the range of potential interest rate levels.

The economic and capital market diffusion model used employs a cascade, or
top-down structure as described in Wilkie [1987). The top of the cascade
model involves generating price inflation rates. Future interest rates are
modeled consistent with the previously generated inflation rates using a variant
of the Heath-Jarrow-Morton interest rate model (see Heath, Jarrow and Morton

[1988]). Once the future yield curves are determined, the cascade structure of
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the model produces asset class returns (both total returns and income returns)

that behave consistently with the underlying economic scenario.

Asset classes are defined as homogeneous groups of individual investments
such as fixed income of various maturities, equity, and cash. Fixed income
categories are defined as a function of their anticipated yield, duration,
convexity, and default or volatility risk. Equity returns are modeled as a
function of their earnings yield and earnings growth. Asset classes, such as
mortgage-backed securities, high yield bonds and property returns can be
added to the analysis through the use of return generation tools available in the
model. The modeled classes serve as a proxy for the assets currently held

and/or expected to be held by the company.

The resulting retums can be summarized using the same mean, standard
deviation and correlation statistics that are typically used as inputs to a
mean/variance model. In addition, the same economic variables that are used
to generate the capital market returns can be used to project the premium, loss
and expense cash flows that will be required for the asset/liability analysis.
This is the type of asset modeling system that we use in the integrated risk

management system presented in Figure 1.

Figure 3 shows the 5th through the 95th percentile results corresponding to the

average annual returns for each of six asset categories. As expected, over an

22




annual holding period, cash returns show the smallest annual average return

range while equities show the largest return range.

Figure 3
Average Annual Returns
} Bond: | Percentile
Cash 18 510 10-20 20+  Equities #5th
B 75th
50.0 S0th
25th
400 B 5th
300
200
10.0
[— ]
=
-10.0
-20.0
Mean 488 5.65 6.88 6.20 7.10 9.87
Standard Oev 0.94 2.40 6.35 9.41 12.40 17.18
95th percentlle 6.48 9.45 16.10 21.68 21.70 4114
75th percentite 5.60 7.38 10.45 12,69 16.50 18.56
50th percentile 476 571 5.84 8.19 6.59 8.13
25th percentile 4.09 397 1.43 0.51 -1.76 BRI
Sth percentile 358 1.64 4.20 8.24 1196  -14.81

The use of a stochastic economic and capital market simulation model of the
type discussed above ensures that the asset class returns are consistent with
the economic conditions that are being simulated. This is of critical importance
to any application that is attempting to model assets and liabilities

simultaneously.

Evaluation of Financial Statements

Since an integrated risk management process is dependent on an insurance

company'’s liabilities, modeling the liability cash flows is critical for obtaining
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meaningful results. Liability simulation should consider both the existing
reserves, and the company's business plan. Like asset categories, existing
reserves and new business liabilities can be broken down into homogeneous
lines of business to ensure that the unique characteristics of each line are
captured. Historical experience and expected future trends need to be
reflected in the assumptions to capture how the insurance company’s liability

structure will develop in the future.
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Figure 4

Distribution of Existing Reserves
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Projections of the existing loss reserves are generated stochastically by
assuming an underlying distribution for the loss reserves and inputting an
expected reserve runoff pattern. The loss reserve simulations should recognize
that the magnitude of adverse loss development is potentially greater than the
magnitude of beneficial loss development. Figure 4 illustrates the simulated

distribution of the company’s existing reserves.

Modeling the existing liabilities alone would imply that the company is in a

liquidation, or runoff mode. Since most companies consider themselves a

going concemn, it is imperative to model the company's new business plan in
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order to accurately reflect the company's complete liability structure in the
future. Typically companies budget three to five years of new business which

can be layered on top of the existing reserve cash flows.

In order to project the new business liability cash flows, assumptions regarding
written and earned premium, loss ratios, expected accident year payout
patterns, IBNR factors and expenses are needed. Loss ratios should be
modeled so as to reflect relationships with the underlying economic
environment and should be general enough to allow the user to incorporate

cycles and reversions.

The low frequency/high severity nature of catastrophes requires more precise
modeling techniques to simulate catastrophic events and the resulting cash
flows. There are several cat models available in the marketplace today (e.g.
AIR, EQE, RMS, etc.). Loss ratios and cash flows attributed to catastrophes
can be generated using one of these simulation models and merged with the
non-cat losses described above to produce the company’s overall loss ratio
distribution. Figure 5 shows the distribution of simulated year 1 loss ratios for a

hypothetical property/casualty company.
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Figure 5

Distribution of Gross Loss Ratio
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Once the projected loss ratios are determined, the total liability cash flows are
calculated by multiplying the generated loss ratio by the forecasted eamed
premium and accident year payout pattern. The carried reserves can then be
calculated as a function of the ultimate loss reserve, the expected loss reserve
and the appropriate IBNR factor. It is important to recognize that since each
line of business has its own characteristics, all of the above projections need to
be performed on a line-by-line basis before being aggregated to a total

company level.

To reconcile the model results to forecasted proft and loss statements,

assumptions regarding taxes, premium collection patterns, and various other
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liability items (including non-cash flow items) are required. With this
information, stochastic income statements and balance sheets can be
produced on a statutory, GAAP and economic basis. Further information
concerning asset and liability model requirements for property/casualty

insurance companies can be found in Almagro and Sonlin [1996].

Consolidation and Analysis

In Step 3, from the integrated risk management flowchart, the liability and asset
simulations are fed into an insurance optimization model to solve for an efficient
frontier (a set of portfolios that provide the highest reward for a given level of
risk). There are an unlimited number of objective functions that can be used for
optimization. Some simple objective functions can be defined as mean ending
surplus (statutory surplus, shareholders’ equity, or economic value) for the
reward measure, and the standard deviation of ending surplus for the measure
of risk. Alternatively, we can look at various downside risk measures or

company specific risk/reward functions.
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Figure 6

Efficient Frontler - Surplus and Volatility Results
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Figure 6 shows an example of an efficient frontier using ending economic
surplus as the reward measure, and the standard deviation of ending economic
surplus as the risk measure. It is important to note that the efficient frontier
plots expected results only. One must analyze the entire distribution of results
to determine the optimal choice based on the company's risk tolerance. Figure
7 shows the distribution of results for three selected portfolios from the efficient

frontier.
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Figure 7

Efficlent Frontler - Surplus and Volatility Results
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Once efficient portfolios are identified, the “analysis of results” phase of the
integrated risk management process (Step 4) can commence. Two of the more
common types of analyses performed are decomposition of risk and downside
risk analysis. These types of analyses identify the factors that have the
greatest impact on the company's overall risk, and, as a result, require
additional sensitivity testing (Step 5) or the identification of appropriate risk
mitigating strategies. See Correnti and Sweeney [1994/1995], and Correnti,

Nealon and Sonlin [1996/1997] for additional details on the process.

The end results of an integrated risk management process goes far beyond the
objectives and goals of traditional ALM. Like traditional ALM, a primary use of
integrated risk management is to determine an appropriate investment strategy.

However, by being able to analyze a company in the aggregate and in a fully
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integrated framework (integrating liabilities, assets, and capital markets), the
company has an invaluable tool which can help evaluate a wide range of
business decisions and quantify various risk management strategies. For
example, an integrated risk management process can be used to analyze a
company'’s business mix and determine the optimal mix of premium to allocate
to each of its lines of business. It could be used to evaluate possible
acquisitions and divestitures in light of the impact these decisions would have
on the total economic risklproﬁle of the company. Alternatively, such a model
could assist in determining the appropriate level of reinsurance from a total
company viewpoint, and to determine the value/cost tradeoffs of various

reinsurance strategies.

Decomposition of Risk

Variance analysis techniques are used to investigate the effects of two or more
factors that influence an outcome. The method described below allows us to
decompose the total risk facing an insurance company into its key components.
In this framework, the total variance represents the volatility of ending surplus
resulting from a particular asset portfolio chosen from the efficient frontier. To
analyze this volatility further, one can break down the total risk into key drivers
such as asset risk and liability risk. ldentifying and comprehending the factors
that contribute to the total risk for the company allows management to develop
strategies to mitigate its risk exposure or to exploit market conditions. In either
case, the company will have a better understanding of its risk profile and will be

able to take proactive steps to improve that position in the future.
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In general, recall that:

VAR(x + y)= VAR(x) + VAR(y) + 2COV(x,y) 1)
= VAR(x) + VAR(y) + 2CORREL(x,y) x

STDDEV (x) x STDDEV(y)

where
VAR(x) = E[(x—ﬂx)Z] = I(x—p)2pr(x),
COV(x,y) = E|(x= ux)(y = tay)] = EZ(x = pe)(y = 11y )Pr(x.) .
STDDEV(x) = JVAR(x) ; STDDEV (y) = \JVAR(Y) ;

STDDEV(x+y) = JVAR(x +y) @)

and
CORREL(x,y) = COV(x,y) + {STDDEV(x) x STDDEV(y)}

It is important to observe that if two variables are perfectly correlated (i.e.,

CORREL(x,y) = 1), then equation (2) reduces to:

STDDEV (x+y) = STDDEV(x) + STDDEV ().
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For correlations less than 1, the standard deviation of the sum of two variables
will be less than the sum of the two standard deviations. In other words, if

CORREL(x,y) <1, then
STDDEV (x +y) < STDDEV(x) + STDDEV(y). (3)

The covariance (or correlation) component of the total variance will reduce the
overall standard deviation of a distribution unless the underlying variables are
perfectly correlated. This fact is crucial to our risk management process.
Additional factors (such as new asset classes or new lines of business) that in
isolation appear to be risky, may improve the overall company risk profile when
viewed in aggregate provided that the new factor is not perfectly correlated with
all of the existing factors. This observation will be explored in further detail in

the case study below.
For three variables, the formula for variance expands to:
VAR(x+y+12) = VAR(x) + VAR(Y) + VAR(z) + 2COV(x,y) + (4)

2C0V(x,z) + 2COV(y,2)

and,

STDDEV(x+y+1z) = JVAR(x+y +z) (5)
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As above, unless the factors are perfectly correlated, the resulting standard
deviation of the sum of the variables will be less than the sum of the standard

deviations, i.e.,

STDDEV(x + y +z) < STDDEV(x) + STDDEV(y) + STDDEV(z).

We are now ready to discuss the actual methodology of isolating individual risk

factors.

Methodology

There are two main components that contribute to the total risk of an insurance
company. They are the risk arising from the uncertainty in the economy and
capital markets (asset risk) and the risk arising from the uncertainty in the
ultimate loss payouts (liability risk). Further, the asset risk can be separated
into the uncertainty surrounding the appropriate economic discount rate
(discount rate risk) and the uncertainty in the asset class total returns (capital

market risk). These risk breakdown components are outlined in Exhibit II.
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Figure 8 DECOMPOSITION OF RISK COMPONENTS

TOTAL RISK
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This process can be used to isolate each of these risk components by holding
two of the factors deterministic (constant), while allowing the third factor to be
stochastic (variable). For example, to isolate the contribution to total risk from
liability uncertainty, the model is run holding asset returns and interest rates
constant while allowing liability cash flows to be stochastic. By running the
model with deterministic liability cash flows and interest rates and stochastic
asset returns, the capital market risk component can be identified. Finally, by
making the liabilities and asset returns deterministic while allowing interest
rates to be stochastic the model will identify the discount rate component of
total risk. Table 1 outlines the eight runs necessary to complete a

decomposition of risk analysis (S = Stochastic, D = Deterministic).
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Table 1

Daecomposlition of Risk Runs

Capital Discount]
Run Liabilities Market Rates
A S S S
B S S D
(o] S o] S
D S D D
E D S S
F D s D
G D D S
H D 3] D

Run A, which assumes liabilities, asset returns and interest rates are all
stochastic, represents the total risk to the company. By “turning off" discount
rate and capital market volatility, we can determine the contribution to total risk
arising from the liabilities (Run D). Similarly, making the liabilities deterministic
allows us to quantify the impact of volatile capital market returns and diséount
rates (Run E). The other runs are necessary in order to calculate the
covariance components of risk. Note that Run H, which assumes that all
factors are deterministic, will have zero volatility and will represent the
company's forecast as described earlier in this paper. The results of these runs
will allow for the identification of each of the variance and covariance terms

identified in equation 4.

The following case study illustrates the steps involved in decomposing the

volatility of a property/casualty insurance company into its key risk components,
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namely liability risk, discount rate risk, and capital market risk and how this

information can be used to make more informed decisions.

Case Study

As described above, decomposition of risk is an effective means for isolating
and quantifying the key components of a company's total risk exposure. By
identifying the major contributors of risk, management is better positioned to
evaluate the consequences of  strategic decisions that involve these
components. Further, by identifying the covariance components between these
risk factors, the company will be better able to evaluate the potential benefits of

diversification and/or hedging activities.

The following case study shows how decomposition of risk can be used to help
a property/casualty insurance company more effectively make business
decisions. Property/Casualty Insurance Company (PCIC) is a hypothetical
insurance company with rapid growth plans. PCIC writes primarily short-tailed
property lines. As a result, PCIC has amassed a substantial amount of CAT
exposure. In response to the large potential variability of their liabilities, PCIC
has traditionally invested its assets very conservatively: their current investment
strategy is 20% cash and 80% bonds. Even with their conservative investment
strategy, PCIC’s senior management team was concerned that a large CAT
might force them to seek a capital infusion in order to avoid regulatory action.

This analysis focuses on two basic questions. First, what is the probability that
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PCIC will need a capital infusion during the next three years given its current
business plan. Second, if necessary, what is the best way to combine
reinsurance and/or a revised asset allocation to reduce this capital risk while
minimizing the reduction in economic value at the end of the three-year time

horizon.

PCIC's liabilities were modeled based on a thorough analysis of industry and
PCIC historical loss ratio data and payout patterns. The historical information
was combined with PCIC management's business plan and results from a
commercially available CAT model to generate 500 simulations of future
premiums, loss payments and expenses using the process described above.
PCIC's investment options were broken down into the following five asset

categories:

e Cash Equivalents

e Short Term Bonds - 1to 5 Years

s Medium Term Bonds - 5 to 10 Years
* Long Term Bonds - 10 to 30 Years

» Large Capitalization Stocks

Five hundred simulations of income and total returns for each of these five

asset classes were generated and merged with the previously generated
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liability scenarios. PCIC's current asset allocation is 20% to cash, 25% to short

term bonds, 50% to medium term bonds and 5% to long term bonds.

In order to set the baseline values for the analysis, PCIC's three-year business
plan and current asset allocation strategy were run through the system. The
system calculated the economic value and the progression of statutory surplus
for each of the 500 scenarios modeled. The major differences between PCIC's
economic value, as defined in the system, and its projected statutory surplus
are: 1. economic value reflects the market (not book) value of all assets, 2.
economic value discounts the future liability cash flows at the projected market
rates of interest and 3. economic value includes a component related to future
business, even business renewed beyond the end of the time horizon. Based
on these 500 simulations, PCIC's average economic value at the end of the
three-year horizon was $919.9 thousand with a standard deviation of $186.8
thousand. Based on the assumption that PCIC would need a capital infusion in
any simulation in which the premium to surplus ratio exceeded 3.0 at any time
during the three-year time horizon, these same simulations indicated that there
was roughly a 5% chance that PCIC would need to raise capital during that

time frame.

PCIC’s management was comfortable with both the average economic value

and economic risk associated with their current asset allocation. What

concerned them was having such high a probably of needing to raise capital,
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especially given the large uncertainties associated with the CAT model's loss
predictions. In order to better understand the drivers of this risk, both the
economic value and statutory surplus risk were decomposed into an
underwriting and an asset component. Specifically, by holding the loss,
expense and premium cash flows constant and letting the capital market
returns and economic discount rates be stochastic, PCIC was able to identify
the component of total risk that was the result of its current asset strategy.
Further, by holding the capital market returns and economic discount rates
constant while using stochastic liability cash flows, PCIC was able to identify
the component of total economic risk attributable to their underwriting

operations.

Tables 2 and 3, below, show the asset and liability components of risk, as well

as the corresponding covariance between the assets and the liabilities.
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Table 2

Decomposition of Total Economic Value Risk - Current Portfollo

Capnal Discount Std Uev Variance
Run Liabilities Market Rates ( in $000s) { in $000s)
A S S S 186.6 34,814.3
D S D D 183.5 33,674.8
E D S S 44.6 1,992.3
COV (Llab, Cap Mkt + Disc Rates)
A VAR (Liab+Cap Mkt+Disc Rate)} 34,814.3
D VAR (Liab) 33,674.8
E VAR (Cap Mkt+Disc Rate) 1,992.3
COV (Liab.Cap Mkt+Disc Rate) = (A-D-E)* .5 (426.4)
CORREL (Liab,Cap Mkt+Disc Rate) (0.052)
VAR ( Llab + Cap Mkt + Disc Rates) % Total
D VAR (Liab) 33,674.9 96.7%
E VAR (Cap Mkt+Disc Rate) 1,992.3 5.7%
COV {Liab,Cap Mkt+Disc Rate)* 2 (852.8)
VAR (Liab+Cap Mkt+Disc Rate) 34,814.3
STDDEV (Liab+Cap Mkt+Disc Rate} 186.8
Table 3
Decomposition of Total Statutory Surplus Risk - Current Portfollo
Capifal Discount Std Dev Variance
Run Liabilities Market Rates (in $000s) { in $000s)
A S S S 179.0 32,028.8
D S D D 178.9 32,0041
E D S S 22.8 520.2
COV (Llab, Cap Mkt + Disc Rates)
A VAR (Liab+Cap Mkt+Disc Rate) 32,028.8
D VAR (Liab} 32,004.1
E VAR (Cap Mkt+Disc Rate) 520.2
COV (Liab,Cap Mkt+Disc Rate) = (A-D-E)* .5 (247.8)
CORREL {Liab,Cap Mkt+Disc Rate) (0.061)
VAR ( Llab + Cap Mkt + Disc Rates) % Total
D VAR (Liab) 32,0041 99.9%
E VAR (Cap Mkt+Disc Rate) 520.2 1.6%
COV (Liab,Cap Mkt+Disc Rate)* 2 (495.5)
VAR (Liab+Cap Mkt+Disc Rate) 32,028.8
STDDEYV (Liab+Cap Mki+Disc Rate) 179.0
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By decomposing risk into its asset and liability component parts, it could be
seen that over 95% of PCIC's total economic and statutory risk, as measured
by variance, was due solely to the uncertainty surrounding the liability loss cash
flows. Both PCIC’s asset strategy and the covariance component of risk were
negligible. As a result, the next step was for PCIC to develop an alternative
reinsurance plan. After this plan, which included a substantial quota share
treaty on one of the more CAT-prone lines, had been developed, the liability

and financial runs were updated with the revised information.

As expected, the probability of needing to raise capital was reduced to a more
acceptable level (i.e., less than 1% over the three-year time horizon) as a result
of the revised reinsurance. In addition, the overall economic risk was reduced
from $186.8 thousand to $111.6 thousand. Unfortunately, the overall

economic value was also reduced from $919.9 thousand to $823.0 thousand.

PCIC's management was uncomfortable giving away nearly 10% of their
company's economic value even given the dramatic reduction in risk. Given
the small amount of risk generated by the asset portfolio, which was confirmed
by decomposing the risk of the revised reinsurance position in Tables 4 and 5,
we were confident that PCIC's asset allocation strategy could be changed to
improve the economic value without sacrificing the risk reduction achieved. In
order to identify such a strategy, our proprietary insurance optimizer was

employed. Figure 9 shows PCIC's asset allocation efficient frontier along with
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the risk/reward point corresponding to PCIC's current portfolio with and without

the reinsurance.

Table 4
Decomposition of Total Economic Value Risk - Revised Relnsurance
Capnal Discount — oid Dev Vanance
Run Liabilities Market Rates ( in $000s) ( In $000s)
A S S S 111.5 12,429.6
D S D D 104.5 10,824.0
E D S S 39.9 1,594 .4
COV (Liab, Cap Mkt + Disc Rates)
A VAR (Liab+Cap Mkt+Disc Rate) 12,429.6
D VAR (Liab) 10,824.0
E VAR (Cap Mkt+Disc Rate) 1,594.4
COV (Llab,Cap Mkt+Disc Rate) = (A-D-E)*.5 (44 .4)
CORREL (Liab,Cap Mkt+Disc Rate) (0.011)
VAR ( Llab + Cap Mkt + Digc Rates) % Total
D VAR (Liab) 10,924.0 87.9%
E VAR (Cap Mkt+Disc Rate) 1,594.4 12.8%
COV (Liab,Cap Mkt+Disc Rate)* 2 (88.8)
VAR (Liab+Cap Mkt+Disc Rate) 12,429.6
STDDEV (Liab+Cap Mkt+Disc Rate) 111.5
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Table 5

Decomposition of Total Statutory Surplus Risk - Revised Reinsurance

Tapital Discount Std Dev Vanancs
Run Liabilities Market Rates (in $000s) (in $000s)
A S S S 88.5 9,698.7
D S D D 98.2 9,645.2
E D S S 15.8 250.4
COV (Liab, Cap Mkt + Disc Rates)
A VAR (Liab+Cap Mkt+Disc Rate) 9,698.7
D VAR (Liab) 9,645.2
E VAR (Cap Mkt+Disc Rate) 250.4
COV (Liab,Cap Mkt+Disc Rate) =(A-D-E)* 5 (98.4)
CORREL (Liab,Cap Mkt+Disc Rate) (0.063)
VAR ( Llab + Cap Mkt + Disc Rates) % Total
D VAR (Liab) 9,645.2 99.4%
E VAR (Cap Mkt+Disc Rate) 250.4 2.6%
COV (Liab,Cap Mkt+Disc Rate)* 2 (198.9)
VAR (Liab+Cap Mkt+Disc Rate) 9,698.7
STDDEV (Liab+Cap Mkt+Disc Rate) 98.5
Figure 9
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Based on these results, PCIC was convinced that they could minimize the
economic value reduction by taking on substantial additional risk on the asset
side. Specifically, they were interested in a 50% stock, 50% short term bond
allocation. This mix seemed to offer a reasonable trade-off between additional
economic value (i.e., an increase from $823.0 to $869.5 thousand) and
additional economic risk (i.e., an increase from $111.6 to $144.8 thousand)
over just implementing the revised reinsurance. In addition, when we ran this
strategy through the model, we discovered that the probability of needing a
capital infusion was still roughly 1%. Finally, the decomposition of risk results
for this asset allocation indicated a much better balance between liability and

asset risks (see Tables 6 and 7).

Table 6
Decomposition of Total Economic Value Risk - Revised Asset Allocatlon
Capital Discount Sid Dev Vanance
Run Liabilities Market Rates ( in $000s) (in $000s)
A S S S 1446 20,916.7
D S D D 104.4 10,903.1
E D S S 107.6 11,571.5
COV (Liab, Cap Mkt + Disc Rates)
A VAR (Liab+Cap Mkt+Disc Rate) 20,916.7
D VAR (Liab) 10,903.1
E VAR (Cap Mkt+Disc Rate) 11,571.5
COV (Liab,Cap Mkt+Disc Rate) = (A-D-E)* .5 (779.0)
CORREL (Liab,Cap Mkt+Disc Rate) (0.069)
VAR ( Llab + Cap Mkt + Disc Rates) % Total
D VAR (Liab) 10,903.1 52.1%
E VAR (Cap Mkt+Disc Rate) 11,571.5 55.3%
COV (Liab,Cap Mkt+Disc Rate)* 2 (1,558.0)
VAR (Liab+Cap Mkt+Disc Rate) 20,816.7
STDDEV (Liab+Cap Mkt+Disc Rate) 144.8
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Table 7
Decomposition of Total Statutory Surplus Risk - Revised Asset Allocation

Tapita Discount Std Dev Variance

Run Liabilities Market Rates (in $000s) ( in $000s)
A S S ) 154.5 23,856.0
D S D D 115.9 13,431.7
E D S S 1M11.7 12,469.5

COV (Llab, Cap Mkt + Disc Rates)

A VAR (Liab+Cap Mkt+Disc Rate) 23,856.0
D VAR (Liab) 13,431.7
E VAR (Cap Mkt+Disc Rate) 12,469.5
COV (Liab,Cap Mkt+Disc Rate) = (A-D-E)* .5 (1,022.6)
CORREL (Liab,Cap Mkt+Disc Rate) (0.079)

VAR { Liab + Cap Mkt + Disc Rates) % Total
D VAR (Liab) 13,431.7 56.3%
€ VAR (Cap Mkt+Disc Rate) 12,469.5 62.3%

COV (Liab,Cap Mkt+Disc Rate)* 2 (2,045.1)
VAR (Liab+Cap Mkt+Disc Rate) 23,856.0
STDDEV (Liab+Cap Mkt+Disc Rate) 154.5

This outcome shows the importance of being able to analyze several different
decisions (e.g., asset allocation and reinsurance) in a single, consolidated
analysis. Specifically, PCIC would not have been able to assess this outcome
using the traditional approach of evaluating these types of decisions
independently. On a stand alone basis, PCIC’s senior management would
probably have rejected just the revised reinsurance structure since it gave up
too much economic value. In addition, they would have never considered
increasing PCIC’s asset risk given their concern over requiring additional
capital. As Figures 10 and 11 show, by combining the decisions, we have
developed an economically viable alternative with substantially less downside

exposure,
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However, this combination is not without its own problems. One of its largest
drawbacks is the large decrease in GAAP Net Operating Income and the
resulting reduction in ROE. Specifically, when the business is profitable, the
reinsurance cedes off a substantial amount of Operating income. This is
compounded by the fact that realized gains and losses, which comprise most of
the total return for equities, are not included in Operating Income. One way to
offset this impact would be for PCIC to swap its 150 million of debt from fixed to
floating. While the model can be used to perform this type of analysis, the

details of this strategy will be left for a subsequent paper.

Another issue is the impact this asset/reinsurance strategy would have on
rating agency, regulatory and analysts’ perceptions and views towards PCIC.
Obviously, the strategies illustrated in this case study were extreme to
demonstrate our point. Substantial work needs to be done to educate
constituents on the benefits of a DFA type approach compared to the current
piecemeal analysis which can be detrimental to the long term well being of the

industry.

Conclusion
By undertaking this analysis, PCIC not only identified their asset and liability
risk exposures, but, more importantly, their combined exposure. Armed with

this information, they are able to revise both their reinsurance and asset
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allocation strategies to reduce their solvency concerns while minimizing the

amount of decrease in expected economic value.

It must be made clear, however, that this analysis was based on a
property/casualty insurance company with a large CAT exposure. Because the
process is dependent on a company's general ALM characteristics (i.e., liability
structure, surplus level) different companies will likely experience different

results.

This paper presents only one possible application of decomposition of risk
analysis within a total integrated risk management framework. PCIC could
have performed a similar analysis on its business mix strategy to determine the
optimal mix of premium to allocate to its different lines of business. It could
have also evaluated possible acquisitions and divestitures in light of the impact
these decisions would have on the total economic risk profile of the company.
Finally, decomposition of risk could help PCIC better control volatility of

shareholider’s equity or statutory surplus over shorter time horizons.

The diverse characteristics of numerous risk elements at play within a large
insurance company compound the difficulties of making appropriate decisions
based on the overall benefit, or value, to the corporation. Management is often
forced to make strategic and business decisions within the confines of each

individual business or risk component. Moreover, even when individual
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decisions are correct, companies can still experience suboptimal financial
results with respect to managing the overall risk/reward value of the total
company. By using total integrated risk management and decomposition of risk
to evaluate decisions within each subcomponent, management will be better
positioned to make decisions that will benefit the company within a holistic

decision making framework.
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Using the Public Access DFA Model:
A Case Study

Abstract

This paper describes the application of a publicly available property-liability
insurance DFA model to an actual insurance company. The structure and key
parameters of the madel, as well as how to run the model, are explained in detail.
A copy of the report to management of the company is included. The initial
company reaction to this model was favorable. Management intends to use the
model for such purposes as long term planning, capital allocation, reinsurance
negotiations, competitor analysis and external communications with the regulatory
and investment communities.
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This paper describes the application of a DFA model to an actual insurance
company. One goal of this work is to help actuaries learn about DFA by observing
the use of a working model in a realistic setting. The model described in this
paper is publicly available and accessible over the Internef. The company that
generously allowed its data to be used in this exercise has asked to remain
anonymous. Thus, minor modifications have been made to the data to help
preserve the anonymity of this insurer. These changes do not affect the operation
of the DFA model or obscure the data gathering process involved in running a DFA
model.

Introduction

The DFA model used in this paper, termed Dynamo2, was developed by the
actuarial consulting firm of Miller, Rapp, Herbers, & Terry, Inc. The model is
accessible via their website (www.mrht.com) and requires only Microsoft Excel
and @Risk in order to run. For those without access to @Risk, a limited version of
the model can also be run solely in Excel. The Excel version is also useful for
running a small number of iterations quickly to check the reasonableness of input
values.

The generat purpose of this model is to simulate a large number of possible
outcomes from specific input data. By viewing the expected values and
distributions of key variables, such as statutory surplus, premium-to-surplus ratios,
and net income, the user can determine if these results are acceptable. If they
are, then they validate the operating strategy of the company, subject to the
general caveats of using DFA models. If not, then management can vary the input
values to learn which changes would be effective in improving results to an
acceptable level.

The model, when run using @Risk, allows the user to examine any of the
stochastic parameters of interest determined as an @Risk function. Thus, users
can view the randomly generated values for all of the unacceptable outcomes to
see if any factor tended to be responsible for a significant number of these cases.
For example, if a large percentage of the cases in which surplus falls below a
minimum standard involved a high level of catastrophe losses, then the company
may be able 10 reduce catastrophe exposure by revising its reinsurance
arrangements or shifting its geographic distribution. Management could use the
DFA model to test the effects these changes would have on the results by re-
running the model with the revised input before deciding whether these
approaches should be adopted.

The basic operation of the model is to generate insurance company cash
flows and then evaluate the effect of these cash flows. The model integrates the
cash flows from investments and underwriting, including catastrophes and taxes.
The model consists of six different inter-related modules: underwriting,
investments, catastrophes, taxation, an interest rate generator, and a payment
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pattern generator. Values generated in one module are shared with the other
modules in subsequent calculations.

This paper focuses on an application of DFA. In order to obtain a fuller
understanding of DFA modeling, including the limitations of this approach, readers
should refer to additional sources. Some useful sources are: D’Arcy, Gorvett, et.
al. (1997}, D'Arcy, Gorvett, Herbers and Hettinger (1997}, CAS Committee on
Valuation and Financial Analysis (1995), CAS DFA Handbook {1996) and the
multi-part Actuarial Review series "How DFA Can Help the Property-Casualty
Industry” (1996-1998).

The Test Company

The company used to test this mode! is a mid-sized property-liability insurer
that operates nationwide. The major lines are private passenger and commercial
automobile, commercial multi-peril, workers compensation and homeowners. The
company has standard reinsurance contracts: excess of loss, quota share and
catastrophe coverage. Since the company has been in operation for more than
twenty years, enough historical information is available to generate loss payout
triangles, frequency and severity trends, loss ratios by age of business, and the
other input required for the DFA model.'

Once the company’s data were received, they were input into Dynamo2.
Results from the model were generated, and incorporated in a report which was
transmitted to the company. That report is included as an Appendix to this paper -
- in order to follow the progression of this project, the reader is advised to read the
Appendix at this point. This initial report served as the basis for discussions on
DFA at a meeting between the authors of this paper and representatives from the
company; company personnel! involved in these discussions included actuaries,
investment personnel, and business planning staff. This report provides both an
introduction to DFA and a starting point for a detailed dynamic financial analysis of
the firm. The questions raised at that meeting will be covered later in this paper,
after a detailed explanation of this DFA model.

The Model

The DFA model used in this paper starts with detailed underwriting and
financial data showing the historical and current positions of the company,
randomly selects values for 4,387 (!) stochastic variables, calculates the effect on
the company of each of these selected values, and then produces summary

! Generating and gathering the data needed to run this model required the efforts of many
people at the company, including the Chief Financial Officer, the Chief Investment Officer and the Chief
Actuary, as well as members of their staff. We are very grateful for their cooperation and willingness
to supply us with their data; without their help, this paper could not have been written.
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financial statements of the company for the next five years based on the combined
effect of the random variables and other deterministic factors. All this represents
a single iteration of the model. The model is set up to run multiple iterations of
the model and analyze the distribution of the various outcomes.

Interest Rate Generator

The primary driver of this DFA model is the interest rate generator.
Extensive work has been done in finance to develop sophisticated interest rate
models. The interested reader is referred to Chan, Karolyi, Longstaff and Sanders
{1992} and Hull (1997) for detailed descriptions of some of these models. In this
DFA model, a relatively simple {in comparison with other interest rate models)
single factor interest rate model is used, one derived by Cox, Ingersoll, and Ross
{1985) (hereafter referred to as CIR). This simpler interest rate model was
selected for two primary reasons. First, property-liability insurers are generally
less exposed to interest rate risk than life insurers and banks, two industries for
which much of the complex interest rate modeling has been performed. Thus, it is
not quite as critical for property-liability insurers that interest rates be modeled as
precisely. Second, and more importantly, it is vital that the users of the model
fully understand the various components of the model. Actuaries are generally not
very familiar with the terminology and approaches of interest rate modeling. Thus,
beginning with a relatively straightforward interest rate model should allow the
users to become more comfortable with the DFA model relatively quickly. Later,
more sophisticated interest rate models can be incorporated and evaluated.

The CIR model describes the short term interest rate as a mean-reverting
stochastic process. The CIR interest rate mode! was originally developed in a
continuous-time framework; in that environment, the process dr for the
instantaneous change in the level of the short-term risk-free interest rate is
characterized by the equation

dr = x(0-r)dt + ofrdz

where 8 = the long-run mean to which the interest rate reverts,
the speed of reversion of the interest rate to its long-run mean,
r = the current (instantaneous) short-term interest rate,

x
]

o = the volatility of the interest rate process (as expressed by the
standard deviation), and
dz = a standard Wiener process (essentially, a random walk).

For purposes of this DFA model, a discrete-time version of this model is
required. According to Cox, Ingersoll, and Ross (1985), the short-term interest
rate, in discrete-time, follows a (non-central) chi-squared distribution with degrees
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of freedom and non-centrality parameters being a function of the x, 6, and o
parameters above. However, in this DFA model, we approximate the discrete-time
form of the CIR model using the following formula:

Ar = a(b-NAt + s/fr €

where Or = the discrete-time (annual) change in the short-term interest rate,
At = the discrete time interval (one year}, and
e = a random sampling from a standard normal distribution.

The CIR model separates interest rate changes into two components, one
deterministic component, alb-r), and one stochastic component, sr *®¢. The
deterministic component moves the current interest rate part way (represented by
a) back toward the long term mean b. The further the current interest rate is from
this long term mean, the greater the deterministic component of the interest rate
movement. The stochastic component causes the interest rate to jump around
this otherwise level trend back toward the mean. Since the stochastic component
is multiplied by the square root of the current interest rate, when interest rates are
low, the stochastic component is small. This reduces the likelihood that interest
rates will become negative. {In the continuous time application of this model,
interest rates cannot become negative because if the interest rate were ever to
become zero, which a continuous line must cross before becoming negative, then
the interest rate will have no stochastic component and will simply be pulled back
toward the long term mean (it will actually become a{b-r})}). However, in the
discrete approximation of this model, negative interest rates can occasionally
occur.}

In this interest rate model, the current interest rate is the actual short-term
interest rate in the economy at the time the model is run. As of mid-March, 1998,
3 month Treasury bills, a commaon proxy for short term rates, were yielding
4.985%. Thus, in this model, r(0) is set to 5%. The long-run mean, b, is also set
at 5%. (Empirical tests of the CIR model on historical data indicate a value for the
long-run mean of approximately 8%. These tests are based largely on data from
the 1980s. When b is set at 8% in this model, any investment strategy based on
long-term bonds tends to under-perform a shorter-term portfolio, since interest
rates would tend to move upward, depressing bond prices. To avoid introducing
this bias, the long term mean was selected to be the same as the initial value of
the short term interest rate. However, this is a variable that can, and should, be
altered by the user to reflect individual views of interest rate movements, and to
test the sensitivity of results to this variable.}

Since, under the above parameter value selections, the value of b-r(0) is
zero, the deterministic component of the interest rate change is zero in the first
year. The stochastic component, then, determines the entire interest rate change.
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In one run of the model, the value of € in the first year was randomly selected by
the model to be -1.00245. Thus, the calculation for the change in interest rates in
that model run was:

Ar = sy € = (0.0854)(,/0.05)(-1.00945) = -0.0193

Since the interest rate started at 0.05, the change of -0.0193 led to a new short-
term interest rate of 0.0307, or 3.07%.

Once selected, the short term interest rate is used to generate the term
structure of interest rates. Based on the interest rate model parameters selected,
and upon the simulated short-term interest rate, rates on zero-coupon Treasury
bonds are generated for each annual duration up to thirty years. This Treasury
term structure is used 10 determine the market value of the company’s bond
holdings. The specific equations used to generate the term structure are taken
from Cox, Ingersoll, and Ross (1985):

R(rAT) = rB(r._T)T-_lrlz_A(r_.T)_

where R is the yield-to-maturity at time ¢ on a discount bond that matures at
time 7, and

2ye [(=A-yXT-012
(k+A+y)(e 70142y

2e0ia?

ATy = |

2770 - 1)

B(LT) =
(k+A+y)(eYT0-1)+2y

Y = ((k+A)+20%)""

The short-term interest rate is also used to determine the general inflation
rate, based on the following formula:
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I

oy = a+brise

.

where /¢y is the general inflation rate,
a is a constant (set equal to 0},
b is a constant {set equal to .725),
r is the short term interest rate,
s is the standard deviation of the residuals (here 0.025), and
€ is a random sampling from the standard normal distribution.

The parameter values specified above were derived from regressions on the
historical relationships between short-term interest rates and the consumer price
index. Continuing the sample case illustrated above for the interest rate (3.07%),
the value for s€ in one model run was randomly selected as -0.00459. Thus, the
general inflation rate for this year was calculated as

Ip, = 0.725(0.0307)-0.00459 = 0.0177

The inflation rate for each line of business is then calculated based on the
simulated general inflation rate, according to the following formula:

Log=a+bly, +s5c¢

where /55 is the line of business specific inflation rate,
a is a constant that varies by line,
b is a constant that varies by line,
. lep is the general inflation rate,
s is the standard deviation of the residuals, and
€ is a random sampling from the standard normal distribution.

The parameter values used to determine the line of business inflation rates
in the DFA model are shown in the following table, along with a continuation of
the sample model run described above, in which the short-term interest rate was
3.07% and the general inflation rate 1.77%. The parameter values were derived
from regressions on the historical relationships between the consumer price index
and line of business claims inflation rates.
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Line of Business Assurned a b S Sample Line of
Inflation in Business Inflation
Payment Pattern

Homeowners 0.052 0.032 | .54 1.0173 .037

PP Auto - Liability 0.067 0.047 | .55 | .0194 .060

PP Auto - Phys Dam 0.043 0.011 | .88 | .0307 .016

Comm Auto - Phys Dam 0.043 0.011 | .88 | .0307 .053

Comm Auto - Liab 0.067 0.047 | .55 | .0194 .074

CMP - Liab. 0.045 0.025 | .55 |.0147 049

CMP - Prop. 0.045 0.025 | .55 |.0147 .028

Other Liab. 0.073 0.058 | .40 | .0206 .061

Other Liab. - Umbrella 0.073 0.058 | .40 | .0206 .101

we 0.068 0.047 | .58 | .0250 075

The line of business inflation rates are used for two purposes. First, they
affect loss development. The initial loss reserves presume a specific inflation rate;
the values selected for this run are listed on the above table. To the extent that
the calculated line of business inflation rate differs from this value, loss payments
will diverge from the initial loss reserves.

The second effect of the line of business inflation rates is on loss severity,
which drives the need for future rate increases. In the present application of this
mode! for this specific company, frequency was assumed to be stable, so the only
factor that affects the projected pure premium is the severity trend. Thus, the line
of business inflation rate determines the indicated rate level change.

Jurisdictional Risk

Each state poses unique advantages and disadvantages to the operation of
an insurance company. Those advantages and disadvantages may take the form
of judicial, legislative, or regulatory risk. For example, the likelihood of retroactive
workers compensation benefit increases, mandated premium rebates, generous
{for the policyholder) interpretations of contract provisions, and the ability to
obtain rate increases all vary by state.

In this model, jurisdiction risk is reflected in two ways. First, each state has
a range of “acceptable” rate changes -- that is, there is associated with each state
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a range of rate changes that can be implemented without extraordinary company
cost (in terms of time or money) and/or additional insurance department scrutiny.
Generally, these ranges limit rate increases more than they do rate decreases, and
the ranges are smaller in states with more restrictive regulation. The obvious
effect of strict rate regulation is to prevent insurers from increasing rates to the
degree they feel is necessary. However, a side effect of capping rate increases is
to make companies more reluctant to lower rates as much as would be otherwise
indicated if pure premiums are improving.

The other effect of jurisdictional risk is to introduce a lag in implementing
indicated rate changes. This lag, shown in the model in terms of years, is longer
in states with restrictive rate regulation. The lags indicated on the jurisdictional
risk exhibit included in the Appendix are estimated averages for rate increases and
decreases; the average lags in the model are multiplied by 1.50 for rate increases
and by 0.50 for rate decreases.

The jurisdictional risk parameters are based on a Conning & Company study
that ranks all states with respect to regulatory restrictiveness. States ranked as
most restrictive were assigned the lowest acceptable rate ranges and the longest
lags. The actual values were selected primarily based on the judgement of
individuals with experience with rate filings in those states.

As an example of jurisdictional risk in this DFA model, the range of
Homeowners rate changes in Massachusetts is from .85 to 1.06 (rates could be
lowered by 15% or increased by 6% without significant additional company cost
or regulatory scrutiny). Since the average lag is estimated to be ¥ year, it would
take 3 months to implement a decrease and 9 months to implement an increase.
The company’s distribution of writings countrywide is used to determine the
overall impact of jurisdictional risk.

Aging Phenomenon

The model reflects the aging phenomenon by separating writings for each
line of business into new business, first renewals, and then second and
subsequent renewals. Under the aging phenomenon, loss ratios gradually decline
with the length of time the policies have been in force with the company. For
more details on this experience, see Woll (1987), D’'Arcy and Doherty (1989),
D’Arcy and Doherty {1990) and Feldblum (1996). One requirement that this
approach introduces is the need for the company to supply exposures and losses
broken down by age of the business. Although this allocation is not needed for
any statutory or accounting reports, many firms maintain this information for
internal reports, although not necessarily in the detail required for the DFA model.
In this case, estimates of the loss frequency and severity by age of business can
be tried and the resulting loss ratio indications checked for reasonableness, before
finalizing these values. The overall result is that new business should have the
highest loss ratio, first renewal business should have a slightly lower loss ratio,
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and the remainder {second and subseguent renewals) should have the lowest loss
ratio. Based on data published in D’Arcy and Doherty (1990), the loss ratio on
new business ranged from 8 to 42 percentage points above the loss ratio on
second and subsequent renewals.

In the model, the distribution of exposures by renewal category is
determined as follows. For each line of business, renewal ratios are input that
show what percentage of new, first renewal, and second and subsequent renewal
business is renewed in the following year. Each renewal rate is applied to the
appropriate business from the prior year to determine how.many exposures are
renewed. For example, for Homeowners, the new business renewal ratio is 60
percent, the first renewal business renewval ratio is 90 percent, and the second and
subsequent renewal business is 95 percent. Thus, 60 percent of the exposures
that were new business in 1997 become first renewal business in 1998 and S0
percent of first renewal exposures become second and subsequent renewal
business in 1999. Thus, policy renewals are deterministic in this model. Since the
company has a target growth rate, the number of new policies written in a given
year is simply the number needed to achieve the growth target.

Underwriting Cycles

The premium level at which policies are written depends on the targeted
growth rate and the position in the underwriting cycle. The property-liability
insurance industry underwriting cycle has been the subject of extensive study and
is recognized as being quite complex. In line with the goal of keeping this model
as straightforward as possible, especially for this early version, the underwritng
cycle is simpifled. However, it still reflects the different relationships of growth
rates and price levels depending on the position of the cycle.

In this model, the underwriting cycle, which can vary /by line, is
characterized as being in one of four conditions: mature hard, mature soft,
immature hard and immature soft., In a hard market, rates can generally be
increased somewhat and growth may still be obtainable. In a soft market, rates
generally have to be reduced in order to grow. For each of the four cycle
conditions, the probability of moving to another condition in the cycle (e.g., from
mature soft to immature hard) is specified as an input, Thus, over the course of
the simulation, the company moves through different phases in the underwriting
cycle. .
In the simulation described in the Appendix, Homeowners is initially in a soft
market. Based on the parameters selected, there is a 70 percent chance of
remaining in a soft market and a 30 percent chance of moving to an immature
hard market in the next year. If the soft market continued and the company
wanted to achieve a high growth rate, then the company would have to lower
rates, or at least not fully implement any indicated rate increases, in the next year.




Catastrophes

A catastrophe is defined as any natural disaster causing in excess of $25
million in insured losses. The total number of catastrophes countrywide is
simulated based on a Poisson distribution, and then assigned to a “focal point”
state based on historical catastrophe experience. The size of each catastrophe is
then simulated based on a lognornal distribution, the parameters of which vary
according to the identity of the focal point state. For each simulated catastrophe,
the contagion effect of the catastrophic losses from the focal point to other states,
and by property line of business, is determined based on historical relationships.
Finally, the effect of these catastrophes on the company is determined by the
market share of the company in each state, by line of business.

For example, in Florida the probability of any number of catastrophes
occurring is determined based on a Poisson distribution with a mean of 0.6667.
This value, relative to the parameters for all other states, determines the likelihoad
of a catastrophe being assigned to Florida. For each simulated catastrophe, the
size is then determined based on the lognormal distribution with a mean parameter
of 2.7697 (in millions) and a variance parameter of 1.1563. For each catastrophe
in which Florida is the focal point, 86 percent of the loss is assumed to be incurred
in Florida, with the remaining 14 percent distributed to nearby states. All of these
parameters were calculated based on data from Property Claim Services over the
period 1949-1995. As an example, in one iteration of the model, no catastrophes
occurred in Florida in 4 of the 5 years simulated; in the fifth year (2001), two
catastrophes occurred, one causing $143 million in insured losses and the other
$269 million in losses.

It should be noted that the catastrophe module in this DFA mode! is meant
to produce reasonable estimates, and is not intended to replace the more rigorous
catastrophe models that are available. In fact, it is possible that the results from
other commercially available catastrophe packages could be used in this DFA
model.

Investment Results

Investment results for both fixed income securities and equities are
determined in the investment module. For bonds, both the statutory value and the
market values are calculated for each category of bond (Government, corporate,
municipal) and for each maturity segment indicated in the Annual Statement (e.g.,
one year or less, one to five years, etc.). The market value is determined based
on the term structure of interest rates obtained in the interest rate generator
module. The cash flows on bonds consider interest rates, coupon rates and
default rates, generated stochastically based on historical patterns.

The market value of equities is determined from a simulation based on the
Capital Asset Pricing Model. The rate of return on equities is determined in a two
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step approach. The initial expected market return is the risk free rate, as obtained
in the interest rate generator, plus a market risk premium of 8.5% (historical
average for 1926-1996). The adjusted market return is the initial expected return
minus 4 times the simulated change in the short term interest rate. A random
component based on a normal distribution with a mean of O and a standard
deviation of 15 percent is generated and added to the adjusted market return to
determine the overall market return for each year. The return for the company is
then determined by applying the equity beta, which is an input value.

Collecting Data

One decision that needs to be made is how to deal with multiple companies
operating under the same management. Many insurers have subsidiaries, but
operations are coordinated within the group. In this case, the model should be run
on the group as a whole, rather than for each individual company. However, if
more detail is needed, then each company can be modeled separately.

The primary source of input data for the model is the Annual Statement.
However, additional information is also necessary, which requires the company to
provide, or generate, some internal management reports. In addition, the company
needs to provide information about exposure growth anticipated, by line for the
next five years, and any shift in investment allocations that are contemplated.

Examples of the specific data requirements are illustrated on the exhibits
included in the Appendix. In a typical application of this model, some of the more
problematic data areas might potentially include exposures and rates by renewal
category, historic loss ratios by renewal category, and various aggregation issues
{the trade-off between data volume and its homogeneity when examining lines and
types of business). Also, in order to generate more credible cash flows, or to deal
with homogeneous data, Annual Statement lines of business can be aggregated or
split into separate components, as needed.

Running the Model

The first step in running the model (after the company-specific data has
been input) is to determine where the industry stands in the underwriting cycle for
each line of business. It is presumed that the insurance industry follows a time
dependent cycle of competitiveness. In a soft market, premium increases tend to
significantly reduce market share. Conversely in a hard market, policyholders find
it difficult to obtain insurance, so it is easier for an insurer to increase market
share.

The next step is to determine the number of iterations to be run. The higher
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the number of iterations, the more stable the distribution of outcomes is likely to
be, but the program will take correspondingly longer to run. As a word of advice,
when beginning to learn the program, this number should be kept small (5-10) to
minimize the time needed to complete the run. Frequently, it will be apparent from
even that limited output that something is amiss. After adjusting the input data
and the parameters until the user feels confident that they are reasonable, a larger
number of iterations {e.g., 1,000 or more) should be run to obtain the full benefit
of the DFA model.

At this point, reasonability checks should be performed to make sure the
input values are realistic. One check is to multiply frequency by severity and
divide the product by the average premium, for each age of business, to see if the
implied loss ratios had the appropriate relationship {new business highest, second
and subsequent renewal the lowest). Another check is that the average
catastrophe losses are within expected bounds.

The next step is to determine exactly what output is desired. Any value
that appears in the sections of the model where calculations are performed, or any
parameter generated by the model, is a potential output value. Premiums, surplus,
loss and operating ratios, investment returns, catastrophe losses, interest rates,
inflation rates, and regulatory ratios are all potentially useful output values. In
some cases additional detail might be desired. For example, the loss ratio by line,
by year and by age of business, direct, ceded, or net, could all be listed as output
variables. To determine the cause of a potentially high loss ratio, the frequencies,
severities, number of exposures and average premiums could also be listed.
However, at some point the magnitude of the output data could become
unmanageable. Since the model provides for ten lines of business forecasted for
the next five years, and exposures are maintained for new business, first
renewals, and second and subsequent renewals, if each value were shown for
direct, ceded and net values, there would be 450 loss ratios {plus frequencies,
severities, and exposures) for each iteration. Finding the cause of any adverse
indications would be a major chore. Thus, care needs to be exercised to keep the
output manageable, especially when the model! is being fine-tuned. The exhibits
included in the Appendix are indicative of the types of output that can be helpful.

Changing the Model’s Parameters
Since the DFA model is built in a spreadsheet environment, changing the
model’'s parameters is straightforward. The user merely needs to know which

input screen contains the key variables. The following table lists some of these
key variables, and their locations in the spreadsheet model.
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Sheet Cell
Variable Description Location Reference
UMW Cycle Position Users viewpoint on current General Input C6to C15
market conditions.
Growth Rates Expected growth rates in Premium input Row 22
exposures
Renewal Ratio Rows 30-32

Premium lnput

Expense Provisions

Commissions, General, Other
Acq., Taxes, Dividends, and
Nonrecurring Expenses

Premium Input

Rows 42, 46, 50,
54, 57,59

Q/S Ceding
Commission

Premium Input

Row 62

Exposure Changes

Use to Change Exposures
and Market Shares by State

Exposure Input

Selected 1997 Loss Input Rows 167 to 169
Severities
Selected 1997 Loss Input Rows 196 10 198
Frequencies
Selected ULAE Loss Input Rows 227 to 233
Provisions
Q/S Arrangements Loss Input Rows 2655-259
XOL Arrangements Includes Attachment Points Loss Input Rows 268 to 297
and Cost of Reinsurance
Stop Loss Includes Attachment Points Loss Input Rows 349 to 353
Arrangements and Cost of Reinsurance
Cat. Re Arrangements Includes Attachment Points Loss Input Rows 359 to 363

and Cost of Reinsurance

Stock Betas

Investment Input

Rows 95 to 98

Capital Infusions

Investment Input

Rows 86 to 91

Reinvestment

How Investment Income is

Investment Input

Rows 109 to 125

Allocations Reinvested
Long-Run Interest Rate Interest Generator c27
Current Interest Rate Interest Generator Cc29
General Inflation Interest Generator C35 to C37
Parameters
LOB Inflation Interest Generator Rows 54 to 56
Parameters
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U/W Cycle Parameters Includes Probability of U/W Cycle 'C7 to H34
Changing Market Condition Generator
and Supply/Demand Curves

Initial Reaction of the Company to the DFA Report

First I .

The company’s first direct exposure to the DFA model occurred at a
meeting between the authors and representatives of the company’s actuarial,
investment, and business planning departments. At this time the report included
in the Appendix was delivered and a detailed explanation of the DFA model was
presented. Many questions were raised at that point, a majority of which related
to asking for an explanation of how the model worked. However, there were also
a number of questions that will lead to model improvements and enhancements.
Overall, company personnel were enthusiastic about the model and have hopes of
using it in the future for strategic planning purposes. They also saw it as a tool to
help the different divisions of the company -- actuarial, financial, investment, and
planning -- work together. Finally, the company liked the software platform on
which the DFA model is based. The Excel spreadsheet format makes the model!
user-friendly and simple to change and enhance, and allows the user to examine
the inner workings of the model in a non-black box environment.

Concerns

The company expressed certain concerns regarding the model and the
results that were initially supplied to them. It was evident that the Base Case
indications were unacceptable {primarily due to the high growth goals of the
company); however, the managers felt that constraining growth was not a viable
alternative. Other options were explored, including increasing the new business
renewal rate. For Homeowners this value was 60 percent. Raising it to 80-90
percent caused some improvement, but not enough to turn results around
completely. Another change was to modify the maximum ¢eded under the
aggregate reinsurance contract. This also had a favorable effect on forecasted
results. .

In order to gain a better understanding of what was causing the resuits, two
additional values, the short term interest rate and catastrophe losses, were added
to the output page and the simulation re-run during the meeting. The ability to
modify the model and quickly see the impact of the changes was viewed very

" tavorably.

Some of the questions raised indicated the need for enhancements in future
versions of the model. One question related to prepayments on bonds and CMOs
as a function of interest rate_changes. Another wanted to examine the effect of
changing growth patterns by state, to examine the effect on the company of
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growing in a particular area, in this case a high catastrophic-risk state.

The company would like to use a DFA model for capital aliocation. The
current model examines the riskiness of the company as a whole. It was
suggested that separate runs could be performed for separate business segments
(commercial/personal lines or by regions) in order to determine capital needs.

Another question related to the ability to plug in output from sophisticated
fixed income security and catastrophe software into the DFA model. When
Dynamo2 was originally designed, it was anticipated that many users would have
access to different catastrophe models and might want to use those instead of the
catastrophe module built in to this model. It is apparent from this question that
similar issues relate to the investment modules.

Several questions related to the investment allocation. Currently the
investment allocation applies to new money. If the cash flow requires assets to be
sold, this is done proportionally. The investment managers would like to be able
to reallocate the entire investment portfolio and indicate which assets should be
sold, if necessary.

Another issue raised was the ability to focus on the difference between the
expected values indicated by running the model and actual results. Managers
wanted to be able to see why results differed from what was projected, so that
they could better understand what they did right if a year was better than
projected, or what went wrong if actual results were worse than expected. This
DFA model allows this to occur, but requires the user to retain detailed output
from the projections.

In examining the DFA runs, many questions were raised about what might
have been causing adverse experience. It was suggested that the program be
revised to capture detailed financial data on any simulation where surplus fell
below a certain level. Thus, the managers could look at what caused the
problems in order to better avoid them.

Applicati

In addition to expressing the desire to use the DFA model for capital
allocation purposes, the company also discussed the possibility of using the model
to look at other companies. This might allow them to gain insights into their
competitive position in the industry. The company also sees the model as a
significant strategic planning tool -- for example, in evaluating how growth in one
particular state affects the overall company. Another use was in reinsurance
contract negotiations, where the expected effect of different limits or other
contract terms could be evaluated. Finally, the CFO of the company expressed an
interest in using the model, not only internally, but also in external
communications. The investment community was specifically mentioned in this
regard, but other possibilities also include regulators, rating agencies, and
reinsurers.
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Variable Adj

During the presentation, several different computers loaded with the DFA
model were available, allowing the managers to break into groups and test
different DFA scenarios. For example, one group of managers adjusted the
interest rate parameters. Specifically, they raised the long-run mean interest rate
level to 10 percent and reduced the volatility parameter to O, to observe the effect
of increasing interest rates for @ small sample of runs. Other groups ran the mode!
after adjusting one or more of exposures, losses, the reinsurance program,
catastrophe parameters, exposure growth assumptions, and investment variables.
In still other cases, certain stochastic variables were “shut off” -- e.g., by setting
the volatility parameter of the variable equal to zero. This allowed the user the
opportunity to see the impact of certain stochastic variables without introducing
additional “noise” from those variables that were turned off.

In general, this exercise was seen as beneficial by all the groups, not just
the actuaries. Having a viable DFA model will serve to help the different areas of
the company work more closely together, and facilitate coordinating the efforts of
the various areas.

Presentation to Upper Management

Members of the group raised several questions about how this mode! should
be presented to the upper management of the company. In addition to needing to
get comfortable with the model, they also wanted to be able to focus on how
actual results differed from the projections. To do this, it was suggested that they
might use the model to project results for last year {run the model without
including data for the latest year and then compare the actual results with the
output from the model). In addition, they wanted to print out key financial exhibits
for the situations that were unacceptable, so that they could focus on what went
wrong in those cases. This feature is available in the @Risk version of the model,
but currently not in the Excel version.

Examining the effect of a company’s use of a DFA model is a long term
prospect. Modifications and enhancements to the mode! would be expected, as
the company asks new questions after seeing initial indications. While it is too
early to provide any information about the final effect of this process, the initial
meeting and response suggest that the DFA model will provide a very useful
management tool.

Future Enhancements
Enhancement of the public-access DFA model is an on-going process. input
and suggestions from users and other interested parties are welcomed and

encouraged. The following items represent some of the enhancements to the
mode! which are currently being considered.
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. Determine the impact of callability provisions and other options embedded in
insurer bond holdings. This will require identification of those bonds in the
insurer’s portfolio that have such options, information regarding when
during the life of the bond the option is exercisable, and the call premium or
other parameters associated with the embedded option. The valuation
framework already incorporated within the DFA model -- i.e., market
valuation of fixed-income securities based on the simulated term structure of
interest rates -- will form the basis for the endogenous decision whether or
not to exercise the option.

. Explicitly value mortgage-backed securities. These securities are comprising
ever-larger proportions of insurer portfolios. In particular, for example, the
prepayment risk associated with collateralized mortgage obligations will be
simulated using the Public Securities Association {(PSA) model of monthly
prepayments on residential mortgages, with the parameters of the PSA
model being impacted by simulated general economic conditions.

. Add state and/or regional detail in the underwriting module to facilitate
measuring the effect of, for example, a change in the growth rate for a
particular state.

. Continue to develop the underwriting cycle module and the associated
demand curves, including their impact on business retention rates and
jurisdictional risk,

. Implement correlations for the frequency and severity figures for business of
different ages within a given line and between lines of business.
» Add tax-loss carry-forwards and carry-backs 1o the tax module.
* . Adda module which produces risk-based capital results.
Conclusion

DFA is becoming an important concept for property-liability insurers, and it
is likely that actuaries will be called upon to participate in, if not lead, this
endeavor. This paper describes one DFA model. This model is publicly available
and its use is encouraged, and comments on its effectiveness, limitations and
potential improvements are actively solicited. While DFA for property-liability
insurers is in a nascent stage, the intial reaction of company management to the
application of this model to their operations was very favorable and provided
evidence that DFA will prove valuable to the industry.

72




References

CAS Valuation and Financial Analysis Committee, Subcommittee on the DFA
Handbook, 1996, CAS Dynamic Financial Analysis Handbook, Casualty Actuarial
Society Forum, Winter 1996, pp. 1-72.

CAS Valuation and Financial Analysis Committee, Subcommittee on Dynamic
Financial Models, 1995, “Dynamic Financial Models of Property/Casualty Insurers,”
Casualty Actuarial Society Forum, Fall 1995, pp. 93-127.

Chan, K, G. Karolyi, F. Longstaff, and A. Sanders, 1992, “An Empirical
Comparison of Alternative Models of the Short-Term Interest Rate,” Journal of
Finance, 48: 1209-1227.

Chen, R. and L. Scott, 1997, "Pricing and Hedging Interest Rate Risks with the
Muilti-Factor Cox-Ingersoll-Ross Model,” Chapter 9 in Fabozzi (ed.), Advances in
Fixed Income Valuation Modeling and Risk Management

Cox, J. J. Ingersoll, and S. Ross, 1985, “A Theory of the Term Structure of
Interest Rates,” Fconometrica, 53: 385-407.

D’Arcy, S. and N. Doherty, 1989, “The Aging Phenomenon and Insurance Prices,”
Proceedings of the Casualty Actuarial Society, 76: 24-44.

D’Arcy, S. and N. Doherty, 1990, “Adverse Selection, Private Information and
Lowballing in Insurance Markets,” Journal of Business, 63:145-164,

D’Arcy, S. P., R. W. Gorvett, J. A. Herbers, and T. E. Hettinger, 1997, “Building a
Dynamic Financial Analysis Model that Flies,” Contingencies, Vol. 9, No. 6
{November/December 1997), pp. 40-45.

D’Arcy, S. P., R. W. Gorvett, J. A. Herbers, T. E. Hettinger, S. G. Lehmann, and
M. J. Miller, 1997, “Building a Public Access PC-Based DFA Model," Casualty
Actuarial Society Forum, Fall 1997, Vol. 2, pp. 1-40.

Feldblum, S., 1996, “Personal Auto Premiums: An Asset Share Pricing Approach,”
Proceedings of the Casualty Actuarial Society, 83: 190-296.

Hull, J. C. 1897, Options, Futures, and Other Derivatives Third Edition, Prentice
Hall, Upper Saddle River, NJ.

Woll, R. G., 1987, “Insurance Profits: Keeping Score,” Financial Analysis of

Insurance Companies, Casualty Actuarial Society Discussion Paper Program, pp.
446-533.

73



Appendix

Application of a Dynamic Financial Analysis Model to
the Test Company:
Report to Management

Introduction

The purpose of this report is to describe and explain a Dynamic Financial
Analysis (DFA) model that represents a new management tool for insurance
companies. The attached exhibits should be viewed as illustrative examples of
output from running this model. These results are not a full blown dynamic
financial analysis of the company, but represent a starting point for performing an
analysis.

DFA, in essence, represents an enhanced approach to the traditional
planning function undertaken by insurance companies. It provides a far more
effective tool for forecasting future financial and operating conditions of an
insurance company than prior methods for two primary reasons. First, the
interactions between the underwriting and investment sides of the insurance
business are formally integrated. Second, this approach utilizes advances in
computer technology and modeling techniques to provide almast instantaneous
feedback to decision makers, allowing for the evaluation of numerous operating
alternatives.

The specific innovations to the planning process that are incorporated in
DFA modeling are:

1) DFA provides a probability distribution of likely outcomes, rather than
a single expected value forecast

2) DFA incorporates the correlations among lines of business, between
loss reserve adequacy and rate adequacy, and between the
investment and underwriting sides of insurance operations

3) by utilizing the technology of personal computers and common
software, DFA models can be run by the users many times with
different assumptions and different parameters, in order to see the
effect that changes in the model or in operations can have on the
results

Caveats
Although the output generated by a DFA model can look impressive, with

detailed exhibits indicating the expected results for years into the future, and other
exhibits indicating the probabilities of financial distress, the user must keep in mind
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that the output is only as good as the mode! and the underlying assumptions.
DFA modeling has severa! specific limitations. First, models are simplified
representations of reality. Models must be simplified in order to be useful; if all
the factors that could possibly affect an insurer were included in a model, then it
would just be too complex to be a useful model. When developing a model, the
most relevant factors at that time are included. However, if conditions were to
change markedly, which is entirely possible, then other factors that were omitted
from the model could become important, affecting the accuracy of the results of
the model. For example, during the 1920s, insurance profit margins were
established that effectively ignored investment income. At this time interest rates
were low {1-2%) and most business was in the short-tailed property lines.
However, by the 1960s, interest rates were much higher and long-tailed lines
accounted for almost 2/3rds of written premiums. Thus, it was no longer feasible
to ignore the effect of interest rates on underwriting profit margins.

Second, some factors are important, but because they are beyond the scope
of an actuarial analysis, they are omitted from the model. For example, fraud by
managers is a leading cause of insurance insolvency. However, all insurers are not
equally exposed to fraudulent behavior, Whether fraud is likely to occur {or is
currently occurring) at a particular insurer, is not something an actuary is qualified
to ascertain. Thus, any financial effects from fraudulent behavior are simply
omitted from the model. Other examples of omitted factors that definitely could
have a significant effect on insurance operations include a change in the tax code,
repeal of the McCarran-Ferguson Act, a major shift in the application of a legal
doctrine or the risk of a line of business being socialized by a state, province or
federal government. Thus, the range of possible outcomes from operating an
insurance company is actually greater than a DFA model would indicate; the model
is designed to account only for risks that can be realistically quantified.

Finally, the values used as input in the model are derived from past
experience and current operational plans. To the extent that something happens
in the future that is completely out of line with past events, the model will be
inaccurate. For example, the size of a specific catastrophe is based on a
lognormal distribution with the parameter values based on experience over the
period 1949-1995 (adjusted for inflation). However, if this process had been used
just prior to 1992, the chance of two events occurring within the next 2 % years,
both of which exceeded the largest previous loss by a factor of more than 2,
would have been extremely small. However, Hurricane Andrew caused $15.5
billion in losses in August 1992 and the Northridge earthquake caused $12.5
billion in insured losses in January 1994. The largest insured loss prior to that
was Hurricane Hugo, which had caused $4.2 billion in losses in 1989. Also, if
changes in any operations occur, then the results would not be valid. Thus, the
proper use of a DFA model is to continue to update the model as conditions or
operations change.

With these caveats in mind, let’s proceed to a description of the DFA model.
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Dynamo2

The specific DFA model that is applied to the company’s financial data is
termed Dynamo2, which is a public access DFA model developed by the actuarial
consulting firm Miller, Rapp, Herbers & Terry, Inc. This model is designed to be
run on personal computers with Microsoft Excel and @Risk, two widely available
software programs. The model operates by running a large number of iterations,
with each iteration representing a single possible outcome. Each iteration, in turn,
reflects the results of hundreds of different, but sometimes correlated, random
factors that affect different parts of the insurer’s operations. Selected values from
each simulation are stored and used to calculate the mean and the distribution of
the indicated results.

The model cansists of several different modules, each of which calculates a
component of the model indications. Separate modules are included for
investments, catastrophes, underwriting, taxation, the interest rate generator and
loss reserve development. The model allows for ten different lines of business:

. Homeowners

. Private Passenger Auto Liability

. Private Passenger Auto Physical Damages

. Commercial Auto Liability

. Commercial Auto Physical Damage

. Commercial Multi-Peril - Liability {(which includes Professional Liability)
. Commercial Multi-Peril - Property (including Special Property)

. Other Liability

. Other Liability - Umbrella

. Workers Compensation

For each line of business, the underwriting gain or loss is calculated
separately for: 1) new business, 2} 1st renewal business and 3) 2nd and
subsequent renewals. This division is provided to reflect the aging phenomenon,
in which loss experience improves with the iength of time a policyholder has been
with a company. These three categories are then added to calculate undervvriting
results on a direct, ceded and net basis.

The values for each simulation are shared among the different modules.
Thus, if the random number generator produces a high value for the short term
interest rate, this high interest rate is used in the investment module as wel! as the
underwriting module. Similarly, a high value for catastrophes in the catastrophe
module carries through to the reinsurance and underwriting modules.
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The primary risks that are reflected in the model are:

1) Pricing risk

2) Loss reserve development risk
3) Catastrophe risk

4) Investment risk

Pricing risk is composed of a number of interrelated components. First, loss
frequency and severity are both subject to random variation. Second, inflation
affects loss severity. This effect is correlated with the short term interest rate,
and is line of business specific. The indicated rate level change depends on the
relationship between the current premiums and the premium indicated by
inflationary impact on loss severity by line, However, jurisdictional risk (which is
state specific) affects the ability of an insurer to make rate changes. Jurisdictional
risk is reflected in both a range of allowable rate changes (lower increases would
be allowed in jurisdictions with stringent regulation) and the time lag for
incorporating new rates (it would take longer to raise rates in a state with
restrictive regulation).

Finally, pricing risk is subject to the underwriting cycle. The underwriting
cycle is simplified to be represented by four distinct phases: mature hard market
(price increases can be taken with a minimal effect on market share), mature soft
market (price increases significantly reduce market share), immature hard market
(the market is starting to harden) and immature soft market {the market is
beginning to soften). For each phase, the supply/demand function for insurance is
different. Also, for each phase, there is a different probability distribution that
represents the chance of remaining in that stage or of moving to another stage for
the next year.

The loss reserves input into the model should be the reserves indicated
based on an actuarial analysis of loss development, not necessarily the carried
reserves. For this project, we relied on the reserve analysis performed by the
company without independent audit, review or verification. Assuming the reserve
levels are accurate, the expected reserve development would be zero. However,
reserve development is stifl subject to random variation and to inflation. The
indicated loss reserves contain an implied inflation factor. To the extent that
inflation differs from this level, there will be a systematic effect on reserve
development. Even if inflation were to occur at the expected level, then remaining
random errors will affect the development.

Catastrophe risk is included in the mode! by the use of a two step approach.
A poisson distribution is used to generate the number of catastrophes (of all types)
that occur in a given year. Then, each catastrophe that occurs is assigned, based
on historical patterns, to a specific geographical area {one state that is the primary
focus of the loss). Next, the size of each catastrophe is determined based on a
lognormal distribution, with the parameters determined based on the primary state
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in which the loss occurs. Finally, the contagion effect of the loss on other states,
again based on historical patterns, is determined so that the total catastrophe loss
for the year in each state can be determined. The amount of each loss that is
ceded is determined based on the company’s catastrophe insurance program,
which allows calculation of the direct, ceded and net experience.

The investment risk reflects the combined effect of bonds and stocks.
Statutory bond values are determined based on the interest rates in effect when
the bond was purchased and the amortization schedule, plus defaults that occur
randomly based on historical patterns. Market values of bonds are a function of
the current interest rates as simulated. Stock market values are based on the
starting values and the randomly generated rates of return. Equity returns are
based on simulated changes in interest rates, and include significant random
variation, with the parameters determined based on historical rates of return.

Model Input

The model requires extensive financial data as input. Some of the historical
data required for input can be obtained from the Annual Statement, but in other
cases direct, rather than net, data are preferable, which must be drawn from
additional reports. In this case, the input was provided by the company, including
reports on direct and net premiums, exposures by line and by age of business, and
premium level, loss frequency, loss severity, market share and renewal rates by
line. In addition, planned growth by line of business and the user’s perception of
the phase of the underwriting cycle by line is input. From the Annual Statement
the input values include the statutory value of assets and liabilities and the current
investment allocations. The expense provisions were taken from the Insurance
Expense Exhibit. Loss development was developed based on direct triangles
provided by the company. The company also provided a detailed listing of
reinsurance contracts and the beta for equities.

Attached are copies of the data input for this program for the company as a
whole and for the Homeowners line of business. This line of business data
illustrates the by line information required to run this model. These exhibits
include:

. General Input - selections for the current market conditions by line
. Loss Triangle Input - historical direct paid loss development by line
. Underwriting Module Input - new and renewal exposures written and

premium levels for the last two years, projected growth rates for the next
five years, renewal ratios by age of business and expense factors, all by line
of business
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. Exposure Distribution - current number of exposures written by state, by
line and historic exposures written by line

. Market Share - market share estimates for property coverage (for
catastrophe losses)

’ Loss Development Factor Selection - the selected paid loss development
factors based on the historic loss development patterns {used to generate
cash flows)

. Loss Information Input - selected ultimate losses and allocated loss

adjustment expenses and claim counts, direct and net paid losses and
earned premium, loss frequencies and severities (in total and by age of
business), unallocated loss adjustment expense factors, and reinsurance
treaties, all by line of business

. Investment Input - statutory and market values of assets by annual
statement category, caupon and dividend rates and equity betas

Model Output

The ability to generate an almost infinite number of reports from a DFA
model is both a strength and a weakness of this approach. Care has to be taken
to assure that the user is not overwhelmed with information and, therefore, unable
to utilize the results of the model in any reasonable manner. Thus, the initial
report focuses on a limited number of key variables for an insurer, and indicates
the expected values as well as the distribution of outcomes from the model. Also,
examples of more detailed reports for a few selected outcomes are shown to
illustrate the potential of a DFA model to troubleshoot particular problems that
contributed to adverse financial results.

The true benefit of a DFA model is the ability it gives to the decision makers
in an insurance company to test out various financial and operating strategies and
see what the indicated effect is on both expected returns and the distribution of
results. Unlike the planning process that has previously been used by many
insurers, which tended to be done annually or on some other regular schedule, a
DFA model can be a regular management tool that can be rerun whenever a major
decision needs to be made. Thus, the goal of our first meeting will be to
demonstrate the use of this DFA model so that management can decide what
values to change. )

The output from the DFA model based on the initial input values (as shown
on the input exhibits) for a run with 50 iterations using the Excel option are shown
in the exhibits marketed Base Case. The results for each simulation, and the
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average values, are shown for statutory surplus, the premium to surplus ratio, the
operating ratio and the net loss ratio for all lines combined for each year 1998-
2002. In this run, the average value of the surplus over all 50 iterations was $177
million for 1998, $173 million for 1999, $167 million for 2000, $150 million for
2001 and $133 million for 2002. Since the simulation included 50 iterations, it is
difficult to draw conclusions from the individual results. The distribution of these
resuits for surplus, premium to surplus ratio, operating ratio and loss ratio for the
year 2002 are shown in the graphs. These illustrate the distribution of outcomes
to allow the user to determine the likelihood of specific outcomes, either bad
{surplus below a minimum level, premium to surplus ratio over an acceptable
target, etc.) or favorable (operating ratio below a target level).

In addition, detailed data can be analyzed for selected outcomes. For
example, the statutory balance sheet, the IRIS test results and the loss ratios on a
direct, ceded and net basis by age of business are shown for an example of a
single iteration. If desired, even more detailed data (frequency and severity,
interest rate level, number, size and distribution of catastrophes, etc.) can be
examined. This allows the user to troubleshoot the unfavorable outcomes to
determine what strategies would work best to reduce the likelihood of their
occurrence. }

It is obvious from looking at the average values and the distributions from
this initial run that the results are very unfavorable. The statutory surplus
declines, on average, and the premium to surplus ratios increase to unacceptable
levels. Loss ratios, especially in the latter years of the forecast period, increase to
over 75 percent. These indications, while causing concern, are actually exactly
what is needed to illustrate the potential benefits of a DFA model. Since the
forecasted values are unacceptable, then changes should be made to generate
more favorable indications. What changes should be made are up to management,
and DFA is the tool to help management access the effect of particuiar changes.

For example, one cause of the increase in loss ratios is the amount of new
business that is written to meet the growth rates initially input into the model.
This growth, coupled with relatively low retention rates, requires the company to
write a large amount of new business each year, with its corresponding high loss
ratios. The Base Case model projects exposure growth of 5-10% for all lines of
business for the years 2000-2002. This compares with 3 negative growth
forecast for 1998 and low growth, 1-3.5%, for 1999. In this example, detailed
loss and exposure results are shown for new Homeowners business so that the
effect of rapid growth in exposures can be examined. In an effort to grow at a
10% rate, the number of new Homeowners exposures in 2002 is 16,119. (See
the exhibit on New Business for Homeowners) Since the loss ratio on this new
business is expected to be 26 percentage points higher than long term business
{see last line on this sheet), this high growth imposes a significant penalty on the
company.

The effect of reducing these growth rates can be seen in the exhibits
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marked Constrained Growth. The only difference between the initial run and this
run is that the growth rates were held to a maximum of 2 percent per year. The
indications are much more favorable in this situation. In this case the average
values of surplus are $176 million, $177 million, $183 million, $192 million and
$203 million, for 1998-2002 respectively. Although the distributions illustrated on
the graphs for 2002 still show unacceptable results in some situations, the
average values are much more feasible than in the Base Case. The effect of
constraining the growth can be seen on the New Business for Homeowners
exhibit. In this case, the number of new exposures is only 7,177, compared to
16,119 at the 10 percent growth rate.

The output illustrated in the two cases discussed above was based on runs
of 50 iterations each using the Excel option. The model also can be run using
©@Risk, which provides significant additional capabilities. The Base Case model
was also run using @Risk with 1000 iterations. The numerical values of statutory
surplus, displayed both in percentiles and graphically for 1998-2002, are shown as
additional exhibits.

What other changes could or should be made? Such items as policy
renewal rates, expense provisions, the rate at which premium is earned (which
reflects policy term), exposure distribution by state, projected average frequencies
and severities by age of business, reinsurance provisions (including attachment
points, costs and ceding commissions) and investment provisions (including
allocation of new investments, stock betas and surplus additions) can all be easily
manipulated and evaluated by the use of this DFA model.

The primary point of this report is that DFA is a8 management tool. The
decision makers in the company should take the initiative in proposing changes
and analyzing the effects. The goal of the meeting with the company is to explain
and demonstrate the DFA model so that managers can effectively use this tool.
Much of the meeting will be devoted to hands-on work with the model so you can
evaluate its effectiveness and we can see what works for you and in what ways
the model needs to be improved to facilitate its use as a management planning
tool.

81



Index of Exhibits

Section A - Input Screens

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8

General Input: Market Conditions and Simulation Technique
Paid Loss Triangle

Underwriting Module Input

Exposure and Distribution Information

Jurisdictional Risk Input

Loss Development Factor Selection

Loss Information Input

Investment Input

Section B - Base Case Scenario, 50 Iterations Using Excel

B-1

B-2
B-3
B-4
B-5
B-6
B-7
B-8

Detailed Listing of Statutory Surplus, Premium to Surplus Ratio,
Operating Ratio and Net Loss Ratio, by year for each lteration
Distribution of Statutory Surplus in 2002

Distribution of Premium-to-Surplus Ratio in 2002

Distribution of Operating Ratio in 2002

Distribution of Net Loss Ratio in 2002

Balance Sheet for a Single Iteration

Loss & ALAE Ratio for a Single lteration

New Business for Homeowners for a Single Iteration

Section C - Constrained Growth Scenario, 50 Iterations Using Excel

C-1

c-2
c-3
C-4

Detailed Listing of Statutory Surplus, Premium to Surplus Ratio,
Operating Ratio and Net Loss Ratio, by year for each Iteration
Distribution of Statutory Surplus in 2002

Distribution of Premium-to-Surplus Ratio in 2002

Distribution of Operating Ratio in 2002

Distribution of Net Loss Ratio in 2002

Balance Sheet for a Single Iteration

Loss & ALAE Ratio for a Single Iteration

New Business for Homeowners for a Single Iteration

Section D - Base Case Scenario, 1000 lterations Using @Risk

D-1
D-2
D-3
D-4
D-5
D-6

Summary of Statutory Surplus Values, 1998-2002
Summary of Premium-to-Surplus Ratios, 1998-2002
Summary of Net Loss Ratios, 1998-2002

Summary of Combined Ratios, 1998-2002
Summary of Operating Ratios, 1998-2002
Distribution of Statutory Surplus in 1998

82




Exhibit A-1

Company Name: ABC Insurance Company

First Year to be Modeled: 1998

Current Market Conditions:

HMP | Mature Soft

PPAL I Mature Soft

APD-C |Mature Soft

[~]
[~]
APD-P  |Maturesot |v]
[~]
]

CAL | Mature Soft

CMP-P l Mature Soft Izl

oL Mature Soft

oL-U MatureSoft | ¥]
we

General Input

[o.]
w



12

Accident

Year

1986
1887
1988
1989
1990
1991
19892
1993
1994
1995
19896
1997

Loss Triangle Input
Paid Losses & ALAE Direct & Assumed

Line of Business:

12

4,782,601
3,429,881
4,428,674
4,905,508
6,136,783
6,623,741
9,318,694
9,675,280
10,819,650
14,372,636
19,593,642

Triangle Input

HMP

24

7,390,982
5,948,892
4,540,502
6,216,163
6,491,817
8,546,891
9,339,087
12,752,572
12,400,427
15,166,286
17,806,453

36

7,667,373
6,074,429
4,682,931
6,302,820
6,672,882
8,735,593
9,578,819
13,100,827
12,631,087
15,813,794

48

7,831,090
6,200,184
4,776,067
6,338,508
7,304,431
8,828,725
9,803,573
13,345,650
12,720,083

Evaluations in Months

80

7,834,571
6,503,498
4,775,599
6,320,451
7,341,614
8,868,053
9,825,756
13,355,820

2

7,840,897
6,210,370
4,777,092
6,319,874
7,371,753
8,875,065
9,821,798

84

7,841,882
6,210,489
4,776,204
6,320,461
7,401,759
8,875,733

96

7,841,882
6,211,047
4,775,904
6,278,231
7,433,900

Exhibit A-2

108

7,843,008
6,212,269
4,775,654
6,278,447

120
7,843,296
6,212,269
4,775,304

132

7,843,296
6,212,269



Underwriting Module Input Page

Homeowners Multiple Peril

Exhibit A-3

2nd Prior 15t Prior 1st 2nd 3rd 4th 5th
Year Year Year Yoar Yoar Year Year
1996 1997 1998 1999 2000 2001 2002
Premiums Input
1. Writton Exposure Input
8. Now Business 10,740 9,569
5. 1st Ronewal 8,095 9.591
c. 2nd & Subsequant Renewal 37,541 42,166
d. Total 57.376 61,326
2. Average Annual Rate Input
8. New Business 388 377
b. 1st Renewal 432 Rral
c. 2nd & Subsequent Renewal 432 423
3. Exposure Growth Rate
a. Entar Growth Objoctives [ aox] 20w 75%]  100%]  100%
4, % of Promiums Eamed in Year Written
8. Now Business 50% 50% S0% 50% 50% 50% 50%
b. 1st Renewal 50% 50% 50% 50% 50% 50% 50%
c. 2nd & Subsequont Renowal 50% 50% 50% 50% 50% 50% 50%
5. Ranewal Ratio
a. Now Business 60% 60% 60% 60% 60% 60% 60%
b. tst Renewa! 90% 0% 90% 90% $0% 50% 90%
c. 2nd & Subsequont Renewal 95% 85% 85% 95% 95% 95% 5%
6. % of Written Premiums Held By Agents
| 13%] 13%] 13%] 3% 13%] 13%] 13%)
Expense Input
1. Commissions
a. | @ % of wrinien Premium \L 14.1%' 13.5% 14.0% 14.0% u.o%l .14.0%] IG.L]
b. | © % of Eamed Premium
2. Gena e
0. | © %of written Premium 2 L 6.5%' 5.35‘[ 6.5% 6.5% S.S%I 6.5%' 6.5%'
b. | @ % of Earned Premium
3. Other Acquisition
8. | O % of written Premium 2L 1z,s$] 11_3%] 11.8% 11.8% 11_3&[ 11_3%] |1.B%|
b. | @ % of Earmed Premium
4. Premium Taxes
8. % of Wiitten Premium L 3.2%] a.sasl 3.4%[ 3.4%[ 3.4%[ 3.4%] 3_4*]
5. Policyholder Dividends
8. % of Eamaed Premium L 0.0%1 0.0%] 0.0% 0.0%I O.D%I O.D%I 0.0%'
6. Other Nonrecurring Expenses L - ] - I $31,848 I - , . [ . l = J
7. Ceding Commission
a. % of Eamed Premium L O%I O%I O%l oxl oss[ 0%] Oﬂ

Premium Input
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Exposurs Input

1.

Enter Your Distribution By State by Line:

State

cw

Exposure Input

HMP.
————

128

529

802

2,492

60

511

2,436

409

1,866

1,059

416

204

256,279

Exhibit A-4

3. Enter Your Market Share By State by Line:

2. Enter Historic Written Exposures By Line oc

Year

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

86

HMP GA

Exposure Input

0.000%

0.000%
oorr%

0.055%
0.000%

2

0.000%




Jurisdictional Risk Worksheet

Exhibit A-5
State HMP
Low Hi Lag
AKX 0.85 1.10 0.25
AL 0.85 1.10 0.25
AR 0.85 1.10 0.25
AZ 0.85 1.10 0.25
CA 0.85 1.06 0.50
Cco 0.85 1.10 0.25
cT 0.85 1.10 0.25
(o] 0.85 1.10 0.50
DE 0.85 1.10 0.25
FL 0.35 1.05 0.50
GA 0.85 1.099 0.50
HI 0.85 110 ° 0.25
1A 0.75 1.20 -
ID 0.76 1.20 -
L 0.75 1.20 -
IN 0.75 1.20 -
KS 0.85 1.10 0.50
KY 0.85 1.10 0.25
LA 0.85 1.06 0.50
MA 0.85 1.06 0.50
MD 0.85 1.10 0.25
ME 0.85 1.10 0.25
MI 0.85 1.06 0.50
MN 0.85 1.10 0.25
MO 0.85 1.10 0.25
MS 0.85 1.10 0.25
MT 0.75 1.20 -
NC 0.85 1.10 0.50
ND 0.75 1.20 -
NE 0.85 1.10 0.25
NH 0.85 1.10 0.25
NJ 0.85 1.06 0.50
NM 0.85 1.10 0.25
NV 0.85 1.10 0.25
NY 0.85 1.06 0.50
OH 0.85 1.08 0.25
OK 0.85 1.10 0.25
OR 0.85 1.10 0.25
PA 0.85 1.08 0.50
RI 0.8% 1.10 0.50
SsC 0.85 1.06 0.50
sD 0.85 1.10 0.25
TN 0.85 1.10 0.25
> 0.75 1.20 0.50
uT 0.75 1.20 -
VA 0.85 1.10 0.25
vT 0.85 1.10 0.25
WA 0.85 1.10 0.50
wi 0.7 1.20 -
wv 0.85 1.10 0.25
wy 0.75 1.20 -
cw 0.82 1.13 0.30
Exposure Input
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Loss Information Input

1. Selecuag UNTI LO1S4s & ALAE For Fricr Yeers

1]

LI

2 Selacted Uhmate Courts For Pror Years (Drect &

1997

3. Dwuct Paid Loss and ALAE

4 NetUnpraia Logses & ALAE

5. NetPuid Lostes & ALAE

Loss Inpat

HMP

517

S

741

328

A27

707

251

6542

956

I

L

347,212

|

L

¢ Eamed Premiums (Dwect A Astumed)

1997

8,950,000
& 864,000
10,428 000
12,229 000

£, 000 )
14,007,000
15,609,000
17,027,350

L2350 §

17,858,925
19,882,000

21,976 981

8 Selectsd Severttes (Drect & Assumad)

HMP

89

Exhibit A-7-a
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18 Renewal
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298 Renewal
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12. Excess of Loss Treaties.

" Exhibit A-7-b

Cosfficiant of Variation E

Mean P
1998 ~—LE =
1987 125
1998 098
1699 as?
2000 575
2001 5a7
2002 708 |
Standard Devistion HMP
1098 688
1997 315
1038 284
1999 072
2000 28
2001 00
2002 18
Mu Hwp
1996 .70
1997 .90
1898 50
1999 6
2000
2001
2002
Sigms HMe I
1998 .52
1897 52
1998 52
1999 52
2000 52
2001 52
2002 52
Excess Percentage
1996
1997
1998
1999
2000
2001
2002

13. Stop Loss Reinsurance

1988
1999
2000
2001
2002

“ya. Catastrophic Reinsurance

1st Retention  Max. Amount
Bor Ocz, BerOve,

18t Retantion Per Occurrence
500%
1998 5.00%
2000 3.00%
2001 5.00%
2002 5.00%
Loss Input -

90




Investments Input

Exhibit A-8-a

Bond Maturl
1. Statutory Values ss of 12/31/1987: 1 Year 1-5 8-10 10-20 20+
Total or Less Years Years Years Years
a.  US. Government Bonds 91,134,188 5530471 | 35,787,026 | 37,150,075 6,026,081 6,630,535
b. Bonds Exempt From U.S. Tax 97,647,732 1,119,454 5731002 | 16,186 148 | 72240 409 2,360,718
c.  Other Bonds (Unaffillated) 184,436,496 | 13,168,048 | 45292,787 | 88,371,852 | 23,668,897 | 19,934,819
d.  Bonds (Affillatod) < N - - N n
o.  Proferrad Stocks (Unafflliated) 12,222 841
1. Preferred Stocks (Affiliated)
9. Commeon Stocks (Unaffiliated) 19,067,926
h.  Common Stocks (Affiliated) 72 455 000
i Mortgage Loans 198,144
i Real Estate 16,880,795
k. Collateral Loans
[N Cash on hand and on Dopasit 30,851,773
m. Short Term Investments
n.  Othef Invested Assats 445,683
o.  Derlvative Instruments
p. Aggregate Write-ins
q. Subtotal 526,339,678
Bond Maturky
2. Market Values as of 12/31/1997: 1 Yoar 1-§ 6-10 10- 20 20+
Please Erter Par Values for Bonds Total r Less Yoars Years Yoars Yeary
a. US. Govemment Bonds 91455926 | 5536473 | 35.942.332 | * 37,264,001 8,025,474 6,687,646
b. Bonds Exempt From U.S. Tax 98,063,451 122,383 5,747,785 | 16.218/170 | 72 602,239 2,372,864
¢.  Othor Bords (Unafliliated) 184,723,126 | 13,125,017 | 45,372,699 | 88,641,889 | 23,701,093 | 13,682,330
d.  Bonds (Affiliated) ? B . B . p
e. Proferred Stocks (Unaffiliated) 12.325.625
1 Preferred Stocks (Affiliated)
g- Common Stocks (Unaffiliated) 19,967 926
h. Common Stocks (Affiliated) 60,732,796
i Mortgage Loans 196,144
L Real Estate 16,880,765
k. Collatoral Leans
3 Cash on hand and on Deposit 30,951,773
m. Short Term Investments
n.  Othor Invested Assots 446 683
o.  Derivative Instruments
p.  Aggregate Write-ins
q.  Subtotal 515,744,247
Bond Maturity
2. Numbar of Units as of 12/31/1897" 1 Yaear 1-5 8-10 10- 20 20+
Total ofr Less Yoars Yoars Yoars Years
& US. Government Bonds 14 14 80 100 20 20
b. Bonds Exempt From U.S. Tax 32 10 20 24 63 9
c.  Other Bonds (L iated) 71 7 47 66 27 24
d.  Bonds {Affiliated) - - - - - -
e.  Preforred Stocks (Unaffiliated) 440.000
. Preferrod Stocks (Afliated) -
g. Common Stocks (Unaffiliated) 920,987
h. Common Stocks (Affiliated) 832,000
I Mortgage Loans 1
I Real Estate 7
k. Collateral Loans -
I Cash on hand and on Deposit 1
m.  Short Term Investments -
n.  Other Invested Assots 2
o.  Derivative instruments -
p.  Aggregate Write-Ins -
q. Subtotal 2,193,515
Bond Matu: ]
3. Bond Coupon Rates: 1 Year 1.8 8-10 10-20 20+
Tetal of Less Years Years Years Years
a. US. Govemment Bonds 7.495% .913% 160% 7.315% 3.000% 9.435%
b.  Bonds Exempt From U.S. Tax 6.735% .750% .831% 5.497% 5.773% 7.425%
e.  Other Bonds ( 7.742% 735% .878% 7.317% 5.652% .452%
d.  Bonds (Affiliated) 0.000% .000% 0.000% 0.000% .000% .000%
e. Subtotal 7.418% .334% 7.513% 71.223% 7.341% .631%
investment input
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Exhibit A-8-b

Capital & Surplus | As of Year End

1997 1998 1999 2000 2001 2002
a.  Surplus as Regards to Policyholders :
b.  Contributed Surplus
c. Unassigned Surplus
d.  Special Surpius Funds
6.  Addtions to Capital
f Contributions to Surplus
Stock Betas 1997 19398 1999 2000 2001 2002
a.  Preforrod Stocks (Unaffiliated) - z - - - -
b.  Preforred Stocks (Affiiated) - Z - - - -
c. Common Stocks (Unaffiliated) 0.70 0.70 0.70 0.70 0.70 0.70
d Common Stocks (Affiliated) - - - - - -
Dividends as a % of Market Value 1997 1938 1899 2000 2001 2002
a. Preferred Stocks (Unaffiliated) 8.0% 8.0% 8.0% 8.0% 8.0% 8.0%
b Preferred Stocks (Affiliated) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
c.  Common Stocks (Unaffiliated) 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%
d Common Stocks (Affitiated) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Reinvestment Allocations 1998 1999 2000 2001 2002
a U.S. Government Bonds 20.9% 20.9% 20.9% 20.9% 20.9%
b.  Bonds Exernpt From U.S. Tax 2.4% 2.4% 22.4% 22.4% 22.4%
[ Other Bonds (Unaffiliated) 42.3% 42.3% 42.3% 42.3% 42.3%
d. Bonds (Affiliated) 0.0% 0.0% 0.0% 0.0% 0.0%
@ Preferred Stocks (Unaffiliated) 2.8% 2.8% 2.8% 2.8% 2.8%
f. Preferred Stocks (Affiiated) 0.0% 0.0% 0.0% 0.0% 0.0%
p.  Common Stocks (Unaffifiated) 4.5% 4.5% 4.6% 4.6% 4.6%
h. Common Stocks (Affiliated) 0.0% 0.0% 0.0% 0.0% 0.0%
i. Mortgage Loans 0.03% 0.0% 0.0% 0.0% 0.0%
je Real Estate 0.0% 0.0% 0.0% 0.0% 0.0%
k. Collateral Loans 0.0% 0.0% 0.0% 0.0% 0.0%
3 Cash on hand and on Deposit 7.1% 7.1% 71% 7.1% 7.1%
m. Short Term Investments. 0.0% 0.0% 0.0% 0.0% 0.0%
n. Other Invested Assets 0.0% 0.0% 0.0% 0.0% 0.0%
0. Derivative Instruments 0.0% 0.0% 0.0% 0.0% 0.0%
p.  Aggregate Write-Ins 0.0% 0.0% 0.0% 0.0% 0.0%
q. Total 100.0% 100.0% 100.0% 100.0% 100.0%
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Output

N19

No
176,885,913

Surplus 88
155,056,836
163,754,761
151,004,758
158,066,626
180,817,284
176,983,630
185,484,837
187,493,323
190,786,885
181,063,632
189,282,966
179,097,951
206,334,170
192,256,361
158,996,375
192,084,556
171,950,680
207,597,698
176,493,821
182,658,307
187.487,132
163,680,557
193,520,995
153,782,040
183,487,333
169,338,793
185,015,192
181,845,495
168,615,142
198,122,884
155,731,666
183,408,593
182,025,276
161,045,484
167,276,583
168,512,868
179,375,319
190,009,685
166,521,814
163,610,201
183,157,866
173,326,400
168,080,564
174,260,205
193,984,194
177,859,480
175,667,670
171,160,931
160,233,927
150,113,410

Output

-]

No
172,831,113

Surpius 99
136,285,644
164,156,925
143,401,131
150,059,705
160,571,708
182,229,470
195,865,894
187,965,994
194,824,479
179,046,371
187,621,214
162,374,018
194,066,840
206,374,790
109,413,710
182,903,839
175,119,712
198,800,845
180,685,552
184,858,173
214,477,613
149,439,027
184,894,747
127,467,851
198,015,640
161,756,742
209,155,500
174,372,734
169,250,925
211,810,902
170,520,332
175,962,461
200,334,032
164,901,955
166,237,313
149,471,240
188,935,446
194,852,965
138,654,639
153,976,150
174,488,792
173,494,789
138,058,395
157,411,765
168,461,064
154,758,503
175,577,383
161,253,876
168,965,639
143,524,775

Output

p19

No
166,756,714

Surplus 00
125,884,389
144,163,294
123,512,074
130,380,788
116,639,827
190,321,674
196,972,524
210,107,085
209,767,197
188,441,033
185,556,317
155,255,448
197,795,911
225,257,082

76,951,202

156,457,909
149,272,187
190,262,222
174,268,247
193,440,919
206,325,925
144,444,143
182,415,965
115,007,869
192,622,658
168,158,619
195,231,303
176,337,321
173,305,072
217,971,663
157,007,686
214,637,325
186,474,096
148,997,362
144,692,366
136,427,445
189,557,632
185,751,255
143,176,677
130,036,669
158,635,585
178,721,577
141,283,166
131,399,467
190,868,617
118,209,155
138,132,421
172,409,914
192,132,697
144,600,010

Base

Case

50 lterations Using Exce!

Output Output
q19 19
No Yos
149,824,284 132,577,715
Surplus 01 Surplus 02
104,845,572 98,080,612
132,106,526 114,403,000
82,674,485 43,919,839
87,954,798 31,342,920
127,270,793 106,137,941
198,105573 226,929,915
170,517.586 137,203,363
227,230,199 226,201,991
196,742,871 174,560,266
191,629,135 163,677,384
192,830,503 144,997,562
140,497,037 107,179,405
185,398,822 198,001,975
244173354 258,758,211
83,456,665 30,107,692
113,565,527 42,527,958
139,904,590 153,390,005
185,336,538 190,838,068
176,909,483 132,801,741
207,590,082 229,871,495
190,953,858 175,161,950
141,325,285 138,566,626
150,931,468 130,138,577
‘97,667,136 70,325,247
176,697,964 221,398,154
144 618216 115,463,692
(14,024,799)  (31,154.077)
163,885,783 133,105,197
178,631,918 227,036,866
216,242,560 197,739,136
124,886,640 73,787,220
225412309 229,507,272
210,463 473 227,212,542
122,288617 120,832,684
155,948,891 129,097,889
70,512,535 26,147,276
172,942,609 145,737,563
144,019,398 133,396,459
112,504,436 94,448,703
97,867,105 98,148,671
151,195,898 131,481,945
123,152,381 64,039,502
130,695,817 120,033,408
130,187,575 81,084,619
182,792,446 174,750,214
97,034,841 66,015,851
88,572,711 48,797,283
155,134,017 154,034,124
210,109,166 189,041,905
163,104,227 195,157,803
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Output

n34

No
2119

PIS 98
2.440
2.307
2.506
2.387
2.049
2.074
2019
1.990
1.964
2085
1.940
2.083
1.809
1.914
2.323
1951
2171
1.828
2.136
1.999
1.984
2.223
1.926
2,443
2.018
2222
1.986
2.045
2179
1.828
2414
2.033
2.059
2.302
2.232
2.235
2.062
1.975
2,290
2.269
2032
2149
2.219
2110
1.916
2.074
2109
2169
2341
2.501

Exhibit B-1-a

Output

034

No
2.381

PIS 89
3.080
2.527
2.900
2.706
2,541
2.159
2.080
2.168
2.097
2292
2106
2.508
2,102
1.891
3.612
2.237
2.31
2104
2321
2110
1.871
2.566
2174
3.224
2.021
2.581
1.860
2325
2.313
1.801
2.385
2317
2.024
2419
2.426
2.761
2118
2.087
3.026
2.578
2330
2.330
2917
2.496
2114
2.561
2.269
2.457
2.441
2.849

Output

p34

No
2.856

PIS 00
3.882
3.275
3.894
3375
4.047
2342
2247
2.190
2.201
2.432
2418
2.949
2341
1.935
5.742
2.905
2.990
2.483
2823
2.273
2.240
2.954
2.473
4.044
2.382
2844
2193
2.583
2514
1.942
2.852
2.160
2.468
3.031
3.203
3.381
2321
2.504
3.260
3.410
2.892
2.513
3.188
3.397
2.355
3.733
3.316
2.547
2.487
3.235

Output

q34

No
2931

PIS 01
5.383
4.008
6.710
5.500
4.279
2.596
2.852
2268
2.647
2732
2658
3.672
2.838
2055
5.792
4.450
3.548
2.881
3233
2315
2794
3.364
3.357
5.382
3.035
3.723

(33.486)

3.169
2775
2120
3.894
2302
2513
4.253
3.379
7.309
2.805
3.729
4603
5127
3.423
4.034
3845
3910
2822
5.114
5.930
3188
2644
3.402

Output
r34
Yes
5.405
PIS 02
6.504
5.245
14.021
17.071
5.962
2.549
4.001
2584
332
3.634
4010
5.599
3.023
2.198
17.571
13.188
3.570
3181
4.770
2.307
3.462
3.790
4,238
8.355
2.798
5.140
(16.814)
4.435
2.472
2.555
7.672
2.508
2623
4928
4.464
21.718
3711
4517
6.131
5.863
4,464
8.943
4705
7141
3398
8.292
11.959
3623
3.426
3.414



Base Case

50 Herations Using Excel Exhibit B-1-b
Output Output Output  Output  Output  Output Output Output Output Output

N27 027 p27 q27 r27 we x8 y8 28 aad

No No No No Yes No No No No Yes
1.035 1.004 1.005 1.030 1.027 0.726 0.745 0.747 0.771 0.766
Trial # OR S8 ORS99 OROO OR 01 ORO02 NetLR98 NetLR99 NetLROO NetLRO1 NetLRO02
1 1.110 1.065 1.055 1.076 1.033 0.774 0.800 0T 0.819 0.753
2 1074 0.997 1.061 1.004 1.001 0.745 0.749 0775 0.744 0.724
3 1.115 1.021 1.037 1.084 1.081 0.769 0.753 0.758 0.807 0.803
4 1082 1.010 1.022 1.047 1.083 0.768 0.749 0.758 0.777 0.807
S 1.024 1.084 1.134 1.009 1.036 0.696 o773 0.876 0.747 0.774
6 1.030 0972 0.967 0.969 0.921 0.748 0.732 0.729 0.716 0.691
7 0993 0.958 1.002 1.058 1.072 0.688 0715 0.783 0.799 0.812
8 0.993 0.981 0.950 0.975 1.041 0.684 0.701 0.693 0.738 0.790
9 0.982 0.953 0.927 1.034 1.038 0.670 0.690 0.667 0.773 0.773
10 1.020 1.004 0.963 1.029 1.107 0.696 0.759 0.714 0.761 0.837
1 0.985 1.005 0.998 0.960 1.071 0.707 0.747 o.M 0.704 0.794
12 1.022 1.041 1.020 1.006 1.050 0.703 0.774 0.75 0.749 0.762
13 0.926 1.035 0.952 0.687 0.907 0.623 0.776 0.700 0.728 0.655
14 0970 0939 0.900 0.895 0.914 0.660 0713 0.649 0.643 0.682
15 1.092 1.128 1.082 0.963 1121 0.788 0.844 0.810 0.709 0.828
16 0.993 1.019 1.035 1.065 1.118 0.682 0.750 0.770 0.783 0.825
17 1.045 0.984 1.064 1.016 0.948 0.740 0723 0.818 0.774 0.713
18 0914 1.012 1.024 1.012 0.997 0.606 0.756 0.754 0.754 0.745
19 1.046 0.985 1.053 1.011 1.106 0.722 0.706 0.781 0.730 0.844
20 1.040 0.978 0.974 0.997 0971 0.752 0.737 0.736 0.759 0.731
21 0.992 0.915 1011 1.022 1.013 0.693 0.676 0.746 0.754 0.750
2 1.071 1.013 1.001 1.000 1.034 0.772 0.746 0.758 0.751 0.79
23 0.972 1.047 1.020 1.077 1.019 0.689 0.780 0.767 0819 0.772
24 1.104 1.084 1.024 1.015 1.025 0.774 0.802 0.747 0.757 0.759
25 1.018 0.965 1.053 1.096 0.999 0.721 0.709 0.768 0.833 0.762
26 1.065 1.011 0.948 1.040 1.052 0.768 0.739 0.688 0.784 0.790
27 09398 0.876 1.003 1.448 1.014 0.700 0.649 0.735 1212 0741
28 1.015 1.015 1.020 1.072 1.067 0.708 0.760 0.757 0.801 0.803
29 1.071 0.993 0.893 0.998 0.907 0.773 0.755 0.744 0.750 0.673
30 0.956 0.966 1.005 0.983 1.024 0.686 0.728 0.766 0.761 o
kil 1.096 0915 0995 1.026 1.038 0.751 0.650 0.737 0.744 0.764
2 1.01S 1.041 0931 1.016 1.015 0713 0.766 0.705 0.779 o
33 1.015 0.906 1.032 0.929 0.976 0.697 0.661 0.778 0.677 0.743
34 1.030 0.064 1.022 1.058 0.973 0.767 0.718 0.754 0.794 0.729
35 1.071 0.990 1.052 0.970 1.082 0.758 0.724 0.779 0.726 0822
36 1.074 1.059 1038 1.133 1.075 0.750 0.783 0.778 0.852 0.802
37 1.030 0.967 0962 1.022 1.039 0.746 0723 0.722 0.769 0.788
33 0983 1.003 1022 1.090 0.977 0.677 0.752 0.756 0.816 0.726
39 1.078 1.069 0922 1.039 0.997 0.733 0.803 0.658 0.770 0.709
40 1.075 1.024 1.043 1.080 1.000 0.747 0.769 0.712 0.810 0.732
41 1.022 1.045 1.026 1.004 1.034 0.735 0.750 0.767 0.735 0.752
42 1.054 0.988 0.947 1.116 1127 0.744 0.727 0.720 0.845 0.859
43 1.065 1.096 0.995 1.023 1.036 0.753 0.809 0.747 0.766 0.775
44 1056 1.018 0975 0918 1.037 0.762 0.754 0.715 0.665 0.766
45 0.976 1.013 0.966 0.994 1.020 0.666 0.762 0.715 0.731 0.766
45 1.047 1.045 1.055 1.008 1.026 0.747 o777 0.791 0.742 0.779
47 1.046 0.999 1.094 1.102 1.044 0.767 0.796 0.798 0.843 0.779
48 1.057 1.013 0.927 1.032 0.973 0.763 0.779 0.671 0.774 0.720
49 1.084 0.966 0914 0.936 1.028 0.755 0.706 0.666 0.687 0.747
50 1.108 1.035 1.037 1.033 1.073 0.778 0.769 0.780 0.764 0.816
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Exhibit B-2
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Exhibit B-3

Probability
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Exhibit B-4
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Exhibit B-5
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ABC Insurance Company
Statutory Balance Sheet

ASSETS

Bonds

Stocks:

2.1 Preferred stocks

2.2 Common stocks
Mortgage loans on real estate
Real estate

Collateral loans

Cash

Other Invested assets
Aggregate write-ins

Subtotals, cash & invested assets

Agents’ balances or uncollected pr
Funds held by reinsurer

Bills receivable

Reinsurance recoverables
Federal income tax collectable
Electronic data processing
Interest, dividends & real estate
Receivable from parent

Equities and deposits in pools
Amounts receivable relating to A&
Other assets nonadmitted
Aggregate write-ins

Total assets

Base Case

50 Iterations Using Excel

1998 1999
397,289,391 417,079,942
14,414,504 16,591,024
99,977,356 110,700,421
196,144 196,144
16,880,795 16,880,795
34,578,453 38,340,296
446,683 446,683
563,783,325 600,235,305
48,846,694 53,406,225
210 210
5,818,016 6,999,378
2,992,030 2,992,030
6,344,827 6,344,827
1,107,674 1,107,674
4,956,493 4,856,403
633,849,268 676,042,142

2000

415,876,272

18,437,526
120,104,398
196,144
16,880,795

40,785,861
446,683

612,727,680

59,581,118
210

6,873,290

2,992,030
6,344,827
1,107,674

4,956,493

694,583,322

2001

441,770,059

21,489,014
130,486,269
196,144
16,880,795

45,586,660
446,683

656,865,624

68,346,149
210

7,867,660

2,992,030
6,344,827
1,107,674

4,956,493

748,480,667

Exhibit B-6-a

2002

477,281,188

24,487,902
139,984,606
196,144
16,880,795

51,935,531
446,683

711,222,850

78,074,692
210

9,239,345

2,892,030
6,344,827
1,107,674

4,956,493

813,938,121



001

LIABILITIES

1. Losses & LAE: #
2. Unearned premiums:

3. Other expenses

4, Taxes, licenses and fees

5. Federal income taxes

6.  Other liabilities

7. Total liabilities

SURPLUS

8.  Additions to surplus

9. Surplus as regards to policyholders

Net Income (Before taxes)
Underwriting Gain/(Loss)

Combined Ratio
Operating Ratios

Investment Income / Surplus
Investment Income / Eamed Premium

IRIS Ratios

1

. Premium to Surplus

2. Change in Writings

=2 0O O~NOULLHE W

—_

. Surplus Aid to Surplus

. Two Year Overall Operating Ratio
. Investment Yield

. Change in Surplus

. Liabitities to Liquid Assels

. Agents Balances to Surplus

. One Year Development

. Two Year Development

. Estimated Current Reserve Deficiency to Surplus

.

Base Case

50 Iterations Using Excel

1998

290,900,796
152,532,149
6,041,971
6,264,517
149,581

455,889,014

177,960,255

6,697,898
(42,530,250)

1.111
1.032

0.165
0.078

1999

349,068,894
166,061,916
6,451,916
6,854,283

529,337,009

146,705,134

(15,003,510)
(70,175,534)

1.167
1.091

0.206
0.076

2000

343,664,523
183,427,198
7,163,253
7.640,894
1,215,947

543,111,815

151,471,507

40,535,320
(20,340,994)

1.035
0.964

0.208
0.071

001

393,382,978
209,716,288
8,111,683
8,751,580
128,632

620,091,161

128,389,506

1,738,279
(62,290,287)

1.110
1.046

0.249
0.064

Exhibit B-6-b

2002

461,967,235
239,005,263
9,268,363
9,974,421
386,520

720,601,801

93,336,320

4,700,000
(60,828,051)

1.083
1.038

0.334
0.055




Base Case
50 Iterations Using Excel

Apriorl Loss & ALAE Ratics
Accident Years
Coverage | Subdivision | 1996 | 1999 | 2000 | 2001 | 2002
Al Direct 0.65 0.78 0.72 0.68 0.72
Ceded 0.13 0.39 0.76 0.1 0.26
Net 0.72 083 0.72 0.75 0.78
HMP New 0.70 0.72 0.83 1.09 1.1
Renewal 0.42 0.48 or? 0.91 1.08
Renewal (2) 0.55 0.56 0.49 0.63 072
Direct 0.59 070 0.62 075 0.84
Ceded 0.00 0.16 0.47 0.00 0.00
Net 0.65 0.75 0.63 0.83 0.92
PPAL New 0.84 0.84 0.93 0.85 0.95
Renewal 0.87 0.73 0.84 0.81 0.73
Renewa! (2) 0.95 0.89 071 067 0.68
Direct 0.93 0.87 0.76 073 075
Ceded 0.00 0.00 0.00 0.00 0.00
Net 0.97 091 0.80 0.76 0.79
APD-P New 0.71 0.84 075 0.81 0.74
Renewal 0.57 0.61 0.81 0.84 0.83
Renewal (2) 0.61 0.70 0.54 0.59 0.69
Direct 0.65 0.4 0.63 0.69 0.73
Ceded 0.00 0.23 0.36 0.00 0.00
Net 0.69 0.88 0.65 0.73 0.78
APD-C New 0.62 1.35 0.78 0.97 052
Renewal 0.42 037 0.50 0.51 052
Renewal (2) 0.59 037 0.45 0.56 044
Direct 0.59 052 0.59 0.63 0.47
Ceded 0.00 0.4 0.87 0.00 0.00
Net 0.63 055 0.57 0.68 0.50
CAL New 0.96 2.01 1.44 1.17 0.77
Renewat 0.65 0.55 0.55 1.22 0.92
Renewal (2) 0.50 099 0.69 0.38 0.39
Direct 0.55 1.04 0.75 0.57 0.51
Ceded 0.01 0.02 0.02 001 0.01
Net 0.58 1.08 0.79 0.60 0.54
CMP-L New 0.61 0.93 0.67 1.01 0.84
Renewal 0.42 0.66 0.79 0.66 0.63
Renewal (2) 0.61 052 0.45 063 067
Direct 0.59 0.58 0.51 0.70 0.69
Ceded 0.00 0.00 0.00 0.00 0.00
Net 0.62 0.60 0.54 0.73 0.73
CMP.P New 0.52 1.05 0.65 0.75 154
Renewal 054 0.25 1.24 0.75 0.68
Renewal (2) 0.49 074 070 052 0.74
Direct 0.55 0.99 1.07 0.68 0.89
Ceded 0.15 0.48 1.57 0.19 0.25
Net 0.61 1.08 0.98 0.76 1.00
oL New 0.56 0.39 0.49 054 0.31
Renewal 0.38 0.20 034 0.29 0.39
Renewal (2) 0.42 0.11 0.03 0.09 0.26
Direct 0.43 0.14 0.13 0.20 0.29
Ceded 0.00 0.00 0.00 0.00 0.00
Net 0.45 0.15 0.14 0.21 0.30
oL-U New 024 012 0.10 0.02 0.12
Renewal 0.10 0.01 0.09 0.3 0.05
Renewal (2) 0.35 0.06 047 0.24 0.24
Direct 0.32 0.06 0.15 0.19 0.19
Ceded 0.32 0.06 0.15 0.19 0.19
Net 0.33 0.06 0.16 0.20 0.19
wcC New 0.63 1.02 077 0.77 0.61
Renewal 058 0.50 0.81 0.99 0.71
Renewal (2) 0.60 0.44 0.43 064 057
Direct 0.60 049 050 0.70 0.60
Ceded 0.00 0.00 0.00 0.01 0.00
Net 0.62 0.50 0.51 0.72 0.61
Output
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01

New Business
Homeowners Multiple Peril
Direct Underwriting Module

riptiol
1, _Premlums;

a. Exposure Growth Rate

b. Number of Exposures

c. Average Rate Growih Rate
d. Average Rate per Exposure
e. Wiritten Premiums

f. Earning Ratio

g. Earned Premiums

h. Unearned Premium Reserves
i. Renewal Ratio

2, Expenses;

Commissions

General Expense

Other Acquisition

Premium Taxes

. Policyholder Dividends

Other Nonrecurring Expenses

oe

~sap

g. Subtotal (Expenses}

3, _losses:

a. Initial Severity Mean

b. Initial Severity Std.
Severity Trend

UMW & Rate Adjustments
Modeled Severity

o

Initial Frequency Mean
Initial Frequency Std.
Frequency Trend

UMW & Rate Adjustments
Modeled Frequency

a Priori Ultimate Losses & ALAE
a Priori Loss & ALAE Ratio
New Business Penalty

5:".:' TS To ™ an

Neww HMP

2nd Prior
Year

1996

10,740

387.61

4,162,984
0.50

4,162,984

2,081,492
60%

585,760
272,033
523,786
133,330

1,514,908

2,000
192
0.959

1,71¢

0.157
0.014
1.000
1.000

0.15

2,795,926
0.67
0.14)

1st Prior
Year
1997

9,569

37737
3,610,877

3,886,930
1,805,438
60%

486,894
243,112
458017
117,821

1,305,843

2,000
192
1.000

1,781

0.157
0.014
1.000
1.000

0.15

2,561,872
0.66
(0.33)

1st
Year

1998

1%

6,282

5%
397.38
2,496,361

3,053,619
1,248,180
60%

349,491
198,485
360,327

84,876

931,848

1,925,027

2,000
192
1.043

1,846
0157
0.014
1.000

1.000
0.17

1,914,826
0.63
(0.03)

Accident Years
2nd
Year
1899

415723
177,639
322,483
100,961

1,016,806

2,000
192
1.115

2,633

0.157
0.014
1.000
1.000

0.13

2,390,620
0.87
0.30

Xd
Year

a%
10,287
I%
455.88
4,639,613
0.50
3,829,531
2,344,807

656,546
243,920
451,885
159,447

1,516,797

2,000
192
1.105

1,894

0.157
0.014
1.000
1.000

0.17

3,275,774
0.86
0.28

10%
13,788
2%
463.75
6,394,149
0.50
5,541,881
3,197,075
60%

895,181
360,222
653,942
217,401

2,128,746

2,000
147

2,219

0.157
0.014
1.000
1.000

0.13

4,068,293
073
0.11

Sth
Year

10%
16,119
8%
499.31
8,048,344
0.50
7,221,247
4,024,172
60%

1,126,768
469,381
852,107
273,644

2,721,900

2,000
192
1.248

3,002
0.157
0,014
1.000

0.16

7,605,820
1.05
0.26
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Output

N19

No
175,804,947

Surplus 98
177,841,770
181,059,869
166,966,791
192,635,204
171,116,002
165,479,513
183,332,162
170,990,389
166,219,582
167,549,849
181,989,043
171,173,909
187,218,190
174,554,551
163,605,439
174,687 514
186,363,832
180,357,986
199,678,781
154,142,665
155,221,003
175,247,353
165,738,288
188,367,238
178,013,070
162,119,150
197,293,489
166,821,963
192,919,927
167,274,874
161,172,142
158,229,833
190,861,707
176,386,326
188,698,228
152,363,410
190,039,899
184,363,321
178,958,213
188.911,722
163,221,155
180,852,903
182,714,124
166,435,215
198,691,266
156,146,480
181,822,715
191,453,368
156,140,880
189,813,004

Output

o019

No
177,290,291

Surplus 99

167,912,331
187,173,731
149,474,454
208,507 227
154,671,307
184,319,389
183,675,934
165,399,172
176,014,335
170,272,178
175,721,562
171,489,352
202,499,309
178,557,958
157,051,627
169,203,255
198,662,672
173,817,775
213,265,100
162,509,036
118,718,197
184,870,219
129,422,352
212,822,053
184,596,877
162,399,400
214,106,548
161,029,300
184,954,825
153,646,410
171,102,588
147,982,570
21,047,612
186,603,421
196,972,298
140,578,639
207,857,645
186,687,410
208,166,934
175,829,627
175,395,082
175,439,975
180,445,572
172,961,456
194,024,781
149,628,366
176,811,631
200,425,847
151,498,912
225,044,188

Constained Growth Case
50 lterations Using Excel

Output

p19

No
182,504,379

Surplus 00
168,844,782
185,287,185
140,715,199
209,709,103
167,894,973
173,127,374
189,911,787
156,883,024
184,302,088
163,200,039
181,291,022
165,795,558
215,812,659
183,769,330
161,536,361
191,150,328
212,179,904
189,970,611
236,976,237
185,054,667

92,886,218

150,839,173
146,643,228
227,044,964
195,657,567
156,024,363
224,820,661
154,493,557
201,447,824
152,881,964
191,640,480
158,106,954
254,435,227
220,228,631
201,538,134
157,474,700
232,091,596
186,932,473
199,078,688
171,477,115
180,854,923
192,045,808
180,889,033
186,831,678
183,725,795
139,393,175
199,487,704
167,487,842
122,842,747
245,884,995

Output Output

q18 9

No Yes
192,153,293 203,398,666

Surplus 01 Surplus 02
179,295,863 212,021,245
200,046,953 221,523,361
147,634,907  121,635939
220,156,166 264,713,480
151,567,761 140,269,784
168,013,654 203,180,933
233,546,717 277,009,685
157,326,334 163,498,520
187,946,530 195,213,865
157,833,112 133,012,541
193,981,472 219,868,778
188,518,302 204,182,589
227,802,009 233,368,315
186,220,807 234,376,888
176,364,972 191,007,728
250,344,258 288,986,500
189,277.418 182,227,624
206,837,028 239,280,898
259,981,632 247,071,935
205,015,116 231,133,529

78,669,964 55,478,453

192,707,442 196,359,498
165,293,737 172,175,738
265,479,686 296,200,982
184,165,528 181,694,094
118,100,922 116,516,157
232,681,325 233,141,728
156,015,563 145,959,338
232,288,838 285,751,895
177,887,239 206,060,179
216,988,209 263,704,092
156,149,224 152 057,763
261,244,340 260,722,050
228,437,423 254,584,475
195,616,576 157,858,918
157,070,679 156,579,559
248,277,009 250,383,091
205,737,487 203,362.673
217,182,852 214,074,617
184,375,749 209,054,244
157,710,730 169,908,087
175,663,108 187,755,230
199,618,725 200,390,796
249,789,424 311,488,334
183,243,534 167,210,103
128,571,645 115,688,005
224,282,332 243,874,670
177224828 183,034,215
157,326,157 171,881,494
302,084,201 423,838,881

103

Output

n34

No
2128

P/S 88
2.069
2032
2270
1.884
2158
2.264
2013
2175
2247
2213
2.044
2181

Exhibit C-1-a

Output

034

Ne
2302

PIS 99
2323
209
2.780
1.820
2560
2.185
2176
2438
231
2316
2.234
2338
1.908
2.234
2525
2.424
1.983
2337
1.817
2,500
3.421
2.164
3.155
1.893
2.134
2438
1.931
2501
2,045
2,634
2390
2774
1.829
2135
2071
2913
1.971
2,030
1918
2259
2324
2.257
2.281
2.344
2108
2.763
2223
1.883
2718
1.786

Output

p34

No
2.458

P/S 00
2.462
2.300
3.164
1.924
2576
2528
2333
2.825
2286
2536
2323
2.640
1.893
2412
2.663
2387
2,01
2209
1.758
2347
4.875
2.243
3.017
1.838
2208
2.688
1.996
2.865
2.148
2.794
2385
2753
1.673
1.935
2233
2.867
1.941
2.180
2.204
2.539
2,489
2213
2.481
2356
2407
3.218
2.094
2.392
3.654
1.802

Output

q34

No
2.572

PIS 01
2486
2272
3.218
1.959
3.040
2848
2127
3.092
2613
2.804
2.403
2518
1.931
2.660
2658
2.007
2.493
2.287
1.720
2279
6.342
2354

Output

34

Yes
2.737

PIS 02
2178
2218
4.308
1.712
3.553
2523
1.989
3.128
2.740
3.582
2277
2529
2.087
2315
2,673
1.889
2818
2181
1.937
2248
9.896
2462
2.853
1.796
2.604
4.070
2.237
3.5¢5
1.770
2338
2.057
3.149
1.757
1.913
3.200
3311
2169
2.398
2.421
2543
3.235
2532
2708
1.635
2.888
4214
1.977
2.468
3.045
1.285



Constained Growth Case
50 lterations Using Excel Exhibit C-1-b

Output  Output Output  Output Output Output Output Output

p27 q27 27 w8 x8 y8 28 aa8
No No Yes No No No No Yes
0.977 0.968 0.970 0.727 0.728 0.727 0.720 0.723
Trial # OR 00 OR 01 OR02 NetLRS98 NetLR93 NetLROO NetlR 01 Net LR 02

1 0.993 0.988 0.933 0.724 0.769 0.747 0.757 0.705
2 1.013 0.974 1.030 0.720 0.726 0.770 0.736 0.768
3 1.006 0.969 1.075 0.720 0.774 0.755 0.705 0.785
4 0.965 0.959 0.897 0.701 0.668 0.732 0.714 0.690
5 0.956 1.025 0.994 0.741 0.792 0.707 0.781 0.715
6 1.028 1.002 0.868 0.758 0.687 0.766 0.753 0.635
7 1.017 0.945 0.959 0.730 0.756 0.767 0.688 0.725
8 1.006 0.986 0.982 0.735 0729 0.745 0.721 0.743
9 0908 0.964 0.956 0.758 0.652 0672 0.699 0.703
10 0975 0.981 1.024 0.757 0714 0.722 0.716 0.750
1 0.951 0.934 0.909 0.704 0.772 0.714 0.685 0.684
12 1.005 0.927 0.963 0.737 0737 0.731 0.693 0.711
13 0962 0.983 1.040 0.711 0.691 0.725 0.747 0.787
14 0.995 1.01% 0.936 0.735 0.714 0.736 0.742 0.704
15 1.009 0.977 1.029 0.772 0759 0738 0.738 0.769
16 0.983 0.927 1.037 0.750 0774 0.734 0.691 0.796
17 0.958 1.016 0.969 0.698 0.698 0.706 0.748 0.714
18 0.981 0.973 0.959 0.716 0.763 0.729 0.727 0.717
19 0903 0.901 1.041 0.683 0.671 0.669 0.681 0.792
20 0852 0.983 1.006 0.767 0697 0.721 0.736 0.758
21 1.070 1.038 1.063 0771 0.829 0.800 0.775 0.773
2 0.951 0.980 0.954 0.716 0.687 0.711 0.724 0.706
23 0954 0.924 0.927 0.759 0.832 0.707 0879 0.685
24 1.003 0.964 0.954 0.717 0.683 0.761 0.724 0.715
25 0932 1.022 0.965 0.757 0738 0.679 0.777 0.712
26 0.955 1.045 0.941 0.772 0.736 0.695 0.760 0.702
27 0964 0.994 0.950 0.640 0678 0.723 0.736 0.692
28 0.992 0.857 0.984 0.741 0.737 0731 0.711 0.698
29 0952 0.874 0.799 0.689 0,704 0.711 0.632 0.580
30 1.004 0.938 0.961 0.718 0.769 0.746 0.696 0.721
31 0.969 0.969 0.922 0.780 0.708 0.716 0.731 0.699
32 0954 0.997 0.975 0776 0.757 0.696 0.755 0.715
33 0861 0.965 1.013 0.671 0.627 0.663 0.735 0.783
34 0.895 0.980 0.951 0.727 0719 0.665 0.742 0.709
35 1.011 1.023 1.076 0.693 0734 0.756 0.794 0.810
I 0974 1.019 0.956 0.780 0.783 0.711 0.747 0.707
37 0.936 0.922 0.951 0.675 0.665 0.702 0.690 0.691
38 0.991 0.955 1.006 0.734 0.726 0.737 0.699 0.770
39 0993 0.876 0.963 0.721 08625 0.742 0.626 0.705
40 1.006 0.988 0.983 0.663 0.798 0.747 0.731 0.754
41 0.979 1.041 0.937 0.775 0707 0712 0.780 0.676
42 0895 1.014 0.902 0.713 0.765 0.662 0.756 0.661
43 0980 0.904 0.952 0.714 0742 0.726 0.653 0.702
44 0.975 0.872 0.886 0.752 0.709 0.737 0.638 0.669
45 1.012 0.971 1.041 0.655 0.788 0.746 0.720 0.790
45 1.033 1.033 1.038 0.765 0770 0.776 0.777 0.772
47 0.943 0.948 0.996 0.732 0.758 0.699 Q715 0.755
48 1.096 0.966 1.009 0.696 0729 0.832 0.735 0.770
49 1.066 0.892 0.982 0.774 0.742 0.768 0.656 0.742
50 0.947 0.896 0.852 0.669 0.617 0.711 0.676 0.655

104
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ABC Insurance Company

Statutory Balance Sheet

ASSETS

-

Bonds

Stocks:

2.1 Preferred stocks

2.2 Common stocks
Mortgage loans on real estate
Real estate

Collateral loans

Cash

Other Invested assets
Aggregate write-ins

N

PNO A w

9. Subtotals, cash & invested assets

10.  Agents’ balances or uncollected pr

11.  Funds held by reinsurer
12.  Bills receivable
13.  Reinsurance recoverables

14.  Federal income tax coflectable

15. Electronic data processing

16. Interest, dividends & real estate

17.  Receivable from parent
18.  Equities and deposits in pools

19.  Amounts receivable relating to A&

20. Other assets nonadmitted
21.  Aggregate write-ins

22. Total assets

Output

Constrained Growth Case
50 iterations Using Excel

1998 1999 2000

396,499,803 446,898,745 497,829,153

14,023,733 17,061,531 20,785,554
97,994,321 105,550,614 112,460,582
196,144 196,144 196,144
16,880,795 16,880,795 16,880,795
34,512,971 40,507,351 46,442,206
446,683 446,683 446,683

560,554,450 627,541,863 695,041,118

48,628,153 52,552,186 57,615,575
210 210 210
5,497,330 5,921,323 6,645,300
2,992,030 2,992,030 2,992,030
6,344,827 6,344,827 6,344 827
1,107,674 1,107,674 1,107,674
4,956,493 4,956,493 4,956,493

630,081,167 701,416,606 774,703,227

2001

589,700,288

26,423,310
126,104,943
196,144
16,880,795
55,121,920
446,683

814,874,083

64,149,153
210

7,603,519

2,992,030
6,344,827
1,107,674

4,956,493

902,027,989

Exhibit C-6-a

2002

718,720,887

34,323,460
147,248,793
196,144
16,880,795
65,046,227
446,683

982,862,990

71,373,787
210

8,196,091
2,992,030
6,344,827
1,107,674

4,956,493

1,077,834,103
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Constrained Growth Case
50 lterations Using Excel

1998

LIABILITIES

1. Losses & LAE: i 274,866,487

2. Uneamed premiums: 152,246,049

3. Other expenses 6,017,656

4. Taxes, licenses and fees 6,233,649

5. Federal income taxes 804,323

6. Other liabilities

7.  Total liabilities 440,168,163

SURPLUS

8. Additions to surplus -

9. Surplus as regards to policyholders 189,913,004
Net income (Before taxes) 27,769,271
Underwriting Gain/(Loss) (21,458,877)
Combined Ratio 1.055
Operating Ratios 0.976
Investment Income / Surplus 0.155
Investment Income / Eamed Premium 0.079

IRIS Ratios

1. Premium to Surplus 1.97
2. Change in Writings 0.9%
3. Surplus Aid to Surplus 3.6%
4. Two Year Overall Operating Ratio
5. Investment Yield 5.4%
6. Change in Surplus 17.5%
7. Liabilities to Liquid Assets 64%
8. Agents Balances to Surplus 26%
9. One Year Development 51%
10. Two Year Development
11. Estimated Current Reserve Deficiency to Surplus

Outpul

1899

296,066,154
164,553,572
6,359,261
6,738,378
2,655,053

476,372,419

225,044,188

78,821,663
20,982,474

0.938
0.855

0.143
0.082

1.80
8.1%
3.4%

93%
51%

16.0%

63%

23%
0.8%
6.6%

#N/A

2000

332,264,999
180,545,169
6,925,775
7,387,003
1,695,285

528,818,231

245,884,995

51,800,669
(21,902,348)

1.041
0.947

0.163
0.094

1.80
9.6%
3.4%

93%
5.8%
8.1%

63%

23%
1.3%
1.9%

-3.7%

2001

380,175,936
200,946,307
7,660,788
8,224,718
2,936,039

599,943,787

302,084,201

87,013,290
(7,733,303)

1.004
0.896

0.170
0.108

1.63
11.3%
3.0%
95%
6.3%
20.0%
62%
21%
1.2%
2.0%
-4.4%

Exhibit C-6-b
2002

409,804,567
222,552,191
8,533,674
9,145,463
3,959,327

653,995,222

423,838,881

131,537,893
(2,955,578)

0.994
0.852

0.177
0.142

1.30
11.3%
2.3%
90%
7.6%
35.8%
56%
17%
2.9%
31%
4.0%



Constrained Growth Case
50 lterations Using Excel

Aprort Loss & ALAE Ratios

Accident Years
Coverage | Subdivision | 1998 | 1999 | 2000 ] 2001 | 2002

Al Direct 061 055 0.64 061 059
Ceded 0.6 0.05 0.41 0.06 006
Net 067 062 .71 0.6 068
HMP New 067 0.83 103 0.68 091
Renewal 0.49 058 0.82 072 067
Renewal (2) 0381 0.49 071 0.67 064
Direct 079 057 0.78 066 068
Ceded 0.10 0.02 0.04 0.00 0,00
Net 086 063 0.88 075 075
PPAL New 059 1.07 1.07 0.92 100
Renewal 068 0.90 0.94 0.79 084
Renewal (2) 073 0.70 0.88 0.80 085
Direct 076 0.77 0.92 0.82 088
Ceded 000 0.00 0.00 0.00 0.00
Net 079 0.81 0.96 0.88 092
APD-P New 075 0.69 0.74 0.66 057
Renowal 059 0.60 0.74 0.63 062
Renewal (2) 057 051 0.60 062 0.49
Direct 062 057 0.69 063 052
Coded 007 002 0.10 0.00 000
Net 065 061 0.73 068 056
APD-C New 076 082 0.62 6.76 078
Renewal 034 039 0.63 0.70 045
Renewal (2) 0.49 0.38 0.62 058 042
Direct 052 0.44 0.68 0.60 0.46
Ceded 0.10 0.02 0.08 0.00 000
Net 055 047 0.72 0.64 0.49
CAL New 108 163 0.85 156 125
Renewal 067 079 0.67 067 0588
Renewal (2) 086 093 0.35 0.47 072
Direct 086 0.97 0.45 0.60 079
Ceded 002 0.02 0.01 0.02 003
Net 089 1.02 0.43 063 083
CMP-L New 084 0.67 0.76 064 065
Renewal 055 059 0.67 057 0.48
Renewal (2) 0.48 053 0.46 051 0.40
Direct 052 057 0.52 053 0.44
Ceded 0.00 0.00 0.00 0.00 0.00
Net 054 059 0.54 056 0.46
CMPP New 083 054 0.79 0.66 037
Renewal 055 0.51 0.60 065 058
Renewai (2) 039 0.16 0.3 0.45 051
Direct 054 035 0.58 052 052
Ceded 033 013 0.28 0.14 0.14
Net 057 0.39 0.63 0.58 059
oL New 066 0.03 0.48 025 019
Renewal 0z7 062 0.45 0.24 0.12
Renewal (2) 047 0.24 0.12 0.69 008
Direct 047 025 0.20 0.59 0.10
Ceded 0.00 0.00 0.00 0.02 0.00
Net 0.49 0.26 0.21 061 0.10
oLy New 0.20 0.02 0.37 0.07 018
Renewal 0.18 0.03 0.20 0.04 0.12
Renewal (2) 0.14 002 0.01 0.03 003
Direct 015 0.02 0.08 0.04 006
Ceded 015 002 0.07 0.04 0.08

Net 018 0.02 0.08 004 @
WC New 052 0.81 0.7 098 065
Renewal 0.45 0.51 1.04 077 063
Renewal (2) 055 0.47 0.51 0.49 037
Direct 053 050 057 058 0.43
Ceded 000 0.00 0.00 0.00 0.00
Net 055 051 0.58 0.60 045

Output
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New Business
Homeowners Multiple Peril
Direct Underwriting Module

1._Premiums:

Exposure Growth Rate
Numnber of Exposures
Average Rate Growth Rate
Average Rate per Exposure
Written Premiums

Earning Ratlo

Earned Premiums

Unearned Premium Reserves
Renewal Ratio

~rTo~paspge

g

Commissions

General Expense

Other Acquisition

Premium Taxes

Policyholder Dividends

Other Nonrecurring Expenses

=~pppye

Subtotal (Expenses)

w

3,_losses:

Initial Severity Mean
Initial Severity Std.
Severity Trend

U/W & Rate Adjustments
Maodeled Severity

{nitial Frequency Mean
Initial Frequency Std.
Frequency Trend

U/W & Rate Adjustments
Modeled Frequency

e S G NN

. aPriori Loss & ALAE Ratio
m. New Business Penalty

New HMP

a Priori Ultimate Losses & ALAE

2nd Prior
Year

10,740

287.61
4,162,984
0.50

4,182,984

2,081,492
60%

585,760
272,033
523,788
133,330

1,514,908

2,000
192
0.959

228

0.157
0014
1.000
1.000

Q.16

3,744,409
0.80
0.09

18t Prior
Year

8,569

A
3,610,877

3,886,930
1,805,438

486,894
243,112
458,017
117,821

1,305,843

2,000
192
1.000

202

0.157
0.014
1.000
1.000

Q.15

2,934,173
075
023

st
Year

-1%
6,282

3%
389.81
2,448,776

3,029,826
1,224,388

342,829
196,939
357,519

83,258

931,848

1,912,393

2,000
192
1.056

2,088

0.157
0.014
1.000
1.000

Q.13

2,038,890
067
(0.12)

Accident Years
2nd
Year
1999

6,736
4%
40387
2,720,447
050
2,584,612
1,360,224
60%

380,863
168,000
304984

92,495

946,342

2,000
192
1.082

2120

0.157
0.014
1.000
1.000
0.15
2,136,907

0.25

3rd
Year

2%
6,881
4%
42191
2,903,131
0.50
2,811,789
1,451,565
60%

406,438
182,766
334,791

98,706

1,019,702

2,000
192
1.165

2227

0.157
0.014
1.000
1.000

Q.18

2,882,135
1.03
024

Year

2%

7,031
10%
463.85
3,261,302

3,082,216
1,630,651
60%

456,562
200,344
383,702
110,884

1,131,512

2,000
192
1.278

1,948

0.157
0.014
1.000
1.012

0.15

2,081,766
0.68
(0.01)

Year

2%
A
13%
521.94
3,745,942
0.50
3,503,622
1,872,871
60%

524,432
227,735
413477
127,362

1,292,957

2,000
192
1.403

3,050

0.157
0.014
1,000
1,022
0.15
3,195,043
0.9

0.3
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@RISK Simulation of DYNAMO2E.XLS
Run on 3/19/98

Simulations =1
Iterations = 1,000

1998 Surplus

Minimum = (461,984,300)
Maximum = 219,620,400
Mean = 175,183,300
Std Deviation = 25,367,610
Skewness = (18)
Kurtosis = 399
Errors Caiculated = o]
Mode = 183,323,400
5% Perc = 150,111,300
10% Perc = 156,466,800
15% Perc = 160,428,200
20% Perc = 163,369,400
25% Perc = 166,067,800
30% Perc = 168,222,300
35% Perc = 170,358,300
40% Perc = 172,559,400
45% Perc = 174,856,500
50% Perc = 177.070.800
55% Perc = 178,402,200
60% Perc = 180,724,700
65% Perc = 182,738.400
70% Perc = 184,302,400
75% Perc = 186.266,200
80% Perc = 188,621,500
85% Perc = 190,977.800
90% Perc = 194,243,200
95% Perc = 199,679,300

1999 Surplus

(464,044,400)
232,325,600
172,729,100

35,172,020
(8)

135

[

189,186.500

133.530.300
143,562,100
150,650,900
156,111,900
160,462,300
164,026,900
167.002,500
170,754,200
172,904,100
175,912,900
178,036,100
180,663,500
183,921,300
187,031,800
189,848,800
193,273,200
197,860,700
202,111,600
208,505,600

113

2000 Surplus

(658,655,200)
247,397,700
162,437,000

58,886,520
()
96

0
157,942,800

110,952,500
126,444,200
134,350,400
141,608,300
147,622,400
153.066,700
157,766,700
161,036.400
165,105,400
168,157,400
171.582,500
175,279,600
179,008,700
183,085,600
186,883.400
190,873,800
197.096.300
204,055,200
213,341,300

Exhibit D-1

2001_Surplus

(3,981,046,000)
279,958,500
140,325,500
158,989,100

(19)
464

o
146,236,800

69,588,900

93.083.060
109,960,300
118,977,200
125,549,900
133,642,000
140,360.400
144,735,900
148,773.700
154,535,400
160,116,100
164,656.600
168,188,100
172,875,500
179,016,000
185,600,500
193,082,800
205,672,300
219,849,100

2002 Surplus

(4,109,432,000)
349,451,900
119,960,000
170,083,700
a7

393

[
144,654,100

17.046 880
47,894,900
69,858,660
83,737,990
92,905,990
102,295,100
110,937,800
120,214,500
126,096,300
132,922,300
141,605,100
147,768,700
155,598,400
162,953,700
171,141,000
181,757,900
192,261,800
209,546,100
233,545,300



Exhibit D-2
@RISK Simulation of DYNAMO2E.XLS
Run on 3/19/98

Simulations = 1
Iterations = 1,000

1998 1999 2000 2001 2002
NWP/Surplus NWP/Surplus NWP/Surplus NWP/Surplus NWP/Surplus
Ratio Ratio Ratio _Ratio _Ratio
Minimum = (0.808) (5.412) (94.557) (189.958) (634.106)
Maximum = 3.736 104.599 3808.938 78.941 346.398
Mean = 2,132 2,458 6.631 3.471 4.851
Std Deviation = 0.231 3.285 120.382 7.519 30.270
Skewness = (0.918) 30.076 31.510 (15.803) (10.783)
Kurtosis = 32.101 935.062 895.272 455.744 255.953
Errors Calculated = 0.000 0000 0.000 0.000 0.000
Mode = 2.091 2.379 2.803 2950 3.645
5% Perc = 1.852 1.881 2.067 2.261 2212
10% Perc = 1.901 1966 2.187 2.445 2.609
15% Perc = 1.937 2.011 2.272 2.604 2.895
20% Perc = 1.967 2.062 2.351 2.708 3.085
25% Perc = 1.980 2.108 2.415 2.816 3.268
30% Perc = 2.011 2.149 2.461 2,929 3.442
35% Perc = 2.034 2.187 2.518 3.008 3.629
40% Perc = 2.061 2.220 2573 3.105 3.786
45% Perc = 2.082 2.260 2.647 3.192 3.988
50% Perc = 2,103 2.282 2.705 3.286 4.180
55% Perc = 2131 2.320 2.766 3.386 4.396
60% Perc = 2.155 2.354 2.813 3.503 4.666
65% Perc = 2.183 2.402 2.875 3.608 4.996
70% Perc = 2.214 2.464 2.952 3.787 5.359
75% Perc = 2.244 2.529 3.069 3.996 5.793
80% Perc = 2.281 2.606 3.207 4.269 6.435
85% Perc = 2.327 2.689 3.366 4.552 7.259
90% Perc = 2,390 2.817 3.588 5.183 9.074
95% Perc = 2.488 3.021 3.989 6.361 14.287

114




Exhibit D-3
@RISK Simulation of DYNAMO2E.XLS
Run on 3/19/98

Simulations = 1
Iterations = 1,000

1998 1999 2000 2001 2002
Net Loss Net Loss Net Loss Net Loss Net Loss

Ratio Ratio Ratio Ratio Ratio
Minimum = 0.587 0.569 0.601 0.629 0.624
Maximum = 2.567 1.904 2612 9.949 1.368
Mean = 0.730 0.742 0.759 0.781 0.772
Std Deviation = 0.072 0.064 0.107 0.318 0.056
Skewness = 16.268 7.583 12.696 24,984 2.537
Kurtosis = 413.071 122.695 199.693 696.739 27.796
Emrors Calculated = 0.000 0.000 0.000 0.000 0.000
Mode = 0.750 0.773 0.777 0.766 0.773
5% Perc = 0.654 0.668 0.683 0.690 0.693
10% Perc = 0.670 0.684 0.699 0.706 0.708
15% Perc = 0.682 0.695 0.712 0.718 0.720
20% Perc = 0.692 0.703 0.719 0.726 0.733
25% Perc = 0.700 0.712 0.725 0.736 0.743
30% Perc = 0.706 0.719 0.733 0.742 0.750
35% Perc = 0.712 0.725 0.739 0.750 0.756
40% Perc = 0.719 0.731 0.745 0.757 0.762
45% Perc = 0.724 0.736 0.752 0.762 0.7686
50% Perc = ’ 0.729 0.741 0.756 0.766 0.771
55% Perc = 0.736 0.746 0.761 0.769 0.774
60% Perc = 0.741 0.751 0.765 0772 0.777
65% Perc = 0.748 0.757 0.769 0.775 0.783
70% Perc = 0.754 0.762 0.773 0.779 0.791
75% Perc = 0.759 0.766 0.776 0.786 0.799
80% Perc = 0.765 0.771 0.779 0.798 0.809
85% Perc = 0.771 0.775 0.790 0.808 0.822
90% Perc = 0.776 0.782 0.801 0.821 0.833
95% Perc = 0.790 0.807 0.825 0.841 0.853
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Exhibit D-4
@RISK Simulation of DYNAMO2E.XLS

Run on 3/19/98
Simulations = 1
iterations = 1,000

1998 1999 2000 2001 2002
Combined Combined Combined Combined Combined
_Ratio _Ratio _Ratio _Ratio _Ratio
Minimum = 0.954 0.889 0.905 0.928 0.942
Maximum = 2.978 2.260 2.958 10.278 1.705
Mean = 1.118 1.080 1.092 1.112 1.102
Std Deviation = 0.077 0.070 0.111 0.320 0.063
Skewness = 13.829 6.105 11.660 24.671 1.882
Kurtosis = 333.794 92.078 178.080 684.653 18.775
Errors Calculated = 0.000 0.000 0.000 0.000 0.000
Mode = 1.143 1.100 1123 1.091 1.082
5% Perc = 1.030 0.994 1.007 1.009 1.011
10% Perc = 1.049 1.016 1.023 1.029 1.029
15% Perc = 1.062 1.025 1.035 1.041 1.043
20% Perc = 1.075 1.033 1.047 1.052 1.055
25% Perc = 1.083 1.044 1.055 1.062 1.064
30% Perc = 1.092 1.053 1.061 1.070 1.075
35% Perc = 1.098 1.060 1.068 1.077 1.082
40% Perc = 1.106 1.067 1.075 1.084 1.089
45% Perc = 1111 1.072 1.081 1.089 1.094
50% Perc = 1.118 1.078 1.086 1.093 1.099
55% Perc = ) 1.124 1.083 1.091 1.09¢9 1.105
60% Perc = 1132 1.090 1.098 1.105 1.111
65% Perc = 1.139 1.096 1.103 1.111 1.117
70% Perc = 1.145 1.102 1.109 1.117 1.125
75% Perc = 1.150 1.108 1.116 1.124 1.134
80% Perc = 1.158 1.116 1.122 1.133 1.145
85% Perc = 1.166 1.123 1.133 1.146 1.158
90% Perc = 1176 1.133 1.147 1.161 1175
95% Perc = 1.191 1.165 1.171 1.189 1.197
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Exhibit D-5
@RISK Simulation of DYNAMO2E.XLS

Run on 3/19/98
Simulations = 1
Iterations = 1,000

1998 1999 2000 2001 2002
Operating Operating Operating Operating  Operating
Ratio Ratio Ratio Ratio Ratio
Minimum = 0.874 0.806 0.838 0.871 0.874
Maximum = 2.899 2177 2.879 10.206 1.657
Mean = 1.039 1.000 1.016 1.040 1.034
Std Deviation = 0.078 0.070 0111 0.320 0.063
Skewness = 13.774 6.108 11.774 24.704 1.909
Kurtosis = 332.041 91.546 180.029 685.955 19.120
Errors Calculated = 0.000 0.000 0.000 0.000 0.000
Mode = 1.066 1.025 1.029 1.039 1.040
5% Perc = 0.950 0.916 0.931 0.936 0.942
10% Perc = 0.969 0.936 0.947 0.956 0.961
15% Perc = 0.983 0.946 0.959 0.972 0.973
20% Perc = 0.995 0.954 0.972 0.981 0.987
25% Perc = 1.003 0.965 0.979 0.980 0.995
30% Perc = 1.012 0.975 0.985 0.999 1.004
35% Perc = 1.018 0.981 0.992 1.005 1.011
40% Perc = 1.026° 0.987 0.999 1.012 1.020
45% Perc = 1.032 0.993 1.005 1.019 1.026
50% Perc = 1.038 0.999 1.010 1.024 1.031
55% Perc = 1.044 1.004 1.016 1.029 1.038
60% Perc = 1.0583 1.010 1.022 1.033 1.044
65% Perc = 1.059 1.016 1.027 1.039 1.051
70% Perc = 1.065 1.023 1.033 1.044 1.059
75% Perc = 1.071 1.028 1.040 1.051 1.068
80% Perc = 1.078 1.036 1.047 1.061 1.077
85% Perc = 1.087 1.044 1.055 1.073 1.089
90% Perc = 1.097 1.056 1.069 1.088 1.106
95% Perc = 1.112 1.084 1.083 1.116 1.128
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Abstract

After surveying various instruments used to finance catastrophe insurance, this paper
demonstrates a method for analyzing the cost of financing catastrophe insurance with
the following instruments: (1) insurer capital; (2) reinsurance; and (3) catastrophe
options. The procedure first quantifies the cost of financing in terms of the cost of
those instruments. The method then permits searching for a mix of instruments that
minimizes the cost.

Using a catastrophe model, we create a distribution of simulated losses for each of
fifty insurers that report their exposure to ISO. We then create an illustrative
catastrophe index based on the combined simulated losses of the fifty insurers. We
perform a sample analyses for three insurers.

The analyses show that the best mix of capital, reinsurance, and catastrophe options
depends on how well an insurer's losses correlate with the index — that is, on the basis
risk. Some insurers can significantly reduce their cost of financing catastrophe
insurance by using catastrophe options. To illustrate the effect on premiums of the
cost of financing catastrophe insurance, we convert those costs into risk loads.
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1. Introduction

Hurricane Andrew caused $15.5 billion of insured property losses in 1992. And it missed
Miami, otherwise losses could have been in the $50 billion range. The Northridge

Earthquake resulted in $12.5 billion of losses in 1994. And it was only of magnitude

6.7.

In a recent study’, ISO used the Risk Management Solutions, Inc. (RMS) catastrophe
model to simulate possible catastrophic events for the insurers who report their exposure
to ISO. The study concluded that losses from a severe hurricane along the east cost
could exceed $150 billion. Similarly a severe earthquake in California could generate

losses of $50 biition or more.

Losses from such a megacatastrophe could have severe adverse effects on
property/casualty insurers and their policyholders. Many insurers could become
insolvent or seriously impaired and, therefore, unable.to continue insuring the same
volume of business. The recognition of this risk has stimulated industry efforts to
address the problem of megacatastrophes. Insurance regulators, legislators, government
agencies, investment bankers, and others have also contributed to the public policy debate

on this critical issue.

Catastrophe Management

A property/casualty insurer can measure the extent of its catastrophe risk by conducting a
portfolio analysis to determine the expected distribution of losses from possible events
such as hurricanes or earthquakes. This distribution of losses is created by analyzing the
company’s catastrophe exposure with a computer simulation model, which provides an
estimate of losses that would result from a representative set of catastrophic events.
Where potential catastrophe losses are too high, the insurer might take steps to reduce its
concentration of exposures. Some insurers have given up some business in overly

exposed areas to reduce their catastrophe risk to a more manageable level. An insurer
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could also diversify its catastrophe risk by writing more exposures in areas where it has a
lower concentration of exposures or in areas not subject to catastrophes. A concern about
that strategy is that the insurer could be taking on a different risk by writing new business

in areas where it lacks expertise and an effective distribution network.

Many insurers have opted for loss-reduction measures such as increasing deductible
sizes, imposing special wind/earthquake deductibles and offering discounts for loss

mitigation activities by policyholders (such as the addition of storm shutters).

Property/casualty insurers have pursued many loss mitigation efforts, such as the ISO
Building Code Effectiveness Grading Schedule (BCEGS). The BCEGS program
evaluates a community’s building code and its enforcement. Insurers can offer discounts
for structures built in municipalities with good enforcement of an effective loss

mitigating building code.

Financing Catastrophe Risk

Insurers have also been looking at ways of financing their catastrophe risk. One
approach is adding capital to the balance sheet. Many insurers have benefited from
recent stock market gains as a source of additional capital. Because of their improved

capital positions, some insurers have elected to retain more catastrophe risk.

The surge in catastrophes that began in 1989 with Hurricane Hugo, resulted in an
increased demand for reinsurance.  The rising demand, in turn, produced substantial price
increases which led to the formation of new catastrophe reinsurers. That increase in
reinsurer capital coupled with improved catastrophe experience has led to more plentiful

and less expensive catastrophe coverage.

Traditional reinsurance is not the only approach to financing catastrophes. Those active

in capital markets activities, reinsurers, reinsurance intermediaries and property/casualty

'Insurance Services Office, Inc., Managing Catastrophe Risk, May 1996.
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insurers themselves have come to recognize the possibility of securitizing risk — that is,
using other financial instruments to transfer catastrophe risks to the broader capital

markets.

All of the instruments for financing catastrophe risk have a cost, but they also have
benefits. It takes sophisticated analysis to find an efficient mix of risk financing
instruments that provides the greatest benefit for the least cost. Providing an example of

such an analysis is the goal of this paper.

This analysis is part of what casualty actuaries call dynamic financial analysis, or DFA.
It is similar to other aspects of DFA because it views the various risk financing
instruments as assets, with the returns on these assets being positively correlated to

insurer losses.

A key factor for delivering an efficient mix of risk financing instruments is the cost of the
individual instruments. This cost ultimately becomes part of the price of insurance. This
price will be sensitive to the variation in results — many years with small catastrophe
losses and occasional years with very large catastrophe losses. Actuaries have
traditionally called this part of the price the risk load. We must expand the definition of
traditional risk load to include the various instruments available to finance catastrophe

insurance.

The intense competitive forces in the marketplace may cause insurers to focus on short-
term operating results at the expense of long-term solidity. This amounts to insurers
ignoring the possibility of rare catastrophes in their decision making. Insurers may not
adequately reflect risk load in pricing, nor make sufficient provision for catastrophe risk

financing.

The capital markets can bring an immense amount of financing into the insurance
industry, and perhaps significantly lower the cost of financing for the long term. Our
challenge is to figure out how to efficiently bring these resources into the insurance

industry.
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2. A Survey of the Instruments Used in Financing Insurance

Raising Insurer Capital

An insurer always has the option of raising sufficient capital to cover its potential losses,
but to raise capital, the insurer must increase its net income to justify this capital. There
is also the lost opportunity since the capital committed to an insurer is not available for

another venture.

Compared with other industries, property/casualty insurance has not generally achieved
high historic returns. Competition from the large number of suppliers has been a major
contributing factor. Furthermore, regulation has in some cases also acted to keep

insurance rates below actuarially indicated levels.’

If an insurer has a heavy concentration of exposures in catastrophe-prone areas, the
amount of capital needed can be relatively large compared with the insurer’s existing
surplus. Furthermore, the additional capital may only be needed occasionally when
catastrophe losses are unusually large ~ perhaps every 100 years. Committing a large
amount of additional capital to cover infrequent losses is extremely inefficient and

virtually impossible to sustain in a highly competitive marketplace.
Those considerations drive an insurer to seek altematives to raising capital.

Reinsurance

The capital of US reinsurers was $13.2 billion in 1992. It grew to $26.2 billion by the
end of 1997. With the increased demand for reinsurance following the catastrophes in the
early 1990s, new offshore reinsurers provided additional capacity. But that capacity is

also relatively small compared with the size of potential catastrophe losses.

% Insurance Services Office, Risk and Returns: Property/Casualty Insurance Compared with Other
Industiries. December 1995,
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Reinsurers provide modest layers of coverage which are usually sufficient to protect

small insurers but not larger insurers.

The availability of reinsurance varies considerably over the life of an insurance cycle.
The price may also vary substantially depending on supply and demand as well as recent

experience.

Reinsurance pays for the primary insurer’s losses that exceed certain amounts, oron a
quota share basis. The reinsurance coverage follows the fortunes of the primary insurer.
On the other hand, reinsurance can also have high and variable transaction costs for the

customized coverage provided.

It is important to remember that a reinsurer may not be able to meet its obligation if a

large catastrophe occurs.

One possible solution to the problem of large catastrophes is proposed legislation under
which the federal government would provide excess reinsurance. The trade-off for

providing this coverage may be increased regulation.

Securitization

The property/casualty insurance industry does not have enough capital to handle a very
large catastrophe. By contrast, the broader capital markets have trillions of dollars to
invest. Theteturns on many of these investments are correlated — that is their value is
influenced by the same economic conditions. To diversify their portfolios, investors are
always looking for investment opportunities not correlated with the economy.
Catastrophe risk is independent of the economic conditions that affect other financial

instruments.

Many types of financial instruments to transfer catastrophe risk have emerged in recent
years. They treat catastrophe risk in various fashions, but all offer the investor a way to

profit in exchange for accepting some risk.
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Catastrophe bonds have already gained a level of acceptance with several successful
deals. A catastrophe, or contingency, bond represents a loan (principal) over a specified
term in exchange for fixed interest payments. The occurrence of a qualified catastrophic
event during the term of the bond may result in the reduction or elimination of interest
payments and for some bonds the loss of some or all of the principal that the investor has
loaned to the insurer. If no qualifying catastrophe occurs, the investor receives his
principal plus interest. The interest rate usually reflects a premium to reward the

additional risk.

Catastrophe bonds generally reflect the catastrophe experience of the insurer selling the
bond, although covered losses can be based on an index of industry catastrophe losses. If
an industry index is used, then the bond may not mirror the catastrophe experience of the

selling insurer.

Securitization of risk has also involved contingent equities. In an agreement developed
by Aon Corporation, called a CatEPut*, an insurer purchases the option of selling a

prearranged amount of its stock if a qualifying catastrophe occurs.

This arrangement provides the insurer with immediate access to equity in the event that a
loss impairs its surplus. The additional equity increases the likelihood that the insurer
will maintain its ratings and will be able to continue its business operations virtually
uninterrupted in the wake of such a loss. The seller of the CatEPut*™ has the option to
eventually convert the preferred shares to common stock. The insurer can refinance and
redeem the shares at any time®. Also, there is a provision that the investor does not have
to purchase the stock if the catastrophe results in a serious impairment of the insurer, in
other words, if the investor’s capital infusion would not be sufficient to continue the

financial viability of the insurer.

3 Reported by William Jewett “Converging Roles Within the Insurance and Finance Marketplace™ at the
web site: htip://www.centrere.com/insights/converge.htm on April 3, 1998.
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A third kind of securitization deal involves trading options on a catastrophe index. The
index is based on the catastrophe experience of (at least a sample ot-) the
property/casualty industry. An insurer or reinsurer can purchase catastrophe call options
that are exercisable if the catastrophe index exceeds a specified strike price. When the
index value exceeds the strike price, the contract pays either a specified flat amount, or

the amount by which the index exceed the strike price.

These options are traded on an exchange. For example, the Property Claims Service
(PCS) index is traded on the Chicago Board of Trade (CBOT). The Guy Carpenter
Catastrophe Index (GCCI) is traded on the Bermuda Commodities Exchange (BCE). In
addition to public trading, these indices may also be used in private placements. The
Risk Management Solutions (RMS) catastrophe index, which is based on the RMS

catastrophe model, is used for this specific purpose.

From an individual insurer’s perspective, a critical element when considering the use of a
catastrophe index is basis risk — that is, how well the index correlates with the insurer’s
experience. For example, an insurer with exposure concentrated in a small geographic
area may suffer high losses if a catastrophe occurs in that area. But that catastrophe may
not trigger options based on a national index. An insurer can improve the potential
correlation by purchasing options based on smaller geographic areas, such as regions,

states or even ZIP-codes, that match the insurer’s own portfolio.

Many investors favor the use of an industry index because the losses are not a function of
an individual insurer’s underwriting and claim settlement practices. Furthermore, the
provisions of an option contract are standardized. This increases liquidity, as
standardized contracts are easier to trade than customized contracts. Because of
standardization, options can have smaller transaction costs than reinsurance or

catastrophe bonds which require individual analysis and negotiation.

Catastrophe options provide certain challenges that insurers must recognize. As noted

earlier, basis risk provides a measure of how well catastrophe options will meet an
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insurer’s need to hedge risk. An insurer may collect substantial funds on catastrophe
options when its actual catastrophe losses are small. More importantly, an insurer may
collect little or no funds on catastrophe options but still suffer a substantial catastrophe
loss. An insurer must carefully analyze basis risk before deciding if catastrophe options

are a good way of hedging catastrophe risk.

Another critical element in the success of securitization is the regulatory acceptance of
catastrophe options and other securitization instruments as reinsurance — an offset to an
insurer’s direct losses. Some insurers have established offshore companies to reinsure

their catastrophe risk. The insurers then sell catastrophe bonds or use other financial

instruments to finance the offshore reinsurers.

Rating agencies’ evaluation of an insurer’s financial strength is a critical element in
attracting and retaining business. If rating agencies do not view an insurer’s
securitization measures as financially sound, the insurer may receive a poor rating — and
therefore suffer a loss of business. Consequently, rating agencies’ acceptance of a

catastrophe securitization approach may be important to its success.
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3. The Cost of the Instruments Used in Financing Insurance

So far, this paper has surveyed the various instruments available to finance catastrophe
risk. The remainder of the paper will focus on one promising form of securitization -
options on a catastrophe index — and see how insurers can combine them with capital and

reinsurance to finance catastrophe risk.

We classify the various instruments for financing catastrophe insurance into the

following elements:

1. Insurer Capital — This is money put up by investors in the insurance company. The

company can use its capital to pay losses if current income is insufficient.

2. Reinsurance — This is money provided by outside entities that agree to pay losses in
accordance with a predetermined function of the insurer’s loss. Some

securitization deals fall into this category.

3. Catastrophe Options — This is money provided by outside entities that agree to pay
money contingent on the occurrence of a catastrophic event recorded on an index.
That payment may or may not correspond with the insurer’s loss. That is,

catastrophe options do present basis risk.

Each instrument has a cost and a benefit. The insurer’s problem is to find the

combination of instruments that provides adequate financing for the least cost.

We define:
The cost of financing insurance =

the expected loss (net of reinsurance recoveries and recoveries from
catastrophe options)

+ the cost of capital
+ the cost of reinsurance

+ the cost of catastrophe options

Our purpose in using reinsurance and catastrophe options is to reduce the expected loss

and the cost of capital ~ and ultimately the cost of financing insurance.
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Although this definition covers the insurer’s entire operation, we will focus on
catastrophes. Thus, our discussion of the cost of financing insurance will reflect only the
catastrophe losses, with one exception — the cost of capital. The insurer’s other assets
and liabilities affect that cost. This discussion will ignore the remaining elements of the

insurer’s operation.

Quantifying the Cost of Financing Insurance

To perform this analysis, we will need to quantify the cost of financing insurance in terms
of the probability of a catastrophic loss. We give some sample costing formulas below.
The formulas have the advantage of being simple, but they are by no means unique or

necessary to the examples given below.

For any random variable, Z, we define:
p, = the expected value of Z

o, = the standard deviation of Z.

See the appendix for the formulas for the various means and standard deviations used

below.

Quantifying the Cost of Capital

We employ a probabilistic capital requirements formula as the starting point for this
methodology. In the United States, insurers are not subject to an official probabilistic
capital requirements formula. However, most actuaries believe that capital requirements
should have probabilistic input. Actuaries generally accept the idea of a formula, but any
particular formula will spark a debate. While we use one such formula here, an insurer

can use another formula that suits the needs and perceptions of its management.
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Let X be a random variable representing the insurer’s total loss, net of recoveries from

reinsurance and catastrophe options. Our formula for the cost of capital is:

Cost of Capital=KxTx o,
where:
T is a factor reflecting the insurer’s risk aversion; and
K is the required return needed to attract sufficient capital.

We can link T to the insurer’s probability of insolvency. For example, if we assume the
insurer’s losses follow a normal distribution, a choice of T = 2.32 corresponds to a one-
in-one-hundred chance of insolvency. If the insurer is more risk averse, or if it feels that
the distribution of insurer results is unusually skewed, the insurer can select a higher

value of T.

The insurer will select K so that its rate of return is close to that obtained by other
investments with similar risk. K will vary with market conditions.
In the examples below, we will let

X=X, +X¢
where:
X = All catastrophe losses net of recoveries from reinsurance and index contracts; and
X, =All other net losses.

When we partition X is this manner, the formula for the cost of capital becomes

Cost of Capital = KxTx fo} +0%,

under the assumption that X, and X are independent.
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Quantifying the Cost of Reinsurance

The cost of catastrophe reinsurance depends upon market conditions. After a large
catastrophe, the demand for reinsurance usually rises and reinsurer capital falls.
Therefore, catastrophe insurance is in short supply and the reinsurance available fetches a
high price. High prices attract new capital to reinsurers, and prices generally fall until

the next catastrophe occurs.

The benefit of the reinsurance treaty is to reduce the insurer’s cost of capital by reducing

its expected loss, puy_, and its standard deviation of loss, o _.

To develop a strategy for using reinsurance, an insurer needs to know its reinsurance
costs. Those costs depend upon the retention and the limit of the reinsurance treaty, and

each reinsurer has its own prices.

Let X be a random variable representing the reinsurance recovery. We will use the

following formula for the cost of reinsurance in the examples below:
Reinsurance Cost = (uy, +A-0% }x(1+¢)

where A is a risk load multiplier, and e is an acquisition expense factor.

Quantifying the Cost of Catastrophe Options

In this paper, we will work with binary options on a catastrophe index. The holders of
those options exercise them for a fixed amount, such as $1,000, when the index exceeds a

predetermined strike price. Otherwise the options expire worthless.

To the seller of such options, the expected return should be competitive with other
available investments of comparable risk. One way of gauging comparable risk is the
analysis of bond defaults. For example, Moody's Investors Service has a web site that
publishes bond default rates and interest rate spreads. In browsing Moody’s web pages

one finds the following statements about default rates:
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e  “Moody’s trailing 12-month default rate for speculative-grade issuers ended 1997 at

”»

1.82% -- up from last year’s 1.64%, but well below its average since 1970 of 3.38%.

o “Moody’s expects its speculative-grade 12-month default rate to rise toward the 2.5%
level in 1998.”*

With respect to interest rate spreads, Moody’s states the following:

o “The spread of the median yield-to-maturity of intermediate-term speculative-grade
bonds over seven-year US Treasuries climbed just 3 basis points to 267 basis points
-- 92 basis points below its January 1993 to January 1997 average of 359 basis

"5

points.

When comparing speculative-grade bonds to catastrophe options, the investor might

consider the following:
¢ The projected 12-month default rate of speculative-grade bonds is 2.5%.

e We can estimate the probability of exercising the catastrophe options (as we will
show below). We can compare that probability with estimated default rates for
bonds.

o Catastrophe options can require posting a 100% margin at the time of sale. The
money in the margin account earns a risk-free rate of return. Thus, the price of the
option should be comparable to the interest rate spread for a bond of comparable risk

over risk-free investments.

o The average spread of speculative-grade bonds over intermediate-term risk-free
investments is about 3.5%. The spread could be lower over a 12-month term, but it

should not be lower than the projected default rate.

* The web site URL is http://www.moodys.com/defaulistudy/index.html. We obtained this quote on April
3, 1998.

% The web site URL is htp://www.moodys.com/economic/ | QDFLT97.htm. We obtained this quote on
April 3, 1998,

133



e The exercise of a catastrophe option is not correlated with the other economic risks.
That fact makes the catastrophe options more attractive to investors and should lower

their price.

With all this information, one can compare the posted price of catastrophe options with
bonds of equivalent risk. Investors will have varying interpretations of the information,
but our point is that information relevant to the pricing of catastrophe options is publicly

available.

4. An Illustrative Example

As an illustration of the kind of analysis investors and insurers can do, we used a
catastrophe model to quantify the cost of financing insurance in terms of the costs of
attracting capital, buying reinsurance, and buying catastrophe options. We compared the
insurer’s losses — generated by the catastrophe model — to the benefits provided by the

various instruments.

To do the analysis, we took a sample of fifty insurers that report their personal lines
exposure to ISO. We then analyzed the personal lines exposure for each of the fifty
insurers using a hurricane model provided by Risk Management Solutions, Inc. ¢ The
analysis provided loss estimates and annual rates of occurrence for about 9,000 events for
the insurers in the sample. We created “index” events by summing the losses for each
event over all the insurers. We then multiplied the loss for each event by a factor that set

the largest event equal to 100.

We then produced Table 4.1 below. The table contains the illustrative index values and
the model-generated losses for one of the fifty insurers from the sample. We produced a

similar exhibit for each of the fifty insurers.

® All hurricane loss estimates incorporated in this paper were developed by 1SOs use of Risk Management
Solutions’ (RMS) proprietary IRAS hurricane technology. However, development of the individual
company exposure data and the analyses were performed by ISO. Therefore the loss projections and
conclusions presented in this paper are the responsibility of ISO.
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With information like that provided in the exhibit, we can adjust insurer losses for any
recoveries from a reinsurance contract or from catastrophe options. Since the model
gives us the probability’ of any loss and/or recovery, we can calculate any summary
statistics needed to determine the cost and benefits of the various instruments used in

financing insurance.

Table 4.1
Hlustrative Index and Insurer Information
Event Illustrative Direct

Event Probability Index Value Insurer Loss

1 0.000001210 100.000 1,212,550,269
2 0.000001210 89.041 1,509,161,589
3 0.000001810  87.558 1,303,694,653
4 0.000007020  83.480 761,956,629
5 0.000007020  83.197 734,137,782
6  0.000004660  82.153 735,660,852
7 0.000007910  80.948 1,004,861,128
8 0.000050600  80.548 1,071,076,934
9 0.000007020  79.187 688,269,904
10 0.000001810  77.481 1,652,933,116
11 0.000002590  76.217 741,327.246
12 0.000005760  75.547 654,930,780

13 0.000009060  75.175 1,450,085,508
14 0.000022900 75.108 1,148,344,417

IS 0.000001210  75.046 1,003,713,967
16 0.000007020  74.142 718,320,849
17 0.000000460  73.670 612,322,934
18  0.000002590  72.964 607,625,092

19 0.000000767  72.303 1,035,338,915
20 0.000000460  72.180 564,886,456
21 0.000001810  72.050 1,269,991,504
22 0.000021000  71.547 921,203,300

23 0.000000738  71.478 582,199,078
24 0.000018700 71.246 757,962,586
25 0.000000202  70.661 1,078,827,927
26 0.000001210  70.567 1,017.469,903

27 0.000001210  70.289 1,162,380,661
28 0.000001810  68.992 1,273,618,722
29  0.000007250  68.731 966,395,280
30 0.000007020  68.640 598,955,192
U U U

7 Event probabilities can be calculated from the RMS model output. The RMS model provides annual rates
of occurrence for individual events.
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Illustrative Catastrophe Options

Using the illustrative catastrophe index, we set up illustrative catastrophe options that pay
$1,000 if the largest single event loss in the year exceeds a specified strike price. If no
single event exceeds the strike price, the option is not exercised and the buyer receives
$0. In the examples that follow, we consider trades on options with strike prices of 5,
10, 15,...,95,100. The following table gives the probabilities that each option will be

exercised. See the appendix for the formula for calculating those probabilities.
Table 4.2

Strike  Exercise

Price Probability
0 1.00000000

5 0.16313724
10 0.07855957
15 0.04006306
20  0.02321354
25 0.01387626
30 0.00816229
35 0.00440132
40  0.00296168
45 0.00187601
50 0.00100615
55 0.00070126
60  0.00040197
65 0.00028771
70 0.00018975
75 0.00013880
80  0.00008846
85 0.00001125
920 0.00000121
95 0.00000121
100 0.00000121
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The catastrophe options used in this example have a structure similar to those traded on

the Guy Carpenter Catastrophe Index (GCCI),® with four important differences:

1. The scale of the indices is different. The illustrative index has 100 as its highest
value whereas the GCCI has 700 as its highest value.

2. The sets of insurers that make up the indices are different.

3. The illustrative index simply sums the losses for each insurer, whereas the GCCI uses
a complex set of rules designed to keep a single insurer from having too much

influence at the ZIP-code level.

4. The illustrative index is an annual index, whereas the GCCI is semiannual and

overlaps with the normal hurricane season in either one or five months.

The following table gives the costs used in the examples below. To calculate the price of
the option, we added 0.035% of the variance of the contract payoff to the expected
payoff. We arrived at the 0.035% figure by comparing the exercise probability of an
option with a strike price of 20, against the price of a speculative-grade bond, as

discussed above.

® For information about the options traded on the Guy Carpenter Catastrophe Index, visit the Bermuda
Commodities Exchange web site at http://www.bcoe.bm
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Table 4.3
Strike Expected Contract
Price  Payout Price

0 1000.000 1000.000
5 163.137 210.920

10 78.560 103.895
15 40.063  53.523
20 23.214  31.150
25 13.876  18.666
30 8.162 10.996
35 4.401 5.935
40 2.962 3.995
45 1.876 2.531
50 1.006 1.358
55 0.701 0.947
60 0.402 0.543
65 0.288 0.388
70 0.190 0.256
75 0.139 0.187
80 0.088 0.119
85 0.011 0.015
90 0.001 0.002
95 0.001 0.002
100 0.001 0.002

Insurer Examples

The following analysis of three insurers shows how those insurers can reduce the cost of
financing insurance through the proper use of reinsurance and catastrophe options. The
insurers are three members of the sample of fifty insurers that we selected above. We

randomly adjusted the losses of each insurer to protect their anonymity.

e Insurer #1 is a medium sized national insurer with exposure that tracks relatively well

with the exposure underlying the illustrative index.

o Insurer #2 is a large national insurer with exposure that tracks less well with the

exposure underlying the index than Insurer #1.

o Insurer #3 is a regional insurer with exposure that does not track well with that of the

index.
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We provide summary statistics for the insurers’ catastrophe losses.
Table 4.4

Insurer #1 Insurer #2  Insurer #3

Expected Catastrophe Loss 34,839,348 95,417,229 2,385,629
Std. Dev. Of Catastrophe Loss 81,044,318 196,767,192 18,098,024
Coef. of Correlation with Index 0.93 0.75 0.35

We now provide the economic assumptions underlying our estimate of the cost of
financing insurance. The assumptions made here are not specific to the particular insurer,
but we could modify the assumptions and/or make them specific after a discussion with

an insurer’s management.

The Cost of Financing Insurance

As discussed above, we use the following formula for the cost of insurer capital:

Cost of Capital = Kx Tx Jo} +0%_

with K =20%; T = 3.00 and o, = the insurer’s initial oy _. In areal case, we would
estimate o by analyzing the insurer’s other assets and liabilities.
In the examples that follow, we use the following formula for the cost of reinsurance:

Reinsurance Cost = (py, + k-o;. )x(l+e)
with A= 1.5 x 107 and e = 10%. The selected value of A is close to what 1SO uses in its

risk load formula for increased limits ratemaking.

If the insurer buys Ng contracts for strike price S at cost Cs, the total cost of the index

contracts is:
> Ng-C
S

Table 4.3 gives the values of Cs for each strike price, S.
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The insurer’s management has to make three key decisions to minimize the cost of

financing insurance:
1. How much capital should the insurer retain?
2. What layer of reinsurance does the insurer buy?

3. How many index contracts, Ns, does the insurer buy at a given strike price, S?

Now, for a given reinsurance layer and a given set of index contracts, we can calculate

the quantities py , 0%, , B, and o%_ using formulas given in the appendix.

Thus our expression for the cost of financing insurance becomes

Ry, +KxTx‘/c§(° +0%, +(By, +A-0% I)x(1+€)+ Y Ng-Cq
S

We seek to minimize this expression by choosing the right layer of reinsurance and the

right numbers, Ng, of catastrophe options.

We do not now have an analytic solution to this minimizing problem. That is because of
the effort involved in deriving one and because we do not feel that the assumptions we
made in calculating the cost of financing insurance are final.’ Instead, we used a
numerical search algorithm, Excel Solver™. As it is difficult to ascertain that the
numerical search solution is indeed the optimum, we should characterize the results as

“the best solution we could find.”

In order to reduce the computing time, we restricted the reinsurance retention and limit to
multiples of $1,000,000 and the number of catastrophe options to multiples of 100. In

addition we forced the number of catastrophe options to be the same for each of the

v

? For an analytic solution to a simpler problem, sce “A Buyer’s Guide to Options on a Catastrophe Index”
by Glenn Meyers. The paper has been accepted for publication in the Proceedings of the Casualty
Actuarial Society.
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following groups of strike prices: 5, 10, 15, and 20; 25, 30, 35 and 40; 45,50, and 55; 60,
65, and 70; 75, 80, and 85; and 90, 95, and 100.

The search for the minimum cost of financing insurance produced the following results:

Table 4.5
Contract Number of Index Contracts
Range Insurer #1  Insurer #2  Insurer #3
5-20 47,400 93,100 0
25-40 74,400 118,100 6,300
45-55 59,500 67,900 0
60-70 47,600 28,600 0
75-85 81,400 545,100 0
90-100 37,200 634,800 0
Reinsurance
Retention 73,000,000 457,000,000 54,000,000
Limit 13,000,000 36,000,000 105,000,000

The elements of the cost of financing insurance are as follows:

Table 4.6
Best Solution Obtained for the Cost of Financing Insurance

Insurer #1 Insurer #2 Insurer #3

Expected Net Loss 16,315,629 62,086,995 1,464,410
Cost of Capital 47,905,407 143,662,761 12,914,922
Cost of Reinsurance 2,132,070 1,848,530 1,726,342
Cost of Index Contracts 22,252,015 42,409,101 249,427

Cost of Financing Insurance 88,605,121 250,007,387 16,355,100
We compared the “best solution” with two alternative solutions:

Table 4.7
Cost of Financing Insurance without Reinsurance or Index Contracts

Insurer #1 Insurer #2 Insurer #3

Expected Net Loss 34,839,348 95,417,229 2,385,629
Cost of Capital 62,095,747 166,962,499 15,356,683
Cost of Reinsurance 0 0 0
Cost of Index Contracts 0 0 0

_Cost of Financing Insurance 96,935,095 262,379,728 17,742,312
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Table 4.8

Cost of Financing Insurance after
Dropping the Smallest Element from the Best Solution

Insurer #1 Insurer #2 Insurer #3

Expected Net Loss 17,945,994 63,198,145 1,648,555
Cost of Capital 48,508,962 145,045,517 13,023,441
Cost of Reinsurance 0 0 1,726,342
Cost of Index Contracts 22,252,015 42,409,101 0

Cost of Financing Insurance 88,706,971 250,652,763 16,398,337

We can make two observations:

¢ The introduction of catastrophe options and reinsurance can significantly reduce the
cost of financing insurance. In the examples the cost was reduced by 8.6 % for

Insurer #1, 4.7% for Insurer #2, and 7.8% for Insurer #3.

e The role of catastrophe options was more significant for the insurers whose
catastrophe losses were better correlated with the index. Conversely the role of
reinsurance was more significant for the insurer whose catastrophe losses were poorly

correlated with the index.

The Marginal Cost of Financing Catastrophe Insurance

The examples illustrate that reinsurance and catastrophe options can significantly reduce
the cost of financing insurance. However the analysis does not address the question of
how much the insurer needs to build the cost of financing into its premiums. Actuaries

usually refer to that cost as the risk load.'®

To answer the question, we calculate the cost of financing insurance, with and without

the catastrophe lines. We call the difference between those costs the marginal cost of

¥ See “The Competitive Market Equilibrium Risk Load Formula for Catastrophe Ratemaking” by Glenn
Meyers, Proceedings of the Casualty Actuarial Society LXXXIII, 1997, for background on risk loads for
catastrophe ratemaking. That paper goes beyond the current paper by allocating the risk load to individual
insureds. However it accounts only for the cost of capital, and does not account for reinsurance and
catastrophe options.
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financing catastrophe insurance. If the insurer can recover that cost in the premiums it

charges, it should write the insurance.

Continuing our example, the cost of financing insurance without catastrophe insurance''

is: Kx Tx oy . Thus the marginal cost of financing catastrophe insurance becomes

Hxe +KxTx(Jc§o +c5‘2\.C _(’Xo)+(“xu +X-G§R)x(l+e)+ZNs -Cyg
s

We summarize the results for the three insurers in our illustrative example:

Table 4.9

The Marginal Cost of Financing Catastrophe Insurance
Using the Best Solution

Insurer #1 Insurer#2 Insurer#3
Cost of Financing without Cats 43,908,324 103,258,865 10,764,807
Cost of Financing with Cats 88,605,121 250,007,387 16,355,100
Marginal Cost of Cats 44,696,797 146,748,522 5,590,293
Marginal Cost/Expected Loss 1.283 1.538 2.343

We do a similar calculation without considering reinsurance or contracts on a catastrophe

index.

Table 4.10

The Marginal Cost of Financing Catastrophe Insurance
Without Reinsurance or Index Contracts

Insurer #1 Insurer #2 Insurer #3
Cost of Financing without Cats 43,908,324 103,258,865 10,764,807

Cost of Financing with Cats 96,935,095 262,379,728 17,742,312
Marginal Cost of Cats 53,026,771 159,120,863 6,977,505
Marginal Cost/Expected Loss 1.522 1.668 2925

Here we see that the proper use of reinsurance and catastrophe options can have a
significant effect on premiums, as the marginal cost of financing catastrophe insurance is

substantially lower for each insurer using a mix of reinsurance and catastrophe options.

" Technically, we should include the expected value of the losses without the catastrophe insurance. But
the focus of this paper is on catastrophes, and the expected loss for the noncatastrophe exposure will cancel
out when we compute the marginal cost of financing catastrophe insurance.
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5. The Next Steps

This paper has taken a first step beyond the insurer capital and reinsurance paradigm, by

showing how to incorporate instruments with basis risk to reduce the cost of financing

catastrophe insurance. Having taken this first step, there are a number of directions that
can be taken. We list a few.

e The insurer could consider buying catastrophe options on a regional or state index, as
well as a national index. The additional flexibility could decrease the cost of
providing insurance for some insurers — such as Insurer #3 above.

e Retumns from catastrophe options could be imbedded within the reinsurance. That is,
the reinsurance would cover the difference between the insurer’s actual loss and the
index recovery.

» We could create a customized index to form the basis of settlement between the
insurer and a reinsurer. Such an index would be based on the industry data, but with
a customized set of ZIP-codes. With such an arrangement, adverse selection by the
primary insurer would no longer be an issue.

¢ A reinsurer could use the catastrophe options as a hedge for its combined exposure.
To do this, the reinsurer would have to combine the exposure of all its treaties and do
an analysis similar to that done above. The options could give the reinsurer increased

capacity to write more catastrophe coverage.
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Appendix
The Calculation of the Statistics for a Maximum Event Index Contract
This appendix gives the formulas for the statistics used in calculating the cost of
financing insurance. The calculations are complicated by the fact that the catastrophe
index recovery for an event depends upon whether or not the event was the largest event.
We solve this by calculating conditional statistics based on the event being the largest —

and then calculate global statistics by summing over the conditional probabilities.

We are given n (about 9000) events from the catastrophe model and the index values
associated with each event. We assume that the events are independent and that they can
only happen once in a year'?. The events are sorted in decreasing order of the index
value. Table A.3 gives the first 30 rows of the of the calculation. The following table

gives the formulas used in this exhibit.

Table A.1
Formulas for Table A.3
ith Row of Column Description and Formula
Event The ith event specified by the catastrophe model
Index Value The value of the index if the ith event is the largest

The probability of the ith event as specified by the

Event Probability, p; catastrophe model

The probability that the ith event happens and all

larger events do not happen
Max Event Probability, ,, p; i-1

mPi=P; ‘H(I‘Pj)

=l

The amount paid by the insurer’s portfolio of
Contract Value, v; catastrophe options given that the ith event is the
maximum event

The loss generated by catastrophe model for the ith

Direct Insurer Loss, X; . )
event on the insurer’s exposure

The amount recovered from the reinsurance contract

Reinsurance Recovery, r; for the ith event

Event Loss Given Max, ¢; €, =%, —V;—T

12 The RMS model provides annual rates of occurrence for events. Because rates are so small, making the
assumption that events can only happen once per year is not unreasonable.
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Table A.1 - Continued

ith Row of Column

Description and Formula

E[Loss| Event is the Max], E;

E =¢ + il:‘,[(xj -rj)]

juinl
=e + ) (x; -5)-p;
Jmi+l
=¢;+E, —e,, + (X, —1.) P

E[Loss2 l Event is the Max], ;E;

in=Eiz+iVar[(xj—rj)]

jminl
=E} + ) (x,=r)*p;-(1-p))
il

=El+,E, ~EL +(X,, = 1.,)" P -(1~P,)

Table A.2

Cost of Financing Insurance Statistics

Overall Statistic

Formula

E[Reinsurance Recovery], py,

Var[Reinsurance Recoveryl, o3,

E[Net Catastrophe Loss], py,

Var[Net Catastrophe Loss], 6%,

Exercise Probabilities

Let PE; denote the probability that maximum event catastrophe option at the level of

event i will be exercised. The option will be exercised if either the ith or a lower

numbered (higher loss) event happens. That is:

PE, =p,, PE;=p, +PE_ -(1-p;)

146




Lyl

Table A.3 Preliminary Calculations for the Cost of Financing Insurance Statistics
Index Event Max Event Contract Direct Reinsurance  Event Loss
Event Value Probability Probability Value Insurer Loss  Recovery Given Max  E|LossiMax] E|Loss"2|Max]|
] 100.00( 0.000001210] 0.000001210]1,125,200,000}1,212,550,269 16,000,000 71,350,269 105,039,888 1.06712E+16
2 89.04{ 0.000001210] 0.000001210(1,021,700,000| 1,509,161,589 16,000,000 471,461,589 505,149,400 2.33194E+17
3 87.56] 0.000001810| 0.000001810] 1,021,700,000{1,303,694,653| 16,000,000 265,994,653} 299,680,134 7.95274E+16
4 83.48] 0.000007020| 0.000007020| 939,300,000{ 761,956,629 16,000,000| (193,343,371)| (159,663,127) 4.17510E+16
5 83.20] 0.000007020{ 0.000007020] 939,300,000/ 734,137,782] 16,000,000 (221,162,218) (187.487,015)] 5.30470E+16
6 82.15| 0.000004660] 0.000004660] 939,300,000; 735,660,852] 16,000,000 (219,639,148)| (185,967,298)] 5.23874E+16
7 80.95| 0.000007910| 0.000007910] 939,300,000(1,004,861,128 16,000,000 49,561,128 83,225,155 8.84949E+15
8 80.55] 0.000050600[ 0.000050598] 939,300,000(1,071,076,934] 16,000,000 115,776,934] 149,387,575| 2.02818E+16
9 79.19| 0.000007020] 0.000007019] 856,900,000 688.269,904]  16,000,000| (184,630,096)] (151,024,174)|  3.88460E+16
10 77.48] 0.000001810] 0.000001810| 856,900,000(1,652,933,116[  16,000,000] 780,033,116] 813,636,074] 6.19226E+17
I 76.22{ 0.000002590| 0.000002590] 856,900,000 741,327,246] 16,000,000] (131,572,754)] (97.971,674)] 2.23955E+16
12 75.55] 0.000005760| 0.000005759| 856,900,000( 654,930,780 16,000,000| (217,969,220)] (184,371,820) 5.20551E+16
13 75.18] 0.000009060| 0.000009059| 856,900,000 1,450,085,508] 16,000,000] 577,185,508 610,769,915 3.42608E+17
14 75.11] 0.000022900| 0.000022898| 856,900,000{1,148,344,417| 16,000,000 275,444,417/ 309,002,893 8.34181E+16
15 75.05| 0.000001210| 0.000001210| 856,900,000|1,003,713,967 16,000,000 130,813,967 164,371,248 2.37695E+16
16 74.14| 0.000007020] 0.000007019] 774,500,000 718,320,849 16,000,000] (72,179,151)] (38,626,801) 1.07551E+16
17 73.67| 0.000000460§ 0.000000460] 774,500,000 612,322,934| 16,000,000{ (178,177,066)} (144,624,990)] 3.68535E+16
18 72.96] 0.000002590] 0.000002590] 774,500,000] 607,625,092| 16,000,000 (182,874,908)] (149,324.364)] 3.85299E+16
19 72.30| 0.000000767{ 0.000000767] 774,500,000(1,035,338,915| 16,000,000{ 244,838,915 278,388,677 6.68006E+16
20 72.18| 0.000000460} 0.000000460] 774,500,000 564,886,456 16,000,000{ (225,613,544)! (192,064,034) 5.58109E+16
21 72.05| 0.000001810] 0.000001810] 774,500,000| 1,269,991,504 16,000,000| 479,491,504 513,038,744 2.37731E+17
22 71.55| 0.000021000] 0.000020997| 774,500,000| 921,203,300/ 16,000,000 130,703,300 164,231,531 2.34399E+16
23 71.48] 0.000000738] 0.000000738| 774,500,000( 582,199,078 16,000,000] (208,300,922)| (174,773,109) 4.83588E+16
24 71.25] 0.000018700; 0.000018697] 774,500,000] 757,962,586 16,000,000{ (32,537.414) 976,524 6.73762E+15
25 70.66| 0.000000202| 0.000000202| 774,500,000{1,078,827,927| 16,000,000 288,327,927 321,841,651 9.01151E+16
26 70.57| 0.0000G1210] 0.000001210| 774,500,000{1,017,469,903 16,000,000f 226,969,903 260,482,415 5.82464E+16
27 70.29] 0.000001210] 0.000001210] 774,500,000]1,162,380,661 16,000,000 371,880,661 405,391,786 1.45612E+17
28 68.99| 0.000001810| 0.000001810] 726,900,000|1,273,618,722| 16,000,000| 530,718,722 564,227,570] 2.89618E+17
29 68.73] 0.000007250] 0.000007249] 726,900,000{ 966,395,280] 16,000,000[ 223,495,280 256,997,239] 5.66513E+16
30 68.64] 0.000007020[ 0.000007019] 726,900,000 598,955,192} 16,000,000 (143,944,808)| (110,446,942)] 2.59361E+16
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Abstract

Total enterprise risk management involves a systematic approach for evaluating/controlling risks
within a large firm such as a property-casualty insurance company. The basic idea is to coordinate
planning throughout the organization, from traders and underwriters to the CFO, in order to
maximize the company’s economic surplus at the desired level of enterprise risk. At present, it is
difficult to link strategic systems, such as asset allocation, to tactical systems for pricing securities
and selecting new products. We propose two solutions. First, we develop a “price of risk” for
significant decisions possessing correlated factors. Second, we create a set of dynamic investment
categories, called hybrid assets, for use in an asset and liability management framework. We
illustrate the concepts via an insurance planning problem, whereby the goal is to optimize the
company’s surplus.
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1. Introduction to Dynamic Financial Planning

Dynamic financial analysis (DFA) assumes that a large financial company can benefit by
coordinating its operations across diverse business lines, such as insurance, banking, and
investment management. The goal of DFA is to maximize the firm’s surplus wealth, while
keeping within desired risk tolerances. Several barriers exist to achieving this goal. First, the
deregulation of financial markets has not kept pace with the explosion of new products and the
merging of businesses. Second, organizational constraints limit the ability of firms to improve
profitability. The firm may have the best information regarding risk-adjusted profit, but it may not
act fast enough to grow the profitable activities (and shrink unprofitable activities).

A third barrier involves the linkage of information within the firm. In this paper, we describe a
systematic approach for linking tactical and strategic planning systems for large financial
organizations. The goal is to establish a total integrated risk management system (TIRM).
Prominent applications include insurance companies, banks, mutual funds, and pension plans.
We propose an approach for transmitting signals from the optimal solution of the strategic system
to the individual decision-makers who must carry out the optimal strategy. A key concept is the
price of risk, as defined within the context of a dynamic investment strategy. In addition, we
develop the concept of a hybrid asset security. These securities involve considerable dynamic
intervention, and they serve as benchmarks for the tactical components of the risk management
system.

At present, there are a number of successful asset and liability management systems. There has
been considerable work on the strategic aspects of asset allocation, for example, in the area of
pension planning. See the recent book “World Wide Asset and Liability Modeling,” by Ziemba
and Mulvey (1998) and the references therein.

Rung 5: Total integrated risk management
Rung 4: Dynamic asset and liability management
Rung 3: Dynamic asset-only (multi-period)
Rung 2: Static asset-only portfolios
Rung 1: Pricing single securities
The Risk Ladder
Figure 1

Economic theory assumes that firms maximize their shareholder value. An enterprise risk
management system helps the company achieve this objective in a systematic fashion. We
employ strategic planning systems to address critical questions for an institution’s long term
survival. Some prominent issues include the company’s leverage structure, investment for
research, the amount of assets in riskier categories, such as growth equity. In addition, transaction
and market impact costs may be high when.trying to pull out of an activity. Last, there are often
autocorrelations in markets, and these intertemporal dependencies should be addressed.

The fundamental approach for analyzing long-term issues is asset allocation (and its extension to
asset and liability management — see book by Ziemba and Mulvey). A dynamic financial analysis
requires three primary elements (Figure 2). First, we must be able to generate scenarios for the
future across a multi-period horizon.
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Multi-period
Stochastic Projection
System

Simulate Financial
Organization

A 4

Scenarios

Vf
Optimize Firm

Primary Elements of a Strategic Financial Planning System
Figure 2

1.1. Stochastic Projection System

The purpose of the stochastic model is to estimate the uncertain parameters in the firm-wide
simulation. A critical issue is to link the uncertain parameters to a small set of essential economic
factors — the driving factors. Figure 3 illustrates the idea. We first estimate factors such as interest
rates and inflation over the T-time periods by means of a stochastic difference equation,
approximating a diffusion equation. For example, we might use the Ornstein Ulenbeck process
for the short interest rates:

dr=a(ro—-n)+srdZ.

This series displays mean reversion to the parameter ro, has volatility s, and drift a. These three
parameters must be determined by calibration tools (see Campbell et al. 1997, and Mulvey et al.
1996). The White noise term, dZ, represents the standard Normal (0,1) distribution function.
Discrete samples are taken from this stochastic equation in order to derive representative set of
scenarios. Each scenario depicts a single plausible path for all of the uncertain parameters over
the planning period. Employing variance reduction methods, in concert with the stochastic
optimization model can reduce the number of scenarios (see Campbell et al. 1997, and Mulvey

and Rush 1997).

Economic Factors
Interest rates o] Asset returns
Inflation Liability cashflows
Currencies

Other Factors
Cat risks

Figure 3
Simulation of Driving Economic Factors

A number of scenario generators exist for projecting economic variables and asset returns. Some
prominent examples include Towers Perrin’s CAP:Link/OPT:Link (Mulvey 1996), Wilkie's
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investment system in the UK (Wilkie 1987, 1993), Frank Russell’'s VAR (Carino 1994, 1998),
and ORTEC in the Netherlands (Boender 1995).

There are several scenario generators for projecting liabilities. For example, catastrophic (CAT)
modeling firms (e.g. AIR, Dames and Moore, EQE, RMS, and Tillinghast) estimates catastrophic
risks for losses under earthquake and hurricane events. Monte Carlo simulation techniques derive
these estimates, whereby the number of scenarios must be a large due to the rarity of the worst
CAT events. Over (0,000 scenarios are required in most studies.

Loss ratios for non-CAT lines of business are also modeled in the scenario generators. In many
cases, there is adequate historical data on the losses so that estimates can be calculated in a
reliable fashion.

1.2. Simulate the Enterprise or Activity

Given the stochastic scenarios, we can simulate the financial organization over the planning,
period, up to the horizon at period T. For this simulation, we must identify the dynamic decision
rules and the market forces that will drive the firm. It is critical to focus on the company’s or the
investor’s surplus. We define surplus wealth as:

Market value (assets minus liabilities) — Present value (goals)

The simulation of the core economic factors over time provides a linkage across business
activities. For example, asset returns and liability cashflows are dependent on changes in interest
rates and inflation. The degree of overlapping risks depends upon a combination of the decision
strategies and the uncertainties. It is often under control of the firm.

1.3. Control and Optimize

Once a simulation is conducted, we can improve the company’s performance by employing
stochastic optimization techniques. For example, we can maximize the growth of the company's
economic surplus by maximizing the expected utility of wealth, wherein utility equals
log(wealth).

We stress the concept that stochastic optimization algorithms are now feasible and available. We
can solve a stochastic program with a large number of decision nodes (tens of thousands), or by
means of a set of decision rules (and the resulting solution to the non- convex program.) See
Mulvey and Ruszczynski 1995. Next, we define the primary equations for a strategic financial
planning system.

1.4 Model Structure

The investment process consists of T time stages. The first stage represents the current date. The
end of the planning period, T is called the planning horizon. Typically, it depicts a point in which
the investor has a critical planning purpose, such as the repayment date of a substantial liability,
or a natural juncture as the annual board of director’s meeting. Strategic systems look out over
several years or even decades — for insurance companies and pension plans. Tactical systems
have much shorter time horizons — weeks, days, or even minutes.
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At the beginning of each period, the investor renders decisions regarding the asset mix, the
liabilities, and the financial goals. Between time steps, uncertainties take over. For example, the
stock market and bond returns occur. As mentioned, we employ a system of stochastic differential
equations for modeling the stochastic parameters over time. These relate a set of key economic
factors to remaining components, such as asset and liability returns. For an example, see the
CAP:Link system (Mulvey 1996, and Mulvey and Thorlacius 1998). The alternative modeling
approaches address the integration of the stochastic and the optimization models in a different
manner.

Decisions made at beginning of each period
Today / / l
¥ ! | J J [

t=1 T = horizon

The Planning Period (t=1,2,..., T)
Figure 4

The primary decision variables designate asset proportions, liability-related decisions, and goal
payments:

X investment in asset j, time t, scenario §
vl liability or product k, time t, scenario s
u’ goal payment |, time t, scenario s.

At each time period, t, the model maximizes its objective function, f(x), by moving money
between asset categories, adjusting liabilities, and paying off goals. There are numerous
candidates for the objective function; see the next section. In addition, we impose constraints on
the process such as limiting borrowing to certain ratios, addressing transactions costs whenever
assets are bought or sold, or taking advantage of investment opportunities, There are several
modeling approaches for including constraints. OQur goal is to find a feasible point, which
maximizes a temporal objective function. Since we are dealing with uncertainty in a temporal
setting, the optimal solution, like all points, will encompass a set of paths -- trajectories -- for the
investor's wealth (or other measures such as surplus wealth). Ranking these paths is the subject of
the next subsection.

There are two basic equations for the flow of funds at each time-peried, and scenario:
Equation {1] for /" asset category:

K=K+ ) - p’ il (I-f) for asset j, time t, scenario s.

where "= return for asset j, time t, scenario s,
pi= sales of asset j, time t, scenario s,
q'= purchase of asset j, time t, scenario s,
1, = transaction costs for asset j.
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Equation (2] for the cash flows:

us@l ) g al o pfd-g oW sl - or g
7 i k !

where w," = cash inflows at time t, scenario s,
cash is asset category 1.

The multi-stage investment model avoids looking into the future in an inappropriate fashion. The
model cannot optimize over scenarios that do not represent a range of plausible outcome for the
future. To prevent this occurrence, we add constraints to the model, called non-anticipatory
conditions. The general form of the constraints is:

sl _ 52
Xjr = Xju

for all scenarios sl and s2 which inherit a common past up to
time t.

The financial planning system addresses non-anticipatory conditions, either explicitly or
implicitly, and special purpose algorithms are available for solving the resulting stochastic
optimization model.

In addition to the economic surplus, market value of assets and liabilities, we must address the
regulatory environment. The simulation model should set constraints on the regulatory measures,
such as STAT and GAAP, while maximizing the economic surplus. This effort requires a
complex set of issues when the model cuts across a multi-national company with many tax and
cultural concerns.

1.5 Financial Objectives

A major element of enterprise risk management involves trading off risks and rewards. It is
natural to expect that investments possessing more volatility will often generate greater expected
returns than assets with lower levels of volatility. The temporal issue complicates the decision
since longer term horizons dictate a longer time span to recoup losses, thus the more volatile
assets may be, in fact, safer in terms of contextual risks. An example is the stock/cash
comparison: stocks provide higher expected returns but are more volatile than cash. We must
consider the time horizon in measuring contextual risks.

There are numerous ways to evaluate financial risks, just as there are alternative measures of
profitability. We might consider the chance of a loss over the next year, such as 15% -- value at
risk. Or, we might set a profitability target and evaluate the probability of missing the target. In
both cases, risk increases as a function of probability. An improved alternative for evaluating
risks is to estimate the full probability distribution of shareholders equity, along with other
measures of financial well being for the company. The scenario generators in conjunction with
the firm simulation system provide this information.

Calculating these curves requires a comprehensive approach for linking all major activities and
uncertainties in a financial organization. Given a distribution, we can evaluate not only risks but
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also compare it against reward potential. Typically, we equate reward with expected value. We
might be interested in profit or loss over the next year per dollar of allocated capital:

Expected profit = 3 p,* z° / (Allocated capital)
seS

where p, is the probability of scenario s,
2" is the profit or loss under scenario s,
S is a ser of representative scenarios,
Allocated capital depends upon the loss distribution (VAR).

Comparing alternative distributions on a direct basis can be difficult for most decision-makers. To
aid in the process, we can employ the concepts of stochastic dominance. For example, if two
cumulative distributions cross only once and the decision-maker is risk averse, she will take the
curve with the highest expected value if its variance is less than the alternative. Other dominance
tests are possible, but these tests are unlikely to apply in a wide set of circumstances.

There are two primary theories for setting up an objective function under uncertainty. First, we
can transform random variables to deterministic values, such as the value at risk or a certainty
equivalent. Alternatively, we can fit a classical utility function to the characteristics of the output
of the model. An example is to define risk as the volatility of the return of a por tfolio. There are
numerous variants of each theory.

After 50 years, the von Neumann Morgenstern [VM] theory remains the pre-eminent approach
for making decisions in the face of uncertainty. The resulting optimization model can be stated
simply as follows:

[VM] Max  E(v(zr))

.where E{v(z1)) = Zpsrviz)

s
where v(z') is the VM preference function
z " 1= investors wealth under scenario s, time T
p, = probability of scenario s.

Once the solution of model VM is found, z', we determine its certainty equivalent (CE) by
computing the inverse function at the recommended solution CE = v'(z"). This value represents
the exact amount that we would take in order to sell (or buy) the random variable z. While the
VM theory is generally accepted as a theoretical measure, there are several difficulties. First,
most executives are unable to come up with an acceptable level of risk aversion. Second, the
temporal aspects of decision making are ignored in the VM theory. Thus, we are generally unable
to decide upon a high-risk asset that will pay off in several years versus a lower returning but
safer asset. Generally, we focus on the expected utility at the end of the planning horizon, period
T. The intermediate points are constrained to achieving acceptable results.

There are several heuristic approaches to decision making under uncertainty. Two of the most
popular are value at risk (VAR), and the risk adjusted return on allocated capital. In both cases,
we set a level of confidence in the return distribution as a reference point. Profits and risks are
measured with respect to this assumed point. For instance, we might decide that the 1/100 loss
point is the reference. Capital allocation rules are then generated by the amount of losses at this
point. The concepts are easy to understand. But they can lead to errors since they are not
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considering the entire distribution of gains and losses. [n addition, these methods do not easily
address the issue of overlapping risks.

1.6 Limitations of Strategic Systems for Large Organizations

There are several limitations to the use of a strategic financial planning system within a large
financial institution. The first issue involves the lack of detailed information regarding the risks
and most importantly overlapping and correlated risks. If the organization could separate
activities that are independent of each other, they could allocate capital on a straightforward risk
adjusted basis, such as some function of value at risk (VAR). However, during the 1990s,
financial organizations are merging diverse activities — traditional banking, insvrance, mutual
funds, and trust and wealth management. It is difficult to design these operations so that the risks
are independent of each other. In addition, we discount projected future cashflows by Treasury
interest rates when computing the market value of assets and liabilities. Therefore, even
seemingly independent activities are linked by their dependence on interest rate movements.

Second, the asset allocation approach runs into difficulties when portfolio managers do not
possess well-defined investment benchmarks, or when the managers stray from the benchmarks.
The risks for the individual tactical investors will certainly increase when correlated elements
exist in their portfolios. Yet many financial companies decompose their activities into loosely
managed divisions; they pay scant attention to overlapping risks. The problem is especially
difficult when the issues involve the rare events - tails of the loss distribution. For example,
several investors may decide to move into a single asset at the same time, and the asset drops
dramatically. In other cases, there is a more subtle relationship between the degree of overlapping
risks. The scenario generators should be equipped to handle this factor.

Another challenge occurs when the strategic plan needs modifying. A tactical system can assist in
the change of course decisions. Yet, there needs to be close coordination of the affected systems.
The tactical system by necessity works at a more detailed level of information, such as individual
stocks, as compared with generic asset categories. This offers great opportunities. The prices of
risks and target benchmarking can play a pivotal role as we show in the next section.
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2. Linking Strategic and Tactical Planning Systems

This section discusses the linkage of the strategic planning system with one or more tactical
investment systems. As before, the critical issue entails overlapping risks, across product lines,
and investments. We suggest three possible approaches. The first involves the creation of target
benchmarks based on hybrid securities. Dynamic asset and liability processes form the hybrids. In
the second approach, we generate prices of risks for each product-location, or asset category. We
add these prices to the profit calculations for the business units. In the third approach, we track
the degree of overlapping risks and allocate capital based on risks. This approach requires a
relatively conservative allocation rule or a closely monitored organization.

Figure 5 illustrates the flow of information between the strategic system and the tactical systems.
Herein, the target benchmarks and/or prices of risks are sent to the tactical investors — traders,
underwriters and asset managers -- along with their capital allocation. A straightforward
benchmark might be the Morgan Stanley Capital International Index; the goal is to exceed the
benchmark return, while investing under the same risk profile as the MSCI index.

Hybrid securities can play a distinguishing role in the construction of benchmarks for tactical
asset managers. A prototypical example is the principal-protected equity bond discussed in the
next section. For this example, the asset manager must beat this index over an assigned time-
period. The manager has several options. First, he could attempt to replicate the security by
following a delta or gamma neutral strategy (Hull, 1997). Alternatively, he could increase the
equity proportions in order to gain additional returns, at the costs of additional risks. However,
the investor must be careful when taking on increased risks. Here is where the price of risk comes
in. The tactical system should evaluate the marginal costs of adding risks by modify the excess
profit computations (over and above the target benchmark). The prices of risks should be
included in the calculations. In some cases, there is adequate independence of the activities so
that overlapping risks can be ignored. Whenever possible, the organizational design should
attempt to reduce overlapping risks by setting up units that are independent on a risk basis, such
as giving a manager a separate asset category. Alternatively, the tactical manager can simply
replicate the target benchmark at a minimum cost, thus eliminating the price of risks
requirements.

In a similar fashion, a product manager or insurance underwriter can be assigned a benchmark.
An example is the amount of allocated capital for the manager’s businesses along with the risk
adjusted profit values. As on the asset side, risk profiles should depend on the projected
movements of the core economic factors. Moreover, as before, we can compute the price of risk
for the activities by referring to the dual variables from the optimal solution to the strategic ALM
system. Any decision (investment/product/line) possessing a positive margin profit will benefit
the company and is worthy of further analysis. The formula for adjusting profit is:

profit = net revenue - ZI st st
se§
where n,, = optimal dual solution from

strategic system,

1., =loss under scenario s, time t.
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Another approach is to approximate the prices of risks by computing the historical correlations
and assume that the profits and losses are derived from a multi-normal or other suitable
distribution. Herein, the time horizon is relatively short, one day to several weeks, and the model
is generally single period.

We illustrate the prices of risks via a generic tactical tool for insurance underwriters. This system
takes in loss estimates for catastrophic events, such as hurricanes and earthquakes, and generates
risk adjusted profitability values for the properties in the underwriter's book of business. It also
can optimize on the parameters of the book, such as deductibles, identify properties to eliminate,
etc., and find the best set of properties when two books are combined. A sample output of the
system might show the expected profits displayed per zip-code, adjusted by the prices of risks.
The underwriter can quickly gain insights into the relative areas of profitability on a geographic
basis.

The Strategic Planning
System
Target Benchmarks
Princes of Risk Capital Allocation
Tactical System
Tactical System Tactical System (Debt
(Investments) (Underwriters) Management)

Risk adjusted profits computed for each tactical system and sent back to strategic system

Figure 5
Coordinating the Strategic and Tactical Planning Systems
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3. Empirical Results

In this section, we illustrate the advantages of hybrid securities for a real world strategic planning
model involving a large insurance company'. The goal is to maximize the company's surplus

over a five-year horizon. Re-balancing decisions occur annually. We employ the CAP:Link

scenario generator for constructing 500 scenarios for the economic factors and the asset returns.

Tillinghast-Towers Perrin actuaries performed liability projections under these same 500

scenarios. At each period, the model revises the asset mix, according to the target mix values,
pays out the necessary liabilities and taxes, and distributes dividends and interest as appropriate.

Thirteen asset categories were selected by the insurance client. These asset categories form the
basis for many asset allocation studies. We include two categories of Treasury inflation protected
bonds (TIPs}, mid-term and long-term, in addition to the standard assets. These assets protect the

insurance company's liabilities against unexpected inflation.

A strategic planning model was developed for the insurance company, in which the company paid
out required obligations each year as dictated by the actuarial estimates, under each of the 500
scenarios. The goal was to maximize the company’s surplus at the end of the 5-year horizon.

To solve the model, we employed a nonlinear optimization system, called OPT:Link, to generate
the surplus efficient frontier at the end of the §-year planning period. Figure 6 and Table | show
the company's surplus expected values and standard deviations for the resulting mixes. Eleven
points on the efficient frontier are displayed, from the low risk portfolio consisting of cash and

bonds, to the high-risk portfolio consisting of smaller capitalized US stock.

Asset Mix %: 1 2 3 4 5 6 7 8 9
Cash-U.S.A 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Eqty-U.S.A 55 74 90 103 11.0 5.6 5.2 5.1 0.2
US Real Es 9.0 109 119 124 13.2 16.4 181 17.8 12.5
High Yid B 10.2 139 184 227 274 393 427 48.2 51.5
LT TIPS 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MT TIPS 458 471 417 36.0 309 176 9.8 3.0 0.0
Sht G/C 95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mid G/C 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Long G/C 157 153 110 8.2 4.6 0.0 0.0 0.0 0.0
US20YrZero 00 00 0.0 0.0 0.2 24 1.8 0.8 0.0
US SmCap 00 041 1.7 4.1 71 138 160 18.2 27.9
EAFE 44 53 6.2 6.3 56 5.0 6.6 7.0 7.9
WrldBndXUS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Reward 73 76 7.9 8.1 84 9.0 92 95 9.7
Risk 03 03 0.3 0.3 0.4 04 0.5 0.5 0.6
Table 1

Asset Mixes for 11 Selected Points on Surplus Efficient Frontier

' The details of the insurance company example are disguised.
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Figure 6
Surplus Efficient Frontier for Sample Insurance Company

Next, we construct two hybrid securities. The first is-a dynamic combination of equity and cash,
similar to constant proportional portfolio insdrance (CPP!). See Perold and Sharpe (1988). The
basic idea is to set a minimum leve! for the asset wealth, which we call the floor. Based on this
constant, we compute the difference between current wealth and the floor -- called the cushion.
The hybrid security sets the stock/cash proportions equal to a linear function of the cushion value
at the beginning of each period. We update the proportions each month (rather than the annual re-
balancing carried out in the strategic model). The resulting hybrid stock/cash security is called
dynamic-equity-protection (DEP). For the purpose of this study, we established the floor= 100
and the multiplier parameter = 1.1. Figure 7 depicts the compound returns of the DEPs over the
five year planning period, as generated by the CAP:Link investment system.

Instead of following a dynamic replication strategy, we can purchase securities with the desired
properties. Severaf mutual fund companies market stock/cash hybrid securities, including
Salomon/Smith/Barney, and Merrill Lynch’s Mitts. These securities trade on the New York and
other stock exchanges. The term of the security is typically five years; they trade as non-dividend
paying stocks. ‘

We construct a second hybrid security geared towards the fixed income marketplace. Again, we
combine two traditional asset categories. Instead of stock/cash, however, we dynamically allocate
between morigage backs and cash in a proprietary fashion. The mix shifts towards cash when
interest rates are dropping, whereas the mix shifts towards bonds when interest rates are
increasing. We label this hybrid category MBS, to indicate the association of this strategy with
mortgage backed securities. Figure 7 lists the nominal retums for the MBS hybrid over the 5-year
horizon.
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Distribution of Returns for Hybrid Security versus Equities and Cash

We combine the two hybrid securities with the other 13 asset categories and solve the resulting
surplus optimization problem. The advantages of the DEP hybrid for risk averse investors can be
readily seen in Figure 8. Here, we plot an asset-only efficient frontier with downside risks at the
6% target level. The efficient frontier solutions are considerably improved by adding the DEPs.
They give upside gains, but limit the downside losses during downswings in the equity markets.

The surplus efficient frontiers are displayed in Figure 9 and Table 2, with and without the two
hybrids. By adding these securities, we improve the surplus returns and reduce the surplus risks.
The stock/cash hybrid (DEPs) occurs at the higher risk levels, whereas the mortgage back/cash
hybrid (MBS) occurs at the lower risk levels. One of these two assets is present in all of the
efficient points. The advantages of the dynamic financial strategy are clear-cut in this real-world
case.

Figure 8
Asset Only Efficient Frontiers with and without Hybrid Securities
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Numerous variations on the hybrid security apply to insurance companies and pension plans. The
floor and multiplier parameters are available for modifications. Alternatively, we could
implement other decision rules, replacing the CPPI strategy with combination strategies. Due to
computational bounds for the nonlinear stochastic program, there is a limit on the number of asset
categories that can be included in a strategic planning study. Still, we can readily solve models
possessing several hundred hybrid securities with high performance PCs in mid-1998. The
optimization model can readily accommodate linear constraints on the optimal asset mix, such as
lower and upper bounds.

Overall, the hybrid securities give the strategic planning system greater realism. They also can
serve as target benchmarks for the tactical systems, in a more innovative manner than the
traditional fixed asset mix or weighted indices. The target benchmarks can link to the prices of
risks, so that the tactical manager can move away from the benchmark in a manner that continues
to optimize the company’s surplus wealth. The amount of allocated capital determines the amount
of movement that is possible for each tactical manager.
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Mix %:

Cash-
US.A
Eqty-
US.A
US Reatl
Es

High Yld
B

LT TIPS
MT TIPS
Sht GIC
Mid G/C
Long
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Zero
MBS
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SmCap
EAFE
WridBnd
Xus
DEPS

Reward
Risk

Q.0
0.0
6.3
6.7
0.0
22.4
8.5
0.0
74
0.0

33.2
0.0

Q.0
0.0
5.6
8.8
0.0
214
57
0.0
6.2

0.0

Q.0
0.0
7.2
12.0
0.0
18.2
0.6
0.0
3.7
0.0

322
0.0

0.0
0.0

252

8.2
0.2

0.0
0.0
4.4
13.1
0.0
13.3
0.0
0.0
06
0.0

356
0.0

0.0
0.0

33.1

86
0.2

0.0
0.0
3.6
15.6
0.0
10.9
0.0
0.0
0.0
0.0

31.2
0.0

0.0
0.0

386

8.9
0.3

Table 2

Q.0
0.0
4.5
216
0.0
5.7
0.0
0.0
0.0
0.0

20.1
0.0

0.0
0.0

48.0

9.6
0.3

0.0
0.0

5.1

0.0
0.0
0.0
0.0
0.0

0.0

18.3
0.0

0.0
0.0
46
26.1
0.0
0.0
0.0
0.0
0.0
0.0

11.2
0.0

0.0
0.0

58.2

10.2
0.4

0.0
0.0
0.0
26.7
0.0
0.0
0.0
0.0
0.0
0.0

71
0.0

0.0
0.0

66.2

10.5
0.4

Selected Points on Surplus Efficient Frontier with Hybrid Securities
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4. Conclusions

Enterprise risk management requires a coordinated program of financial planning throughout the
institution. Traders and arbitrageurs search out mispriced securities by option analysis and other
tools. Portfolio managers attempt to beat popular financial benchmarks via mean/variance
optimization. Insurance underwriters aim to exceed risk adjusted profit targets. Pension planners
carry out asset allocation strategies to insure the soundness of their assets with respect to the
pension liabilities. CFO’s identify the optimal leverage factors to maximize shareholder value. In
each of these cases, there must be well-defined target benchmarks for the decision-makers. A
strategic financial planning system generates these targets.

We have described a systematic technique for combining strategic and tactical financial planning
systems. First, we define a price of risk for overlapping risks. These prices depend upon the
optimal shadow prices of the strategic system. In the second step, we develop hybrid asset
categaries, such as the stock/cash example shown in Section 3. We extend traditional asset
categories to encompass many forms of embedded options and dynamic investment strategies.

The benchmark targets and possibly the prices of risk are transmitted to the tactical systems. If
the tactical manager stays relatively close to the target risk profile, he can ignore the prices of risk
and maximize the excess returns, Otherwise, the prices of risks must be considered when the
investor decides to take on increased risks. Considering historical correlations can approximate
the price of risk, but there is no guarantee that backward looking data will be appropriate for the
future.

An example of strategic planning is the capital management strategy for an insurance company

presented in the previous section. We showed that the hybrid assets improve the company’s risk
adjusted retumns. The solution to the strategic problem serves as targets for the tactical planning

systems.

Applying these techniques will enhance a financial institution's ability to maximize its
shareholder value. In addition, enterprise risk management applies to institutions with diverse
operations, such as a combined bank, insurance company, and mutual fund. Correlated risks are
present in these organizations. Identifying and pricing these correlated risks will be allow the
institution to grow its surplus in an optimal fashion, while maintaining the desired level of risks at
the enterprise level,
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Abstract

Dynamic Financial Analysis can be viewed as the process of studying profitability and sol-
vency of an insurance firm under a realistic and integrated model of key input random variables
such as loss frequency and severity, expenses, reinsurance, interest and inflation rates, and asset
defaults. Traditional models of input variables have generally fitted parameters for a predeter-
mined family of probability distributions. In this paper we discuss applications of some modern
methods of non-parametric statistics to modeling loss distributions, and possibilities of using
them for modeling other input variables for the purpose of arriving at an integrated company
model. Several examples of inference about the severity of loss, loss distributions percentiles
and other related quantities based on data smoothing, bootstrap estimates of standard error
and bootstrap confidence intervals are presented. The examples are based on real-life auto in-
jury claim data and the accuracy of cur methods is compared with that of standard techniques.
Model adjustment for inflation and bootstrap techniques based on the Kaplan-Meier estimator,

useful in the presence of policies limits (censored losses), are also considered.

1 Introduction

D'Arcy, Gorvett, Herbers and Hettinger (1997) discuss Dynamic Financial Analysis (DFA) for

insurance firms and point out the following two sets of key variables involved in the process.
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Financial Variables:

o Short-term interest rates;
e Term premiums;

o Default premiums;

o Default risk:

¢ Equity premiums;

e Inflation.

Underwriting variables:

Rate level;

Exposures;

Loss frequency,

e Loss severity;

Expenses;

Catastrophes:

Jurisdiction;

Payment patterns;
* Reinsurance.

In that classification, the financial variables generally refer to asset-side generated cash flows
of the business, and the underwriting variables relate to the cash flows of the liabilities side, The
process of developing a DFA model begins with the creation of a model of probability distributions
of the input variables, including the establishment of the proper range of values of input paraineters.

The use of parameters is generally determined by the use of parametric families of distributions.
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Fitting of those parameters is generally followed by either Monte Carlo simulation and integration of
all inputs for profit testing and optimization, or by the study of the effect of varying the parameters
on output variables in sensitivity analysis and basic cash flow testing. Thus traditional actuarial
methodologies are rooted in parametric approaches which fit prescribed distributions of losses and
other random phenomena studied (e.g., interest rate or other asset return variables) to the data. The
experience of the last two decedes has shown greater interdependence of basic loss variables (severity,
frequency, exposures} with asset variables (interest rates, asset defaults, etc.), and sensitivity of the
firm to all input variables listed above. Increased complexity has been accompanied by increased
competitive pressures, and more frequent insolvencies. This situation is precisely the reason why
DFA has come to the forefront of new actuarial methodologies. In our opinion, in order to properly
address the DFA issues one must carefully address the weaknesses of traditional methodologies.
These weaknesses can be summarized as originating either from ignoring the uncertainties of inputs,
or mismanaging those uncertainties. While early problems of DFA could be attributed mostly to
ignoring uncertainty, we believe at this point the uncertain nature of model inputs is generally .
acknowledged. Derrig and Ostaszewski (1997) used fuzzy set techniques to handle the mixture
of probabilistic and non-probabilistic uncertainties in asset/liability considerations for property-
casualty claims. In our opinion it is now time to proceed to deeper issues concerning the actual
forms of uncertainty. The Central Limit Theorem and its stochastic process counterpart provide
clear guidance for practical uses of the normal distriBution and all distributions derived from it. But
one cannot justify similarly fitting convenient distributions to, for instance, loss data and expect
to easily survive the next significant change in the marketplace. What does work in practice, but
not in theory, may be merely an illusion of applicability provided by powerful tools of modern
technology. If one cannot provide a justification for the use of a parametric distribution, then
a nonparametric alternative should be studied, at least for the purpose of understanding firm's
exposures. In this work, we will show such a study of nonparametric methodologies as applied
to loss data, and will advocate the development of an integrated company model with the use of

nonparametric approaches.
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1.1 Loss Distributions for DFA

We begin by addressing the most basic questions concerning loss distributions. The first two
parameters generally fitted to the data are claims average size (claims average severity), and the
number of claim occurrences per unit of exposure (claims frequency). Can we improve on these
estimates by using nonparametric methods?

Consider the problem of estimating the severity of a claim, which is, in its most general setting,
equivalent to modeling the probability distribution of a single claim size. Traditionally, this has
been done by means of fitting some parametric models from a particular continuous family of
distributions (cf. epg., Daykin, Pentikainen, and Pesonen 1994, chapter 3). While this stmdard
approach has several obvious advantages, we should also realize that occasionally it may suffer

some serious drawbacks.

¢ Some loss data has a tendency to cluster about round numbers like $1,000, $10,000, etc., due
to rounding off the claim amount and thus in practice follows a mixture of continuous and
discrete distributions. Usually, parametric models simply ignore the discrete component in

such cases.

e The data is often truncated from below or censored from above due to deductibles and/or
limits on different policies. Especially, the presence of censoring, if not accounted for, may
seriously compromise the goodness-of-fit of a fitted parametric distribution. On the other
hand, trying to incorporate the censoring mechanism (which is often random in its nature,
especially when we consider losses falling under several insurance policies with different limits)

leads to a creation of a very complex model, one often difficult to work with.

The loss data may come from a mixture of distributions depending upon some known or

unknown classification of claim types.

Finally, it may happen that the data simply does not fit any of the available distributions in

a satisfactory way.

It seems, therefore, that there are many situations of practical importance where the traditional
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approach cannot be utilized, and one must look beyond parametric models. In this work we point
out an alternative, nonparametric approach to modeling losses and other random parameters of
financial analysis originating from the modern methodology of nonparametric statistics. Especially,
we analyze posslible inroads by the fairly recent statistical methodology known as bootstrap into
dynamic financial analysis. To keep things in focus we will be concerned here only with applications
to modeling the severity of loss, but the methods discussed may be easily applied to other problems
like loss frequencies, asset returns, asset defaults, and combining those into models of Risk Based

Capital, Value at Risk, and general DFA, including Cash Flow Testing and Asset Adequacy Analysis.

1.2 The Concept of Bootstrap

The concept of bootstrap was first introduced in the seminal piece of Efron (1979) and relies on the
consideration of the discrete empirical distribution generated by a random sample of size n from
an unknown distribution F. This empirical distribution sssigns equal probability to each sample
item. In the sequel we will write F, for that distribution. By generating an independent, identically
distributed (iid) random sequence (resample) from the distribution F, or its appropriately smoothed
version, we can arrive at new estimates of various parameters and nonp;cxramet.ric characteristics
of the original distribution F. This idea is at the very root of the bootstrap methodology. In
particular, Efron (1979) paints out that the bootstrap gives a reasonable estimate of standard error
for any estimator, and it can be extended to statistical error assessments and to inferences beyond

biases and standard errors.

1.3 Overview of the Article

In this paper, we apply the bootstrap methods to two data sets as illustrations of the advantages of
resampling techniques, especially when dealing with empirical loss data. The basics of bootstrap are
covered in Section 2 where we show its applications in estimating standard errors and calculating
confidence intervals. In Section 3, we compare bootstrap and traditional estimators for quantiles
and excess losses using some truncated wind loss data. The important concept of smoothing the

bootstrap estimator is also covered. Applications of bootstrap to auto bodily injury liability claims
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in Section 4 show loss elimination ratio estimates together with their standard errors in & case
of lumpy and clustered data (the data set is enclosed in Appendix B). Mare complicated designs
that incorporate data censoring and adjustment for inflation appear in Section 5. Sections 6 and
7 provide some final remarks and conclusions. The Mathematica 3.0 programs used to perform

bootstrap calculations are provided in Appendix A.

2 Bootstrap Standard Errors and Confidence Intervals

As we have already mentioned in the Introduction, the idea of bootstrap is in sampling the empirical
cumulative distribution function (cdf) 1-:,,. This idea is closely related to the following, well known
statistical principle, henceforth referred to as the “plug-in” principle. Given a parameter of interest
8(F) depending upon an unknown population cdf F, we estimate this parameter by 6 = O(ﬁ,.).
That is, we simply replace F' in the formula for § by its empirical counterpart F., obtained from the
observed data. The plug-in principle will not provide good results if F, poorly approximates F or
if there is information about F other than that provided by the sample. For instance, in some cases
we might know {or be willing to assume) that F belongs to some parametric family of distributions.
However, the plug-in principle and the bootstrap may be adapted to this latter situation as well.
To illustrate the idea, let us consider a parametric family of cdf's { F,} indexed by a parameter u
(possibly a vector) and for some given yg let fip denote its estimate calculated from the sample.
The plug-in principle in this case states that we should estimate 8(F,) by 8(Fp,). In this case,
bootstrap is often called parametric, since a resample is now collected from Fj,. Here and elsewhere
in this work we refer to any replica of & calculated from a resample as “a bootstrap estimate of

6(F)" and denote it by §°.

2.1 The Bootstrap Methodology

Bickel and Freedman (1981) formulated conditions for consistency of bootstrap, which resulted in
further extensions of the Efron's (1979) methodology to a broad range of standard applications,

including quantile processes, muitiple regression and stratified sampling. They also argued that
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the use of bootstrap did not require theoretical derivations such as function derivatives, influence
functions, asymptotic variances, the Edgeworth expansion, etc.

Singh (1981) made a further point that the bootstrap estimator of the sampling distribution
of a given statistic may be more accurate than the traditional normal approximation. In fact, it
turns out that for many commonly used statistics the bootstrap is asymptotically equivalent to the
one-term Edgeworth expansion estimator, usually having the same convergence rate, which is faster
then normal approximation. In many more recent statistical texts the bootstrap is recommended
for estimating sampling distributions and finding standard errors, and confidence sets. The boot-
strap methods can be applied to both parametric and non-parametric models, although most of
the published research in the area is concerned with the non-parametric case since that is where
the most immediate practical gains might be expected. Let us note though that often a simple,
non-parametric bootstrap may be improved by other bootstrap methods taking into account the
special nature of the model. In the iid non-parametric models for instance, the smoothed bootstrap
(bootstrap based on some smoothed version of ﬁ,.) often improves the simple bootstrap (bootstrap
based solely on F,.). Since in recent years several excellent books on the subject of resampling and
related techniques have become available, we will not be particularly concerned here with providing
all the details of the presented techniques, contenting ourselves with making appropriate references
to more technically detailed works. Readers interested in gaining some basic background in re-
sampling are referred to Efron and Tibisharani (1993), henceforth referred to as ET. For a more

mathematically advanced treatment of the subject, we recommend Shao and Tu (1995).

2.2 Bootstrap Standard Error Estimate

Arguably, one of the most important applications of bootstrap is providing an estimate of standard
error of # (se;.-(é)). It is rarely practical to calculate it exactly. Instead, one usually approxi-

mates sep(é) with the help of multiple resamples. The approximation to the bootstrap estimate of
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standard error of § (or BESE) suggested by Efron (1979) is given by

B 1/2
fep = {2[9'(17) -6 ()8 - 1)]2} (21)
b=1

where §*(.) = Z,f:l §°(b)/B, B is the total number of resamples {each of size n) collected with
replacement from the plug-in estimate of F' (in parametric or non-parametric setting), and 6*(b)
is the original statistic 6 calculated from the b-th resample (b =1,...,B). By the law of large
numbers

lim §ep = BESE(9),
B—oo

and for sufficiently large n we expect
BESE(f) = ser(f).

Let us note that B, total number of resamples, may be taken as large as we wish, since we are in
complete control of the resampling process. It has been shown that for estimating the standard
error, one should take B to be about 250, whereas for different resampled statistics this number

may have to be significantly increased in order to reach the desired accuracy (see ET).

2.3 The Method of Percentiles

Let us now turn to the problem of using the bootstrap methodology to construct confidence intervals.
This area has been a major focus of theoretical work on the bootstrap and several different methods
of approaching the problem have been suggested. The “naive” procedure described below is by far
the most efficient one and can be significantly improved in both rate of convergence and accuracy.
It is, however, intuitively obvious and easy to justify and seems to be working well enough for
the cases considered here. For a complete review of available approaches to bootstrap confidence
intervals, see ET.

Let us consider 6%, a bootstrap estimate of 4 based on a resample of size n from the original
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sample X\,...,Xn, and let G. be its distribution function given the observed sample values
Gu(z) = P{6" <Xy =z,... ,Xn = Zo}.

Recall that for any distribution function F and p € (0, 1) we define the p~th quantile of F* (sometimes
also called p-th pergentile) as F~!(p) = inf{z : F(z) > p}. The bootstrap percentiles method gives
G7Y(a) and G7!(1 — ) as, respectively, lower and upper bounds for the 1 — 2a confidence interval
for 6. Let us note that for most statistics § the distribution function of the bootstrap estimator 6° is
not available. In practice, G7'(a) and G !(1 — a) are approximated by taking multiple resamples
and then calculating the empirical percentiles. In this case the number of resamples B is usually

much larger than for estimating BESE; in most cases it is recommended that B > 1000.

3 Bootstrap and Smoothed Bootstrap Estimators vs Tradi-

tional Methods

In making the case for the usefulness of bootstrap in modeling loss distributions we would first like
to compare its performance with that of the standard methods of inference as presented in actuarial

textbooks.

3.1 Application to Wind Losses: Quantiles

Let us constder the following set of 40 losses due to wind-related catastrophes that occurred in 1977.
These data are taken from Hogg and Klugman (1984) (henceforth referred to as HK) where they
are discussed in detail in Chapter 3. The losses were recorded only to the nearest $1,000,000 and
data included only those losses of $2,000,000 or more. For convenience they have been ordered and

recorded in millions.
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5 5 5 6 6 6 6 8 8 9

15, 17, 22, 23, 24, 24, 25, 27, 32, 43

Using this data set we shall give two examples illustrating the advantages of applying bootstrap
approach to modeling losses. The problem at hand is a typical one: assuming that all the losses
recorded above have come from a single unknown distribution F we would like to use the data to
obtain some good approximation for F and its various parameters.

First, let us look at an important problem of finding the approximate confidence intervals for
the quantiles of F. The standard approacl to this problem relies on the normal approximation to
the sample quantiles (order statistics). Applying this method, Hogg and Klugman have found the
approximate 95% confidence interval for the .85-th quantile of F to be between X3¢ and Xag which

for the wind data translates into the observed interval

(9,32).

They also have noted that *..This is a wide interval but without additional assumptions this is the
best we can do. ™ Is that really true ? To answer this question let us first note that in this particular
case the highly skewed binomial distribution of the .85-th sample quantile is approximated by a
symmetric normal curve. Thus, it seems reasonable to expect that normal approximation could
be improved here upon introducing some form of correction for skewness. In the standard normal
approximation theory this is usually accomplished by considering, in addition to the normal term,
the first non-normal term in the asymptotic Edgeworth expansion of the binomial distribution.
The resulting formula is messy and requires the calculation of a sample skewness coefficient as welt
as some refined form of the continuity correction (cf. e.g., Singh 1981). On the other hand, the
bootstrap has been known to make such a correction automatically (Singh 1981} and hence we

could expect that a bootstrap approximation would perform better here'. Indeed, in this case (in

!'This turns out to be true only for a moderate samnple size (here: 40); for binomial distribution with large n
(i.e., large sampte size) the effect of the bootstrap correction is negligible. In general, the bootstrap appraximation
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the notation of Section 2) we have §(F) = F~1(.85) and § = F;!(.85) =~ X(3q) ~the 34-th order
statistic which for the wind data equals 24. For sample quantiles the bootstrap distribution G.
can be calculated exactly (Shao and Tu 1995, p.10) or approximated by an empiricai distribution
obtained from B resamples as described in Section 2. Using either method, the 1 — 2a confidence
interval calculated using the percentile method is found to be between X2y and X(asy (which is
also in this case the exact confidence interval obtained by using binomial tables). For the wind data
this translates into the interval

(8,27)

which is considerably shorter then the one obtained by Hogg and Klugman.

3.2 Smoothed Bootstrap. Application to Wind Losses: Excess Losses

As our second example, !et us congider the estimation of the probability that a wind loss will
exceed a $29,500,000 threshold. In our notation that means that we wish to estimate the unknown
parameter 1= F(29.5). A direct application of the plug-in principle gives immediately the value 0.05,
the nonparametric estimate based on relative frequencies. However, note that the same number is
also an estimate for 1 — F(29) and 1 — F(31.5), since the relative frequency stays the same for all
the threshold values not present in reported data. In particular, since the wind data were rounded
off to the nearest unit, the nonparametric method does not give a good estimate for any non-integer
threshold. This problem with the same threshold value of $29,000,000 was also considered in HK
(Ex.4 p. 94 and Ex.1 p. 116). As indicated therein, one reasonable way to deal with the non-integer
threshold difficulty is first to fit some continuous curve to the data. The ides seems justified since
the clustering effect in the wind data has most likely occurred due to rounding off the records.
In their book Hogg and Klugman have used standard techniques based on method of moments
and maximum likelihood estimation to fit two different parametric models to the wind data: the

truncated exponential with cdf

Fuz)=1-e 19 15<¢z<x (3.1)

performs better than normal one for large sample sizes only for continuous distributions.
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Figure 1: Empirical cdf for the wind data and two parametric approximations fitted by the maximum
likelihood method. The solid smooth line represents the curve fitted from the exponential family
(3.1); the dashed line represents the curve fitted from the Pareto family (3.2). The vertical line is
drawn for reference at £=29.5.

for z > 0, and the truncated Pareto with cdf

A

Fas(z) =1- (A+:—1.5

o
) 1.5<r< oo (3.2)

fora>0, A>0.

For the exponential distribution the method of moments as well as maximum likelihood esti-
mator of 4 was found to be & = 7.725. The MLE s for the Pareto distribution parameters were
A = 28.998 and & = 5.084. Similar values were obtained using the method of moments. The
empirical distribution function for the wind data along with two fitted maximum likelihood models
are presented in Figure 1. It is clear that the fit is not good at all, especially around the interval
(16, 24). The reason for the bad fit is the fact that both fitted curves are consistently concave down
for all the z's and F seems to be concave up in this area. The fit in the tails seems to be a little
better.

Once we determined the values of the unknown model parameters, MLE estimators for 1 —

F(29.5) may be obtained from (3.1) and (3.2). The numerical values of these estimates, their
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Estimate of Approx. 95% c.i.
Fitted Model 1 - F(29.5) | Approx. s.e. (two sided)
Non-parametric {Plug-in) 0.05 0.034 (-0.019, 0.119)
Exponential 0.027 0.015 (-0.003, 0.057)
Pareto 0.036 0.024 {-0.012, 0.084)
3-Step Moving
Average Smoother 0.045 0.016 (0.013, 0.079)

Table 1: Comparison of the performance of estimators for 1 — F(29.5) for the wind data. All
the confidence intervals and variances for the first three estimates are calculated using the normal
theory approximation. The variance and confidence intervals for the estimate based on the moving-
average smoother are calculated by means of the approximate BESE and bootstrap percentile
methods described in Section 2.

respective variances and 95% confidence intervals are sutnmarized in the second and third row of
Table 1. In the first row the same characteristics are calculated for the standard non-parametric
estimate based on relative frequencies. As we may well see, the respective values of the point
estimators differ considerably from model to model and, in particular, both MLE's are quite far
away from the relative frequency estimator. Another thing worth noticing is that the confidence
intervals for all three models have negative lower bounds - they are obviously too long, at least on
one side. This also indicates that their true coverage probability may be in fact greater than 95%.

In order to provide a better estimate of 1 — F(29.5) for the wind data we will first need to
construct a smoothed version of the empirical cdf. In order to do so we employ the following
data transformation widely used in image and signal processing theory where a series of raw data
{T1,Z2,... .z} is often transformed to a new series of data before it is analyzed. The purpose of
this transformation is to smooth out local fluctuations in the raw data, so the transformation is
called data smoothing or a smoother. One common type of smoother employs a linear transformation
and is called a linear filter. A linear filter with weights {co,¢1,... ,c,—1} transforms the given data
to weighted averages Z;____é ¢;jx-j fort = r,r+1,... ,n. Notice that the new data sct has length
n—r1 — 1. If all the weights cx are equal and they sum to unity, the linear filter is called a r-term
moving average. For an overview of this interesting technique and its various applications see e.g.,
Simonoff (1997). To create a smoothed version of the empirical cdf for the wind data we have first

used a 3-term moving average smoother and then linearized in-between any two consecutive data

182




0 10 20 30 40

Figure 2: Empirical cdf for the wind data and its smoothed version obtained using the 3-term
moving average smoother. The vertical line is drawn for reference at £=29.5.

points. The plot of this linearized smoother along with the original empirical cdf is presented in
Figure 2. Let us note that the smoother follows the *concave-up-down-up” pattern of the data,
which was not the case with the parametric distributions fitted from the families (3.1) and (3.2).
Once we have constructed the smoothed empirical cdf for the wind data we may simply read
the approximate value of 1 — F(29.5) off the graph (or better yet, ask the computer to do it for us).
The resulting numerical value is 0.045. What is the s.e. for that estimate? We again nay use the
bootstrap to answer that question without messy calculations. An approximate value for BESE
(with B=1000, but the result is virtually the same for B=100) is found to be 0.016, which is only
slightly worse then that of exponential model MLE and much better then the s.e. for the Pareto and
empirical models. Equivalently, the same result may be obtained by numerical integration. Finally,
the 95% confidence interval for 1 — F(29.5) is found by means of the bootstrap percentile method
with the number of replications, B=1000. Here the superiority of bootstrap is obvious, as it gives
an interval which is the second shortest (again exponential MLE mode! gives a shorter interval) but,
most importantly, is bounded away from 0. The results are summarized in Table 1. Let us note
that the result based on a smoothed empirical c¢df and bootstrap dramatically improves that based

on the relative frequency (plug-in) estimator and standard normal theory. It is perhaps of interest
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to note also that the MLE estimator of 1 — F(29.5) in the exponential model is nothing else but a
parametric bootstrap estimator. For more details on the connection between MLE estimators and

bootstrap, see ET.

4 Clustered Data

In the previous section we have assumed that the wind data were distributed according to some
continuous cdf F. Clearly this is not always the case with loss data and in general we may expect

our theoretical loss distribution to follow some mixture of discrete and continuous cdf’s.

4.1 Massachusetts Auto Bodily Injury Liability Data

In the Appendix B we present the set of 432 closed losses due to bodily injuries in car accidents
under bodily injury liability (BI) policies reported in the Boston Territory (19) for the calendar year
of 1995, as of mid-1997. The losses are recorded in thousands and are subject to various policy limits
but have no deductible. Policy limits capped 16 out of 432 losses which are therefore considered
right-censored. The problem of bootstrapping censored data will be discussed in the next section;
here we would like to concentrate on another interesting feature of the data. Massachusetts BI claim
data are of interest because the underlying behavioral processes have been analyzed extensively.
Weisberg and Derrig (1992) and Derrig, Weisberg and Chen (1994) describe the Massachusetts
claiming environ;nent after a tort reform as a “lottery” with general damages for non-economic
loss (pain and suffering) as the prize. Cummins and Tennyson (1992) showed signs of similar
patterns countrywide while RAND (1995) and the Insurance Research Council (1996) documented
the pervasiveness of the lottery claims in both tort and no-fault state injury claim payment systems.
The overwhelming presence of suspected fraud and buildup claims? allow for distorted relationships
between the underlying economic loss and the liability settlement. Claim negotiators can greatly
reduce the usual non-economic damages when exaggerated injury and/or excessive treatment are

claimed as legitimate losses. Claim payments in such a negotiated process with discretionary injuries

2In auto, fraudulent claims are those in which there was no injury or the injury was unrelated to the accident
whereas buildup claims are those in which the injury is exaggerated and/or the treatment is excessive.
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Figure 3: Approximation to the empirical cdf for the BI data adjusted for the clustering effect.
Left panel shown the graph plotted for the entire range of observed loss values (0,25). Right panel
zooms in on the values from 3.5 to 5. Discontinuities can be seen here as the graph’s “jumps” at
the observed loss values of high frequency: 3.5, 4, 4.5, 5.

tend to be clustered at some usual mutually acceptable amounts, especially for the run-of-the-
mill strain and sprain claims. Conners and Feldblum (1997) suggest that the claim environment,
rather than the usual rating variables, are the key elements needed to understand and estimate
relationships in injury claim data. All the data characteristics above tend to favor empirical methods
over analytic ones.

Looking at the frequencies of occurrences of the particular values of losses in Massachusetts BI
claim data we may see that several numerical values have especially high frequency. The loss of
$5,000 was reported 21 times (nearly 5% of all the occurrences), the loss of $20,000 was reported 15
times, $6,500 and $4,000 losses were reported 14 times, a $3,500 loss was only slightly less common
(13 times), and the losses of size $6,000 and $9,000 occurred 10 times each. There were also several
other numerical values that have occurred at least 5 times. The clustering effect is obvious here
and it seems that we should incorporate it into our model. This may be accomplished for instance
by constructing an approximation to the empirical cdf which is linearized in between the observed
data values except for the ones with high frequency where it behaves like the original, discrete cdf.
In Figure 3 we present such an approximate cdf for the BI data. We have allowed our adjusted cdf

to have discontinuities at the observed values which occurred with frequencies of 5 or greater.
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4.2 Bootstrap Estimates for Loss Elimination Ratios

To give an example of statistical inference under this model, let us consider a problem of eliminating
part of the Bl losses by purchasing a re-insurance policy that would cap the losses at some level
d. Since the BI data is censored at $20,000 we would consider here only values of d not exceeding
$20,000. One of the most important problems for the ingurance company considering purchasing re-
insurance is an accurate prediction of whether such a purchase would indeed reduce the experienced
severity of loss and if so, by what amount. Typically this type of analysis is done by considering

the loss elimination ratio (LER) defined as

_ Er(X,d)

LER(d) =~

where ErX and Er(X,d) are, respectively, expected value and limited expected value functions
for a random variable X following a true distribution of loss F. Since LER is only a theoretical
quantity unobservable in practice, its estimate calculated from the data is needed. Usually, one

considers empirical loss elimination ratio (ELER) given by the obvious plug-in estimate

Ep (X,d " min(X;
ELER(d) = 2:( il ) _ Z.ggrlng.,d)
Fa i=14vi

(a.1)

where X,,... , X, is a sample.

The drawback of ELER is in the fact that (unlike LER) it changes only at the values of d being
equal to one of the observed values of X,,...,X,. It seems, therefore, that in order to calculate
approximate LER at different values of d some smoothed version of ELER (SELER) should be
considered. SELER may be obtained from (4.1) by replacing the empirical cdf £, by its smoothed
version obtained for instance by applying a linear smoother (as for the wind data considered in
Section 3) or a cluster-adjusted linearization. Obviously, the SELER formula may become quite
complicated and its explicit derivation may be tedious (and so would be the derivation of its standard
error). Again, the bootstrap methodology can be applied here to facilitate the computation of an

approximate value of SELER(d), its standard error and confidence interval for any given value of d.
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Figure 4: Approximate graph of SELER(d) plotted for the values of d between 0 and the first
censoring point (20) for the BI data.

In Figure 4 we present the graph of the SELE R estimate for the BI data calculated for the values
of d ranging from 0 to 20 (lowest censoring point) by means of a bootstrap approximation. This
approximation was obtained by resampling the cluster-adjusted, linearized version of the empirical
cdf (presented in the left panel of Figure 3) a large number of times (B = 300) and replicating
§ = SELER each time. The resulting sequence of bootstrap estimates §°(6) (6 = 1,...,B) was
then averaged to give the desired approximation of SELER. The calculation of standard errors and
confidence intervals for SELER was done by means of BESE and the method of percentiles, as
described in Section 2. The variances and 95% confidence intervals of SELER for several different

values of d are presented in Table 2.

5 Extensions to More Complicated Designs

So far in our account we have not considered any problems related to the fact that often in practice
we may have to deal with truncated (e.g., due to deductible} or censored {e.g., due to policy limit)
data. Another frequently encountered difficulty is the need for inflation adjustment, especially with

data observed over a long period of time. We will address these important issues now.
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95% c.i.

d SELER(d) | s.e. (two sided)
4 0.505 0.0185 (0.488,0.544)
5 0.607 | 0.0210 | (0:597,0.626)

105 0.892 0.0188 | (0.888,0.911)
115 0.913 0.0173 .| (0.912,0.917)

14 0.947 0.0127 | (0.933,0.953)
18.5 0.985 0.00556 | (0.98,0.988)

Table 2: Numerical values of SELER(d) for the BI data tabulated for several different d along with
the standard errors and 95% confidence intervals calculated by means of the approximate BESE
and bootstrap percentile methods described in Section 2.

5.1 Policy Limits and Deductibles. Bootstrapping Censored Data

Let us consider again the Bl data presented in Section 4. There were 432 losses reported out of which
16 were at the policy limits®. These 16 losses may therefore be considered censored from above
(or right-censored) and the appropriate adjustment for this fact should be made in our approach
to estimating the loss distribution F. Whereas 16 is less then 4% of the total number of observed
losses for the BI data, these censored observations are crucial in order to obtain a good estimate of
F for the large loss values.

Since the problem of censored data arises naturally in many medical, engineering, and other
settings, it has received considerable attention in statistical literature. For the sake of brevity we
will limit ourselves to the discussion of only one of the several commonly used techniques, the
so-called Kaplan-Meier (or product-limit) estimator.

The typical statistical model for right-censored observations replaces the usual cbserved sample

X)...,X, with the set of ordered pairs (X},6,),...,(Xn,d,) where

0 if X; is censored,

1 if X; is not censored

and the recorded losses are ordered X, = z; < Xy =29 < ... < X, = z,, with the usual convention

that in the case of ties the uncensored values z; (6, = 1) precede the censored ones (6, = 0). The

IFifteen losscs were truncated at $ 20,000 and one loss was truncated at $25,000.

188




Kaplan-Meier estimator of 1 — F{(z) is given by

a y n—i \* .

S(z) = .-;:,-I—L (m) (5.1)
The product in the above formula is that of i terms where i is the smallest positive integer less or
equal n (the number of reported losses) and such that z; < z. The Kaplan-Meier estimator, like
the empirical cdf, is a step function with jumps at those values z; that are uncensored. In fact, if
di =1foralli,i=1,...,n (ie, no censoring occurs) it is easy to see that (5.1) reduces to the
usual empirical cdf. If the highest observed loss z, is censored, the formula (5.1) is not defined
for the values of = greater then z,. The usual practice is then to add one uncensored data point
(loss value) 7,4+, such that =, < z,4; and to define §(a:) = 0 for 2 4. For instance, for
:the BI data the largest reported loss was censored at 25 and we had to add one artificial “loss” at
26 to define the Kaplan-Meier curve for the losses exceeding 25. The number 26 was picked quite
arbitrarily, in actuarial practice more precise guess of the maximal possible value of loss (e.g. based
on past experience) should be easily available. The Kaplan-Meier estimator enjoys several optimal
statistical properties and can be viewed as a generalization of the usual empirical edf adjusted for
the fact of censoring losses. Moreover, truncated losses or truncated and censored losses may be
easily handled by some simple modifications of (5.1). For more details and some examples see for
instance Klugman, Panjer and Willmot (1998 chap.2).

In the case of loss data coming from a mixture of some discrete and continuous cdf’s, like, for
instance, the BI data, the linearization of Kaplan-Meier estimator with adjustment for clustering
seems to be appropriate. In Figure § we present the plots of a linearized Kaplan-Meier estimator
for the BI data and the approximate empirical cdf function, which was discussed in Section 4, not
corrected for the censoring effect. It is interesting to note that the two curves agree very well
up to the first censoring point (20), where Kaplan-Meier estimator starts to correct for the effect
of censoring. It is thus reasonable to believe that for instance the values of SELER calculated
in Table 2 should be close to the values obtained by bootstrapping the Kaplan-Meier estimator.

This, however, does not have to be the case in general. The agreement between the Kaplan-
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Figure 5: Linearized and adjusted for clustering Kaplan-Meier estimator of the true loss distribution
F for the BI data plotted along with the empirical cdf described in Section 4 which was adjusted
for the clustering effect but disregarded censoring. The two curves agree very well up to the first
censoring point {20), where Kaplan-Meier estimator (lower curve) starts to correct for the effect of
censoring.

Meier curve and the smoothed cdf of the Bl data is mostly due to the relatively small number of
censored values. The estimation of other parameters of interest under the Kaplan-Meier model (e.g.
quantiles, probability of exceedance, etc) as well as their standard errors may be performed using
the bootstrap methodology outlined in the previous sections. For more details on the problem of

bootstrapping censored data, see for instance Akritas (1986).

5.2 Inflation Adjustment

The adjustment for the effect of inflation can be handled quite easily in our setting. If X is our
randon variable modeling the loss which follows cdf F, when adjusting for inflation we are interested

in obtaining an estimate of the distribution of Z = (1 + r).X, where r is the uniform inflation rate
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over the period of concern. If Z follows a cdf G then obviously,

-2 (5)

and the same relation holds when we replace G and F with the usual empirical cdf’s or their

smoothed versions.? In this setting bootstrap techniques described earlier should be applied to the

empirical approximation of G.

6 Some Final Remarks

Although we have limited the discussion of resampling methods in DFA to modeling losses, even
with this narrowed scope we have presented only some examples of modern statistical methods
relevant to the topic. Other important areas of applications which has been purposely left out here
include kernel estimation and the use of resampling in non-parametric regression and auto-regression
models. The latter includes for instance such important problems as bootstrapping time series data,
modeling time correlated losses and other time-dependent variables. Over the past several years
some of these techniques, like non-parametric density estimation, have already found their way
into actuarial practice (cf. e.g., Klugman at al. 1998). Others, like bootstrap, are still waiting.
The purpose of this article was not to give a complete account of the most recent developments in
non-parametric statistical methods but rather to show by example how easily they may be adapted

to the real-life situations and how often they may;, in fact, outperform the traditional approach.

7 Conclusions

Several examples of the practical advantages of the bootstrap methodology were presented. We
have shown by example that in many cases bootstrap provides a better approximation to the
true parameters of the underlying distribution of interest then the traditional, textbook approach

relying on the MLE and normal approximation theory. It seems that bootstrap may be especially

4Subclasses of losses may inflate at different rates, soft tissue vs hard injuries for the Bl data as an example. The
theoretical cdf G may be then derived using multiple inflation rates as well.
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useful in the statistical analysis of data which do not follow any obvious continuous parametric
model (or mixture of models) or/and contain a discrete component (like the BI data presented in
Section 4). The presence of censoring and truncation in the data does not present a problem for the
bootstrap which, as seen in Section 5, may be easily incorporated into a standard non-parametric
analysis of censored or truncated data. Of course, most of the bootstrap analysis is typically done
approximately using a Monte Carlo simulation (generating resamples), which makes the computer
an indispensable tool in the bootstrap world. Even more, according to some leading bootstrap
theorists, automation is the goal: "One can describe the ideal computer-based statistical inference
machine of the future. The statistician enters the data ... the machine answers the questions in
a way that is optimal according to statistical theory. For standard errors and confidence intervals,
the ideal is in sight if not in hand” (quoted from page 393 of ET).

The resampling methods described in this paper can be used (possibly after correcting for time-
dependence) to handle the empirical data concerning all DFA model input variables, including
interest rates and capital market returns. The methodologies also apply to any financial intermedi-
ary, such as a bank or a life insurance company. It would be interesting, indeed it is imperative, to
make bootstrap-based inferences in such settings and compare their effectiveness and applicability
with classical parametric, trend-based, Bayesian, and other methods of analysis. The bootstrap
computer program (using Mathematica 3.0 programming language, see Appendix A) that we have
developed here to provide smooth estimates of an empirical cdf, BESE, and bootstrap confidence
intervals could be easily adapted to produce appropriate estimates in Dynamic Financial Analysis,
including regulatory calculations for Value at Risk and Asset Adequacy Analysis. It would also
be interesting to investigate further all areas of financial management where our methodologies
may hold a promise of future applications. For instance, by modeling both the asset side (interest
rates and capital market returns) and the liabilities side (losses, mortality, etc.), as well as their
interactions (crediting strategies, investment strategies of the firm) one might create nonparametric
models of the firm, and use such a whole-company model to analyze value optimization and solvency
protection in an integrated framework. Such whole company models are more and more commonly

used by financial intermediaries, but we propose an additional level of complexity by adding the
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bootstrap estimation of their underlying random structures. This methodology is immenscly com-
putationally intensive, but it holds great promise not just for internal company models, but also for
regulatory supervision, hopefully allowing for better oversight avoiding problems such as insolven-
cies of savings and loans institutions in the late 1980s, life insurance firms such as Executive Life

and Mutual Benefit, or catastrophe-related problems of property-casualty insurers.
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Appendix A

The computer program written in Mathematica 3.0 programming language used to calculate bootstrap replications,
bootstrap standard errors estimates (BESE) and bootstrap 95% confidence intervals using the method of percentiles.

(* Here we include the standard statistical libraries to be used in our bootstraping program *)

<< Statistics DataManipulation®
<< Statistics ContinuousDistributions”

(* Here we define resampling procedure "boot[]" as well as empirical cdf functions: usual empirical cdf "empcdf[]” and its
smoothed version "cntcdf]" . Procedure "inv[]" is used by "boot[]" *)

(* Arguments for the procedures are as follows:

"boot[]" has two arguments: "Ist" (any data list of numerical values) and ,"nosam" (number of resamples,
usually nosum=Length[lst]

"empcdf[]" and "cntcdf[]” both have two arguments "lst" (any data list of numerical values) and "x" -the
numerical argument of function *)

inv([x_, latx_] :=
Module[{nlx = Length([lstx]},
1f [x=2a 0, lstx([1]],
If{xanl, lstx[[nlx]], ka Ploor[(nlx-1) x];
{(nlx-1)x-k) (1stx{[k+ 2]} -1stx[[k+1])) +1Btx[[k+1]]
]
]
13

boot[1x_, nosam_] te Module[{tt, 1, a, n, 1stx}, latx = Sort[lx]; n o Length([1lx]))
lstx = Platten[{(2 1stx[[1]] - 18tx[[2]])}, l8tx, (21stx([n]] -1stx[[n-1]]}}])
tt o RandomArray[UniformDistribution[0, 1], nosam] ;
For(ial, i <o nosam, i++, a[(i) = inv([tt[[1]], 1lBtx]]);
Table[a[i], (i, 1, nosam)]
1s

cntcdf[lst_, x_] ta Module[{ll = Sort[lst], n = Length{let], £ = 1},
1l = Flatten({{211{([1)] -11[[2]]}, 11, {211[[n]}]-11([n-1])}}]s

While(i<on+2 && x> 11([1]], d++]))
If{ioal, O, If{dcon+3, 1, ((x-11[(4-1]])/ (R1[[4]] -11([4-12]])+(L-2))/(n+1)]]
1s

empcdf [lst_, x_] 3o Module[{ll » Sort[lst), n = Length{lset], 1= 1},
While(i<omn && x> 11[[i]], 4++]

Iff[ie=1,0, (1-1)/n]

1
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(* Here we define the bootstrap replications of statistic theta[]

Procedure “theta{]" calculates a statistic from the list of data “Ist”.

Procedure “replicate[]" replicates the statistic "theta[]" "norep” number of times using procedure "boot []" with
parameters "Ist" and "nosam”. As a result of this procedure we obtain a list of replicated values of "theta[]" *)

theta[lst_] 1= 1; (s« define your Theta statistic heres)
replicate{lst_, norep_, nosam_] := Nodule[{i, 11 n (}}, For [i= 1, 1 <o norep, i++,
1l e Platten[(ll, theta[boot[lst, nosam]]}]

1y 11
1;

(*Here we calculate BESE and 95% confidence interval based on the method of percentiles for 1000 replications *)
(¢« run "replicate[]" procedure, store the results in variable "listofrep”™ «)

listofrep = replicate[lst, norep, nosam])

( BESEs)
Variance([listofrep]

(¢« 95 % confidence interval for number of replications (norep)=1000 )
95 ci = (listofrep((25]], listofrep{[975]]}

©G.Rempala. The above program was written using Mathematica 3.0 programming language. Mathematica is a registered
trademark of Wolfram Research, Inc.
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Appendix B

Massachugetts BI Data

No Injury Type Total Amt Paid Policy Limit
1 05 383 20,000
2 01 S00 20,000
3 Q6 500 20,000
4 08 900 20,000
5 06 1,000 20,000
[} 05 1,000 20,000
7 05 1,250 20,000
8 05 1,500 20,000
9 05 1,500 20,000
10 05 1,515 $30,000
11 05 1,631 $100,000
12 04 1,650 20,000
13 05 $1,700 30,000
14 05 51,700 20,000
15 0S $1,800 $20,000
16 05 §1,950 $20,000
17 05 2,000 20,000
18 05 2,000 25,000
19 05 2,007 20,000
20 05 $2,100 20,000
21 0s 2,100 20, 000
22 05 2,100 20,000
23 [ H 2,2 20,
24 05 2,2 :
2 0 :3 z
2 0 - 3 ’
3 0 2,27 0,
28 0 2, 20,
29 06 2., a0,

05 2, 20,00
1 5 2,45 20,00

5 +50 20,00

5 .50 100,000
4 5 ,500 20,0
S 1] 2,500 20,0
6 1 2,600 20,
7 5 2,7 20,

0 2, 20,

. . 000
4 ’ , 000
41 : , 000
42 . . 000
43 I + 000
44 ’ ,000
45 ,000 20,000
46 ,00 20,000
47 ,00 20,000
48 0 ,00 20,000
49 0 ,000 50,0
0 99 : 20,
1 ‘ z
2 ‘ :
3 ’ '
4 f 20,
’ 20,

S ,3 20,
57 2 20,
58 0 430 20,0
59 0 ,30 20,0
60 4 3,500 20,000
€1 4 3,500 $1,000,000
62 5 3,50 20,000
63 01 3,50 20,000
€4 05 3,580 20,000

198




Appendix B

Massachusetts BI Data

No Injury Type Total Amt Paid Policy Limit
05 3, 20,

6€ [H 3, 20,

7 05 . 20,

68 0 500 000
69 4 ,500 , 000
70 ,500 .0
7 5 £ 50 0,0
73 99 3, ‘

73 95 3, :

74 05 7 20,
75 05 .700 20,0
76 05 L7 20,0
77 05 .7 )
78 5 ,7 ,000
78 5 .7 ,000
80 5 3,7 20,000
81 6 3,9 20,000
82 05 4, 20,000
83 05 4. §1,000,0600
84 [5 4, ,000
S 5 4, ,000
6 5 4, , 00
7 4 4,0 20,00
8 06 4,0 20,00
S 05 4,00 20,000
7 0 4, 0,000
] ¢ 0,000
92 4, 0,00

5 4, 20,0

94 1 4,000 20,0

5 [ 4,000 25,0
96 0 4,25 20,000
97 [ 4,25 20,000
38 6 4,27 50,000
99 4,396 25,000
109 4,40 20,00
101 05 4,476 20,00
102 05 4,500 20,00
03 05 4, 20,0

4 oS 4, 25,0

5 05 4, 20,0

6 10 4,5 20,0
107 0S5 4,500 20,0
1 [ 4,521 20,0
1 0 . 697 20,
1 0 4,700 20,
111 , 700 20,000
112 4,700 20,000
113 04 4,725 20,000
14 [ ,750 20,000
1 [] ,000 20,000
16 0 ,000 $100,000
117 ] 5,000 20,000
11 05 5,000 20,000
118 05 5,000 20,000
12 [E 5,000 20,000
121 [ ,000 20,
122 0 ;000 20,000
123 0 ,000 20,
124 0 ,000 ,000
125 0 5,000 ,000
126 0 00 ,000
127 [ ,00 20,000
1328 0 ,00 20,000
12 04 5,00 20,000
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Appendix B Massachusetts BI Data

No Injury Type Total Amt Paid Policy Limit
130 :00 20,000
131 ,00 20,000
132 .00 20,000
13 0 ,00 20,000
134 0 .0 $100,000
13 05 S, 20,000
136 06 ' .0
137 05 ,200 , 0
138 0 s y
139 [ .2 20,000
140 [ 5,2 20,000
141 0 5,200 20,000
142 0 5,200 20,000
143 0 5,200 20,000
144 5,2 20,000
145 5,2 20,000
146 5,2 20,00
147 5,2 20,00
148 S 5,296 20,00
149 05 5,300 20,000
150 05 5,300 20,000
151 4 5,300 20,000
152 5 5,333 20,000
153 £ 5,33 20,000
15 S ,33 20,000
15 5 ;33 .00
15 4 1344 0,0
1 S ,366 0,0
158 4 ,400 30,000
159 05 ., 400 20,000
150 Q5 .415 20,000
161 0 5,497 $100,000
162 4 5,500 0,000
163 5 ,500 0,0
164 5 ;500 2,0
165 5 ,500 20,0
166 06 .500 20,0
167 0 5,566 20,000
168 E 5,600 25,000
169 5,714 20,000
170 5,714 20,000
171 5,714 20,000
172 5,714 20,000
173 5,714 , 00
174 5 5,714 .00
175 5,714 ,00
176 5,728 ,Q0
177 5,750 ,000
178 S 5,750 $100,000
179 05 5,750 20,0
180 05 5,852 20,0
181 06 5,098 20,0
182 05 5,900 s 0
183 05 5.964 20
184 06 5,990 20,0
185 05 6,000 200
186 S 6,000 20,000
137 5 6,000 20,000
138 5 6,000 20,00
189 1 ‘ .0

[ 5 . 9,0

1 S . £ 000

2 05 (00 20,000

3 05 ,00 20,000
34 a5 000 20,000
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Appendix B Massachusetts BI Data

No Injury Type Total Amt Paid Policy Limit
198 4 077 20,
196 5 , 07 20,
97 (131 9.
6,1 0,0
6,1 0,000
5 6,1 20,000
201 S 6,171 20,000
202 0 ,208 ,000
203 0 , 243 ;000
204 a +318 ,000
205 ] ,399 ,000
206 05 41 ,000
207 0S 6,500 . 000
208 05 5,5 20,
209 0 6,5 20,
210 [ 6,5 20,
211 0 6,50 20,
212 [) 6,500 20,
213 6,500 20,
214 6,500 20,0
215 6,500 20,0
216 [}] 6, 20,
217 6, 50,
218 6, 2s,
219 0 6, 20,
22 6,5 50,
22 05 ,51 20,0
223 04 6,536 20,0
22 05 1549 20,
224 01 ,558 a5,
22 06 600 20,
226 Q0 6,60 20,0
227 [ 6,62 20,000
228 05 6,70 20,000
229 06 6,703 20,000
230 01 + 743 25,0
231 0 + 750 20,0
232 Q ,800 20,0
233 0 +870 20,00
234 05 6,893 50,000
235 0 6,098 $0, 000
236 Q 6,907 20,000
237 "] , 933 20, 000
238 [ 4935 $1 00
239 0 .97 100,000
40 ] 7,00 100,000
241 0 7, 20,
242 05 7, 0,
243 05 7, 20,
244 0 7, 20,0
24 [7] 7,00 20,000
246€ 0 7,0 20,00
247 0 7,014 20,00
48 04 7,043 20,00
24 o 7,078 20,000
25 ] 7,118 20,000
2 05 7,163 20,000
2 05 7,191 20,000
253 05 7,200 20,000
254 05 7,200 20,000
2 [ 7,250 20,00
2 04 7,252 20,00
257 gs 7,304 20,00
258 01 7,412 §$35,000
259 01 7,425 $100,000
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Appendix B

Massachusetts BI Data

No Injury Type Total Amt Paid Policy Limit
26 7,433 20,0
26 7,444 50,0
26 7, 447 20,0

2 5 7, 20,

2 7, 20,

2 7, 25,

2. 5 1, 20,

26 5 7,5 20,000
268 5 7,5 20,000
269 9 7,50 20,000
270 7,564 30,000
27 , 20,

27 87, 20,
273 7, 20,
174 7, 20,
275 7,67 20,
276 4 7,69 $100,000
277 04 7,700 $100,000

78 [ 7,750 20,000
79 [ 754 ,000
80 0 , ,00
281 4 7, 0,
282 7,868 20,
293 7,873 25,000
284 5 7,920 $100,000
285 7,922 20,
286 7, 20,
287 7, 20,

2 ,961 20,
2 [ , 000 $100,000
2 0 ,000 100,000
29 5 20,
2 10 P 50,
2 [ , 07 20,

0 , 200 20,

5 298 25,
296 8,30 30,000
297 8,42 20,000
298 05 8,48 20,000
299 5 8, ,000

5 s ,000
9 . .00
S . 0,00

3 5 P 0,00

4 S ,61 0,00

5 5 , 634 $100,000

6 5 , 686 20,

5 .785 20,
05 ,786 20,

0 08 ,794 20,

1 ,805 20,

11 y 20,

12 ‘ 20,000

3 ‘ 20,000

1 4 20,0

1 5 ’ 20,0
1 N 20,0
17 ’ . 820,000
18 9,0 $100,000
19 05 9,000 20,000
20 [ 9,00 20,000
21 9. 20,000
a2 s 20,000
23 . $0
24 ’ $20,000
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Appendix B Massachusetts BI Data

No Injury Type Total Amt Faid Policy Limit

2 0 ’ 20,00
2 0 ’ 20,00
2 Q . .00
28 [] .0 ,00
2 9, .00
3 9, 25,0
331 9, 290,000
332 5,0 20,000
33 9,0 $100,000

34 9,1 20,000

5 9,12 20,000

§ 9,20 20,000

7 05 , 208 20,000
338 05 , 300 20,000
39 05 9,355 20,00
40 05 9,356 206,00
41 05 9,392 20,00
342 , 395 $100,000
43 , 4 $20,000
44 4 4 $20,000
43 9,4 $100,000
46 05 9,50 20,000
4 05 9,50 29,

4 05 .60 20,

5 ,710 .0

4 +881 .0
1 S 5,909 ,000
2 08 10,000 20,000
0 10,000 20,000
0 10,000 100,000
0 10,00 20,000

56 04 10, 20,000
57 05 10, 20,000
58 05 10,3 20,000
59 05 10,331 20,000
36 oS 10,400 20,000
36 05 10,505 $100,000
[ 04 10,55 20,000

3 01 0,64 20,

4 2] 186 20,

5 0 +96 20,
366 9 000 50,0
67 04 11,00 $100,000
68 05 11,032 20,000
69 05 11,144 20,000
70 5 11,166 ,000
71 1 11,262 ,000
72 5 11,344 , 000
73 9 11,353 20,000
74 [H] 11,385 20,000
75 1 11,500 20, 0
76 5 11,626 20,

77 5 11,835 20,
7 9 11,986 20,
7 5 11,991 20,0
38 4 12,000 20,0
81 05 2,00 20,00
82 0 ,00 20,00
3 1. $100,000
4 12,274 20,000
12,374 20,000
. 380 20,
0 N 20,00
388 05 P 20,00
389 05 12, 1 $100,000
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Appendix B

Kassachugetts BI Data

No Injury Type Total Amt Paid Policy Limit
a0 0 12,756 20,000
391 Q0 12,859 20,000
9 [ 12, 20,000
9 0 13, 20,000
9 4 05 13, 20,

55 05 13,2 50,

936 04 134 20,0
97 05 ,500 20,000
358 05 13,570 20,000
399 99 13,572 $100,000
400 4 4,181 20,000
401 5 4,7 20,000
402 5 4,9 20,000
403 5 5,5 20,000
404 5 15,500 $100,000
408 03 15,765 20,000
406 18 16,000 20,000
407 05 16,668 20,000
408 05 16,794 20,000
409 04 17,367 $100,000
41 ] ;500 20,00
41 9 ‘ 20,

41 1 A 20,
413 [] ;01 20,
414 95 20,000 20,000
418 5 20,000 20,000
416 20, 20,000
417 20, 20,000
418 8 20,000 ,000
419 7 20,000 ., 000
420 Q7 20,000 ,000
421 03 20,00 20,000
422 0 0,00 20,000
423 16 20, 00 20,000
424 05 0,00 20,000
425 06 20,00 30,000
426 0 20,000 20,000
427 09 20,000 20,000
428 05 20,000 $20,000
429 01 232,692 $100,000
430 a5 24,500 $50,000
431 99 25,000 $25,000
432 02 25,000 $100,000
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Appendix B

Massachusetts BI Data

Injury Type Description
01 MINOR LACERATIONS/CONTUSIONS
02 SERIOUS LACERATION
03 SCARRING OR PERMANENT DISPIGUREMENT
04 NECK ONLY SPRAIN/STRAIN
05 BACK OR NECK & BACK SPRAIN/STRAIN
06 OTHER SPRAIN/STRAIN
07 FRACTURE OR WEIGHT BEARING BONE
08 OTHER FRACTURE
09 INTERNAL ORGAN INJURY
10 CONCUSSION
11 PERMANENT BRAIN INJURY
12 LOSS OF BODY PART
13 PARALYSIS/PARESIS
14 JAW JOINT DYSFUNCTION
15 LOS8 OF A OENSE
16 FATALITY
17 DENTAL
18 CARTILAGE/MUSCLE/TENDON/LIGAMENT INJURY
19 DISC HERNIATION
20 PREGNANCY RELATED
21 PRE-EXISTING CONDITION
22 PSYCHOLOGICAL CONDITION
30 NO VISIBLE INJURY
99 OTHER
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STOCHASTIC MODELING AND
ERROR CORRELATION
IN DYNAMIC FINANCIAL ANALYSIS

SONT. Tu
SCRUGGS CONSULTING
ARGYLE, TEXAS

ABSTRACT

New treatments of stochastic modeling and error
correlation in dynamic financial analysis are
introduced. The former refers to the methods for
modeling individual insurance operations. The latter
refers to the technique for considering the
interactions and correlations among those
operations. The stochastic chain ladder model, a
new technique for loss development, is also
introduced and is shown to be an integral part of
DFA.
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1. INTRODUCTION

Dynamic financial analysis is now segregated into two different philosophies: that of stochastic
simulation, and that of scenario testing. Feldblum' discussed the strengths and weaknesses of the two
approaches. We believe that the two need not be separate and competing, but indeed need to be
complementary. With the model proposed in this paper, we hope 10 narrow the gap between these two
approaches.

The construction of this model is motivated principally by four factors. The first two, qualitative
in nature, are understandability and flexibility. The other two, quantitative in nature, are the stochastic
modeling of individual insurance components and the error correlation among those components.

Many users and interested parties of a dynamic financial analysis model are not actuaries and
technical analysts. Therefore, it is important that these users can gain, relatively easily, a good
understanding and confidence in the model.

Secondly, the usage to which a model will be applied varies widely. In some studies, the analyst
may only be interested in the overall picture; and relatively few insurance operations need be modeled. In
another study, a relatively large number of operations needed to be included, because more detailed
quantitative analyses are required. A model should have sufficient flexibility to suit both extremes.

To satisfy the above two factors, our mode! is controlied by a set of governing equations. One or
more of these equations describes each operation. The model has understandability, because each equation
is usvally a readily accepted insurance formula. The model has flexibility, because the number of
equations can be expanded or contracted, depending on the needs and objectives of the analyst.

There can be several stochastic models for generating observations of an insurance variable, such
as the loss ratio or the investment retun. By far, the most popular among actuaries is the averaging
technique, where the observations are assumed to be random about some average. In a subsequent section.
we present two other alternatives, which we name the current-value and current-change models. We show
that they fit the historical data used in this study berter than the averaging technique. These two models
have analogies in time-series analysis.

An important consideration in any DFA mode! is the correlation among the variables considered
in the analysis. Depending upon the sign of the correlation between two variables, the correlation can be
either stabilizing or destabilizing, a concept that we will elucidate in section 4. The correlation coefficients
among the variables will be measured. As a natural and necessary by-product, we present a technique for
the generation of correlated random numbers.

In this paper, we aim only to demonstrate the concept and potential of the model. We have
simplicity as one of the objectives of the paper; therefore. the number of operations has been kept to a
relative few. We will study a hypothetical insurer, which is assumed to have written only Workers
Compensation for the last ten years. Our study projects five years into the future. At the end of that time
frame, among other quantities, we want to examine the probability of ruin. To work with realistic data, all
of the relevant data has been taken from the 1997 Best’s Aggregates and Averages publication.

In section 2, we present the governing system of equations used in this study. In section 3, we
present the hypothetical initial state of the company

In section 4, we present the stochastic modeling of the insurance random variables. In section 5,
we model paid losses. For this purpose, we will introduce our research on the stochastic chain ladder and
Bornhuetter-Ferguson loss reserving models,

In section 6, a technique for the generation of correlated random numbers will be introduced. In
section 7, we pull together the materials in all the preceding sections to generate simulated solutions for the
next five years.

In section 8, we show that the simulated results can be assumed normally distributed. In section 9,
we outline the many potential extensions to the model.

In the concluding section, we summarize and discuss the criteria by which a user of dynamic
financial analysis would evaluate one strategy or decision as being superior to another.

! Sholom Feldblum, “Forecasting the Future: Stochastic Simulation and Scenario Testing.” Incorporating
Risk Factors in Dynamical Financial Analysis, 1995 CAS Discussion Paper Program.
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2. GOVERNING SYSTEM OF EQUATIONS

Following is the list of random variables that we consider for this hypothetical study:

AS = Assets,
LI = Liabilities,
SU = Surplus,

PL = Paid Losses,

IL = Incurred Losses,

Il = Investment Income,

EP = Eamed Premiums,

PD = Paid Policyholders’ Dividends,

PE = Paid Underwriting Expenses,

WP = Written Premiums,

IIR = Investment Income Ratio,

UER = Calendar-Year Underwriting Expense Ratio,
PDR = CY Policyholders’ Dividend Ratio,

EPR = CY Eamed Premium Ratio,

LR = Accident-Year Loss and LAE Ratio,

F = value of the loss cumulative distribution function, and
& = process error of the paid loss.

Each of the variables takes the argument of time. It is an understood that a variable refers to the
value during that year (such as written premiums and paid losses) or at year-end (such as assets and
liabilities). For simplicity, we will consider only yearly intervals.

Consider the following system of nine equations:

2.1 AS()= LI(t)+ SU(t)

(22)  LI¢t)y=LI(t=1) - PL(t)+ IL(t)

(2.3) AS(t)= AS( -1)+WP()+ II(t)- PL(t)— PE(t)— PD(1)
(24)  EP(t)= EPR()*[WP(t -1)+ WP(1)]

(2.5) ()= HR()* AS()

(2.6)  PE(t)=UER(t)*WP(t)

7  PD(r)= PDR()* EP(t)

(2.8)  IL(r)= LR(1)* EP()

(29)  PL(Y= Y.LR()*EP()*[F(k+1)=F(K)]*(1+¢)

all AY

Even though there are many variables, many of them are inter-related. In fact, only five of them
are independent. They are the investment income ratio (1IR), the U/W expense ratio (UER), the dividend
ratio (PDR), the earned premium ratio (EPR), and the loss ratio (LR). In section 4, we will model the
stochastic behaviors of these ratios from historical data and calculate their correlations. In section 6, we
will simulate correlated random numbers for the ratios.

The most complex equation in the above set is (2.9), which is the sum of the paid losses for ail
accident years up to the evaluation date. In section 5, we will explain our stochastic loss reserving models
and the workings of (2.9).

This is only an example of a set of governing equations. The analyst designs the exact set to meet
his own needs. This offers great generality and flexibility.
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3. THE INITIAL STATE OF THE COMPANY

Our insurer has been in existence for the last ten years, and writes only Workers Compensation.
In the following table, loss ratios, eamed premiums, paid losses, and liabilities for the past ten years are
listed.

Table 1: The Initial State of the Company

AY LR Ear. Pmn | Inc.Loss | PaidLoss | Liability

1987 91.19% 5,002 4,562 4,209 353
1988 92.91% 5,403 5,020 4,558 462
1989 93.76% 5,835 5,471 4,865 606
1990 91.72% 6,302 5,780 4,997 783
1991 85.15% 6,806 5,795 4,819 976
1992 74.40% 7,350 5,469 4,299 1,170
1993 72.50% 7.938 5,755 4,150 1,605
1994 72.14% 8,573 6,185 3,859 2,326
1995 74.21% 9,259 6,871 3232 3,639
1996 75.77% 10,000 7,577 1,593 5,984

The loss ratios were obtained from Schedule P — Part 1D of the Best's Aggregates & Averages
publication. The incurred loss is the product of the loss ratio and the eamed premium. The paid loss is a
function of the incurred 1oss and the cumulative distribution function, which will be explained in section 5.
The liability is the difference between the incurred and paid losses.

We assume the following initial liabilities, surplus and assets, with the initial year being 1996:

(G.)  LI(0)=17904; SU(0)=6,667; AS(0)=24,570.

The total liability is the sum of the last column in Table 1, and (3.1) satisfies (2.1). We assume
that the insurer has the following target written premiums for the next five years:

Table 2: Target WP
Year wp
1997 10,800
1998 11,664
1999 12,597
2000 13,605
2001 14,693

We could as easily assume that the written premium is a product of the premium-to-surplus ratio
and the surplus:

(3.2)-  WP(t)= PSR()* SU(t -1).

In such case, we would add (3.2) to the set of goveming equations in the previous section. We elect not to
follow this route, primarily because of a lack of historical data for the Warkers' Compensation premium-to-
surplus ratios. The analytical treatment of the two cases is similar.

4. STOCHASTIC MODELING OF THE INSURANCE RATIOS

In this section, we present the modeling of the loss and LAE ratio, the U/W expense ratio, the paid
dividend ratio, the investment income ratio, and the carned premium ratio. The first is on an accident-year
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basis; the others on a calendar-year basis. All are taken from Best’s Aggregates & Averages — Cumulative
by Line Underwriting Experience.

Table 3: The Historical Insurance Ratios

YEAR LR UER PDR IIR EPR
1987 91.19% 15.00% 7.20% 10.20%
1988 92.91% 13.40% 9.40% 10.90% 51.20%
1989 93.76% 13.00% 7.10% 11.40% 51.30%
1990 91.72% 13.40% 5.60% 10.80% 51.40%

1991 85.15% 14.60% 6.00% 11.70% 52.80%

1992 74.40% 16.50% 6.50% 16.60% 50.60%

1993 72.50% 17.20% 6.60% 14.60% 48.10%

1994 72.14% 18.60% 9.20% 13.90% 46.40%

1995 74.21% 20.30% 9.50% 16.70% 46.30%

1996 75.77% 23.30% 9.00% 16.90% 47.60%

The corresponding ratios for future years are, of course, random. The simulation of the random
numbers is determined by the historical patterns. There are two things to consider in these patterns: the
pattern within each set of ratios, and the correlation between any two sets of ratios.

To determine the pattern within each set of ratios, we consider three models: the average-value
model, the current-value model, and the current-change model. For a given set of data, we pick the model
that gives the least error deviation.

The average-value, or the averaging, model states that a random number is normally distributed
about some average:

4.1 x,=;+5,.

The first term on the right-hand side (RHS) of (4.1) is the average; the second is the uncorrelated errors of
mean zero and some standard deviation. If we apply (4.1) to the loss ratios of Table 3, we have:

172
(42)  x=82.4%, o’(£,)={-l—lzsf} =9.37%.
n- i

Therefore, the loss ratios have a mean of 82.4%, and the standard deviation of the errors is 9.37%. Note
that 11 is the number of observations, and the degree of freedom is one less than that value since an average
has to be estimated.

There are two sources of error in the average-value model. There is the parameter error,
associated with the uncertainty in the estimation of the average. Also, there is the process error, which is
associated with the random errors.

If we take a closer look at the loss ratios in Table 3, the average-value model does not seem to be
appropriate. In the earlier years, 1987-91, all the ratios are greater than the average. In the later years,
1992-96, they are all smaller. Therefore, we next propose the current-value model:

43) Xia =X tE&,.

This model says that a random number tends to stay about its current value. The errors are assumed to be
uncorrelated and of mean zero. 1f we apply (4.3) to the loss ratios, we get:

112
4.4 c(e,):{%Ze,’} =4.44%.
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The deviation of the average-value model is much greater than that of the current-value model,
indicating that the latter is a much better fit for the observed loss ratios. .

Contrary to the average-value model, there is only one source of error in (4.3), the process error,
since no parameter has to be estimated in that equation.

If we look even more closely at the loss ratios in Table 3, we notice that an increase in the ratio
tends to be followed by another increase, a decrease tends to be followed by another decrease. Therefore,
we propose a third model, the current-change model:

4.5) Z =X, =X, Z, =2 +E,.
This model says that the next change tends to be equal to the current change. And, like the current-value
model, it only has process error. 1f we apply (4.5) to the loss ratios, we get:

2
(4.6) a(a,.)={lZs,?} =4.09%.
n*

Since the current-change deviation is smallest, it represents the best fit, and we choose it to model the loss
ratios in our analysis.

1t makes a great deal of difference which model is chosen to represent a set of random variables.
For instance, if we choose the average-value model for the loss ratios, then the simulated 1997 loss ratios
have a mean of 82.4% and deviation of 9.37%, as shown in (4.2). if we choose the current-value model,
they have a mean of 75.8% and deviation of 4 44%. If we choose the current-change model, they have a
mean of 77.4% and deviation of 4.09%.

For the other four ratios, we will use the current-change model. The error terms have the
following deviations:

Table 4: The Standard Deviations of the Ratios

LR | UER [ PDR_[ TR | EPR

4.09% | 1.57% | 1.49% | 2.06% | 1.49%

We now wrn to the calculation of the correlation between any two sets of errors. Let’s consider
the loss and the dividend ratios. They have the following errors:

Table 5: Values of two Error Sets
YEAR LR PDR
1988 .022
1989 -.009 -.023
1990 -.029 -015
1991 -.045 .004
1992 -.042 .005
1993 .089 001
1994 .016 .026
1995 024 .003
1996 -.008 -.005

The correlation coefficient of the two sets in Table 5 equals .185. The correlation coefficient is
defined as:

Cov(4, B)

(47  p(4,B)= b B)

The correlation coefficients among the five ratios are found to be:
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Table 6: Correlation Coefficients of the Five Insurance Ratios
LR UER PDR 1IR EPR
LR 1.000 0.000 0.185 -0.528 -0.486
UER 1.000 0.000 0.000 0.132
PDR 1.000 0.000 -0.429
IIR 1.000 0.000
EPR 1.000

For any coefTicient with an absolute value smaller than .1, we assume it to be statistically insignificant and
set it equal to zero.

For this study, we use the empirical coefficients. For a genuine study, the analyst should decide
whether the observed correlations seem reasonable. He may decide to override them if they do not.

The significance of Table 6 is this: not only should the simulated ratios have the deviations in
Table 4, but they should have the correlations shown there. These have real consequences regarding the
stability of the insurance process. For instance, that the loss and investment ratios have a negative
correlation is destabilizing. The negative correlation means that a higher-than-average loss ratio tends to be
coupled with a lower-than-average investment ratio, and vice versa. Taking the former case, the higher-
than-average loss ratio means more loss payments, and the lower-than-average investment ratio means less
investment income. If two quantities in conjunction tend to have the same effects on the balance sheet,
then the correlation is destabilizing. Conversely, if they tend to impart opposite effects, then the correlation
is stabilizing.

Every correlation in Table 6 destabilizes, except for the positive correlation between the expense
and the eamed premijum ratios. In this case, if the insurer experiences higher-than-average expenses, then it
also experiences higher-than-average eamed premiums. The two have opposite impacts on the balance
sheet, because the higher outgo (expenses) counteracts the higher income (earned premiums).

We emphasize that there are other reasonable stochastic models for the variables. This aptly
demonstrates the tremendous flexibility and variety available to the analyst. The bottom line is that he
should have confidence that the underlying model is representative of the future.

We are grateful to a review who pointed out that the current-value and current-change models
have analogies in time-series forecasting.

5. STOCHASTIC MODELING OF PAID LOSSES

We have developed two stochastic loss reserving models: one based on the traditional chain ladder
method, and the other on the Bornhuetter-Ferguson method. We have written a paper on each of these
models.?’. The interested reader should contact the author for copies of the papers.

Basically, we model the stream of paid losses for an accident year as a function of a cumulative
distribution function. The function that we use for Workers Compensation loss payment is the transformed
lognormal:

(5.1) F(uo,7)= (]){yign(lnr)llntlr ;,u,a}.

In (5.1), @ is the nomal distribution of mean 4 and deviation . The argument ! is measured in years.
Let an accident year have earned premium EP and loss ratio LR . Let ¥, be the incremental

loss payment for that accident year between the report years 7 and f + 1. Then the stochastic Bornhuetter-
Ferguson model gives the following relationship:

?Son T. Tu, “The Application of Cumulative Distribution Functions in the Stochastic Chain Ladder
Model,” Scruggs Consulting Research Paper. This paper is in the process of publication in the Casuaity
Actuarial Society Forum.

3Son T. Tu, “The Stochastic Bormnhuetter-Ferguson Model,” Scruggs Consulting Research Paper.
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(5.2)

Y, =EP*LR*[F(t+)-F®]*(+¢.,).

where the process error £, is a normal distributed random variable of zero mean and some deviation.
In our paper on the stochastic Bornhuetter-Ferguson model, we demonstrate how to fit (5:2)to a

triangle of incremental payments and come up with estimates of the function parameters. From an actual
Best's Aggregates and Averages paid loss triangle, we derive the following estimates:

Table 7: The Estimates for the Parameters
Estimate Deviation

r .7840 .0591

= 9733 10360

T 9286 .0352

If we use the estimates in Table 7 in (5.1), then we can obtain the following values for the
distribution function:

Table 8: The Values of the Cumulative Distribution Function

time |

1

2

3 | 4

5

F ]

2103

.4703

6239 | 7211

[ -7861

§ 1 7 ] 8 1 95
8316 | 8646 | 8892 | .9080

Table 8 says that, after one year, 21.03% of payments for any accident year has been paid. After
ten years, 92.27% has been paid, and therefore 7.73% has yet to be paid.
The function parameters also have the following matrix of correlation coefficients:

Table 9: The Matrix of Parameter Correlation Coefficients
H o T
H 1.000 9815 -.7633
o 1.000 -.8180
T 1.000

The way that we use (5.2) in the DFA model is as follows. For any calendar year, the loss
payments are the sum of the paid losses for all accident years. The paid loss for each accident year is
modeled by (5.2).

For the ten accident years in the past, we assume that the eamed premiums and loss ratios are
fixed, given by the values in Table 1. For the five accident years in the future, the eamned premiums and
loss ratios are stochastic quantities, given by numerical simulation. For this exercise, the process error in
(5.2) has a standard deviation of 10.36%.

6. GENERATION OF CORRELATED RANDOM NUMBERS

Section 4 shows the necessity to generate five correlated insurance ratios. Section 5 shows the
necessity to generate three correlated function parameters. In this section, we present a general technique
to generate correlated random numbers. For instance, from Table 4, the errors of the loss ratios and the
investment income ratios have expected deviations of 4.09% and 2.06%, respectively. But additionally,
from Table 6, those errors have an expected correlation coefficient of -.528. In this section, we will
introduce a technique to generate ervors with the desired correlation characteristics,. We will present some
very technical work, which is needed for the sake of stochastic realism. But the reader may decide to skip
this section without fear of losing the continuity among the other sections.
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We will work with three variables. The technique can be easily generalized to any number of
variables. Let’s suppose that we need to generate three normally distributed random numbers X,Y,Z,
and together they have the following variance matrix:

Var(X) Cov(X,Y) Cov(X,Z)
6. Var(X)=| Cov(X,Y) Var(Y) Cov(Y,Z) |
Cov(X,2) Cow(Y,Z2) Var(Z)

Instead of this problem, we are going to generate three uncorrelated normally distributed numbers
A, B,C such that:

Var(A) 0 0
(62) Var(A)=| 0 Var(B) 0
0 0 Var(C)

Note that the second problem is much simpler than the original one.
We express the two sets of numbers as:

(63) 4=1X,

B=Y+bX,

C=Z+¢,X+c,Y,
where b),c,,c, are unknown variables to be found. We will use the condition of no correlation among
A, B,C to determine these unknowns. The condition that

(64)  Covw(4,B)=0.

We apply (6.4) to the first two equations of (6.3) to derive:
(6.5  bVar(X)=-Cov(X,Y).

The conditions that

(6.6) Cov(4,C) =Cov(B,C) =0,

yield

6.7) cVar(X)+c,Cov(X,Y)=-Cov(X,Z),
¢, [Var(¥) + b,Cov(X,Y)] = ~Cow(¥, Z) - b,Cov( X, Z).

The first equation of (6.6) and the first and third equations of (6.3) give the first of (6.7). The
second equation of (6.6) and the last two equations of (6.3) yield the second of (6.7). Equations (6.5) and

(6.7) give the values of the unknown b, ,¢,,c, . Taking the variance of (6.3), we have:
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6.8) Var(A) = Var(X),
Var(B) = Var(Y)+ b} Var(X ) +2b,Cov(X,Y),
Var(C) =Var(Z)+ cVar(X) +ciVar(Y) +2[c,Cov(X, Z) + ¢,Cov(¥, Z) + ¢,c,Cov( X, )

Now we generate three uncorrelated random numbers with the variances in (6.8). Then we can
invert (6.3) to obtain:

6.9) X =4,
Y=B-bX,
Z=C~c X —qY.
In summary, we generate three uncorrelated random numbers A, B,C . Their variances are given

by (6.8). Then we derive X,Y,Z from (6.9). The latter set of random numbers has an expected variance
matrix of (6.1).

This technique can be used for any number of correlated variables. The equations for the
unknown coefficients, corresponding to (6.5) and (6.7), become quite long and involved, but they fit a very
regular and predictable pattern.

7. NUMERICAL SIMULATION

In this section, we outline the numerical simulation scheme to obtain quantitative results of the
modeled insurance process. In this scheme, we conduct 200 trials. For a genuine analysis, at least 1000
should be done.

We want to project the study five years into the future. For each year and for each trial, we
generate five random numbers for the five insurance ratios discussed in section 4. In the generation of the
random ratios, we take into account the correlation coefficients in Table 6. For instance, the 200 loss ratios
have an expected deviation of 4.09%, and the 200 dividend ratios have an expected deviation of 1.49%.
Moreover, the 200 pairs of loss and dividend ratios have an expected correlation coefficient of .185. As we
mentioned earlier, the loss ratios and earmed premiums for the past ten accident years are considered non-
stochastic, and shown in Table 1.

For each trial, we generate a set of three function parameters, for use in the lognormal cumulative
distribution function, having the variances and covariances shown in section 5. This accounts for the
parameter errors in the paid losses. For each incremental payment, we also generate the process error in
(5.2).

For each trial, we substitute the simulated numbers into equations (2.1)-(2.9). Therefore, for each
random variable at each time f, we have a series of 200 realized values. Then we can simply take the
mean and deviation of these values, which represent the mean and deviation of the random variable,

8. NORMAL DISTRIBUTION OF NUMERICAL RESULTS

From the numerical simulation, we can obtain the estimate and deviation of any random variable.
Ideally, we would want to approximate every random variable as being normally distributed, because then
the percentiles for the variable can be readily estimated. [n this section, we will use the chi square
goodness-of-fit test to show that the variables are approximately normally distributed.

Among the numerical details, in this section we look only at the surplus. The following table
gives the means and deviations of the surplus for the next five years. It also includes the probability of
ruin, (defined as the insurer having negative surplus), the number of expected ruins, and the number of
observed ruins, among the 200 trials.
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Tabie 10: Numerical Results of the Surplus
Year Mean Deviation | % ruin Expected | Observed
0 6,667 0 - - -
1 10,455 830 0.0 0 0
2 15,071 1,871 0.0 0 0
3 20,199 4,372 0.0 0 0
4 26,356 8,595 0.1 2 0
5 33,770 14,699 1.1 2.2 2

To establish the ruin probabilities in Table 10, we assume the distribution of the surplus to be
normal with the given means and deviations. We then compute the probability that the surplus reach zero
in any given year. The expected number of ruins is then the product of that probability and 200. The fact
that the expected and observed values are very comparable indirectly validates the merit of our approach.

To establish percentiles, we can of course take the distribution found among 200 trials. Buta
more desirable and convenient way would be to establish that the simulated results are approximately
normally distributed. We note that the assumption of normal distribution cannot be taken for granted,
since, even though the simulated random numbers are assumed normally distributed, equations (2.1)-(2.9)
contain products of normally distributed simulated numbers, which generally do not follow that
distribution.

For a numerical example, we take the surplus of the fifth year, and see if the simulated resuits
could be reasonably approximated as being normally distributed. We use the chi-square goodness-of-fit
test to either validate or reject this assumption. For the fifth-year surplus of mean 33,770 and deviation

14,699, we divide the whole spectrum of (—0,0) into ten intervals of equal probability. For instance, the

second interval runs from 14,933 to 21,399, representing the 10® and 20™ percentiles, respectively. If the
distribution is normally distributed, 20, or 10%, of the outcomes would be expected to fall into this interval.
The following table presents the observed and expected frequencies for our simulated set:

Table 11: The Chi Square Test for the Fifth-Year Surplus

1 2 3 4 5 6 7 8 9 10
Obs. 17 21 25 19 16 28 18 17 19 20
Exp. 20 20 20 20 20 20 20 20 20 20

The chi-square value is:

(8.1 z -(0,-E, )2 6.50.

l

12 should follow the chi-square distribution with nine degrees of freedom, giving a probability of 69%.
In other words, if the 200 simulated fifth-year surplus values are normally distributed, there is a 69%
probability that their chi-square value would be greater than 6.50. Therefore, the normal-distribution
assumption is accepted.

We use the chi-square test on many of the random variables, and, by and large, the assumption of
normal distribution is reasonably satisfied.

9. EXTENSIONS OF THE MODEL

In conducting the study, we use historical data. In other words, we assume that our insurer would
continue on the same trends as found in the past. But we can also use scenario or assumed data in the
model. For instance, after Jooking at the probabilities of ruin in Table 11, management finds them too
great, and decides on two simultaneous changes in operations. First, written premiums could be curtailed.
Secondly, underwriting standards could be strengthened, so as to decrease the level and variability of the
loss ratios. If the analyst can quantify these changes, they can be built into the model. The model can in
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turn quantify the degrees of the necessary changes, in order to decrease the probabilities of ruin to
acceptable levels.

The model can be used as a tool of scenario testing. For instance, the analyst may discard the
historical loss ratios, and decides a future loss ratio of 75% with a deviation of .05 js reasonable. He can
then carry out the simulation and analysis with these scenario values.

For the study, we chose a situation as simple as possible. But the model offers great flexibility.
As more and more operations are added to the analysis, the number of governing equations would increase.
Below we list some of the many other operations that the model can readily accommodate.

Multi-lines insurer: We expect that as more lines are added, the financial results would stabilize.
This is especially true if the loss ratios of the various lines have no or negative correlation.

Differing investment strategies: We can allocate the available investment assets into different
segments, such as bonds, stocks, and real estate. We can also consider sub-segments within each major
category: such as, taxable versus tax-exempt bonds. The model can give us an idea of the optimal
investment strategy, given a corporate objective, such as growth versus stability.

Tax liabilities: This item can be readily built into the model.

Interest rates and inflation: These two affect the investment income and the loss payments. There
are many theories concerning how inflation affects the stock and bond markets. Once the analyst decides
to use a particular theory or model, it can be readily integrated into the framework of our DFA model.
Regarding the loss payments, things are not so apparent. There are many ad-hoc techniques to account for
inflation, But to our knowledge, there is no mathematically rigorous model that can explain how inflation
affects insurance loss payments.

Reinsurance: Two aspects of this item may be considered. One is the default rate of the
reinsurers. A default occurrence can be modeled as a Poisson process. Secondly, we can consider different
reinsurance strategies, such as excess versus quota-share, and their effects on the balance sheet.

Catastrophes: 1f the insurer has much property exposures, we have to consider this aspect. An
existing software package can be incorporated into this model.

Varying payment patterns: For the same line of business, the payment patterns for the different
accident years may vary. We analyze this situation in our loss-reserving papers. For this study, we
simplify, and elect not to account for the varying pattems.

SAP/GAAP bases: The model can be used in either basis. In the latter, unrealized capital gains,
deferred acquisition costs, etc. have to be considered.

10. CONCLUSION

We have presented a dynamic financial analysis with two key ingredients: stochastic modeling of
the individual operations and the error correlation of the operations in concert. One of its strengths lies in
its use of the set of governing equations. This set can be contracted or expanded, depending on whether the
actuary wants a simpler or more extensive analysis.

A user of dynamic financial analysis can evaluate the desirability of a strategy over another on
several criteria: stability, profitability, and growth, among others. For stability, he should determine that
the variability of the resuits and the probability of ruin are kept to acceptably low levels. For profitability,
he should look at the overall income, which in our simplified example is:

(10.)  EP(r)+1(r) - IL(t) - PE(t) - PD(r).

In our example, we assume built-in growth. But we can certainly model it as a function of other variables,
such as equation (3.2).

We note that the three aforementioned criteria are in many ways conflicting. But with dynamic
financial analysis, the user has a better idea of where the best compromise lies, given the objectives and
constraints of the company.
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IMPLICATIONS OF REINSURANCE AND RESERVES ON RISK OF
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SEDGWICK RE INSURANCE STRATEGY, INC.

ABSTRACT
DFA makes possible a greater integration of asset management with underwrit-

ing management. This paper looks at how investment risk and reinsurance can
affect the overall risk to the company, and how the two can be managed simulta-
neously. A significant underwriting variable is the risk of loss development, and
models of the development risk are presented, with some methodology for de-
termining which one is most appropriate given the data at hand. Term-structure

models are key to asset risk modeling, and a test of these models is proposed.
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IMPLICATIONS OF REINSURANCE AND RESERVES ON RISK OF
INVESTMENT ASSET ALLOCATION

ASSET-LIABILITY MANAGEMENT
Property- liability insurers have traditionally managed investment and under-

writing functions separately, except for some forays into duration matching and
perhaps to set goals for their investment risk that recognize that they do have
some underwriting exposure. Dynamic Financial Analysis (DFA), by jointly
modeling asset and liability risks, provides a means to more closely integrate the
management of investment and underwriting risk, and thereby directly manage
the total risk of bottom line results. This paper will focus on modeling GAAP
pre-tax surplus change, which includes the effect of unrealized gains and losses,

but any income statement or balance sheet item could be modeled similarly.

The principal risk elements to pre-tax surplus change are asset risk, reserve de-
velopment, and current year underwriting results. These each have separate
modaules in the model described below, but some common economic elements,

such as inflation and interest rates, feed all the modules.

Looking at assets alone, higher yielding assets generally bear more risk of ad-
verse deviation, with short-term treasury securities usually regarded as having
the least risk and least expected return. However adding liabilities - even fixed
liabilities - to this picture changes the risk profile. If liabilities are of medium
term, then holding short-term assets could be of higher risk, as interest rates may
decrease and generate less than enough investment income to cover the liabili-
ties. Long-term investment also increases in risk in this case, as interest rates
could go up, requiring liquidation of depressed assets to meet the liabilities.
Long-term investments may still have higher expected returns than medium

term, but the insurer with medium-term liabilities will be exposed to more risk
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than the asset-only investor for using those instruments. On the other hand, me-
dium-term assets could be carried at a greater reduction in risk than for the usual
investor in this case. This is the rationale for duration matching. Uncertain li-
abilities and payout timing complicates the matching process, and can render
perfect matching impossible. Simulation of loss payment requirements against
asset fluctuations can be used to estimate the risk of different investment strate-

gies in this case.

But the real world keeps intruding: if a company with medium or long-term li-
abilities grows just with inflation, it tends to have positive cash flow. If positive
cash flow were a certainty, assets would never have to be liquidated to pay li-
abilities; the risk-return situation reverts back to the asset-only situation. Add to
this accounting for bonds at amortized values and long-term investments sud-
denly become low-risk high-return opportunities. In this paper bonds will be
evaluated at market, which records more risk for long-term bonds, but the same

approach could work with amortized costs ~ with different results expected.

It is when cash flow is also risky that the DFA approach to asset/liability man-
agement really shows its merits. Without the shield of reliable positive cash
flows, the uncertainty about interest rates and loss payout requirements are back,
complicated by the fact that cash flows will often but not always be positive. All
of these elements can be simulated simultaneously to quantify their interactions.
This would allow the measurement of the effect of different reinsurance strate-
gies, through their impacts on cash flow, on the combined asset/ liability risk. In-
flation can affect both asset values, through the interest rates, as well as premium
volume and loss payments, and so its impact is complex. Reserves may be infla-
tion sensitive as well, which would add yet another impact on the surplus
change. All of these effects can be captured using a DFA approach to asset-

liability management.
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MODELING ISSUES

SCENARIOS AND PROBABILITY

Prior to DFA modeling, risk was measured by scenario testing. A few scenarios
were selected and the financial outcomes under those scenarios were computed.
This enabled management to have some confidence that their strategies would
bear up under various sorts of adverse developments. It did not, however, allow
for an assessment of the probability of achieving various earnings targets. With-
out knowing the probabilities of the various scenarios arising, management
could have been sacrificing overall profitability to guard against some exceed-

ingly rare eventualities.

DFA can do more than merely increase the number of scenarios tested. With
good models of the underlying processes it can generate a set of scenarios that in
some sense reflects the probability of occurrence of the various outcomes. There
are of course issues of how well the model represents the processes being mod-
eled - there is both art and science to modeling. The criterion to which a model
should be judged is not its ability to generate a wide variety of scenarios, but

rather its ability to generate scenarios according to their likelihood of occurrence.

ASSET MODELS

The asset modeling approach adopted here is to first generate a series of treasury
yield curves using diffusion models. This is detailed in Appendix 1. Many other
economic variables, such as the inflation rate and security prices, have histori-
cally correlated to the current and past yield curves, so these variables can be
modeled by regression and simulated from the regression models and the simu-
lated yield curves. This builds in the correlations among these variables with ap-

propriate levels of random fluctuation.
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A portfolio of assets and liabilities is subject to risk from complex changes to the
shape of the yield curve - not just simple upward and downward movements.
Thus a yield curve model has to be able to generate curves of different shapes,
and in accordance with the probability that they might arise. In Appendix 1 we
introduce measures of yield curve shapes and compare some yield curve models
and historical data as to the distribution of the shape of the yield curve condi-
tional on the short term rate. It is shown there that some yield curve models, al-
though they can generate yield curves of different shapes, tend to generate only
very restricted shapes of yield curves for any given short-term rate. This is not
consistent with historical data, and so those models could not be expected to

produce scenarios in accord with occurrence probabilities.

RESERVE DEVELOPMENT MODELS

Many different assumptions can be made about the processes that generate loss
development. In Appendix 2 a classification scheme is outlined that groups re-
serve development processes into 64 different classes. This is based on answering
6 yes-no questions about the development process. Empirical methods of an-
swering these questions based on triangulated data are also discussed. Once a
process is identified that plausibly could have generated the loss triangle in
question, this process can be used to simulate scenarios of future development.
Doing this study has implications for loss reserving as well, as each process of
generating loss emergence implies a reserving methodology. The implied meth-
odology is essentially the one that provides the best estimates of the parameters

of the process that is generating the development, and is explored in Appendix 2.

In the examples below it is assumed that this study has been completed, and only
two of these classes of processes are illustrated. The first starts by generating ul-
timate losses, and then uses random draws around expected percentages of

payment to generate the paid losses at each age. This is essentially the process
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used by Stanard (1985) to testing development methods through loss simulation.
It turns out that a parameterized form of the Bornheutter-Ferguson method is

optimal for this process.

The second process is similar, but the paid losses at each age are then adjusted
up or down by the difference between actual and expected reserve inflation. In
this case the paid losses in each year will depend on the inflation for the year,
and the final ultimate losses will end up different from the initial ultimate origi-
nally drawn. That sounds like a more realistic process for the generation of actual
loss histories, but empirical tests of loss development do not always identify an
effect of post-event inflation. If losses are sensitive to inflation after the loss date,
the risks to holding a given set of assets will be different from what they would
be otherwise. The optimal reserving method in this case involves estimating the

impact of calendar-year inflation (i.e., diagonal trend) on the loss triangle.

Mack (1994) showed that the chain ladder is optimal for the process that gener-
ates each age’s emerged loss as a factor times the cumulative emerged-to-date for
the accident year, plus a random element. This process could be used to generate

losses in a DF A model, but it is not illustrated here.

UNDERWRITING RISK MODELS

Models of current year underwriting risk can be intricate, but are usually
straightforward. The approach here is to simulate large individual losses from
models of frequency, severity, and parameter uncertainty and smaller losses in
the aggregate from a single aggregate distribution for each line. Then the differ-
ence between simulated and expected inflation is applied, followed by applica-

tion of the reinsurance program.
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SIMULATION ASSUMPTIONS

COMMON ASSUMPTIONS

A few simplifying assumptions will be made in all the simulations in order to
highlight the essential elements being tested. These are not intrinsic to the model,
however. First, it will be assumed that all cash flows take place at year-end or an
infinitesimal time later at the beginning of the next year. Thus premiums are all
written, expenses are paid out, and the remaining unearned premiums are in-
vested at this instant. A year later the payments to be made for losses for that
year and all previous accident years are paid out, any bonds mature, coupon
payments are made, etc. All losses are assumed to pay out over a 10-year period
with an average payout lag of three years after policy issuance, but the actual
payout pattern may be stochastic. The following investment strategies will be
tested: short term - everything is in one-year treasuries; medium term - all in
three-year treasuries; long term - all in ten-year treasuries; and stocks plus - 50%
in stocks and 50% in ten-year treasuries. Surplus is assumed to be one-fourth of

assets.

COMPANY RISK FACTORS

Several different hypothetical companies will be simulated to test how various
underwriting risks interact with the investment scenarios above. The first will be
a what-if test of surplus only - the reserves and other assets are ignored. The sec-
ond will assume the company has a fixed known payout pattern - i.e., no reserve
risk. The third will be a company with stochastic reserves - there is a distribution
around each payout - but with no inflation risk - the payouts have a random
element but not correlated with inflation. Fourthly, the payouts will be assumed
correlated with inflation. In this case the reserves will be adjusted at year-end by
the ratio of the actual to expected inflation factor. All these tests will be based on
a reinsurance program with a moderately high retention. The final test will re-

peat the fourth with a more conservative approach to reinsurance.
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A FEW DETAILS

For each set of company risk assumptions and each investment strategy, the dis-
tribution of year-end pre-tax GAAP surplus is simulated. Comparisons are made
of the mean, standard deviation, and 99t, 90th, 10% and 1st percentile of each
distribution. These percentiles correspond to the upper and lower 1-in-10 and 1-

in-100 probability of exceeding levels.

The strategies and risk profiles tested below are not completely realistic. They are
intended to illustrate the capabilities of DFA modeling in the asset-liability man-
agement arena, and the interaction of that with reserving and reinsurance. Be-
cause of this and for the sake of simplicity, the CIR (Cox, Ingersoll and Ross)
model from Appendix 1 is used for the examples, but with different parameters.
The initial short-term interest rate r is assumed to be 0.05, and its change is gen-

erated by the following process:

dr =0.2(0.06 - r)dt + 0.075r/2dz.

The CPI and Wilshire 5000 stock index are simulated as measures of inflation
and stock market performance. These are generated by regression on the yield
curve and lags of the yield curve. The regressions were done on quarterly data,
so for notational purposes the time periods will be expressed as quarters. Nota-
tion such as 3L40:12 will denote the third lag of the difference between the 40
quarter and 12 quarter interest rates, i.e., the 10 year rate less the 3 year rate seen
9 months ago. Without the colon 0L40 is‘just the 10 year rate for the current

quarter.
The inflation variable estimated here, denoted qcepi, is the ratio of the CPI for a

quarter to that for the previous quarter. The variables used in the fit along with

indications of their significance are shown in the table below. The data used is
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from the fourth quarter of 1959 to first quarter 1997, as this was available from

pointers within the CAS website.

Change in CPI
Variable Estimate  T-statistic  Significance Level
1:4Lqcepi 0.9994 1649.4 <.01%
0L40:4 -0.2668 -5.3349 <.01%
2L.40:20 0.8486 4.6411 <.01%
3L21 0.7182 3.4663 07%

The most important indicator of inflation is recent inflation. The variable used to
represent this, denoted 1:4Lqccpi, is the average of qccpi for the past four quar-
ters. The coincident variable, 0L40:4 has a negative coefficient. This may be due
to inflation influencing current interest rates, but with a greater impact on short
term than long term rates, thus flattening the yield curve. At lag 2 quarters, the
coefficient for 2L40:20 is positive and at lag 3 quarters that for 3L2:1 is positive.
These indicate a general tendency for a steeper yield curve to anticipate future
inflation. The r-squared, adjusted for degrees of freedom, is 65%. The standard
error of the estimate is 0.0051. Thus the typical predicted quarterly change is ac-
curate to about half a percentage point. The standard error is the standard devia-
tion of a residual normally distribution around the predicted point, which can be
used to draw the scenario actually simulated. The actual vs. fit is graphed in Ap-
pendix 3. The series can be seen to be fairly noisy, but the model does pick up the
general movements over time. The residuals are graphed on a normal scale.

Normality looks to be reasonably consistent with the observed residuals.
The stock market variable modeled, qcw5, is the ratio of the Wilshire 5000 index

W5 at the end of a quarter to that at the previous quarter end. In this case the CPI

percentage change variable qccpi was included in the regression as an explana-
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tory variable. This allows creation of scenarios that have simulated values of W5

that are probabilistically consistent with the CPl value for the scenario.

The fitted equation for quarter ending data 1971 through first quarter 1997 is
shown in the table below. In this regression only two variables were used, but
they are composite series. The first, denoted 0-4Lqccpi, is the increase in qeccpi
over the last year, i.e., the current rate less the rate a year earlier. This variable
has a negative coefficient, indicating that an increase in inflation is bad for equity
returns. The other variable is denoted qcrelsprd. It represents the previous quar-
ter’s increase in the long-term spread less this quarter’s increase in the short-term
spread. Here the long-term spread is the difference between 10-year and 5-year
rates, and the short-term spread is the difference between 6-month and 3-month
rates. The increases noted are the quarter-to-quarter arithmetic increases in these

spreads.

The coefficient on qcrelsprd is positive. This variable is positive if the increase in
the short-term spread is less than the previous increase in the long-term spread,
or if its decrease is greater. Either could suggest moderating inflation and interest

rates, and thus be positive for equity returns.

Quarterly Change in Wilshire 5000

Variable Estimate T-statistic  Significance Level
04Lqgccpi -2.7113 -3.1936 0.2%

qcrelsprd 11.869 45273 <.01%
constant 1.02316 145311 <.01%

The adjusted-r-squared is only 24% for this regression, indicating that the fit is
not particularly good. The residual standard deviation is .0721, which allows a

fairly wide deviation from the model. The fit is graphed in Appendix 3.
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RESULTS
The table below shows the mean surplus, the ratio of mean to standard devia-

tion, and several percentiles of the surplus for the case in which there are no

losses, just investment of surplus.

Surplus Only
Mean  Mean/SD 1% 10% 90% 99%
Short 3048 - 3048 ' 3048 3048 3049
Medium | 3053 453 2867 2967 3125 3227
Long 3071 195 2706 2861 3284 3407
Stocks+ | 3136 13.1 2577 2829 3422 3760

The ratio of mean to standard deviation is chosen as a risk measure for which
higher is better, as is the case with all the other figures in the table. This table is
consistent with the idea that riskier investments have higher expected return, but
could have more adverse developments as well. The one-year bonds have no risk

in this case, as they are held a year and then mature.

The next table shows the results of adding fixed liabilities to the mix.

Fixed Liabilities

Mean  Mean/SD 1% 10% 90% 99%
Short 3419 - 3419 3419 3419 3419
Medium | 3434 14.8 2798 3104 3705 3953
Long 3492 73 2031 2848 4094 4409
Stocks+ | 3581 4.6 1951 2656 4630 5282

Here the mean surplus is higher, due to the expected profits from the insurance
business. However, the risk is considerably greater, due to the larger investment
portfolio compared to the same surplus. This works at both the low and high end
of the probability distribution.
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Adding variability to the liabilities further increases the risk, as shown below.
Here the change in the extreme percentiles is greater for the short-term invest-
ments, showing that the increase in risk over fixed liabilities is greater when in-
vesting short.

Variable Liabilities ~No Inflation on Reserves

Mean  Mean/SD 1% 10% 90% 99%
Short 3422 21.0 3085 3220 3626 3821
Medium | 3443 114 2600 3024 3786 4096
Long 3470 6.8 2182 2801 4117 4784
Stocks+ | 3540 41 1762 2287 4661 6120

If reserves are subject to post-event inflation, risk increases more:

With Post-Event Inflation

Mean  Mean/SD 1% 10% 90% 99%
Short 3429 20.2 3021 3205 3635 3859
Medium | 3438 106 2589 2972 3816 4289
Long 3538 6.3 1899 2848 4242 4879
Stocks+ | 3569 39 1358 2294 4613 6197

Stocks may pose too much of a risk at the 1% level in this case, where they may
have been an acceptable risk without post-event inflation. This illustrates the
value of understanding the reserve-generating process when setting investment

strategy.

Finally, buying more reinsurance reduces the expected surplus but also the vari-

ability of surplus.

233



No Post-Event Inflation with More Reinsurance

Mean  Mean/SD 1% 10% 90% 99%
Short 3227 55.3 3271 3351 3500 3618
Medium | 3255 14.9 2884 3156 3749 3951
Long 3345 69 2197 2865 4202 4630
Stocks+ | 3473 4.4 1773 2564 4909 5642

For this company, buying more reinsurance with long-term investments has
lower expected return and more downside risk than buying less reinsurance
with medium term investments. This strategy would give up considerable up-

side potential, however.

CONCLUSION
The risks to the various investment strategies that an insurer may follow will

change depending on underwriting risk and reserve development risk. To quan-
tify this risk the process generating reserve development needs to be identified.
Once that is done, the trade-offs between different investment strategies and dif-
ferent underwriting strategies - including alternative reinsurance programs - can

be quantified by dynamic financial analysis.
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APPENDIX 1 — SIMULATING ASSET PERFORMANCE

Most asset classes and many economic series have been found to correlate to the
treasury yield curve. Realistic simulation of the yield curve is an involved un-
dertaking, and a subject of ongoing research among academics and all sorts of
financial practitioners. If any researchers have gotten this absolutely right,
they're keeping it a secret, and probably getting wealthy. Some of the progress in
this area is discussed below, along with some proposed tests of yield curve

simulation methods for DFA modeling,.

Once the yield curves have been generated, the other assets and economic values
can be simulated by regressions against the yield curve and lags of the yield
curve ( and perhaps against the other economic variables already simulated).

In each case, a random draw from the error term of the distribution should be
added to the regression estimate in order to keep the correlations from being per-

fect (unless they happen to be, which is rare).

A good deal of the work in yield-curve simulation is done for the purpose of
pricing or evaluating the pricing of interest-rate options. For this purpose it is
important that the model captures the current yield curve and its short-term dy-
namics as precisely as possible. This would be important to insurers who are ac-
tively trading bond options. However, the usual emphasis in DFA modeling is a
little different. The risks inherent in different investment strategies over a longer
time frame are more of a concern. A wide variety of yield curves should be pro-
duced to test this, but the model producing the widest variety is not necessarily
the most useful - the different yield curves should be produced in relative pro-
portion to their probability of occurring. It would be nice if the short-term fore-
casts were very close to the current curve, but this is less important for DFA than

it is for option trading.

235



Historical data on the distribution of yield curves can be used to test the reason-
ability of the distribution of curves being produced by any given model. How-
ever, it is not reasonable to expect that the probability of yield curves in a small
given range showing up in the next two or three years is the same as their his-
torical appearance. Some recognition needs to be given to the current situation
and the speed at which changes in the curve tend to occur. Care also needs to be
exercised in the selection of the historical period to which comparisons are to be
made. The years 1979-81 exhibited dramatic changes in the yield curve, and the
analyst needs to consider how prominent these years will be in the history se-
lected. It seems reasonable that using a period beginning in the 1950's will give

this unusual phase due recognition without over-emphasizing it.

The following are proposed as general criteria that a model of the yield curve

should meet:

¢ It should closely approximate the current yield curve.

o It should produce patterns of changes in the short-term rate that match those
produced historically.

o Over longer simulations, the ultimate distributions of yield curve shapes it

produces, given any short-term rate, should match historical results.

This last criterion looks at the contingent distributions of yield curve shapes
given the short-term rate. Thus it allows for the possibility that the distribution of
short-term rates simulated even after several years will not match the diversity of
historical rates. But it does require that for any given short-term rate the distri-
bution of yield curves should be as varied as seen historically for that short-term
rate. It could be argued that somewhat less variability would be appropriate, and

this may be so. How much less would be a matter of judgment, but too little
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variation in this conditional distribution would seem ill-advised when generat-

ing scenarios to test investment strategies against.

To measure the distribution of yield curve shapes, some shape descriptors are
needed. The ones used here are based on differences of interest rates of different
maturities. The first measures are just the successive differences in yield rates for
3-month, 1-year, 3-year, and 10-year instruments. Then the differences in these
differences are taken, and finally the differences of those second differences. The
first differences quantify the steepness of different parts of the yield curve. These
would be zero for a flat curve. The second differences quantify the rate of change
in the steepness as you move up the curve. These would be zero for a linearly
rising curve. The third difference would be zero for a quadratic curve, and so

quantifies the degree to which the curve is not quadratic.

These shape measures will be reviewed historically as a function of the 3-month
rate. The patterns for these six measures are graphed below along with the re-
gression lines against the 3-month rate. It is interesting to note that the 1-year /
3-month yield spread appears to be independent of the 3-month rate, but the
longer-term spreads appear to decline slightly with higher 3-month rates. At
least in the US economy, when the short-term rates are high, the long-term rates
tend to show less response, perhaps because investors expect the short-term rates
to come down, and so the yield curve flattens out or even shows reversals (i.e,
short-term rates higher than long-term). It might be argued that the slopes of the
regression lines are small enough compared to the noise that they should not be
considered significant. It turns out, however, that in testing models against this
data the non-significance of the slope is a most significant issue - most models

tend to produce more steeply falling slopes than the data shows.

237



1yr-3

3yr-1

10yr-3

Historical 1 Year - 3 Moncth N

2.50% 7
200%
1.50%

1.00%

0.50%

0.00%
0.00%%6 2.00% 4.00% 6.00%

0.50% . -

* . *
§00% 10.00% 12.00% 14.00% 16.00% 18.00%

-1.00%%

-1.50%
3mo

[ @ Hisorica mm—in s gasoric |

Histeriom! B Yesr . 1 Year

200%

1.50% 1

1.00%

0.50%

0.00% 7
0.00%
D.50%

-1.00%

-1.50%
3 mo

| @ iosworicnl mm—=incer ghisroricd)

Historical 10 Yeor - 3 Year

2.50% q

2.00%

1.50%

1.00%

0.50%

18.00%

0.00%
0.00% 2.00% Q.&w‘. A4

-0.50% - :

-1.00%

r

-1.50%

238




(3yr-iy0)-(1yr-3mo

-0.50%

-1.50%

1.50%

1.00% 4

0.50%

0.00% -
0.0

-1.00% -

D%

-2.00% -

Geyr-dyr)-(3yr-ipw

ThirdDifforsnce

Historical Second Difference - Short

.
e im e m o e
12,00% 14,00 16.00% 18.00%
- - .. .
L4 hd hd
-
. L4
L
.
Jmo
® Historical %] inear (Historical
Historica! Second Difference -Long
.
-
-
12.00% 1e.00% 10.00% 18.00%
. -
L4 L4

3me

(o Historicel smma {H istoricsl

Historicel Third Difference

239



YiELD CURVE MODELS

Typically the short-term interest rate, denoted as r, is modeled directly, and
longer-term rates are inferred from the implied behavior of r, along with market
considerations. The modeling of r is usually done as a continuously fluctuating
diffusion process. This is based on Brownian motion. A continuously moving
process is hard to track, and processes with random elements do not follow a
simple formula. These processes are usually described by the probability distri-
bution for their outcomes at any point in time. A Brownian motion has a simple
definition for the probabilities of outcomes: the change from the current position
between time zero and time t is normally distributed with mean zero and vari-
ance o2t for some o. If r is the short-term interest rate and it follows such a
Brownian motion, it is customary to express the instantaneous change in r by dr
= odz. Here z represents a Brownian motion with 6=1. If r also has a trend of bt

during time t, this could be expressed as dr = bdt + cdz.

Cox, Ingersoll and Ross (1985) provided a model of the motion of the short-term
rate that has become widely studied. In the CIR model r follows the following

process:

dr = a(b - r)dt + srl/2dz.

Here b is the level of mean reversion. If r is above b, then the trend component is
negative, and if r is below b it is positive. Thus the trend is always towards b.
The speed of mean reversion is expressed by a, which is sometimes called the
half-life of the reversion. Note that the volatility depends on r itself, so higher
short-term rates would be associated with higher volatility. The period 1979-81
had high rates and high volatility, and studies that emphasize this period have
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found that the power of Y2 on r is too low. It appears to be about right in longer

studies however.

Nonetheless, the CIR model fails to capture other elements of the movement of
short-term rates. There have been periods of high volatility with low interest
rates, and the rates sometimes seem to gravitate towards a temporary mean fora
while, then shift and go towards some other. One way to account for these fea-
tures is to let the volatility parameter s and the reversion mean b both be sto-

chastic themselves.

Andersen and Lund (Working Paper No. 214, Northwestern University Depart-

ment of Finance) give one such model:

dr = a(b- r)dt + srkdz, k>0

din s2=¢(p - In s2)dt + vdzz

db = j(q - b)dt + wbl/2dz;
Here there are three standard Brownian motion processes, 21, z2, and z3. The rate
r moves subject to different processes at different times. It always follows a
mean-reverting process, with mean b. But that mean itself changes over time,
following a mean-reverting process defined by k, q, and w. The volatility pa-
rameter s2 also varies over time via a mean reverting geometric Brownian motion
process {i.e., Brownian motion on the log). In total there are eight parameters: a,

¢ j, k p, q, v, and w and three varying factors r, b, and s.

Models of the short-term rate can lead to models of the whole yield curve. This is
done by modeling the prices of zero-coupon bonds with different maturities all
paying $1. If P(T) is the current price of such a bond for maturity T, the implied
continuously compounding interest rate can be shown to be -In[P(T)]/T. P(T) it-

self is calculated as the risk adjusted discounted expected value of $1. Here “dis-
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counted” means continuously discounted by the evolving interest rate r, and
“expected value” means that the mean discount is calculated over all possible
paths for r. This can be expressed as:

P(T) = E'[exp(-Jredt)]
Where 1t is the interest rate at time t, the integral is over the time period 0to T,
and E’ is the risk-adjusted expected value of the results of all such discounting

processes.

If E were not risk adjusted, P(T) could be estimated by many instances of simu-
lating the r process to time T over small increments and then discounting back
over each increment. The risk-adjusted expected value is obtained by using a
risk-adjusted process to simulate the r's. This process is like the original process
except that it tends to produce higher r's over time. These higher rates provide a
reward for bearing the longer-term interest rate risk. Increasing the trend portion
of the diffusion process produces the adjusted process. In the CIR model it is in-
creased by Ar, where A is called “the market price of risk.” Andersen and Lund

add Ars, and also add a similar risk element to the b diffusion.

However, in the case of the CIR model a closed form solution exists which sim-
plifies the calculation. The yield rate for a zero coupon bond of maturity T is

given by Y(T) = A(T) + rB(T) where:

A(T) = -2(ab/s*T)InC(T) - 2aby/s?

B(T) =[1-C(D1/yT

C(T) = (1 + xye - xy)?

x=[(a-A)2 + 257]1/2

y=(a-a+1/x)/2

Note that neither A nor B is a function of r, 50 Y is a linear function of r (but not

of T of course). Thus for the CIR model, all the yield curve shape measures de-
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fined above are linear functions of r, and as the three-month rate is as well, the -
shape measures are strictly linear in the three-month rate. This is in contrast to
the historical data, which shows a dispersion of the shape measures around a
perhaps linear relationship. The graph below as an example shows the historical
and CIR implied 1 year less 3 month spread as a function of the 3-month rate,

along with the historical trend line.

The parameters used here for the CIR model, from Chan etal. (1992) are: a=.2339;
b=.0808; s=.0854, with A set to .03. Different parameter values could possibly get
the slope closer to that of the historical data, but the dispersion around the line
cannot be achieved with this model. Experimentation with different parameter
values suggests that even getting the slopes to match historical for all three of the

first-difference measures may be difficult as well.
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Another potential problem with the CIR model is that the very long-term rates

do not vary with r at all, but it's not clear how long the rates have to be for this.
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The Andersen-Lund model does provide more dispersion around the trend line,

and also has about the right slope for the 3-month to 1-year spread, as the graph

above shows. It does not do as well with the 3-year to 10-year spread in either
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slope or dispersion, as shown here.
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One approach that seems to give a degree of improvement is to let the market
price of risk vary as well, through its own stochastic process. This would allow
the same short-rate process to generate different yield curves at different times
due to different market situations. This approach is capable of fixing the slope

and dispersion problem for the long spread, as shown below.

Historical vs A& L (Variable Lambda)
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Allowing stochastic market price of risk may improve the CIR model’s perform-
ance on these tests as well, but it’s not clear how to do this and stiil maintain a

closed-form yield curve, which is the main advantage of CIR.

The table below summarizes some of the comparisons of model and historical
results discussed above. For each of the models and each of the yield spreads, the
linear relationship between the yield spread and the three-month rate is summa-
rized by three statistics: the slope of the regression line of the spread on the

three-month rate, the value on that line for r = .06, and the standard deviation of

245



the points around the line. The value at r = .06 was compared instead of the in-
tercept of the line to show how the model matched historical values for a typical

interest rate.

The values were based on simulations of rates about three years beyond the ini-
tial values. Thus perhaps less variability of the residuals might be justifiable than
in the historical data, which were quarterly values from 1959 through 1997. The
whole variety of yield curve shapes from this nearly forty-year period may not
be likely in just three years. A longer simulation period would thus give a better
test of these models, and a somewhat lower residual standard deviation than

historical may be acceptable for the test actually performed.

lyr-3mo Historical CIR ALFixed AL Variable
Slope 1.17% -7.31% 2.49% 1.66%
Predicted @ 6% 0.48% 0.23% 0.44% 043%
Std Dev of Residuals 0.35% 0.00% 0.25% 0.43%
dyr-1yr
Slope -841%  -16.58% -5.68% -2.57%
Predicted @ 6% 0.42% 0.49% 0.39% 0.40%
Std Dev of Residuals 0.52% 0.00% 0.12% 0.36%
10yr-3yr
Slope 817% -34.23%  -29.22% -9.86%
Predicted @ 6% 0.35% 0.89% 0.29% 0.32%
Std Dev of Residuals 0.48% 0.00% 0.12% 0.50%

All the models tested had a lower residual standard deviation for the 3-year to 1-

year spread than seen historically, but not unreasonably so for the variable price
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of risk model. The slopes of the 10-year to 3-year spread were all'steeper than

historical, but again the variable model was best.

This methodology gives an indication of a method of testing interest rate gen-
erators. There are quite a few of these in the finance literature, so none of the
generators tested above can be considered optimal. In addition some refinement
of the testing methodology may be able to tighten the conclusions discussed

above.
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APPENDIX 2 - SIMULATING LOSS DEVELOPMENT

The principal task in simulating a company’s loss development is identifying the
stochastic process that generates that development. Testing different processes
against the historical development data is a way to approach this task. The sec-
ond task is to model how the company’s carried reserves respond to the loss
emergence scenarios generated. One assumption for this may be that the com-
pany knows the process that produces its development, and uses a reserving
methodology appropriate for that process. The simulation would proceed by
generating loss emergence scenarios stochastically and then applying the se-
lected reserving method to produce the carried reserves for each scenario. On the
other hand, if the company has a fixed reserve methodology that it is going to
use no matter what, then that methodology can be used to produce the carried

reserves from the simulated emergence.

For this discussion, “emergence” could either mean case emergence or paid
emergence, or both. The main concern here is simulating the emerging losses by
period. This may or may not involve simulating the ultimate losses. For instance,
one way to generate the losses to emerge in a peried is to multiply simulated ul-
timate losses times a factor drawn from a percentage emerged distribution. This
is appropriate when the process producing the losses for each period works by
taking a randomized percent of ultimate losses. This method might involve some
quite complicated methods of simulating ultimates, but all those that take period
emergence as a percentage of ultimate will be considered to be using the same
type of emergence pattern. Several other emergence patterns will be considered
below, and the reserving methods appropriate for each will be discussed. Then
methods for identifying the emergence patterns from the data triangles will be

explored.
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TYPES OF EMERGENCE PATTERNS
Six characteristics of emergence patterns will be considered here. Each will be

treated as a binary choice, thus producing 64 types of emergence patterns. How-
ever there will be sub-categories within the 64, as not all of the choices are actu-

ally binary. The six basic choices for defining loss emergence processes are:

Do the losses that emerge in a period depend on the losses already emerged?
Mack has shown that the chain ladder method assumes an emergence pattern in
which the emerged loss for a period is a constant factor times the previous
emerged, plus a random disturbance. Other methods, however, might apply
factors only to ultimate losses, and then add a random disturbance. The latter is
the emergence pattern assumed by the Bornheutter-Ferguson (BF) method, for
example.

Is all loss emergence proportional? Both the chain ladder and BF methods use
factors to predict emergence, and so are based on processes where emergence is
proportional to something - either ultimate losses in the BF case or previously
emerged in the chain ladder. However, the expected loss emergence for a period
could be constant - not proportional to anything. Or it could be a factor times
something plus a constant. If this is the emergence pattern used, then the re-
serving methodology should also incorporate additive elements.

Is emergence independent of calendar year events? Losses to emerge in a pe-
riod may depend on the inflation rate for the period. This is an example of a cal-
endar year or diagonal effect. Another example is strong or weak development
due to a change in claim handling methods. Thus this is not a purely binary
question - if there are diagonal effects there will be sub-choices relating to what
type of effect is included. The Taylor separation method is an example of a de-
velopment method that recognizes calendar year inflation. In many cases of di-
agonal effects, the ultimate losses will not be determined until all the develop-

ment periods have been simulated.
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Are the parameters stable? For instance a parameter might be a loss develop-
ment factor. A stable factor could lead to variable losses due to randomness of
the development pattern, but the factor itself would remain constant. The alter-
native is that the factor changes over time. There are sub-cases of this, depending
on how they change.

Are the disturbance terms generated from a normal distribution? The typical
alternative is lognormal, but the possibilities are endless. Clearly the loss devel-
opment method will need to respond to this choice.

Are the disturbance terms homoskedastic? Some regression methods of devel-
opment assume that the random disturbances all have the same variance, at least
by development age. Link ratios are often calculated as the ratio of losses at age
j+1 divided by losses at age j, which assumes that the variance of the disturbance
term is proportional to the mean loss emerged. Another alternative is for the
standard deviation to be proportional to the mean. The variance assumption
used to generate the emerging losses can be employed in the loss reserving proc-
ess as well.

Notation

Losses for accident year w evaluated at the end of that year will be denoted as
being as of age 0, and the first accident year in the triangle is year 0. The notation

below will be used to specify the models.

cwa: cumulative loss from accident year w as of age d

Cwe: ultimate loss from accident year w

qw.d:  incremental loss for accident year w to emerge in period d
fa: factor used in emergence for age d

hw: factor (dollar amount) used in emergence for year w

gw+a: factor used in emergence for calendar year w+d

as:  additive term used in emergence for age d
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QUESTION 1
The stochastic processes specified by answering the six questions above can be
numbered in binary by considering yes=1 and no=0. Then process 111111 (all an-

swers yes) can be specified as follows:
qw.d= Cw,d-1fd + €wd )

where e.q is normally distributed with mean zero. Here f4 is a development
factor applied to the cumulative losses simulated at age d-1. A starting value for
the accident year is needed which could be called cw,1. For each d it might be rea-
sonable to assume that ew,q has a different variance. Note that for this process,
ultimate losses are generated only as the sum of the separately generated

emerged losses for each age.

Mack has shown that for process 111111 the chain ladder is the optimal reserve
estimation method. The factors fa would be estimated by a no-constant linear re-
gression. In process 111110 (heteroskedastic) the chain ladder would also be op-
timal, but the method of estimating the factors would be different. Essentially
these would use weighted least squares for the estimation, where the weights are
inversely proportional to the variance of ew.q. If the variances are proportional to
Cw,d1, the resulting factor is the ratio of the sum of losses from the two relevant

columns of the development triangle.
In all the processes 1111xx Mack showed that some form of the chain ladder is
the best linear estimate, but when the disturbance term is not normal, linear es-

timation is not necessarily optimal.

Processes of type 0111xx do not generate emerged losses from those previously

emerged. A simple example of this type of process is:
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qw.d= hwfd + ewd (2)

Here hw can be interpreted as the ultimate losses for year w, with the factors f4
summing to unity. For this process, reserving would require estimation of the f’s
and h’s. I call this method of reserving the parameterized BF, as Bornheutter and
Ferguson estimated emergence as a percentage of expected ultimate. The method
of estimating the parameters would depend on the distribution of the distur-
bance term ey 4. If it is normal and homoskedastic, a regression method can be
used iteratively by fixing the f's and regressing for the h's, then taking those h's
to find the best f’s, etc. until both f's and h’s converge. If heteroskedastic,
weighted regressions would be needed. If a lognormal disturbance is indicated,

the parameters could be estimated in logs, which is a linear model in the logs.

QUESTION 2
Additive terms can be added to either of the above processes. Thus an example

of a 0011xx process would be:
Qwd= ad + hwfd + ew.a 3)
If the f's are zero, this would be a purely additive model. A test for additive ef-

fects can be made by adding them to the estimation and seeing if significantly

better fits result.

QUESTION 3

Diagonal effects can be added similarly. A 0001xx model might be:

Qwd=ad + hwfdgw+d + ew,d (4)
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Again this can be tested by goodness of fit. There may be too many parameters
here. It will usually be possible to reasonably simulate losses without using so
many distinct parameters. Specifying relationships among the parameters can
lead to reduced parameter versions of these processes. For instance, some of the
parameters might be set equal, such as hw=h for all w. Note that the 0111xx proc-
ess Qw,d= hfd + ew,q is the same as the 0011xx process qw.d= ad + ew, as ad4 can be
set to hfq. The resulting reserve estimation method is an additive version of the

chain ladder, and is sometimes called the Cape Cod method.

Another way to reduce the number of parameters is to set up trend relationships.
For example, constant calendar year inflation can be specified by setting
gw+da=(1+j)**d. Similar trend relationships can be specified among the h’s and f's.
If that is too much parameter reduction to adequately model a given data trian-
gle, a trend can be established for a few periods and then some other trend can

be used in other periods.

QUESTION 4

Rather than trending, the parameters in the loss emergence models could evolve
according to some more general stochastic process. This could be a smooth proc-
ess or one with jumps. The state-space model is often used to describe parameter
variability. This model assumes that observations fluctuate around an expected
value that itself changes over time as its parameters evolve. The degree of ran-
dom fluctuation is measured by the variance of the observations around the
mean, and the movement of the parameters is quantified by their variances over
time. The interplay of these two variances determines the weights to apply, as in

credibility theory.

To be more concrete, a formal definition of the model follows where the pa-

rameter is the 2nd to 3rd development factor. Let:
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Bi=2nd to 3rd factor for ith accident year
yi=3rd report losses for ith accident year

xi=2nd report losses for ith accident year

The model is then:

yi=xiPitei. 6]
The error term g; is assumed to have mean 0 and variance i
Bi=Pi-1t8i. (6)

The fluctuation §; is assumed to have mean 0 and variance vi2, and to be inde-

pendent of the g's.

In this general case the variances could change with each period i. Usually some
simplification is applied, such as constant variances over time, or constant with

occasional jumps in the parameter - i.e., occasional large vi's.

If this model is adopted for simulating loss emergence, the estimation of the fac-

tors from the data can be done using the Kalman filter.

QUESTIONS 5 AND 6

The error structure can be studied and usually reasonably understood from the
data triangles. The loss estimation method associated with a given error structure
will be assumed to be maximum likelihood estimation from that structure. Thus
for normal distributions this is weighted least squares, where the weights are the

inverses of the variances. For lognormal this is the same, but-in logs.

IDENTIFYING EMERGENCE PATTERNS
Given a data triangle, what is the process that is generating it? This is useful to

know for loss reserving purposes, as then reserve estimation is reduced to esti-
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mation of the parameters of the generating process. It is even more critical for
simulation of company results, as the whole process is needed for simulation

purposes.

Identifying emergence patterns can be approached by fitting different ones to the
data and then testing the significance of the parameters and the goodness of fit.
As more parameters often appear to give a better fit, but reduce predictive value,
a method of penalizing over-parameterization is needed when comparing com-
peting models. The method proposed here is to compare models based on sum of
squared residuals divided by the square of the degrees of freedom, i.e., divided

by the square of observations less parameters.

This measure gives impetus to trying to reduce the number of parameters in a

given model, e.g., by setting some parameters the same or by identifying a trend
in the parameters. This seems to be a legitimate exercise in the effort of identify-
ing emergence patterns, as there are likely to be some regularities in the pattern,

and simplifying the model is a way to uncover them.

Fitting the above models is a straightforward exercise, but reducing the number
of parameters may be more of an art than a science. Two approaches may make
sense: top down, where the full model is fit and then regularities among the pa-
rameters sought; and bottom up, where the most simplified version is estimated,

and then parameters added to compensate for areas of poor fit.

To illustrate this approach, the data triangle of reinsurance loss data first intro-

duced by Thomas Mack will be the basis of model estimation.
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QUESTIONS | & 2 — FACTORS AND CONSTANT TERMS

Table 1 shows incremental incurred losses by age for some excess casualty rein-
surance. As an initial step, the statistical significance of link ratios and additive
constants was tested by regressing incremental losses against the previous cu-
mulative losses. In the regression the constant is denoted by a and the factor by
b. This provides a test of question 1 - dependence of emergence on previous
emerged, and also one of question 2 - proportional emergence. Here they are
being tested by looking at whether or not the factors and the constants are sig-

nificantly different from zero, rather than by any goodness-of-fit measure.

Table 1 - Incremental Incurred Losses
0 1 2 3 4 5 6 7 8 9
5012 3257 2438 898 1734 2642 1828 599 54 172
106 4179 1111 5270 3116 1817 -103 673 535
3410 5582 4881 2268 2594 3479 649 603
5655 5900 4211 5500 2159 2658 984
1092 8473 6271 6333 3786 225
1513 4932 5257 1233 2917
557 3463 6926 1368
1351 5596 6165
3133 2262
2063

Table 2 - Statistical Significance of Link Ratlos and Constants
Otol [1t02 (2¢03 [Jto4 [4t05 |5t0é 607 (7to8
“a’ [5113 |4311 (1687 |2041 |4064 (620 |777 [3724
Sed a (1066 (2440 [3543 [1165 (2242 [2301 (145 |0
‘b”  |-0.109 [0.049 |0.131 [0.041 |-0.100 [0.011 |-0.008 |-0.197
std b [0.349 [0.309 |0.283 [0.071 [0.114 |0.11Z |0.008 |0

Table 2 shows the estimated parameters and their standard deviations. As can be

seen, the constants are usually statistically significant (parameter nearly double
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its standard deviation, or more), but the factors never are. The lack of signifi-
cance of the factors shows that the losses to emerge at any age d+1 are not pro-
portional to the cumulative losses through age d. The assumptions underlying
the chain ladder model are thus not met by this data. A constant amount emerg-

ing for each age usually appears to be a reasonable estimator, however.

Figure 1 illustrates this. A factor by itself would be a straight line through the
origin with slope equal to the development factor, whereas a constant would

give a horizontal line at the height of the constant.

Lag t vs, Lag O Losses
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Figure 1

Although emerged losses are not proportional to previous emerged, they could
be proportional to ultimate incurred. To test this, the parameterized BF model (2)
was fit to the triangle. As this is a non-linear model, fitting is a little more in-
volved. A method of fitting the parameters will be discussed, followed by an

analysis of the resulting fit.

To do the fitting, an iterative method can be used to minimize the sum of the

squared residuals, where the w,d residual is [qw,a-fshw]. Weighted least squares
could also be used if the variances of the residuals are not constant over the tri-
angle. For instance, the variances could be proportional to faPhwd, in which case

the regression weights would be 1/fdPh.A4.

257



A starting point for the f's or the h’s is needed to begin the iteration. While al-
most any reasonable values could be used, such as all f's equal to 1/n, conver-
gence will be faster with values likely to be in the ballpark of the final factors. A
natural starting point thus might be the implied f4’s from the chain ladder
method. For ages greater than 0, these are the incremental age-to-age factors di-
vided by the cumulative-to-ultimate factors. To get a starting value for age 0,
subtract the sum of the other factors from unity. Starting with these values for fq,
regressions were performed to find the hw’s that minimize the sum of squared
residuals (one regression for each w). These give the best h's for that initial set of
f’s. The standard linear regression formula for these h’s simplifies to:

hw = Tafaqw,a / Tafs? )
Even though that gives the best h’s for those s, another regression is needed to
find the best f’s for those h’s. For this step the usual regression formula gives:

fa= Ywhwqw,a / Xwhw? 8)
Now the h regression can be repeated with the new f’s, etc. This process contin-
ues until convergence occurs, i.e., until the f's and h’s no longer change with sub-
sequent iterations. Ten iterations were used in this case, but substantial onver-
gence occurred earlier. The first round of f's and h’s and those at convergence are
in Table 3. Note that the h's are not the final estimates of the ultimate losses, but
are used with the estimated factors to estimate future emergence. In this case, in
fact, h(0) is less than the emerged to date. A statistical package that includes non-

linear regression could ease the estimation.

Standard regression assumes each observation q has the same variance, which is
to say the variance is proportional to faphw3, with p=q=0. If p=g=1 the weighted
regression formulas become:

hu? = Ya[qw,d?/fa] / Zafa and

f¢? = Ywlqw.da?/hw] / Zwhw
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Table 3 - BF Parameters

rAged [} 1 2 3 4 s 3 7 8 9
fa 1% 0.106 (0.231 |0.209 [0.155 [0.117 |0.083 |0.038 [0.032 (0.018 ]0.011
fault ]0.162 [0.197 [0.204 [0.147 [0.115 [0.082 [0.037 [0.030 [0.015 |0.009
Yearw [0 1 2 3 4 5 3 7 8 9
he 1% [17401 [15729 (23942 |26365 (30390 [19813 [18592 [24154 [14639 (12733
hwult (15982 (16501 (23562 |272469 [31587 (20081 [19032 |25155 (13219 {19413

For comparison, the development factors from the chain ladder are shown in Ta-
ble 4. The incremental factors are the ratios of incremental to previous cumula-
tive. The ultimate ratios are cumulative to ultimate. Below them are the ratios of
these ratios, which represent the portion of ultimate losses to emerge in each pe-
riod. The zeroth period shown is unity less the sum of the other ratios. These

factors were the initial iteration for the f4's shown above.

Table 4 - Development Factors

Otol |[1t02 [2¢03 (3to4d |4to5 |5t0é (6 07 |708 [Beo 9
Incremental (1.22 |0.57 |0.26 (0.16 |[0.10 {0.04 (0.03 0.02 [0.01
0to9 [1¢0? (209 Jto9 (409 [5t09 |6 t09 (709 [Bto 9
Uldmate 6.17 |2.78 |(1.77 |1.41 1.21 1.10 [1.06 1.03 (1.01
0.162 0.197 |0.204 |0.147 {0.1t5 |0.082 |0.037 (0.030 [0.015 |0.009

Having now estimated the BF parameters, how can they be used to test what the

emergence pattern of the losses is?

A comparison of this fit to that from the chain ladder can be made by looking at
how well each method predicts the incremental losses for each age after the ini-
tial one. The sum of squared errors adjusted for number of parameters is the
comparison measure, where the parameter adjustment is made by dividing the

sum of squared errors by the square of [the number of observations less the
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number of parameters], as discussed earlier. Here there are 45 observations, as
only the predicted points count as observations. The adjusted sum of squared re-
siduals is 81,169 for the BF, and 157,902 for the chain ladder. This shows that the
emergence pattern for the BF (emergence proportional to ultimate) is much more
consistent with this data than is the chain ladder emergence pattern (emergence

proportional to previous emerged).

The Cape Cod (CC) method was also tried for this data. The iteration proceeded
similarly to that for the BF, but only a single h parameter was fit for all accident
years. Now:

h=Zwafaqu.a / Zwafa? %)
The estimated h is 22,001, and the final factors f are shown in Table 5. The ad-
justed sum of squared errors for this fit is 75,409. Since the CC is a special case of
the BF, the unadjusted fit is of course worse than that of the BF method, but with
fewer parameters in the CC, the adjustment makes them similar. This formula for

h is the same as the formula for h., except the sum is taken over all w.

Intermediate special cases could be fit similarly. If, for instance, a single factor
were sought to apply to just two accident years, the sum would be taken over

those years to estimate that factor, etc.

Table 5 - Factors in CC Method

[} 1 2 3 4 5 [ 7 8 9
0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008

This is a case where the BF has too many parameters for prediction purposes.

More parameters fit the data better, but use up information. The penalization in

the fit measure adjusts for this problem, and shows the CC to be a somewhat
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better model. Thus the data is consistent with random emergence around an ex-

pected value that is constant over the accident years.

The CC method would probably work even better for loss ratio triangles than for
loss triangles, as then a single target ultimate value makes more sense. Adjusting

loss ratios for trend and rate level could increase this homogeneity.

In addition, a purely additive development was tried, as suggested by the fact
that the constant terms were significant in the original chain fadder, even though
the factors were not. The development terms are shown in Table 6. These are just
the average loss emerged at each age. The adjusted sum of squared residuals is
75,409. This is much better than the chain ladder, which might be expected, as
the constant terms were significant in the original significance-test regressions
while the factors were not. The additive factors in Table 6 differ from those in
Table 2 because there is no multiplicative factor in Table 6.

Table 6 - Terms in Additive Chain Ladder

1 2 3 4 5 6 7 8 9
4849.3 4682.5 3267.1 2717.7 2164.2 839.5 625 2945 172

As discussed above, the additive chain ladder is the same as the Cape Cod
method, although it is parameterized differently. The exact same goodness of fit

is thus not surprising.

Finally, an intermediate BF-CC pattern was fit as an example of reduced pa-
rameter BF’s. In this case ages 1 and 2 are assumed to have the same factor, as are
ages 6 and 7 and ages 8 and 9. This reduces the number of f parameters from 9 to
6. The number of accident year parameters was also reduced: years 0 and 1 have
a single parameter, as do years 5 through 9. Year 2 has its own parameter, as

does year 4, but year 3 is the average of those two. Thus there are 4 accident year

261



parameters, and so 10 parameters in total. Any one of these can be set arbitrarily,
with the remainder adjusted by a factor, so there are really just 9. The selections
were based on consideration of which parameters were likely not to be signifi-

cantly different from each other.

The estimated factors are shown in Table 7. The accident year factor for the last 5
years was set to 20,000. The other factors were estimated by the same iterative
regression procedure as for the BF, but the factor constraints change the simpli-
fied regression formula. The adjusted sum of squared residuals is 52,360, which
makes it the best approach tried. This further supports the idea that claims
emerge as a percent of ultimate for this data. It also indicates that the various ac-
cident years and ages are not all at different levels, but that the CC is too much of
a simplification. The actual and fitted values from this, the chain ladder, and CC
are in Exhibit 1. The fitted values in Exhibit 1 were calculated as follows. For the
chain ladder, the factors from Table 4 were applied to the cumulative losses im-
plied from Table 1. For the CC the fitted values are just the terms in Table 6. For

the BF-CC they are the products of the appropriate f and h factors from Table 7.

Table 7 - BF-CC Parameters

Aged |0 1 2 3 4 5 é 7 8 9
fa . 0.230 |0.230 (0.160 |0.123 (0.086 |0.040 [0.040 ]0.017 (0.017
Year w |0 { 2 3 4 5 [ 7 8 9
L 14829 (14829 (20962 |258%5 (30828 |20000 |20000 (20000 |20000 (20000

Calendar Year Impacts - Testing Question 3

One type of calendar year impact is high or low diagonals in the loss triangle.
Mack suggested a high-low diagonal test which counts the number of high and
low factors on each diagonal, and tests whether or not that is likely to be due to
chance. Here another high-low test is proposed: use regression to see if any di-
agonal dummy variables are significant. An actuary will often have information

about changes in company operations that may have created a diagonal effect. If
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50, this information could lead to choices of modeling methods - e.g., whether to
assume the effect is permanent or temporary. The diagonal dummies can be used
to measure the effect in any case, but knowledge of company operations will

help determine how to use this effect. This is particularly so if the effect occurs in

the last few diagonals.
A diagonal in the loss development triangle is defined by w+d = constant. Sup-
pose for some given data triangle, the diagonal w+d=7 is found to be 10% higher

than normal. Then an adjusted BF estimate of a cell might be:

qw,a=1.1{ghw if w+d=7, and qw,a=fah. otherwise(10)

q’l % 2 4 The small sample triangle of incremental losses here will
10 be used as an example of how to set up diagonal dummies
in a chain ladder 2 |1 0 |0 [0 [0
model. The goal is to get a matrix of data in ?0 :; 8 8 (1) (1)
the form needed to do a multiple regression. 5 10 13 10 |1 0
9 10 |11 10 O {1
First the triangle (except the first column) is 4 |0 [0 18 0 1

strung out into a column vector. This is the dependent variable. Then columns
for the independent variables are added. The second column is the cumulative
losses at age O for the loss entries that are at age 1, and zero for the other loss en-
tries. The regression coefficient for this column would be the 0 to 1 cumulative-
to-incremental factor. The next two columns are the same for the1to2and 2to 3
factors. The last two columns are the diagonal dummies. They pick out the ele-
ments of the last two diagonals. The coefficients for these columns would be ad-

ditive adjustments for those diagonals, if significant.

This method of testing for diagonal effects is applicable to many of the emer-

gence models. In fact, if diagonal effects are found significant in chain ladder
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models, they probably are needed in the BF models of the same data, so good-
ness-of-fit tests should be done with those diagonal elements included. Some ex-

amples are given in Appendix 2.

Another popular modeling approach is to consider diagonal effects to be a meas-
ure of inflation (e.g., see Taylor 1977). In a payment triangle this would be a
natural interpretation, but a similar phenomenon could occur in an incurred tri-
angle. In this case the latest diagonal effects might be projected ahead as esti-
mates of future inflation. An understanding of what in company operations is

driving the diagonal effects would help address these issues.

As with the BF model, the parameters of the model with inflation effects, qw.a=
huwfagws+d + ew,q, can be estimated iteratively. With reasonable starting values, fix
two of the three sets of parameters, fit the third by least squares, and rotate until
convergence is reached. Alternatively, a non-linear search procedure could be
utilized. As an example of the simplest of these models, modeling quw.d as just
6756(0.7785)d gives an adjusted sum of squares of 57,527 for the reinsurance tri-
angle above. This is not the best fitting model, but is better than some, and has
only two parameters. Adding more parameters to this would be an example of

the bottom up fitting approach.

TESTING QUESTION 4 - STABILITY OF PARAMETERS

If a pattern of sequences of high and low residuals is found when plotted against
time, instability of the parameters may be indicated. This can be studied and a
randomness in the parameters incorporated into the simulation process, e.g.,

through the state-space model.
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Figure 2
Figure 2 shows the 2nd to 3vd factor by accident year from a large development
triangle (data in Exhibit 2) along with its five-term moving average. The moving
average is the more stable of the two lines, and is sometimes in practice called
“the average of the last five diagonals.” There is apparent movement of the mean
factor over time as well as a good deal of random fluctuation around it. There is a
period of time in which the moving average is as low as 1.1 and other times it is

as high as 1.8.

The state-space model assumes that observations fluctuate around a mean that
itself changes over time. The degree of random fluctuation is measured by vari-
ance around the mean, and the movement of the mean by its variance over time.
The interplay of these two variances determines the weights to apply, as in

credibility theory.

The state-space model thus provides underlying assumptions about the process
by which development changes over time. With such a model, estimation tech-
niques that minimize prediction errors can be developed for the changing devel-

opment case. This can result in estimators that are better than either using all
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data, or taking the average of the last few diagonals. For more details on the state

space models see the Verrall and Zehnwirth references.

QUESTIONS § & 6: VARIANCE ASSUMPTIONS

Parameter estimation changes depending on the form of the variance. Usually in
the chain ladder model the variance will plausibly be either a constant or pro-
portional to the previous cumulative or its square. Plotting or fitting the squared
residuals as a function of the previous cumulative will usually help decide which
of these three alternatives fits better. If the squared residuals tend to be larger
when the explanatory variable is larger, this is evidence that the variance is

larger as well.

Another variance test would be for normality of the residuals. Normality is often
tested by plotting the residuals on a normal scale, and looking for linearity. This
is not a formal test, but it is often considered a useful procedure. If the residuals
are somewhat positively skewed, a lognormal distribution may be reasonable.
The non-linear models discussed are all linear in logs, and so could be much
easier to estimate in that form. However, if some increments are negative, a log-
normal model becomes awkward. The right distribution for the residuals of loss

reserving models seems an area in which further research would be helpful.

CONCLUSION
The first test that will quickly indicate the general type of emergence pattern

faced is the test of significance of the cumulative-to-incremental factors at each
age. This is equivalent to testing if the cumulative-to-cumulative factors are sig-
nificantly different from unity. When this test fails, the future emergence is not
proportional to past emergence. It may be a constant amount, it may be propor-
tional to ultimate losses, as in the BF pattern, or it may depend on future infla-

tion.
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The addition of an additive component may give an even better fit. Reduced pa-
rameter models could also give better performance, as they will be less respon-
sive to random variation. If an additive component is significant, converting the
triangle to on-level loss ratios may improve the model. Tests of stability and for

calendar-year effects may lead to further improvements.
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APPENDIX 3 — REGRESSION GRAPHS

Change in the CPI

Quarterly Change in the CPI
Predicted Versus Observed
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Change in the Indgx

Quarterly Change in the Wilshire 5000 Equity Price Index
Predicted Versus Observed
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Profitability Targets: DFA Provides Probability Estimates

Abstract

This paper will discuss the analysis we undertook to address the questions described below:
Background

During each of the past several years, an insurance company's actual experience has been much
worse than the plan provided to its Board. A dynamic financial analysis was performed to address
the following questions:

Questions

1. What is the probability that the insurance company will meet or exceed the earnings
estimates for the following year provided to its Board?

2. Are the assumptions underlying the earnings estimates overly optimistic, or has the
company had a run of bad luck?

3. What elements of the company's business are its source of greatest risk?

This paper will discuss the type of mode! we developed to address these questions, which risk
variables (e.g., catastrophe losses, investment yield, expense ratios, etc.) were addressed in the
model, the type of information that we collected from the company and from external sources for
the model, and how the model results were interpreted to develop answers to the questions.

Results

The paper concludes with a presentation of the results of the analyses and a summary of
management's actions. Briefly, these actions were:

1. Changed underwriting guidelines and pricing for general liability business.
2. Revised plan to be closer to findings of our analysis.
3. Developed monthly monitoring statistics reflecting key drivers identified in analysis.
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Profitability Targets: DFA Provides Probability Estimates

Dynamic financial analysis (DFA) is currently used in many applications and will probably be used
to address an even wider range of issues in the coming years. One application for which we' have
used DFA is the evaluation of the likelihood that an insurer will achieve the profit levels projected in
its financial plan. In this paper, we will describe the model and types of data used in the analysis,
identify the risks that were specifically addressed by the model and those that were specifically
considered outside of the scope of the project, and present illustrative model results. Finally, we will
provide a discussion of how management used the findings of the analysis in its decision making

process.?

Background Regarding the Company

The company for whom this engagement was performed is a medium-sized insurer that writes
nationally, but has a regional focus. Its business is approximately 65% personal lines and 35%
commercial lines. The company maintains excess of loss and catastrophe reinsurance to protect itself
against large claims and property catastrophes. In addition, for one line of business (general liability
for this discussion), it maintains an underlying quota share with a significant sliding scale

commission.?

In recent years, the company has experienced a number of unexpected events, primarily affecting the
general liability book of business, that have caused it to be unprofitable. The company maintains a

net-written-premium-to-surplus ratio of about 1.5, so capitalization and solvency are not of serious

' The author would like to thank David Appel for his contributions to this paper and his
review of the draft.

2 We note that, throughout this paper, the data, insurer characteristics, amounts and
findings have been disguised to protect the confidentiality of the company for whom the actual
project was performed.

* The ceding commission can range from 18% to 40% depending on the ceded loss ratio.

275



concern. The consistent lack of profitability, however, has led to a loss of credibility with the Board

and with rating agencies.

The Questions

Company management was interested in increasing the credibility of its financial plan and the
presentation thereof. We therefore performed a dynamic financial analysis to evaluate the probability
that the net income and statutory surplus projections would come to fruition. If our findings were
that it was unlikely that plan results would be achieved, management was interested in (1) the
differences between our best estimate of the future results and its plan and (2) factors that are

projected to lead to the most significant variation from our expected results.

As will be discussed later, there were significant differences between the initial plan and our best
estimates. Reconciliation of those differences (including additional information being provided,
changes in strategy and changes in projected results) was a significant portion of the engagement.
Identification of the factors that are projected to lead to the most significant variation from expected
results served two purposes: (1) identification of possible strategies to reduce the variability and
(2) selection of statistics for monitoring interim results to determine whether actual experience was

as expected or whether the adverse experience was continuing.

The Model Used

Overview

The model used to perform this analysis was a customized, early version of Milliman & Robertson,
Inc.'s dynamic financial model software, FINANS®. The foundation of that model is a spreadsheet
that maintains the computations for the liability projections and the financial statements. This
spreadsheet is similar to the financial projection models that are typically used by many property-

casualty insurance companies for financial planning and/or valuation. It includes projections of
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statutory, GAAP, cash and tax financial statements and estimates risk-based capital and the IRIS

tests.

In addition to the spreadsheet portion of the model, FINANS has a macroeconomic scenario
generator, an asset accounting model and a report generator. The schematic below illustrates the

major modules of the model:

Asset
/ Accounting
Financlal Report
Ef::::::: Liability -—>- Statements - oneport
Lisbility Accounting
Scenarios
\ [ Loss l

The macroeconomic scenario generator is a multi-equation econometric model which develops
quarterly projections of six economic and financial variables, namely, gross domestic product growth,
inflation, long and short term interest rates, and stock returns and dividends. These projections are

then used to drive both the asset and liability sides of the balance sheet.

The econometric model begins with a two stage autoregressive mode! of gross domestic product
growth, where gross domestic product growth is a function of two tagged values of itself and a
random error term. The remainder of the model is recursive, in that each subsequent variable is
estimated as a function of a previously derived variable (and generally lagged values of itself). Thus,
inflation is estimated as a function of gross domestic product growth (and lagged inflation), short
term interest rates are a function of inflation (and lagged interest rates), long term rates are a function

of short term rates, and so on.
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The asset accounting model combines the output of the macroeconomic scenario generator with
information regarding (1) the assets owned by the company on the valuation date, (2) the cash flows
from underwriting derived from the spreadsheet, and (3) the company’s investment strategy to project
market, book and par valuations of assets by class at each year end, as well as interest, dividends,
capital gains (realized and unrealized), amortization, maturities and other income and cash
transactions occurring during each year. The output of the asset accounting model is fed to the

spreadsheet portion of the model and is integrated into the financial statements.

At the time this project was performed, the report generator module simply collected information
regarding each of the dynamic inputs and selected financial statement values and placed them in a data
base. Analysis of results was accomplished using an Excel spreadsheet.

Inputs

The key inputs to the model can be separated into those related to the invested asset portfolio, those

related to underwriting and other balances specific to the company as a whole.

With respect to the invested asset portfolio, the model requires information regarding:

Q) The book, acquisition and par values of each of government, municipal,

corporate and high yield bonds by maturity and coupon.

2) The book, acquisition and market values of other investment classes (stocks,

real estate, mortgages, cash and short-term investments).

3) The investment strategy - either the desired distribution of cash generated
during the year among classes or the desired mix of assets at the end of the
year. If the former approach is taken, the user must specify the manner in

which assets are to be disposed in situations in which cash flows are negative.
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For each modeled line of business, the user inputs information regarding premiums, losses, expenses

and reinsurance. The company’s business was divided into the following lines for modeling:

° Property. (Commercial and personal property exposures were combined due

to limitations on catastrophe modeling in this version of the software.)

L General liability, including other liability, products liability and special liability.

. Workers’ compensation.
° Commercial automobile, including liability and physical damage.
° Personal automobile, including liability and physical damage.

For premiums, information regarding direct written premium, eaming patterns and collection lags are
provided. For losses, information regarding loss, loss adjustment expense (LAE) and
salvage/subrogation ratios, reserve strengthening (calendar year by accident year), and payment
pattemns are required. Expenses can be broken down into commissions, premium taxes, other variable
expenses, fixed expenses and policyholder dividends. Information regarding each of quota share,
excess of loss, catastrophe and annual aggregate reinsurance is provided to the model. Other
information regarding the company as a whole, such as other income, stockholder dividends and

capital infusions, can also be entered into the model.

Risks Modeled

The number of risks that can be made dynamic for any given company is endless. One of the
important roles of the DFA actuary, in conjunction with company management, is to identify those

risks that warrant inclusion in the model. For this application, many risks were identified, several of

which were modeled dynamically as discussed below.
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Investment Yields and Returns: Investment returns were derived from the macroeconomic
scenario generator. That is, interest and dividends from investments held at the valuation date and
through the projection period were calculated based on the characteristics of the assets. Market
values of high yields bonds and stocks were calculated in the asset accounting model using standard
valuation formulas. Bond defaults were derived based on the economic conditions as described by

the output of the macroeconomic scenario generator.

Premium: Uncertainty regarding the growth of premium (combined exposure growth and rate

changes) was introduced.

Losses: For each line, losses were modeled in three categories: catastrophes (only for property lines),
large claims and the loss ratio resulting from small (all other) claims. For catastrophes, the number
of catastrophes in excess of a certain size was modeled using a Poisson distribution. The sizes were
drawn from a distribution derived from catastrophe modeling software. For large claims, the number
of claims in excess of a selected threshold was modeled using a Poisson distribution with the average

sizes (ground up) being selected from Pareto distributions.

Fixed expenses: The ratio of fixed expenses to direct earned premium was assumed to vary using
a Normal error term. This error term was assumed to be constant across all lines of business (i.e.,
there was 100% correlation among lines) because the parameters of the error term distribution were

derived from companywide historical expense data.

Statutory Assessments: With the relatively recent payment by some companies of Proposition 103
rollbacks, the risks emanating from statutory assessments were considered important by the company.
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Risks Not Modeled
There were a large number of risks that were not modeled, as described below.

Mass torts: The company has not written any exposures that have generated claims from mass torts
in the past. Having reviewed its current book of business, it does not believe that it has material

exposure to any mass torts. This risk was therefore not explicitly modeled.

Loss payment patterns: Loss payment patterns were assumed to vary by line, but not accident year.
As such, the model did not reflect the volatility in payment patterns from changes in inflation, mix of

claims or other factors affecting payment patterns.

Reserve strengthening: The company has historically experienced favorable development of
ultimate losses and ALAE between their initial report and the final estimates. For conservatism, the
model assumed that the booked reserves as of December 31, 1996 did not contain any such margin.
Because of the consistency of the reserve estimates, the risk refated to changes in estimates was

considered relatively small and was not modeled.

LAE ratios: Ratios of ALAE to loss and ULAE to loss, by line, were held constant across accident

years and scenarios.

Reinsurance pricing: Reinsurance premium rates and contingent premium terms were held constant
across the three-year projection period for all scenarios. With the relatively short time period covered
by the analysis, it was believed that changes in reinsurance rates and terms would not be a significant

factor relative to many of the other risks that were modeled.
Miquid assets: The company has a number of illiquid invested assets, though they comprise only

a small proportion of invested assets. The expected value of the interest income from these assets

was used in all scenarios and the book value of these assets was held constant.
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Reduction in Best’s rating: A serious concern of the company is that it’s Best’s rating might be

reduced in light of the recent unprofitability. A reduction in Best’s rating could have a significant

impact on the company’s ability to maintain is current premium volumes and its ability to select risks

in the marketplace. The company chose not to model the impact of this risk, so all results are

conditional on the assumption that the company maintains its current Best’s rating.

Data Used in Analysi

The data provided for our analysis included:

M)
2

6

@

&)

6

™

Management’s three-year financial plan.

Five years of statutory annual statements.

The company’s analysis of direct ultimate losses and LAE by accident year
and subline, along with corresponding payment triangles and earned premium.
These estimates were accepted as best estimates. An independent evaluation

of reserves was outside of the scope of the engagement.

Development triangles of individual paid and incurred losses in excess of
$500,000.

Probability distributions of catastrophe losses for all property exposures in the
aggregate.

Policy limits profiles.

A list of catastrophe losses exceeding $2 million for the past 10 years.

These data were used to develop the expected value assumptions for all inputs to the model and to

derive the parameters of the distributions for each of the modeled risks.
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Premium

For the expected value case, we accepted management’s premium growth assumptions which
anticipated approximately 5% per annum growth for personal lines and 0% per annum for commercial
lines. A common premium growth rate was used for all commercial lines and a separate growth rate
was used for personal lines. The premium growth rates were assumed to be Normally distributed
with a standard deviation of 2.5%, a minimum of 0% for personal lines and -~5% for commercial lines
and a maximum of 10% for personal lines and 5% for commercial lines. The base case assumptions
regarding direct written premium i)y line for each of the three projections years are shown in
Exhibit 1. Also shown in that exhibit are the projected percentages of premium earned and collected

in the year written.
Losses

As discussed previously, the modél separates losses into the following categories: (1) catastrophes,
(2) ground up losses on claims exceeding a selected size ($500,000 per claim for this analysis) and

(3) small losses.

The historical loss experience by line and accident year was first decomposed into the three
components. As indicated previously, data were available to remove the impact of catastrophe losses.
The development of individual claims in excess of $500,000 per claim was used to derive projections
of the ultimate cost of large claims. These projections and the catastrophe losses were subtracted
from direct ultimate losses to estimate small losses. Exhibit 2 shows the decomposition of property
and general liability losses into the three components. Similar analyses were performed for the other

lines.

The expected number of catastrophe losses in excess of $5 million per event per year (0.25) was
derived from the catastrophe model output. The distribution of these events was also derived from
the catastrophe model output, as shown on Exhibit 3. Because there are only relatively small

variability in premium volume projected, no adjustments were made to the catastrophe loss
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parameters across iterations. These assumptions correspond to a ratio of catastrophe losses to

property premium of approximately 9%.

The historical frequency and size of large claims was reviewed to derive assumptions for use in the
projection period. Exhibit 4 shows the number, projected frequency and projected average cost of
large general liability claims for Accident Years 1987 through 1996. Initially, we selected a frequency
of large general liability claims of 0.30 claims per $1 million of general liability premium and an
average cost per large claim of $1.2 million. These assumptions were much higher than those implicit
in management’s assumptions (which anticipated that the recent large claim experience reflected a
run of bad luck, not a precursor of future losses) and much higher than would have been expected
based on the excess of loss reinsurance pricing. In light of the relatively small number of claims, the
lack of available industry information regarding large claims from the particular niches written by the
company and the reinsurer’s evaluation of the company’s large loss exposure, we introduced
uncertainty with respect to the expected frequency of large general liability claims. That is, the model
assumed a 20% chance that the expected frequency of large general liability claims is 0.225, a
50% chance that it is 0.30 and a 30% chance that it is 0.35.

For all other lines, the frequency of large claims was much more stable, so a single expected
frequency of claims was selected. A Poisson distribution was used to mode! the actual number of
large claims for each line in each scenario using a mean equal to the expected number of large claims
(frequency times direct earned premium). The expected frequencies of large claims for lines other

than general liability are shown in Table 1.

Table 1: Large Claim Assumptions

Expected Expected
Line Frequency Severity
Property 0.15 $1 million
Workers compensation 0.05 1.5 million
Commercial auto 0.25 700 thousand
Personal auto 0.01 600 thousand
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Pareto size of loss distributions were used to model the cost of individual claims. For each line, the

parameters of the Pareto distribution were selected after reviewing:
(1) The historical experience regarding large claims by size.

() The average claim cost implicit in reinsurance pricing (after

consideration of the historical distribution of policy limits).
3) Changes in the distribution of policy limits.

(4)  The average claim costs implicit in insurance industry increased limits

factors (assuming the company’s large claim frequency is appropriate).

To simplify modeling, the Pareto parameters were selected so that the claim size distribution implicitly
incorporated the policy limit distribution. That is, the claim sizes selected from the Pareto distribution
are assumed to have already been capped by any applicable policy limits. The occurrence and size

of large losses was assumed to be independent across lines and time.

Using cascading regression and applying judgment, models of the small loss ratios were derived. The

formulas for the small loss ratios are as follows:

I/r”‘ =q + b(l/rf_u) +Ek cx(llr”) + z;dx([/,j_u) +/(ij) ve

where Ur is loss ratio
j is the year,
x is line of business,
k is the specific line of business being modeled,
iis the interest rate,
a, b, ¢, d and fare constants and
e is a Normal random variable.
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The resulting loss ratios (small, large, catastrophe and total) are summarized on Exhibit 5.

Expenses

We reviewed historical ratios of ALAE and ULAE to loss by accident year and line to select these

ratios for use in the mode]. The selected ratios are shown on Exhibit 6.

For the base case, we accepted the company’s assumptions regarding commissions and premium

taxes. The base case assumptions are presented in Table 2.

Table 2: Base Case Assumptions

Ratio to

Written
Type of Expense Premium
Commissions 17.3%
Premium Taxes 2.7%

Fixed expenses were projected from 1996 levels assuming that fixed expenses increased (1) with CPI
inflation and (2) with 50% of any increase in direct earned premium. In addition, the ratio of fixed
expenses to direct earned premium was assumed to have a random component. To incorporate this
random component, we added a percentage drawn from a Normal distribution with a mean of 0 and
a standard deviation of 1% of direct earned premium to the expenses otherwise derived for each line
of business. (The same percentage was added for each line.) The standard deviation of the error term
was derived after reviewing ten years of expense ratios (excluding premium taxes and agents’

commissions) after adjustment for a change in accounting and a significant one-time expenditure.

Statutory Assessments
A discrete distribution of statutory assessments (including assigned risk and guaranty fund

assessments, rollbacks, excess profits refunds and the like) was derived after considering the

distribution of premium by state and a probability distribution of assessments as a percentage of direct
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premium in a state. The resulting probability distribution of statutory assessments as a percentage

of countrywide direct written premium is shown on Exhibit 7.
Reinsurance

The company purchases primarily excess of loss reinsurance. The attachment point is $1 million per
claim for all lines, except general liability for which it is $5 million per claim. There is no ceding
commission in any of the excess of loss contracts. It is assumed for modeling purposes that premiums
are ceded and losses are recovered quarterly in arrears. The 1997 ceded premium for the excess of

loss coverage is shown in Table 3.

Table 3: 1997 Ceded Excess of Loss Premium

1997 Ceded
Premium

Line (000s)

Property $ 360
General liability 1,440
Workers' compensation 600
Commercial auto 360
Personal auto 2

For general liability, the company also entered into a quota share agreement under which 75% of
losses and premium are ceded. This contract has a significant slide on the ceding commission. The
provisional commission is 25%. For each point increase in the pure ceded loss ratio above 55%, the
commission is decreased by 0.8 percentage points, subject to a minimum of 18% and a maximum

of 40%. The commission provision applies to each accident year individually.
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For property, catastrophe reinsurance is also purchased in the layer $50 million excess of $10 million.
The cost of the catastrophe reinsurance is $4.5 million. There are two reinstatements available at

a rate on line* of 5%.

All reinsurance is assumed to be collectible; that is, credit risk from reinsurers is not modeled.
Illustrative Results

As was discussed earlier in this paper, the scope of the engagement entailed:

(1)  Evaluation of the likelihood that actual results would equal or exceed

those in the company's plan.

(2)  Identification of differences in assumptions between us and the

company.
3) Identification of key drivers of results.

The dynamic financial model was used to derive 2,000 possible results based on the assumptions

presented previously. The results of these iterations were used to address the company’s questions.
Probability of Attaining Plan Results

Exhibit 8 shows the probability distribution of net income by year and 1999 projected surplus.
Figure 1 shows the distribution of 1997 net income graphically. Also shown on Exhibit 8 are the
income and surplus amounts in the company’s three-year financial plan and our estimates of the
probability of attaining those results. As can be seen, the analysis indicated that there is a relatively

low probability that the company’s targets will be attained.

* For every dollar recovered from the catastrophe reinsurer for the first two catastrophes
in excess of the attachment point, 5¢ is paid as reinstatement premium.

288




Figure 1: Distribution of Net Income
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Differences in Assumpltions

As was indicated in the discussion of assumptions, one significant difference in assumptions was the
frequency of large genera liability claims. We pointed out that the company had entered a new type
of business in the early 1990s and that the earlier favorable experience with large general liability
claims was not indicative of the future. We therefore calculated the probability that the actual number
of large claims for 1994 through 1996 would have been observed using expected values of
management’s assumptions of 3 large claims per year and our three assumptions regarding the

number of large claims of 7.2, 9.2 and 10.7. These probabilities are shown in Table 4.

Table 4: Probabilities

Expected Number | Probability of Last
of Large Claims | Three Year's Results
6.0 0.1%

7.2 1.3%

9.2 17.4%

10.7 46.0%
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The other significant difference in assumptions relates to fixed expenses. The company had projected
that fixed expenses related to commercial lines would remain constant, but planned to keep the same
level of personnel. That is, the company did not reflect the impact of wage inflation on salaries and
related expenses. After reviewing our model and seeing the impact of inflation, the company revised

its expense projections.

Key Drivers

The process used to identify key drivers was:

) Identify all of the independent variables monitored in the analysis, as

shown in Exhibit 9.

(2)  Use a t-test to determine whether there was a statistically significant
correlation between each variable and calendar year net income.
(Several approaches, including stepwise regression, were used to
ensure that correlation among independent vaniables did not distort the
findings.) Those variables whose correlation with net income were

not statistically significant were dropped from this list.

(3)  Calculate the impact on net income if each of the statistically
significant independent variables were at its 90th and 99th percentile.
Those variables that were found to have statistically significant
correlation with net income, but had much less than a $1 million

impact on net income at the 90th percentile were excluded.
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The remaining variables and several measures of their impact on net income are shown in Table 5.

Table S: Impact on Net Income

Probability | Net Income Impact of
Average Net Income Impact of 10% 90th Percentile
1997 if 10% Worse than Worse than Adverse Deviation
Variable Value Expected (thousands) Expected (millions)
Small Loss Ratio -
General Liability 25.0% $ 775 16% $-1.0
Small Loss Ratio -
Commercial Auto 45.0% 1,739 19% 26
Small Loss Ratio -
Personal Auto 68.0% 3,877 3% -2.8
Small Loss Ratio -
Workers' Compensation 67.5% 1,457 22% -2.6
Small Loss Ratio -
Property 43.0% 2,790 15% -4.0
Number of Large
Property Claims 9.7 970 36% -33
Number of Large
General Liability Claims 9.3 1,116 34% 44
Number of Large
Commercial Auto Claims 9.7 679 31% 223
Number of Large Workers'
Compensation Claims 1.1 165 30% -2.9
Number of Catastrophes 0.25 141 25% -2.5
Underwriting Expenses
(Deviation from Expected) 0% N/A N/A 28
Management Use of Results

Company management made a number of changes to its plan, its underwriting and its monitoring

tools in response to our findings. The company first reviewed our report to identify those
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assumptions for which our best estimate significantly differed from the assumptions underlying its
plan. Three or four such assumptions were found, most of which related to the general liability book
of business. The company therefore carefully reviewed its current book of business and made
numerous changes to its underwriting guidelines. It also made several changes to the manner in
which individual accounts are rated and will make increased use of facultative reinsurance to limit its
exposure to large claims. The company presented these changes to us and its analyses supporting its

estimates of the impact of these changes on the key assumptions underlying our model.

In addition to making these changes to operations, the company revised its plan to make it somewhat
less favorable. We then evaluated the analyses and revised the assumptions underlying our model.
Although we still project that there is less than a 50% change of attaining the plan results, our

projections are much closer to the plan than was displayed on Exhibit 9.
Finally, management is using the information regarding key drivers to monitor results on a monthly

basis. With the importance of attaining the results in the financial plan, the company wants to identify

possible sources of adverse deviation as quickly as possible.
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SUMMARY OF PREMIUM DATA

Line 1997
Property $64,889
General Liability 31,000

Workers’ Compensation 21,586

Commercial Auto 38,638

Personal Auto 57,018

Sample Insurance Company

1998 1999
$65,668 $68,951
31,000 31,000
21586 21,586
38,638 38,638
60,636 64, 435

Notes: 1. Dollar amounts are in thousands.
2. Premium collection lag is stated in months.
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Collection
Lag

24

2.1

1.8

22

2.1

Exhibit 1

Percent
Earned
in Year

46.4%

53.6%

60.1%

51.0%

53.4%



Exhibit 2

Sample Insurance Company
SUMMARY OF HISTORICAL LOSS DATA

General Liability and Property

1 ) 3) “4) )
Small
Ultimate Losses on Direct Loss
Accident Direct Large Catastrophe Earned Ratio
Year Losses Claims Losses Premium [(D-(2)-3))/(%)

General Liability

1987 $7,316 3 o $ 0 $28,640 25.5%
1938 9,668 0 0 32,736 29.5%
1989 10,752 2,800 0 36,340 21.9%
1990 14,000 4,000 0 41,396 24.2%
1991 11,368 0 0 42,244 26.9%
1992 15,240 4,000 0 38,992 28.8%
1993 13,860 3,200 0 36,240 29.4%
1994 19,788 12,000 0 36,636 21.2%
1995 16,276 7,200 0 35,124 25.8%
1996 21,012 13,200 0 32,336 24.2%
Property
1987 $13,172 $ 0 § 0 $31,893 41.3%
1988 13,654 0 0 37,408 36.5%
1989 18,904 1,929 0 38,580 44.0%
1990 23,952 3,870 0 43,002 46.7%
1991 29,352 6,174 2,460 47,038 46.7%
1992 24,484 4,356 0 46,459 43.3%
1993 27,086 5,561 0 49,427 43.6%
1994 41,806 12,059 9,750 53,597 46.4%
1995 33,618 6,401 0 60,247 452%
1996 35,466 7,012 0 62,330 45.7%

Note: Dollar amounts are in thousands.
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Exhibit 3

Sample Insurance Company

DISTRIBUTION OF CATASTROPHE LOSSES

Probability Amount
0.5% $200
3.0% 130
1.5% 110
1.5% 90
1.5% 70
2.5% 60
2.5% 50
2.5% 44
2.5% 38
2.5% 32
2.5% 26
2.5% 20
5.0% 18
5.0% 16
5.0% 14
5.0% 12
5.0% 10
9.5% 9

10.0% 8
10.0% 7
10.0% 6
10.0% 5

Note: Dollar amounts are in millions.
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Exhibit 4

Sample Insurance Company

SUMMARY OF GENERAL LIABILITY LARGE CLAIMS

1) @) 3 @
Number Projected Losses on
Accident of Large Projected Average Large Claims
Year Claims Frequency Cost (1)x(3)
1987 0 0.00 - --
1988 0 0.00 - -
1989 4 0.11 $§ 700 $2,800
1990 4 0.10 1,000 4,000
1991 0 0.00 - -
1992 4 0.10 1,000 4,000
1993 4 0.1 800 3,200
1994 12 033 1,000 12,000
1995 8 0.23 900 7,200
1996 12 037 1,100 13,200

Notes: 1. Large claims are those that exceed $500,000.
2. Frequency is per $1 million premium.
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Line

Property

General Liability

Workers' Compensation

Commercial Auto

Personal Auto

Sample Insurance Company

SUMMARY OF LOSS RATIO ASSUMPTIONS

m

Small
Loss
Ratio

43.0%

25.0%

67.5%

45.0%

68.0%
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Large
Loss
Ratio

15.0%

36.0%

7.5%

17.5%

0.6%

3

Catastrophe
Loss
Ratio

8.7%

0%

0%

0%

0%

Exhibit 5

@
Direct
Loss
Ratio
(H+2)+(3)

66.7%

61.0%

75.0%

62.5%

68.6%



SUMMARY OF LOSS ADJUSTMENT EXPENSE RATIO ASSUMPTIONS

Line

Property

General Liability

Workers' Compensation

Commercial Auto

Personal Auto

Sample Insurance Company

ALAE/Loss
Ratio

10.5%

15.0%

8.0%

8.5%

8.0%
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ULAE/Loss
Ratio

6.0%

5.0%

4.5%

7.0%

7.0%

Exhibit 6




Sample Insurance Company

STATUTORY ASSESSMENTS

Statutory

Assessments/

Direct Written
Probability Premium
95% 0.5%
3% 1.0%
1% 2.0%
1% 5.0%
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Exhibit 8

Sample Insurance Company

STATUTORY RESULTS
- 1999
1997 1998 1999 Surplus
Mean $2,020 $1,740 $ 855 $120,852
Probability
(Min) 0% $-40,231 $-40,456 $-41,342 3 64,729
1% -21,026 21,320 22,116 86,912
5% -10,998 -11,201 -12,089 101,731
10% -8,020 -8,213 9,118 106,444
20% -4,305 -4,558 -5,508 112,337
25% -2,754 -3,012 -3,887 114,765
30% -1,647 -1,892 -2,808 116,562
40% -432 -667 -1,589 119,668
50% 2,213 2,070 1,137 122,115
60% 3,874 3,609 2,707 125,816
70% 5,879 5,616 4,696 127,994
T5% 6,992 6,612 5,698 128,275
80% 7,963 7,716 6,833 134,001
90% 10,720 10,529 9,628 136,349
95% 12,952 12,689 11,754 136,981
99% 16,341 16,028 15,117 142,560
(Max) 100% 22,616 22,327 21,472 147,783
Plan 4,000 4,500 5,000 131,500
P{x>Plan} 38% 35% 28% 15%

Note: Dollar amounts are in thousands.
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Exhibit 9

Sample Insurance Company

LIST OF VARIABLES TESTED

Gross Written Premium
Commercial Lines
Personal Lines

Underwriting Expense Deviation
Statutory Assessments

Number of Catastrophes

Size of Each Catastrophe

Small Loss Ratio
Property
Commercial Auto
General Liability
Workers' Compensation
Personal Auto

Number of Large Claims
Property
Commercial Auto
General Liability
Workers' Compensation
Personal Auto

Average Cost of Large Claims
Property
Commercial Auto
General Liability
Workers' Compensation
Personal Auto

Inflation

Short and Long Term Rates
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Pricing Catastrophe Reinsurance With Reinstatement
Provisions Using a Catastrophe Model

Richard R. Anderson, FCAS, MAAA
Weimin Dong, Ph.D.

Abstract

In recent years catastrophe reinsurers’ use of catastrophe models has been increasing until
currently virtually all of the catastrophe reinsurers in the world use a catastrophe model to
aid them in their pricing and portfolio management decisions.

This paper explicitly models various types of reinstatement provisions, including
reinstatements that are limited by the number of occurrences and by the aggregate losses;
and reinstatement premiums based on the size of loss and by the time elapsed to the first
occurrence. The paper also investigates the effects on the fair premium of a catastrophe
treaty when various reinstatement provisions are considered.

This is an expansion of the methods developed in papers by Leroy J. Simon and Bjorn
Sundt, which were written before the widespread use of catastrophe models.

The catastrophe model used for this paper is the Insurance / Investment Risk Assessment
System (IRAS) produced by Risk Management Solutions, Inc.
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Pricing Catastrophe Reinsurance With Reinstatement
Provisions Using a Catastrophe Model

Introduction

In recent years catastrophe reinsurers’ use of catastrophe models has been increasing until
currently virtually all of the catastrophe reinsurers in the world use a catastrophe model to
aid them in their pricing and portfolio management decisions.

Leroy Simon’s 1972 paper [1] on catastrophe reinsurance investigated the relationships
between various provisions of catastrophe reinsurance treaties to ensure consistency in
pricing between contracts. In his paper he assumes that each loss causes a total loss to the
layer of reinsurance. Bjorn Sundt expanded on this theme in his paper in 1991 [2],
focusing on reinstatements based on aggregate losses. This paper applies the methods
outlined in these previous works to the output of a catastrophe model to calculate a fair
premium for a catastrophe treaty when reinstatement premium is considered.

The paper develops the fair premium for catastrophe reinsurance with various types of
reinstatement provisions, including reinstatements that are limited by the number of
occurrences and by the aggregate losses; and reinstatement premiums based on the size of
loss and by the time elapsed to the first occurrence. The paper also investigates the
effects on the fair premium of a catastrophe treaty when various reinstatement provisions
are considered.

The catastrophe model used for this paper is the Insurance / Investment Risk Assessment
System (IRAS) produced by Risk Management Solutions, Inc.

As background, we start with some descriptions of reinstatement provisions and how they
are applied. We then describe an event loss table, the output of the catastrophe model
that gives us all of the information that we need to perform the calculations. Next we turn
our attention to the calculation of the fair premium of catastrophe treaties with various
types of reinstatement provisions. First we discuss reinstatement provisions that limit the
number of occurrences, then reinstatement provisions that limit the aggregate losses.
Finally we investigate reinstatement premiums that are pro rata as to time.

Reinstatement Provisions

A common feature of many catastrophe reinsurance contracts is a reinstatement
provision. A reinstatement provision puts a limit on either the number of occurrences or
the aggregate losses that will be paid under the contract. For example, if a contract has a
provision for one reinstatement based on the number of occurrences, then the reinsurer
will be responsible for at most two occurrences (original occurrence plus one
reinstatement). If the contract has a provision for one reinstatement based on aggregate
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losses, and the limit is $1 million, then the reinsurer will be responsible for at most $2
million in aggregate, regardless of the number of occurrences.

The reinstatements may be free or paid. If the reinstatements are free, then all of the
premium is paid up front. For paid reinstatements, a portion of the premium is paid
following the occurrence of an event. For example, if a contract has a provision for one
paid reinstatement, then after the first event the cedant will pay some premium to the
reinsurer 1o reinstate the coverage for a second occurrence. This additional premium is
called the reinstatement premium. The reinstatement premium may vary based on the
amount of reinstatement (pro rata to full limit) or the time remaining in the contract (pro

" rata to full time). In this paper we will limit the discussion to reinstatement premium that
is pro rata to full limit, and is either 100% to time or pro rata to full time.

Event Loss Table

An “event” as we use it in this paper is a scenario taken from the set of all possible
outcomes. For example, event e might be an earthquake of magnitude 7.3 on the San
Andreas fault centered two miles off the coast of San Francisco; and event A might be a
category 3 hurricane making landfall in Dade county Florida with a specific track, central
pressure, etc. The final product from an IRAS analysis is a table of events with their
expected losses and annual occurrence rates. The set of events in the Event Loss Table
(ELT) represents the full range of possible outcomes that can occur to a portfolio.

Suppose that we have a catastrophe treaty of LMT excess ATT, where LMT is the limit of
the treaty, and ATT is the attachment point of the treaty. Denote the gross loss for the j*
event as GLOSS] and the expected loss to the catastrophe treaty as Lj. We have

L = LA:E&OSSJ - ATT) f,(GLOSS ,)dGLOSS,; + LMT[1 - F,(ATT + LMT)] (1)
where
J{(GLOSS;) = probability density of the gross loss given that event j has occurred
FHATT + LMT) = cumulative probability that the gross loss < ATT + LMT, given
that event j has occurred

In the ELT shown below in Table 1, ij is the annual rate of occurrence for event j, and L
is the expected loss to the catastrophe treaty for event J, calculated from equation (1).

Table 1 Event-Loss Table (ELT)
Event Rate Expected Loss
' 4 L
2 4 L
J Aj L J
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L | % 1 L |

We assume here that each event is an independent random variable, each with a Poisson
frequency distribution'. We assume that the occurrence of one event will have no effect
on the rate or the expected loss of any other event. We look at these multi-events (the
occurrence of one or more events) as a compound Poisson process? with a total rate equal
to:

A=31, )

i
Hence, the probability of exactly n occurrences in a year for this process is given by

n -

Pl =— 3)

The average annual loss (AAL) for event f is given by the expected frequency times the
expected severity, which, given our Poisson frequency assumption, is A;L;. Because we

assume that each event is an independent random variable, the total AAL is the sum of
the AAL’s for all events:

AAL=D 4L, 4
i

This represents the pure premium of a treaty with unlimited free reinstatements.

With all of this as background, we now turn our attention to the calculation of the fair
premium of catastrophe treaties with various types of reinstatement provisions. First we
discuss reinstatement provisions that limit the number of occurrences, then reinstatement
provisions that limit the aggregate losses. For each of these cases we assume that the
reinstatement premiums are pro rata as to limit and 100% as to time. Finally we
investigate reinstatement premiums that are pro rata as to time, where we calculate the
expected arriving time for the occurrence of an event.

Reinstatements Limited by the Number of Occurrences

The reinstatement premium will be paid whenever an event occurs with losses to the
catastrophe treaty and the reinstatements are not already used up. The amount of
reinstatement premium (Pprgjpss) 1S

! Other frequency distributions, such as Negative Binomial, may be appropriate for some perils or regions.
The use of these distributions is beyond the scope of this paper.
? For more information on Poisson processes, see references [4]. {5], and [6]
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P

Yiny = R-C- L )
where

R = Premium rate paid up front {(rate on line)

¢ = fraction of reinstatement premium rate versus up-front premium rate

L = loss to the catastrophe treaty, which is a random variable.

It can be seen that the reinstatement premium formula (5) is pro rata as to limit by noting
that R, the rate on line, equals the premium (P) divided by the limit (LMT):

Py = c- L= Pc-—
LMT LMT

(6)

We calculate the fair up-front premium rate (ignoring expense and risk load charges) by
setting the expected premium collections equal to the expected loss payments.

First we calculate the expected loss to the catastrophe treaty as the expected severity
times the expected frequency.

The expected loss given an event has occurred (expected severity) is given by

Z A./’ L.i
S(L)y= — )

To calculate the expected frequency, we make use of the limited expected value function’.
The expected number of occurrences limited to k occurrences is given by

E(n; k) = 3 min(n, k) - p(n)
- ®)
=Y n p(m)+k-(1- F(k-1)
n=t
where
p(n) = the probability that exactly n events will occur, as calculated by equation (3)
F(k-1) = the cumulative probability that k-1 or fewer events will occur.

Let nor be the number of occurrence reinstatements allowed. The total number of
occurrences covered by the contract is nor+1 (one original occurrence + nor additional
occurrences). We define E(L;nor + 1) to be the expected loss limited to nor+1
occurrences, which is the expected severity times the expected frequency:

E (Lynor +1)=S(L)- E(mynor +1) 9

* For more information on the limited expected value function, see Hogg and Klugman[3]
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The subscript O in Eo(L;nor + 1) stands for occurrence, to differentiate this from the case
where the reinstatements are limited by the aggregate losses, which we will discuss later.

The expected premium collected is equal to the up front premium plus any reinstatement
premiums collected.

E(P)=R-LMT +R-c-E,(L;nor) (10)
where
R = rate on line for the contract
Eo(L;nor) = expected loss limited to nor occurrences (no reinstatement premium is
collected following the nor+1" occurrence).

Setting the expected premium equal to the expected losses, we get
R-LMT + R-c-E,(Lynor)= E,(L;nor +1) an
Solving for R, we get the fair up front rate on line:

_ E,(L;nor +1)
(LMT +c- E,(L;nor))

(12)

For example, assume that we have a simple event loss table (ELT) with 47T = $2 million
and LMT = $2 million as shown in Table 2:

Table 2 Sample ELT
Event Annual Rate Gross Loss Cat. Loss*
1 0.1 5 million 2 million
2 0.2 3 million 1 million

For this case, the expected severity for the catastrophe treaty is

sy =22*02: 1 35s illion
01+02

The expected losses and premium rates with various numbers of reinstatements are given
in Table 3 for ¢ = 1.0:

Table 3 Expected Losses and Fair Premium Rates when ¢ =1
| Number of Reinst. | Expected Loss (in $million) | Rate onLine |

* For simplicity, the losses to the catastrophe treaty in this table are calculated assuming that the gross
losses are constant. The actual output from the computer model calculates the catastrophe losses using
equation (I). '
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0 0.34558 0.17279
1 0.39482 0.16833
2 0.39962 0.16687
3 0.39998 0.16668
© 0.40000 0.16667

In this example, as the number of reinstatements increases, the up-front premium
decreases, because the expected additional reinstatement premiums outweigh the higher
expected losses. There can be situations where this is not the case, and the up-front
premium increases as the number of reinstatements increases. This can happen, for
example, when the expected severity is very low relative to the limit.

If ¢ = 0 (free reinstatements), then equation (12) reduces to

_Eg(Linor +1)
©LMT

R (13)

and the fair up-front premium rates are shown in Table 4:

Table 4 Expected Losses and Fair Premium Rates when ¢ =0

Number of Reinst. | Expected Loss (in $million) Rate on Line
0 0.34558 0.17279
1 0.39482 0.19741
2 0.39962 0.19981
3 0.39998 0.19999
© 0.40000 0.20000

In this case, as the number of reinstatements increases, the up-front premium also
increases, since the losses would be higher (because losses for more occurrences are
paid), but there are no additional reinstatement premiums (because ¢ = 0).

It is not uncommon to set the pure premium to the average annual loss from equation (4),
which is $0.4 million in this example. If the rate on line is based on this pure premium,
then it is equivalent to collecting up-front premium with unlimited free reinstatements, as
shown in the last row of Table 4.

Reinstatements Limited by Aggregate Losses

When the reinstatements are limited by the number of occurrences, there can be some
situations in which the buyer of the reinsurance will have a difficult decision to make.
For example, suppose that one event has occurred with a very small loss to the
catastrophe treaty. If the insurer makes a claim, it will use up one reinstatement for a
small recovery. If it doesn’t make a claim, then perhaps no other events follow, and it
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loses a chance of recovery. To avoid this dilemma, it is common practice to limit the
reinstatement by aggregate losses rather than by number of occurrences.

Here the number of reinstatements refers not to the number of occurrences, but to the
number of limits. Thus, a contract with nlr reinstatements will pay at most n/r+1 times
LMT, regardless of the number of occurrences.

We calculate the fair up-front premium rate by again setting thé expected premium
collections equal to the expected loss payments.

To calculate the expected losses, we must first calculate the aggregate loss distribution.
In this compound Poisson process, the probability of exactly n occurrences is given in
equation (3). Given » events have occurred, the aggregate loss is calculated in equation
(14):

A=L +L,+-+1L, (14)

The distribution of 4 can be obtained by Panjer’s recursive approach [4] and {5], by the
use of Fourier transforms as described by Heckman & Meyers [6], or by a simulation
approach. Let f{4) and F(A4) be the probability density function and cumulative
probability distribution of the aggregate losses obtained by one of these approaches. Note
that this distribution is for the aggregate losses, not separated into the frequency and
severity pieces as we did for the reinstatements based on the number of occurrences.

For a continuous aggregate loss distribution, the limited expected value of 4 limited to
Apy is:

E(44,) = [min(d, 4,)f(A)4

W (15-C)

= [ar(4)da+4,(1- F(4,))
0

For a discrete aggregate loss distribution, the limited expected value of 4 limited to Ay,
is:

E(44,)= 3 min(4,4,) £(4)
- (15-D)
=>4 f(4)+ 4, (1- F(4,.))

where the A4;’s are sorted in ascending order.
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Because a contract with nlr reinstatements will pay at most nir+1 times LMT , the
expected loss for a treaty with alr reinstatements is then the limited expected value of the
aggregate losses limited to (nir+1)-LMT. We define the expected loss for the treaty as
Eg(Lsnir + 1)

E (L;nir +1) = E(4;(nlr +1)- LMT) (16)
The expected reinstatement premium is proportional to the aggregate losses capped at the
treaty limit. If nlr reinstatements are allowed, then the expected reinstatement premium is
proportional to the aggregate loss capped at nir limits. Adding the up-front premium, we

get the total expected premium:

E(Py=R-LMT + R-c-E (L;nlr) 7

Setting the expected premium equal to the expected loss, we get:
R-LMT+R-c-E (Linlr)=E (L;nir + 1} (18)
Solving for R, we get the fair up-front premium rate with nlr reinstatements:

_ E (L;nlr +1)
T (LMT +c- E (Linir))

(19)

For an example, we used the same event loss table as for the occurrence-limited example
(Table 2), and calculated the aggregate loss distribution using Panjer’s approach® (see
Appendix A for the calculations). The probability distribution is shown in Table 5:

Table S Aggregate Loss Distribution

Aggregate loss 4 (in Smillion) Probability f4) Cumulative F(4)
0 0.7408182 0.7408182
1 0.1481636 0.8889818
2 0.0888982 0.9778800
3 0.0158041 0.9936841
4 0.0052351 0.9989192
5 0.0008416 0.9997608
6 0.0002026 0.9999634
7 0.0000298 0.9999932
8 0.0000058 0.9999990

* Here we make a simplifying assumption that the losses to the catastrophe treaty, given that an event has
occurred, are constant. The actual output from the computer mode!l shows not only the expected loss, but
the coefficient of variation of the losses, from which a distribution can be assumed.
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9 0.0000008 0.9999998
10 0.0000001 0.9999999

For ¢ = 1.0, we have results as shown in Table 6:

Table 6 Expected Losses and Fair Premium Rates when ¢ = 1

Number of Reinst. Expected Loss (in $million) Rate on Line
0 0.37020 0.18510
1 0.39864 0.16819
2 0.399%6 0.16674
3 0.40000 0.16667
© 0.40000 0.16667

Comparing Table 6 with Tabte 3, notice that the expected loss for occurrence-based with
no reinstatement is lower than the expected loss for aggregate-based with no
reinstatement. This is because for aggregate-based, more than one occurrence will be paid
if the aggregate loss of the first occurrence is less than the limit. For example, if a
contract has a provision for nr reinstatements, then the occurrence-based reinstatements
provide nr+1 occurrences which have loss values less than or equal to the limit; the
aggregate-based reinstatements provide nr+1 limits of coverage for as many occurrences
as needed (at least nr+1) to reach the aggregate limit. Also note that for one or more
reinstatements, the aggregate-based rate on line is less than the occurrence-based rate on
line. This again is because the expected additional reinstatement premiums outweigh the
higher additional losses.

And for ¢ = 0, we have results as shown in Table 7:

Table 7 Expected Losses and Fair Premium Rates when ¢ =0

Number of Reinst. | Expected Loss (in $million) Rate on Line
0 0.37020 0.18510
1 0.39864 0.19932
2 0.39996 0.19998
3 0.40000 0.20000
© 0.40000 0.20000

There is a significant difference between the fair premium rate for no reinstatement and
the fair premium rate based on AAL, which is equivalent to unlimited free reinstatements.
In the above examples, the up-front premium rates are 0.1729 and 0.1851 for occurrence-
based and aggregate-based, respectively, versus 0.2 based on the AAL. The difference
increases with the increase of the total occurrence rate A, particularly for occurrence-
based contracts. Table 8 shows the impact of the total occurrence rate on the premium
rates, keeping the severity distribution unchanged.

Table 8 Impact of Total Occurrence Rate on Premium
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A Occurrence-Based* | Aggregate-Based* | Unlimited Free Reinstatements
0.03 0.0197 0.0199 0.02
0.3 0.1729 0.1851 0.20
3.0 0.6335 0.9004 2.00
3000 0.6667 1.0000 2000

* No reinstatements

The limiting case of the premium rate for an occurrence-based contract with no
reinstatements as A — oo is the expected severity divided by the limit, since it is a
certainty that an event will occur, and when it does occur the expected loss is equal to the
expected severity. The limiting case of the premium rate for an aggregate-based contract
with no reinstatements as 4 — oo is unity, since it is a certainty that the full aggregate
limit will be paid.

Reinstatement Premiums Pro Rata for Time

Often, the reinstatement premium is proportional to the remaining time in the reinsurance
contract after an occurrence. Given a loss, the reinstatement premium would be

P,,,-,“,=R'C'L'(1—l) (20)

And the total collected reinstatement premium for a contract limited by nor number of
occurrences® is

min{n nor)

TotP,,,, = ZiR-c-L,--(l—r,-) @
i:

where 7 is the time of the loss in years (assuming a one-year contract) and » is the number
of occurrences in the year. The time remaining in the contractis 1 - ¢. For example, ifa
loss occurs on October 1* of an annual contract with an effective date of January 1%, then
t=10.75, and the time remaining is 0.25.

The expected value of the total collected reinstatement premium is

E[TotP,,,,|= E{mmi';-c- L-(1 —r,.)] (22)

min{n,nor)
=R-c-E L-(-1) (23)
P

¢ Reinstatements limited by the aggregate losses are left for further study.
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Since the L;’s are independent of the ¢;’s,

min{n,nor)

=R-c- 3 E(L) E(1-1) (24)
=l

Since the L;’s are independent of each other, E(L;) equals the expected severity:

min(n,n0r)
=R-c ZS(L)-E(]—(,) (25)
min{n nor)
=R.c-S(L)- J.E(1~-1) (26)
im|
Since Eo(L;nor) = S(L) - E(n;nor),
Sar
=R-c-E,(L;nory —=—— @n

E(n,nor)
where RT; is the expected time remaining after the i occurrence.

Adding the up-front premium, we get the total expected premium collections:

nor

2RT,

E(P)= R-c-E,,(L;nor)-m (28)

To calculate the fair premium amount, we set the expected premium collections from

> 1

equation (28) equal to the expected losses from equation (9). Letting 6 = 1’3‘& 0’ we
n;
get
R-LMT+R-c-E (Lynor)-6,, = E,(L;nor+1) (29)
Solving for R, we get the fair up front rate on line:
Re E,(L;nor +1) 30)

(ZMT +c- E,(L;nor)-6,,)

We calculate the expected remaining time RT}j by integrating the distribution of the
arriving time. Given the assumption of a Poisson process, the distribution of the arriving
time for the ™ occurrence is given by a Gamma distribution, as shown in equation (31):
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A(A)* Ve

/}U)=-”z;:7ﬁ—— @n

The expected time remaining after the £ occurrence is

RT, = [(1- 00, (nd (32)
For k = 1, this reduces to equation (33). See Appendix B for the derivation.

_ A+vet -1

T
RT )

(EX))

Table 9 shows the expected remaining time after the first occurrence for various A values.

Table 9 Expected Remaining Times

A RT; G,
0.003 0.0015 0.5002
0.03 0.0149 0.5025

0.3 0.1361 0.5250
3.0 0.6833 0.7191

30 0.9667 0.9667

3000 0.9997 0.9997

The limiting case of 8y as A — 0is 0.5, and the limiting case of &; as A — < is unity.

The expected losses and premium rates with various numbers of reinstatements are given
in Table 10 for ¢ = 1.0, using the event loss table from Table 2:

Table 10 Expected Losses and Fair Premium Rates When ¢ =1
Number of Reinst. Expected Loss (in $million) Rate on Line
0 0.34558 0.17279
1 0.39482 0.18090
2 0.39962 0.18176
3 0.39998 0.18180
0o 0.40000 0.18182

[t is interesting to observe that the summation of the remaining time for a one year period,

nr

Z RT, , converges to A /2 when nr approaches infinity (see Appendix C for the proof).

knl
Since E(n;00) = A, G converges to 0.5. Hence, the fair premium converges to
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E (L) 04

R: =
(LMT +c-E,(L;0)-6,) (2.0+1-04-05)

=0.18182

Comparing Table 10 with Table 3, the up-front premium when considering the
remaining time is higher because the cost of a reinstatement after an occurrence is lower.

It should be noted that although earthquakes occur uniformly throughout the year,
hurricanes and tornadoes are seasonal. Particularly, along the Atlantic coast, most
hurricane landfalls are in September or October. Thus, the above derivation would need
to be modified to account for this seasonality. The consideration of seasonality is beyond
the scope of this paper.

Summary

This paper has shown how to use the output from a catastrophe model to calculate the fair
premium of catastrophe treaties with reinstatement provisions. The basis for the analysis
is the catastrophe model’s event loss table, which contains all of the information needed
to make the calculations.

The paper also investigated the effects on the fair premium of a catastrophe treaty when
various reinstatement provisions are considered. Some of the findings:

e Basing the up-front premium on the average annual loss to a treaty, disregarding
reinstatements, is equivalent to assuming that there are unlimited free reinstatements.
If, on the other hand, reinstatements are limited and paid, then the up-front premium
will be lower because fewer losses will be covered (because the reinstatements are
limited) and some of the premium will be paid after an event has occurred (because
the reinstatements are paid).

e Unless the expected severity is very small relative to the limit, the more paid
reinstatements allowed the lower the up-front premium will be. This is because the
additional reinstatement premiums expected to be collected will outweigh the
additional expected losses.

e Reinstatement provisions based on aggregate losses will have higher expected losses
than those based on the number of occurrences. In general, if the number of
reinstatements is one or more, the up-front premiums will be less for aggregate-based
reinstatements than for occurrence-based reinstatements. This again is because the
additional expected reinstatement premiums will outweigh the higher expected losses.

e If the reinstatement premium is proportional to the remaining time in the reinsurance

contract after an occurrence, then the up-front premium should be higher because less
reinstatement premiums will be collected.
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In this paper we did not consider expenses or risk loads, which are areas for further study.
Other areas that deserve further study are reinstatement provisions that are limited by
aggregate losses and have reinstatement premiums pro rata for time; and the effect of
seasonality on the expected reinstatement premiums.
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Appendix A

Calculation of the aggregate loss distribution

We use the recursive method as described in “The Aggregate Claims Distribution and
Stop Loss Reinsurance” by Harry H. Panjer. Mr. Panjer uses for his examples fixed
benefit life insurance claims. Here we make the translation that an event that causes loss
to the catastrophe treaty is one claim.

Using Mr. Panjer’s notation, our event loss table (Table 2) is show below as Table A1:

Table Al Event Loss Table

J Loss Amount =;U Rate =6; 6 =Ej

1 $1,000,000 0.2 0.2

2 $2,000,000 0.1 0.2
Total 0.3 0.4

U is the greatest common divisor of the loss amounts for the claims, in this case
$1,000,000. Then is the loss amount divided by U.

Note that the sum of the £’s is the average annual loss.

Let P; represent the probability that the aggregate loss will be exactly iU, and n be the
number of events in the event loss table. Mr. Panjer derives the recursive formula for P;:

min(s.n)
PSR, (A1)
L
where
Py=exp| -8, (A2)
Fo

Applying these formulas to the values in our event loss table, we get:

Po=exp(-0.3) = 0.7408

P;=02*0.7408 =0.1482

Py=(172)* (0.2 * 0.1482 + 0.2 * 0.7408) = 0.0889
P3=(1/3)* (0.2 * 0.0889+ 0.2 * 0.1482) = 0.0158
Py=(174)* (0.2 * 0.0158 + 0.2 * 0.0889) = 0.0052
elc.

These are the probabilities f{4) shown in Table 5.
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Appendix B

Expected time remaining after the first occurrence
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Appendix C

Proof of the convergence of the summation of remaining times

Assuming the contract period T is one year, we have

3 k7, - I{i(l—r)f,, (r)}m

kel o Lkm

g,

0 \Lkal

Set £'= k-1 , and we have

;S_:Rn = jz(l-r){zﬂ)—fi}m

1
= a0 -ndr =054
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Catastrophe Risk Mitigation:
A Survey of Methods

by Lewis V. Augustine, ACAS, MAAA
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INTRODUCTION

Until the late 1980's, insurers typically handled catastrophe risk through the purchase of a cat
reinsurance treaty. Despite its low retention, cat losses were not expected to pierce this layer. In
fact, from 1980 through 1988, aggregate industry cat losses averaged only $1.5 billion annually
with a standard deviation of $0.7 billion. However, these statistics deteriorated immensely in the
following years, due to Hurricanes Andrew, Hugo, and Iniki, the Loma Prieta and Northridge
Earthquakes, and years of poor winter weather. Average annual cat losses in these years
increased seven-fold to $9.8 billion. Even more shocking was the volatility around this average,
with the standard deviation increasing to $7.4 billion'.

Following Hurricane Andrew in 1992, the cat reinsurance market hardened, due to "payback” for
the hurricane, insolvencies, and a general reluctance to write reinsurance at any price. Out of
this capacity shortage emerged a host of products aimed at tapping new sources of capital to help
insurers and reinsurers mitigate their cat risk. The capital markets with trillions of dollars
invested in stocks, bonds, and real estate, seemed the likely candidates to lead this charge. In
fact, the Chicago Board of Trade (CBOT) developed and began trading options and futures
contracts based on ISO property losses in late 1992. Since that time, the following products have
also emerged:

1. The Catastrophe Risk Exchange (CATEX)

2. PCS Cat Options

3. Contingent surplus notes / Act of God Bonds / Cat Equity Puts
4. Special purpose reinsurers

In this paper, 1 will analyze these "non-traditional" methods of reducing and/or transferring cat
risk; "traditional” reinsurance mechanisms will also be examined. None of the reinsurance
concepts are new. However, they may not have been viewed in light of cat mitigation in the
past. With the property reinsurance market the softest in five years, it is essential to consider
these traditional products whenever we evaluate any of the alternatives.

! These statistics are based on Property Claim Services (PCS) loss estimates. It should be recognized that [
performed these calculations based on cats greater than $5 Miltion. Now, PCS only records cats greater
than $25 Million.
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TRADITIONAL

L. PER OCCURRENCE CAT EXCESS OF LOSS TREATY

Perhaps the most common form of reinsurance for handling cat risk is the per occurrence excess
of loss cat treaty. These treaties typically apply after all other reinsurance, protecting the
insurer's net line. They are usually split into five to seven layers, each with a retention, limit, and
co-participation. Division into layers is done for several reasons. First, it allows reinsurers
flexibility to participate on the layers of their choice. Some prefer the higher premiums
associated with the lower layers. Other would rather sacrifice premium for the lower probability
of loss in the upper layers.

Second, per program capacity is usually several times greater than per layer capacity.

Example

A reinsurer offers a maximum layer limit of $1 million and a maximum program limit of $5
million. An insurer looks to place a cat treaty of $100 million x $50 million, split into five equal
layers of $20 mitlion. Considering its maximum limits, the reinsurer can offer $1 million limits
on each layer for a total of $5 million. If the program was not split into layers, the reinsurer
could only offer $1 million in total limits (The program would be viewed as one layer).

Third, it allows the insurer more flexibility in establishing co-participation percentages by layer.
This is similar to the first point above. An insurer may have different preferences for risk at
various layers. Through the use of co-participation, this variability of risk appetite can be more
easily satisfied.

In the years prior to Hurricane Andrew, cat treaty retentions were set at relatively low levels,
such as $15 million - $25 million. When reinsurers realized the destruction that could be caused
by cats, the markets tightened. Cat treaty retentions moved upwards toward $100M, rates
increased, and cat capacity was difficult to obtain. Today, rates are softening, but not to the
levels seen before Andrew.

From a reinsurer's standpoint, cat treaties are viewed as pure risk reinsurance. Neither the
insurer nor the reinsurer expect to use the treaty, except possibly the first fayer. Even then, only
under remote circumstances. As such, the reinsurer should expect no payback for losses, if
losses do occur.

A typical cat treaty covers one occurrence above the retention. If the contract contains an
automatic reinstatement clause, the insurer must immediately pay a premium to reinstate the
limit when the retention is breached. This provides coverage for a second occurrence in the
reinsured layer. For this reason, they are usually viewed favorably by insurers. However, if the
first cat occurs towards the end of the treaty period, reinstatement premium is a cost with little
potential benefit. Reinstatement premiums can be proportional to the amount of limit used, the
time remaining in the treaty period, or a combination of both.

II. QUOTA SHARE REINSURANCE

Quota share is one of the oldest forms of reinsurance and simplest to understand. Deals are
transacted between the insurer and reinsurer directly or through a broker. In its purest form, the
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insurer agrees to cede X% of all premiums and losses to the reinsurer. The reinsurer will pay the
cedant a ceding commission, which is loosely equal to the expense of writing and servicing the
risk directly. The financial impacts of a simple quota share treaty can be seen in Appendix 1. If
the direct expense ratio equals the ceding commission, the direct, ceded and net financial ratios
will mirror each other.

Although it is possible to get an earnings enhancement with a quota share, it is an inefficient
means to that end. However, it is an effective way to reduce the probable maximum loss 2 in a
region, state, or country. A quota share treaty may be structured to function as a cat treaty.
Suppose a company has the following underwriting expectations:

1997 direct accident year loss + ALAE ratio = 60%

1997 direct calendar year earned premium = $500 million
1997 direct expense ratio = 35%

1997 direct North Atiantic PML = $400 million

The 60% loss ratio only covers budgeted cat and non-cat losses.

Since the goal is to reduce the North Atlantic PML, a 25% quota share treaty for the North
Atlantic only, having a 35% ceding commission and a 125% occurrence limit is purchased. In
addition, there will be a loss corridor from 50% to 70% where the cedant is responsible for 100%
of the losses. Since we expect to be within the corridor and, therefore, share underwriting results
with the reinsurer below it, the treaty will mainly function as cat protection against a large event.
To determine the amount of cat protection available, it is best to translate these treaty terms into
those commonly found in a cat treaty.

We are expecting a 60% loss ratio for the accident year, which is in the middle of the corridor.
The 10 points over this plan to the top of the corridor may be viewed as retention on the PML,
For our plan this will be a $50 million retention on the $400 million PML. Above the $50
million, we can start ceding 25% of the PML. This is similar to co-participation, which is
present in most cat treaties. In this case, we will have a 75% co-participation on the $350
million remaining loss. In cat treaty terminology, this is 25% part of 350 million x 50 million.
The ceded portion of the PML would be 25% of $350 million or $87.5 million. As you can see,
the net PML is reduced to $312.5 million.

Besides the PML protection, one other less obvious aspect of this treaty compared to a cat treaty
is the relatively low price. In this example, we expect to pay a [ 5% margin or $18.75 million
and receive an occurrence limit of $156.25 million. This is a 12% rate on line, which would be
an attractive rate for a cat treaty with similar limits. In addition, there is usually room to cede at
least part of a second occurrence with no associated reinstatement costs. On the other hand,
there is usuatly an aggregate limit less than two times the occurrence limit.

A summary of some of the advantages of a quota share to an insurer is as follows:

2 The probable maximum loss (hereafter referred to as "PML") is the maximum loss that will occur under
normal circumstances. One example could be a large Homeowners fire loss, where the sprinkler system
works to specifications. The home may be partially salvageable. This is in contrast to the maximum
possible loss, which is the absolute worst loss that could occur.
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1. PML reduction.

2. Allows an insurer to grow in areas where cat risk is not fully known. Under this scenario, the
insurer could purchase a quota share treaty the first year and reduce it in subsequent years as
more is learned about the true risk in the area.

3. Immediate Statutory surplus relief equal to the amount of the ceding commission; minimal
GAAP equity relief

4. Protection against non-cat losses

On the other hand, some of the disadvantages are as follows:

. May be ceding a portion of our narrow direct Underwriting profit margin in a good year

. If an insurer becomes too dependent on reinsurance, it will become costly when prices harden
. Potentially, a false crutch for unmanaged, excessive growth

. Should expect to pay back reinsurer in the long run

. Credit risk of the reinsurer, especially during the most critical time -- following a large event
. Giving away a small cash flow benefit

AWV h W —

III. AGGREGATE EXCESS OF LOSS TREATY (XOL)

In the early 1990's, the NAIC and FASB began revising and implementing new regulations
regarding reinsurance risk transfer. To qualify as reinsurance, a treaty must transfer
underwriting and timing risk to the reinsurer; otherwise, no credit on losses can be taken and the
transaction must be accounted for as a deposit. With these new regulations, finite risk
reinsurance initially shrunk in popularity, but is growing again. It provides a good middle
ground for insurers seeking a balance between reinsurance and straight financing

Aggregate excess of loss covers have been around for many years. One of the primary functions
of a typical treaty is stabilizing current year earnings, while transferring a small amount of risk.
If the company's goal is to achieve their accident year plan, it would purchase an aggregate XOL
treaty that attached at the plan loss ratio or dipped down into the plan. Some insurers choose to
accept a small amount of volatility in their plan and set the retention a few points above plan. In
either case, the reinsurer provides a limit above the retention, which acts as a buffer against
adverse results. Finite deals of this type are often characterized by one or more of the following
features:

Additional premiums based on a multiple of ceded losses

Multi-year structure

Sublimits

Co-participation

Funds Withheld accounting, limiting the actual cash flow to the margin paid

® & o o o

Essentiatly, the treaty provides acceleration of future investment income into the current period.
In other words, we give up part of an uncertain future to lock in a benefit today. Although the
reinsurer may incur losses soon after the treaty period begins, the reinsurer will not begin paying
losses until direct paid losses exceed the insurer's retention. Therefore, the reinsurer often
sacrifices current period accounting results for an economic gain.

Appendix 2 shows an example of the accounting and cash flow of an accident year aggregate
excess of loss treaty attaching four points above plan. In this example, the incurred loss ratio
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ends up seven points above plan. All losses are incurred in the 1997 calendar year and there is
no adverse or favorable development. Direct losses are paid equaily over a ten year period. The
investment income given up is roughly equal to the "Funds Withheld Investment Credit". These
investment income amounts are cumulative. As you can see, the volatility of the accident year
loss ratio is mitigated. The 85% direct loss ratio is reduced to 80.5% on a net basis. The
reinsurer, on the other hand, suffers a 1997 loss ratio in excess of 200%.

One investment income benefit is not shown here. By ceding premium to the reinsurer, the
insurer can release the surplus supporting this premium and use it for general business purposes.
These opportunities may provide greater returns than the narrowly defined investments of
surplus as stated by statutory guidelines.

Cat risk is one of the major threats to the reinsurer's economic gain under an aggregate XOL.
Under expected circumstances the reinsurer will pay nothing for ceded losses since the plan will
be achieved. If there is adverse development due to poor Worker's Compensation or other long-
tailed lines, the reinsurer will book an incurred loss, but the payments to the insurer will not
begin for several years. When a cat occurs, the reinsurer becomes more exposed to timing risk.
Cats are usually substantially paid within a few months of occurrence. This can significantly
shorten the duration of the liability stream, leading not only to an accounting gain for the insurer,
but also possibly an economic gain.

From the insurer's perspective, an aggregate XOL treaty is a good way to accomplish the dual
result of locking in current period profits while securitizing cat risk. Because of the timing risk
cats present to the reinsurer, these treaties often have a sublimit capping the amount of cat losses
subject to the treaty. However, for a large, diversified book the reinsurer would be more willing
to set the sublimit fairly high.

The following shows some of the advantages and disadvantages of an aggregate excess of loss
treaty:

Advantages

. Current period income stability

. Cat protection

. Surplus protection

. Favorable stock analyst response, possibly leading to "buy" recommendations
. Structure passes reinsurance accounting guidelines on a conceptual basis

. Should be favorable to rating agencies

A WD LN —

Disadvantages

. Giving up future investment income for present underwriting income

2. Cat losses are paid quickly on the direct side, but may not be reimbursed on a paid basis for
many years (i. e. no cash flow benefit)

3. Specific features dictated by the market may cause failure of risk transfer tests

4. Credit risk, compounded by the long reserve tail

5. Could have large income and surplus hits if commuted early

6. Accident year help only; no coverage for prior years' reserve strengthening

7. Difficult to administer
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BLENDED TRADITIONAL / NON-TRADITIONAL

IV, THE CATASTROPHE RISK EXCHANGE (CATEX)

CATEX became operational on October 1, 1996. It is a facility where insurers, reinsurers, and
brokers can buy, sell, and trade insured risks. Subscribers to the exchange anonymously post
potential deals on a highly secure CATEX E-mail system. Other parties do not have access to
the system. CATEX is completely neutral to the deal. However, they help facilitate deals
through providing standardized contracts and even arranging collateral if necessary.

Charter: CATEX is a for profit entity, licensed as a neutral reinsurance intermediary by the New
York [nsurance Department. The Department has the right to oversee and examine them in
accordance with regulations.

Potential Members: Any insurer, reinsurer, or broker licensed or approved in New York.
Unlicensed companies can also trade on the Exchange through a licensed intermediary.

Idea: CATEX was originally conceived as a facility for diversifying one's book of business. For
example, a company heavily concentrated in Florida Hurricane could trade some of this exposure
through CATEX to another insurer for Vermont Freeze. There are thousands of other
possibilities. Recognizing that some of these exposures are not equivalent, the New York
Insurance Department allows cash as part of the deal.

Interest in the original Exchange was not great, delaying the opening of it by over a year. In
1996, however, the New York Insurance Department approved cash only transactions
(effectively reinsurance) on CATEX making the Exchange a lot more popular. Some well
known companies are now part of the Exchange, including Travelers/Aetna, USF & G, Gerling
Global, Employers Re, Everest Re, Lloyds of London. In addition, many of the major
reinsurance brokers and all the Lloyds syndicates are members.

The Trade - An Example:

* Company A posts $10 million of insured values subject to Florida hurricane it wants
to trade away :

Company A remains anonymous

Company B has a large exposure to Kobi earthquake

Florida Hurricane is 15 times riskier than Kobi earthquake

Company B decides it is interested in beginning a negotiation at which point both

parties mutually agree to reveal their identities

e After reviewing their book, B decides it can take on this Florida exposure, but insists
on a co-participation and $1 million cash

e A will agree to a 25% co-part., but no cash; in addition, they insist on a riskiness
relativity of 10

¢ B finds this acceptable and the deal is completed

e CATEX runs a computer program to randomly generate $10 million of insured
values in Florida and $100 million of insured values in Kobi from the two books of
business; this will minimize the risk of adverse selection

Accounting: transactions are recorded according to Statutory reinsurance accounting procedures.
An imputed premium is agreed upon by the two parties. which will be the ceded and assumed
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premium for both parties. Losses are reduced for recoveries in the same manner as reinsurance.
If hurricane losses are $40,000 and earthquake losses are $10,000, the accounting would ook
like the following for the two companies:

Company A Company B
Earned Premium - HO ($100,000) $100,000
Earned Premium - EQ 100,000 (100,000)
Incurred Loss & LAE - HO 10,000 30,000
Incurred Loss & LAE - EQ 10,000 0
Commissions 16,500 16,500

Premium: An imputed premium of $100,000 was agreed upon by the two parties. Company A
cedes $100,000 of hurricane premium and assumes an equal amount of earthquake premium.

Losses: Net losses are shown above. Company A incurs $40,000 of direct hurricane losses.
They have a 25% co-participation, so they retain $10,000 and cede $30,000. Company B incurs
$10,000 of direct earthquake losses. They have no co-participation, so they cede the entire
$10,000 to A.

Commissions: In swap deals, CATEX charges $150 per $1 million in insured values traded, to
each party. In the transaction above, there are $110 million of insured values, so the commission
expense is $16,500 for each party. For cash deals, 75 basis points of the cash premium is
charged. This is comparable to a reinsurer's brokerage fee.

Loss Occurrence: Following a cat occurrence, as defined by PCS or AM Best, CATEX will
determine if the loss pierces the layer. If it does, both parties will be notified. Like reinsurance,
the ceding company determines proximate cause, pays and settles all losses. The cat remains
open for 18 months following occurrence. Once the cat is paid, proof of payment is presented to
the assuming company, which will then reimburse the cedant.

Advantages

. Geographical diversification of the portfolio

. Diversification of perils

. Greater diversification leads to greater spread of risk, creating capacity

. Aliernative sources of reinsurance

. Benefits flow through underwriting income

. State of the art P/C provided with internet capabilities

. May be able to package trades into an asset-backed security to tap financial markets
. PML reduction

00 ~2 N W P WA

Disadvantages

1. Under swaps, risk is not transferred; it is traded for an equal amount of risk

2. Need a dedicated phone line to realize full capability of internet

3. Although the ceding company determines the loss, disputes are bound to occur; how will they
be settled?

4. Need more participation from major insurers to create liquidity
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NON-TRADITIONAL

Y. PROPERTY CLAIMS SERVICES (PCS) CATASTROPHE OPTIONS

PCS Cat Options grew out of ISO Cat Futures, which were first offered in December, 1992. PCS
Cat Options wete originally conceived as a way to tap into the trillions of dollars available in the
financial markets. The standardized contracts are traded on the Chicago Board of Trade
(CBOT), which guarantees their financial integrity. There has never been a default on the
exchange. There are nine PCS industry loss indices tracked: National, Eastern, Northeastern,
Southeastern, Midwestern, Western, Florida, Texas, and California.

On each index, two different sized contracts are traded. The small cap contract tracks industry
cat losses between $0 and $20 billion. These are appropriate for hedging against high frequency
cats, such as hail and tornadoes. The other contract is for high severity losses, those ranging
from 320 billion to $50 billion. A company purchases PCS Cat Options as a hedge against direct
cat losses.

Accounting period: the indices track cats occurring either in an accident quarter or accident
year. These were developed to get at the seasonal nature of cats. Since hurricanes usually only
occur in the third calendar quarter, a Florida accident quarter contract could be purchased. For
California, on the other hand, only accident year contracts are offered, since earthquakes are not
seasonal. In addition to length of contract, the parties to the contract must decide on a
development period, which runs either six-months or twelve-months after the end of the
coverage period.

Index valuation: the index value equals the industry cat losses during the loss period divided by
$100 million. Quotes are in the following format: ###.# and each point is worth $200.
Reported losses within the contract period and developed through the development period enter
the index.

How can a company use options? One obvious function is for buying a layer of reinsurance.
This is accomplished by buying an Option Call Spread. A Call is purchased because the buyer
wants to lock in a price for losses in the event that the loss index increases. An Option Call
Spread is done by buying a Call Option at the retention and simultaneously selling a Cali Option
at the (limit + retention). These points on the index are referred to as strike prices.

Exampie - Perfect Hedge
We want to hedge against California Earthquake. We have a 1% market share and would have

an equivalent share of all losses. We have a cat treaty starting at $50 million, but would like to
purchase protection below it, between $30 million and $50 million. We must answer the
following questions:

e What are the industry strike prices?
e How many options should we purchase to be perfectly hedged?
e How much should we pay?

Let's answer each question. To determine the strike prices, we must calculate the industry limits

corresponding to the layer we desire to purchase. Since we are 1% of the industry, these
amounts are as follows:
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Retention = $30 million / 1% = $3 billion; Strike price = $3 billion / $100 million = 30
Limit + Retention = $50 million / 1% = $5 billion; Strike price = $5 billion / $100 million = 50

This shows that we must purchase 30/50 call options, to provide coverage for industry losses
between $3 billion and $5 billion. Each contract will provide a $4,000 (20 points x $200/ point)
vertical strip of protection in this layer, but how many of these strips will we need? We want
$20 million in overall protection and each option provides $4,000. Therefore we will need to
purchase 5,000 30/50 call options to be perfectly protected in the layer.

What will this cost? The premium is a negotiated item. Since insurers and reinsurers are the
primary participants, the pricing has thus far followed reinsurance rates. As supply of capital
from financial markets increases, prices may decline from these levels.

For the Option Call Spread we just purchased there are three possible loss outcomes:

1. The index ends up <30 - the spread expires worthless and the purchaser only loses the
premium paid for it.

2. The index ends up > 50 - the purchaser realizes a gain of 20 points on each contract. The total
gain will be 20 points x $200 per point x 5,000 contracts = $20 million, less the premium paid.

3. The index ends up between 30 and 50, say at 40. The total gain will be (40 - 30) points x
$200 per point x 5,000 contracts = $10 million, less the premium paid.

Unlike typical option contracts, PCS cat options can only be exercised at expiration. Example
one above expires worthless, while two and three are "in the money”. This is one possible
structure of a PCS Option. There are many others.

The greatest risk facing insurers buying Option Call Spreads is basis fisk. An imperfect hedge
can result if:

e The company experiences a large cat loss, but the industry does not
o The industry experiences a large cat loss, but the company does not

In these cases the recovery from the contracts will be less than and greater than the needed
recovery, respectively.

Anyone opening an account is eligible to buy and sell options. To date, however, there has not
been much trading activity in Cat Options. Most of the participants have been members of the
insurance industry. One encouraging statistic is over 3,000 contracts were traded on September
5, 1996, providing $6.6 million in limits. On the other hand, this amount equaled the prior
quarter's total activity. Lack of appeal is due in part to the fact that results flow through
investment income, not underwriting income, as is the case with nearly all of the capital markets
solutions. From an economic perspective, Cat Options offer the same benefits as reinsurance.
Rather than go through advantages and disadvantages of Options, it is instructive to compare and
contrast them to reinsurance: )
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Cat Options Reinsurance

Standardized contracts Customized contracts

Reimbursed for incurred losses Reimbursed for paid losses

6 to 12 month tail Indefinite tail

No implied payback May have implied payback

Basis risk Perfect hedge

No credit risk Credit risk

Limited Market Large, international market

Flows through investment income Flows through underwriting income
Large potential capital supply Limited capital supply

No coverage disputes Disputes/Arbitration part of the business
Anyone can become a "reinsurer” May need approval for accounting advantages
Real risk transfer Real risk transfer

Industry loss trigger Company loss trigger

VI. CONTINGENT SURPLUS NOTES / "ACT OF GOD' BONDS / CAT EQUITY PUTS

Although these products come in many forms, they have one overriding purpose: to protect the
company's surplus in the event of a catastrophe. Usually investment banks or brokers arrange
their placement. Each of the products will be discussed followed by their common advantages
and disadvantages.

A. Contingent Surplus Notes

The most well-known deal (and only one as of 8/96) was done by Nationwide. In early 1996,
Nationwide determined that they needed a pool of funds to draw upon in case surplus was
threatened. The product acquired the name "Contingent" because surplus notes were not issued
immediately. There was the possibility of issuing them sometime in the future. Cat risk was the
most important risk Nationwide was guarding their surplus against, but not the only one. There
is no direct link between occurrence of a catastrophe and issuance of the Notes.

The deal works as follows:

¢ Nationwide Mutual establishes Nationwide Trust subsidiary

o The Trust sells corporate bonds to investors worth $400 million; coupons = Treasury + 240
basis points

o With the proceeds, the Trust purchases US Treasuries, that act as collateral for the bonds

At this juncture, Nationwide conducts business as usual. At some point in time, they could
exercise their option to issue surplus notes. The transactions would be:

Nationwide Mutual issues surplus notes to Nationwide Trust

The Treasuries are sold to purchase the surplus notes

The surplus notes replace the Treasuries as collateral on the corporate bonds
Investors are still owed full principal; coupon rate remains unchanged

The costs to Nationwide are two-fold. First, they are paying a 240 basis point premium over the
Treasuries they have purchased as collateral. Second, if they draw upon the capital by
liquidating the Treasuries and interest rates have risen, they face a loss on the face value of the
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Treasuries. Investors face the credit risk of replacing (risk-free) Treasuries with Nationwide
surplus notes.

As a final point, all principal and interest payments to note holders require approval from the
domiciliary commissioner before they are paid. This is a way that the commissioner will be sure
that certain obligations are taken care of before the notes are paid. These obligations may
include payments to policyholders after a large event.

B. "Act of God" Bonds

Unlike Contingent Surplus Notes, there is a direct relationship between occurrence of a cat and
repayment of the bond. These deals are a little more common and typically work like this:

* Alpha Insurance Company issues five-year bonds to investors at a coupon rate above
treasuries

e The coupons are guaranteed for a fixed amount of time, say three years

e If no cats occur, Alpha pays investors five annual coupons as well as the principal at the end
of five years

e [fa cat occurs and losses reach the coverage trigger a number of things could occur,
depending on the wording of the deal:

1. Reduced coupon payments following the guarantee period
2. Reduced principal payments
3. Risk of loss to principal and interest

As would be expected, the more the investor puts at risk, the greater the return over the Treasury
rate. In deals where principal is guaranteed, a portion of the proceeds is invested in Treasuries
that will mature to the face value of the bonds. In another actual deal where coupons and part of
the principal were put at risk, the investor received 1,000 basis points over Treasuries.

C. Cat Equity Puts (CatEPuts)

A unique sort of cat financing product was developed by AON, a well-known insurance and
reinsurance intermediary. The first deal involved Centre Re of New York and RLI Corporation
of Hlinois in the latter half of 1996. RLI had suffered major losses from the Northridge
Earthquake in January of 1994 and sought traditional and non-traditional solutions in case a
similar event happened in the future. They ended up with the following deal:

e Centre Re sells a Put option to RLI for three years

e The option allows RLI to put $50 million of non-voting RLI preferred stock to Centre Re in
the event of a California earthquake

e RLI pays Centre Re $1 million per year for the Put option, for a total of $3 million

Note the specific coverage trigger, unlike Contingent Surplus Notes. This limit sits on top of all
existing cat coverage. Relating the cost to reinsurance produces an annual rate on line of $1
million / $50 million = 2%. However, this is too simplistic a view. With reinsurance, the
reinsurer provides capital in the event of a loss and the deal is done. This is an exchange of
uncertainty for certainty. With CatEPuts, the "reinsurer" provides capital and could obtain an
equity stake in the insurer in return. This is an exchange of uncertainty for equity. The equity is
in the form of convertible preferred stock. Half of the stock is convertible to common stock
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three years after the event and the other half in four years. Unlike the preferred stock, common
stock has voting rights.

Under GAAP accounting, CatEPuts are considered a part of surplus, not a liability like debt
would be.

There are two contractual features worth noting. First, RLI has three to four years to buy back
the shares at market rates and avoid giving up the equity stake in the company. It was
acknowledged that Centre Re does not want to become a shareholder in RLI. Second, If the loss
were so large as to cause surplus 1o fall below a threshold, the deal would be null and void.

AON is working on similar deals ranging in size from 3100 million to $500 million.
The following lists show the advantages and disadvantages for the three products:

Advantages

. Surplus protection

. Lack of correlation with stock and bond markets

. No basis risk - you get what you pay for

. Possibly tap into alternate sources of capital within the insurance industry, namely life
insurers and pension funds

. Surplus notes are accounted for as equity, but are treated fike debt for tax purpose, since their
interest is tax deductible

. Easier to construct multi-year deals than reinsurance

. A. M. Best has promoted CatEPuts as "...an effective way to secure extra cat coverage”

. Could be effective second event products

. No reinstatement costs
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Disadvantages

1. Liquidity risk, as evidenced by the failed USAA deal in the summer of 1996

2. Education - investors know about asset risks, but how many understand cat risk? Adverse
selection may result

3. Cat risk may not be something an investor wants to have in his/her portfolio, especially with a
limited upside in exchange for possible loss of principal and interest

4. These products are virtually junk bonds, subordinated to policyholder, stockholder, and debt-
holder obligations

S. Credit risk

6. Results do not flow through underwriting income

VII. SPECIAL PURPOSE REINSURERS / SECURITIZATION

Special purpose reinsurers are established to provide reinsurance to one client. Often they are
formed in places like Bermuda to take advantage of favorable regulation and to keep the
transaction off the parent company's books. One deal completed towards the end of 1996 was
done by Goldman Sachs for St. Paul Reinsurance. The deal works as follows:

335



e St. Paul Re establishes George Town Re
o George Town Re issues two types of securities to investors:

1. Notes maturing in ten years - $44.5 million
2. Preference shares maturing in three years - $24 million

e George Town Re becomes a quota share retrocessionaire for St. Paul Re under a ten-year
reinsurance treaty

e George Town Re invests $23.2 million of the Notes in zero-coupon bonds to provide
collateral for the Note principal maturing in ten years

e The rest of the proceeds ($45.3 million) will be used as collateral for reinsuring St. Paul Re

Please see Appendix 3 for a graphical portrayal of this transaction.

One of the unique features of this deal is the multiple tranche structure. The Notes are highly
rated by S & P and Moody's, while the Preference Shares are unrated. The Notes provide a
highly securitized principal because they are collateralized. However, interest payments are
contingent on the reinsurance results. The Preference Shares, on the other hand, have no
associated collateral. Therefore, not only is the interest at risk, so is the principal.

To mitigate the investment risk transferred to investors, the business reinsured is a diversified
portfolio of low-frequency, high-severity reinsurance business. There are also sublimits on the
different classes of business assumed by George Town Re, similar to finite risk reinsurance.

The initial transaction between the insurer and the special purpose reinsurer is considered
reinsurance, assuming the risk transfer tests (FAS 113, Chapter 22) are passed. However, the
deal between the reinsurer or trust fund and the bondholders shall not be construed as insurance
or reinsurance. This portion is fully subject to investment laws.

Advantages

. Keeps financing transactions off parent's books

. Varying levels of risk offered by multiple tranches may attract a wider audience of investors
. Company specific trigger, not industry

. No basis risk

. Less regulation with offshore reinsurer

. Increased reinsurance capacity for St. Paul Re

. Locks in pricing for a number of years

. Benefits flow through underwriting income

0~ A W bW —

Disadvantages

1. Both securities offer a large amount of risk; the reward is not specified

2. Liquidity risk

3. Credit risk to investors

4. Structure is untested thus far, since there have been no major catastrophes
5. Not much feedback from regulators
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VIII. MISCELLANEOUS

In addition to the items listed above, a few other forms of securitization should be mentioned:

1. Bermuda Cat Reinsurers - these reinsurers arose in the wake of Hurricane Andrew as another
source of cat reinsurance capacity. Many were formed through investment banks, such as J. P.
Morgan and GE Capital. These markets offered no cat capacity as of 1989. However, they
currently provide 36% of the total cat capacity in the reinsurance markets. Much of this was
reallocated away from the London and domestic reinsurance markets. Some characteristics of
these reinsurers are:

e  Write property reinsurance only

o Use many of the industry cat models to evaluate risk

e Generally reinsure limits up to their capital and surplus fevel; this results in
Premium: Surplus levels less than 50%

2._Lines of Credit - credit lines are one of the oldest capital sources. An insurer or reinsurer,
based on its credit rating, pays a bank a percentage of the credit line to allow it to draw upon
under a variety of circumstances.

Insurers could use lines of credit as a bridge loan following a catastrophe. Since cats present a
tremendous timing risk to insurers, cash flow may not be available when a cat hits. However, it
may be known that earnings throughout the year will be sufficient to pay for the cat. If the
insurer had purchased a line of credit, it could draw down the funds necessary to pay for the cat.
The cost to the insurer will be the initial fee and the interest accrued when paying back the line
of credit. Since some of the companies will be able to pay this back in under a year, the latter
cost should be minimal.
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CONCLUSION

This paper has surveyed some of the core products on the market today geared to mitigate cat
risk. There are numerous other products that retain some of the major features of one or more of
the items listed above, but are tailored for individual customers. Reinsurance and alternative
products share the characteristic that each contract is unique.

Reinsurance continues to be the primary means of handling cat risk. However, the new products
are showing up more and more in the insurance periodicals as companies use them for deals. [
believe education is the key to unlocking some of the capital routinely being invested in the
financial markets. Not many people outside of the insurance industry truly understand insurance,
let alone insurance contracts. This problem is exacerbated when we start talking about specifics,
such as catastrophes, paid versus incurred losses, and reinsurance. Like anything new, there will
be a learning curve. Once more people begin looking into these new forms of "reinsurance” and
understanding them, I believe they will become more common, leading to greater liquidity and
competitive pricing.
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APPENDIX 1

Accounting for a Quota Share Treaty

Assumptions

Direct Premium = $1000 Direct PML = $200
Direct L/R = 60% Quota Share = 25%
Direct E/R =35% Ceding Commission = 35%
Direct Ceded Net
Premium 1000 250 750
Losses 600 150 450
PML 200 50 150
Expenses 350 87.5 262.5
U/W Margin 50 12.5 37.5
L/R 60% 60% 60%
Combined Ratio 95% 95% 95%

This transaction shows a year-end $12.5 decrease in Statutory and GAAP earnings, due to

ceding profitable business. At intermediate points during the year, GAAP earnings will
be better.

There is immediate Statutory surplus relief in a quota share transaction. This stems from
the fact that we cede an unearned premium reserve (liability) and an equal amount of cash
(asset). However, we also receive a ceding commission (cash), so Statutory surplus is
increased by this amount. This benefit goes away under GAAP, since we are ceding
DAE (asset) equal to the ceding commission.
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APPENDIX 2

AGGREGATE EXCESS OF LOSS EXAMPLE - ACCOUNTING AND CASHFLOW

ove

Subject Premium 5,600,000,000

Plan Loss Ratio 74%

Retention 78% 4,368,000,000

[Aggregate Limit 500,000,000

Leverage Factor 2.25

Direct 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Eamed Premium 5,600,000,000

Incurred Loss Ratio

Incurred Losses 4,760,000,000

Paid Losses 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000
Cume Paid Losses 476,000,000 952,000,000 1,428.000,000 1,904,000,000 2,380,000,000 2,856,000,000 3,332,000,000 3,808,000,000 4,284,000,000 4,760,000,000
Cashflow . 5,124,000,000  (476,000,000) {476,000,000) (476,000,000) (476,000,000) (476,000,000) (476,000,000) (476,000,000) (476,000,000) (476.000,000)
Ceded

Eamed Premium 174,222,222

Incurred Losses 392,000,000

Paid Losses - - - - - - - - - 392,000,000
Margin 10,000,000

Funds Withheld Inv. Credit 0 12,316,667 25,557,083 39,790,531 55,091,488 71,540,016 89,222,184 108,230,514 128,664,470 150,630,971
Funds Withheld 164,222,222 176,538,889 189,779,306 204,012,753 219,313,710 235,762,238 253,444 406 272.452,737 292,886,692 (77.146 806}
Cashflow 10,000,000 - - - - - - .- - (77,146,806)
Net

Earned Premium 5425777778

Incurred Losses 4,368,000,000

Incurred Loss Ratio

Paid Losses 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476,000,000 476.000,000 476,000,000 476,000,000 84,000,000
Cume Paid Losses 476,000,000 952,000,000 1,428,000,000 1,904,000,000 2,380,000,000 2,856,000,000 3,332,000,000 3.808,000,000 4,284,000,000 4,368,000,000

Cashflow 5.114,000,000  (476,000,000) (476,000,000) (476.000,000) (476,000,000) (476,000,000) (476,000,000) (476,000,000) (476,000.000) (398,853,194)



APPENDIX 3

SPECIAL PURPOSE REINSURER

Quota Share Cessions
N ——p Capital = $23.2
St. Paul Re. <\ George Town Re. Federal Reserve

Rein. Capacity A US Treasuries

Capital = $68.5M

1. 10-year notes = $44.5M
2. Preference shares = $24M

v

Investors
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Workers’ Compensation D-Ratios, An
Alternative Method of Estimation

by Howard C. Mahler, FCAS, MAAA
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WORKERS’ COMPENSATION D-RATIOS,
AN ALTERNATIVE METHOD OF ESTIMATION

BY HOWARD C. MAHLER, FCAS, MAAA
THE WORKERS’ COMPENSATION RATING AND
INSPECTION BUREAU OF MASSACHUSETTS

Abstract
This paper presents a new method of estimating D-Ratios by class based on

estimated average claim costs by class, that is being used in Massachusetts
Workers’ Compensation.
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WORKERS’ COMPENSATION D-RATIOS, AN ALTERNATIVE

METHOD OF ESTIMATION

This paper will present a new method of estimating D-Ratios by class that is being used
for Massachusetts Workers' Compensation.' This method based on average claim cost is
compared to the prior method in Table 8.

Background

In Workers’ Compensation Experience Rating claims are generally split into a Primary
and Excess portion. In Massachusetts and most other states, the portion of each claim below
$5,000 is Primary. The portion above $5,000 is Excess, but all the dollars above a certain limit
(which is currently $175,000 in Massachusetts) are excluded from Experience Rating.

The D-Ratio (Discount Ratio) is defined as the ratio of the future Expected Primary
Losses to the Expected Primary plus Excess Losses.” A separate D-Ratio for each classification
in each state is needed. For Massachusetts the D-Ratios are generally between 10% and 30%.

The effect on the Experience Modification of a difference in D-Ratios is discussed in the

Appendix. All other things being equal the higher the D-Ratio the lower the Experience

! This method tums out to be similar to one presented by Arthur Bailey [1].

? In Workers® Compensation experience rating Expected Losses are obtained by multiplying payrolls by class times
the corresponding Expected Loss Rates by class. Then for each class the Expected Primary Losses are the product
of the Expected Losses times the D-Ratio for that class.

? In a state with lower average claim costs but using the same $5,000 dividing point, the percentage of primary
losses would be higher and thus the D-Ratios would be higher.
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Modification.* In order to get an accurate Experience Modification one desires the best estimate
of D-Ratios.’

There are two basic problems in estimating D-Ratios. First, we are interested in the
expected future value. Therefore, we need to adjust the past data to reflect future conditions.
This is relatively routine and involves the usual severity trend and on-level factors for law
amendments used elsewhere in mtemaking.6 An example is shown in Table 1. Note that the
factors in Table 1 adjust the data’ available at the time of the rate indication to the expected level
of the data that will be used to experience rate insureds during the policy effective pc:riod.a
Qverview of Methodology

This paper will focus on the second and more difficult problem. The volume of data by
class in a state is insufficient in most cases to allow a good estimate of the D-Ratio directly from
the data for that class.

However, one can work with the larger groupings.9 Currently, there are five Industry

Groups generally used for Workers’ Compensation for ratemaking: Manufacturing, Contracting,

4 A .10 higher D-Ratio will result in a .04 to .07 lower Experience Modification, as discussed in the Appendix.

% As well as the best estimate of other inputs such as Expected Loss Rates, credibilities, etc.

© See for example Kallop {2] or Feldblum {3).

7 Unit Statistical Plan data is usually compiled into a report called Schedule Z.

* Generally one would use three years of data to experience rate insureds. For example, during 1996 one would
generdlly use 1994 at first report, 1993 at second report, and 1992 at third report. At the time one was estimating D-
Ratios for 1996, one might have available 1992 at first report, 1991 at second report and 1990 at third report. In
that case one would adjust the 1992 data at first report to leve! expected for the 1994 data at first report, etc.

® Hazard Groups were tried, but the use of Industry Groups did a better job of estimating D-Ratios. A major
problem is that over 90% of the experience is concentrated in Hazard Groups 2 and 3.
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Goods and Services, Oﬁice and Clerical, and Miscellaneous. In Massachusetts (and states with a
similar or larger volume of dataw) each Industry Group has a sufficient amount of data to
estimate its D-Ratio directly from the data. (See Table 2.)

The Construction Industry Group stands out from the other four as having a very

significantly lower D-Ratio."

Thus this breakdown splits out many of the classes with the
lowest D-Ratios. Also, as will be seen, much of the remaining variation within Industry Group
can be captured via relative average claim costs by class.

The methodology consists of estimating the D-Ratio of each class relative to the D-Ratio
of its Industry Group. (These estimated relativities will be balanced to unity.) This relative D-
Ratio for each class will in turn be estimated from the relative average claim cost for that class.
Classes with higher than average severities will be estimated to have lower than average D-
Ratios. In other words, if the average claim size is larger, more of the claim is excess and less is
primary.
Esti { Relative A Claim Costs by CI

The estimated Relative Average Claim Costs by class are calculated based on the most

recent seven years of Unit Statistical Plan data at second report.'> Average Claim Costs are

calculated based on data excluding fatal, permanent total, and medical-only claims, as was used

'® In states with very small amounts of data one could calculate a statewide D-Ratio and spread it to Industry Group
based on the relativities over a longer period of time or in other states.

! More large claims apparently lead to a smaller percent of primary losses.
12 Second report is the approximate average maturity of data used for experience rating. Unit Statistical Plan Data is
submitted on every individual claim of size $2,000 or more. Evaluations are currently on a paid plus case reserve

basis at the first five reports. First report is 18 months from policy inception. Subsequent reports are at 12 month
intervals.
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in the development of the model discussed subsequently. Table 3 is an example for the Office
and Clerical Industry Group for Composite Policy Year 91/92.”

For each year, for each Industry Group, the Relative Average Claim Cost for a class is the
ratio of the Class Average Claim Cost to the Industry Group Average Claim Cost. Figure 1
shows the results for two classes in the Office and Clerical Industry Group. For each class, the
seven years of Observed Relative A.verage Claim Costs are combined by taking a weighted
average using claim counts as weights. (See Table 4.)

However, there are only limited data for smaller classes. Therefore, Credibility has been
used to combine the Observed Relative Average Claim Cost by class with unity. (Unity

corresponds to the Industry Group average.) Credibility is taken equal to:

zZ = number of claims
u 2,500

A c’lass with 2,500 or more claims is assigned a credibility of 1. The classical full
credibility criterion of 2,500 claims for severity was selected based on adjusting a criterion for
frequency of about 1,000 claims by multiplying by the square of the coefficient of variation of
about 2.5.'% The results herein arc relatively insensitive to the precise choice of the full
15

credibility criterion. While a more “sophisticated” credibility method might have been

employed, in the author’s opinion classical credibility is more than adequate for this particular

B Composite Policy Year 91/92 includes all experience on policies with effective dates between 7/1/91 and 6/30/92.

" See Longley-Cook [4]. 1082 and 683 are common criterion for full credibility for frequency mentioned by
Longley-Cook. The Appendix of Longley-Cook’s paper recommends multiplying by the square of the coefficient
of variation to get a criterion for average claim costs. The observed square of the coefficient of variation for the

severity for permanent partial and temporary tota! claims is about 2.5. The square of the coefficient of variation =
variance/mean’.

" For a discussion of this subject see Mahler {5).
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application.l6 The range of estimated D-Ratios is so small that minor changes in the estimated
relative claim costs have relatively little final impact.|7

For example, the relative average claim costs by year for class 4361 are shown in Table 4.
There is sufficient fluctuation from year to year that any reasonable credibility method would
assign significantly less than full weight to this data. For example, suppose instead of 35.9%
credibility, 20% credibility were assigned. The relative average claim cost would be .957 rather
than .923. The estimated relative D-Ratio would be 1.029 rather than 1.051. The resulting
estimated D-Ratio would be .24 rather than .25 as shown in Table 7. This difference is well
within the inherent error of the whole estimation procedure.

The relative average claim cost is estimated for each class as seen in Column 11 of
Table 4:

Estimated Relative Average Claim Cost = 1 + Z (Observed Relative Average Claim Cost - 1)

These estimated Relative Average Claim Costs' are then used in the model, that will be
described next, in order to derive estimated Relative D-Ratios."’
Model of A Claim G D-Rati

As seen in Column 12 of Table 4, within industry groups, the overall average D-Ratio is

spread to each classification using the following model:

' For a comparison of the practical impact of using classical credibility versus Bayesian/Bithimann credibility see
Mahler [5]. Mahler (6] discusses the use of different criteria to select optimal credibilities. Mahler [6] and Mahler
[7] discuss the possible impact of shifting parameters over time. Taking into account the impact of shifting
parameters over time here is a possible area of future research.

'7 See the Appendix.

' See Column (11) of Table 4.

' See Column (12) of Table 4.
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(Relative D-Ratio - 1) = (- 2/3) (Relative Average Claim Cost - 1)

The form of the model is based on the fact that larger claims contribute a smaller
percentage to primary losses than do smaller claims. For example, a $3,000 claim has 100% of
its losses as primary, while a $100,000 claim has 5/100 = 5% of its losses as primary. Thus
classes with higher than average claim sizes will be expected to have a smaller percent of their
losses as Primary, and therefore, have lower than average D-Ratios.

The particular coefficient used in the model was selected in Table 5, based on an
examination of the historical relationship between average claim costs and D-Ratios.?
Separately for each Industry Group weighted least squares regressions were performed on
Relative Average Claim Costs and Relative D-Ratios by class. Table 6, Page 1 shows the Office
and Clerical Industry Group.21

The most recent Unit Statistical Plan data (1st, 2nd, and 3rd report combined) by class is
used (without adjustment for law amendment or trend). An Observed D-Ratio is calculated in
Column 4 of Table 6 for each class as the ratio of Losses Limited to $5,000 to Losses Limited to
$175,000. The Relative D-Ratio in Column 5 of Table 6 for each class is the class D-Ratio
divided by the average for the Industry Group.

As was done previously, the Average Claim Cost by class is calculated for other than

fatal, permanent total, and medical-only claims. The fatal and permanent total claims are rare

% In some sense the proportionality constant is a second use of credibility. The proportionality constant measures
how much of a deviation from average one would expect in D-Ratio based on a certain deviation from the average
severity.

' Table 6, Pages 2 and 3 shows the similar calculation for the Construction Industry Group.
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and usually very large, and therefore would introduce undesitable randem fluctuations.? The
medical-only claims are very numerous but due to their very small size, account for a very small
percent of total losses.? Baseq on the author’s attempts to devise a method, apparently the
medical only claims mask the important differences between classes which would be expected to
lead to different D-Ratios.

Potentially valuable information has been “thrown away” in the calculation of the relative
average claim costs by excluding fatal, permanent total and medical-only claims. However, the
resulting relative average claim costs by class showed a strong correlation with the relative D-
Ratios® by class. As in any actuarial computation, it would be possible to devise some way to
incorporate this additional information in some manner to some extent. This is an area of
potential future research, although given the small range of D-Ratios it is unlikely in the author’s
opinion to have much practical impact. There is some advantage to simple practical methods that
work, without unnecessary technical refinements of no practical importance to the particular
application.

The Relative Average Claim Cost by class in Column 9 in Table 6 is the class Average
Claim Cost in Column 8 divided by the Industry Group Average Claim Cost. For purposes of the

regression, the Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0.

2 An alternative would have been to include fatal and permanent total claims, but to cap their size as is done for
purposes of experience rating. In that case, the standard for full credibility of the observed relative average claim
cost would be adjusted upwards.

® The medical onlys usually account for a significant proportion of primary losses.

2 Which include the impact of claims of all injury kinds,
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This prevents a small class with an extreme observed average claim cost over these three years,
from unduly influencing the regression results.”*

The weights used in the regression are the number of claims by class in Column 7. Then
as stated previously, a weighted least squares regression between Relative Average Claim Costs
and Relative D-Ratios by class is performed separately for each Industry Group. Figure 2 shows
the regression for the Office and Clerical Industry Group.

These regressions yield five different estimates of an appropriate proportionality constant
to be used in the model. As shown in Table 5, a single proportionality constant is selected within

the indicated ra.nge.26

The choice of a single proportionality constant is not a necessity for
application of the method. That was the author’s judgment given the ability to only examine data
from one state over a limited period of time. Given data from more states or more years a
different choice might have been made. In any case, each user of the method could select
appropriate proportionality constants at this stage of the procedure based on the available
information and his own judgment.

Then a Relative Average D-Ratio for each class in the Industry Group is calculated in
Column 12 of Table 4, using the selected proportionality constant.

Table 7 shows the calculation of the D-Ratios for these classes. The relative D-Ratios are

balanced to unity in Column 4 using the Expected Losses by class. In Column 5 the Indicated D-

2 As seen in Table 5, the results of capping were quite significant for the Miscellaneous Industry Group in this
review,

2 A similar range was indicted in a prior review. However, there is considerable fluctuation in the slopes of the
regressions. Performing similar regressions in additional states and over more periods of time might allow one to
select different proportionality constants by Industry Group. Again, given the small range of D-Ratios, it is unclear
how much impact such a refinement could have on the estimated D-Ratios.

352




Ratios by class are the product of the balanced relativity D-Ratio for each class times the
indicated D-Ratio for the Industry Group, in this case .2355 from Table 2 for the Office and
Clerical Group.

For class 8742 (Salespersons) its estimated relative claim cost is 1.143, higher than
average for the Office and Clerical Group. This yields an estimated relative D-Ratio of
1 - (2/3) (1.143 - 1) = .905, lower than average for the Office and Clerical Group. After
balancing to unity the relative D-Ratio becomes .911. Then the estimated D-Ratio for class 8742
is (:911) (:2355) = .21.

Similarly, for every class its observed relative average claim cost will be used to estimate
its claim costs relative to its Industry Group. Then this in turn is used to estimate for each class
its relative average D-Ratio. Then the estimated D-Ratio for each class is the product of its
relative D-Ratio and the estimated D-Ratio for its Industry Group. Table 7 shows the final
estimated D-Ratios for each class in the Office and Clerical Industry Group.?’
Comparison to a Prior Method

The prior method used in Massachusetts was generally along the lines described in
Gillam [8], although some of the details differed. As shown in Table 8 in the prior method one
calculated three “partial D-Ratios™ as follows.

Primary Serious Losses (Indemnity & Medical)

D (Seri
(Serious) Serious Indemnity Losses

Primary Non - Serious Losses (Indemnity & Medical)
Non - Serious Indemnity Losses

D (Non - Serious) =

% Similar exhibits would be produced for the other four Industry Groups.

3 See Pages 238-239, 249-251 of PCAS 1992.
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Medical Only Losses
Total Medical Losses

D (Medical) =

The above statewide partial D-Ratios were used to calculate the D-Ratios by using the

following formula:

D-Ratio = (PH(DJ) * (Pa)(Ds) * (Pad(Da) g uicre p..
P, + P'l + P"'

P, and p,

are the adopted partial pure premiums underlying the rate for a class for the serious, non-serious,
and medical losses, respectively; D, D,, and D,, are the statewide partial D-Ratios; and LEF is the
appropriate loss elimination factor.?

For example, in the filing for 1/1/95 Massachusetts Workers’ Compensation rates, the

partial D-Ratios were:

D, = .089
D, = 521
D, = .10

For example, for Class 8810 (Clerical Risks) the partial pure premiums from the
classification ratemaking process were
P, = 10 P, = .07 P, = .08.
Thus, the estimated ratio of Primary Losses to Total Losses for this class was:

(10) (.089) + (.07) (521) + (.08) (.110)
10+.07 + 08

= 217.

® Loss Elimination Factors (LEF's) varied by hazard group. Multiplication by the LEF was necessary since actual
losses used in individual risk experience ratings are limited. The LEF removed that portion of the pure premium which
is excluded in the individual risk experience rating.

354




The Loss Elimination Factor (LEF)*° for Hazard Group 2*' was 1.035. So for Class 8810
the estimated ratio of Primary Losses to limited losses entering experience rating was the product
(:217) (1.035) = .22. Thus, the proposed D-Ratio for Class 8810 was .22. The D-Ratios for
every other class were calculated similarly, with P, P, and P,, differing by class and LEF
varying by Hazard Group.

The concept of this prior method is that those classes with more serious losses and fewer
non-serious losses would tend to have a corresponding higher proportion of large claims
resulting in more excess and less primary losses. In practice, there are a number of potential
difficulties.

First, the division between serious and non-serious losses is not always clear cut; it may
depend on individual insurers statistical coding practices particularly at early reports.”?
Combined with the limited data available for smaller classes and/or smaller states, this can lead
to uncertainty in the relative sizes of the partial pure premiums P,, P, and P,,,.3 2

Second, the Medical Pure Premium P, is being multiplied only by a ratio of medical only
losses to total medical losses. Since this ratio is generally smaller than the average D-Ratio, the

more medical losses a class has compared to similar classes the lower the estimated D-Ratio.

* This factor takes into account the limit on the dollars of claims that enter into experience rating. While the
concept is used in the new alternative method, a separate such factor is not calculated.

*! Class 8810 is in Hazard Group 2.

3 A claim reported as Temporary Total is non-serious while one reported as Partial Disability (including the
possibility of total benefits prior to partial benefits) is either serious or non-serious. At early reports prior to any
partial disability payments, carrier judgments may determine whether a claim is reported as Temporary Total or
Partial Disability.

 This can occur even if their sum: P, + P, + P, is fine for estimating class relativities.
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Yet, a larger proportion of medical losses from both large and small accidents is not obviously a
determinant of the proportion of primary dollars of loss.

Third, for the determination of primary and excess losses the medical and indemnity
pieces of a claim are summed together rather than divided apart and treated separately.® Thus,
the prior method employed a split not inherently present in the specific real world phenomena we
are trying to measure and/or estimate.

In spite of all these potential problems, this prior method did a reasonable job. To some
extent this is due to the relatively small range of D-Ratios compared to the large range of
classification rates.”> One step that could have been added to the prior method was to balance the
final estimated D-Ratios by class back to those observed in the (adjusted) data either by Industry
Group or overall. This would have removed any bias or off-balance introduced.

Conclusions

The method presented employs a series of relatively simple techniques to estimate D-
Ratios by class from D-Ratios by Industry Group. This differs from the prior methodology
which for each class weighted together “partial D-Ratios” using formula pure premiums broken
down into serious, non-serious, and medical. These two methods are contrasted in Table 8. The
method presented has the advantage of taking into account the actual severity data for each class

(to the extent it is credible) in estimating the D-Ratio for each class.

> In addition, no specific distinction is made in most states based on injury kind for experience rating.

** While class rates could easily vary from 20 cents to 100 dollars, D-Ratios might range from about .10 to .30,
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Example Classes from Office & Clerical Industry Group Figure 1
Relative Average Claim Costs Massachusetts Workers' Compensation

Class %
14 o 8742 (Salesperson) | .
' -s-8868 (School Professional)
T S T R
1.2 _*_* ___________________________________________________
TR T T
* *
4 e X .
0.9 —-rormeeeeees B oo
[ ]
0.8 oo B e
[ ]
0.7 - el ellliiiosisiooiiecooooseoos *
[ ]
0.6 [ | ! [ | | 1
85/86 86/87 87/88 88/89 89/90 90/91 91/92

Composite Policy Year (at 2nd report)



6S¢

1.9
1.8
1.7
1.6
15
14
1.3
1.2
1.1

0.9
0.8
0.7

Office & Clerical Industry Group by Class

Relative D-Ratio Massachusetts Workers' Compensation

. o 81

28

113

4 2164

o 282

Figure 2

-1  Weighted %1 0162
Least
| Squares
B Regression
Line
| 156 "
234 o
T 1 T T T T 1
0.6 0.7 0.8 0.9 1 11 12 1.4

Relative Average Claim Cost

Points for each class labeled by number of claims (3 years). CPY 92/93 @1st, CPY 91/92 @ 2nd,

CPY 90/91 @ 3rd, combined. Permanent partial and temporary total claims.



09¢

Experience Rating Credibilities, Primary vs Excess Figure 3
Massachusetts Workers' Compensation
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Massachusetts Workers' Compensation
Combined Severity Trend and Law Amendment Factors -

Severity Trends*

Composite Ll U Y. s i
Policy Year 1 2 3 4 5
90/91 1.0827 1.0827 1.0827 1.0827 1.0827
91/92 1.0699  1.0699 1.0699 1.0699 1.0699
92/93 1.0756 1.0756 1.0756 1.0756  1.0756
Law Amendment Factors

90/91 0.771 0.692 0.848 0.961 0.745
91/92 0.979 0.959 0.999 1.038 0.965
92/93 1.026 1.015 1.022 1.040 1.007

Combined Severity Trend and Law Amendment Factors (A x B)

90/91 0.8348 0.7492  0.918! 1.0405  0.8066
91/92 1.0474 1.0260  1.0688 1.1106  1.0325
92/93 11036  1.0917 1.0993 1.1186  1.0831

Table 1

1.1746
1.1170
1.1077

1.007
1.012
1.021

1.1828
1.1304
1.1310

1.1746
1.1170
1.1077

1.007
1.012
1.021

1.1828
1.1304
1.1310

1.1746
1.1170
1.1077

1.007
1.012
1.021

1.1828
1.1304
1.1310

1.1746
1.1170
1.1077

1.007
1.012
1.021

1.1828
1.1304
1.1310

1.1746
1.1170
1.1077

1.007
1.012
1.021

1.1828
1.1304
1.1310

The trend factors are adjusting for the effects of inflation expected during the two year period between the Schedule Z data used in
the calculation of D-Ratios and the data that will be used to calculate Experience Modifications during the policy year effective

period 7/1/96 to 6/30/97.
(This data corresponds to C.P.Y. 92/93, 93/94, and 94/95.)

1.1746
1.1170
1.1077

1.007
1.012
1.021

1.1828
1.1304
1.1310



MASSACHUSETTS WORKERS' COMPENSATION

Observed D-Ratios by Industry Group

O ) €)] @
=)/ (3)
Adjusted Adjusted
Industry Schedule Z Schedule Z
Group Losses limited Losses limited Observed
to $5,000 to $175,000 D-Ratio
Manufacturing 107,469,897 431,334,977 0.2492
Construction 52,105,826 351,216,628 0.1484
Office & Clerical 55,821,603 237,007,928 0.2355
Goods & Services 160,437,682 629,524,720 0.2549
Miscellaneous 47,147,170 200,469,410 0.2352

(2),3):  Schedule Z losses (1st, 2nd, and 3rd report combined, includes all injury kind)
Losses are adjusted using the Law and Trend Factors shown in Table 1.
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Table 3

MASSACHUSETTS WORKERS' COMPENSATION
Relative Average Claim Costs
Industry Group: Office & Clerical
Composite Policy Year 81/92 @2nd Report

(1) (&3] [©] @) [6)]
=) () = (4YTT(4)
Losses Number of Averag Relath g
Class (Indemnity+Med) Claims Claim Cost Claim Cost
4361 512,201 33 15,524 1.002
7810 71,191 58 13,296 0.858
8601 1,280,543 2] 14,182 0.915
87142 14,203,155 635 22,387 1.444
8748 847,220 45 18,827 1.215
8800 469,388 42 11,176 0.721
8803 597,359 17 35,138 2.268
8810 31,745,877 2,039 15,569 1.005
8820 2,075,842 a7 23,858 1.840
8832 4,516,909 266 18,981 1.096
8833 8,752,453 730 11,990 0.774
8868 7,753,183 704 11,013 071
8901 47,799 8 5,975 0.386
9156 416,680 21 19,842 1.281
Total 73,999,490 4,776 15,494
(2),(3): Losses and Number of Claims are as reported, but excluding any Fatal, P Total,

and Medical Only Clalms. (Losses are neither limited nor adjusted.)
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Table

MASSACHUSETTS WORKERS' COMPENSATION
Estimatod Relative D-Ratio
Industry Group: Office & Clerical

U] @ ()] 4) 16)] © n @) ) (10) (33)] (12)
= 14+(10p4(8)-1) = 1231131
85/86 88/87 87/88 88/89 89/90 80/91 9182 Combined Estimated Estimated
Class  Relative Relative Relative  Relath Relath Relath Relath Relative Relative Relative
Code ACC ACC ACC ACC ACC ACC ACC ACC  Credibliity ACC D-Ratlo
4361 0.680 0.920 0.640 0.708 1.087 0.428 1.002 0.785 0.359 0.923 1.051
7610 1.825 1.351 0.839 0.934 1.127 0.969 0.858 1.059 0.382 1.023 0.985
8801 0.983 1.440 1.169 1.069 1.028 0.919 0.915 1,100 0613 1.061 0.859
8742 1.211 1.164 1.031 1.221 1.028 1.017 1444 1.143 1.000 4.143 0.805
8748 2.085 1.747 2.15% 1.967 2130 1.628 1.215 1.895 0.425 1.380 0.747
8800 0.826 0.725 1.025 0.830 0.883 1.385 0.721 0.889 0.381 0.580 1.027
8803 0.416 1.124 0.472 1.893 0.830 1.108 2.268 1.029 0.274 1.008 0.995
8810 0.982 1.021 1.044 1.040 1.068 1.113 1.008 1.040 1.000 1.040 0.973
8820 1.800 1.307 1.830 1.638 1.238 1.216 1.540 1.450 0413 1.188 0.878
8832 1.031 1.233 1.538 1.176 1.051 1.037 1.096 1.150 0.769 1.115 0.923
8833 0.952 0.773 0.814 0.702 0.863 0.684 0.774 0.837 1.000 0.837 1.109
8868 0.806 0.905 0.828 0.875 0.796 0.724 0.71% 0.774 1.000 0.774 1.151
8901 1.019 0.556 1.128 1.068 0.788 0.567 0.386 0.817 0.263 0.952 1.032
9156 0.4%0 0.668 1.005 1.066 701 0.604 1.281 0.803 0.261 0.949 1.024
(8): See Table 3.

(9): Seven Years of relative average claim costs are combined by taking a weighted average using claim counts as welghts.
(10): Credibllity = square root of (7-yrs-claim-count by class 7 2,500) limited to unity.
(11} Relative Average Clalm Costs are credibility welghted with unity.
{12). Relative D-Ratio = 1 - (2/3) (Relative ACC - 1), where the prop vality is selected based on
separate regressions fit to data for each industry group. See Table 5.
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Table 5

MASSACHUSETTS WORKERS' COMPENSATION
Determining the Proportionality Constant for Relative D-Ratio

1) @ €))
Computed Computed
Industry Proportionality _ Proportionality
Group Constant Constant (Capped)

Manufacturing -0.568 -0.694
Construction -0.719 -0.737
Offico & Clerical -0.650 -0.650
Goods & Services -0.523 -0.540
Miscellaneous -0.374 -0.898

Selected [ -273 |

(2) The proportionality constant is selected based on separate regressions

fit to the relative average claim costs (for Permanent Partial and

Temporary Total Claims) versus relative D-Ratios by class.

Data is from Schedule Z for first, second, and third report combined. It is not adjusted.
(3) The Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0,
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Table 6

Page 1
MASSACHUSETTS WORKERS' COMPENSATION
Determining the Proportionality Constant for Relative D-Ratio
Industry Group: Office & Clerical
(4)} 3] 3 @) (5) (G)] @ @ 8)
Losses Losses Total

Class Limited Limited Relative Lossges Number of Relative
Code to $5,000 to $175,000 D-Ratlo D-Ratio* {ind.+Med.) Claims ACC ACC*
4361 417,428 1,169,121 0.357 1.532 1,198,587 113 10,607 0.656
7610 703,047 2,787,015 0.252 1.082 2,538,887 162 15,6872 0.969
8601 1,233,601 4,762,304 0.259 1.112 4,836,242 282 17,150 1.081
8742 7,850,471 38,311,049 0.211 0.908 37,593,218 1,880 16,996 1.237
8748 659,224 3,592,017 0.184 0,790 3,566,061 56 22,859 1414
8800 395,163 1,791,027  0.224 0.948 1,727,524 114 15,154 0.837
8803 268,653 1,468,201 0.178 0.785 1,423,213 83 22,591 1.397
8810 23,205,475 103,787,838  0.224 0.961 103,870,417 8,013 17.274 1.068
8820 1,007.848 5,777.652 0.174 0.747 5,615,590 234 23,998 1.484
8832 2,884,430 13,527,832 0.213 0.914 13,111,806 768 17,072 1.056
8833 6,682,857 26,771,313  0.250 1.073 25,744,078 1,988 12,950 0.801
8868 7,705,442 26,671,767 0.289 1.240 24,622,778 2,164 11,378 0.704
8901 130,497 342,235 0.331 1.835 310,662 28 11,085 0.686
9156 568,573 1,237,821 0.459 1.970 974,157 81 12,027 0.744
Total 63,592,907 229,077,382 0.233 227,133,017 14,046 16,171

e S wxy - WXAY WIS W

Y wxt—(

WX 1Y W

where X = Relative ACC -1, Y = Relative D-Ratio - 1, and W = Claim Count

Regression Result:

Uncapped Result
Capped Resuit

=> Y =0.020 - 0.850 X
=> Y =0.020- 0.650 X

=> Proportionalily Constant
=> Proportionality Constant

-0.650

-0.650

Latest schedule Z data, 1st Report (PY92/93), 2nd Report (PY91/92), and 3rd Report (PYS0/81).
Latest Schedule Z data at 1st, 2nd, and 3rd report and injury kinds 3,4, and 5, (permanent partial and temporary total claims).
The proportionality constants are calculated based on two separate weighted least squares regressions of
Re'ative Average Claim Costs and Relative D-Ratios by class.
For the capped result, the Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0.
The proportionality constants will be used to determine the slope of the line, Relative D-Ratio = 1 - m (Relative ACC -1).
Weights for the regression are the number of claims for the three years used to compute the relative ACC.
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Table 6

367

Page 2
MASSACHUSETTS WORKERS' COMPENSATION
Detormining the Proportionality Constant for Relative D-Ratio
Industry Group: Construction
[¢)] 2) )] 4 (5 (53} (8) (9)
Losses Losses Total
Class Limited Limited Relative Losses Number of Relative
Code to $5.000 to $175,000 D-Ratlo D-Ratio* (Ind.+Med.) Claims ACC ACC*
0050 0 [} 0.000 0.000 0 [} 0 0.000
3385 290,980 1,356,389 0.215 1.463 1,338,805 73 18,341 0.645
3724 2,021,485 10,603,943 0.181 1.299 9,381,940 518 18,077 0.638
3726 473,608 3,361,013 0.141 0.959 3,539,978 99 35,757 1.258
5020 184,448 710,580 0.260 1.769 688,540 44 15,849 0.550
5022 1,890,805 18,396.114 0.103 0701 18,147,377 473 38,387 1.350
5037 59,546 876,054 0.068 0.4683 872,591 12 72,716 2.558
5040 282,117 2,423,818 0.116 0.789 2,484,765 61 40,406 1.421
5057 179,242 1,832,777 0.098 0.667 2,065,949 a5 45,910 1.615
5059 197,854 2,808,431 0.071 0.483 2,766,448 47 58,861 2.071
5069 0 0 0.000 0.000 0 0 0 0.000
5102 348,074 2,560,599 0.138 0.925 2,548,968 80 31,837 1.120
5145 418,689 2,866,815 0.146 0.893 4,275,866 100 42,759 1.504
5160 523,541 3,121,718 0.168 1.143 2,547,110 114 22,343 0.788
5183 5,468,919 30,309,688 0.180 1.224 30,120,877 1,364 22,083 0.rr7
5188 514,284 2,657,775 0.194 1.320 2,711,444 130 20,857 0.734
5190 4,846,811 26,036,511 0.186 1.265 28,324,142 1,231 23,009 0.809
5213 2,299,598 20,666,128 0.111 0.755 22,559,557 498 45,300 1.593
5215 540,583 2,818,836 0.192 1.306 3,650,903 151 24,178 0.850
5221 2,041,603 14,044,385 0.145 0.986 14,136,217 478 29,574 1.040
5222 323,049 2,458,801 0.131 0.891 2,445,396 72 33,964 1.195
5223 135,945 721,686 0.188 1.279 706,148 43 16,422 0.578
5348 313,358 3,019,976 0.104 0.707 3,302,631 78 42,341 1.489
5402 12,711 130,765 0.097 0.660 128,604 3 42,868 1.508
5403 1,007,087 6,336,159 0.159 1.082 6,510,484 250 26,042 0.916
5437 2,844,361 18,628,306 0.153 1.041 19,259,851 712 27,050 0.952
5443 4,503 4,503 1.000 6.803 4,503 1 4,503 0.158
5445 1,582,566 12,917,375 0.123 0.837 12,756,711 383 33,307 11472
5462 428,823 2,839,870 0.151 1.027 2,872,793 102 28,165 0.991
5472 10,044 51,123 0.196 1.323 51,079 2 25,540 0.898
5473 56,427 243,086 0.232 1.578 237,221 13 18,248 0.642
5474 1,919,025 13,372,654 0.144 0.880 14,358,638 504 28,485 1.002
5479 1,404,906 8,703,239 0.181 1.095 8,862,747 363 24,415 0.859
5480 240,153 1.758,259 0.137 0.932 1,811,186 56 32,343 1.138
5491 0 0 0.000 0.000 0 0 0 0.000
5506 473,963 3,770,454 0.126 0.857 3,539,603 113 31,324 1.102
5507 606,373 5,260,851 0.115 0.782 5,017,185 131 38,209 1.347
5508 15,588 170,900 0.091 0.619 170,314 3 56,771 1.897
5508 399,010 1,498,814 0.268 1.810 1,527,072 129 11,838 0.418
5538 1,820,815 11,852,588 0.152 1.034 11,691,223 451 25,923 0.912
5545 92,886 931,065 0.100 0.680 933,751 24 38,906 1.369
5547 1,053,311 8,262,439 0.127 0.864 8,101,488 264 30,687 1.079
5608 1,675,797 12,448,637 0.135 0918 13,197,169 384 34,3688 1.209
5610 293,614 2,738,318 .0.107 0.728 2,704,521 67 40,388 1.420
5645 4,247,167 25,132,765 0.189 1.150 27,353,628 1,125 24,314 0.855
5651 733,647 5,371,528 0.137 0.932 4,881,738 180 27,010 0.950
5701 [} 1] 0.000 0.000 Q 0 0 0.000
5703 28,082 67,179 0.418 2.844 54,059 4 13,515 0.475
5705 7,784 74,872 0.104 0.707 74,872 2 37,438 1317
6003 120,541 1,013,355 0.119 0.810 1,009,488 27 37,388 1.315



(2), 3y
). (7

Table

Page
MASSACHUSETTS WORKERS' COMPENSATION
Determining the Proportionality Constant for Relative D-Ratlo
Industry Group: Construction
) 2) 3) ) (5) ) @) (8) (9)
Losses 1oss0s Total

Class Limited Limited Relative Losses Number of Relative
Code to $5,000 to $175,000 D-Ratio D-Ratio* (Ind.+Med.) Claims ACC ACC*
8005 0 0 0.000 0.000 0 0 0 0.000
6204 428,238 3,353,397 0.128 0.871 3,334,883 103 32,378 1.139
8217 2,835,335 22,451,780 0.126 0.857 23,588,377 628 37.561 1.321
6229 123,324 513,513 0.240 1.633 488,348 kx] 14,738 0.518
6233 147,313 1,319,626 0.112 0.762 1,394,680 29 48,092 1.692
6251 301,721 1,808,839 0.167 1138 1,558,398 46 33,878 1.182
6252 46,410 178,983 0.259 1.762 162,315 7 23,188 0.816
6306 346,744 3,057,488 0.113 0.769 3,324,338 -80 41,554 1.462
6319 459,265 3,043,188 0.116 0.789 4,208,717 108 39,803 1.400
6325 68,290 404,803 0.169 1.150 219,621 14 15,687 0.552
6400 180,150 1,031,940 0.184 1.252 993,606 53 18,747 0.659
7538 78,217 524,010 0.149 1.014 515,923 19 27,154 0.955
7601 133,924 1,114,583 0.120 0.818 1,100,339 37 29,739 1.048
7855 33,647 569,450 0.059 0.401 565,803 6 94,301 3.317
8227 720,884 4,705,343 0.153 1.041 4,511,813 193 23377 0.622
9530 0 0 0.000 0.000 0 0 0 0.000
9534 55,093 611,613 0.090 0612 610,404 10 61,040 2.147
9545 24,015 32,868 0.73% 4973 26,532 7 3.790 0.133
9548 41,916 100,213 0.418 2.844 97,384 1 8,854 0.311
9552 227,315 1,288,740 0.175 1.190 1,284,387 57 22,533 0,793
9553 15,104 145,338 0.104 0.707 145,234 3 48411 1.703
Total 50,709,904 344,496,754 0.147 353,900,770 12,449 29,428

me ZWXY—(ZWX)(ZW}‘)/ZW

YHX - XYY W

where X = Relative ACC - 1,

Regression Result:

Uncapped Result =>

Capped Result

=>

Y =0.057-0.719 X
Y =20.057 -0.737 X

Y = Relative D-Ratio - 1, and W = Claim Count

=> Proportionality Constant =
=> Proportionality Constant =

Latest schedule Z data, 1st Report (PY52/93), 2nd Report (PY91/92), and 3rd Report (PY90/91).
Latest Schedule Z data at 1st, 2nd, and 3rd report and Injury kinds 3.4, and 5, (permanent partial and temporary total claims).

The proportionality

lated based on two
Relative Average Claim Costs and Relative D-Ratios by class.

-0.719

-0.737

Ighted least

ol 4

of

For the capped resutt, the Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0.
The proportionality constants will be used to determine the slope of the fine, Relative D-Ratio = 1 - m (Relative ACC -1).
Weights for the regression are the number of claims for the three years used to compute the relative ACC.
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Table 7

MASSACHUSETTS WORKERS' COMPENSATION
D-Ratlos, Adjusted for Trend and Law Factors
Industry Group: Office & Clerical
D-Ratios Balanced to: 0.2355

m @ 3 @y (5)
Expected Estimated Batanced
Class Losses Relative Relative Indicated
Phraseology Code ($ million) D-Ratio D-Ratio D-Ratio

Photographer-All Emp-Clerical,Sales-& Dr 43681 11 1.051 1.058 0.25
Radio or TV Broadecast-All Emp,Cler-& Dr 7610 20 0.985 0.992 0.23
Engineer or Architect-Consulting 8601 37 0.959 0.968 0.23
Salesperson,Collector,Messenger-Outside 8742 245 0.905 0.911 0.21
Auto Sales or Service Agcy-Salesperson 8748 28 0.747 0.752 0.18
Mailing or Addressing Co-& Clerical 8800 12 1.027 1.034 0.24
Auditor, Accountant,Etc-Traveling 8803 2.1 0.985 1.002 0.24
Clerical Office Employees NOC 8810 728 0.973 0.980 0.23
Attomey-All Emp-Clerical, Messenger & Dr 8820 38 0.876 0.882 0.21
Physiclan-& Clerical 8832 10.5 0.923 0.930 0.22
Hospital-Professional Employees 8833 18.3 1.109 1.117 0.26
School-Professional Emp & Clerical 8868 20.2 1.154 1.159 0.27
Telephone/Telegraph Co-Office Emp & CI 8901 0.2 1.032 1.039 0.24
Theatre-Players,Entertainers,Musicians 9156 09 1.034 1.041 0.25
Weighted Average = 0.993 1.000 0.23

{2): Expected Losses are the three years of payrolls times the Indicated Expected Loss Ratea.
(3): From Table 4.
(4): Relative D-Ratios are balanced to unity using the expected losses as weights, where
Balanced Relative D-Ratio = (Estimated Relative D-Ratlo) / (Estk d Relative D-Ratio Wel d
(5): Proposed D-Ratio = (Balanced Relative D-Ratio) x (industry Group Observed D-Ratio)
Industry Group Observed D-Ratlo is from Table 2.
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TABLE 8

OVERVIEW OF TWO METHODS OF ESTIMATING D-RATIOS

Prior Massachusetts Method Current Massachusetts Method
and/or Gillam [8], PCAS 1992! (Alternative Method)

1. Adjust the reported data for changes expected 1. Adjust the reported data for changes expected
between the data available now and that to be between the data available now and that to be
used for experience rating in the future. used for experience rating in the future.

2. Calculate 3 Partial D-Ratios. 2. Calculate D-Ratios by Industry Group.2

Serious Serious Primary Losses

Partial D - Ratio  Serious Indemnity Losses

Non-Serious _ Non - Serious Primary Losses
Partial D — Ratic  Non - Serious Indemnity Losses

Medical _ Medical Only Losses
Partial D — Ratio Medical Losses
3. For each class take the estimated Serious, Non- 3. Estimate Average Relative Claim Cost by
Serious and Medical Partial Pure Premiums used Class within Industry Group.

to determine classification rate relativities.

4. Weight the Partial D-Ratios from Step 2 using 4. Spread to each class the Average D-Ratio for
the Partial Pure Premiums from Step 3. each Industry Group from Step 2 using
Relative Average Claim Costs in Step 3.

5. Adjust for the impact on the D-Ratio of those
losses excluded from Experience Rating.’

! The National Council on Compensation Insurance has been updating their methodologies every few years. Details
have changed and continue to change, but the over-all approach has remained the same.

? The denominator of the D-Ratios is total losses minus those excluded from experience rating. The numerator is
Primary Losses.

> The denominator of the D-Ratios should be expected total losses minus those expected to be excluded from
experience rating.
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APPENDIX

Let the experience modification be given by:

M=(I—ZPLEP+ZP AP+(1_ZI)E1+ZXA1
E

=(1-Z)D+Z,(4/E)+(1-2)(1- D)+ Z, (A/E)

where:
A, = Actual Primary Losses
A, = Actual Excess Losses
E, = Expected Primary Losses
E, = Expected Excess Losses
E = E+E,
Z, = Primary Credibility
Z, = Excess Credibility
D = E/NE,+E) =EJE

then for all the other inputs fixed, for a change in the D-Ratio the change in the experience

modification is

-z,)-(1-2)=-(2,- z)

Thus, the sensitivity of the modification to the D-Ratio depends on the difference

between Z, and Z,. Since Z,> Z,, the larger D, the smaller the experience modification. Primary
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Appendix

credibilities are usually 40% to 70% higher than excess credibilities with the result varying by
size of risk. For example, for Massachusetts' the differences in credibility are shown in Figure 3.

Therefore, a .10 difference in D-Ratio (holding everything else equal) will produce
between a .04 and .07 difference in the Experience Modification depending on the size of the
insured. A very large difference in D-Ratios’ produces only a relatively modest difference in the
Experience Modification. This is why D-Ratios are rounded to two decimal places. This is also
why detailed technical refinements to a methodology to estimate D-Ratios are unlikely to have

much practical impact.

! Revised Experience Rating Plan with g = 7. See, for example, Mahler {9].

? For example, in Massachusetts the D-Ratios range from about .10 to about .30.
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Techniques for the Conversion of Loss
Development Factors

by Louis Spore, ACAS, MAAA
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Abstract

It sometimes happens that accident year development factors are
available and policy year factors are not and vice versa. The
purpose of this paper is to formulate a mathematical technique for
converting from one form into another under various assump-tions
concerning the time during the calendar year that policies are
written. The connection between the policy year factor and the
influence of changing exposures on accident year development is then
explored.
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TECHNIQUES FOR THE CONVERSION OF LOSS DEVELOPMENT FACTORS
1. Qverview

This paper begins by deriving a general formula to convert
accident year factors into policy year age-to-age loss
development factors. To help understanding, a first simplifying
assumption that the policies are written uniformly over the
policy year is made and then further generalized to situations
where only the average written date is known. The inverse of
this formula then gives the means of converting accident year
factors back to policy year factors. An analogy to the effect on
accident year factors from changes in exposure leads to a
reformulation of the problem. A practical example taken from
real data illustrates the techniques.

2. Notation and Analysis
It will be necessary to make a few definitions first. Let:

a, = the (incremental) dollar amount expected to be reported for
an individual risk at development period k.

a,'™ = the corresponding dollar amount for a policy period.
gy = the accident year factor that develops incurred losses from
age k to age k+l1.
f, = the policy year factor that develops incurred losses from
age k to age k+1.
n = the number of policies written in a policy year.
@)
a a
ke 1 k1
g =lr—— fi=l+— M
@)
Eaj Eaj
j=1 J=1
Which implies that
-1g,.
a.,, __(g,, Ee-1 whenk 2 2
— =) @&.,D @
a

g -1 whenk =1

A similar relationship holds for a,'”’. The importance of this
ratio will become evident after examining the process of policy
creation and the future claims associated with them. The proof
is in Appendix A.
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Scenario 1 - Policies are written uniformly over the calendar
year.

Assume that each policy has a development pattern that
corresponds to an accident year and that, for n policies written
during the year, the first policy is written at time 1/n, the
second policy at time 2/n, the third at 3/n etc. Then the last
policy will be written on December 31 of the calendar period and
will not contribute any losses to it. To avoid the use of
multiples of 12, we shall let the integer 1 stand for the first
12 months, 2 for 24 months etc. Hence g, will stand for the 12
to 24 month accident year age-to-age factor. Since each policy
has the development pattern of an accident year, the first policy
will contribute {(n-1)/nla, of losses to the first 12 months of
the policy year. The second policy written will contribute [{n-
2)/nla, to the first 12 months of the policy year. By extension
of this reasoning, the first 12 months of the policy year will
experience losses reported of (1/n)(l+42+...+(n-1)]Ja;=(n-1)a,/2.
The second year of the policy period will have losses reported
egual to the first 12 months of an accident year for the last
policy written to 1/n times the first 12 months of an accident
year for the first policy written, in addition to the beginnings
of the 24-month accident year development on policies as they
begin to expire in the second year. The 12-month accident year
con-tribution to the second year will be (1/n) (n+...+l)a,;, and
the 24-month contribution will be (1/n) (n-1l+n-2+...+1)a,. We can

now use the principle of induction to derive the following
relation-ships:

a? = (n-1)a,/2
af = (n+1)a,/2 +(n - )a,/2

af = (n-1)a,/2+(n+1)a, /2
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Which together with equation(1) = that

[(n - Da,., +(n+1a)]

k k
[(n - 1)§ a+(n+ 1)12_; a,_|l

=t

[(n-Da, +@n+ l)qk]

=1+
k-1

ZnE a, +(n --l)a‘]
i=1

3

This holds for k=1 by letting the summation term be zero for this
case. Dividing top and bottom by na,, letting n approach
infinity and substituting our expression for a,,,/a, we get the
following transformation:

/; _ &(1+g) - (1 +g-gl) )
(l +gk-|) (l +gk-l)

By allowing g, to be infinity this formula will be true for all
integer values of k21. The algebraic details are again left to
Appendix B.

Scenario 2 - The policies aren't written evenly over the calendar
year but the average written date is known.

Let T be the average written date as a percentage of the year.
Let t, be the time the k-th policy is written as a percentage of
the whole year. Generalizing the argument above, we get that:

a® = [ii;)l (1-t,)1a,

a P = [2:1 tla, + [g:l (1-t,))a,

a? = [12 tda, , + [;: (1-¢,)]a,
-1 =1

= nTa, ,+n(l-T)a, (5)
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Repeating the previous analysis gives us the following

modification:
(1-T) +T
£ = 9 i
g, (1-T)+ T

g, (1 -T) + T

(6)

Notice that T=1/2 is the same as assuming uniform writings over
the whole year. (This also follows by letting t,=k/n and finding
T as n approaches infinity). Also, by using T instead of an
assumption about when the policies are written, the n term will
cancel from the ratio, making the limiting value the same as the
finite value for the same T.

The inverse problem of finding the accident year factors from the
policy year factors follows immediately from (6) and induction:
where, for the sake of convenience, a = T/(1-T) and £, = 1.

g =A-
_ M
g:";::; o
k
I
8 = ] Y]
E( s "f[f
J=0 =0

The assumption in this approach is that the losses reported in
successive years are proportional to the time the policy has been
in force. This, in turn, depends on the written date. If T=1,
then all of the policies are written at the end of the calendar
year and f,=g,;. This means that the policy year is exactly the
same as an accident evaluation at one period earlier. If T=0,
all policies are written at the beginning of the period, then
£,=g. and the policy year and accident year are identical. The
fundamental assumption necessary to this approach is that there
be a policy year of exactly one year and that the average date of
the policies written during that year is known. Also the
accident year factors should begin at the 12 to 24 month
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development age and increase in 12 month increments. If the
accident year factors are known at other development ages, a
simple approach would be to fit a curve to the known factors and
then use the curve to get the year end factors. Equation (6)
would give the corresponding year-end factors for the policy
year. A new curve fit to these factors would then give the
policy year factors at the desired development ages. Table 1
illustrates these concepts and the effect that the average
written date has on the derived policy year factors.

A word needs to be said about the assumption that the development
of an individual risk resembles the development of an accident
year. To see that this is so, it is only necessary to develop
the accident year expected losses in terms of the expected losses
for each risk. 1If A, represents the reported incurred (incre-
mental) losses at development period i, a little thought will
demonstrate that A, = Z(l—tj)ai. Briefly, the reason is that the
development of losses that occurred in the calendar year in which
the policies were written depends only on the length of time that
the policies were in force. A policy written on December 31
would have no impact on accident year development , although it
will have an effect on the policy year development.

Thus g, = 1 + A /Ya, = 1 + a,,/Ya,.

RAnother assumption, that the expected losses for each risk is the
same, is necessary to make the formulation of the problem more
tractable. To know the actual risk parameters at the time the
risk is. written would require information virtually impossible to
obtain. Each risk can be regarded as having the same dis-
tribution as the aggregate distribution. Since the number of
risks drops out of the ratios for the factors, this assumption
does no harm.

It is often assumed that because the average accident date of the
policy year “is December 31 and that the average accident date of
the accident year is July 1, the 12-month policy year development
factor is the same as the 6- month accident year factor. Under-
lying this is actually two assumptions: (1) that the date of loss
is exactly 1/2 of the policy period and (2) that the average
written date is July 1. The approach taken above accepts the
average date of loss implied by the accident year factors and
permits a more flexible assumption about the average written
date.
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Table 1
T 025 ]
Fitted PY Faclors Fited |
Age AY Factors Age AY Factors as per(6) Age PY Factors
9 1.889 12 1.500 1.833 9 2.612
21 1.163 24 1.125 1.193 21 1.243
33 1.066 36 1.056 1.071 33 1.089
45 1.036 48 1.031 1.037 45 1.044
57 1.022 60 1.020 1.023 57 1.026
69 1.015 72 1.014 1.015 69 1.017
81 1.011 84 1.010 1.011 81 1.012
93 1.008 86 1.008 1.008 93 1.009
T= 075 1
FmeEd PY FGCWOTS Fiea )
Age AY Factors Age AY Factors as per(6) Age PY Factors
9 889 T2 1.500 4500 ] 5679
21 1.163 24 1.1256 1.193 21 1.443
33 1.066 36 1.056 1.071 33 1.126
45 1.036 48 1.031 1.037 45 1.053
57 1.022 60 1.020 1.023 57 1.028
69 1015 72 1.014 1.015 69 1.016
81 1.011 84 1.010 1.011 81 1.010
93 1.008 96 1.008 1.008 93 1.007

3. Ap Alternate Interpretation

The policy year is similar to the situation in which the exposure for
each accident year is increasing. This is because each policy
written is an increase in exposure for the calendar accident year.

If we can succeed in translating the concept of policies written into
exposures assumed we could use (7) to adjust the accident year
factors for an increase in exposure.

To do this, let E,; represent the exposure at the beginning of
accident year i where E; is the exposure at the beginning of the
first year. This situation is different from the beginning of a
policy year in that, for a policy year, the exposure always begins at
zero. The average “written" date for accident year i now includes a

mass of "policies" at T = 0 equal to E;.,;. We now rewrite (5) for
accident year 1 as follows:
/

a; = Eja, + (E;-E)) (1-T)a,

a, = (E,~Ej) [T'a, +(1-T/) 52] + Eya,

ay = (E,-E,) [T’ak_l +(1- T’)ak] + Eqa, (8)
As before, T' is the average exposure date for the increase, but
now the a's stand for the reported cost per unit of exposure. To
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use (6) and (7) without modification, we find a T that is equivalent
to the expressions in (8) by setting E; = 0 in the last line of (8),
replacing T' by T and letting it equal the original expression.
Equating the coefficients of a,, or a,gives T = (1-E,/E,)T'. What it
means to have an average date for the new exposures needs some
clarification. If the exposures are new stores or new employees, the
average opening date or average hire date is the correct
interpretation. However, if the exposure is payroll or sales, a
natural assumption of uniform increase over the year means that T' =
1/2. So if E, = 2E, then T = 1/4.

The interpretation so far has only been for an increase in exposure.
However, (8) would hold without modification under conditions of

" declining exposure. The expression for T would be negative since it
was derived under the assumption of a beginning exposure of zero.
Under this condition, no decline in exposure is possible. However,
the algebra is equivalent even though allowing T to be negative makes
no conceptual sense.

How do we use this information? We want to use equation (7) to
factor out the increase in the development factors due to the
increase in exposure. First note that the relevant term in (7) is «
= T/(1-T). Since we know what happens when T is zero or 1 we
restrict our discussion to the case where 0<T<1l. If it is true that
E,/Ey = E/E; = ... = E,/E,, (i.e., the increase in exposure is a
constant percentage of the previous exposure), then it is easy to
check that T, = T, = ... =T, if T', the average date of the exposure
increase, is the same for all accident years where T; is the adjusted
date for accident year i. Thus, as long as there is an increase at
the same rate!, there should be no overall change in the factors
after the first increase. However we might want to adjust the new
factors to develop a new year where the changes have stopped. Also,
the most common situation, where exposure is changing but at
different rates introduces the problem of how to adjust the factors
to be appropriate for the exposure level of each accident year. To
begin, we will keep the same notation but let the f's stand for the
growth accident year factors (the "policy year")and the g's will be
the accident year factors with growth removed (the "accident year").
As an additional refinement, we will add a superscript to distinguish
the accident year being adjusted. Thus, f;*'will be the unadjusted
factor for the i-th year and the j-th development period. The
flattened factor will be gy'*’. Finally, we will add primes to
represent the factors adjusted to the growth level of a different
year. If we desire to adjust the i-th yeaxr to the level of the n-th
year, we first flatten year i and then re-inflate to the level of
year n. If n is the latest year having only the 12-24 month
development factor, each year i will have its 12-24 month factor
adjusted to year n. First deflating, we get:g,'!! = £,"'- o, and then
inflating: £, = g, + o, = £, - a, + &,. Similarly, the 24-36
month factor will be adjusted for all accident years as illustrated
in the derivation of equation (9) below. We proceed in this fashion
for each year i. The alphas are calculated from the adjusted average

The same rate in both percentage dollar increases and at
the same time as measured by the average date.
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exposure date from the beginning to the end of the year corresponding
to the subscript:
a, = T,/(1-T,)where T, = (1-E, ,/E,)T' and f,'"'=1.

An example of the method is in Appendix C. Sheet 1 shows a real
Workers Compensation incurred loss development triangle. The

o 1o »
S
.éﬁ__q

!

4
v _ & ra)

2 1
()
|ta,)

AR+ (@, - a)f - @)
(ff') -—a va)

K= O + (e, - e ) - @)
k k k=1
or I}f}”‘ =[1" + (an—a,))_j(; (—a,)*'flj)/i” ©)

J=1

or

selected factors are the average of the overall average and the
average after removing the largest and smallest values for the years
for the years for which the latter exists and the overall average for
the remaining years. Sheet 2 shows the exposure which is number of
employees hired. The assumed average hire date is in the middle of
the fiscal policy year (T'=1/2). The adjustment for each accident
year is for the change in the number of employees from the beginning
to the end of the year. Thus the adjustment is from year i to year
n=i+l in the following derivation.

Although not true in this example, an examination of the variance in
the factors by column sometimes reveals that the adjustment actually
increases the variance for some ages while decreasing it for others.
The obvious explanation would be that there is a lag in the influence
of new exposures. New employees would not have the linear influence
on the incidence of new claims as the derivation of the formulas
would imply. It would generally be several years after employment
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before a claim would be filed. However if the exposure is increasing
at the same rate every year the influence of the increase in the
older years would nullify this argument. The increase at a faster
rate would make the adjustment too large, but an increase at a slower
rate would make it too small. Another explanation would be that a
change in hiring practices or safety programs would make new
employees have different loss potential from older ones. Also the
average date of hire will vary from year to year, making the T'=1/2
assumption invalid. There are other complications such as the change
in operations or reserving practices that would distort the results
as well.

4. Summarxy

A formulaic approach to transform policy year age-to-age development
factors into accident year age-to-age factors has been found that
helps to clarify the relationship hidden in the definitions. The
formulas derived from the investigation of that relationship led to a
better understanding of the effect of the changes in exposure on the
development of accident year factors.
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APPENDIX A

Proof of equation (2) in the text:

a,*ra,
. a./a,
aja, +1

~
a, /a
. k1'%
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which implies




j‘k =

APPENDIX B
Sheet 1

1s (n-Na,,, +(n+Da,

k-1
2nz a,+(n- ba,
=1

1

(-1/nma,  la+Q+1/n)
+

k-1

let n-= we get

2Y a/a,+(1-1/n)
i=1

a, . Ja, +1
+ k+1'"k

k-1
2Y aja,+1
=1

(& - g,
. (gk-l - 1)

2
(gk-l - 1)

1 +glgk-l -1
8 *1

gk_l(l + 8
(I+g.)

+1

+1

from (2) and (1) in the text
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Appendix B
Sheet 2

Proof of Equation (6) in the text:
nTa, +n(l - Na,,

[ k
nTY a,_, +n(1 1Y a,
ial i=l

k

) ® _

a."fn/z;a: =
in

T+(1-TXa.,,/a) [Since s, = 0]

k-1 k
’2; a,/ak] +(1 - T)(a,., /ak)[lz;a,/abl)

-1
T+(l -T}g,‘_,( ggk }

-1~ !
T ; a _T)gk-l(gk -1 1 ]
(gk-|'1) (g,‘_,-l) gk_l

g -1+ (1 -DNg, (&, - 1)
T"'gk-|(1 - 7)

ak(e)l 8yt (1-Ng (g, -1)

1+ =
J T+(1-7g
® k-1
a
g} s
(1-T)g,+ T
= k-1
(l-T)g,_l-*T
=/
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APPENDIX C

WORKERS COMPENSATION

Incurred Loss Development

Sheet 1

Incurred as of. months
Policy Period 12 24 36 48 60 12 84
86-87 127,543 237,609 255,255 261,471 293,234 286,390 292,540
87-88 238,622 336,699 447,647 474771 657,817 673,145
88-89 413,446 629368 692,177 743,374 759,378
89-90 483,344 755,863 815,980 717,682
90-91 441,426 551,559 610,788
91-92 592,559 832,558
92-93 649,736
Policy Period ~ 12-24 24-36 3648 48-60 60:72 12-84 84- Ult,
86-87 1.863 1.074 1.024 1.121 0.977 1.021
87-88 1.411 1.330 1.061 1.386 1.023
88-89 1.522 1,100 1.074 1.022
89-90 1.564 1.080 0.880
- 90-91 1.249 1.107
91-92 1.405
Average 1.502 1.138 1.010 1.176 1.000 1.021
Wid. Avg 1.456 1.124 0.994 1.156 1.009 1.021
Avg-HI/LO 1.476 1.096 1.042 1.121
Selected 1.476 1.124 1.010 1.156 1.009 1.021
12-ult. 24-uit. 36-uit. 48-uit. 60-uit. 72-ule. 84-uit.
Cumulative 1.994 1.352 1.203 1.191 1.031 1.021 1.000 1
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85-86
86-87
87-88
88-89
89-90
90-91
91-92
92-93

Exposure

193
228
239
317
340
339
419
444

0.075
0.023
0.123
0.034
-0.00t
0.095
0.029

Adjusted to 93-94 accident year level

Year

86-87
87-88
88-89
89-90
90-91
91-92

Variance

12-24

1.811
1.417
1412
1.558
1.280
1.330

0.1200
1.468
1.502

24-36

1.054
1.330
1.078
1.078
1111

0.0898
1.130
1.138

Appendix C

Alpha

0.0814
0.0236
0.1405
0.0354
-0.0011
0.1050
0.029¢

1.024
1.062
1.076
0.879

0.0774
1.010
1.010

388

1.126
1.384
1.015

0.1315
1.175
1.176

Sheet 2
60-72 72-84 84- Uk,
0.970 0.995 0.998
1.025
0.0274 0.0000




The Application of Cumulative Distribution
Functions in the Stochastic Chain
Ladder Model
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THE APPLICATION OF
CUMULATIVE
DISTRIBUTION FUNCTIONS
IN THE STOCHASTIC
CHAIN LADDER MODEL

SONT. Tu
SCRUGGS CONSULTING
ARGYLE, TEXAS

ABSTRACT

A new stochastic model based on the traditional
chain ladder is introduced. It makes explicit use
of cumulative distribution functions and payment
patterns. It incorporates a mathematical
rationale for non-stochastic variations in the age-
to-age factors. Perturbation methods are used to
obtain and justify the solution. Estimation of
liabilities in the tail is a natural product of the
model. All stochastic variables are assumed to be
normally distributed, and the assumption is then
confirmed with the chi square goodness-of-fit test.
Extensive numerical solutions of an actual
problem are given. Several new avenues of
related research are suggested.

KEYWORDS
Chain ladder; Loss reserving;

Cumulative distribution functions; Tail factor;
Stochastic models; Perturbation theory.
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can be represented in terms of the distribution values. For example, the factor between the development
periods j and j +1 is:

@n r, = F(j +1)/ F(j).

We work with one function in particular, the transformed log-normal:
(22) F() = F(t;p,0,7) = cp[sgn(ln:)llnz]';p, 0']; >0,

where @ is the normal distribution with mean g and standard deviation 0. The parameter 7 is the
exponent of the function. Our selection of this function is dictated by the fact that, of all the functions that
we tested, it best describes the WC payment patterns. We have more to say on this in section 6.

To simulate the non-stochastic variations in the ata factors, we allow the three function parameters

to vary by accident year. Let k denote an accident year and (g, , 0, , 7, ) denote the corresponding

function parameters. We assume that these parameters can be expressed in the following polynomial
forms:

(2.3) H = p+(k-Da, +k-Da, +(k -1y a,+K
o, =0+k=-1D)R +k-1DR +(k-1)’B+K
o=t (k=Dy + k=17, +(k=1) 4K

The right hand side (RHS) of (2.3) has the following interpretations: (&, 0, T) are the base

parameters, (@, /%, ,) are the linear annual changes, (@,,/3,, 7,) are the quadratic annual changes,
and so on. We also refer to the first set as the base coefficients, the second the linear coefTicients, the third
the quadratic coefficients, and so forth. Al coefficients are assumed independent. For any given problem,
only some are statistically significant. A major part of the analysis is the determination of all those.

If all annual changes are statistically insignificant, the parameters and the ata factors do not vary
by accident years. In that case, we retrieve somewhat the traditional chain ladder, but the methodology to
estimate the factors differs from the traditional approach.

If any of the annual changes is statistically significant, the parameters and the ata factors vary by
accident years, and thus exhibit non-stochastic variations. In such case, each accident year in effect has its
own payment pattern, different from those of any other year.

There are many reasons for non-stochastic variations in the parameters. A major one is that the
insurance operations are changing. Another is that the environmental climate in which the insurance
operates is changing. Clearly, there can be many other factors. Equations (2.3) are simply our attempt to
measure the extent to which all these factors affect the payment patterns. It is important to realize that
(2.3) does not compel the accident years to have different payment patterns. It simply allows that
possibility. If it tuns out that the accident years have a statistically similar payment pattern, then the
annual changes should be statistically insignificant.

We define the partial derivatives as follows:

oF oF oF
(24) =E, H=E’ K=—ar—.
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3. THE GOVERNING EQUATION

Let y,, be the cumulative paid loss amount for accident year k at development year j. Then
the /oss factor is:

Vi jn

31 = ,
31 9y Y

and the development factor is:

- F(.j+l;#k:o'k)1“)
(32) Ty = FUi 0,7

We define the governing equation as:
(33) gy =ry +in(ry)e;, &~ N(0,s%).

The &y 's are assumed independent and normally distributed with mean zero and standard deviation § .

We call &, and In(r,, )&, the error and the error term, respectively. Equation (3.3) simply says that

successive payments should obey the payment pattern, with some stochastic error. As its name implies, a
governing equation contains the basic assumptions and governs the behavior of the model. Given it,
everything else should logically follow.

We note that the development factors are in essence a proxy for the payment pattern. If all actual
and estimated ata factors closely match, then we infer that the distribution accurately depicts the real
payment pattern. If there is a consistent mismatch in some of the factors, then we cannot make that
inference. i

Undoubtedly, the most unusual feature of (3.3) is the scaling function In(r,y) . Itis needed

because the magnitudes of the error terms change drastically throughout the development. The magnitude
is large at the beginning of development, it is small near full development, it is zero at full development,
and it goes through the whole continuum in between. In section 8, we discuss this subject in detail with
numerical examples.

We mention two mathematical anomalies which the scaling function prevents. First, suppose that
we are very far in the tail where all development has definitively ceased. Therefore, ¢ ¥ = 1. Ifour

model is any good, it would also predict ry = 1. Hence the error term must be zero, and the presence of

the scaling function ensures that equality.

Secondly, suppose we want to compute the variance of the ultimate loss amount. As will be
shown in section 5, that includes the sum of an infinite series, each term of which corresponds to the error
term in (3.3). If the scaling function were absent, the infinite series and the variance would have no finite
limits. But if it were present, the terms in the series would approach zero asymptotically, and the series
would have a finite limit.

In section 7, we show that, without a scaling function, the model cannot satisfy the normality
assumption. In section 8, we demonstrate that, in such case, the error terms are not properly scaled.

We will primarily work with (3.3), but the general form of the goveming equation is:

(34) gy =1y +w(y,)b(r,)se, .
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&, isthe error, b(r, ) is the scaling function, w(y,,) is the proponionality function, and the
product of all three, w(y,, )b(ry; )£y , is the error term. The scaling function must satisfy the following
conditions:

(35) b(ry>0, for r>1;and (1)=0.

We call w(y,y) the proportionality function, because it dictates the loss amount proportionality

of the error term. If we multiply (3.4) by Yy then:

36 Vi = y.y[rly + W(}’y )b(’u)fy]-

For the particular form of (3.3), W(y,;) = 1, and the error term is proportional to y,;. We
therefore call that the linear proportionality function. Similarly, when w(y, ) = l/y,';2 and
In(yy) / ¥y » the proportionality functions are square root and logarithmic, respectively.

A priori, we do not have any reference to prefer one set of scaling and proportionality functions
over another. In section 9, we test a number of them and compare their numerical results, with the
deviations and chi square values as the measuring sticks. Our conclusion is that the most appropriate
model has the logarithmic scaling function and the linear proportionality function, as in (3.3).

MURPHY (1995) presented three models which can be written as follows:

37 o1 = Yyl + &, Least Squares Multiplicative (LSM);
Yrjun =¥yt + &y q P
¥y =y, (r + &), Simple Average Development (SAD); and
k., j+1 1] ki

Vi =Yyt + y,:,/2 £y, Weighted Average Development (WAD).

There are two major differences between (3.6) and (3.7). Murphy’s models do not have a scaling
function. And they assume the development factor r to be constant in any given development period,
whereas we allow r; to vary within a development period. The forms of (3.7) have different
proportionality functions. With our terminology, SAD takes the linear function, and WAD takes the square
root function. For LSM, w(yy) =1/y, .

For their chain-ladder stochastic models, many authors (VERRALL, 1990; ZEHNWIRTH, 1990) have
assumed that the loss amounts are log-normally distributed. STANARD (1985) and HALLIWELL (1996) have
shown that such models have inherent upward bias. MACK (1995) argued that they suffer higher
variability. Our model bypasses these difficulties, because (3.3) implies that the loss quantities are
normally distributed, as will be shown in section 5.

. The normal distribution for the loss amounts has two additional advantages. First, if the liability
for an accident year is normally distributed, the sum for all accident years is also normally distributed., and
the variance of the sum can be calculated. Secondly, suppose we have another model which aiso gives
normally distributed estimates, the combination of estimates from the two models is normally distributed.

The governing equation (3.3) is to be used in two ways, matching and estimation:

a) Matching, There are forty-five points (ata factors) in Table 2. We apply (3.3) to every point.
From this matching, we obtain estimates for the 1 variables so as to minimize the sum of squares of
€erTors.

b) Estimation. For the particular case of (3.3), (3.6) becomes:

(38) Yagu = y,y[ry +In(s, )a,y].
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Equation (3.8) gives the estimate at the next period based on the actual or estimated value at the
previous period. If y,; isan actual amount, we assume that there is no error associated with it; actually,
this assumption is a direct consequence of the governing equatjon itself. And all the variance of the
estimate y, ., comes from the parameter error in #,; and the process error in & . If y, is an estimated
amount, then its variance also contributes to that of the next estimate. Our convention is that the RHS of
(3.6) and (3.8) should take the actual y,; whenever available.

MACK (1995) made an important distinction. In many models (VERRALL, ZEHNWIRTH), Yy in

(3.8) is the expected value; whereas, in the traditional chain ladder, it is the actual value. In this paper, the
latter is the case.

To recapitulate, our entire mode! consists of equations (2.2), (2.3), (3.1), (3.2) and (3.3). Fora
given set of data, we have to find all the statistically significant coefficients of (2.3) such that the sum of
squares of errors in (3.3) are minimized, given that the payment patterns are specified by the cumulative
distribution function in (2.2). The governing equation of (3.3) deserves its name because it has the central
role of linking together all the different elements of the system.

4. THE ITERATIVE REGRESSION PROCESS

As described in the previous section, the system is a highly non-linear one; therefore it is
impossible to obtain the solution in closed form or in one step. Instead, we apply the methods of
perturbation theory to derive an iterative regression process, the application of which systematically leads
to the solution.

To minimize the algebra, all derivations in this section are for the model in which only the base

coefficients (4, o, T) are variables. In the general model, we have to solve the regression system for n

variables.
We begin by perturbing every variable:

[(CR)) o> pu+Au, c>oc+Aa, THTHAT.

We may think of a perturbation as the replacement of a value ( 4, for instance) by the sum of that
value and an infinitesimal increment (Az). The value is a known quantity, and the increment is an

unknown quantity to be found. The reason why a perturbation is helpful is that, since the increment is
assumed infinitesimal, we may retain only the linear terms in the Taylor's series expansions. Instead of a
non-linear system, we in effect solve a series of linear systems. The successive solutions of the linear
systems lead us closer and closer to the solution of the non-linear system.

First, we supply a guess (4,0, 7). Based on that guess, the regression process gives us the

incremental (Ax, Ao, At) . The sum of the guess and the increment provides the next guess. We keep
up the iteration process until it converges to the solution.
Using the definition of the derivatives in (2.4), the perturbation of F has the following form:

(42) F(jiu+bdu,o+ Ao, 7+A7r)= F(ju,0,7)+
G(j; p0,0)Au+ H(j, u,0, 7)Ao+ K(j, 4, 0,7T)AT .

In a more general case where, for instance, @, and @, are also variables, the RHS of (4.2) would include

the terms (k — 1)GA@, and (k —1)*GAa, .
Using (4.2) in (3.2), we have the following for the perturbation of the development factor:
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Gl‘jﬂ ij
(4.3) ry(u+dp, o+ Ao, t+Ar) =1 (uo,0)| 14| ——-——lAu+
Ft,/q Fg

[H&,;.l _fli)Aa+[K1Jol —ﬁ)AT
Fk,jol th Fk.jol Flj

where F, = F(j; p4,,0,,7,), andso on. We give the full derivation of (4.3) in Appendix A. Ifwe
substitute (4.3) into (3.3), the result is:

Gu Gy H . Hy Ko Ky
(4.4) ry(;_::—-a A;z+ry 7‘7—?’; A0'+r,y- ?,,;__I‘T A1'+ln(r,j)£,y =qy—1ly-

After division by the scaling function, (4.4) yields exactly a regression system for the increment
variables (Ag,A0,A7) . Inmatrix form, we have:

(4.5) MA+e=b,
T
a=(amboar), s={g}). b={g, -n) 0},
M isa 45x3 coefficient matrix. This matrix changes after every iteration, since after each one, we have

a new set of coefficients. For example, the row of M for accident year & and development period j has
the following elements:

(4.6) ML- T giJ_L_G_*/
1"(’:.1-) Fk.jol Fy

pro ti e Hy

ln(rkj) Fk,ju Fy

In the more general case of 1 variables, M would be a 45x 7 matrix, and A an 7 -dimensional vector.
The solution of (4.5) so as to minimize the sum of squares of errors is well known in multiple
regression analysis. It is,

@7 A=(M"M)"M's.

The sum of (4.7) and the current guess constitutes the succeeding guess. When the process is
stable and leads toward the solution, the sum of squares of errors of the succeeding guess is always smaller
than that of the current guess. Therefore, if we continue the iteration until the guesses no longer vary, the
resultant solution is guaranteed to have the smallest possible sum. We can see from (4.7) that the solution
must satisfy:
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48 (M™M)'MTb=0.

This actually may only be a local solution. Globally, the possibility of multiple solutions cannot
be discounted. In practice, however, we have never encountered multiple solutions.

The vector in (4.7) indicates the general direction in which the solution lies. When the initial
guess is very far from the solution, if we take full steps as indicated by (4.7), the guesses may quickly
become unstable. In such cases, we should take steps that are fractions of the full steps. The steps should
be sufficiently small until the iterative process enters some stable mode, then the step size may be
increased. We have even encountered situations in which, by taking full steps, the guesses spiral stably
toward the solution, but very slowly. In such cases, the full steps overstep the solution, and the
convergence can be accelerated by taking smaller steps.

Finally, there exists the possibility of no convergence at all. This may be the result of either of
two scenarios. First, the distribution being used may not be stable in the iterative regression scheme. For
instance, we find any Pareto-type distribution to be highly unstable. Secondly, the distribution may not be
the right one for the loss data being considered.

When the distribution is the transformed log-normal, the convergence is quite fast, and the initial
guess need not be close to the solution.

The estimate for the variance of errors is:

9 10~k

-r,.
@9) 5= nzz:,’,, =y

k=l jul ln(r

The denominator in (4.9) is the number of degrees of freedom: 45 is the number of data points,
and » is the number of variables. From (4.1), we have the following relationship for the variances of the
coefficients:

(4.10) Var(u) =Var(Ay) ,

and so on. From standard regression analysis, we obtain the parameter variance matrix as:

Var(u) Cov(u,0) Cov(u,7)
(411 Var(P)=|Cov(u,0) Var(e) Cov(o,)|=s*(M™M)".
Cov(u,ry Cov(o,r) Var(z)

5. THE ULTIMATE ESTIMATES

In this section, we assume that the iterative regression process has found all the coefficients and
we have to obtain the estimates of the ultimate loss amounts and their variances. In particular, consider the

k-th accident year, which has Y11 8s the last actual cumulative paid amount. Using (3.1) and (3.3), the
estimate for the loss amount at the next period is:

(51 Yeaeent = Vent-e9ea-k = h,u-k["&,u-a +In(r )en,u-&]'

After another iteration, the estimate for the succeeding period is:
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(52) Yiptens2 = Y-k Qe 1-e9ei-aa =

Yeai-x [’k.n-k +In(ry 114 Y110 ][rk.l kot F 10101 G i1 ]

After repeated iterations, the estimate for the ultimate amount can be expressed as:

(53) Y = Ven-x l-!qk,ll—hj =Vil1-k I-I[rk,ll—hj + ln(rk,l]-hj )ek,ll-k+j]'
Je im0

In (5.3), we have an infinite variety of error terms. There are the linear error terms, containing
&,; . There are the quadratic error terms, containing &€, ; and so on. A linear term is proportional to 5 ,

a quadratic term to s?. Since § is generally small, the linear terms dominate in absolute value over the
other error terms.  We are thus justified in retaining only the linear terms, and (5.3) becomes:

Yrai-k & In(7y pasy)
(54) M = F 1+ Exn-kej

E11-k o0 T pi-is)

Equation (5.4) is correct to the Jeading order. The ultimate loss is normally distributed, since it is
the sum of normally distributed quantities. Taking the expected value of (5.4), we have:

(55) E{}'k} = Vi -k /Fk,ll-k :

Feie = FQY =k y,0,,7,) is the percent paid to date, and its reciprocal is the age-to-

ultimate factor. Equation (5.5) says that the expected ultimate amount is the product of the paid-to-date
amount and the age-to-ultimate factor, as we would expect. In the rest of this section, for the sake of

brevity, we write y, to denote the expected value of the same quantity.

To obtain the variance from (5.4), we use the following formula. Let W = XY be the product of
two independent stochastic quantities, then

(56) Var(W) = X*[Var(1)] + Y*[Var (X)) + [Var () [Var()].

where the bars denote expected values. If we apply (5.6) to (5.4), then we have:

P! kA1-ke j ’
6D Vo) =k Var[ — } ; Z[n(" )]
k-k

+
sz.ll-l J=0 rk.u-h/
2
1 < ln(’ - +‘)
+s2Var( )Z[ L) X
Fona /i Ttk j

In the derivation of (5.7), we assume that there is no ervor associated with the acrual y, ,,_, . The

variance in (5.7) is the sum of three terms. The first is the parameter error, which is just the variance of the
age-to-ultimate factor.

The second term is the process error. It is the sum of an infinite series, because, at each
development period, an additional amount of error contributes to the total, and theoretically there are an
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infinite number of periods. In Appendix B, we prove that the series possesses a finite limit. We can also
see the pivotal role of the scaling function: without it, the series would have no finite limit.
The third term is the product of the parameter and process errors. Every variance is proportional

to s°%; every product of variances is proportional to s5*, and hence negligible. In the following derivations
and calculations, we ignore those terms altogether. To the leading order, the variance in (5.7) is therefore
the sum of the parameter and process errors.

To estimate the parameter error in (5.7), again we resort to perturbation:

1 1 G i1
(58) = 1- Au—
Fopa(u+bu,o+Ao,t+A7) Ry (4,0,7) Fin
Hy i K, i1 }
———Ac-——"A7|.
ﬂ,ll-l k11-k
The derivation of (5.8) is in Appendix A.
Taking the variance of (5.8), we have:
2
1 1 Gy ik Giai-x i 1
(59) Var[ ] = l: - Var(up) + 2———=——Cov(u,0)+A ¢,
Fk,ll—-k szl -k Fk.ll—k FAZ.M

where the dots represent the other variances and covariances. Finally, after collecting terms, (5.7)
becomes:

Gk.l 1-k Hk.l'l-l'

2
F;.Il—k

Gk.ll-k

Fina

Cov(p,o)+A +5* Y,

j=0

2
] Var(u) +2

1
(510) nv04)=yi[ [ﬂOhth

Tetimkej

We define the sum total of all the ultimate losses as:

(511) Yr=2 Vi

We note that y; is normally distributed. It can be shown that the variance is:

5 2]

kel kJ1-k

2
(512)  Var(y,)= Var(ﬂ)[Zyk F“' ‘J +2cOv(;:,a)[Z 2 F‘”“ }[

KL=k
A +sziyzzl:1n(’kn k+j)] .

Feti-kay

Comparing (5.10) to (5.12), we observe that:

10 G, ?
513 -k k11-k
©13) ;[}’. lrk,ll—kjl |:Z & Fknk:l
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and so on. Therefore, we conclude thar:

10

(5.14) Var(y,)# Var(y;).
k=t

In words, the sum of the variances does not equal the variance of the sum. If the ultimate losses
have negative correlation, the former is greater. 1f they have positive correlation, the latter is greater. We
expect the second scenario, because, whatever the realization of a random variable, it most likely affects
the ultimate losses in the same direction. In the next section, we show with a numerical example that such
is the case. To numerically evaluate each series, we sum up the first fifty terms.

6. NUMERICAL RESULTS

In the previous two sections, we present the mathematical formulas, for the most part assuming
only the base coefTicients are statistically significant. [n this section, we present the numerical solution to
the Table 1 triangle. For this problem, four of the annual changes are significant; therefore, the reader will
have to modify the formulas in the previous sections to obtain the numerical solutions in this one. The
statistically significant coefficients for the Table 1 triangle are:

H o (2 A Z B b4

estimate 7582 1.0838 8988  -.0459 0450 .0028 -.0057
s.d. L0051 .0085 .0lL14 .0047 0079 .0005 0011

Table 3: Estimates and siandard deviations of the coefficients.

In the parlance of section 10, the solution has the correct parametrization. Our criterion for
statistical significance is that an estimate must be at least twice as large in absolute value as its standard
deviation. This criterion transiates into: if the true value of a variable were indeed zero, we have a 4.6%
probability of accepting it as a non-zero variable.

With the values in Table 3, the equations of (2.3) simplify to:

(6.1) Ho=H, o=0+k-DF+*k-1)4,
T, =Tr+(k-Dg, +(k-1)1 g, 1Sk<10.

The process with which we obtain (6.1) is as follows. We begin with the model in which all
coefficients up to and including the cubic ones are variables. In such model, we have twelve coefficients to
estimate. We apply the iterative regression process to obtain the solution. If there are at least two
statistically insignificant coefficients in the solution, we eliminate the most obviously insignificant one.

We continue the process until all remaining coefficients are statistically significant.

In going from the estimation of twelve variables to that of seven variables, we have to examine six
permutations of the model. Each permutation has a unique set of variables to be estimated. Given the
assumptions that the base coefficients are always significant, which may not be true for the mean, and that

all fourth- and higher-power coefficients are always insignificant, there are 2° = 512 permutations, for a
distribution of three parameters. In a format like EXCEL, which we use for this paper, we have to
construct a separate spreadsheet for each permutation. We have fortunately systematized the process, so
that a complete conversion from one permutation to another takes only a few minutes. We construct
permutations as needed; we do not construct all at the same time. In some languages such as APL, which
we have used in the past, one set of computer code suffices for all possible permutations, including
different sizes of the data. Despite this obvious advantage of APL, we highly recommend EXCEL, given
the choice between the two mediums. A programming error, especially a subtle one that does not result in
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an unreasonable solution, is much more likely to escape detection in APL. And it is much easier to build
additional features into an EXCEL spreadsheet than into an APL code,

From (6.1), we estimate the mean to be a constant, and both the deviation and the exponent to be
quadratic curves. Substituting the values in (6.1) into the formula for the transformed log-normal of (2.2),
we obtain the values of the c.d.f.’s:

AY 1 2 3 4 F] 6 7 8 9 10
1 2421 4857 6196 .7047 .7629 .8048 8352 .8604 8795 .8949
2 2331 4812 .6259 7180 7802 .8243 .8567 8812 .9001 9151
3 2249 4776 6315 7293 71947 .8402 8730 3972 9157 9299
4 2475 4751 .6363 .7384 .8058 .8521 8848 9087 9265 .9401
] 2111 4739 6402 .7450 8135 .8599 8925 9159 9332 9462
6 12059 4740 16429 .7487 8174 .8637 .8960 9190 9360 9487
7 2019 4756 6448 7495 8174 8633 8953 9182 9350 9477
8 1994 4787 6447 7472 8135 8586 .8902 8131 9301 9429
9 .1983 4834 6437 7418 8057 8494 .8805 .9032 9207 9340
10 .1986 4896 6412 .7332 .7935 .8354 .8658 3885 .9060 9198
Table 4: The vatues of the lative distribution fi

Let’s give an example of how one value in Table 4 is calculated. From (6.1), we obtain the
parameters for the fifth accident year as (.7582,.9446,.9872). From (2.2), we get that
F (4;.7582,.9446,.9872)=.7450.

Table 4 says that, for the first accident year, 24.2% of the ultimate amount has been paid after one
year, and 88.5% after 10 years. We then calculate the tail factor as the reciprocal of 88.5%. We note that
the tail factors vary by accident years,

To obtain the estimated ata factors, we compute the quotients of successive values in Table 4.

AY 1 2 © 3 4 5 3 7 8 9

1 2.006 1.276 1.137 1.083 1.055 1.039 1.029 1.022 1.018
2 2.064 1.301 1.147 1.087 1.057 1.039 1.029 1.021 1.017
3 2,124 1.322 1.155 1.090 1.057 1.039 1.028 1.021 1.016
4 2.185 1339 t.160 1091 1057 1.038 1.027 1.020 1.015
5 2245 | 1351 1.164 1.092 1.057 1.038 1.026 1.019 1014
5 2.245 1.351 1.164 1.092 1.057 1.038 1.026 1.018 1.014
6 2.303 1.356 1.165 1.092 1.057 1.037 1.026 1.018 1.014
7 2.355 1.355 1.163 1091 1.056 1.037 1.026 1.018 1.014
8 2,401 1.347 1.159 1.089 1.055 1.037 1.026 1.019 1.014
9 2438 1.331 1.152 1.086 1.054 1.037 1.026 1.019 1.014
10 2.465 1.310 1.143 1.082 1.053 1.036 1.026 1.020 1.015

slope 0.055 001t 0.004 0002 000l 0.000  -0.001 -0.001

Table 5: The cstimatcd age-to-age factors.

The match between Tables 2 and § is generally quite close. The slopes in the two tables match
almost exactly. To make them directly comparable, those in the latter are calculated using only factors
above the diagonal. The close match of the factors implies that the transformed log-normal adequately
describes the payment patterns of the data.

We also consider using one of the following three distributions as the c.d.f.: the transformed
normal, the transformed log-gamma, and the transformed gamma. For every of these functions, either a
solution cannot be found, or there is a consistent mismatch of the ata factors somewhere in the triangle.
We therefore believe that none of the three functions describes well the payment patterns of Workers'
Compensation. '

The table below presents the estimated cumulative paid amounts:
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1 2 3 4 5 6 7 8 9 10

AY
1 2409 4833 6155 7021 7581 7994 8302 8535 8741 8900
2 2602 5370 7062 8042 8734 9232 9593 9863 10078 10227
3 3108 6595 8588 9952 10872 11509 11952 12292 12548 12744
4 3316 7245 9697 11180 12224 12918 13412 13802 14072 14278
s 416 7669 10403 12148 13339 14091 14639 15023 15307 15520
6 3831 8821 1217 14048 15309 16131 16733 17164 17480 17217
7 4527 10662 14292 16641 18093 19107 19814 20321 20693 20973
8 4923 11846 16001 18624 20279 2140 22188 2275% 23182 23503
9 5300 12921 17178 19796 21508 11668 23499 24110 24570 24925
10 5488 13528 17716 20257 21925 23082 23921 24549 25032 25412

Table 6: The estimated paid loss amounts.

Generally, we have quite good agreement between Tables 1 and 6. Let’s give an example of how
one value in the latter table is calculated. From Table S, we have that r;, = 1.092 . Therefore, the

estimate for y,; =1.092*%12216=13339.
The estimates for the ultimate paid amounts and the corresponding standard deviations are:

AY Ultimate S.D.

1 9939 48
2 1176 40
3 13704 51
4 15188 62
5 16403 x]
6 18676 91
7 22132 124
8 24925 166
9 26688 288
10 27629 583
total 186459 980

Table 7: Ultimate estimates.

Comparison of Tables 6 and 7 indicates that a considerable amount of liabilities lies in the tail.
The standard deviation of the total is computed using (5.12). Under the assumption of mutual
independence of ultimate estimates, the deviation of the total would only be 700. Since the variance of the
sum is considerably greater than the sum of the variances, we infer that the ultimate estimates have a high

degree of positive correlation.

7. THE CHI SQUARE TEST

In this section, we apply the chi square goodness-of-fit test to demonstrate the normality of the
results. We also show that the model without the scaling function does not satisfy the normality

assumption.
We define the normalized error as the quotient of the error and its standard deviation. From (3.3),

we have:

(7.0) e, =

The normalized errors should follow the standard normal distribution. To test if that indeed is the
case, we divide the real line into five intervals: (— 00 ,—. 842), (-. 842,—. 253), (-. 253,.253), (.253,.842),
and (.842, 00). We note that, if a random variable is normally distributed, each interval should contain

20% of the observations. We define the following two quantities: U, as the number of observed €y ’sin

interval / , and ¥, as the number of expected e,; ’s. Then the quantity ,(2 is defined as:
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2
LU -y
12 2= Z—V—)—.
tal i

It is well known that ;(2 follow the chi square distribution with four degrees of freedom.
With § =.0298 , we obtain the following normalized errors from Tables 2 and 5:

AY 1 2 3 4 £ 6 7 8 9
[} <0.160 0502 0740 -0.198 -0366 -0.723 2252 1073 -1.349
2 1044 -1219 0158 0199 -0.131 -0336 0388 -2872
3 -1.434 0.538 0702 0556 0345 0.547 0431
4 0.056 -1.005 0.515 0253 -0.144 1.873
] 0.383 0.525 1.446 -0.286  0.621
6 1.183  -0.668 -0.451 .1.184
1 0997 0182 0817
8 0.269 0.656
9 -0.145

Table 8: The normalized errors.

In Table 8, if there are either large positive or negative values grouped in at least one column, then
the distribution does not fit well the payment pattems. We do not detect such a scenario in Table 8. The
expected and observed frequencies are:

Interval 1 1 3 4 5

v 9 9 95 9 5
i

U’ 7 9 10 13 6

Table 9: The crror frequencics.

The values in Table 9 give 12 =3.33. If the normalized errors come from the standard normal
distribution, then there is a 50% probability that the chi square distribution with four degrees of freedomn
exceed 3.33. The normality assumption for the governing equation of (3.3) is therefore accepted.

If we use the model without a scaling function, many of the normalized errors, 26 to be exact, are

bunched together in the middle interval, and zz =43.56. The probability of the chi square distribution

exceeding that value is nil. We therefore reject the normality assumption. In the next section, we discuss
the reason why the model fails the test in that case.

8. ORDERS OF ERROR MAGNITUDES
In this section, we consider the differing orders of error magnitudes, and how the proper
recognition of them is inextricably linked to the scaling function. We also indicate the reason that the

model without the scaling function does not pass the normality test. We begin by considering the variances
of the two points at opposite ends of the triangle, g,and gy, .

From (3.3), the quantity ¢,,, which has the realized value of 1.0168, has the following formula:

81 q15 =1y +In(rg)e,.

Taking the expected value of (8.1), we get:

(82) E{gy} = E{ny} = F 10/ F =10175.
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We obtain from (8.1) the variance as:
2
(83) Var(q,) = Var(ns) +s*[In(r,)] -
The process error has the value:
(84) s*[in(r)]" =[0298*1n(10175)]" =2.7*107".

To obtain the parameter error, we use the perturbation form for an ata factor of (4.3):

G G H H K
85 ry(u+Au,oc+Ado,v+A7)= rl.,!:1+(—"—m— —”)Ay+(—"£———”—)Aa+(-—m—

Fuo Fy Fo  Fy Fo

Taking the variance of (8.5), we have:

2
GHO GWJ -8
— ——=| Var(u)+A |=3.2*10".
E.lo F‘|9

(8.6 Var(r,) =’|€l(

Combining terms, (8.3) gives a deviation of .0005. A normally distributed random variable with
mean 1.0175 and deviation .0005 has a 10% probability of being less than 1.0168, the realized value.

The estimate for ¥, ,, can be oblained from (3.1) as:

(CN))] Yo = Vil -

The expected value of (8.7), given that y o = 8747 , is:
(88) E{ Yol = 8747} = yuE{g,y} = 8747%10175 =8900.
And the variance of y, , is:

89y Var(y, |y, = 8747)= yiVar(q,,) = (8747*.0005)° = 4.79*.

A normally distributed random variable of mean 8900 and deviation 4.79 has a 10% probability of
being less than 8894, the realized value.

The point gy, , which has the realized value of 2.434, has the following formula:
(8.10) Gor = oy +I0(ry; )65y

The mean and the variance are:

@.11) Egy } = Efr,\}= F,y [ Fy, =2.438,
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2
(8.12) Var(q,,)=Var(r, )+ sz[ln(r9l )] .
The process and parameter variances are:

8.13)  s*[in(r,))} =[0298*In(2.438)] =7.1*107,

G, G

’ K
-1) Var(u)+A +8‘(—”

F92 F‘N

Combining terms in (8.12) gives a deviation of .031. A normally distributed random variable of
mean 2.438 and deviation .031 has a 45% probability of being less than 2.434, the realized value.

The mean and variance of y,, are:

92 91

2
(8.14) Var(r,)=ri ( -ﬁ] Var(y,)[=2.7*10"

(3.15)  Efyy)vy = 5300} = y,, * Efr,,} = 5300+ 2.438 =12921.
(8.16)  Var(yy|yy = 5300)= y}Var(g,) = (5300*.031)* = 1657.

We note that the variances of q,,and ¢, have very different orders of magnitudes. Their ratio

2
®.17) M:(ﬂ] ~3200.
Var(q,y) \.0007

The variance of gy, is therefore several thousand times that of q,,. This is not surprising,
because there is much more development, and variability, at the former than at the latter. The relative
values of 2.438 and 1.018 attest to this. We can carry this further by saying that the error of a point at full
development is zero. This conclusion is not only reasanable, but also inescapable, if we think with this
perspective: given a realized value at full development, the estimate at the succeeding period is known with
absolute certainty, namely that very same value. We note that, at full development, the parameter error is
also zero, because an infinitesimal perturbation of the parameters cannot nudge the c.d.f. from unity.

The role of the scaling function is imperative in that it is the mechanism through which the
different orders of errors are recognized. Without it, the process errors of (8.4) and (8.13) would be
exactly equal, and the ratio in (8.17) would be very close to unity. In effect, the model would not be able
to differentiate the widely divergent orders of errors. For points far from full development, the variances
are understated; and for points close to full development, they are overstated. Because the normalized
error is essentially the ratio of the actual error to the expected average error, the effect on it is just the
opposite. For points far from full development, the normalized errors are overstated; and for points close
to full development, they are understated. It is therefore not surprising that the model without the scaling
function cannot pass the normality test.

9. COMPARISON OF SCALING AND PROPORTIONALITY FUNCTIONS

In this section, we want to compare the effects of different scaling functions. First, we set the
proportionality function w(yy) =1 in (3.4), then calculate the solutions to the Table I triangle using four

different scaling functions, in addition to the logarithmic. In Table 10, we show the total liabilities, the
deviations, the chi square values, and the implied percentages.
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Name b(ry ) yr deviation Zz percent  comment

1 logarithmic ln(r,, ) 186,459 980 333 50.4% good

2 linear ’.u -1 186,469 1095 i 27.6% good

3 square root 12 186,794 1331 1111 2.5% fair
(ry—D

4 square 2 179,448 10146 10.00 4.0% poor
(n "B )]

s no scaling 1 187,037 divergent 43.56 0.0% invalid

Table 10: Comparison of scaling functions.

For the no scaling function, the infinite series for the process errors of (5.10) have no limits.
The two best scaling functions are the logarithmic and the linear. Their estimates are identical, for all
intents and purposes. The logarithmic gives the slightly lower deviation and chi square value.

Incidentally, as their argument approaches unity, these two functions have the same asymptotic
behavior. Symbolically,

©.1) In(r)~r-1, ro>1.

No other function in Table 10 shares this property. We believe that the two functions do indeed have the
correct error scaling.

We have analyzed quite a number of different loss triangles. The logarithmic and the linear
invariably give ncarly identical estimates and deviations, but the former consistently gives the lower chi
square values. We therefore select the logarithmic as the most appropriate scaling function.

In Table 11, with the logarithmic scaling function, we compare three proportionality functions: the
linear, logarithmic and square root.

Name yb’ W(y,‘/ ) yr deviation Zz percent Comment
1 Lincar y’d 186,459 980 333 50.4% good
2 Logarithmic ln( )’y ) 186,502 1182 9.78 4.4% fair
3 Square root yuz 186,626 1041 5.56 23.5% fair
&

Table 11: Comparison of proportionality functions.

Among the three proportionality functions, the linear gives the least deviation and chi square
value.

From the results in Tables 10 and 11, we choose the logarithmic scaling function and linear
proportionality function as the best combination.

10. PARAMETRIZATION

A solution is overparametrized if it quantifies at least one statistically insignificant coefficient. A
solution is underparametrized if it omits at least one statistically significant coefficient. A solution has
correct parametrization if it is neither overparametrized nor underparametrized.

In general, overparametrization leads to a smaller sum of squares of errors. But this does not lead
to greater accuracy. This is manifested in two ways. First, the number of degrees of freedom, the
denominator in (4.9), decreases, counteracting the smaller numerator. Secondly and more importantly,
since more variables have to be estimated, the mutual interference among them increases and the elements
of the inverse matrix in (4.11) generally increase in absolute value.
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Underparametrization has the reverse effects: the sum of squares of errors increases, the number
of degrees of freedom increases, and the clements of the inverse matrix generally decrease.

For the Table | triangle, Table 12 quantifies the results of parametrization. The
overparametrization quantifies all function parameters up to and including the quadratic coefficients. The
underparemetrized solution quantifies only the base coefficients.

Solution deviation
Yr
1 Correct parametrization 186,459 980
2 Overparametrization 182,097 5490
3 Underparametrization 188,852 2535

Table 12: Parametrization.

The ovetparametrized solution has a much larger deviation, And, in this particular example, it is
consistent. That is, if the solution of mean 182,097 and deviation 5490 indeed is correct and unbiased,
there is considerable probability of attaining at least the correctly parametrized value of 186,459.

Our experience indicates that overparametrization invariably leads to higher deviations. The
reason for this is simple: the more variables there are to be estimated, the less accuracy with which they can
be estimated. The decreased accuracy translates into higher parameter errors. In our numerical tests, we
usually find the overparametrized solutions to be consistent.

In this case, the underparametrized solution yields a consistent estimate and a higher deviation.
But experience tells us that underparametrization can lead to inconsistent estimates and lower deviations.
An underparametrized estimate is inconsistent when the difference between itself and the correctly
parametrized estimate is well outside the range of the underparametrized deviation. The reason for lower
deviations due to underparametrization is: the fewer variables there are to be estimated, the more accuracy
with which they can be estimated. The reason for inconsistent results is: some statistically significant
variables are being omitted.

The discussion in this section indicates that, if high deviations and misleading results are to be
avoided, we must insure correct parametrization.

11. DISCUSSION

A) Cumulative distribution functions. We only use functions of three parameters, because we
believe only they must have at least that number of parameters to have the flexibility to describe real
payment patterns. We identify four such candidates: the transformed log-normal, transformed normal,
transformed log-gamma, and transformed gamma. We find all Pareto-type functions to be unstable in our
iterative regression scheme.

Of the four functions, only the log-normat works well for Workers Compensation, Products
Liability and Medical Malpractice, the longest tailed liability lines. But none works well for Commercial
Auto Liability, Personal Auto Liability and Commercial Multiple Peril, the shorter tailed liability lines.
Fortunately, we have developed a class of functions for the latter lines. We will present it in another paper.

B) Type of data. The data on which we tested these models have always been paid loss. The
question is whether the model could work as well on reported data. As formulated in this paper, the answer
is negative. We give two reasons for this and suggest a possible remedy. The two reasons are related.

First, a c.d.f. is by construction monotonic from zero to unity. Often a reported pattern is not,
surpassing unity at some intervals. This happens because of over-reserving: case reserves were set higher
than actual payments. In an ideal world with perfect case reserving, this would not happen, because, when
reported, case reserves would be set at exactly the future paid amounts. Therefore the ideal incurred
pattern would also be monotonic. And the flip side, under-reserving, must also be prevalent. The
inference is that actual incurred amounts have errors, because the case reserves cannot be set with perfect
foresight.

And that brings us to the second reason. For this model, we assume that the actual paid amounts
have no errors. While this certainly is not entirely true, it is much less true of reported data. Therefore, in
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working with reported data, it is imperative that we account for the errors associated with the actual data,
Since the two reasons are more or less related, one remedy may rectify both.
For the Yy in (3.6), we use the actual amount, and assume there is no associated error. Instead,

we could use the estimated value, which has a quantifiable error. In effect, we are saying that since actual

reported amounts have unknown errors, we should instead work with estimated amounts, for which the

errors can be estimated. This also has an additional advantage that addresses the first problem: even if the
actual reported pattern is not monotonic, the theoretical pattern could still be. This very distinction
between using the actual and estimated values goes back to the point made by Mack (1995). The model
based on estimated, as opposed to actual, estimates, is another interesting avenue of research.

With the above discussion in mind, an analysis of reported data, assuming that every theoretical
obstacle can be overcome, may yield much higher parameter and process errors than that on the
corresponding paid data. If such is indeed the case, there may not be much additional value in the
consideration of reported data.

If paid data have considerable amounts of salvage and subrogation, they can also be non-
monotonic. In such cases, it may be best to analyze the data gross of salvage and subrogation.

C) Advantages of the model. We generalize the difficulties of the traditional chain ladder fall into
three categories: non-stochastic variations in the ata factors, limited information, and tail factor. We
recapitulate how our model addresses each category.

i.  The model simulates the non-stochastic variations in the ata factors. The statistical significance of all
parameters is systematically determined. We have tested six liability lines, those mentioned in the first
segment of this section. We have considered loss triangles for both individual companies and
industry-wide data in the United States. And we have yet to encounter a single triangle in which only
the base coefficients are statistically significant. In every case, at least some non-stochastic variations
are evident.

ii. Limited information, as used in the traditional chain ladder, surfaces in a few instances. One is that
averaging may only use the last few available years. Secondly, to estimate the ata factor in any
development period, only information in that period is used. In contrast, to make the estimation at any
single point, our regression scheme uses information available everywhere. This should decrease the
parameter errors.

iii. Our model gives the tail factor for each accident year. In addition, it yields the variance of an ultimate
loss, and it clearly divides thatvariance into parameter and process errors.
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Appendix A:
The Derivation of
a Perturbation Expression

In this appendix, we derive the perturbation expression in (4.3). All the other perturbation
expressions can be obtained in a similar fashion.
In perturbation theory, our objective is to express any quantity, such as the LHS of (4.3):

(4.1) ry(u+Au,c+Ac,t+ A7),

as a linear function of the increments (A, Ao, AT).
We use (3.2) to write (A.1) as:

F(j+hu+Au,o+ Ao, 7+ A7)
F(ju+bu,0+ Ao, 7+ A7)

(42) ry(u+du,c+Ac,t+A7)=

We need to express the denominator of (A.2) as a perturbation expression, which is just (4.2).

(43) F(ju+Au,o+ Ao, t+ A7) = F(j u,0,7) +
G(Jj;u,0,7)Au+ H(j, p,0,7)A0 + K(j; p,0,1)AT
=Fy,+G Au+ Hyho + K AT,

In (A.3), we expressly recognize that the function parameters may vary by accident years. Similarly,
(44) F(j+Lu+Ayo+do,r+Ar)=F, ;,,+G, ,Au+H, A0+ K, | Az,
If we now put (A.3) in the denominator, then we have:

1 1
F(;p+Ap,0+ 80,7+ A1) Fy +Gyhu+ HAc+K,Ar
1 1

Fy1 +(G,y. /FU)A;H(HU/FU)A0+(K,¢/FUE1 -

1| Gy Hy Ky ]
—|l-——Au-—=Aoc-——Ar|.
Fy| Ry Fy F,

(45)

In (A.5), we retain only the linear term of the following Taylor's series expansion:
(A4.6) ! 1 +x?=A
. —=1-x+x"-A.
T+x

When we substitute (A.4) and (A.5) into (A.2), we get precisely (4.3):
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Giu Gy
(A7) ry(,u+Ap,0'+A0',r+Ar)=r,q(,u,a',r) 1+ N Au+

HlJH Hly Kk.j+l Ky'
———-——|Ao+| ——-—|Ar|.
Fm By Foju By
Every perturbation expression can be derived in a similar manner, and is simply the result of
repeated and appropriate applications of the Taylor’s series expansions.

Appendix B:
The Finite Limit of the
Process-Error Infinite Series

In this appendix, we prove that the infinite series in (5.10) has a finite limit. It is sufficient 10
show that:

- 2
(B1) Z[M] <,
tmA I

where, without loss of generality, we suppress the parameter dependency on time. A is some positive
integer, which can be as large as we wish.
We rewrite the equation for the transformed log-normal of (2.2) as:

(B2) F(1) = o[(nn)"; p4,0]=1- j[ f(dr,

where we use the partial density function:

- T 2
dI:_ T (lm) 'exp _%[(lnr) —p] .

(83) f(1)=d——:/—2—7‘ y p

To obtain the asymptotic form of the development factor, we use the definition of (2.1), and
perform successive approximations:

- froa . ]
B4y =D z[l— | f(t)dt]l:l+ j'f(:)er
F(f) 1+1 4
1- [f(nar :

i

1+1

=1+ [r@drs1+ f@)
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Taking the log of (B.4) and retaining only the first term of the resultant Taylor’s series, we obtain:

(BS) In(r,) < lof1+ 7] = £(0).

We simplify the elements of the series in (B.1) as:

2 2(s-1) r 2
(B6) [lnfi)] <[t < f%r):%(l“’r)z exp) _[(lm) #J _

Therefore, (B.1) is satisfied if we have the following equality:

® 2(r-1) T _ 2
(B7) Z(lm?z exp -[(lm) £ 1 <,

tad o

where we drop all multiple constants. Equation (B.7) is in turn satisfied if we have the following integral

inequality:
2r-1) 13 2
(lnl (lnt) —u
3—exp| - e dr <.

(B3)

ENE I )

t

We can certainly pick an A4 such that:

(1ns)"™"

(B9) -

<], A<t.

Therefore, we have the following inequality:
= (inr)*" (o) - ) | = (i) -\ {a
B.10 — ~| —— |di - — |—.
( ) J E exp pn t < !exp ]

We make the following substitutions:

() -y o & dt
(B11) x= ) , = we=—, p=1-Y.
o f(a-x_#) t
With (B.11), equation (B.10) can be written as:
T e InA4)° -
(B12) [ di<w, PR LEY
a(ax—y) o

412




The inequality in (B.12) holds, irrespective of the value of p, since the exponential decays much
faster than any power of x .

We thus prove the inequality of (B.1). This line of argument is applicable to any distribution, the
partial density function of which decays exponentially.
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