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A Portfolio Management System for 
Catastrophe Property Liabilities 

by Adam J. Berger, Ph.D., John M. Mulvey, 
Kevin Nish, and Robert Rush 



Abstract 

As catastrophe modeling systems become more sophisticated, the property insurance portfolio manager can 
receive better account loss information than ever before. We describe a software system called 
SmartWriter which effectively processes this information for the portfolio manager. Specifically. the 
system deterounes: 

• Appropriate pricing for an account 
• Which accounts to remove from a portfolio to maximize risk-adjusted return 
• How to merge two books of business 
• Where to grow or shrink business geographically to achieve maximum diversification benefits 

We utilize a number of optimiTation techniques to address these issues. We formulate the problem as a 
large mathematical program with numerous loss scenarios (lO,O00 or more). We then describe an 
algorithm to solve the resulting stochastic optmaization problem in order to maximize risk-adjusted return. 
expected utility, or other uscr..defined porformance measures. 

The SmartWriter system is a PC-based Windows application. USF&G, a large propeR" and casualty 
insurance company, currently employs SmartWriter as an integral part of its decision making process. 



1. Introduction 

'The insurance portfolio manager and underwriter require sophisticated analytical tools to assist 
decision making. Just as an asset portfolio manager, such as a mutual fund director, can 
immediately see the effects of  adding a security or option to his portfolio's risk and return profile, 
the insurance portfolio manager needs to understand the effects of  adding an additional account to 
the business line. In addition, there are many other issues the manager must address, such as: (1) 
Should an existing account be renewed and, if so, at what price? (2) Where are the best areas to 
expand the current portfolio? (3) How can two books of business be merged profitably? 

We have developed a decision support system, called SmartWriter, which answers these 
questions for one application area, the catastrophe property business. SmartWriter employs data 
from earthquake and hurricane modeling systems to show the effects of  adding a now account or 
subtracting an existing account from the current portfolio. In addition, SmartWriter optimizes the 
portfolio composition to produce a portfolio meeting user-specified characteristics. Although we 
are describing SmartWriter in the context of  catastrophe prope~y, the methodology applies to 
Directors & Officers, Errors & Omissions, Workers Compensation, and ocher insurance lines. 

The paper proceeds as follows. Section 2 .describes the method for evaluating an incremental 
account and the return on capital mo~'.hodology. Section 3 lays out the optimization model to 
address the questions raised above. The algorithm for solving the problem is described in Section 
4, and results are presented in section 5. We conclude with some next stops in Section 6. 

2. Modeling an incremental account 

Suppose we have a portfolio of insurance liabilities. As an example, we look at a portfolio of  
commercial businesses insured against earthquakes in California by USF&G, a large property and 
casualty insurance company. A potential new piece of business is presented to the portfolio 
manager, who must decide whether to write the account or reject it. Of course, some negotiating 
with the insurance broker who presents the account is possible, so the portfolio manager would 
also like to know the required premium to meet a profitability hurdle. Before analyzing the 
incremental business, we need to d0'fine a profitability measure for the existing portfolio. Two 
measures are return on allocated capital and expected utility. 

2. I Return on Capital 

In this method, capital is assigned to a portfolio (or business unit) based on the risk of the 
portfolio. Risk is calculated based on characteristics of  the cumulative loss distribution and 
portfolio profitability. For the catastrophe property business, capital is often a function of points 
in the tail of  the distribution, similar to Value at Risk (VAR). For simplicity, we focus on a smgle 
point oft.he loss distribution, the 99 tb percentile, and calculate the capital requirements as the 
funds needed to pay the loss incurred at the 99 ~ percentile. This is referred to as the "l-in-I O0 
year loss", since one would expect the loss to be as bad or worse than this level once every 
hundred years. More complex formulas based on multiple points of  interest on the loss 
distribution are possible (see Mulvey et al, 1997). Equation 1 shows the allocated capital 
calculation: 



capital = p F1(0.99) - (p - e) (1) 

where p is a discount factor, F is *he cumulative distribution function for*he loss, p is *he 
premium received and • is *he non-catastrophe expenses. The discount factor p is necessary since 
we receive premiums and pay out expenses (e.g. commissions) at *he beginning of*he year, and 
losses are incurred during*he year. Thus, we calculate*he capital required at*he beginning of*he 
year, and discount losses, so *hat all terms are on *he same basis. 

To calculate retain, we first define expected catastrophe loss as the expected value of*he loss 
distribution. Expected margin is simply premium less expense less expected cat loss. Expected 
return on capital (ROC) is calculated by dividing expected margin by the allocated capital: 

ROC -- (p - e - El(x)) / capital (2) 

where f(x) is the loss distribution and Ef(x) is the expected value of the distribution. 

We define *he marginal capital for an account as *he difference in capital required for the 
portfolio with the account and *he portfolio without *he account. Return on marginally allocated 
capital (ROMAC) has the same expected margin for *he numerator and marginal capital in *he 
denominator. Define % as the capital required for *he portfolio with *he account and .% as the 
capital for*he port_folio excluding *he account. Then the marginal capital m~ and *he return on 
marginal capital (ROMAC) is defined as:  

me = c~ - ~ C3) 

ROMAC = (p - e - Ef(x)) / n'~ (4) 

ROMAC captures *he diversification benefit of*he account with respect to the portfolio. An 
account with a high ROMAC doesn't require much additional capital allocation for *he portfolio 
as a whole, and thus is a good diversifier. Conversely, an account may have a high return on 
capital on a stand-alone basis, but a low ROMAC, and thus is most likely located in an area of 
high concentration. 

To facilitate combining loss distributions, we discretize *he sample space and create numerous 
scenarios. Each scenario represents a year's worth of catastrophes. We can *hen determine losses 
for *he account, in each scenario and combine accounts scenario by scenario to determine portfolio 
losses. Although k is not necessary to have scenarios for the above calculations (since capital 
with and without an account can be calculated separately with no need for combining accounts), it 
wil l  be important in performing *he optimization described in Section 3. 

2.2 Expected Utility 

An altomatiw approach to allocated capital is expected utility, Given an asset position for a 
business line (or company) at*he start of  a year, define a van Neumann-Moregnstern utility 
function over *he range of possible asset positions at *he end of*he year (see Bell [1995] for an 
example). Each portfolio will *hen have an expected utility value calculated from its loss 
distribution. Portfolios can be compared simply on expected utility, with higher expected utility 
being more desirable. To see whether to add an account to a portfolio, compare the expected 
utility before and alter *he addition. 



There are advantages and disadvantages to the retum on capital and expected utility approaches. 
Return on capital is a familiar financial ratio and is easily explained. Allocating capital based on 
points on the loss distribution is straightforward and captures, to some extent., the risk inherent in 
the business. Unlike expected utility, however, the return on capital does not provide a definitive 
answer on whether to add a new piece of business (e.g., i fa  new account has below average 
return on capital and above average ROMAC). The expected utility framework takes into 
account all points of the loss distribution whereas return on capital methods generally incorporate 
only a few. Expected utility provides a definitive recommendation, but does not have an 
immediately intuitive interpretation. For example, a portfolio manager can appreciate that adding 
a new account will boost return on capital from 12.0% to 12.5%, but may not as readily interpret 
increasing expected utility from 3.45 to 3.47. Depending on the model, expected utility can be 
easier to solve (see Berger [1995]) since it fits more easily into a mathematical programming 
framework than return on capital, which requires sorting a discrete distribution; Sections 3 and 4 
discuss this issue further. This comparison is summarized in Table 1. 

Allocated Capital 

Expected Utility 

Advanta$es 
..Easy to explain 
Returns have intuitive meaning 

Handle entire loss distn, st once 
Convex math progm'n 

Disadvantages 
Extra work to sort discrete disttibulions 
Limited points on loss distnbmion 

Hard to determine utility function 
Results not intuitive 

Table I: Comparison of allocated capital and expected millty objective functions 

2.3 Sample Decision 

We present SmartWriter analysis (Table 2) of  an account recently offered to USF&G's 
commercial property business. Although we have akered the raw output to protect 
confidentiality, the returns are consistent with the actual analysis. 

Premium 
Expenses 
Expected Catastrophe Loss 
Expected Profit 

Loss at 99=% = F'=(0.99) 
Capital Required 
Return on Capital: ROC 
Ret. on Marginal: ROMAC 

Now Account Current Portfolio Combined 
$980 $3,800 
$294 $1,140 

$71 $615 
$615 $2,045 

$5,200 $14,300 
$4,200 $11,600 
14.6% 17.6% 
19.8% 

$4,780 
$1,434 

$686 
$ 2 ~ 6 0  

$18,100 
$14,700 

18.1% 

Table 2: New account analysis. All numbers in ($000), except where indicated. 

The SrnartWriter output is divided into three columns. The first column is the new account as a 
stand alone business. The expected income for the account, after taking expenses and expected 
catastrophe losses from the premium, is $615,000. The new account requires $4,200,000 in 
capital based on the i-in-100 year loss o f  $5,200,000. This yields a return o f  14.6%, which is 
below our hurdle rate o f  15%. 



The second column contains data on the portfolio as it stands today, and the final column is the 
portfol io performance i f  the new account were added. Note that the capital requirement for the 
combined portfolio is less than the sum o f  the new account and current portfolio capital: This 
indicates that the new account wil l  diversify the business to some extent. Two additional items 
help quantify this diversification. The ROMAC for the new account is 19.8%, which means that 
the marginal return for adding the account divided by the marginal capital is significantly over the 
hurdle rate. The second item to note is the increase in the ROC for the portfolio from 17.6%to 
18.1% i f the account is added. For these reasons, the account was considered a good prospeot, 
even though on a stand alone basis it was slightly below the hurdle rate. 

3. O p t i m i z a t i o n  M o d e l  

Optimization is the process & f ind ing  good solutions to a mathematical model. In the context o f  
insurance underwriting, several problems are amenable to optimization. For a portfolio o f  large 
commercial accounts, the optimizer could locate the five accounts most in need o f  repricing, or 
the subset of'the current portfolio which maximizes return. For a homeowners portfolio, the book 
&business is managed less on a home-by-home basis and more on a zip code, county, or state 
level; the optimizer can focus on which counties to expand market penetration and which zip 
codes to reduce premium volume. The next section describes SmartWriter optimization for 
c o m m e r c i a l  port:folios,  and  the f o l l o w i n g  sec t ion  For h o m e o w n e r  books .  

3.1 Commercial Por t fo l ios  

Section 2 defined a method For comparing portfolios o f  accounts, either with retum on capital or 
expected utility. We can now formulate an optimization model for choosing an optimal subset o f  
accounts For the given portfolio. As mentioned above, we will define a discrete set o f  scenarios, 
where each scenario represents a number o f  catastrophes for a year. This facilitates the problem 
of'combining loss distributions. For general continuous loss distributions, there is no simple 
met.hod that can be used. 

3. I. I Var i ab les  and  Ob jec t i ve  

Def ine  the  f o l l o w i n g  sets: 

{ 1, 2 . . . .  N} - set  o f  a c c o u n t s  in the  po r t fo l io  
{ 1, 2 . . . .  S} - set o f  loss  scena r ios  

Define the Fol lowing  input parameters: 

pl = premium for account i 
ei = n o n - c a t s t r o p h e  expense  fo r  a c c o u n t  i 
1= = loss (in do l la rs )  fo r  a c c o u n t  i in scena r io  s 
7r, = p robab i l i t y  o f  s cena r io  s 
p = discount factor 

Define the fol lowing decision variables: 

xl, i = |  . . . . .  N - a m o u n t  o f  a c c o u n t  i in the  por t fo l io  

O u r  objec t ive  is to  m a x i m i z e  return on capi tal :  



Max E,-Ls Ei.l.s n, (xi (pi - el - 1~)) / [p F'1(0.99) - sum xl (Pl - e0] 

where F~(0.99) is calculated from the revised loss distribution xi*l~. 

(5) 

Note that correlations are implicitly captured in the analysis. Since the entire loss distribution is 
calculated for the objective fimction, the correlation among accounts will affect the return on 
capital. 

3. 1.2 Constraints 

The following are constraints that can be added to the model. 
An account can either be in the portfolio or out of  the portfolio so we add a binary constraint 

x l c  {0,1) 

If one or more properties must be retained, we add: 

xl = I 

The total premium for the portfolio can not be reduced past a specified level, MinPrem: 

Ei-i.~xl * pi) >= MinPrem 

The expected income on the portfolio can not be reduced past a specified level, Minlnc: 

Ei-i.N (xl *( Pi -  ei - 1~) > Minlnc 

3.2 Expansion problem 

Another problem facing insurers is where to grow a portfolio e r a  large number of  small accounts, 
for example the homeowners market in California. These portfolios can not be analyzed account 
by account, since underwriters do not have the flexibility of  choosing to write one home and not 
another. Accounts must be aggregated to a meaningful level: not too large so that accounts 
within a group possess similar characteristics, but not too small so that they can be managed 
effectively, such as with target marketing. The following model chose the zip code level as a 
reasonable trade-offbetween these competing demands. The objective function remains the 
same, but we change a few variable and constraint definitions. Our emphasis now is determining 
how much premium to retrieve from each zip code. We assume that the loss characteristics 
within a zip code are constant. Zip codes where this is not the case can be broken down into 
smaller units. 

Define the following sets: 

{ I, 2 . . . .  Z) - see  of  zip codes in the region 
{ l, 2, ... S} - set of loss scenarios 

Define the following input parameters: 



e = non-catstrophe expense ratio 
l= = loss per dollar of  premium in zip cede z in scenario s 
7t, = probability of  scenario s 
p = discount faclor 

Define the following decision variables: 

x~, z=l,... , Z -  amount o f  premium from zip code z in the portfolio 

Our objective is to maximize retum on capital: 

Max 3~.-1.s Z~-i~z n, ( x~  e* xz - 1=* x,.)) / [p F'1(0.99) - Y~.zz (xz - e* x,)] 

where FZ(0.99) is calculated from the revised loss distribution 1=* xz. 

Constraints similar to the ones in the pruning example above can be added; we give a few 
examples here. The premium level across zip codes can be bounded between two values, 
MinPrem and MaxPrem: 

MinPrem < xz< MaxPrem 

Alternatively, the total expansion of  the portfolio can be limited to a dollar value, MaxPort: 

~z-Lz Xz <= MaxPort 

4. Solution Procedure 

The models described in the previous section are not easily solved with traditional mathematical 
programming procedures, due to the necessity of  the sorting during the capital allocation 
calculation. We employ a number of  metaheuristic search procedures to find the global optimum 
value for the problem. For all of  these, it is important to find good starting points, which we 
describe first, followed by the search algorithm. 

4.1 Elite Solutions 

Elite solutions are points in the decision space which are believed to be good locations for a local 
search (also called intensification, since the local area is being explored thoroughly). One method 
for generating elite solutions for this example depends on the profitability of  the portfolio as a 
whole and on the individual accounts. If the portfolio is profitable, then a candidate elite solution 
would be the entire portfoho, or the portfolio with a small subset of  poor performing accounts 
removed. Alternatively, for a poorly perfoyming portfolio, a candidate elite solution could be a 
small subset of  profitable accounts, or no accounts at all. Another approach ranks accounts by 
profitability and correlation with the portfolio as a whole; an account with high profitability and 
low correlation would be included in an elite portfolio. 

A more profitable approach relies on problem-specific information. Suppose the optimization 
procedure is run monthly or quarterly. Optimal solutions from previous runs can be stored and 
will provide good elite solutions, even if the portfolio has changed measurably since the last run. 



Of course, accounts no longer in the portfolio but in the previous optimal solution must be 
removed. 

After a number of  elite solutions have been generated using some or all of  the methods above, the 
solutions are ranked in terms of atlractiveness. This ranking will then determine the order for the 
local searches (see next section). Ranking can be based on objective function value alone, but to 
fully explore promising areas of  the decision space we can use a weighted average of the 
objective fimction and the distance from higher ranked elite solutions. As more solutions are 
ranked, the benefit for diversification increases. 

4.2 Tabu Search 

Tabu search was originally developed by Glover and has proven highly effective for solving 
combinatorial optimization problems. (See Glover [1989] for an introduction). The procedure 
searches a feasible region by monitoring key attributes of  the points that comprise the search 
history. Potential search iterates possessing attributes that are undesirable with respect to those 
already visited become tabu; appropriate penalties discourage the search from visiting them. We 
provide details below. 

Consider a general non-convex optimization problem of the form: 

minimize fix), x e X 

x 

where the function fx )  corresponds to the return on capital objective in Equation 5. 

Our adaptation of tabu search has three basic elements: 
• a function g(x) = fx )  + d(x) + t(x). The function d(x) penalizes x for infeasibility. The 

function t(x) penalizes x for being labeled tabu. 
• the current iterate x~, 
• a neighborhood of the current point N~. 

The procedure generates a new iterate x,,w by selecting the element of  N~for which g(x) is 
smallest. The tabu restrictions represented in t(x), can address short-, intermediate-, and long- 
term components of  the search history. Short-term monitoring is designed to prevent the search 
from returning to recently visited points, allowing the procedure to "climb out of  valleys" 
associated with local minima. Short-term monitoring can also serve as a rudimentary 
diversification vehicle. Intermediate- and long-term monitoring techniques provide for a much 
more effective diversification of  search over the feasible region. In addition, the elite solutions 
described previously also provide diversification. See Glover [1990] for additional details. 

Details of  four processes are required to define our adaptation of tabu search: formation of  the 
neighborhood of the current point, assignment of  tabu pemlties, termination of search procedure, 
and greedy selectTon of the new iterate from the neighborhood of potential moves. 

Neighborhood formation proceeds as follows. Let ~ = (x~ . . . . . .  x~) be the current point; the 
decision vector thus has n components. For the example in Section 3.1, this would be a vector of  
zeros and ones, where a "one" indicates the account is in the portfolio. Each member of the 
neighborhood ofxo, No, is formed by modifying one of  its components either up or down by an 
amount equal to some value stepsize. Note that this operation implicitly defmes a discretization 



of the continuous feasible region. There are thus 2n members of No. We call each of  these 
members a potential move; one of  these will become the new iteratE, i.e. - the actual move. Each 
potential move is characterized by two move attributes: index changed and new value. Attribute 
index changed is equal to j, where xj, is the component ofx~ whose value is changed by the 
potential move; new value is the value that the component being changed by the potential move 
assumes (formally: new value = x i~, such that j = imtex changed). 

The manner in which we assign tabu penalties -- and thus define the fiJnction t(x) -- to each 
potential move relies on exploitation of  short-term search history; the methodology is based on 
the technique developed in Glover, Mulvey, and Hoyland [1996]. The assignment is based on a 
comparison of the move anributes of each potential move and those of  the iterates comprising the 
recent search history. The maintenance of  two data structures is necessary: 1) the tabu list, and 
2) ame o f  last change list. The tabu list is composed of  the attributes of the T most recent 
search iterates: tabu list is thus a T x 2 array where T = TABU LIST SIZE. The 
time o f  last change list is an n x 1 array, where time of" last change hstj= the last iteration 
during which the actual maya's  index changed attribute equaled j. We also define fBEST as the 
best objective value (in terms of minimization) found by the procedure at any point in the search 
process. 

Three criteria govern our assessment of  the tabu status of  each potential move (xp): 

Condition I: do the move attributes ofxp match any of  those in the tabu list? 
Condition 2: is length of stay < REQUIRED STAY, where length of stay 

= current iteration - time q/" last changq .where j = index changed? 
Condition 3: is f(xp) < flea,sT and Xp e X? 

If either of  the first two Conditions are true, we assign an appropriate tabu penalty to the potential 
move, discouraging the search from moving to x v Condition I prevents the search from 
revisiting a point whose move attributes match those of  points recently visited. It is this operation 
that allows the search process to move away from local minima, as we described earlier. 
Condition 2 insures that a variable is not changed too soon after it becomes the basis for an actual 
move; it thus is a vehicle for short-term search intensification If the final condition is satisfied, 
we eliminate the tabu penalty for xp: this allows the search to move to a tabu point if the objective 
value associated with this point is better than that of the best point found thus far. (This is our 
implementation of the concept ofa.spiratian crHeria; we refer the reader to Glarer [ 1990] for 
details.) 

We present three termination criteria: 

1) Total time exceeds a preset maximum 
2) Total iterations exceed a preset maximum 
3) The amount of time spent without any improvement in the solution exceeds a preset 

maximum 

Finally we address the greedy criterion for selecting from the set. o f  potential moves the actual 
move, and thus the new iterate. The standard approach for selecting the new iterate is to find the 
point in the neighborhood o f  the current iterate for which g(x) = f(x) ~- d(x) + t(x) is smallest, a 
process that by definition requires evaluation of  every member of  the neighborhood. This 
strategy can degrade the effectiveness of  the search when the computational effort required to 
evaluate ~x) is prohibitive. The greedy search strategy addresses this difficulty. It calls for the 

10 



evaluation of the set of potential moves to cease when a neighbor fax is found which f(x) < f(~) 
and d(x)= t(x)= 0, i.e. - x is feasible, not tabu, and shows improvement. 

5. Results 

Below is the SmartWriter output for a California earthquake portfolio with 173 accounts. The 
results are from real company data, but the numbers have been disguised to protect client 
confidentiality. We ran the analysis on a Windows 95-based PC with 64MB of memory, with run 
time between 5 and 10 minutes, depending on parameter settings. 

The optimizer recommended the removal of 16 accounts from the portfolio. Table 3 shows 
summary information before and after the optimization for the portfolio as a whole. 

On the whole, this was a profitable book of business, but there were a small number of poorly 
performing accounts. Not only did these accounts have a poor expected return, but they had a 
severe effect, in the tail of the distribution. Expected income only decreased by $100,000 (3%), 
hut the loss at the 99 = percentile decreased by over $15MM. Return on capital jumped from 
14.7%to 37.5%. We have seen this with other books of business as well: a small percentage of 
accounts represent a large portion of the tail of the loss distribution. 

l / i , i , t ~ l , t . l  t.~t ~,a=.,il-iilt~ 
Number of accounts 

Premium 
Expenses 
Expected Cat Loss 
Expected Income 

Loss at 99~% = Fn(0.99) 
Capital Required 
Return on Capital: ROC 

Table 3: Portfolio before and after o 

173 

$5,600 
$1,700 

$500 
$3,400 

$28,600 
$23,200 

14.7% 

157 

$5,200 
$1,600 

$300 
$3,300 

$12,900 
$8,800 
37.5% 

~tlmlzation. Unless otherwise noted, numbeN are In (~100). 

Ideally, the portfolio manager should reprice these accounts upon renewal instead of terminating 
them. Although market conditions will determine the extent to which this is feasible, 
SmartWriter provides output on all the accounts targeted by the optimizer. Table 4 contains 
information for one of these accounts. 
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Premium 
Expenses 
Expected Cat Loss 
Expected Profit 

Loss at 9 9 %  = F1(0.99) 
Capital Required 
Return on Capital: ROC 
Rct. on Marginal: ROMAC 

Premium needed to meat 15% ROC hurdle 
Premium needed to meet 15% ROMAC hurdle 

Table 4: Account targeted for removal or repriclng by optimizer. 

Account A 
$20 

$6 
$12 

$Z 

$780 
$740 

0.3% 
0.4% 

$150 
$145 

For this example, the'premium needed to meet the stand alone return on capital hurdle of 15% is 
$150,000, much greater than the current premium of $20,000. Repricing is most likely not an 
option for this account, but for examples where the current ROC is closer to the hurdle rate, 
rspricing can be viable. 

5.1 Portfolio Expansion 

As with the pruning portfolio example above, portfolio financials are available before and after 
optimization. Rather than repeat the above tables, we display the graphical output available from 
SmartWriter. Since t.he analysis was conducted at a zip code level, fmancials can be displayed in 
map form for quick understanding. We show an example below. 

Figure I shows profitability by zip code, if each zip code is evaluated on a stand alone basis, for 
the San Francisco Bay area. Dark green indicates zip codes with a high expected ROC per home, 
light green less profitable, and red low profitability. These maps can be generated for expected 
income, marginal capital, and for the results of the optimization: optimal concentration by zip 
code. For confidentiality reasons, we do not give the recommended map for concentration, but it 
overlaps the map below to a large extent. Most zips that are low profitability the optimizer 
recommends moving away from, and for zips with high profitability, the optimizer recommends a 
greater penetration. The optimizer takes into account, however, the problems with 
overproducing m a number of closely located zip codes which all may be affected by the same 
earthquake. 
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Figure I: Expected return on capital by ~lp code for the San Francisco bsy area. Dark linden indicates mc~t 
profitable zip coda red indicates poor performing zip codes. 

6. Next Steps 

The portfolio management system can be readily extended to account for overlapping risks across 
business lines and asset investment categories. The concept is to develop a price of risk for each 
product-location under each scenario at each time period. These prices are available directly 
fi'om the optimal decision variables for the strategic planning system. See Mulvey et al. (1998). 

Ideally, one would like to link the liability decision with the asset investment strategy. In this 
paper we focused on the clay-to-day underwriting decisions and take the asset return as a fixed 
input. In the filture, one could tailor the asset portfolio in conjunction with the liability portfolio, 
such as purchasing catas~'ophe options or catastrophe-linked b o n ~  for the property business line. 

Another extension is the addition of multi-year contracts. As the catastrophe market continues to 
soften, these contracts may become more desirable for insurer and insured: They provide price 
protection for both parties. These can be linked with capital market projections which produce a 
range of possibilities (scenarios) a number of years ahead, such as the Towers Perrin CAP:Link 
system. 

Finally, reinsurance decisions can be directly integrated into the optimization model. A desired 
profit distribution could be entered along with the current portfolio and a range of reinsurance 
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options and treaties, and the optimizer would choose the best reinsurance options to match the 
desired profit distribution as closely as possible. 
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ABSTRACT 

Until recently, insurance companies were forced to evaluate business decisions 

at the functional level. With the advancement in computing power and 

understanding of advanced financial mathematics, company's are now able to 

integrate all of the various operational functions into a total company model, 

and evaluate the impact of various business decisions on the total company's 

risk/reward profile. This paper describes an approach for using "decomposition 

of risk" as part of a comprehensive ALM analysis for an insurance company. 

The objective is to identify and quantify the major factors that contribute to a 

company's total risk. Isolating each component of risk allows a company to 

better understand its total risk and thus develop strategies to improve its 

risk/reward profile. AS a result, management can assimilate the relative and 

combined risk of assets, liabilities, and capital markets into a set of stochastic 

financial statements, thereby providing the information necessary to improve 

strategic investment, operating and capital allocation decisions. 
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Applying a DFA Model to Improve Strategic Business Decisions 

Until recently, insurance companies were forced to evaluate business decisions 

at the functional level. For example, Actuarial and Underwriting departments 

focused on the liability side of the operations, Investment departments 

concentrated on the risk and rewards of alternative asset strategies and asset 

classes, Treasury evaluated capital allocation decisions, and the Reinsurance 

unit explored the impact of various reinsurance treaties. With the advancement 

in computing power and understanding of advanced financial mathematics, 

company's are now able to integrate all of the various operational functions into 

a total company model, and evaluate the impact of various business decisions 

on the total company's risk/reward profile. 

The risk management process developed at Falcon Asset Management, called 

Falcon Integrated Risk Management (FIRM~), is an example of a total 

company model that uses sophisticated techniques and gives management the 

ability to analyze problems at the total company level in a completely integrated 

framework (i.e., combining liabilities, assets and economic factors). As a result, 

management can analyze their key profit/cost centers, such as investment 

management, corporate finance/capital management, underwriting and 

reinsurance functions, on a consistent basis. An integrated risk management 

model uses simulation analysis of the aforementioned business functions and 

their key drivers to develop a comprehensive risk/reward profile for the 

company. 
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Many articles and papers have been written showing the benefits of including 

an insurance company's liabilities into its asset allocation decisions, including 

Sweeney and Correnti [1994] and Carino, et al. [1994]. Figure 1 expands on 

these concepts and gives a schematic view of an integrated risk management 

process. Total integrated risk management builds on traditional asset/liability 

analysis in that it explicitly considers strategic decisions impacting both 

operations and investment activities within a holistic framework. Once the key 

factors contributing to the overall risk of the company are identified and 

quantified, management has the ability to "loop" through the process by 

selecting either the investment loop (e.g., asset allocation, derivatives and 

capital allocation) or through the operations loop (e.g., business mix, 

reinsurance strategy and merger & acquisition analysis). 

Traditional asset/liability analysis has been used to explore asset issues 

relating to asset allocation and derivative strategies only. An integrated risk 

management approach combines a more complete set of asset, liability, 

economic and capital market factors at the total company level giving 

management the ability to investigate the risk/reward tradeoffs of a wide range 

of alternative strategic business decisions. In addition the company is able to 

evaluate the joint impact of multiple strategic decisions through their 

interrelationships on the total company risk/reward profile. 
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F/sure 1 

Falcon's Integrated Risk Management Process 

Step 1 

I Ind CIp~l MIn~ege) I 

Operations step 2 ~ Investment 
I L°Op EviIuIS d SlmuleUon of Be, Sheltltlm. . . . .  . . . .  I L°°p 
• Buslnesl mix ~ • Investment Strategy 
• Relnsurlnce stmtlgy • DedvlUves 
• MlrSlnl, AcquIIItlonl end Step 3 • Clpltll AIIocatlonlStn,lcture 

DlVeltltu tel SUllplUl OptlmlzlUon I / 

I An|lysls of Rnulti: 

Step 5 

I Slnlltlvlty TieUn, I 

i 
i s_ , ,o . ° . ,  o .c , ._  i . . . .  

For example, management can now evaluate various reinsurance strategies 

and quantify their impact on the company's financial objectives. The cost for 

the reinsurance protection can be compared to the reduction in risk provided by 

the reinsurance program and decisions concerning the appropriate level of 

reinsurance can be made. In addition, the integrated risk management 

approach provides management with a consistent framework to access the 

myriad of problems that they face. Whether deciding on an appropriate asset 

allocation strategy, reinsurance programs or corporate finance issues, 

management can use the integrated risk management process to perform the 

necessary analysis under a consistent risk/reward framework. 
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This paper will focus on the decomposition of risk step and how this information 

to assist a company with their strategic business decisions. 

Economic and Capital Market Modelin 9 

The first step in evaluating the asset allocation strategy for an insurance 

company is to evaluate the economy and the capital markets. This is Step 1 in 

the integrated risk management framework presented in Figure 1. For asset- 

only analysis over a single time period mean/variance models can be used 

effectively (see Markowitz [1987]). These models require inputs concerning the 

mean, standard deviation and correlations related to a particular set of asset 

categories being considered in the analysis. While effective for single period, 

asset-only analysis, these models are not adequate for more advanced 

asset/liability analysis or for use within a total integrated risk management 

framework. This is due to the fact that there is no explicit modeling of the 

underlying economic environment such as interest rates and inflation. The 

implicit economic environment that underlies a mean variance model can lead 

to interest rates that both explode to unreasonably high levels and even more 

undesirable, become negative. 

Asset/liability management relies on the consistent relationship of both asset 

and liability movements to the underlying economic environment. Thus it is 

critical to model the economic variables explicitly to ensure reasonable future 

20 



economic projections. The best models available for this purpose are models 

that utilize stochastic differential equations to describe the dynamics of the 

interest rate and inflation rate movements. For a more complete discussion of 

stochastic diffusion models see Mulvey and Thorlacius [1997]. Figure 2 shows 

twenty simulations corresponding to a three year projection of short-term 

interest rates that were generated from a stochastic diffusion model. This 

picture shows the year to year movements of the short-term interest rates 

together with the range of potential interest rate levels. 

F/gure 2 
o . a .  

a .o~  
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I . o ,  
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The economic and capital market diffusion model used employs a cascade, or 

top-down structure as described in W~lkie [1987]. The top of the cascade 

model involves generating price inflation rates. Future interest rates are 

modeled consistent with the previously generated inflation rates using a variant 

of the Heath-Jarrow-Morton interest rate model (see Heath, Jarrow and Morton 

[1988]). Once the future yield curves are determined, the cascade structure of 
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the model produces asset class returns (both total returns and income returns) 

that behave consistently with the underlying economic scenario. 

Asset classes are defined as homogeneous groups of individual investments 

such as fixed income of various maturities, equity, and cash. Fixed income 

categories are defined as a function of their anticipated yield, duration, 

convexity, and default or volatility risk. Equity returns are modeled as a 

function of their earnings yield and earnings growth. Asset classes, such as 

mortgage-backed securities, high yield bonds and property returns can be 

added to the analysis through the use of return generation tools available in the 

model. The modeled classes serve as a proxy for the assets currently held 

and/or expected to be held by the company. 

The resulting returns can be summarized using the same mean, standard 

deviation and correlation statistics that are typically used as inputs to a 

mean/variance model. In addition, the same economic variables that are used 

to generate the capital market returns can be used to project the premium, loss 

and expense cash flows that will be required for the asset/liability analysis. 

This is the type of asset modeling system that we use in the integrated risk 

management system presented in Figure 1. 

Figure 3 shows the 5th through the 95th percentile results corresponding to the 

average annual returns for each of six asset categories. As expected, over an 
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annual holding period, cash returns show the smallest annual average return 

range while equities show the largest return range. 

F~um 3 
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3.66 1,64 -4.20 4.2.4 -11.96 -14.81 

75th 
5061 
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The use of a stochastic economic and capital market simulation model of the 

type discussed above ensures that the asset class returns are consistent with 

the economic conditions that are being simulated. This is of critical importance 

to any application that is attempting to model assets and liabilities 

simultaneously. 

Evaluation of Financial  Statements 

Since an integrated risk management process is dependent on an insurance 

company's liabilities, modeling the liability cash flows is critical for obtaining 
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meaningful results. Liability simulation should consider both the existing 

reserves, and the company's business plan. Like asset categories, existing 

reserves and new business liabilities can be broken down into homogeneous 

lines of business to ensure that the unique characteristics of each line are 

captured. Historical experience and expected future trends need to be 

reflected in the assumptions to capture how the insurance company's liability 

structure will develop in the future. 
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F/gure 4 

Distribution of Existing Reserves 
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Projections of the existing loss reserves are generated stochastically by 

assuming an underlying distribution for the loss reserves and inputting an 

expected reserve runoff pattern. The loss reserve simulations should recognize 

that the magnitude of adverse loss development is potentially greater than the 

magnitude of beneficial loss development. Figure 4 illustrates the simulated 

distribution of the company's existing reserves. 

Modeling the existing liabilities alone would imply that the company is in a 

liquidation, or runoff mode. Since most companies consider themselves a 

going concern, it is imperative to model the company's new business plan in 
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order to accurately reflect the company's complete liability structure in the 

future. Typically companies budget three to five years of new business which 

can be layered on top of the existing reserve cash flows. 

In order to project the new business liability cash flows, assumptions regarding 

written and earned premium, loss ratios, expected accident year payout 

patterns, IBNR factors and expenses are needed. Loss ratios should be 

modeled so as to reflect relationships with the underlying economic 

environment and should be general enough to allow the user to incorporate 

cycles and reversions. 

The low frequency/high severity nature of catastrophes requires more precise 

modeling techniques to simulate catastrophic events and the resulting cash 

flows. There are several cat models available in the marketplace today (e.g. 

AIR, EQE, RMS, etc.). Loss ratios and cash flows attributed to catastrophes 

can be generated using one of these simulation models and merged with the 

non-cat losses described above to produce the company's overall loss ratio 

distribution. Figure 5 shows the distribution of simulated year 1 loss ratios for a 

hypothetical property/casualty company. 
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F/gure 5 

Distribution of Gross Loss Ratio 
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Once the projected loss ratios are determined, the total liability cash flows are 

calculated by multiplying the generated loss ratio by the forecasted earned 

premium and accident year payout pattern. The carried reserves can then be 

calculated as a function of the ultimate loss reserve, the expected loss reserve 

and the appropriate IBNR factor. It is important to recognize that since each 

line of business has its own characteristics, all of the above projections need to 

be performed on a line-by-line basis before being aggregated to a total 

company level. 

To reconcile the model results to forecasted profit and loss statements, 

assumptions regarding taxes, premium collection patterns, and various other 

27 



liability items (including non-cash flow items) are required. With this 

information, stochastic income statements and balance sheets can be 

produced on a statutory, GAAP and economic basis. Further information 

concerning asset and liability model requirements for property/casualty 

insurance companies can be found in Almagro and Sonlin [1996]. 

Consolidation and Analysis 

In Step 3, from the integrated risk management flowchart, the liability and asset 

simulations are fed into an insurance optimization model to solve for an efficient 

frontier (a set of portfolios that provide the highest reward for a given level of 

risk). There are an unlimited number of objective functions that can be used for 

optimization. Some simple objective functions can be defined as mean ending 

surplus (statutory surplus, shareholders' equity, or economic value) for the 

reward measure, and the standard deviation of ending surplus for the measure 

of risk. Alternatively, we can look at various downside risk measures or 

company specific risk/reward functions. 
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F/gure 6 
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Figure 6 shows an example of an efficient frontier using ending economic 

surplus as the reward measure, and the standard deviation of ending economic 

surplus as the risk measure. It is important to note that the efficient frontier 

plots expected results only. One must analyze the entire distribution of results 

to determine the optimal choice based on the company's risk tolerance. Figure 

7 shows the distribution of results for three selected portfolios from the efficient 

frontier. 
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F/gure 7 
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Once efficient portfolios are identified, the "analysis of results" phase of the 

integrated risk management process (Step 4) can commence. Two of the more 

common types of analyses performed are decomposition of risk and downside 

risk analysis. These types of analyses identify the factors that have the 

greatest impact on the company's overall risk, and, as a result, require 

additional sensitivity testing (Step 5) or the identification of appropriate risk 

mitigating strategies. See Correnti and Sweeney [1994/1995], and Correnti, 

Nealon and Sonlin [1996/1997] for additional details on the process. 

The end results of an integrated risk management process goes far beyond the 

objectives and goals of traditional ALM. Like traditional ALM, a primary use of 

integrated risk management is to determine an appropriate investment strategy. 

However, by being able to analyze a company in the aggregate and in a fully 
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integrated framework (integrating liabilities, assets, and capital markets), the 

company has an invaluable tool which can help evaluate a wide range of 

business decisions and quantify various risk management strategies. For 

example, an integrated risk management process can be used to analyze a 

company's business mix and determine the optimal mix of premium to allocate 

to each of its lines of business. It could be used to evaluate possible 

acquisitions and divestitures in light of the impact these decisions would have 

on the total economic risk profile of the company. Alternatively, such a model 

could assist in determining the appropriate level of reinsurance from a total 

company viewpoint, and to determine the value/cost tradeoffs of various 

reinsurance strategies. 

Decomposition of Risk 

Variance analysis techniques are used to investigate the effects of two or more 

factors that influence an outcome. The method described below allows us to 

decompose the total risk facing an insurance company into its key components. 

In this framework, the total variance represents the volatility of ending surplus 

resulting from a particular asset portfolio chosen from the efficient frontier. To 

analyze this volatility further, one can break down the total risk into key drivers 

such as asset risk and liability risk. Identifying and comprehending the factors 

that contribute to the total risk for the company allows management to develop 

strategies to mitigate its risk exposure or to exploit market conditions. In either 

case, the company will have a better understanding of its risk profile and will be 

able to tak e proactive steps to improve that position in the future. 
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In general, recall that: 

VAR(x+.v)= VAR(x) * V,4R(y) ÷ 2 C O V ( x , y )  

= VAR(x) + VAR(y)  + 2CORREL(x ,y )  x 

STDDEV(x )  x STDDEV(y )  

(1) 

where 

and 

cov<x,y) = E [ ( x -  ~ , ) ( y  - ~ , ) ]  = ~ ( x  - ~ , ) ( y  - , , ) P r ( x , y ) ,  

s r o o e V ( x )  = ~ I F ~ ~  ; STOOevO,)= ~/FZE~~ ; 

s r o o E V ( x  + y) = (2) 

CORREL(x,y) = COV(x ,y )+  {STDDEV(x) x STDDEV(y)} 

It is important to observe that if two variables are perfectly correlated (i.e., 

CORPJ~L(x,y) = 1), then equation (2) reduces to: 

STDDEV(x + y) = STDDEV(x) + STDDEV(y).  
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For correlations less than 1, the standard deviation of the sum of two variables 

will be less than the sum of the two standard deviations. In other words, if 

CORREL(x,y) < 1,  then 

STDDEV(x + y) < STDDEV(x) + STDDEV(y). (3) 

The covariance (or correlation) component of the total variance will reduce the 

overall standard deviation of a distribution unless the underlying variables are 

perfectly correlated. This fact is crucial to our risk management process. 

Additional factors (such as new asset classes or new lines of business) that in 

isolation appear to be risky, may improve the overall company risk profile when 

viewed in aggregate provided that the new factor is not perfectly correlated with 

all of the existing factors. This observation will be explored in further detail in 

the case study below. 

For three variables, the formula for variance expands to: 

and, 

VAR(x + y +  z) = VAR(x) ÷ VAR(y) + VAR(z) + 2COV(x ,y)  + 

2COV(x,z)  + 2COV(y , z )  

(4) 

STDDEV(x + y + z) = ~]VAR(x + y + z) (5) 
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As above, unless the factors are perfectly correlated, the resulting standard 

deviation of the sum of the variables will be less than the sum of the standard 

deviations, i.e., 

STDDEV(x  + y + z) • STDDEV(x) * STDDEV(y)  * STDDEV(z ) .  

We are now ready to discuss the actual methodology of isolating individual risk 

factors. 

Methodology 

There are two main components that contribute to the total risk of an insurance 

company. They are the risk arising from the uncertainty in the economy and 

capital markets (asset risk) and the risk arising from the uncertainty in the 

ultimate loss payouts (liability risk). Further, the asset risk can be separated 

into the uncertainty surrounding the appropriate economic discount rate 

(discount rate risk) and the uncertainty in the asset class total returns (capital 

market risk). These risk breakdown components are outlined in Exhibit I1. 
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F/gure 8 DECOMPOSITION OF RISK COMPONENTS 
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This process can be used to isolate each of these risk components by holding 

two of the factors deterministic (constant), while allowing the third factor to be 

stochastic (variable). For example, to isolate the contribution to total risk from 

liability uncertainty, the model is run holding asset returns and interest rates 

constant while allowing liability cash flows to be stochastic. By running the 

model with deterministic liability cash flows and interest rates and stochastic 

asset returns, the capital market risk component can be identified. Finally, by 

making the liabilities and asset returns deterministic while allowing interest 

rates to be stochastic the model will identify the discount rate component of 

total r isk. Table 1 outlines the eight runs necessary to complete a 

decomposition of risk analysis (S = Stochastic, D = Deterministic). 
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Table 1 

Decomposition of Risk Runs 

Capital Discount 
Run Liabilities Market Rates 

A S S S 
B S S D 
C S O S 
D S D D 
E D S S 
F D S D 
G D D S 

H P P P 

Run A, which assumes liabilities, asset returns and interest rates are all 

stochastic, represents the total risk to the company. By "turning off" discount 

rate and capital market volatility, we can determine the contribution to total risk 

arising from the liabilities (Run D). Similarly, making the liabilities deterministic 

allows us to quantify the impact of volatile capital market returns and discount 

rates (Run E). The other runs are necessary in order to calculate the 

covariance components of risk. Note that Run H, which assumes that all 

factors are deterministic, will have zero volatility and will represent the 

company's forecast as described earlier in this paper. The results of these runs 

will allow for the identification of each of the variance and covariance terms 

identified in equation 4. 

The following case study illustrates the steps involved in decomposing the 

volatility of a property/casualty insurance company into its key risk components, 
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namely liability risk, discount rate risk, and capital market risk and how this 

information can be used to make more informed decisions. 

Case Study 

As described above, decomposition of risk is an effective means for isolating 

and quantifying the key components of a company's total risk exposure. By 

identifying the major contributors of risk, management is better positioned to 

evaluate the consequences of strategic decisions that involve these 

components. Further, by identifying the covariance components between these 

risk factors, the company will be better able to evaluate the potential benefits of 

diversification and/or hedging activities. 

The following case study shows how decomposition of risk can be used to help 

a property/casualty insurance company more effectively make business 

decisions. Property/Casualty Insurance Company (PCIC) is a hypothetical 

insurance company with rapid growth plans. PCIC writes primarily short-tailed 

property lines. As a result, PCIC has amassed a substantial amount of CAT 

exposure. In response to the large potential variability of their liabilities, PCIC 

has traditionally invested its assets very conservatively: their current investment 

strategy is 20% cash and 80% bonds. Even with their conservative investment 

strategy, PCIC's senior management team was concerned that a large CAT 

might force them to seek a capital infusion in order to avoid regulatory action. 

This analysis focuses on two basic questions. First, what is the probability that 
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PCIC will need a capital infusion during the next three years given its current 

business plan. Second, if necessary, what is the best way to combine 

reinsurance and/or a revised asset allocation to reduce this capital risk while 

minimizing the reduction in economic value at the end of the three-year time 

horizon. 

PCIC's liabilities were modeled based on a thorough analysis of industry and 

PCIC historical loss ratio data and payout patterns. The historical information 

was combined with PCIC management's business plan and results from a 

commercially available CAT model to generate 500 simulations of future 

premiums, loss payments and expenses using the process described above. 

PCIC's investment options were broken down into the following five asset 

categories: 

• Cash Equivalents 

• Short Term Bonds - 1 to 5 Years 

• Medium Term Bonds- 5 to 10 Years 

• Long Term Bonds - 10 to 30 Years 

• Large Capitalization Stocks 

Five hundred simulations of income and total returns for each of these five 

asset classes were generated and merged with the previously generated 
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liability scenarios. PCIC's current asset allocation is 20% to cash, 25% to shod 

term bonds, 50% to medium term bonds and 5% to long term bonds. 

In order to set the baseline values for the analysis, PCIC's three-year business 

plan and current asset allocation strategy were run through the system. The 

system calculated the economic value and the progression of statutory surplus 

for each of the 500 scenarios modeled. The major differences between PCIC's 

economic value, as defined in the system, and its projected statutory surplus 

are: 1. economic value reflects the market (not book) value of all assets, 2. 

economic value discounts the future liability cash flows at the projected market 

rates of interest and 3. economic value includes a component related to future 

business, even business renewed beyond the end of the time horizon. Based 

on these 500 simulations, PCIC's average economic value at the end of the 

three-year horizon was $919.9 thousand with a standard deviation of $186.8 

thousand. Based on the assumption that PCIC would need a capital infusion in 

any simulation in which the premium to surplus ratio exceeded 3.0 at any time 

during the three-year time horizon, these same simulations indicated that there 

was roughly a 5% chance that PCIC would need to raise capital during that 

time frame. 

PCIC's management was comfortable with both the average economic value 

and economic risk associated with their current asset allocation. What 

concerned them was having such high a probably of needing to raise capital, 
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especially given the large uncertainties associated with the CAT model's loss 

predictions. In order to better understand the drivers of this risk, both the 

economic value and statutory surplus risk were decomposed into an 

underwriting and an asset component. Specifically, by holding the loss, 

expense and premium cash flows constant and letting the capital market 

returns and economic discount rates be stochastic, PCIC was able to identify 

the component of total risk that was the result of its current asset strategy. 

Further, by holding the capital market returns and economic discount rates 

constant while using stochastic liability cash flows, PCIC was able to identify 

the component of total economic risk attributable to their underwriting 

operations. 

Tables 2 and 3, below, show the asset and liability components of risk, as well 

as the corresponding covariance between the assets and the liabilities. 
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Table 2 

Run 

Decomposition of Total Economic Value Risk - Current Portfolio 
Capital Discount ~td Dev 

Liabilities Market Rates ( in $000s) 
Variance I 

( in $000s) I 

I 
34,814.3 I 
33,674.8 I 

1,992.31 

A S S S 186.6 
D S D D 183.5 
E D S S 44.6 

COV (Llab, Cap Mkt + Disc Rates) 
A VAR (Liab+Cap Mkt+Disc Rate) 34,814.3 
D VAR (Liab) 33,674.8 
E VAR (Cap Mkt+Oisc Rate) 1,992.3 

COV (Liab,Cap Mkt+Disc Rate) = (A - D - E) * .5 (426.4) 
CORREL (Liab,Cap Mkt+Disc Rate) (0.052) 

VAR ( Llab + Cap Mkt + Disc Rates) % Total 
D VAR (Liab) 33,674.8 96.7% 
E VAR (Cap Mkt+Disc Rate) 1,992.3 5.7% 

COV (Liab,Cap Mkt+Disc Rate)* 2 (852.8) 

VAR (Liab+Cap Mkt+Disc Rate) 
STDDEV (Liab+Cap Mkt+Disc Rate) 

34,814.3 
186.6 

Table 3 

Run 

Decomposition of Total Statutory Surplus Risk - Current Portfolio 
Capital Discount ~tcl Dev Vanance I 

Liabilities Market Rates ( in $000s) ( in $000s) I 

I 
S S S 179.0 32,028.8 I 
S D D 178.9 32,004.11 
D S S 22.8 520.21 

COV (Llab, Cap Mkt + Disc Rates) 
A VAR (Liab+Cap Mkt+Disc Rate) 
D VAR (Liab) 
E VAR (Cap Mkt+Disc Rate) 

COV (Liab,Cap Mkt+Disc Rate) = (A - D - E) * .5 
CORREL (Liab,Cap Mkt+Disc Rate) 

VAR ( Llab + Cap Mkt + DIsc Rates) 
D VAR (Liab) 
E VAR (Cap Mkt+Disc Rate) 

COV (Liab,Cap Mkt+Disc Rate)* 2 

VAR (Liab+Cap Mkt+Disc Rate) 
STDDEV (Liab+Cap Mkt+Disc Rate) 

32,028.8 
32,004.1 

520.2 
(247.8) 
(0.061) 

32,004.1 
520.2 

(495.5) 

32,028.8 
179.0 

% Total 
99.9% 
1.6% 
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By decomposing risk into its asset and liability component parts, it could be 

seen that over 95% of PCIC's total economic and statutory risk, as measured 

by variance, was due solely to the uncertainty surrounding the liability loss cash 

flows. Both PCIC's asset strategy and the covariance component of risk were 

negligible. As a result, the next step was for PCIC to develop an alternative 

reinsurance plan. After this plan, which included a substantial quota share 

treaty on one of the more CAT-prone lines, had been developed, the liability 

and financial runs were updated with the revised information. 

As expected, the probability of needing to raise capital was reduced to a more 

acceptable level (i.e., less than 1% over the three-year time horizon) as a result 

of the revised reinsurance. In addition, the overall economic risk was reduced 

from $186.8 thousand to $111.6 thousand. Unfortunately, the overall 

economic value was also reduced from $919.9 thousand to $823.0 thousand. 

PCIC's management was uncomfortable giving away nearly 10% of their 

company's economic value even given the dramatic reduction in risk. Given 

the small amount of risk generated by the asset portfolio, which was confirmed 

by decomposing the risk of the revised reinsurance position in Tables 4 and 5, 

we were confident that PCIC's asset allocation strategy could be changed to 

improve the economic value without sacrificing the risk reduction achieved. In 

order to identify such a strategy, our proprietary insurance optimizer was 

employed. Figure 9 shows PCIC's asset allocation efficient frontier along with 
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the r i sk / reward  po in t  co r respond ing  to PCIC 's  cur ren t  por t fo l io  with and  w i thou t  

the  re insurance ,  

Table 4 

Run 

DecomposlUon of Total Economic Value Risk - Revised Reinsurance 
Capital u~scount ,bid Dev Vanance I 

Liabilities Market Rates ( in $000s) ( in $000s) I 

I 
S S S 111.5 12,429.6 I 
S D O 104.5 10,924.0 I 
D S S 39,9 1,594.41 

A 
D 
E 

COV (Llab, Cap Mkt + Disc Rates) 
A VAR (Liab+Cap Mkt+Disc Rate) 12,429.6 
D VAR (Liab) 10,924.0 
E VAR (Cap Mkt+DIsc Rate) 1,594.4 

COV (Llab,Cap Mkt+Disc Rate) = (A - D - E) * .5 (44,4) 
CORREL (Uab, Cap Mkt+Disc Rate) (0.011) 

V A R  ( Llab + Cap Mkt + Disc Rates) % Total 
D VAR (Liab) 10,924.0 87.9% 
E VAR (Cap Mkt+Disc Rate) 1,594.4 12.8% 

COV (Liab,Cap Mkt+Disc Rate)* 2 (88.8) 

VAR (Liab+Cap Mkt+Disc Rate) 
STDDEV (Liab÷Cap Mkt+Oisc Rate) 

12,429.6 
111.5 
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Table 5 

Run 

DecomposlUon of Total Statutory Surplus Risk - Revised Reinsurance 
~apital Discount ~td Dev Variance I 

Liabilities Market Rates ( in $000s) ( in $000s) I 

I 
S S S 98.5 9,698.7J 
S D D 98.2 9,645.2J 
D S S 15.8 250.41 

A 
D 
E 

COV (Llab, Cap Mkt + Disc Rates) 
A VAR (Liab+Cap Mkt+Disc Rate) 
D VAR (Liab) 
E VAR (Cap Mkt+Disc Rate) 

COV (Liab,Cap Mkt+Oisc Rate) = (A - D - E) * .5 
CORREL (Liab,Cap Mkt+Disc Rate) 

VAR ( Llab + Cap Mkt + Disc Rates) 
D VAR (Liab) 
E VAR (Cap Mkt+Disc Rate) 

COV (Liab,Cap Mkt+Disc Rate)* 2 

VAR (Liab+Cap Mkt+Disc Rate) 
STDDEV (Liab+Cap Mkt+Disc Rate) 

9,698.7 
9,645.2 

250.4 
(98.4) 

(0.063) 

9,645.2 
250.4 

(196.9) 

9,698.7 
98.5 

% Total 
99.4% 
2.6% 
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Based on these results, PCIC was convinced that they could minimize the 

economic value reduction by taking on substantial additional risk on the asset 

side. Specifically, they were interested in a 50% stock, 50% short term bond 

allocation. This mix seemed to offer a reasonable trade-off between additional 

economic value (i.e., an increase from $823.0 to $869.5 thousand) and 

additional economic risk (i.e., an increase from $111.6 to $144.8 thousand) 

over just implementing the revised reinsurance. In addition, when we ran this 

strategy through the model, we discovered that the probability of needing a 

capital infusion was still roughly 1%. Finally, the decomposition of risk results 

for this asset allocation indicated a much better balance between liability and 

asset risks (see Tables 6 and 7). 

Table 6 

Run 

Decomposition of Total Economic Value Risk - Revised Asset Allocation 
Capital IJ~scount ~to Uev Vanance 

Liabilities Market Rates ( in $000s) ( in $000s) 

A S S S 144.6 20,916.7 
D S D D 104.4 10,903.1 
E D S S 107.6 11,571.5 

COV (Llab, Cap Mkt + Disc Rates) 
A VAR (Liab+Cap Mkt+Disc Rate) 
D VAR (Liab) 
E VAR (Cap Mkt+Disc Rate) 

COV (Liab,Cap Mkt+Disc Rate) = (A - D - E)" .5 
CORREL (Liab,Cap Mkt+Disc Rate) 

VAR ( Llab + Cap Mkt + Disc Rates) 
D VAR (Liab) 
E VAR (Cap Mkt+Disc Rate) 

COV (Liab,Cap Mkt+Disc Rate)* 2 

VAR (Liab+Cap Mkt+Disc Rate) 
STDDEV (Liab+Cap Mkt+Disc Rate) 

20,916.7 
10,903.1 
11,571.5 

(779.0) 
(0.069) 

10,903.1 
11,571.5 
(1,558.0) 

20,916.7 
144.6 

% Total 
52.1% 
55.3% 
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Table 7 

Run 

D e c o m p o s i t i o n  of  Total Statutory Surplus Risk - Revised Asset Allocation 
Capatal Discount tsto Dev Variance 

Liabilities Market Rates ( in $000s) ( in $000s) 

A S S S 154.5 23,856.0 
D S D D 115.9 13,431.7 
E D S S 111.7 12,469.5 

COV (Llab, Cap Mkt + Disc Rates) 
A VAR (Liab+Cap Mkt+Disc Rate) 23,856.0 
D VAR (Liab) 13,431.7 
E VAR (Cap Mkt+Disc Rate) 12,469.5 

COV (Liab,Cap Mkt+Disc Rate) = (A - D - E) * .5 (1,022.6) 
CORREL (Liab,Cap Mkt+Disc Rate) (0.079) 

VAR ( Llab + Cap Mkt + Disc Rates) % Total 
D VAR (Liab) 13,431.7 56.3% 
E VAR (Cap Mkt+Disc Rate) 12,469.5 52.3% 

COV (Liab,Cap Mkt+Disc Rate)" 2 (2,045.1) 

VAR (Liab+Cap Mkt+Disc Rate) 
STDDEV (Liab+Cap Mkt+Disc Rate) 

23,858.0 
154.5 

This outcome shows the importance of being able to analyze several different 

decisions (e.g., asset allocation and reinsurance) in a single, consolidated 

analysis. Specifically, PCIC would not have been able to assess this outcome 

using the traditional approach of evaluating these types of decisions 

independently. On a stand alone basis, PCIC's senior management would 

probably have rejected just the revised reinsurance structure since it gave up 

too much economic value. In addition, they would have never considered 

increasing PCIC's asset risk given their concern over requiring additional 

capital. As Figures 10 and 11 show, by combining the decisions, we have 

developed an economically viable alternative with substantially less downside 

exposure. 
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Figure 10 
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However, this combination is not without its own problems. One of its largest 

drawbacks is the large decrease in GAAP Net Operating Income and the 

resulting reduction in ROE. Specifically, when the business is profitable, the 

reinsurance cedes off a substantial amount of Operating Income. This is 

compounded by the fact that realized gains and losses, which comprise most of 

the total return for equities, are not included in Operating Income. One way to 

offset this impact would be for PCIC to swap its 150 million of debt from fixed to 

floating. While the model can be used to perform this type of analysis, the 

details of this strategy will be left for a subsequent paper. 

Another issue is the impact this asset/reinsurance strategy would have on 

rating agency, regulatory and analysts' perceptions and views towards PCIC. 

Obviously, the strategies illustrated in this case study were extreme to 

demonstrate our point. Substantial work needs to be done to educate 

constituents on the benefits of a DFA type approach compared to the current 

piecemeal analysis which can be detrimental to the long term well being of the 

industry. 

Conclusion 

By undertaking this analysis, PCIC not only identified their asset and liability 

risk exposures, but, more importantly, their combined exposure. Armed with 

this information, they are able to revise both their reinsurance and asset 
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allocation strategies to reduce their solvency concerns while minimizing the 

amount of decrease in expected economic value. 

It must be made clear, however, that this analysis was based on a 

property/casualty insurance company with a large CAT exposure. Because the 

process is dependent on a company's general ALM characteristics (i.e., liability 

structure, surplus level) different companies will likely experience different 

results. 

This paper presents only one possible application of decomposition of risk 

analysis within a total integrated risk management framework. PCIC could 

have performed a similar analysis on its business mix strategy to determine the 

optimal mix of premium to allocate to its different lines of business. It could 

have also evaluated possible acquisitions and divestitures in light of the impact 

these decisions would have on the total economic risk profile of the company. 

Finally, decomposition of risk could help PCIC better control volatility of 

shareholder's equity or statutory surplus over shorter time horizons. 

The diverse characteristics of numerous risk elements at play within a large 

insurance company compound the difficulties of making appropriate decisions 

based on the overall benefit, or value, to the corporation. Management is often 

forced to make strategic and business decisions within the confines of each 

individual business or risk component. Moreover, even when individual 

49 



decisions are correct, companies can still experience suboptimal financial 

results with respect to managing the overall risk/reward value of the total 

company. By using total integrated risk management and decomposition of risk 

to evaluate decisions within each subcomponent, management will be better 

positioned to make decisions that will benefit the company within a holistic 

decision making framework. 
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Us ing  t h e  Pub l ic  A c c e s s  DFA M o d e l :  

A Case Study 

Abstract 

This paper describes the application of a publicly available property-l iabil i ty 
insurance DFA model to an actual insurance company. The structure and key 
parameters of the model, as well as how to run the model, are explained in detail. 
A copy of the report to management of the company is included. The initial 
company reaction to this model was favorable. Management intends to use the 
model for such purposes as long term planning, capital allocation, reinsurance 
negotiations, competi tor analysis and external communications wi th the regulatory 
and investment communit ies. 
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This paper describes the application of a DFA model to an actual insurance 
company.  One goal of this work  is to help actuaries learn about DFA by observing 
the use of a work ing model in a realistic setting. The model described in this 
paper is publicly available and accessible over the Internet. The company that 
generously a l lowed its data to be used in this exercise has asked to remain 
anonymous.  Thus, minor modif icat ions have been made to the data to help 
preserve the anonymi ty  of this insurer. These changes do not affect the operat ion 
of the DFA model or obscure the data gathering process involved in running a DFA 
model. 

Introduction 

The DFA model used in this paper, termed Dynamo2,  was developed by the 
actuarial consult ing firm of Miller, Rapp, Herbers, & Terry, Inc. The model is 
accessible via their websi te (www.mrh t . com)  and requires only Microsoft  Excel 
and @Risk in order to run. For those wi thout  access to @Risk, a l imited version of 
the model can also be run solely in Excel. The Excel version is also useful for 
running a small number of i terations quickly to check the reasonableness of input 
values. 

The general purpose of this model is to simulate a large number of possible 
outcomes from specific input data. By v iewing the expected values and 
distr ibutions of key variables, such as statutory surplus, premium-to-surplus ratios, 
and net income, the user can determine if these results are acceptable. If they 
are, then they val idate the operat ing strategy of the company,  subject to the 
general caveats of using DFA models. If not, then management can vary the input 
values to learn which changes would be effect ive in improving results to an 
acceptable level. 

The model, when run using @Risk, al lows the user to examine any of the 
stochastic parameters of interest determined as an @Risk function. Thus, users 
can v iew the randomly generated values for all of the unacceptab{e outcomes to 
see if any factor tended to be responsible for a signif icant number of these cases. 
For example, if a large percentage of the cases in which surplus falls be low a 
minimum standard involved a high level of catastrophe losses, then the company 
may be able to reduce catastrophe exposure by revising its reinsurance 
arrangements or shift ing its geographic distr ibution. Management  could use the 
DFA model to test the effects these changes would have on the results by re- 
running the model wi th the revised input before deciding whether  these 
approaches should be adopted. 

The basic operat ion of the model is to generate insurance company cash 
f lows and then evaluate the effect of these cash f lows. The model integrates the 
cash f lows from investments and underwri t ing, including catastrophes and taxes. 
The model consists of six dif ferent inter-related modules: underwri t ing, 
investments, catastrophes, taxat ion,  an interest rate generator, and a payment  
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pattern generator. Values generated in one module are shared wi th the other 
modules in subsequent calculations. 

This paper focuses on an application of DFA. In order to obtain a fuller 
understanding of DFA modeling, including the limitations of this approach, readers 
should refer to additional sources. Some useful sources are: D'Arcy, Gorvett, et. 
al. (1997}, D'Arcy, Gorvett, Herbers and Hettinger (1997), CAS Committee on 
Valuation and Financial Analysis (1995), CAS DFA Handbook (1996) and the 
multi-part Actuarial Review series "How DFA Can Help the Property-Casualty 
Industry" (1996-1998). 

T h e  T e s t  C o m p a n y  

The company used to test this model is a mid-sized property-l iabil i ty insurer 
that operates nationwide. The major lines are private passenger and commercial 
automobile, commercial multi-peril, workers compensation and homeowners. The 
company has standard reinsurance contracts: excess of loss, quota share and 
catastrophe coverage. Since the company has been in operation for more than 
twenty years, enough historical information is available to generate loss payout 
triangles, frequency and severity trends, loss ratios by age of business, and the 
other input required for the DFA model. 1 

Once the company's data were received, they were input into Dynamo2. 
Results from the model were generated, and incorporated in a report which was 
transmitted to the company. That report is included as an Appendix to this paper - 
- in order to fo l low the progression of this project, the reader is advised to read the 
Appendix at this point. This initial report served as the basis for discussions on 
DFA at a meeting between the authors of this paper and representatives from the 
company; company personnel involved in these discussions included actuaries, 
investment personnel, and business planning staff. This report provides both an 
introduction to DFA and a starting point for a detailed dynamic financial analysis of 
the firm. The questions raised at that meeting wil l  be covered later in this paper, 
after a detailed explanation of this DFA model. 

T h e  M o d e l  

The DFA model used in this paper starts wi th detailed underwrit ing and 
financial data showing the historical and current positions of the company, 
randomly selects values for 4,387 (I) stochastic variables, calculates the effect on 
the company of each of these selected values, and then produces summary 

I Generating and gathering the data needed to run this model required the efforts of many 
people at the company, including the Chief Financial Officer, the Chief Investment Officer and the Chief 
Actuary, as well as members of their staff. We ere very grateful for their cooperation and willingness 
to supply us with their data; without their help, this paper could not have been written. 
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f inancial statements of the company for the next five years based on the combined 
effect of  the random variables and other determinist ic factors. All this represents 
a single i teration of the model. The model is set up to run mult iple i terations of 
the mode l  and analyze the distr ibution of the various outcomes. 

Interest Rate Generator 

The primary driver of this DFA model is the interest rate generator.  
Extensive work  has been done in f inance to develop sophist icated interest rate 
models, The interested reader is referred to Chan, Karolyi, Longstaff  and Sanders 
(1992) and Hull (1997) for detailed descriptions of some of these models. In this 
DFA model, a relat ively simple (in comparison wi th other interest rate models) 
single factor interest rate model is used, one derived by Cox, Ingersoll, and Ross 
(1985) (hereafter referred to as CIR). This simpler interest rate model was 
selected for t w o  pr imary reasons. First, property- l iabi l i ty insurers are general ly 
less exposed to interest rate risk than life insurers and banks, two  industries for 
which much of the complex interest rate modeling has been performed. Thus, it is 
not quite as critical for property- l iabi l i ty insurers that interest rates be modeled as 
precisely. Second, and more important ly,  it is vital that the users of the model 
fully understand the various components of the model. Actuaries are general ly not 
very famil iar wi th  the terminology and approaches of interest rate modeling. Thus, 
beginning wi th  a relat ively stra ight forward interest rate model should a l low the 
users to become more comfortable wi th the DFA model relat ively quickly. Later, 
more sophist icated interest rate models can be incorporated and evaluated. 

The CIR model describes the short term interest rate as a mean-revert ing 
stochast ic process. The CIR interest rate model was original ly developed in a 
cont inuous-t ime f ramework;  in that environment,  the process dr for the 
instantaneous change in the level of the short- term risk-free interest rate is 
characterized by the equation 

dr = K(O-r )d t  * oVT~  

where B = the long-run mean to which the interest rate reverts, 
K = the speed of reversion of the interest rate to its long-run mean, 
r = the current (instantaneous) short- term interest rate, 
o = the volat i l i ty  of the interest rate process (as expressed by the 

standard deviat ion), and 
dz = a standard Wiener process (essentially, a random walk).  

For purposes of this DFA model, a discrete-t ime version of this model is 
required. According to Cox, Ingersoll, and Ross (1985), the short- term interest 
rate, in discrete-t ime, fo l lows a (non-central) chi-squared distr ibution wi th degrees 
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of f reedom and non-central i ty parameters being a function of the K, 8, and o 
parameters above. However,  in this DFA model, we approx imate the discrete-t ime 
form of the CIR model using the fol lowing formula: 

~r = a(b-r)~t + s~/7 

where ~ = the discrete-t ime (annual) change in the short- term interest rate, 
At  = the discrete t ime interval (one year), and 
e = a random sampling from a standard normal distr ibution. 

The CIR model separates interest rate changes into two  components,  one 
determinist ic component ,  a(b - r ) ,  and one stochastic component ,  s r  °'66. The 
determinist ic component  moves the current interest rate part way  (represented by 
a) back toward the long term meanb .  The further the current interest rate is f rom 
this long term mean, the greater the determinist ic component  of the interest rate 
movement .  The stochastic component  causes the interest rate to jump around 
this otherwise level trend back toward the mean. Since the stochastic component  
is multipl ied by the square root of the current interest rate, when interest rates are 
low, the stochastic component  is small. This reduces the l ikel ihood that interest 
rates wil l  become negative. (In the continuous t ime appl icat ion of this model, 
interest rates cannot become negative because if the interest rate were ever to 
become zero, which a continuous line must cross before becoming negative, then 
the interest rate wil l  have no stochastic component  and wil l  simply be pulled back 
toward the long term mean (it wil l  actual ly become a(b - r ) ) .  However,  in the 
discrete approximat ion of this model, negat ive interest rates can occasional ly 
occur.) 

In this interest rate model, the current interest rate is the actual short- term 
interest rate in the economy at the t ime the model is run. As of mid-March, 1998, 
3 month Treasury bills, a common proxy for short t e r m  rates, were yielding 
4.985%.  Thus, in this model, r(O) is set to 5%. The long-run mean, b, is also set 
at 5%. (Empirical tests of the CIR model on historical data indicate a value for the 
long-run mean of approximately  8%. These tests are based largely on data from 
the 1980s. When b is set at 8% in this model, any investment strategy based on 
long-term bonds tends to under-perform a shorter-term portfol io, since interest 
rates would tend to move upward, depressing bond prices. To avoid introducing 
this bias, the long term mean was selected to be the same as the initial value of 
the short term interest rate. However,  this is a variable that can, and should, be 
altered by the user to reflect individual v iews of interest rate movements,  and to 
test the sensit iv i ty of  resutts to this variable.) 

Since, under the above parameter value selections, the value of b- r (O)  is 
zero, the determinist ic component  of the interest rate change is zero in the first 
year. The stochastic component ,  then, determines the entire interest rate change. 
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In one run of the model, the value of e in the first year was randomly selected by 
the model to be -1 .00945.  Thus, the calculation for the change in interest rates in 
that  model run was: 

~ r  = sift  e = (0.0854)(~/O.~)(-1.00945)  = -0.0193 

Since the interest rate started at 0.05,  the change of -0 .0193 led to a new short- 
term interest rate of 0 .0307,  or 3 .07%.  

Once selected, the short term interest rate is used to generate the term 
structure of interest rates. Based on the interest rate model parameters selected, 
and upon the simulated short-term interest rate, rates on zero-coupon Treasury 
bonds are generated for each annual durat ion up to thir ty years. This Treasury 
term structure is used to determine the market value of the company 's  bond 
holdings. The specific equations used to generate the term structure are taken 
from Cox, Ingersoll, and Ross (1985): 

R(r,I,T) = rB(t,7) - blA(t,T~ 
T - t  

where R is the y ie ld- to-matur i ty at t ime t on a discount bond that  matures at 
t ime T, and 

A(t,T~ = [. 2ye l (~ 'x 'yx r ° l a  ] z~°t°2 
(K +~. + y ) ( e  r~r-o_ I ) . 2 ¥  

B(t,7)) = 2(er(r-')  _ 1) 
(K +X +y)(e r(r-o_ 1) +2y 

y ~ ((K+g)2+2o2) la 

The short- term interest rate is also used to determine the general inflation 
rate, based on the fo l lowing formula: 

60 



l c p  I = a + b r + s ~  

t 

where I c ~  is the general inflation rate, 
a is a constant (set equal to 0), 
b is a constant (set equal to .725), 
r is the short term interest rate, 
s is the standard deviat ion of the residuals (here 0.025) ,  and 
c is a random sampling from the standard normal distr ibut ion. 

The parameter values specified above were derived from regressions on the 
historical relationships between short- term interest rates and the consumer price 
index. Continuing the sample case il lustrated above for the interest rate (3.07%),  
the value for s¢ in one model run was randomly selected as -0 .00459.  Thus, the 
general inflation rate for this year was calculated as 

]CPZ = 0.725(0.0307)-0.00459 = 0.0177 

The inflation rate for each line of business is then calculated based on the 
simulated general inflation rate, according to the fo l lowing formula: 

Iz.os = a + b lcp l  + s ¢ 

where ILo a is the line of business specific inflation rate, 
a is a constant that varies by line, 
b is a constant that varies by line, 

• I c ~  is the general inflation rate, 
s is the standard deviat ion of the residuals, and 
c is a random sampling from the standard normal distr ibut ion. 

The parameter values used to determine the line of business inflation rates 
in the DFA model are shown in the fol lowing table, along wi th  a cont inuat ion of 
the sample model run described above, in which the short- term interest rate was 
3 .07% and the general inflation rate 1.77%. The parameter values were derived 
from regressions on the historical relationships between the consumer price index 
and line of business claims inflation rates. 
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Line of Business Assumed 
Inflation in 
Payment Pattern 

Homeowners  0 .052 

PP Auto - Liabil i ty 0 .067 

PP Auto - Phys Dam 0 .043 

Comm Auto - Phys Dam 0 .043 

Comm Auto - Liab 0 .067 

CMP - Liab. 0 .045 

CMP - Prop. 0 .045 

Other Liab. 0 .073 

Other Liab. - Umbrella 0 .073 

WC 0 .068 

b s Sample Line of 
Businesslnf la t ion 

0 .032 .54 .0173 .037 

0 .047 .55 .0194 .060 

0.011 .88 .0307 .016 

0.011 .88 .0307 .053 

0 .047 .55 .0194 .074 

0 .025 .55 .0147 .049 

0 .025 .55 .0147 .028 

0 .058 .40 .0206 .061 

0 .058 .40 .0206 .101 

0 .047 .58 .0250 .075 

The line of business inflation rates are used for two  purposes. First, they 
affect loss development .  The initial loss reserves presume a specific inflation rate; 
the values selected for this run are listed on the above table. To the extent  that 
the calculated line of business inflation rate differs from this value, loss payments 
wil l  diverge from the initial loss reserves. 

The second effect of the line of business inflation rates is on loss severi ty,  
which drives the need for future rate increases. In the present appl icat ion of this 
model for this specific company,  f requency was assumed to be stable, so the only 
factor that  affects the projected pure premium is the severi ty trend. Thus, the line 
of business inflation rate determines the indicated rate level change. 

Jurisdictional Risk 

Each state poses unique advantages and disadvantages to  the operat ion of 
an !nsurance company.  Those advantages and disadvantages may take the form 
of judicial, legislative, or regulatory risk. For example, the l ikel ihood of retroact ive 
workers compensat ion benefi t  increases, mandated premium rebates, generous 
(for the pol icyholder) interpretat ions of contract  provisions, and the abil i ty to 
obtain rate increases all vary by state. 

In this model, jurisdiction risk is reflected in two  ways.  First, each state has 
a range of "acceptable" rate changes -- that is, there is associated wi th each state 
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a range of rate changes that can be implemented wi thout  extraordinary company 
cost (in terms of t ime or money) and/or additional insurance department scrutiny. 
GeneralJy, these ranges limit rate increases more than they do rate decreases, and 
the ranges are smaller in states wi th more restrictive regulation. The obvious 
effect of strict rate regulation is to prevent insurers from increasing rates to the 
degree they feel is necessary. However, a side effect of capping rate increases is 
to make companies more reluctant to lower rates as much as would be otherwise 
indicated if pure premiums are improving. 

The other effect of jurisdictional risk is to introduce a lag in implementing 
indicated rate changes. This lag, shown in the model in terms of years, is longer 
in states wi th restrictive rate regulation. The lags indicated on the jurisdictional 
risk exhibit included in the Appendix are estimated averages for rate increases and 
decreases; the average lags in the model are multiplied by 1.50 for rate increases 
and by 0.50 for rate decreases. 

The jurisdictional risk parameters are based on a Conning & Company study 
that ranks all states wi th respect to regulatory restrictiveness. States ranked as 
most restrictive were assigned the lowest acceptable rate ranges and the longest 
lags. The actual values were selected primarily based on the judgement of 
individuals wi th experience with rate filings in those states. 

As an example of jurisdictional risk in this DFA model, the range of 
Homeowners rate changes in Massachusetts is from .85 to 1.O6 (rates could be 
lowered by 15% or increased by 6% without  significant additional company cost 
or regulatory scrutiny). Since the average lag is estimated to be ½ year, it woutd 
take 3 months to implement a decrease and 9 m~nths to implement an increase. 
The company's distribution of writ ings countrywide is used to determine the 
overall impact of jurisdictional risk. 

Aging Phenomenon 

The model reflects the aging phenomenon by separating wri t ings for each 
line of business into new business, first renewals, and then second and 
subsequent renewals. Under the aging phenomenon, loss ratios gradually decline 
wi th the length of t ime the policies have been in force wi th the company. For 
more details on this experience, see Woll (1987), D'Arcy and Doherty (1989), 
D'Arcy and Doherty (1990) and Feldblum (1996). One requirement that this 
approach introduces is the need for the company to supply exposures end losses 
broken down by age of the business. Although this allocation is not needed for 
any statutory or accounting reports, many firms maintain this information for 
internal reports, although not necessarily in the detail required for the DFA model. 
In this case, estimates of the loss frequency and severity by age of business can 
be tried and the resulting loss ratio indications checked for reasonableness, before 
finalizing these values. The overall result is that new business should have the 
highest loss ratio, first renewal business should have a slightly lower loss ratio, 
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and the remainder (second and subsequent renewals) should have the lowest  loss 
ratio. Based on data published in D'Arcy and Doherty (1990), the loss ratio on 
new business ranged from 8 to 42 percentage points above the loss ratio on 
second and subsequent renewals. 

In the model, the distr ibution of exposures by renewal category is 
determined as fol lows. For each line of business, renewal ratios are input that 
show what  percentage of new, first renewal, and second and subsequent renewal 
business is renewed in the fol lowing year. Each renewal rate is applied to the 
appropriate business from the prior year to determine how_many exposures are 
renewed. For example, for Homeowners,  the new business renewal ratio is 60 
percent, the first renewal business renewal ratio is 90 percent, and the second and 
subsequent renewal business is 95 percent. Thus, 60 percent of the exposures 
that were new business in 1997 become first renewal business in 1998 and 90 
percent of first renewal exposures become second and subsequent renewal 
business in 1999. Thus, policy renewals are determinist ic in this model. Since the 
company has a target growth rate, the number of new policies wr i t ten in a given 
year is simply the number needed to achieve the growth target. 

Underwri t ing Cycles 

The premium level at which policies are wr i t ten depends on the targeted 
growth  rate and the posit ion in the underwri t ing cycle. The property- l iabi l i ty 
insurance industry underwri t ing cycle has been the subject of extensive study and 
is recognized as being quite complex. In line wi th the goal of keeping this model 
as stra ight forward as possible, especially for this early version, the underwr img 
cycle iss impi f led.  However,  it still reflects the different relationships of growth 
rates and price levels depending on the posit ion of the cycle. 

In this model, the underwri t ing cycle, which can vary /by line, is 
characterized as being in one of four condi t ions:  mature hard, mature soft, 
immature hard and immature soft, In a hard market, rates can general ly be 
increased somewhat  and growth may still be obtainable. In a soft market, rates 
general ly have to be reduced in order to grow. For each of the four cycle 
condit ions, the probabi l i ty of moving to another condit ion in the cycle (e.g., from 
mature soft to immature hard) is specified as an input. Thus, over the course of 
the simulation, the company moves through different phases in the underwri t ing 
cycle. 

In the simulat ion described in the Appendix,  Homeowners is init ially in a soft 
market. Based on the parameters selected, there is a 70 percent chance of 
remaining in a soft market and a 30 percent chance of moving to an immature 
hard market in the next  year. If the soft market cont inued and the company 
wanted to achieve a high growth rate, then the company would have to lower 
rates, or at least not fully implement any indicated rate increases, in the next  year. 
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Catastrophes 

A catastrophe is defined as any natural disaster causing in excess of  $25 
mill ion in insured losses. The total number of catastrophes count rywide is 
simulated based on a Poisson distr ibution, and then assigned to a "focal point" 
state based on historical catastrophe experience. The size of each catastrophe is 
then simulated based on a Iognornal distr ibution, the parameters of which vary 
according to the ident i ty of the focal point state. For each simulated catastrophe, 
the contagion effect of the catastrophic losses from the focal point to other states, 
and by property line of business, is determined based on historical relationships. 
Finally, the effect of these catastrophes on the company is determined by the 
market share of the company in each state, by line of business. 

For example, in Florida the probabi l i ty of any number of catastrophes 
occurring is determined based on a Poisson distr ibution wi th a mean of 0 .6667.  
This value, relative to the parameters for all other states, determines the l ikel ihood 
of a catastrophe being assigned to Florida. For each simulated catastrophe, the 
size is then determined based on the Iognormal distr ibution wi th  a mean parameter 
of 2 .7697 (in millions) and a variance parameter of 1.1563.  For each catastrophe 
in which Florida is the focal point, 86 percent of the loss is assumed to be incurred 
in Florida, wi th the remaining 14 percent distr ibuted to nearby states. All of these 
parameters were calculated based on data from Property Claim Services over the 
period 1949-1995.  As an example, in one iteration of the model, no catastrophes 
occurred in Florida in 4 of the 5 years simulated; in the fifth year (2001), t w o  
catastrophes occurred, one causing $143 mill ion in insured losses and the other 
$269 mill ion in losses. 

It should be noted that the catastrophe module in this DFA model is meant 
to produce reasonable estimates, and is not intended to replace the more rigorous 
catastrophe models that  are available. In fact, it is possible that the results f rom 
other commercial ly available catastrophe packages could be used in this DFA 
model. 

Investment Results 

Investment results for both f ixed income securities and equit ies are 
determined in the investment module. For bonds, both the statutory value and the 
market values are calculated for each category of bond (Government,  corporate, 
municipal) and for each matur i ty segment indicated in the Annual Statement (e.g., 
one year or less, one to f ive years, etc.). The market value is determined based 
on the term structure of interest rates obtained in. the interest rate generator 
module. The cash f lows on bonds consider interest rates, coupon rates and 
default rates, generated stochastical ly based on historical patterns. 

The market value of equities is determined from a simulat ion based on the 
Capital Asset Pricing Model. The rate of return on equities is determined in a two  

65 



step approach. The initial expected market return is the risk free rate, as obtained 
in the interest rate generator, plus a market risk premium of 8.5% (historical 
average for 1926-1996). The adjusted market return is the initial expected return 
minus 4 t imes the simulated change in the short term interest rate. A random 
component based on a normal distribution wi th a mean of 0 and a standard 
deviation of 15 percent is generated and added to the adjusted market return to 
determine the overall market return for each year. The return for the company is 
then determined by applying the equity beta, which is an input value. 

Collecting Data 

One decision that needs to be made is how to deal wi th multiple companies 
operating under the same management. Many insurers have subsidiaries, but 
operations are coordinated within the group. In this case, the model should be run 
on the group as a whole, rather than for each individual company. However, if 
more detail is needed, then each company can be modeled separately. 

The primary source of input data for the model is the Annual Statement. 
However, additional information is also necessary, which requires the company to 
provide, or generate, some internal management reports. In addition, the company 
needs to provide information about exposure growth anticipated, by line for the 
next five 'years, and any shift in investment allocations that are contemplated. 

Examples of the specific data requirements are illustrated on the exhibits 
included in the Appendix. In a typical application of this model, some of the more 
problematic data areas might potentially include exposures and rates by renewal 
category, historic loss ratios by renewal category, and various aggregation issues 
(the trade-off between data volume and its homogeneity when examining lines and 
types of business). Also, in order to generate more credible cash f lows, or to deal 
wi th homogeneous data, Annual Statement lines of business can be aggregated or 
split into separate components, as needed. 

Running the Model 

The first step in running the model (after the company-specif ic data has 
been input) is to determine where the industry stands in the underwrit ing cycle for 
each line of business. It is presumed that the insurance industry fol lows a time 
dependent cycle of competit iveness. In a soft market, premium increases tend to 
significantly reduce market share. Conversely in a hard market, policyholders find 
it diff icult to obtain insurance, so it is easier for an insurer to increase market 
share. 

The next step is to determine the number of iterations to be run. The higher 

66 



the number of iterations, the more stable the distribution of o u t c o m e s  is likely to 
be, but the program wil l  take correspondingly longer to run. As a word of advice, 
when beginning to learn the program, this number should be kept small (5-10) to 
minimize the t ime needed to complete the run. Frequently, it wil l  be apparent from 
even that limited output that something is amiss. After adjusting the input data 
and the parameters until the user feels confident that they are reasonable, a larger 
number of iterations (e.g., 1,000 or more) should be run to obtain the full benefit 
of the DFA model. 

At this point,"reasonability checks should be performed to make sure the 
input values are realistic. One check is to multiply frequency by severity and 
divide the product by the average premium, for each age of business, to see if the 
implied loss ratios had the appropriate relationship (new business highest, second 
and subsequent renewal the lowest). Another check is that the average 
catastrophe losses are within expected bounds. 

The next step is to determine exactly what output is desired. Any value 
that appears in the sections of the model where calculations are performed, or any 
parameter generated by the model, is a potential output value. Premiums, surplus, 
loss and operating ratios, investment returns, catastrophe losses, interest rates, 
inflation rates, and regulatory ratios are all potentially useful output values. In 
some cases additional detail might be desired. For example, the loss ratio by line, 
by year and by age of business, direct, ceded, or net, could all be listed as output 
variables. To determine the cause of a potentially high loss ratio, the frequencies, 
severities, number of exposures and average premiums could also be listed. 
However, at some point the magnitude of the output data could become 
unmanageable. Since the model provides for ten lines of business forecasted for 
the next five years, and exposures are maintained for new business, first 
renewals, and second and subsequent renewals, if each value were shown for 
direct, ceded and net values, there would be 450 loss ratios (plus frequencies, 
severities, and exposures) for each iteration. Finding the cause of any adverse 
indications would be a major chore. Thus, care needs to be exercised to keep the 
output manageable, especially when the model is being fine-tuned. The exhibits 
included in the Appendix are indicative of the types of output that can be helpful. 

Changing the Model's Parameters 

Since the DFA model is built in a spreadsheet environment, changing the 
model's parameters is straightforward. The user merely needs to know which 
input screen contains the key variables. The fol lowing table lists some of these 
key variables, and their locations in the spreadsheet model. 
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Sheet 
Location 

Cell 
Reference Variable IDes~:ription 

U/W Cycle Position Users viewpoint on current General Input C6 to C15 
market conditions. 

Growth Rates Expected growth rates in Premium ~nput Row 22 
exposures 

Renewal Ratio Premium Input Rows 30-32 

Expense Provisions Commissions, General, Other Premium Input Rows 42, 46, 50, 
Acq,, Taxes, Dividends, and 54, 57, 59 

Nonrecurring Expenses 

Q/S Ceding Premium Input Row 52 
Commission 

Exposure Changes Use to Change Exposures Exposure Input 
and Market Shares by State 

Selected 1997 Loss Input Rows 167 to 169 
Severities 

Selected 1997 Loss Input Rows 196 to 198 
Frequencies 

Selected ULAE Loss Input Rows 227 to 233 
Provisions 

O/S Arrangements Loss Input Rows 255-259 

XOL Arrangements Includes Attachment Points Loss Input Rows 268 to 297 
and Cost of Reinsurance 

Stop Loss Includes Attachment Points Loss Input Rows 349 to 353 
Arrangements and Cost of Reinsurance 

Cat. Re Arrangements Includes Attachment Points Loss Input Rows 359 to 363 
and Cost of Reinsurance 

Stock Betas Investment Input Rows 95 to 98 

Capital Infusions Investment Input Rows 86 to 91 

Investment Input Rows 109 to 125 Reinvestment 
Allocations 

How Investment Income is 
Reinvested 

Long-Run Interest Rate Interest Generator C27 

Current Interest Rate Interest Generator C29 

General Inflation Interest Generator C35 to C37 
Parameters 

Interest Generator Rows 54 to 56 LOB Inflation 
Parameters 
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U/W Cycle Parameters Includes Probability o'f I 
Changing Market Condition I and Supply/Demand Curves 

U/W Cycle 
Generator 

C7 to H34 

Initial Reaction of the Company to the DFA Report 

First Imnressions 
The company 's  first direct exposure to the DFA model occurred at a 

meeting between the authors and representat ives of the company 's  actuarial, 
investment,  and business planning departments.  At  this t ime the report included 
in the Appendix was delivered and a detailed explanat ion of the DFA model was 
presented. Many questions were raised at that point, a major i ty of which related 
to asking for an explanat ion of how the model worked.  However ,  there were also 
a number of questions that  wil l  lead to model improvements and enhancements.  
Overall, company personnel were enthusiastic about the model and have hopes of 
using it in the future for strategic planning purposes. They also saw it as a tool to 
help the different divisions of the company -- actuarial, f inancial, investment,  and 
planning -- work  together.  Finally, the company liked the sof tware plat form on 
which the DFA model is based. The Excel spreadsheet format makes the model 
user-fr iendly and simple to change and enhance, and al lows the user to examine 
the inner work ings of the model in a non-black box envi ronment.  

Concerns 
The company expressed certain concerns regarding the model and the 

results that  were initially supplied to them. It was evident that  the Base Case 
indications were unacceptable (primarily due to the high growth  goals of the 
company);  however,  the managers felt that constraining growth  was not a viable 
alternative. Other opt ions were explored, including increasing the new business 
renewal rate. For Homeowners this value was 60 percent. Raising it to 80-90 
percent caused some improvement,  but not enough to turn results around 
completely.  Another  change was to modi fy the maximum ceded under the 
aggregate reinsurance contract. This also had a favorable effect on forecasted 
results. 

In order to gain a better understanding of what  was causing the results, two  
addit ional values, the short term interest rate and catastrophe losses, were added 
to the output  page and the simulation re-run during the meeting. The abi l i ty to 
modi fy the model and quickly see the impact of the changes was v iewed very 

f a v o r a b l y .  
Some of the questions raised indicated the need for enhancements in future 

versions of the model. One question related to prepayments on bonds and CMOs 
as a funct ion of interest rate.changes. Another wanted to examine the effect of 
changing growth  patterns by state, to examine the effect on the company of 
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growing in a part icular area, in this case a high catastrophic-r isk state. 
The company would like to use a DFA model for capital al location. The 

current model examines the riskiness of the company as a whole.  It was 
suggested that  separate runs could be performed for separate business segments 
(commercial~personal lines or by regions) in order to determine capital needs. 

Another  quest ion related to the abil i ty to plug in output  f rom sophist icated 
f ixed income securi ty and catastrophe sof tware into the DFA model. When 
Dynamo2 was original ly designed, it was anticipated that  many users would have 
access to di f ferent catastrophe models and might want  to use those instead of the 
catastrophe module built in to this model. It is apparent f rom this question that 
similar issues relate to the investment modules. 

Several questions related to the investment al location. Current ly the 
investment al locat ion applies to new money.  If the cash f low requires assets to be 
sold, this is done proport ional ly.  The investment managers would like to be able 
to real locate the entire investment portfol io and indicate which assets should be 
sold, if necessary. 

Another  issue raised was the abil i ty to focus on the difference between the 
expected values indicated by running the model and actual results. Managers 
wanted to be able to see why  results differed from what  was projected, so that 
they could better understand what  they did right if a year was better than 
projected, or what  wen t  wrong if actual results were worse than expected. This 
DFA model a l lows this to occur, but requires the user to retain detailed output  
f rom the projections. 

In examining the DFA runs, many questions were raised about what  might 
have been causing adverse experience. It was suggested that  the program be 
revised to capture detailed financial data on any simulation where surplus fell 
be low a certain level. Thus, the managers could look at what  caused the 
problems in order to better avoid them. 

APPlications 
In addit ion to expressing the desire to use the DFA model for capital 

al locat ion purposes, the company also discussed the possibil i ty of using the model 
to look at other companies. This might a l low them to gain insights into their 
compet i t ive posit ion in the industry. The company also sees the model as a 
signif icant strategic planning tool -- for example, in evaluat ing how  growth  in one 
part icular state affects the overal l  company.  Another  use was in reinsurance 
contract  negotiat ions, where the expected effect of dif ferent limits or other 
contract  terms could be evaluated. Finally, the CFO of the company expressed an 
interest in using the model, not only internally, but also in external 
communicat ions.  The investment communi ty  was specif ically ment ioned in this 
regard, but other possibilit ies also include regulators, rating agencies, and 
reinsurers. 
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Variable Adiustments 
During the presentation, several dif ferent computers loaded wi th the DFA 

model were available, al lowing the managers to break into groups and test 
dif ferent DFA scenarios. For example, one group of managers adjusted the 
interest rate parameters. Specifically, they raised the long-run mean interest rate 
level to 10 percent and reduced the volat i l i ty  parameter to 0, to observe the effect 
of  increasing interest rates for a small sample of runs. Other groups ran the model 
after adjusting one or more of exposures, losses, the reinsurance program, 
catastrophe parameters, exposure growth assumptions, and investment variables. 
In still other cases, certain stochastic variables were "shut off" -- e.g., by sett ing 
the volat i l i ty  parameter of the variable equal to zero. This a l lowed the user the 
oppor tuni ty  to see the impact of certain stochastic variables w i thou t  introducing 
addit ional "noise" from those variables that were turned off. 

In general, this exercise was seen as beneficial by all the groups, not just 
the actuaries. Having a viable DFA model wi l l  serve to help the di f ferent areas of 
the company work  more closely together,  and faci l i tate coordinat ing the efforts of 
the various areas. 

Presentation to UDDer Manaoement 
Members of the group raised several questions about how  this model should 

be presented to the upper management of the company.  In addit ion to needing to 
get comfortable wi th the model, they also wanted to be able to focus on how  
actual results differed from the projections. To do this, it was suggested that they 
might use the model to project results for last year (run the model w i thou t  
including data for the latest year and then compare the actual results wi th the 
output  f rom the model). In addit ion, they wanted to print out  key financial exhibits 
for the situations that  were unacceptable, so that they could focus on wha t  went  
wrong in those cases. This feature is available in the @Risk version of the model, 
but current ly not in the Excel version. 

Examining the effect of a company 's  use of a DFA model is a long term 
prospect. Modif icat ions and enhancements to the model would be expected, as 
the company asks new questions after seeing initial indications. While it is too 
early to provide any information about the final effect of this process, the initial 
meeting and response suggest that the DFA model wil l  provide a very useful 
management tool.  

Future Enhancements 

Enhancement of the public-access DFA model is an on-going process, input 
and suggestions from users and other interested parties are we lcomed and 
encouraged. The fo l lowing items represent some of the enhancements to the 
model which are current ly being considered. 
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Determine the impact of callabil i ty provisions and other opt ions embedded in 
insurer bond holdings. This will require identif ication of those bonds in the 
insurer's portfol io that have such options, informat ion regarding when 
during the life of the bond the opt ion is exercisable, and the call premium or 
other parameters associated wi th the embedded opt ion. The valuat ion 
f ramework  already incorporated within the DFA model -- i.e., market 
valuat ion of f ixed-income securities based on the simulated term structure of 
interest rates -- wil l form the basis for the endogenous decision whether  or 
not to exercise .the opt ion. 
Explicit ly value mortgage-backed securities. These securities are comprising 
ever-larger proport ions of insurer portfol ios. In particular, for example, the 
prepayment  risk associated with collateralized mortgage obl igations wil l  be 
simulated using the Public Securities Associat ion (PSA) model of monthly  
prepayments on residential mortgages, wi th  the parameters of the PSA 
model being impacted by simulated general economic condit ions. 
Add state and/or regional detail in the underwri t ing module to faci l i tate 
measuring the effect of, for example, a change in the growth rate for a 
part icular state. 
Continue to develop the underwri t ing cycle module and the associated 
demand curves, including their impact on business retention rates and 
jurisdict ional risk. 
Implement correlations for the frequency and severi ty figures for business of 
di f ferent ages within a given line and between lines of business. 
Add tax-loss carry-forwards and carry-backs to the tax module. 
Add a module which produces risk-based capital results. 

Conclusion 

DFA is becoming an important concept for property- l iabi l i ty insurers, and it 
is l ikely that  actuaries wil l  be called upon to part icipate in, if not lead, this 
endeavor.  This paper describes one DFA model. This model is publicly available 
and its use is encouraged, and comments on its effectiveness, l imitations and 
potential  improvements are act ively solicited. While DFA for property- l iabi l i ty 
insurers is in a nascent stage, the intial reaction of company management  to the 
application of this model to their operations was very favorable and provided 
evidence that DFA wil l  prove valuable to the industry. 
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Appendix 

Application of a Dynamic Financial Analysis Model to 
the Test Company: 

Report to Management 

Introduction 

The purpose of this report is to describe and explain a Dynamic Financial 
Analysis (DFA) model that represents a new management tool for insurance 
companies. The attached exhibits should be viewed as illustrative examples of 
output from running this model. These results are not a full blown dynamic 
financial analysis of the company, but represent a starting point for performing an 
analysis. 

DFA, in essence, represents an enhanced approach to the traditional 
planning function undertaken by insurance companies. It provides a far more 
effective tool for forecasting future financial and operating condit ions of an 
insurance company than prior methods for two  primary reasons. First, the 
interactions between the underwrit ing and investment sides of the insurance 
business are formally integrated. Second, this approach utilizes advances in 
computer technology and modeling techniques to provide almost instantaneous 
feedback to decision makers, al lowing for the evaluation of numerous operating 
alternatives. 

The specific innovations to the planning process that are incorporated in 
DFA modeling are: 

1) DFA provides a probabil i ty distribution of likely outcomes, rather than 
a single expected value forecast 

2) DFA incorporates the correlations among lines of business, between 
loss reserve adequacy and rate adequacy, and between the 
investment and underwrit ing sides of insurance operations 

3) by utilizing the technology of personal computers and common 
software, DFA models can be run by the users many times with 
different assumptions and different parameters, in order to see the 
effect that changes in the model or in operations can have on the 
results 

Caveats 

Although the output generated by a DFA model can look impressive, wi th 
detailed exhibits indicating the expected results for years into the future, and other 
exhibits indicating the probabilit ies of financial distress, the user must keep in mind 
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that the output is only as good as the model and the underlying assumptions. 
DFA modeling has several specific limitations. First, models are simplified 
representations of reality. Models must be simplified in order to be useful; if all 
the factors that could possibly affect an insurer were included in a model, then it 
would just be too complex to be a useful model. When developing a model, the 
most relevant factors at that t ime are included. However, if condit ions were to 
change markedly, which is entirely possible, then other factors that were omit ted 
from the model could become important, affecting the accuracy of the results of 
the model. For example, during the 1920s, insurance profit margins were 
established that effectively ignored investment income. At this t ime interest rates 
were low (1-2%) and most business was in the short-tailed property lines. 
However, by the 1960s, interest rates were much higher and long-tailed lines 
accounted for almost 2/3rds of wri t ten premiums. Thus, it was no longer feasible 
to ignore the effect of interest rates on underwrit ing profit margins. 

Second, some factors are important, but because they are beyond the scope 
of an actuarial analysis, they are omitted from the model. For example, fraud by 
managers is a leading cause of insurance insolvency. However, all insurers are not 
equally exposed to fraudulent behavior, Whether fraud is likely to occur (or is 
currently occurring) at a particular insurer, is not something an actuary is qualified 
to ascertain. Thus, any financial effects from fraudulent behavior are simply 
omitted from the model. Other examples of omitted factors that definitely could 
have a significant effect on insurance operations include a change in the tax code, 
repeal of the McCarran-Ferguson Act, a major shift in the application of a legal 
doctrine or the risk of a line of business being socialized by a state, province or 
federal government. Thus, the range of possible outcomes from operating an 
insurance company is actually greater than a DFA model would indicate; the model 
is designed to account only for risks that can be realistically quantified. 

Finally, the values used as input in the model are derived from past 
experience and current operational plans. To the extent that something happens 
in the future that is completely out of line wi th past events, the model wil l  be 
inaccurate. For example, the size of a specific catastrophe is based on a 
Iognormal distribution wi th the parameter values based on experience over the 
period 1949-1995 (adjusted for inflation). However, if this process had been used 
just prior to 1992, the chance of two  events occurring within the next 2 V= years, 
both of which exceeded the largest previous loss by a factor of more than 2, 
would have been extremely small. However, Hurricane Andrew caused $15.5 
billion in losses in August 1992 and the Northridge earthquake caused $12.5 
billion in insured losses in January 1994. The largest insured loss prior to that 
was Hurricane Hugo, which had caused $4.2 billion in losses in 1989. Also, if 
changes in any operations occur, then the results would not be valid. Thus, the 
proper use of a DFA model is to continue to update the model as condit ions or 
operations change. 

With these caveats in mind, let's proceed to a description of the DFA model. 
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Appendix 

Dynamo2 

The specific DFA model that is applied to the company's financial data is 
termed Dynamo2, which is a public access DFA model developed by the actuarial 
consulting firm Miller, Rapp, Herbers & Ter:ry, Inc. This model is designed to be 
run on personal computers wi th Microsoft Excel and @Risk, two  widely available 
software programs. The model operates by running a large number of iterations, 
wi th each iteration representing a single possible outcome. Each iteration, in turn, 
reflects the results of hundreds of different, but sometimes correlated, random 
factors that affect different parts of the insurer's operations. Selected values from 
each simulation are stored and used to calculate the mean and the distribution of 
the indicated results. 

The model consists of several different modules, each of which calculates a 
component of the model indications. Separate modules are included for 
investments, catastrophes, underwrit ing, taxation, the interest rate generator and 
loss reserve development. The model al lows for ten different lines of business: 

Homeowners 
Private Passenger Auto Liability 
Private Passenger Auto Physical Damages 
Commercial Auto Liability 
Commercial Auto Physical Damage 
Commercial Multi-Peril - Liability (which includes Professional Liability) 
Commercial Multi-Peril - Property (including Special Property) 
Other Liability 
Other Liability - Umbrella 
Workers Compensation 

For each line of business, the underwrit ing gain or loss is calculated 
separately for: 1) new business, 2} 1st renewal business and 3) 2nd and 
subsequent renewals. This division is provided to reflect the aging phenomenon, 
in which loss experience improves with the length of t ime a policyholder has been 
wi th a company. These three categories are then added to calculate underwrit ing 
results on a direct, ceded and net basis. 

The values for each simulation are shared among the different modules. 
Thus, if the random number generator produces a high value for the short term 
interest rate, this high interest rate is used in the investment module as well as the 
underwrit ing module. Similarly, a high value for catastrophes in the catastrophe 
module carries through to the reinsurance and underwrit ing modules. 
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The primary risks that are reflected in the model are: 

Appendix 

1 ) Pricing risk 
2) Loss reserve development risk 
3) Catastrophe risk 
4) Investment risk 

Pricing risk is composed of a number of interrelated components. First, loss 
frequency and severity are both subject to random variation. Second, inflation 
affects loss severity. This effect is correlated wi th the short term interest rate, 
and is line of business specific. The indicated rate level change depends on the 
relationship between the current premiums and the premium indicated by 
inflationary impact on loss severity by line. However, jurisdictiona~ risk (which is 
state specific) affects the ability of an insurer to make rate changes. Jurisdictional 
risk is reflected in both a range of al lowable rate changes (lower increases would 
be al lowed in jurisdictions wi th stringent regulation) and the t ime lag for 
incorporating new rates (it would take longer to raise rates in a state wi th 
restrictive regulation). 

Finally, pricing risk is subject to the underwrit ing cycle. The underwrit ing 
cycle is simplified to be represented by four distinct phases: mature hard market 
(price increases can be taken with a minimal effect on market share), mature soft 
market (price increases significantly reduce market share), immature hard market 
(the market is starting to harden) and immature soft market (the market is 
beginning to soften). For each phase, the supply/demand function for insurance is 
different. Also, for each phase, there is a different probabil i ty distribution that 
represents the chance of remaining in that stage or of moving to another stage for 
the next year. 

The loss reserves input into the model should be the reserves indicated 
based on an actuarial analysis of loss development, not necessarily the carried 
reserves. For this project, we relied on the reserve analysis performed by the 
company wi thout  independent audit, review or verification. Assuming the reserve 
levels are accurate, the expected reserve development would be zero. However, 
reserve development is still subject to random variation and to inflation. The 
indicated loss reserves contain an implied inflation factor. To the extent that 
inflation differs from this level, there wil l  be a systematic effect on reserve 
development. Even if inflation were to occur at the expected level, then remaining 
random errors wil l  affect the development. 

Catastrophe risk is included in the model by the use of a two  step approach. 
A poisson distribution is used to generate the number of catastrophes (of all types) 
that occur in a given year. Then, each catastrophe that occurs is assigned, based 
on historical patterns, to a specific geographical area (one state that is the primary 
focus of the loss). Next, the size of each catastrophe is determined based on a 
Iognormal distribution, wi th the parameters determined based on the primary state 
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in which the loss occurs. Finally, the contagion effect of the loss on other states, 
again based on historical patterns, is determined so that the total catastrophe loss 
for the year in each state can be determined. The amount of each loss that is 
ceded is determined based on the company's catastrophe insurance program, 
which al lows calculation of the direct, ceded and net experience. 

The investment risk reflects the combined effect of bonds and stocks. 
Statutory bond values are determined based on the interest rates in effect when 
the bond was purchased and the amortization schedule, plus defaults that occur 
randomly based on historical patterns. Market values of bonds are a function of 
the current interest rates as simulated. Stock market values are based on the 
starting values and the randomly generated rates of return. Equity returns are 
based on simulated changes in interest rates, and include significant random 
variation, wi th the parameters determined based on historical rates of return. 

M o d e l  Input 

The model requires extensive financial data as input. Some of the historical 
data required for Input can be obtained from the Annual Statement, but in other 
cases direct, rather than net, data are preferable, which must be drawn from 
additional reports. In this case, the input was provided by the company, including 
reports on direct and net premiums, exposures by line and by age of business, and 
premium level, loss frequency, loss severity, market share and renewal rates by 
line. In addition, planned growth by line of business and the user's perception of 
the phase of the underwrit ing cycle by line is input. From the Annual Statement 
the input values include the statutory value of assets and liabilities and the current 
investment allocations. The expense provisions were taken from the Insurance 
Expense Exhibit. Loss development was developed based on direct triangles 
provided by the company. The company also provided a detailed listing of 
reinsurance contracts and the beta for equities. 

Attached are copies of the data input for this program for the company as a 
whole and for the Homeowners line of business. This line of business data 
illustrates the by line information required to run this model. These exhibits 
include: 

• General Input - selections for the current market conditions by line 

• Loss Triangle Input - historical direct paid loss development by line 

Underwriting Module Input - new and renewal exposures wri t ten and 
premium levels for the last two  years, projected growth rates for the next 
five years, renewal ratios by age of business and expense factors, all by line 
of business 
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Exposure Distribution - current number of exposures wr i t ten by state, by 
line and historic exposures wr i t ten by line 

Marke t  Share - market share estimates for property coverage (for 
catastrophe losses) 

Loss Deve lopment  Factor Selection - the selected paid loss development  
factors based on the historic loss development  patterns (used to generate 
cash f lows) 

Loss Informat ion Input - selected ult imate losses and al located loss 
adjustment expenses and claim counts, direct and net paid losses and 
earned premium, loss frequencies and severit ies (in total and by age of 
business), unallocated loss adjustment expense factors, and reinsurance 
treaties, all by line of business 

Investment  Input - statutory and market values of assets by annual 
s tatement  category,  coupon and dividend rates and equi ty betas 

M o d e l  O u t p u t  

The abi l i ty to generate an almost infinite number of reports from a DFA 
model is both a strength and a weakness of this approach. Care has to be taken 
to assure that the user is not overwhelmed wi th informat ion and, therefore, unable 
to utilize the results of the model in any reasonable manner. Thus, the initial 
report focuses on a limited number of  key variables for an insurer, and indicates 
the expected values as well as the distr ibution of outcomes from the model. Also, 
examples of more detailed reports for a few selected outcomes are shown to 
i l lustrate the potential  of a DFA model to t roubleshoot  particular problems that 
contr ibuted to adverse financiaJ results. 

The true benefit  of a DFA model is the abil i ty it gives to the decision makers 
in an insurance company to test out various financial and operat ing strategies and 
see what  the indicated effect is on both expected returns and the distr ibut ion of 
results. Unlike the planning process that has previously been used by many 
insurers, which tended to be done annually or on some other regular schedule, a 
DFA model can be a regular management tool that can be rerun whenever  a major 
decision needs to be made. Thus, the goal of our first meeting wil l  be to 
demonstrate the use of  this DFA model so that management  can decide what  
values to change. 

The output  f rom the DFA model based on the initial input values (as shown 
on the input exhibits) for a run wi th  50 iterations using the Excel opt ion are shown 
in the exhibits marketed Base Case. The results for each simulat ion, and the 
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average values, are shown for statutory surplus, the premium to surplus ratio, the 
operat ing ratio and the net loss ratio for all lines combined for each year 1998- 
2002.  In this run, the average value of the surplus over all 50 i terations was $177 
mill ion for 1998, $173 mill ion for 1999, $167 mill ion for 2000, $150 mill ion for 
2001 and $133 mill ion for 2002. Since the simulation included 50 iterations, it is 
dif f icult to draw conclusions from the individual results. The distr ibut ion of these 
results for surplus, premium to surplus ratio, operating ratio and loss ratio for the 
year 2002 are shown in the graphs. These il lustrate the distr ibution of outcomes 
to a l low the user to determine the l ikelihood of specific outcomes, either bad 
(surplus be low a minimum level, premium to surplus ratio over an acceptable 
target, etc.) or favorable (operating ratio below a target level). 

In addit ion, detailed data can be analyzed for selected outcomes. For 
example, the statutory balance sheet, the IRIS test results and the loss ratios on a 
direct, ceded and net basis by age of business are shown for an example of a 
single iteration. If desired, even more detailed data (frequency and severi ty,  
interest rate level, number, size and distr ibution of catastrophes, etc.) can be 
examined. This al lows the user to t roubleshoot the unfavorable outcomes to 
determine what  strategies would work  best to reduce the l ikelihood of their 
occurrence. 

It is obvious from looking at the average values and the distr ibutions from 
this initial run that the results a r e v e r y  unfavorable. The statutory surplus 
declines, on average, and the premium to surplus ratios increase to unacceptable 
levels. Loss ratios, especially in the latter years of the forecast period, increase to 
over 75 percent. These indications, whi le causing concern, are actual ly exact ly  
what  is needed to il lustrate the potential benefits of a DFA model. Since the 
forecasted values are unacceptable, then changes should be made to generate 
more favorable indications. What changes should be made are up to management,  
and DFA is the tool to help management access the effect of particular changes. 

For example, one cause of the increase in loss ratios is the amount  of new 
business that is wr i t ten to meet the growth rates initially input into the model. 
This growth,  coupled wi th relat ively low retention rates, requires the company to 
wr i te a large amount  of new business each year, wi th its corresponding high loss 
ratios. The Base Case model projects exposure growth of 5 -10% for all lines of 
business for the years 2000-2002.  This compares wi th  a negative growth  
forecast for 1998 and low growth,  1-3.5%, for 1999. In this example, detailed 
loss and exposure results are shown for new Homeowners business so that the 
effect of rapid growth in exposures can be examined. In an effort  to grow at a 
10% rate, the number of new Homeowners exposures in 2002 is 16,119. (See 
the exhibi t  on New Business for Homeowners) Since the loss ratio on this new 
business is expected to be 26 percentage points higher than long term business 
(see last line on this sheet), this high growth imposes a signif icant penalty on the 
company.  

The effect of reducing these growth rates can be seen in the exhibits 
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marked Constrained Growth. The only dif ference between the initial run and this 
run is that the growth  rates were held to a maximum of 2 percent per year. The 
indications are much more favorable in this situation. In this case the average 
values of surplus are $176 mill ion, $177 million, $183 mill ion, $192 mill ion and 
$203 million, for 1998-2002 respectively. Al though the distr ibutions il lustrated on 
the graphs for 2002 still show unacceptable results in some situations, the 
average values are much more feasible than in the Base Case. The effect of 
constraining the growth  can be seen on the New Business for Homeowners 
exhibit.  In this case, the number of new exposures is only 7,177,  compared to 
16,119 at the 10 percent growth rate. 

The output  i l lustrated in the two  cases discussed above was based on runs 
of 50 iterations each using the Excel opt ion. The model also can be run using 
@Risk, which provides signif icant addit ional capabilit ies. The Base Case model 
was also run using @Risk wi th 1000 iterations. The numerical values of s tatutory 
surplus, displayed both in percentiles and graphically for 1998-2002,  are shown as 
addit ional exhibits. 

What other changes could or should be made? Such items as pol icy 
renewal rates, expense provisions, the rate at which premium is earned (which 
reflects pol icy term), exposure distr ibution by state, projected average frequencies 
and severit ies by age of business, reinsurance provisions (including at tachment  
points, costs and ceding commissions) and investment provisions (including 
al location of new investments, stock betas and surplus additions) can all be easily 
manipulated and evaluated by the use of this DFA model. 

The primary point of this report is that DFA is a management  tool .  The 
decision makers in the company should take the init iat ive in proposing changes 
and analyzing the effects. The goal of the meeting wi th the company is to explain 
and demonstrate the DFA model so that managers can ef fect ively use this tool. 
Much of the meeting wil l  be devoted to hands-on work  wi th  the model so you can 
evaluate its effect iveness and we can see what  works for you and in what  ways  
the model needs to be improved to faci l i tate its use as a management  planning 
tool .  
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D-6 Distribution of Statutory Surplus in 1998 
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Company Name: 

First Year to be Modeled: 

Current Market Conditions: 

HMP Mature Soft I "  I 

PPAL Nature Soft: I "  I 

APD-P Nature Soft I ~ 1 

~PO-C ~atureso~ I '1 

CAL Nature Soft: I~.1 

CMP-L Nature Soft: I "  1 

CMP-P Natureso~ I"1 

OL N~ture~ I"1 

OL-U Nature Soft I 'v I 

wc I~ur~Har~ i~l 

ABC Insurance Company 

1998 

Exhibit A-1 

Simulation Technique 
~ ~,,~.,,.;::~::,,~::.::~-:. :Z:~:}~:.:::.:::,.~;~.,,.~;:~i:.'::...~::~:.::,~,.:.::.: ~ .~ 

General Input 
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Loss Triangle Input 
Paid Losses & ALAE Direct & Assumed 

Exhibit A-2 

oo 

Line of Business: HMP 

Accident Evaluations in Months 
Year 1...2 2.4. 36 4_8 6_0Q 7__2 _~ 9_6 108 12___0 13__2 

1986 7,390,982 7,667,373 7,831,090 7,834,571 7,840,897 7,841,882 7,841,882 7,843,008 7,843,296 7,843,296 
1987 4,782,601 5,948,892 6,074,429 6,200,184 6,503,498 6,210,370 6,210,489 6,211,047 6,212,269 6,212,269 6,212,269 
1988 3,429,881 4,540,502 4,682,931 4,776,067 4,775,599 4,777,092 4,776,204 4,775,904 4,775,654 4,775,304 
1989 4,428,674 6,216,163 6,302,820 6,338,508 6,320,451 6,319,874 6,320,461 6,278,231 6,278,447 
1990 4,905,508 6,491,617 6,672,882 7,304,431 7,341,614 7,371,753 7,401,759 7,433,900 
1991 6,136,783 8,546,891 8,735,593 8,828,725 8,868,053 8,875,065 8,875,733 
1992 6,623,741 9,339,087 9,578,819 9,803,573 9,825,756 9,821,798 
1993 9,318,694 12,752,572 13,100,827 13,345,650 13,355,820 
1994 9,675,280 12,400,427 12,631,087 12,720,083 
1995 10,819,650 15,166,286 15,813,794 
1996 14,372,636 17,806,453 
1997 19,593,642 

Triangle Input 



Underwriting Module Input Page Exhibit A-3 
Homeowners Multiple Peril 

2nd Prior let Pnor 1st 2nd 3rd 4th 5th 
Year Year Year Year Year Yoar Year 

Prw'nlums Input 

1. Written E.Kposure Input 

m. N ~  Bml.lness 10,740 9,569 

b. l i t  Ran.mvaJ 6.0953 9,591 

¢. 2nd & Subsequent Rend'el 37,541 42.16~ 

d. Total 57,376 61,326 

2. Average Annual Rate Input 

a. New Business 

b. 1st Renewal 

c. 2nd & Subsequent Renewal 

3. Exposure Growth Rate 

a. Enter Growth Objectives 

388 I 377 
432 421 

432 421 

-~o%1 2.o%1 ,5%1 ,oo%1 lOO%1 
4, % Of Premiums Earned In Year Writhm 

b. Ist Renew~l 50% 50% 50% 50% 50% 50% 50% 

c, 2nd & Subsequent Reflowat 50% 50% 

5. Rine~as Ratio 

C. 2nd & SubseclUent Ren~val 95% 95% 95% 

6. % of Written Premiums Held BY AIents 13% I 13% I 13%] 13% I 13% I 13% I 13% i 

Expense Input 

1. Commissions 

a. • % of written Premium 

b. I O % of EJmed Premium 

2. Genera1 ~xDense 

a. 0 % of Wr'i~e~ Pr~'r~lum 

b, • % of Earned PT'em~um 

3. Other .~:lUtsigon 

:1 °" I • % of Earthed Prm~lum 

4. Premium Taxes 

a .  ~ ~ wr~mm ~em~um 

5. Policyholde¢ Dividends 

ii. % of Emf'hed Premium 

6. (~h~ Nonrecurring Expenses 

7. Ceding Commission 

a. ,I, ol Emmed Premium 

Premium Input 

11 1,1%1 1~s%1 14.0%1 140%] 14.0%1 1,0%1 1,0%1 

21 65%1 63%1 6.5%1 6.5%1 65%1 6.5%1 6.5%1 

21 1,.6%1 -8%1 ,19%1 11.9%1 119%1 1,8%1 ,16%1 

[ ~,%1 3.3%1 3.,%1 34%1 ~4%1 3.4,1 34%1 

I 0.0%1 00%1 00%1 00-1 00%1 00,1 00%1 
I I I 031~1 I I I I 

I 0%1 0%1 0%1 0%1 0%1 0%1 0%1 
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Exposure Input 

1. Enter Your Distribution By State by Line: 

State 
AK 
AL 
AR 
AZ 
CA 
CO 
CT 
DC 
DE 
FL 
GA 
HI 
IA 
ID 
IL 
IN 
KS 
KY 
LA 
MA 
MD 
ME 
MI 
MN 
MO 
MS 
MT 
NC 
ND 
NE 
NH 
NJ 
NM 
NV 
NY 
OH 
OK 
OR 
PA 
RI 
SC 
SD 
TN 
TX 
UT 
VA 
v r  
WA 
Wl 
WV 
WY 
CW 

Exposurelnput 

HMP 

------gg- 

511 
------Tg" 

390 
lr100 
2r436 

409 
1,866 
1,059 

4 

6E 

1 ~ 53E 

2136E 
Z5~ 
3~ 

53' 
3 r ~8( 

41( 
20, 

25,279 

2. Enter Historic Written 

Yea.~._~ 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 

Exhibit A-4 

3. Enter Your Market Share By State by Line: 

Exposures By Line 

HMP 

39,599 

49,513 

61,326 

State 
AK 
AL 
AR 
AZ 
CA 
CO 
CT 
DC 
DE 
FL 
GA 
HI 
IA 
ID 
IL 
IN 
KS 
KY 
LA 
MA 
MD 
ME 
MI 
MN 
MO 
MS 
MT 
NC 
ND 
NE 
NH 
NJ 
NM 
NV 
NY 
OH 
OK 
OR 
PA 
RI 
SC 
SD 
TN 
TX 
UT 
VA 
VT 
WA 
Wl 
WV 
WY 

HMP 

Exposure Input 
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Jurisdictional Risk Worksheet 

State HMP 
Low Hi ~ q  

AK 0.85 1.t0 0,25 
AL 0.85 1.10 0.25 
AR 0.85 1.10 0.25 
AZ 0.85 1.10 0.25 
CA 0,85 1.06 0.50 
CO 0.85 1,10 0.25 
CT 0.85 1.10 0,25 
DC 0.85 1.10 0.50 
DE 0.85 1.10 0.25 
FL 0.85 1.05 0.50 
GA 0.85 1.099 0.50 
HI 0.85 1,10 0.25 
IA 0.75 1.20 
ID 0.75 1.20 
IL 0.75 1.20 
IN 0.75 1.20 
KS 0.85 1.10 0.50 
KY 0.85; 1.10 0.25 
LA 0.851 1.06 0.50 
MA 0.85 1.06 0.50 
MD 0.85 1.10 I 0.25 
ME 0.85 1.10 0.25 
MI 0.85 1.06 0.50 
MN 0.85 1.10 0.25 
MO 0.85 1.10 0.25 
MS 0.85 1.10 0.25 
MT 0.75 1.20 
NC 0,85 1,10 0.50 
ND 0,75 1.20 
NE 0.85 1.10 0.25 
NH 0.85 1.10 0,25 
NJ 0.85 1.06 0.50 
NM 0.85 1.10 0.25 
NV 0,85 1.10 0.25 
NY 0.85 1.06 0,50 
OH 0,85 1.08 0.25 
OK 0.85 1,10 0.25 
OR 0.85 1.10 I 0.25 
PA 0,85 1.08' 0.50 
RI 0.85 1.10 0.50 
SC 0.85 1.06 0.50 
SD 0,85 1.10 0.25 
TN 0.85 1,10 0.25 
TX 0.75 1,20 0,50 
UT 0,75 1.2O 
VA 0.85 1.10 0.25 
VT 0.85 1.10 0.25 
WA 0.85 1.10 0.50 
WI 0.75 1.20 
WV 0.85 1.10 0.25 
WY 0.75 I 1.20 
CW 0.82 i.13 0.30 

Exhibit A-5 

Exposure Input 

87 



U.I 

C 
0 

E 

0 o 
. . 1 ~  

. . ~ . .  

~ o  

~ _ . . ~ . . .  

o 

Li. 

o 

q j ~  

§ § 

0J 

S 

~ o ~ 

o~ 

r,. 

--J 
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LOSS Information Input E x h i b i t  A - 7 - a  

I. 54mctld UIml~l Lm~, l  & ALAE rc. Prk~ Y* , . !  

19ei~ 
1987 

19,~o 

19</4 

2 S ~ Q d  U I m ~  CCour~ r or Pncr Y* r~  (Or ~ & 

19e7 
1988 

1993 

Is.F5 

3. D, i i~ PI/d Lm| iinO ,14.JIG 

1 9 8 5  ~ 

1gad 
t~U~9 

1991 

4 Nq~ UlM1bl L ~ m  • 

1987 

1991 

1~e7 

t~81S 
1987 

19'97 

e E l ~ d  P r ~ u m l  (OVKI • AJ.KJr~<I) 

1~815 

199.1 

19,97 

7, Nel El,mud Prlm't~,le,n 

lg68 
1887 
lS~S 

19'~0 
199~ 
1992 
t993 
lS~4 

UJ~g 

1988 
1989 
1990 

1994 

b 1~ R~n~u 

e. WelOe'Id A',~ng~ ~ [ ~  
I ~ I  

~ ~1o,'1¢ ,S~,ve,llm 2,~16 
2 . ~  

r 

191~.9 

t99~ 

, ~  F r m l  

r Hhn~lc F ~ 0.140 

Rusor~ r~y  C z ~  
*. Loss Cos1 • Se~n~y x Ff 

b N~Aver~Ge P~dumlFr~m P r ~  ~m R*n,mql 

~ S u ~ . ~  R m  

O.?O4 
1o PI/~ ULA,IE I |  e % ~ Peld Lc~lm & JM..'~E 

1997 
I~JIs 
f~'g9 

11 (~.~1 ~ R*lmur~* Tru~ 

~g~5 
1986 
1987 
19,88 

~9'91 
1~9'2 

1~34 
1993 
1;elm 
1997 

1G'9~ 
19993 
20O0 
2'C.O 1 
2002 
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12..Exc~ezt~ ~ Lop.f, Tma~l~ 

Ezllmalled Cost of XOL ml m % of Elmed pnmllgWl I o.~1 
I ~ Retentzon per Occurm.nce 

1~7 

MaX C¢,v~lz~'e From Rolrmurert 

1~7 

~ 2  

Co*flldem of Varia'~on I 3 I 

~a  nd li'xt ~l.vv~tJon HMP 

Mu HMP 

1997 

lgg~ 

2001 
~ 2  

13. St.op L o=.s R eirdrunz n¢~ C ~ H i %  ~y.. L ( ~  MJiW. AmOM rzZ 
of Prw.nium & ALAIE R~,tto °° ,ol  l,oool 

19g0 1.00% 77.50% 10z00010CO 
2000 1,00% 77.5G% 10,0OOTOQ0 
2001 1.00~ 77.50% 1010CO 0CO 

1.00'% 77, ~'% 10r ~X~Oi0~O 

14. C,It]LlmlOCYn~cReinlutlnCe C40$tNa% lltR~lltl ln~xl Mzx.~'no~,lm 
PrwlliUm Per C¢'c. Per 0¢¢. 

Izt RetantJoe ~ Occurrer~e 

lg~ I 5Qo~ 5,0C0,0C0 I~iO~O,OCO I 19~ 5.Q0% 5,0~Oz(~O I~,000~0C0 
2000 5,00% 5,000=000 1251C00~000 
2001 5.00% 5~0[XJ 000 1~310~0 0~0 

Loss Input 

Exhibit  A-7-b 
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I n v e s t m e n t s  I n p u t  

Exhibit A-8-a 

Statutory VllUll~l ~ of 12/31119B7: 

a. U.S. Gov~nmerd Bonds 
10. Bonds Exempt From U.S. Tax 
¢. Other Bonds (Uilafflliatlcf) 
d. Bonds (A~llatsd) 
~. Pratan'ed Stocks (unafl]liate¢0 
. Prefenred Stocks (Amliatad) 

g, Common Stocks (Unaffiliated') 
h, Common Stock3 (Al~liated) 
i. Mortgage Loans 
J. Real Estate 
k, Collateral Loans 
I. CoSh on hand and on Deposit 
m, Short Term Investments 
n. Other Invested Assets 
o. DerlvatNe Instruments 
p. Aggregate Write-ins 
q. Subtotal 

Market Values as of 12/3111997: 
Please Enter Pat Values for Bonds 
a. U.S. Government Bonds 
b. Bonds Exempt From U.S. Tax 
c. Othar Bonds (Unamliated) 
d. Bonds (Amliatad) 
~. Preferred Stocks (unamllatad) 

Preferred Stocks (Affiliated) 
g. Common Stock3 (Unaf~liatad) 
h, Common Stocks (Affiliotnd) 
i. Modgege Loans 
J. Real Estate 
k. Collateral Loans 
I, Cash on hand and on Deposit 
m. Short Term Inveatment:s 
n, othot Invested Assets 
o. Derivotlve Instruments 
p, Aggregate Write-lns 
q. Subtotal 

Number of Units ms of 12131f1997" 

a, U.S, Government Bonds 
b. Bonds Exe~mpt From U.S. Tax 
c. Othe¢ Bonds (Unamliatad) 
d, Bonds (Amliatad) 
~. Preferred Stocks (Unaf~liatad) 
. Prehmed Stocks (Affitialed) 

g. Common Stock3 (Unaffitiated) 
h. Common Stocks (Affiliated) 
I. M, octgage Loans 
J. Real Estate 
k. Catloterul L~ns 
I. Clah oct hand and o~n Dap, o~.it 
m. Short Teem In,at.manta 
n. Other Invtoted Assets 
o. Derivtdtve InetnJmants 
p. Aggregate Write-ins 
q. Subtotal 

Bond Coupon Rates: 

~: U.S. Go~mment Bonds 
Bonds Exempt Fro,rn U.S. Tax 

c. Other Bonds (Unaffiliated) 
d. Bonds (A~liated) 
e. Subtotal 

I ~ S ~  Input 

Bond Matudt 7 
I 1Year 1 - 5  6 - 1 0  10-20 20+ 

Totat or Lir~l Yea~ Yeara Ye~l~ Years 
7.495% 6.613% 7.160% 7.315% 9.000% 9.435% 
6,735% 5,750% 6,831% 6,497% 6.773% 7.425% 
7.742% 7.735% 7.676% 7.317% 6.652% 6.452% 
0.000% 0.000% 0,000% 0.000% 0,000% 0.000% 
7.418% 7,394% 7.513% 7,223% 7.341% 8.631% 
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6. 

Capttsd & Surptu= 

a. Surpl~ ~ Regards to Policyholders 
b. CordTibuted Surplus 
c, Unassigned Surplus 
d. Special Surpdu9 Funds 
e. Add~one to Capital 
f. Contn'butJons to Surpdus 

Stock Betas 
a. Preferred Stocks (Unaffiliated) 
b. Pref~Ted Stocks (Affiliated) 
c. Common Stocks (Unaffiliated) 
d, Common Stocks (Affiliated) 

Dividends as a % of Market Value 
a. Preferred Stocks (Unaffiliated) 
b. Preferred Stocks (Affiliated) 
c. Coon,on Stocks (Unaffiliated) 
d. Common Stocks (Affiliated) 

Reinvesb'nent Allocations 
a. U.S. Government Bonds 
b, BooKie Exempt From U,S, Tax 
c, Other Bonds (Unaffiliated) 
d. Bonds (Affiiated) 
e, Preferred Stocks (Unaffiliated) 
f, Preferred Stocks (Affiliated) 
g. Common Stocks (Unaffiliated) 
h. Common Stocks (Affiliated) 
i. Mortgage Loans 
j, Ret( Estate 
k, Co~lateral Loans 
L Cash on hand and on Del:x:~sit 
m. Short Term Investmen~ 
n. Other Invested Asset~ 
o. DerlvaUve InstnJmente 
p. /~gregato Write-Ins 
q. Total 

Exhibit A-8-b 
As of Year End 

1997 1998 1999 2000 2001 2002 

0.70 

1997 

1997 
8.0% 
0.0% 
3.5% 
0.0% 

1998 

0.70 

1999 

0.70 

20OO 

0.70 

2000 
8.0% I 
0.0% 

2001 

0.70 

1998 
8.0% 
0.0% 
3.5% 
0.0% 

1998 
20.9% 
22,4% 
42.3% 

0.0% 
2.8% 
0,0% 
4.6% 
0.0% 
0.0% 
0.0% 
0.0% 
7,1% 
0.0% 
0.0% 
0.0% 
0.0% 

100.0% 

1999 
8.0% 
0.0% 
3,5% 
0.0% 

1999 
2'0.9% 
22.4% 
42.3% 
0.0% 
2,8% 
0.0% 
4.6% 
0.0% 
0.0% 
0.0% 
0.0% 
7.1% 
0.0% 
0.0% 
0.0% 
0.0% 

100.0% 

3.5% 
0.0% 

20(X3 
20.9% 
22.4% 
42.3% 

0.0~ 
2.8% 
0.0% 
4.6% 
0.0% 
0.0% 
0.0% 
0.0% 
711% 
0.0% 
0.0% 
0.0% 
0.0% 

100,0% 

2001 
8.0% 
0.0% 
3,5% 
0.0% 

2001 
20.9% 
22.4% 
42.3% 

0.0% 
2.8% 
0.0% 
4.6% 
0.0% 
0,0% 
0.0% 
0.0% 
7.1% 
0.0% 
0.0% 
0.0% 
0.0% 

100.0% 

2OO2 
°, 

2002 
8.0% 
0.0% 
3.5% 
0.0% 

2O02 
20.9% 
22.4% 
42.3% 
0.0% 
2.6% 
0.0% 
4.6% 
0.0% 
0.0% 
0.0% 
0.0% 
7,1% 
0.0% 
0.0% 
0.0% 
0.0% 

100.0% 

Inves~'~ent Input 
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Base Case 
50 Iterations Using Excel Exhibit B-1-a 

Output Output Output Output Outpm Output Output Output Output Outp~ 
N19 o19 p19 q19 r19 n34 034 p34 q34 r34 
No No No No Yes No No No No Yes 

176,885,913 172,931,113 166,756,714 149,824,294 132,5T7,715 2.119 2,381 2.856 2,931 5.405 
rial # Surplus 98 Surplus 99 Surplus O0 Surp4us 01 Surplus 02 P/S 98 P/S 99 P/S (X} P/S 01 PI8 02 

1 155,056,836 136,285,644 125,884,389 104,845,572 98,080,612 2.440 3.080 3.882 5.383 6.504 
2 163,754.761 164.156.925 144.163,29,4 132,106,526 114.403,0(X) 2.307 2.527 3.275 4.008 5.245 
3 151,004,758 143,401.131 123,512.074 82,674,485 43,919,839 2.506 2.900 3.894 6.710 14.021 
4 158,066.626 150,059,705 130,380,788 87,954,798 31.342,920 2.387 2.706 3.375 5.500 17.071 
5 180.817.284 160,571.798 116,639.827 127,270,793 106.137,941 2.049 2.541 4.047 4.279 5.962 
6 176,983,630 182.229.470 190,321.674 198.105,573 226.929,915 2.074 2.159 2.342 2.596 2.549 
7 185,484,837 195,865,894 196.972.524 170,517.586 137.203.363 2.019 2.080 2.247 2.852 4.(X)1 
8 187,493,323 187,965,994 210,107,085 227.230.199 226,201.991 1 990 2.168 2.19,0 2.268 2.584 
9 190,786,885 194.824,479 209,767,197 196,742,871 174.560,266 1.964 2.097 2.201 2.6,47 3,322 

10 181.063.632 179,0,46,371 188,441,033 191,62'9,135 163,677.384 2.085 2.292 2.432 2,732 3.634 
11 189,282,966 187,621,214 185.556,317 192.830,503 144,997,5,62 1.940 2.106 2.416 2.658 4.010 
12 179,(~)7,951 162.374,018 155,255,449 140.497,037 107,179,405 2.083 2.508 2.949 3.672 5.599 
13 206,334,170 194.066,840 197,795,911 185,398,822 198,001,975 1.809 2.102 2.3,41 2.838 3.023 
14 192,256,361 206.374,7~0 225,257,082 244,173,354 258,758,211 1.914 1,891 1.935 2,055 2.198 
15 158,996,375 109.413,710 76,951,202 83,456.665 30,107,692 2.323 3.612 5.742 5.792 17.571 
16 192,084,5.56 182,903.839 156,457.909 113,565,527 42,527,958 1 951 2.237 2.905 4.450 13.188 
17 171,950,680 175,119,712 149,272,187 139,904,590 153,390,005 2.171 2.311 2.990 3.548 3.570 
18 207,597.698 198,800,845 190,262,222 185,336,538 190,838,068 1.828 2.104 2.483 2.881 3.181 
19 176.493.821 180,685,552 174,268,247 176,909,483 132,801,741 2.136 2,321 2.823 3.233 4.770 
20 182.658,307 184,898,173 193,440.919 207,590,082 229.871,495 1.999 2.110 2.273 2.315 2.307 
21 187.487.132 214,477,613 206,325.925 190,953,858 175,161.950 1.984 1,871 2.240 2.79,4 3,462 
22 163.680,557 149,439,027 144,444,143 141,325,295 138.566.626 2.223 2.566 2,954 3,364 3.790 
23 193,520.995 184.894,747 182,415,865 150,931.468 130,138.57'7 1,926 2,174 2.473 3.357 4,238 
24 153,782,040 127,467,851 115,CX~7,869 "97.667,136 70,325,247 2.443 3.224 4.044 5.3,82 8.355 
25 183,487,333 198,015,640 192,622,658 176.697,964 221,398.154 2,018 2.021 2.382 3,035 2.798 
26 169,338,793 161,756,742 168.158,619 144,618.216 115,463.692 2.222 2.581 2.844 3.723 5.140 
27 185,015,192 209,155,500 195,231,303 (14,024,799) (31,154,077) 1986 1.860 2.193 (33.486) (16.814) 
28 181,845.495 174,372,734 176,337,321 163,885,783 133,105,197 2.045 2.325 2.583 3.169 4.435 
29 168.615.142 169,250,925 173,305,072 178,631,918 227,036.866 2.179 2.313 2.514 2.775 2.472 
30 198,122,884 211,810,9022 217,971.663 216,242,550 197,739.136 1.829 1.801 1.942 2.120 2.555 
31 155,731,666 170,520.332 157,007,686 124,886,640 73.787.220 2.414 2.385 2.852 3.994 7.672 
32 183.408,593 175,962,461 214,637,325 225.412.309 229,507,272 2.033 2.317 2.160 2.302 2.508 
33 182.025,276 200,334,032 186.474,096 210,,463.473 227,212,5,42 2.059 2.024 2.468 2.513 2.623 
34 161,045,484 164,901,955 148.997,362 122.288,617 120,832,684 2.302 2.419 3.031 4.253 4.928 
35 167,276,583 166.237.313 144,692,366 155,948,891 129,097,889 2.232 2.426 3.203 3.379 4.464 
36 168,512,868 149.471.240 136,427,445 70,512,535 26,147,276 2.235 2.761 3.381 7.309 21.718 
37 179,375,319 188.935.446 189,557,632 172,942,609 145,737,563 2.062 2.118 2.321 2.805 3.711 
38 190,009.685 194,852.965 185,751.255 144.019.398 133.396.459 1 975 2.087 2.504 3.729 4.517 
39 166.521,814 138,664,639 143,176,677 112,504,436 94.448,703 2.290 3.026 3.260 4.603 6.131 
40 163.610,2'01 153,976,150 130,036,669 97,867.105 96.148,871 2.269 2.578 3.410 5.127 5.863 
41 183,157,866 174,48,8,792 158.635,585 151,195,898 131,481,945 2.032 2.330 2.892 3.423 4.464 
42 173,326,400 173,494,789 178.721,577 123.152,381 64,039,502 2.149 2.330 2.513 4.094 8.943 
43 168,080,564 138,058.395 141,283.166 130,695,817 120,033,406 2.219 2.917 3.186 3.845 4.70'5 
44 174,2~0,205 157.411.765 131,399.467 130,187,575 81.084,619 2.110 2.496 3.397 3.910 7.141 
45 193,984.19,4 188,461,064 190,868.617 182,792,446 174.750,214 1.916 2.114 2.355 2.822 3.398 
46 177.859,480 15,4,758..503 118,209.155 97,034,841 66,015,851 2.074 2,561 3.733 5.114 8.292 
47 175,667.670 175,577,383 138.132.421 88,572.711 48.797.283 2.109 2.269 3.316 5.930 11.959 
48 171,160,931 161,253,876 172,409,914 155,134,017 154.034,124 2.169 2.457 2.547 3.188 3.623 
49 160,233.927 168,965.639 192,132,697 210.109,166 189.041,905 2.341 2.441 2.487 2.644 3.426 
50 150,113.410 143,524,775 144.600,010 163.104,227 195,157,803 2.501 2.849 3.235 3.402 3.414 
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Base Case 
50 Iterations Using Excet Exhibi t  B-1 -b  

Output Output Output Output Output Output Output Output Output Output 
N27 027 p27 q27 r27 W8 x8 y8 z8 aa8 
No No No No Yes NO NO NO NO Yes 

1.035 1.004 1 .(X)5 1.030 1,027 0.726 0.745 0.747 0.771 0.766 
Trial # OR 98 OR 99 OR 00 OR 01 OR 02 Net LR 98 Net LR 99 Net LR 00 Net LR 01 Net LR 02 

1 1,110 1,065 1.055 1.076 1.033 0.774 0,800 
2 1,074 0.997 1,061 1,004 1.001 0.745 0.749 
3 1.115 1.0221 1.037 1,064 1.081 0.769 0.753 
4 1,082 1,010 1.022 1,047 1,083 0,768 0,749 
5 1.024 1.064 1.134 1.009 1.036 0,696 0.773 
6 1,030 0.972 0.967 0,969 0.921 0,748 0,732 
7 0.993 0.95,8 1,002 1,058 1,072 0.688 0.715 
8 0,993 0.981 0.950 0.975 1.041 0.684 0.701 
9 0.982 0.953 0.927 1.034 1.038 0.670 0.690 

10 1.020 1.004 0,963 1.029 1.107 0.696 0.759 
11 0.985 1.005 0.998 0.960 1.071 0.707 0.747 
12 1.022 1.041 1.020 1.006 1.050 0.703 0.774 
13 0.926 1.035 0.952 0.987 0.907 0.623 0.776 
14 0.970 0.939 0,900 0,695 0.914 0,660 0.713 
15 1,092 1.128 1.082 0,963 1,121 0.78,8 0.844 
16 0.993 1.019 1.035 1.065 1.118 0.682 0.750 
17 1,045 0.984 1.064 1.016 0.948 0.740 0.723 
18 0.914 1.012 1,024 1.012 0,997 0.606 0.756 
19 1,046 0.985 1.(~3 1.011 1.106 0.722 0.706 
20 1,0,40 0,978 0,974 0.997 0,971 0,752 0,737 
21 0.992 0.915 1,011 1.0Z2 1.013 0.693 0.676 
22 1,071 1,013 1,(X)1 1.000 1,034 0.772 0,746 
23 0.972 1,047 1.020 1.077 1.019 0.689 0.780 
24 1.104 1,084 1.024 1.015 1.025 0.774 0.802 
25 1,018 0.965 1.053 1.096 0.999 0.721 0.709 
26 1.065 1.011 0.9,48 1,040 1.052 0.768 0.739 
27 0,998 0,876 1.003 1.448 1.014 0,700 0,649 
28 1,015 1,015 1,02'0 1,072 1.067 0.708 0,760 
29 1,071 0,993 0.993 0.998 0,S07 0.773 0,755 
30 0,956 0.966 1.005 0.983 1,024 0.686 0,728 
31 1.096 0.915 0.995 1.026 1.038 0.751 0.650 
32 1,0t5 1,041 0.931 1,016 1,015 0,713 0,766 
33 1.015 0.906 1.032 0.929 0.976 0.697 0.661 
34 1,090 0.964 1.022 1,058 0.973 0,767 0,7t6 
35 1.071 0.990 1.052 0.970 1.082 0.758 0.724 
36 1.074 1.059 1.038 1.133 11075 0.750 0.783 
37 1.030 0.967 0.962 1.022 1,039 0.746 0.723 
38 0.983 1 .O03 t .022 1.090 0.977 0.677 0.752 
39 1.078 1.069 0.922 1.039 0.997 0.733 0.803 
40 1,075 1.024 1.043 1.080 1.000 0.747 0.769 
41 1.022. 1.0,45 1.0215 1.004 1.034 0.735 0.750 
42 1,054 0,988 0.947 1,116 1,127 0.744 0.727 
43 1.065 1.096 0.995 1,023 1.036 0,753 0.809 
44 1,056 1,016 0,975 0.918 1,037 0,762 0,754 
45 0.976 1.013 0.966 0.994 1.020 0.666 0.762 
46 1 .O47 1.045 1,055 1.008 1.026 0.747 0.777 
47 1.046 0.999 1.094 1.102 1.044 0.767 0.756 
48 1.057 1.013 0.927 1.032 0.9733 0.763 0.779 
49 1.084 0,966 0.914 0,936 1,026 0,755 0,706 
50 1.108 1.035 1.037 1.033 1.073 0.778 0,769 

0.771 0.819 0.753 
0.775 0.744 0.724 
0.758 0.807 0.803 
0.758 0.777 0.807 
0.876 0.747 0.774 
0.729 0.716 0.691 
0.783 0.799 0.812 
0.693 0.738 0.790 
0.667 0.773 0.773 
0.714 0.761 0.837 
0.771 0,704 0.794 
0,756 0.749 0.762 
0.700 0,728 0,655 
0.649 0.6,43 0.682 
0,810 0.7093 0.828 
0.770 0.783 0.82'5 
0.816 0.774 0.713 
0.754 0.75.4 0.745 
0.781 0.730 0.844 
0.738 0.759 0.731 
0.746 0.75,4 0.75,0 
0.7,58 0,751 0.791 
0,767 0,819 0,772 
0.747 0.757 0.759 
0.768 0.833 0.762 
0.688 0.784 0.790 
0.735 1.212 0.741 
0.757 0.801 0.803 
0.744 0.750 0.673 
0.766 0.761 0.771 
0.737 0.744 0.764 
0.705 0.779 0.771 
0.778 0.677 0.743 
0.754 0.794 0.729 
0.779 0.726 0.822 
0.778 0.852 0.802 
0.722 0.769 0.788 
0.756 0.8t6 0.726 
0,658 0.770 0.709 
0,772 0,810 0,732 
0,767 0.735 0,752 
0.720 0.845 0.859 
0,747 0,766 0.77/5 
0.715 0.665 0.766 
0,715 0,731 0,766 
0.791 0,742 0.7"79 
0.798 0.8,43 0.779 
0.671 0.774 0.720 
0.666 0.687 0.747 
0.780 0.764 0.816 
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ABC Insurance Company 
Statutory Balance Sheet 

ASSETS 

1. Bonds 
2. Stocks: 

2.1 Preferred stocks 
2.2 Common stocks 

3. Mortgage loans on real estate 
4. Real estate 
5. Collateral loans 
6. Cash 
7. Other Invested assets 
8. Aggregate write-ins 

9. Subtotals, cash & invested assets 

10. Agents' balances or uncollected pr 
11. Funds held by reinsurer 
12. Bills receivable 
13. Reinsurance recoverables 
14. Federal income tax collectable 
15. Electronic data processing 
16. Interest, dividends & real estate 
17. Receivable from parent 
18. Equities and deposits in pools 
19. Amounts receivable relating to A& 
20. Other assets nonadmitted 
21. Aggregate write-ins 

22. Total assets 

Base Case 
50 Iterations Using Excel 

1998 1999 2000 2001 2002 

397,269,391 417,079,942 415,876,272 441,770,059 477,281,188 

14,414,504 16 ,591 ,024  18 ,437 ,526  21 ,489 ,014  24,487,902 
99,977,356 110,700,421 120,104,398 130,486,269 139,994,606 

196,144 196,144 196,144 196,144 196,144 
16,880,795 16 ,880 ,795  16 ,880 ,795  16 ,880 ,795  16,880,795 

34,578,453 38 ,340 ,296  40,785,861 45 ,596 ,660  51,935,531 
446,683 446,683 446,683 446,683 446,683 

563,783,325 600,235,305 612,727,680 656,865,624 711,222,850 

48,846,694 53 ,406 ,225  59 ,581 ,118  68 ,346 ,149  78,074,692 
210 210 210 210 210 

5,818,016 6 , 9 9 9 , 3 7 8  6 , 8 7 3 , 2 9 0  7 , 8 6 7 , 6 6 0  9,239,345 

2,992,030 2 , 9 9 2 , 0 3 0  2 , 9 9 2 , 0 3 0  2 , 9 9 2 , 0 3 0  2,992,030 
6,344,827 6 , 3 4 4 , 8 2 7  6 , 3 4 4 , 8 2 7  6 , 3 4 4 , 8 2 7  6,344,827 
1,107,674 1 , 1 0 7 , 6 7 4  1 , 1 0 7 , 6 7 4  1 , 1 0 7 , 6 7 4  1,107,674 

4,956,493 4 , 9 5 6 , 4 9 3  4 , 9 5 6 , 4 9 3  4 , 9 5 6 , 4 9 3  4,g56,493 

633,849,268 676,942,142 694,583,322 748,480,667 813,938,121 
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LIABILITIES 

1. Losses & LAE: 
2. Unearned premiums: 
3. Other expenses 
4. Taxes, licenses and fees 
5. Federal income taxes 
6. Other liabilities 
7. Total liabilities 

### 

SURPLUS 

8. Additions to surplus 
9. Surplus as regards to policyholders 

Net Income (Before taxes) 
Underwriting GaiN(Loss) 

Combined Ratio 
Operating Ratios 

Investment Income / Surplus 
Investment Income / Earned Premium 

Base Case 
50 Iterations Using Excel 

1998 1999 2000 2001 2002 

Exhibit B-6-b 

290,900,796 349,968,894 343,664,523 393,382,978 461,967,235 
152,532,149 166,061,916 183,427,198 209,716,288 239,005,263 

6,041,971 6,451,916 7,163,253 8,111,683 9,268,363 
6,264,517 6,854,283 7,640,894 8,751,580 9,974,421 

149,581 1,215,947 128,632 386,520 

455,889,014 529,337,009 543,111,815 620,091,161 720,601,801 

177,960,255 146,705,134 151,471,507 128,389,506 93,336,320 

6,697,898 (15,003,510) 40,535,320 1,738,279 4,700,000 
(42,530,250) (70,175,534) (20,340,994) (62,290,287) (60,828,081) 

1.111 1.167 1.035 1.110 1.093 
1.032 1.091 0.964 1.046 1.038 

0.165 0.206 0.208 0.249 0.334 
0.079 0.076 0.071 0.064 0.055 

IRIS Ratios 
1. Premium to Surplus 
2. Change in Writings 
3. Surplus Aid to Surplus 
4. Two Year Overall Operating Ratio 

Investment Yield 
Change in Surplus 
Liabilities to Liquid Assets 
Agents Balances to Surplus 
One Year Development 
Two Year Development 
Estimated Current Reserve Deficiency to Surplus 

1.3% 9.3% 11.6% 14.7% 14.2% 
3.6% 5.2% 5.6% 7.7% 12.3% 

............................. ~ .................... : ................... ~ :  .............. ~.:.:.:..~. ~..:~i~..:~i~. ~.~:.:!:~::.:::::::..,~ o o :..~.:+.-.. , ~ ,~  " . : - . ' - ' , . .~ .- 5.4 Y~ 5.0% 5.1% 4.9 Yo ~:~ :..:.:::~: ..:.~:.,:::. ::~::..'::.~::..::~:-:~,.:! ::: ~A ~ f~ ......... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~::.~ .~ ................. ~::.. ~;::"::~.:.~: .:.:~:~.: ~ .  :~:.:. 

66% 72% 72% 76% 82% 
39% ~'° ~:~":~~'~z:'::::~~!~ :'':':'~:':~ ~~ ~'~'~ "~<~ 27% 36% ~:~:.%~i...~i~:i~:~ .~.~):.~.~i~::. :!:~.~...~. ~ .  

5.5% 1.3% -2.1% 13.8% -5.8% 
7.1% 1.5% 2.4% 11.3% 

#N/A o ~::.~.:.~:.::~i~: ............ ~.= 15.0 Yo ~:%S~..~7:4.~;: -8.1% 



B a s e  C a s e  
50 Iterations Using Excel 

I Apdod Loss 8, ALAE Ratios 
Accident Years 

Co~er,pIs.~lvl=en 1 ~  I 1~9 I 2OOO I 2001 I 2002 
All Direct 0.65 0.78 0.72 0.68 0.72 

Ceded 0.13 0.39 0.76 0.11 0.26 
Net 0.72 0.83 0.72 0.75 0.78 

HMP New 0.70 0.72 0.83 1.09 I .I I 
Renewal 0.42 0.48 0.77 0.91 1.08 

Renewal (2) 0,55 0,56 0.49 0,63 0.72 
Direct 0.59 0.70 0.62 0.75 0.84 
Ceded 0.00 0.18 0.47 0.00 0.00 

Net 0.65 0.75 0.63 0.83 0.92 
PPAL New 0.84 0.84 0.93 0.85 0.95 

Renewal 0.87 0.73 0.84 0.81 0.73 
Renewat (2) 0.95 0.89 0.71 0.67 0.6,8 

Direct 0.93 0.87 0.76 0.73 0.75 
Ceded 0.00 0.00 0,00 0.00 O,00 

Net 0.97 0.91 0.80 0.76 0,79 
APD-P New 0.71 0.84 0.75 0.81 0.74 

Renewal 0.57 0.61 0.61 0.84 0.83 
Renewal (2) 0.61 0.70 0.54 0.59 0.69 

Direct 0.65 0.84 0.63 0.69 0.73 
Ceded 0.00 0.23 0.36 0.00 0.00 

Net 0.69 0.88 0.65 0.73 0.78 
APD-C New 0.62 1.35 0.78 0.97 0.52 

Renewal 0.42 0.37 0.50 0.51 0.52 
Renewal (2) 0.59 0.37 0.45 0.56 0 44 

Direct 0.59 0.52 0.59 0.63 0.47 
Ceded 0.00 0.14 0.87 0.0(] 0.00 

Net 0.63 0.55 0.57 0.68 0.50 
CAL New 0.96 2.01 1.44 1.17 0.77 

Renewal 0.65 0.55 0.55 1.22 0.92 
Renewal (2) 0.50 0.99 0,69 0.38 0.39 

Direct 0.55 1.0,4 0.75 0.57 0.51 
Ceded 0.01 0.02 0.02 0.01 0.01 

Net 0.58 1.08 0.79 0.60 0.54 
CMP-L New 0.61 0.93 0.67 1.01 0.84 

Renewal 0.42 0.66 0.79 0.66 0.63 
Renewal (2) 0.61 0.52 0.45 0.63 0.67 

Direct 0.59 0.58 0.51 0.70 0.69 
Ceded 0.00 0.00 0.00 0.00 0.00 

Net 0.62 0.60 0.54 0.73 0.73 
CMP-P New 0.52 1.05 0.65 0.75 1 5,4 

Renewal 0.5.4 0.25 1.24 0.75 0.68 
Renewal (2) 0.49 0.74 0.70 0.52 0.74 

Direct 0.55 0.99 1.07 0.68 0.89 
Ceded 0.15 0.48 1.57 0.19 0.25 

Net 0.61 1.08 0.98 0.76 1.00 
OL New 0.56 0.39 0.49 0.5,4 0.31 

Renewal 0.38 0.20 0.3.4 0.29 0.39 
Renewal (2) 0.42 0.11 0.03 0.09 0.26 

Direct 0.43 0.14 0.13 0.20 0.29 
Ceded 0.00 0.00 0.00 0.00 0.00 

Net 0.45 0.15 0.14 0.21 0.30 
OL-U New 0.24 0.12 0.10 0.02 0.12 

Renewal 0.10 0.01 0.09 0.23 0.05 
Renewal (2) 0.35 0.06 0.17 0.24 0.24 

Direct 0.32 0.06 0.15 0.19 0.19 
Ceded 0.32 0.06 0.15 0.18 0.19 

Net 0.33 0.06 0.16 0.20 0.19 
WC New 0.63 1.02 0.77 0.77 0.61 

Renewal 0.58 0.50 0.81 0.99 0.71 
Renewal (2) 0.6,0 0.44 0.43 0.64 0.57 

Direct 0.60 0.49 0.50 0.70 0.60 
Ceded 0.00 0.00 0.00 0.01 0.00 

Net 0.62 0.50 0.51 0.72 0.61 

E x h i b i t  B - 7  
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New Bus iness 
Homeowners  Mul t ip le Peril 
Direct Underwriting Module 

Accident Years 
2nd Prior 1st Prior 1st 2nd 3rd 4th 5th 

'Year `year `year `year `year 'Year `year 
Descriotion _1....__ 199___ Z ~ 1._.~ ~ ~ 

f± promlums; 

a. Exposure Growth Rate -1% 2% 8% 10% 10% 
b. Number of Exposures 10,740 9,569 6,282 6.73,6 10,287 13,788 16,119 
c. Average Rate Growth Rate 5% l t% 3% 2% 8% 
d. Average Rate per Exposure 387.61 377.37 397.38 440.83 455.88 463.75 499.31 
e. Writl.en Premiums 4,162,984 3,610.877 2 ,496.361 2,969,449 4,689,613 6,394.149 8,048,344 
f. Earning Ratio 0.50 0.50 0.50 0.50 0.50 0.5,0 0.50 
g. Earned Pre~'lliums 4,182.984 3,888,930 3,053,619 2,732,905 3,829..531 5 .541,881 7.221.247 
h. Unearned Premium Reserves 2,081.492 1,805,43,8 1.248,180 1,48,4.724 2,344,807 3.197,075 4,024,172 
i, Renewal Ratio 60% 60% 60% 60% 60% 60% 6,0% 

2. Ex~oensea: 

a. Commissions 585,760 488,89,4 349.491 415,723 666.546 895.181 1,126,768 
b. General Expense 272,033 243.112 198,485 177,639 248,920 360,222 469,381 
c. Other Acquisition 523.786 458.017 360,327 322,483 451,885 653.942 852,107 
d. Premium Taxes 133,330 117.821 84,876 100.961 159,447 217,401 273,644 
e. Policyholder Dividends 
f. Other Nonrecurring Expenses 931.848 

g. Subtotal (Expenses) 1,514,908 1,305,843 1 ,925.027 1 .016,806 1,516,797 2,126.746 2,721,900 

3, 'Lo,~ses: 

a. Initial Severity Mean 2,0(X) 2,000 2,000 2,(XX) 2,000 2,000 2,000 
b. Initial Severity Std. 192 192 192 192 192 192 192 
c. Severity Trend 0,959 1.000 1.043 1.115 1.105 1.171 1.248 
d. U/W & Rate Adjustments 
e. Modeled Severity 1,719 1,781 1,846 2,633 1,894 2,219 3,002 

f. initiaIFrequency Mean 0.157 0.157 0,157 0.157 0.157 0.157 0.157 
g. Initial Frequency Std. 0.014 0.014 0,014 0.014 0.014 0.014 0.014 
h. Frequency Trend 1 000 1.000 1.000 1.000 1.(XX) 1.000 1.0Q0 
i. U/W & Rate Adjustments 1 ,(X)0 1.0(30 1.000 1.000 1.000 1.000 1.000 
j. Modeled Frequency 0,15 0.15 0.17 0.13 0.17 0.13 0.16 

k. a Priori Ultimate Losses & A,L.AE 2,795,926 2.5,61,872 1 .914.826 2,390,620 3,275,774 4,068,293 7.605,820 
L a Priori Loss & ALAE Ratio 0.67 0.66 0.63 0.87 0.88 0.73 1.05 
in. New Businese Penalty (0.14) (0.33) (0.03) 0.30 0.28 0.11 0.26 

Exhibit B-8 
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Constained Growth Case 
50 Iterations Using Excel Exhibit C-1-a 

Output Output Output Output Output 
N19 o19 p19 q19 r19 
No No No No Yes 

175,804,947 177,290,2Sl 182.504,379 192,153,293 203,398.666 
Surplus 98 Surplus 99 Surplus O0 Surplus 01 Surplus 02 

1 177,841,779 167,912,331 168,844,782 179,295.863 212.021,245 
2 181,059.869 187,173,731 185,287,185 200,046.953 Z21.523,361 
3 166,966,791 149.474,454 140.715,199 147.634.907 121,635.939 
4 192,635,204 209,507.227 2(~.709,103 220,156.166 264.713.480 
5 171,116,(X)2 154.671,307 167,894,973 151,567.761 140.269,784 
6 165.47g,513 184.319,389 173,127.374 168,013.654 203.180.933 
7 183,332,162 183,675,934 189,911.787 233,546,717 277.009,685 
8 170,990,389 165,399,172 156,883,024 157,3218,334 163,498,520 
9 166,219,582 176,014,335 194,302,088 187,9,46,530 195,213,865 

10 167.549,849 170,272,178 163.200,039 157.833.112 133,012.541 
11 181,989, O43 175,721,582 181,2Sl,022 193,981,472 219,868,778 
12 171,173.909 171.489,352 16.5,795.558 188,518,302 204.182,589 
13 187.218.190 202,499,309 215,812.659 227,802.009 233,368.315 
14 174,554,551 178,557,958 183. 769,330 186,220.807 234,376,888 
15 163,605.439 157.(751,627 161,536,361 176,364,972 191.007,728 
16 174.687.514 169,203.255 191.150.328 250.3,44.258 288.986,500 
17 186,363,932 198,662,672 212,179,904 189.277.418 182,227.624 
18 180,357.986 173,817,775 189,970,611 206,837,028 239,280.898 
19 199,678.781 213.26-5.100 236.976.237 259.981,632 247.071,935 
20 154,142,665 162,509,036 185,054.667 205,015,116 231,133.529 
21 155,221,003 118.719,197 92,886,218 78,669,964 55.478,453 
22 175.247,353 184,870,219 190,839,173 192.707,4.42 lg6,359,498 
23 165,738.288 129,422.352 146,643.228 165.293.737 172,175,738 
24 188,367,238 212,822,053 227,044,964 265,479,686 296,200,982 
25 179,013.070 184.596,877 195,657,567 184,165,528 181.694,094 
26 162,119,150 162,399.400 156,024,363 118,1CX),922 116,516.157 
27 197,293,489 214,106,548 224,820,661 232.681.325 233,141.728 
28 166.821,963 161,029,300 154,493,557 156,015,553 145,959,338 
29 192,919,927 194.954,825 201,447.824 232.288.838 285,751.895 
30 167,274.874 153,646,410 152.881,$64 177,887,239 2'06,060,179 
31 161.172,142 171.102.588 191,640,480 216.988,209 263,704,092 
32 158.229,833 147.982.570 158.106.954 156.149.224 152,057,763 
33 190.861,707 221,047,612 254,435,227 261,244,340 260.722,050 
34 176,386,326 186,603.421 22'0.228,631 228,437,423 254.584.475 
35 188,698,228 196,972,298 201.538.134 195.616,576 157,858.918 
36 152.363.410 140,578,639 157,474,700 157,070,679 156,579,559 
37 190.039,899 207,857.645 232,091.596 248,277,CX)9 250.383.CF31 
38 184,363,321 186,687,410 186,932.473 205.737.487 203.362.673 
39 178.958,213 208.166,934 199,078,688 217,182,852 214.074,617 
40 188,911,722 175.829,627 171,477.115 184,375,749 209,054,244 
41 163,221,155 175,395,082 180,854,923 157.710,730 169,908,087 
42 180,852,903 175.439,975 192,O45,808 175,663,109 187.755,230 
43 182.714,124 180,445,572 180,889.033 199.618,725 200,390,796 
44 166.435,215 172,961,456 186,831,678 249,789,424 311.488,334 
45 198,691,266 194,024,781 183,725,795 183,243,534 167,210.103 
46 156,146.480 149,628.366 139.393.175 128,571.645 115.6,88.005 
47 181.822.715 176.811.631 199.487,704 224,282,332 243,874,670 
48 191,453,368 200,425,847 167,487,942 177,224.928 183,034,215 
49 156,140.880 151.498,912 122,842.747 157,326.157 171,881,494 
50 189.913,004 225,044.188 245.884.995 302.084.201 423.838.881 

0~ Output 0~ 0~ 0~ 
n34 034 p34 q34 r34 
No NO NO No Yes 

2.128 2.302 2.458 2.572 2.737 
P/S 98 PIS 99 PIS 00 PIS 01 PIS 02 

2.069 2.323 2.462 2.466 2.178 
2.032 2.096 2.300 2.272 2.218 
2.270 2.780 3.164 3.218 4.308 
1.884 1.820 1.924 1.959 1.712 
2.158 2.560 2.576 3.040 3.553 
2.264 2.185 2.528 2.848 2.523 
2.013 2.176 2.333 2.127 1.989 
2.175 2.438 2.925 3.092 3.128 
2.247 2.311 2.286 2.613 2.740 
2.213 2.316 2.536 2.804 3.582 
2.044 2.23.4 2.323 2.403 2.277 
2.181 2.338 2.640 2.518 2.529 
1.966 1.908 1.893 1.931 2.087 
2.119 2.2'34 2.412 2.660 2.315 
2.268 2.525 2.663 2.658 2.673 
2.136 2.424 2.387 2.(X)7 1.889 
1,978 1,983 2.011 2.493 2.818 
2.066 2.337 2.2'99 2.287 2.181 
1.842 1.817 1.758 1.720 1.937 
2.423 2.500 2.347 2.279 2.249 
2.394 3.421 4.875 6.342 9.896 
2.120 2.164 2.243 2.354 2.462 
2.257 3,155 3.017 2,824 2,853 
1,983 1,893 1.938 1.820 1.796 
2.045 2.134 2.208 2.476 2.604 
2.304 2.438 2.688 3.804 4,070 
1.910 1.931 1.996 2.098 2,237 
2.236 2.501 2.865 3.083 3.595 
1.922 2.045 2.148 2.028 1.770 
2.237 2.63.4 2.79,4 2.513 2.338 
2.317 2.390 2.385 2.307 2.C57 
2.396 2.7"74 2.753 2,939 3.149 
1.947 1.829 1.673 1.678 1.757 
2.105 2.135 1.935 1.980 1.913 
1.981 2.071 2.233 2.432 3.2(X) 
2.450 2.913 2.867 3.106 3.311 
1,968 1.971 1.941 1.968 2.169 
1.976 2.030 2.180 2.172 2.398 
2.072 1.918 2.204 2.212 2.421 
1.974 2,259 2.539 2.637 2.543 
21295 2.324 2.489 3.175 31235 
2.0,45 2.257 2.213 2.564 2.532 
2.066 2.281 2.481 2.472 2.708 
2.245 2.344 2.356 1.904 1.635 
1 901 2.108 2.407 2.552 2.888 
2.427 2.763 3.218 3.66'2 4.214 
2.036 2.223 2.094 1.992 1.977 
1.911 1.883 2.392 2.403 2.468 
2,424 2.718 3.65.4 3.122 3.045 
1.970 1.796 1.802 1.634 1.295 
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Constained Growth Case 
50 Iterations Using Excel Exhibit C - l - b  

Output Output Output Output Output Output Output Output 
p27 q27 r27 W8 x8 y8 z8 aa8 
No No Yes No No No No Yes 

0.977 0.968 0.970 0,727 0,729 0.727 0,720 0,723 
Trial # OR O0 OR 01 OR 02 Net LR 98 Net LR 99 Net LR 00 Net LR 01 Net LR 02 

1 0.993 0.988 0.933 0.724 0.769 0,747 0.757 0.705 
2 1.013 0.974 1.030 0.720 0.726 0,770 0.736 0.768 
3 1,006 0,969 1.075 0,720 0.774 0.755 0.705 0.786 
4 0.965 0.959 0.897 0.701 0,668 0.732 0.714 0.690 
5 0.95,6 1.025 0.994 0.741 0,792 0,707 0,781 0.715 
6 1,028 1,002 0,868 0.758 0,687 0,766 0,753 0,635 
7 1 . 0 1 7  0.945 0.959 0.730 0.756 0.767 0.688 0.725 
8 1,006 0.986 0.982 0.735 0.729 0.745 0.721 0.743 
9 0.908 0.964 0.956 0.758 0,652 0,672 0.699 0.703 

10 0,975 0.981 1.024 0.757 0,714 0,722 0.716 0.750 
11 0.951 0.934 0.909 0.704 0.772 0,714 0,685 0.684 
12 1,005 0,927 0,963 0.737 0,737 0.731 0.693 0,711 
13 0,962 0.983 1,0,40 0,711 0,691 0.725 0.747 0,787 
14 0.995 1.011 0.936 0.735 0.714 0,736 0.742 0.704 
15 1.009 0.977 1.029 0.7722 0.759 0.738 0.738 0.769 
16 0.983 0.927 1.037 0.750 0,774 0.734 0.691 0.796 
17 0,958 1.016 0,969 0,698 0,698 0,706 0,748 0.714 
18 0,981 0,973 0,959 0,716 0,763 0,729 0,727 0,717 
19 0.903 0.901 1.041 0.683 0.671 0,669 0.681 0.792 
20 0.952 0.983 1.(X)6 0.767 0.697 0.721 0.736 0.758 
21 1.070 1.038 1.063 0.771 0.829 0,800 0.775 0.773 
22 0.951 0.980 0,954 0.716 0.687 0.711 0.724 0.706 
23 0,95,4 0.924 0,927 0,759 0.832 0,707 0,679 0,685 
24 1,003 0.96,4 0,954 0,717 0,683 0.761 0,724 0,715 
25 0.932 1.022 0.965 0.757 0,738 0.679 0.777 0.712 
26 0.955 1,045 0,941 0.772 0,736 0.695 0.760 0,702 
27 0.964 0,994 0,95,0 0,640 0,678 0,723 0.736 0,692 
28 0.992 0.957 0.984 0,741 0.737 0,731 0.711 0.698 
29 0.952 0,874 0.799 0,689 0.704 0.711 0.632 0,580 
30 1 . 0 0 4  0.938 0.961 0.719 0.769 0.746 0.696 0.721 
31 0.969 0, g69 0.922 0.780 0.706 0.716 0.731 0.699 
32 0.9-54 0.997 0.975 0.776 0.757 0.696 0.755 0.715 
33 0.861 0.965 1.013 0.671 0.627 0.663 0.735 0.783 
34 0.895 0.980 0.951 0.727 0.719 0.665 0.742 0.709 
35 1,011 1,023 1,076 0.693 0,734 0.756 0.794 0.810 
36 0.974 1.019 0.956 0.780 0.783 0.711 0.747 0.707 
37 0,936 0,922 0,951 0.675 0,665 0,702 0.690 0,691 
38 0.991 0.955 1.006 0.734 0.726 0.737 0.699 0.770 
39 0,993 0.876 0.963 0.721 0,625 0,742 0.626 0.705 
40 1 ,(X~6 0,988 0,983 0,663 0,798 0,747 0,731 0.754 
41 0,979 1,041 0,937 0,775 0.707 0 712 0.780 0.676 
42 0.895 1,014 0,902 0.713 0,765 0.662 0,756 0,661 
43 0.980 0.904 0.952 0.714 0,742 0.726 0.653 0.702 
44 0,975 0.872 0.886 0,752 0.709 0.737 0.638 0.669 
45 1.012 0.971 1.O41 0.655 0.788 0.746 0.720 0.790 
46 1.033 1,033 1.038 0.765 0.770 0.776 0.77'7 0.772 
47 0,943 0,948 0.996 0,732 0.758 0,699 0.715 0,755 
48 1.096 0.966 1.009 0.696 0.729 0,832 0.735 0.770 
49 1.066 0.892 0.982 0,774 0.742 0,768 0.656 0.742 
50 0,947 0,896 0.852 0,669 0,617 0.711 0,676 0.655 
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Exhibit C-3 
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ABC Insurance Company  
Statutory Balance Sheet 

ASSETS 

1. 
2. 

3. 
4. 
5. 
6. 
7. 
8. 

~ 9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Constrained Growth Case 
50 Iterations Using Excel 

1998 1999 2000 2001 2002 

Bonds 396,499,803 446,898,745 497,829,153 589,700,288 718,720.887 
Stocks: 
2.1 Praferred stocks 14,023,733 17,061,531 20 ,785 ,554  26 ,423 ,310  34,323,460 
2.2 Common stocks 97,994,321 105,550,614 112,460,582 126,104,943 147,248,793 
Mortgage loans on real estate 196,144 196,144 196,144 196,144 196,144 
Real estate 16,880,795 16 ,880 ,795  16 ,880 ,795  16 ,880 ,795  16,880,795 
Collateral loans 
Cash 34,512,971 40 ,507 ,351  46 ,442 ,206  55 ,121 ,920  65,046,227 
Other Invested assets 446,683 446,683 446,683 446,683 446,683 
Aggregate write-ins 

Subtotals, cash & invested assets  560,554,450 627,541,863 695,641,118 814,874,083 982,862,990 

Agents' balances or uncollected pr 48 ,628 ,153  52 ,552 ,166  57 ,615 ,575  64 ,149 .153  71,373,787 
Funds held by reinsurer 210 210 210 210 210 
Bills receivable 
Reinsurance recoverables 5,497,330 5 , 9 2 1 , 3 2 3  6 , 6 4 5 , 3 0 0  7 , 6 0 3 , 5 1 9  8,196,091 
Federal income tax collectable 
Electronic data processing 2,992,030 2 , 9 9 2 , 0 3 0  2 , 9 9 2 , 0 3 0  2 , 9 9 2 , 0 3 0  2,992,030 
Interest, dividends & real estate 6,344,827 6 , 3 4 4 , 8 2 7  6 , 3 4 4 , 8 2 7  6 , 3 4 4 , 8 2 7  6,344,827 
Receivable from parent 1,107,674 1 , 1 0 7 , 6 7 4  1 , 1 0 7 , 6 7 4  1 , 1 0 7 , 6 7 4  1,107,674 
Equities and deposits in pools 
Amounts receivable relating to A& 
Other assets nonadmitted 
Aggregale write-ins 4,956,493 4 , 9 5 6 , 4 9 3  4 , 9 5 6 , 4 9 3  4 , 9 5 6 , 4 9 3  4,956,493 

22. Total assets 630,081,167 701,416,606 774,703,227 902,027,989 1,077,834,103 

Exhibit C-6-a 

Output 



0 

LIABILITIES 

1. Losses & LAE: 
2. Unearned premiums: 
3. Other expenses 
4. Taxes, licenses and fees 
5. Federal income taxes 
6. Other liabilities 
7. Total liabilities 

SURPLUS 

8. Additions to surplus 
9. Surplus as regards to policyholders 

### 

Net Income (Before taxes) 
Underwnting Gain/(Loss) 

Combined Ratio 
Operating Ratios 

Investment Income / Surplus 
Investment Income / Earned Premium 

Constrained Growth Case 
50 Iterations Using Excel 

1998 1999 2000 2001 

Exhibit C-6-b 

2002 

274,866,487 296,066,154 332,264,999 380,175,936 409,804,567 
152,246,049 164,553,572 180,545,169 200,946,307 222,552,191 

6,017,656 6 ,359 ,261  6,925,775 7,660,788 8,533,674 
6,233,649 6,738,378 7,387,003 8,224,718 9,145,463 

804,323 2,655,053 1,695,285 2,936,039 3,959,327 

599,943,787 440,168,163 476,372,419 528,818,231 653,995,222 

Output 

IRIS Ratios 
1. Premium to Surplus 1.97 
2. Change in Writings 0.9% 
3. Surplus Aid to Surplus 3.6% 
4. Two Year Overall Operating Ratio 
5. Investment Yield 5.4% 
6. Change in Surplus 17.5% 
7. Liabilities to Liquid Assets 64% 
8. Agents Balances to Surplus 26% 
9. One Year Development 5.1% 

10. Two Year Development 
11. Estimated Current Reserve Deficiency to Surplus 

1.80 1.80 1.63 1.30 
8.1% 9.6% 11.3% 11.3% 
3.4% 3.4% 3.0% 2.3% 
93% 93% 95% 90% 
5.1% 5.8% 6.3% 7.6% 

16.0% 8.1% 20.0% 35.8% 
63% 63% 62% 56% 
23% 23% 21% 17% 
0.8% 1.3% 1.2% 2.9% 
6.6% 1.9% 2.0% 3.1% 

#N/A -3.7% -4.4% 4.0% 

189,913,004 225,044,188 245,884,995 302,084,201 423,838,881 

27,769,271 78,821,663 51,800,669 87,013,290 131,537,893 
(21,458,877) 20,982,474 (21,902,348) (7,733,303) (2,955,578) 

1.055 0.938 1.041 1.004 0.994 
0.976 0.855 0.947 0.896 0.852 

0.155 0.143 0.163 0.170 0.177 
0.079 0.082 0.094 0.108 0.142 



Constrained Growth  Case 
50 Iterations Using Excel 

I Apded Loss & ALAE Ratios 
Accident Years 

covera~,lsu~uon 1998 l 1999 I 2o0o I ~0Ol I 
All Direct 0.61 0.55 0.64 0.61 0.59 

Ceded 0.16 0.05 0.1t 0.06 0.06 
Net 0.67 0.6'2 0.71 0.68 0.66 

HMP New 0.67 0.83 1.03 0.68 0.91 
Rene, wat 0.49 0.58 0.82 0.72 0.67 

Renewal (2) 0.81 0.49 0.71 0.67 0.64 
Direct 0.79 0.57 0.78 0.68 0.68 
Ceded 0.10 0.02 0.04 0.00 0.00 

Nat 0.86 0.63 0.86 0.75 0.75 
PPAL New 0.99 1.07 1.07 0.92 1.00 

Renewal 0.68 0.gO 0.94 0.79 0.84 
Renewal (2 ! 0.73 0.70 0.88 0.80 0.85 

Direct 0.76 0.77 0.92 0.82 0.88 
Ceded 0.00 0.00 0.00 0.00 0.00 

Net 0.79 0.81 0.96 0.86 0.92 
APD-P New 0.75 0.69 0.74 0.66 0.57 

Renewal 0.5.9 0.60 0.74 0.63 0.62 
Renewal (2) 0.57 0.51 0.60 0.6'2 0.49 

Direct 0.62 0.57 0.69 0.63 0.52 
Ceded 0.07 0.02 0.10 0.00 0.00 

Net 0.65 0.61 0.73 0.68 0.56 
APD-C New 0.76 0.82 0.82 0.76 0.76 

Renewal 0.34 0.39 0.63 0.70 0.45 
Ref~ewal (2) 0.49 0.38 0,62 0.56 0.42 

Direct 0.52 0.44 0.68 0.60 0.46 
Ceded 0.10 0.02 0.08 0.00 0.00 

Net 0.55 0.47 0.72 0.64 0.49 
CAL New 1.08 1.63 0.85 1.56 1.25 

Renewal 0.67 0.79 0.87 0.67 0.88 
Renewal (2) 0.86 0.93 0.36 0.47 0.72 

Direct 0.86 0.97 0.45 0.60 0.79 
Ceded 0.02 0.02 0.01 0.02 0.03 

Nat 0.89 1.02 0.48 0.63 0.83 
CMP-L New 0.84 0.87 0.76 0.64 0.65 

Renewal 0.55 0.59 0.67 0.57 0.48 
Renewal (2) 0.48 0.53 0.46 0.51 0.40 

Direct 0.52 0.57 0.52 0.53 0.44 
Ceded 0.00 0.(~O 0.(73 0.00 0.00 

Net 0.54 0.59 0.54 0.56 0.46 
CMP-P New 0.83 0.94 0.79 0.66 0.37 

Renewal 0.55 0.51 0.69 0.65 0,58 
Renewal (2) 0.39 0.16 0.36 0.45 0.51 

Direct 0.54 0.35 0.58 0.52 0.52 
Ceded 0.33 0.13 0.26 0.14 0.14 

Net 0.57 0.39 0.63 0.58 0.59 
OL New 0.66 0.03 0.48 0.25 0.19 

Renewal 0.27 0.62 0.45 0.24 0.12 
R ene,w'a.I (2) 0.47 0.24 0.12 0.69 0.08 

Direct 0.47 0.2'5 0.20 0.59 0.10 
Ceded 0.00 0.00 0.00 0.02 0.00 

Nat 0.49 0.26 0.21 0.61 0.10 
OL-U New 0.20 0.02 0.37 0.07 0.18 

Renewal 0.16 0.03 0.20 0.04 0.12 
Renewal (2) 0.14 0.02 0.01 0.03 0.03 

Direct 0.15 0.02 0.08 0.O4 0.06 
Ceded 0.15 0.02 0.07 0,04 0.06 

Net 0.16 0.02 0.08 0.04 0.06 
WC New 0.52 0.81 0.71 0,98 0.65 

R ~ewa.I 0.45 0.51 1,0,4 0.77 0.63 
Renewal (2) 0.55 0.47 0.51 0.49 0.37 

Direct 0.53 0.50 0.57 0.58 0.43 
Ceded 0.00 0.00 0.OO 0.00 0.00 

Nat 0.5.5 0.51 0.58 0.6,0 0.45 

E x h i b i t  C - 7  

output 
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New Bus iness  
Homeowners  Mul t ip le Peri l  
Direct UndenNrnlng Module 

Accident Years 
2rid Prior ls:t Prior 1st 2nd 3rd 4th 5t.h 

Year Year Year Year Year Year Year 
Oes~rfotlon ~ ~ ~ ~ ~ ~ 

f, premiums: 

a. Exposure Growth Rate -1% 2% 2% 2% 2% 
b. Number of Exposures 10,740 9.569 6.282 8.736 6.881 7.031 7.177 
c. Average Rate Growth Rate 3% 4% 4% 10% 13% 
d. Average Rate per Exposme 387.61 377.37 389.81 403.87 421.91 463.85 521.94 
e. Written Prendums 4,162.984 3,610,877 2.448,776 2,720.447 2,903,131 3,261,302 3.745.9,42 
f. Earning Ratio 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
g. Earned PTemiums 4,162,984 3,886,930 3 ,029,82S 2,58,4,612 2,811,789 3,082,218 3,503,622 
h. Unearned Premium Reserves 2,081,492 1,805,438 1,224,388 1 ,360,224 1 ,451,565 1,630,651 1,872,971 
I. Renewal Ratio 60% 60% 60% 60% 60% 60% 60% 

2~ ~xDerrses: 

a. Cornrnlsslons 585.760 486.894 342.829 380.883 406.438 45.6.5822 524.432 
b. General Expense 272.033 243.112 196.939 168.000 182,766 200.344 227,735 
¢. Other Acquisition 523.786 458,017 357.519 30,4.984 331,791 363.702 413.427 
d. Premium Taxes 133.330 117,821 83.258 92,495 98.706 110,8S4 127.362 
e. Policyholder Dividends 
I. Other Nonrecurring Expenses 931,848 

g. Subtotal(Expenses) 1,514,908 1,305.843 1,912,393 9,46,342 t,019.702 1.131,512 1.292,957 

3 a TOSSES: 

a. Initial Severity Mean 2,000 2,000 2.000 2,(XX~ 2.000 2,000 2.000 
b. Initial Severity 5td. 192 192 192 192 192 192 lcj2 
c. Severity Trend 0.959 1,000 1.056 1.082 1,165 1.278 1.403 
d. U/W & Rate AdjusUnents 
e. Modeled Severity 2.228 . 2,021 2,098 2.120 2,227 1,9,46 3.050 

L InitiaIFrequency Mean 0.157 0.157 0.157 0.157 0.157 0.157 0.157 
g. Initial Frequency Std. 0.0t4 0.014 0,014 0.014 0.014 0.014 0.04,4 
h. Frequency Trend 1.000 t .000 1,000 1.000 1.000 1 .(XX~ 1.000 
I. U/W & Rate Adjustments 1.000 1.000 1 000 1.000 1.000 1.012 1.022 
J. Modeled Frequency 0.16 0.15 0.15 0,4,5 0.19 0.t5 0.15 

k. a Priori Ultimate Losses & ALAE 3,744.409 2.934.173 2.038,890 2,136.907 2.882,135 2.081,766 3.195.043 
L a Priori Loss & ALAE Ratio 0.90 0.75 0.67 0.83 1.03 0.68 0.91 
in. New Business Penalty 0.09 (0.23) (0.12) 0.25 0.24 (0.01) 0.23 
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~RISK Simulation of DYNAMO2E.XLS 

Run On 3119198 
Simulations = 1 
IteraUons = 1,000 

E x h i b i t  D - 1  

Minimum = 
Maximum = 
Mean = 
Std Deviation = 
Skewness = 
Ku~osis = 
Errors Calculated = 
Mode = 

5% Perc = 
10% Perc = 
15% Perc = 
20% Perc = 
25% Perc = 
30% Perc = 
35% Perc = 
40% Perc = 
45% Perc = 
50% Perc = 
55% Perc = 
60% Perc= 
65% Perc = 
70% Perc = 
75% Perc = 
80% Perc = 
85% Perc = 
90% Perc = 
95% Perc = 

1998 Surplus 

(461.984,300) 
219,620,400 
175.183.300 
25.367,610 

(16) 
399 

o 
183,323.4oo 

15o.111,3oo 
156,466.8oo 
16o.428,2oo 
163,369,4oo 
166,067.800 
168,222.3oo 
17o,368,3oo 
172,659,4oo 
174,956,500 
177,070,800 
178.402,200 
180,724,700 
182,738,400 
184,302,400 
186 266,200 
188,621,500 
190,977.800 
194,243,200 
199,679,300 

999 Surplus 

(464,044,400) 
232.325,6(X) 
172,729,100 
35,172,020 

(8) 
135 

0 
189,186,,500 

133.530.300 
143.562,100 
150,650,900 
156,111,900 
160,462, 30O 
164,026.900 
167,002,500 
170,754,200 
172,g04,1(~3 
175,912,900 
178,036,100 
18O,663.50O 
183,921,300 
187.031.800 
189,848,800 
193.273.200 
197,860,700 
202,111,600 
208,505,EX) 

2000 Surplus 

(658.655,200) 
247,397.700 
1622,437.000 
58,886,520 

(8) 
96 

0 
157,942,800 

110.952.500 
126,444,200 
134,350.400 
141.608.3OO 
147,622,400 
153.066,700 
157.766,700 
161,036,400 
165,105,400 
168.157,400 
171,592,500 
175,279.600 
179.008,700 
183,095,600 
186,883,400 
190,873.800 
197.096.300 
204.065,2OO 
213,341.300 

2(301 Surplus 

(3.981,046,000) 
279,958,5(X) 
140,325,60O 
158.989,1 O0 

(19) 
464 

0 
146,236,600 

69.588.900 
93,083,060 

109,960,300 
118.977.200 
125,549,900 
133.642.000 
140.360.400 
144,736,900 
146.773.700 
154.535,400 
160,116,100 
164,656.600 
168,188,100 
172,875,50O 
179,016,000 
185.6(X).500' 
193,082,800 
205,672,300 
219.849,100 

2002 Surplus 

(4.109.432.600) 
349,451.900 
119,960.000 
170,083,700 

(17) 
393 

0 
144.654,100 

17.048,880 
47,894,900 
69.858,660 
83.737,990 
92,905,990 

102,295,100 
110.937,800 
120,214,500 
126,0'96.300 
132.922,300 
141.605,100 
147.768.700 
155,598.400 
162,953,700 
171.141.000 
181,757.900 
192,261,800 
209.,546,100 
233,545.300 
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@ R I S K  S imu la t ion  o f  D Y N A M O 2 E . X L S  

Run on 3119198 
S imu la t ions  = 1 
I terat ions = 1 ,000 

1998 
NWP/Surplus 

Ratio 

Minimum = 
Maximum = 
Mean = 
Std Deviation = 
Skewness = 
Kurtosis = 
Errors Calculated = 
Mode = 

(0.808) 
3.736 
2.132 
0.231 

(0 .918)  
32,101 

0.000 
2.091 

5% Perc = 
10% Perc = 
15% Perc = 
20% Perc = 
25% Perc = 
30% Perc = 
35% Perc = 
40% Perc = 
45% Perc = 
50% Perc = 
55% Perc = 
60% Pert = 
65% Perc = 
70% Pert = 
75% Perc = 
80% Perc = 
85% Perc = 
90% Perc = 
95% Perc = 

1,852 
1.901 
1.937 
1.967 
1.990 
2.011 
2.034 
2.061 
2.082 
2.103 
2.131 
2.155 
2.183 
2.214 
2.244 
2.281 
2.327 
2.390 
2.488 

1999 
NWP/Surplus 

Ratio 

(5.412) 
104.599 

2.458 
3.285 

30.076 
935.062 

0 000 
2.379 

1.881 
1 966 
2.011 
2.062 
2.108 
2.149 
2.187 
2.220 
2.260 
2.282 
2.320 
2.354 
2.402 
2.464 
2.529 
2,606 
2.689 
2.817 
3.021 

2000 
NWP/Surplus 

Ratio 

(94.557) 
3808.938 

6.631 
12O. 382 

31.510 
995.272 

0.000 
2.803 

2.067 
2.187 
2.272 
2.351 
2.415 
2,461 
2.518 
2 573 
2.647 
2.7O5 
2.766 
2.813 
2.875 
2.952 
3.069 
3.207 
3.366 
3.588 
3.989 
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2001 
NWP/Surplus 

Ratio 

(189.958) 
78.941 

3.471 
7.519 

(15.803) 
455.744 

0.000 
2,950 

2.261 
2.445 
2.604 
2.708 
2.816 
2.929 
3.008 
3.105 
3.192 
3.286 
3.386 
3.503 
3.608 
3.787 
3,996 
4.269 
4,552 
5.183 
6.361 

2002 
NWP/Surplus 

Ratio 

(634.106) 
346.398 

4.851 
30.270 

(10.783) 
255.953 

0.000 
3.645 

2.212 
2.609 
2.895 
3.085 
3.288 
3.442 
3.629 
3.786 
3.988 
4.180 
4.396 
4.666 
4.996 
5.359 
5.793 
6.435 
7.259 
9.074 

14.287 
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@RISK Simulation of DYNAMO2E.XLS 

Run on 3/19198 
Simulations = 1 
Iterations = 1,000 

Exhibit D-3 

1998 1999 2000 2001 2002 
Net Loss Net Loss Net Loss Net Loss Net Loss 

Ratio Ratio Ratio Ratio Ratio 

Minimum = 0.587 0.569 0.601 0.629 0.624 
Maximum = 2.567 1.904 2.612 9.949 1.368 
Mean = 0.730 0.742 0.759 0.781 0.772 
Std Deviation = 0.072 0.064 0.107 0.318 0.056 
Skewness = 16.268 7.583 12.696 24.984 2.537 
Kurtosis = 413.071 122.695 199.693 696.739 27.796 
Errors Calculated = 0.000 0.000 0.000 0.000 0.000 
Mode = 0.750 0.773 0.777 0.766 0.773 

5% Perc= 0.654 0.666 0.683 0.690 0.893 
10% Perc = 0.670 0.684 0.699 0.706 0.708 
15% Perc = 0.682 0.695 0.712 0.718 0.720 
20% Perc = 0.692 0.703 0.719 0.726 0.733 
25% Perc = 0.700 0.712 0.725 0.736 0.743 
30% Perc = 0.706 0.719 0.733 0.742 0.750 
35% Pero = 0.712 0.725 0.739 0.750 0.756 
40% Perc = 0.719 0.731 0.745 0.757 0.762 
45% Perc = 0.724 0.736 0.752 0.762 0.766 
50% Perc = 0.729 0.741 0.756 0.766 0.771 
55% Perc = 0.736 0.746 0.761 0.769 0.774 
60% Perc = 0.741 0.751 0.765 0,772 0.777 
65% Perc = 0.748 0.757 0.769 0,775 0.783 
70% Perc = 0.754 0.762 0.773 0,779 0.791 
75% Perc = 0.759 0.766 0.776 0,786 0.799 
80% Perc = 0.765 0.771 0.779 0,798 0.809 
85% Perc= 0.771 0.775 0.790 0,808 0.822 
90% Perc= 0.776 0.782 0.801 0,821 0.833 
95% Perc = 0.790 0.807 0.825 0.841 0.853 
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@RISK Simulation of DYNAMO2E.XLS 

Run on 3/19/98 
Simulations = 1 
Iterations = 1,000 

1998 
Combined 

Ratio 

1999 
Combined 

Ratio 

2000 
Combined 

Ratio 

2001 
Combined 

Ratio 

Exhibit D-4 

2002 
Combined 

Ratio 

Minimum = 0.954 0.889 0.905 0.928 0.942 
Maximum = 2.978 2.260 2.958 10.278 1.705 
Mean = 1.118 1.080 1.092 1.112 1.102 
Std Deviation = 0.077 0.070 0.111 0,320 0,063 
Skewness = 13.829 6.105 11.660 24.671 1.882 
Kurtosis = 333.794 92.078 178.080 684.653 18.775 
Errors Calculated = 0.000 0.000 0.000 0.000 0.000 
Mode = 1.143 1.100 1.123 1.091 1.082 

5% Perc = 1.030 0.994 1.007 1.009 1.0'11 
10% Perc= 1.049 1.016 1.023 1.029 1.029 
15% Perc = 1.062 1,025 1.035 1.041 1.043 
20% Perc = 1.075 1,033 1.047 1.052 1.055 
25% Perc= 1.083 1,044 1.055 1.062 1.064 
30% Perc = 1.092 1,053 1.061 1.070 1.075 
35% Perc= 1.098 1,060 1.068 1.077 1.082 
40% Perc= 1.106 1,067 1.075 1.084 1.089 
45% Perc= 1.111 1.072 1.081 1.089 1.094 
50% Perc= 1.118 1.078 1.086 1.093 1.099 
55% Perc= 1.124 1.083 1.091 1.099 1.105 
60% Perc = 1,132 1,090 1,098 1.105 1.111 
65% Perc= 1.139 1.096 1.103 1.111 1.117 
70% Perc = 1.145 1.102 1.109 1.117 1.125 
75% Perc= 1.150 1.108 1.116 1.124 1.134 
80% Perc = 1.158 1.116 1.122 1.133 1.145 
85% Perc= 1.166 1.123 1.133 1.146 1.158 
90% Perc= 1.176 1.133 1.147 1.161 1.175 
95% Perc = 1.191 1.165 1.171 1.189 1.197 
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@RISK S imu la t i on  o f  DYNAMO2E.XLS 

Run on 3119/98 
Simu la t ions  = 1 
I terat ions = 1,000 

1998 
Operating 

Ratio 

1999 
Operating 

Ratio 

2OOO 
Operating 

Ratio 

2001 
Operating 

Ratio 

Exhibit D-5 

2002 
Operating 

Ratio 

Minimum = 0.874 0.806 0.838 0.871 0.874 
Maximum = 2.899 2.177 2.879 10.206 1.657 
Mean = 1.039 1.000 1.016 1.040 1.034 
Std Deviation = 0.078 0.070 0.111 0.320 0.063 
Skewness = 13.774 6.108 11.774 24.704 1.909 
Kurtosis = 332.041 91.546 180.029 685.955 19.120 
Errors Calculated = 0.000 0.000 0.000 0.000 0.000 
Mode = 1.066 1.025 1.029 1.039 1.040 

5% Perc = 0.950 0.916 0.931 0.936 0.942 
10% Perc = 0.969 0.936 0.947 0.956 0.961 
15% Perc = 0.983 0.946 0.959 0.972 0.973 
20% Perc=  0.995 0.954 0.972 0.981 0.987 
25% Perc = 1.003 0.965 0.979 0.990 0.995 
30% Perc = 1.012 0.975 0.985 0.999 1.004 
35% Perc = 1.018 0.981 0.992 1.005 1.011 
40% Perc=  1.026 0.987 0.999 1.012 1.020 
45% Perc = 1.032 0.993 1.005 1.019 1.026 
50% Perc=  1.038 0.999 1.010 1.024 1.031 
55% Perc = 1.044 1.004 1.016 1.029 1.038 
60% Perc = 1.053 1.010 1.022 1.033 1.044 
65% Perc = 1.059 1.016 1.027 1.039 1.051 
70% Perc=  1.065 1.023 1.033 1.044 1.059 
75% Perc = 1.071 1.028 1.040 1.051 1.068 
80% Perc = 1.078 1.036 1.047 1.061 1.077 
85% Perc=  1.087 1.044 1.055 1.073 1.089 
90% Perc = 1.097 1.056 1.069 1.088 1.106 
95% Perc = 1.112 1.084 1.093 1.116 1.128 
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On the Cost of Financing Catastrophe Insurance 

By 

Glenn Meyers and John Kollar 

Insurance Services Office, Inc. 

P r e s e n t e d  to  t h e  

C a s u a l t y  A c t u a r i a l  S o c i e t y  D F A  S e m i n a r  C a l l  P a p e r  P r o g r a m  

D y n a m i c  F i n a n c i a l  A n a l y s i s  - A p p l i c a t i o n s  A n d  U s e s  

J u l y  1 3 - 1 4 ,  1 9 9 8  

Abstract 

After surveying various instruments used to finance catastrophe insurance, this paper 
demonstrates a method for analyzing the cost of financing catastrophe insurance with 
the following instruments: (I) insurer capital; (2) reinsurance; and (3) catastrophe 
options. The procedure first quantifies the cost of financing in terms of the cost of 
those instruments. The method then permits searching for a mix of instruments that 
minimizes the cost. 

Using a catastrophe model, we create a distribution of simulated losses for each of 
fifty insurers that report their exposure to ISO. We then create an illustrative 
catastrophe index based on the combined simulated losses of the fifty insurers. We 
perform a sample analyses for three insurers. 

The analyses show that the best mix of capital, reinsurance, and catastrophe options 
depends on how well an insurer's losses correlate with the index - that is, on the basis 
risk. Some insurers can significantly reduce their cost of financing catastrophe 
insurance by using catastrophe options. To illustrate the effect on premiums of the 
cost of financing catastrophe insurance, we convert those costs into risk loads. 
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I. Introduction 

Hurricane Andrew caused $15.5 billion of insured property losses in 1992. And it missed 

Miami, otherwise losses could have been in the $50 billion range. The Northridge 

Earthquake resulted in $12.5 billion of losses in 1994. And it was only of magnitude 

6.7. 

In a recent study *, ISO used the Risk Management Solutions, Inc. (RMS) catastrophe 

model to simulate possible catastrophic events for the insurers who report their exposure 

to ISO. The study concluded that losses from a severe hurricane along the east cost 

could exceed $150 billion. Similarly a severe earthquake in California could generate 

losses of  $50 billion or more. 

Losses from such a megacatastrophe could have severe adverse effects on 

property/casualty insurers and their policyholders. Many insurers could become 

insolvent or seriously impaired and, therefore, unable.to continue insuring the same 

volume of business. The recognition of this risk has stimulated industry efforts to 

address the problem of megacatastrophes. Insurance regulators, legislators, government 

agencies, investment bankers, and others have also contributed to the public policy debate 

on this critical issue. 

Catastrophe Management 

A property/casualty insurer can measure the extent of its catastrophe risk by conducting a 

portfolio analysis to determine the expected distribution of losses from possible events 

such as hurricanes or earthquakes. This distribution of losses is created by analyzing the 

company's catastrophe exposure with a computer simulation model, which provides an 

estimate of losses that would result from a representative set of catastrophic events. 

Where potential catastrophe losses are too high, the insurer might take steps to reduce its 

concentration of exposures. Some insurers have given up some business in overly 

exposed areas to reduce their catastrophe risk to a more manageable level. An insurer 
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could also diversify its catastrophe risk by writing more exposures in areas where it has a 

lower concentration of exposures or in areas not subject to catastrophes. A concern about 

that strategy is that the insurer could be taking on a different risk by writing new business 

in areas where it lacks expertise and an effective distribution network. 

Many insurers have opted for loss-reduction measures such as increasing deductible 

sizes, imposing special wind/earthquake deductibles and offering discounts for loss 

mitigation activities by policyholders (such as the addition of storm shutters). 

Property/casualty insurers have pursued many loss mitigation efforts, such as the ISO 

Building Code Effectiveness Grading Schedule (BCEGS). The BCEGS program 

evaluates a community's building code and its enforcement. Insurers can offer discounts 

for structures built in municipalities with good enforcement of an effective loss 

mitigating building code. 

Financing Catastrophe Risk 

Insurers have also been looking at ways of financing their catastrophe risk. One 

approach is adding capital to the balance sheet. Many insurers have benefited from 

recent stock market gains as a source of additional capital. Because of their improved 

capital positions, some insurers have elected to retain more catastrophe risk. 

The surge in catastrophes that began in 1989 with Hurricane Hugo, resulted in an 

increased demand for reinsurance.. The rising demand, in turn, produced substantial price 

increases which led to the formation of new catastrophe reinsurers. That increase in 

reinsurer capital coupled with improved catastrophe experience has led to more plentiful 

and less expensive catastrophe coverage. 

Traditional reinsurance is not the only approach to financing catastrophes. Those active 

in capital markets activities, reinsurers, reinsurance intermediaries and property/casualty 

IInsurance Services Office, Inc., Managing Catastrophe Risk, May 1996. 
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insurers themselves have come to recognize the possibility of securitizing risk - that is, 

using other financial instruments to transfer catastrophe risks to the broader capital 

markets. 

All of the instruments for financing catastrophe risk have a cost, but they also have 

benefits. It takes sophisticated analysis to find an efficient mix of risk financing 

instruments that provides the greatest benefit for the least cost. Providing an example of 

such an analysis is the goal of this paper. 

This analysis is part of what casualty actuaries call dynamic financial analysis, or DFA. 

It is similar to other aspects of DFA because it views the various risk financing 

instruments as assets, with the returns on these assets being positively correlated to 

insurer losses. 

A key factor for delivering an efficient mix of risk financing instruments is the cost of the 

individual instruments. This cost ultimately becomes part of the price of.insurance. This 

price will be sensitive to the variation in results - many years with small catastrophe 

losses and occasional years with very large catastrophe losses. Actuaries have 

traditionally called this part of the price the risk load. We must expand the definition of 

traditional risk load to include the various instruments available to finance catastrophe 

insurance. 

The intense competitive forces in the marketplace may cause insurers to focus on short- 

term operating results at the expense of long-term solidity. This amounts to insurers 

ignoring the possibility of rare catastrophes in their decision making. Insurers may not 

adequately reflect risk load in pricing, nor make sufficient provision for catastrophe risk 

financing. 

The capital markets can bring an immense amount of financing into the insurance 

industry, and perhaps significantly lower the cost of financing for the long term. Our 

challenge is to figure out how to efficiently bring these resources into the insurance 

industry. 
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2. A Survey of  the Instruments Used in Financing Insurance 

Raising Insurer Capital 

An insurer always has the option of raising sufficient capital to cover its potential losses, 

but to raise capital, the insurer must increase its net income to justify this capital. There 

is also the lost opportunity since the capital committed to an insurer is not available for 

another venture. 

Compared with other industries, property/casualty insurance has not generally achieved 

high historic returns. Competition from the large number of suppliers has been a major 

contributing factor. Furthermore, regulation has in some cases also acted to keep 

insurance rates below actuarially indicated levels. 2 

If an insurer has a heavy concentration of exposures in catastrophe-prone areas, the 

amount of capital needed can be relatively large compared with the insurer's existing 

surplus. Furthermore, the additional capital may only be needed occasionally when 

catastrophe losses are unusually large - perhaps every 100 years. Committing a large 

amount of additional capital to cover infrequent losses is extremely inefficient and 

virtually impossible to sustain in a highly competitive marketplace. 

Those considerations drive an insurer to seek alternatives to raising capital. 

Reinsurance 

The capital of US reinsurers was $13.2 billion in 1992. It grew to $26.2 billion by the 

end of 1997. With the increased demand for reinsurance following the catastrophes in the 

early 1990s, new offshore reinsurers provided additional capacity. But that capacity is 

also relatively small compared with the size of potential catastrophe losses. 

z Insurance Services Office, Risk and Returns; Property~Casualty Insurance Compared with Other 
Industries. December 1995. 
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Reinsurers provide modest layers of coverage which are usually sufficient to protect 

small insurers but not larger insurers. 

The availability of reinsurance varies considerably over the life of an insurance cycle. 

The price may also vary substantially depending on supply and demand as well as recent 

experience. 

Reinsurance pays for the primary insurer's losses that exceed certain amounts, or on a 

quota share basis. The reinsurance coverage follows the fortunes of  the primary insurer. 

On the other hand, reinsurance can also have high and variable transaction costs for the 

customized coverage provided. 

It is important to remember that a reinsurer may not be able to meet its obligation i fa  

large catastrophe occurs. 

One possible solution to the problem of large catastrophes is proposed legislation under 

which the federal government would provide excess reinsurance. The trade-off for 

providing this coverage may be increased regulation. 

Securitization 

The property/casualty insurance industry does not have enough capital to handle a very 

large catastrophe. By contrast, the broader capital markets have trillions of dollars to 

invest. Thereturns on many of these investments are correlated - that is their value is 

influenced by the same economic conditions. To diversify their portfolios, investors are 

always looking for investment opportunities not correlated with the economy. 

Catastrophe risk is independent of the economic conditions that affect other financial 

instruments. 

Many types of financial instruments to transfer catastrophe risk have emerged in recent 

years. They treat catastrophe risk in various fashions, but all offer the investor a way to 

profit in exchange for accepting some risk. 
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Catastrophe bonds have already gained a level of acceptance with several successful 

deals. A catastrophe, or contingency, bond represents a loan (principal) over a specified 

term in exchange for fixed interest payments. The occurrence of a qualified catastrophic 

event during the term of the bond may result in the reduction or elimination of interest 

payments and for some bonds the loss of some or all of the principal that the investor has 

loaned to the insurer. If no qualifying catastrophe occurs, the investor receives his 

principal plus interest. The interest rate usually reflects a premium to reward the 

additional risk. 

Catastrophe bonds generally reflect the catastrophe experience of the insurer selling the 

bond, although covered losses can be based on an index of industry catastrophe losses. If 

an industry index is used, then the bond may not mirror the catastrophe experience of the 

selling insurer. 

Securitization of risk has also involved contingent equities. In an agreement developed 

by Aon Corporation, called a CatEPut ~, an insurer purchases the option of selling a 

prearranged amount of its stock if a qualifying catastrophe occurs. 

This arrangement provides the insurer with immediate access to equity in the event that a 

loss impairs its surplus. The additional equity increases the likelihood that the insurer 

will maintain its ratings and will be able to continue its business operations virtually 

uninterrupted in the wake of such a loss. The seller of the CatEPut 'm has the option to 

eventually convert the preferred shares to common stock. The insurer can refinance and 

redeem the shares at any time 3. Also, there is a provision that the investor does not have 

to purchase the stock if the catastrophe results in a serious impairment of the insurer, in 

other words, if the investor's capital infusion would not be sufficient to continue the 

financial viability of the insurer. 

3 Reponed by William Jewen "Converging Roles Within the Insurance and Finance Marketplace" at the 
web site: http://www.centrere.com/insights/conver.~e.htm on April 3, 1998. 

126 



A third kind ofsecuritization deal involves trading options on a catastrophe index. The 

index is based on the catastrophe experience of(at  least a sample of)) the 

property/casualty industry. An insurer or reinsurer can purchase catastrophe call options 

that are exercisable if the catastrophe index exceeds a specified strike price. When the 

index value exceeds the strike price, the contract pays either a specified fiat amount, or 

the amount by which the index exceed the strike price. 

These options are traded on an exchange. For example, the Property Claims Service 

(PCS) index is traded on the Chicago Board of Trade (CBOT). The Guy Carpenter 

Catastrophe Index (GCCI) is traded on the Bermuda Commodities Exchange (BCE). In 

addition to public trading, these indices may also be used in private placements. The 

Risk Management Solutions (RMS) catastrophe index, which is basedon the RMS 

catastrophe model, is used for this specific purpose. 

From an individual insurer's perspective, a critical element when considering the use of a 

catastrophe index is basis r i s k -  that is, how well the index correlates with the insurer's 

experience. For example, an insurer with exposure concentrated in a small geographic 

area may suffer high losses i ra  catastrophe occurs in that area. But that catastrophe may 

not trigger options based on a national index. An insurer can improve the potential 

correlation by purchasing options based on smaller geographic areas, such as regions, 

states or even ZIP-codes, that match the insurer's own portfolio. 

Many investors favor the use of an industry index because the losses are not a function of 

an individual insurer's underwriting and claim settlement practices. Furthermore, the 

provisions of an option contract are standardized. This increases liquidity, as 

standardized contracts are easier to trade than customized contracts. Because of 

standardization, options can have smaller transaction costs than reinsurance or 

catastrophe bonds which require individual analysis and negotiation. 

Catastrophe options provide certain challenges that insurers must recognize. As noted 

earlier, basis risk provides a measure of how well catastrophe options will meet an 
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insurer's need to hedge risk. An insurer may collect substantial funds on catastrophe 

options when its actual catastrophe losses are small. More importantly, an insurer may 

collect little or no funds on catastrophe options but still suffer a substantial catastrophe 

loss. An insurer must carefully analyze basis risk before deciding if  catastrophe options 

are a good way o f  hedging catastrophe risk. 

Another critical element in the success of  securitization is the regulatory acceptance o f  

catastrophe options and other securitization instruments as reinsurance - an offset to an 

insurer's direct losses. Some insurers have established offshore companies to reinsure 

their catastrophe risk. The insurers then sell catastrophe bonds or use other financial 

instruments to finance the offshore reinsurers. 

Rating agencies'  evaluation of  an insurer's financial strength is a critical element in 

attracting and retaining business. If  rating agencies do not view an insurer's 

securitization measures as financially sound, the insurer may receive a poor rating - and 

therefore suffer a loss o f  business. Consequently, rating agencies'  acceptance o f  a 

catastrophe securitization approach may be important to its success. 
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3. The Cost of  the Instruments Used in Financing Insurance 

So far, this paper has surveyed the various instruments available to finance catastrophe 

risk. The remainder of the paper will focus on one promising form of securitization - 

options on a catastrophe index - and see how insurers can combine them with capital and 

reinsurance to finance catastrophe risk. 

We classify the various instruments for financing catastrophe insurance into the 

following elements: 

1. Insurer Capital - This is money put up by investors in the insurance company. The 

company can use its capital to pay losses if current income is insufficient. 

2. Reinsurance - This is money provided by outside entities that agree to pay losses in 

accordance with a predetermined function of the insurer's loss. Some 

securitization deals fall into this category. 

3. Catastrophe Options - This is money provided by outside entities that agree to pay 

money contingent on the occurrence of a catastrophic event recorded on an index. 

That payment may or may not correspond with the insurer's loss. That is, 

catastrophe options do present basis risk. 

Each instrument has a cost and a benefit. The insurer's problem is to find the 

combination of instruments that provides adequate financing for the least cost. 

We define: 

The cost of financing insurance = 

the expected loss (net of reinsurance recoveries and recoveries from 
catastrophe options) 

+ the cost of capital 

+ the cost of reinsurance 

+ the cost of catastrophe options 

Our purpose in using reinsurance and catastrophe options is to reduce the expected loss 

and the cost of capital - and ultimately the cost of financing insurance. 
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Although this definition covers the insurer's entire operation, we will focus on 

catastrophes. Thus, our discussion of the cost of financing insurance will reflect only the 

catastrophe losses, with one exception - the cost of capital. The insurer's other assets 

and liabilities affect that cost. This discussion will ignore the remaining elements of the 

insurer's operation. 

Quantifying the Cost of Financing Insurance 

To perform this analysis, we will need to quantify the cost of financing insurance in terms 

of the probability of a catastrophic loss. We give some sample costing formulas below. 

The formulas have the advantage of being simple, but they are by no means unique or 

necessary to the examples given below. 

For any random variable, Z, we define: 

P. z = the expected value of Z 

Oz = the standard deviation of Z. 

See the appendix for the formulas for the various means and standard deviations used 

below. 

Quantifying the Cost of Capital 

We employ a probabilistic capital requirements formula as the starting point for this 

methodology. In the United States, insurers are not subject to an official probabilistic 

capital requirements formula. However, most actuaries believe that capital requirements 

should have probabilistic input. Actuaries generally accept the idea of a formula, but any 

particular formula will spark a debate. While we use one such formula here, an insurer 

can use another formula that suits the needs and perceptions of its management. 
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Let X be a random variable representing the insurer 's  total loss, net o f  recoveries from 

reinsurance and catastrophe options. Our formula for the cost o f  capital is: 

where: 

Cost o f  Capital = K x T x o x 

T is a factor reflecting the insurer 's  risk aversion; and 

K is the required return needed to attract sufficient capital. 

We can link T to the insurer 's  probability o f  insolvency. For example,  i f  we assume the 

insurer 's  losses follow a normal distribution, a choice o f T  = 2.32 corresponds to a one- 

in-one-hundred chance o f  insolvency. If the insurer is more risk averse, or if it feels that 

the distribution o f  insurer results is unusually skewed, the insurer can select a higher 

value o fT .  

The insurer will select K so that its rate o f  return is close to that obtained by other 

investments  with similar risk. K will vary with market conditions. 

In the examples  below, we will let 

X = X o + X  c 

where: 

X c = All catastrophe losses net o f  recoveries from reinsurance and index contracts; and 

X o =Al l  other net losses. 

When we partition X is this manner,  the formula for the cost o f  capital becomes 

Cost o f  Capital = K x T x  6 ~ x  ° +O~c 

under the assumption that X o and X c are independent. 
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Quantifying the Cost of Reinsurance 

The cost of catastrophe reinsurance depends upon market conditions. After a large 

catastrophe, the demand for reinsurance usually rises and reinsurer capital falls. 

Therefore, catastrophe insurance is in short supply and the reinsurance available fetches a 

high price. High prices attract new capital to reinsurers, and prices generally fall until 

the next catastrophe occurs. 

The benefit of the reinsurance treaty is to reduce the insurer's cost of capital by reducing 

its expected loss, la x¢, and its standard deviation of loss, t~ xc • 

To develop a strategy for using reinsurance, an insurer needs to know its reinsurance 

costs. Those costs depend upon the retention and the limit of the reinsurance treaty, and 

each reinsurer has its own prices. 

Let X R be a random variable representing the reinsurance recovery. We will use the 

following formula for the cost of reinsurance in the examples below: 

Reinsurance Cost = (lax, + k "Cr2x, ) x (I +e)  

where ~. is a risk load multiplier, and e is an acquisition expense factor. 

Quantifying the Cost of Catastrophe Options 

In this paper, we will work with binary options on a catastrophe index. The holders of 

those options exercise them for a fixed amount, such as $1,000, when the index exceeds a 

predetermined strike price. Otherwise the options expire worthless. 

To the seller of such options, the expected return should be competitive with other 

available investments of comparable risk. One way of gauging comparable risk is the 

analysis of bond defaults. For example, Moody's Investors Service has a web site that 

publishes bond default rates and interest rate spreads. In browsing Moody's web pages 

one finds the following statements about default rates: 
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• "Moody's trailing 12-month default rate for speculative-grade issuers ended 1997 at 

1.82% -- up from last year's 1.64%, but well below its average since 1970 of 3.38%." 

• "Moody's expects its speculative-grade 12-month default rate to rise toward the 2.5% 

level in 1998. ' 'a 

With respect to interest rate spreads, Moody's states the following: 

• "The spread of the median yield-to-maturity of intermediate-term speculative-grade 

bonds over seven-year US Treasuries climbed just 3 basis points to 267 basis points 

-- 92 basis points below its January 1993 to January 1997 average of 359 basis 

points." 5 

When comparing speculative-grade bonds to catastrophe options, the investor might 

consider the following: 

• The projected 12-month default rate of speculative-grade bonds is 2.5%. 

• We can estimate the probability of exercising the catastrophe options (as we will 

show below). We can compare that probability with estimated default rates for 

bonds. 

• Catastrophe options can require posting a 100% margin at the time of sale. The 

money in the margin account earns a risk-free rate of return. Thus, the price of the 

option should be comparable to the interest rate spread for a bond of comparable risk 

over risk-free investments. 

• The average spread of speculative-grade bonds over intermediate-term risk-free 

investments is about 3.5%. The spread could be lower over a 12-month term, but it 

should not be lower than the projected default rate. 

4 The web site URL is hrtp://www.moodys.com/defaultstudy/index.html. We obtained this quote on April 

3, 1998. 

The web site URL is http://www.moodys.com/economic/IQDFLT97.htm. We obtained this quote on 
April 3, 1998. 
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• The exercise o f  a catastrophe option is not correlated with the other economic risks. 

That fact makes the catastrophe options more attractive to investors and should lower 

their price. 

With all this information, one can compare the posted price of  catastrophe options with 

bonds o f  equivalent risk. Investors will have varying interpretations o f  the information, 

but our point is that information relevant to the pricing of  catastrophe options is publicly 

available. 

4. An Illustrative Example 

As an illustration o f  the kind of  analysis investors and insurers can do, we used a 

catastrophe model to quantify the cost o f  financing insurance in terms of  the costs o f  

attracting capital, buying reinsurance, and buying catastrophe options. We compared the 

insurer's losses - generated by the catastrophe model - to the benefits provided by the 

various instruments. 

To do the analysis, we took a sample o f  fifty insurers that report their personal lines 

exposure to ISO. We then analyzed the personal lines exposure for each of  the fifty 

insurers using a hurricane model provided by Risk Management Solutions, Inc. 6 The 

analysis provided loss estimates and annual rates o f  occurrence for about 9,000 events for 

the insurers in the sample. We created "index" events by summing the losses for each 

event over all the insurers. We then multiplied the loss for each event by a factor that set 

the largest event equal to 100. 

We then produced Table 4.1 below. The table contains the illustrative index values and 

the model-generated losses for one of  the fifty insurers from the sample. We produced a 

similar exhibit for each of  the fifty insurers. 

6 All hurricane loss estimates incorporated in this paper were developed by ISO's use of Risk Management 
Solutions' (RMS) proprietary IRAS hurricane technology. However. development of the individual 
company exposure data and the analyses were performed by ISO. Therefore the loss projections and 
conclusions presented in this paper are the responsibility of ISO. 
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With information like that provided in the exhibit, we can adjust insurer losses for any 

recoveries from a reinsurance contract or from catastrophe options. Since the model 

gives us the probability 7 of any loss and/or recovery, we can calculate any summary 

statistics needed to determine the cost and benefits of the various instruments used in 

financing insurance. 

Table 4.1 
Illustrative Index and Insurer Information 

Event Illustrative Direct 
Event Probability Index Value Insurer Loss 

1 0.000001210 100.000 1,212,550,269 
2 0.000001210 8 9 . 0 4 1  1,509,161,589 
3 0.000001810 87.558 1,303,694,653 
4 0.000007020 83.480 761,956,629 
5 0.000007020 83.197 734,137,782 
6 0.000004660 82.153 735,660,852 
7 0.000007910 80.948 1,004,861,128 
8 0.000050600 80.548 1,071,076,934 
9 0.000007020 79.187 688,269,904 
10 0.000001810 7 7 . 4 8 1  1,652,933,116 
11 0.000002590 76.217 741,327,246 
12 0.000005760 75.547 654,930,780 
13 0.000009060 75.175 1,450,085,508 
14 0.000022900 75.108 1,148,344,417 
15 0.000001210 75.046 1,003,713,967 
16 0.000007020 74.142 718,320,849 
17 0.000000460 73.670 612,322,934 
18 0.000002590 72.964 607,625,092 
19 0.000000767 72.303 1,035,338,915 
20 0.000000460 72.180 564,886,456 
21 0.000001810 72.050 1,269,991,504 
22 0.000021000 71.547 921,203,300 
23 0.000000738 71.478 582,199,078 
24 0.000018700 71.246 757,962,586 
25 0.000000202 7 0 . 6 6 1  1,078,827,927 
26 0.000001210 70.567 1,017,469,903 
27 0.000001210 70.289 1,162,380,661 
28 0.000001810 68.992 1,273,618,722 
29 0.000007250 68.731 966,395,280 
30 0.000007020 68.640 598,955,192 
U U U U 

7 Event probabilities can be calculated from the RMS model output, The RMS model provides annual rates 
of occurrence for individual events. 
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Illustrative Catastrophe Options 

Using the illustrative catastrophe index, we set up illustrative catastrophe options that pay 

$I ,000 if the largest single event loss in the year exceeds a specified strike price. If no 

single event exceeds the strike price, the option is not exercised and the buyer receives 

$0. In the examples that follow, we consider trades on options with strike prices of 5, 

10, 15 . . . . .  95, 100. The following table gives the probabilities that each option will be 

exercised. See the appendix for the formula for calculating those probabilities. 

Table 4.2 

Strike Exercise 
Price Probability 

0 1.00000000 
5 0.16313724 

10 0.07855957 
15 0.04006306 
20 0.02321354 
25 0.01387626 
30 0.00816229 
35 0.00440132 
40 0.00296168 
45 0.00187601 
50 0.00100615 
55 0.00070126 
60 0.00040197 
65 0.00028771 
70 0.00018975 
75 0.00013880 
80 0.00008846 
85 0.00001125 
90 0.00000121 
95 0.00000121 

100 0.00000121 
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The catastrophe options used in this example have a structure similar to those traded on 

the Guy Carpenter Catastrophe Index (GCCI), 8 with four important differences: 

1. The scale of  the indices is different. The illustrative index has 100 as its highest 

value whereas the GCCI has 700 as its highest value. 

2. The sets of  insurers that make up the indices are different. 

3. The illustrative index simply sums the losses for each insurer, whereas the GCCI uses 

a complex set of rules designed to keep a single insurer from having too much 

influence at the ZIP-code level. 

4. The illustrative index is an annual index, whereas the GCCI is semiannual and 

overlaps with the normal hurricane season in either one or five months. 

The following table gives the costs used in the examples below. To calculate the price of 

the option, we added 0.035% of the variance of the contract payoffto the expected 

payoff. We arrived at the 0.035% figure by comparing the exercise probability of an 

option with a strike price of 20, against the price of a speculative-grade bond, as 

discussed above. 

s For information about the options traded on the Guy Carpenter Catastrophe Index, visit the Bermuda 
Commodities Exchange web site at http://www.bcoe.bm 
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Table 4.3 

Strike Expected Contract 
Price Payout Price 

0 I000.000 I000.000 
5 163.137 210.920 

10 78.560 103.895 
15 40.063 53.523 
20 23.214 31.150 
25 13.876 18.666 
30 8.162 10.996 
35 4.401 5.935 
40 2.962 3.995 
45 1.876 2.531 
50 1.006 1.358 
55 0.701 0.947 
60 0.402 0.543 
65 0.288 0.388 
70 0.190 0.256 
75 0.139 0.187 
80 0.088 0.119 
85 0.011 0.015 
90 0.001 0.002 
95 0.001 0.002 

100 0.001 0.002 

Insurer Examples 

The following analysis of three insurers shows how those insurers can reduce the cost of 

financing insurance through the proper use of reinsurance and catastrophe options. The 

insurers are three members of the sample of fifty insurers that we selected above. We 

randomly adjusted the losses of each insurer to protect their anonymity. 

• Insurer #1 is a medium sized national insurer with exposure that tracks relatively well 

with the exposure underlying the illustrative index. 

• Insurer #2 is a large national insurer with exposure that tracks less well with the 

exposure underlying the index than Insurer #1. 

• Insurer #3 is a regional insurer with exposure that does not track well with that of the 

index. 
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We provide summary statistics for the insurers' catastrophe losses. 

Expected Catastrophe Loss 

Std. Dev. Of Catastrophe Loss 

Coef. of Correlation with Index 

Table 4.4 

Insurer #1 Insurer #2 Insurer #3 

34,839,348 95,417,229 2,385,629 

81,044,318 196,767,192 18,098,024 

0.93 0.75 0.35 

We now provide the economic assumptions underlying our estimate o f  the cost o f  

financing insurance. The assumptions made here are not specific to the particular insurer, 

but we could modify the assumptions and/or make them specific after a discussion with 

an insurer's management. 

The Cost of Financing Insurance 

As discussed above, we use the following formula for the cost o f  insurer capital: 

Cost o f  Capital = K x T x ~ + ~ c  

with K = 20%; T = 3.00 and ~xo = the insurer's initial ~xc - In a real case, we would 

estimate~xo by analyzing the insurer's other assets and liabilities. 

In the examples that follow, we use the following formula for the cost o f  reinsurance: 

Reinsurance Cost = (.P-x, + k" ~ ,  ) x (1 + e) 

with ~. = 1.5 x 10 .7 and e = 10%. The selected value o f k  is close to what ISO uses in its 

risk load formula for increased limits ratemaking. 

If the insurer buys Ns contracts for strike price S at cost Cs, the total cost o f  the index 

contracts is: 

~ N  s "C s 
s 

Table 4.3 gives the values of  Cs for each strike price, S. 
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The insurer's management has to make three key decisions to minimize the cost of 

financing insurance: 

1. How much capital should the insurer retain? 

2. What layer of reinsurance does the insurer buy? 

3. How many index contracts, Ns, does the insurer buy at a given strike price, S? 

Now, for a given reinsurance layer and a given set of index contracts, we can calculate 

the quantities PxR, a2x, , i.txc, and a t e  using formulas given in the appendix. 

Thus our expression for the cost of financing insurance becomes 

s 

We seek to minimize this expression by choosing the right layer of reinsurance and the 

right numbers, Ns, of catastrophe options. 

We do not now have an analytic solution to this minimizing problem. That is because of 

the effort involved in deriving one and because we do not feel that the assumptions we 

made in calculating the cost of financing insurance are final. 9 Instead, we used a 

numerical search algorithm, Excel Solver TM. As it is difficult to ascertain that the 

numerical search solution is indeed the optimum, we should characterize the results as 

"the best solution we could find." 

In order to reduce the computing time, we restricted the reinsurance retention and limit to 

multiples of $1,000,000 and the number of catastrophe options to multiples of 100. In 

addition we forced the number of catastrophe options to be the same for each of the 

9 For an analytic solution to a simpler problem, see "A Buyer's Guide to Options on a Catastrophe Index" 
by Glenn Meyers. The paper has been accepted for publication in the Proceedings of the Casualty 
Actuarial Society. 
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following groups of strike prices: 5, 10, 15, and 20; 25, 30, 35 and 40; 45,50, and 55; 60, 

65, and 70; 75, 80, and 85; and 90, 95, and 100. 

The search for the minimum cost of financing insurance produced the following results: 

Table 4.5 

Contract Number o f lndex  Contracts 
Range Insurer #1 Insurer #2 
5-20 47,400 93,100 

25-40 74,400 I18,100 
45-55 59,500 67,900 
60-70 47,600 28,600 
75-85 81,400 545,100 

90-100 37,200 634,800 

Reinsurance 
Retention 73,000,000 457,000,000 

Limit 13,000,000 36,000,000 

Insurer #3 
0 

6,300 
0 
0 
0 
0 

54,000,000 
105,000,000 

The elements of the cost of financing insurance are as follows: 

Table 4.6 

Best Solution Obtained for the Cost of Financing Insurance 

Insurer#1 Insurer#2 Insurer #3 
Expected Net Loss 16,315,629 62,086,995 1,464,410 
Cost of Capital 47,905,407 143,662,761 12,914,922 
Cost of Reinsurance 2,132,070 1,848,530 1,726,342 
Cost oflndex Contracts 22,252,015 42,409,101 249,427 
Cost of Financing Insurance 88,605,121 250,007,387 16,355,100 

We compared the "best solution" with two alternative solutions: 

Table 4.7 

Cost of Financing Insurance without Reinsurance or Index Contracts 

Insurer#1 Insurer#2 Insurer #3 
Expected Net Loss 34,839,348 95,417,229 2,385,629 
Cost of Capital 62,095,747 166,962,499 15,356,683 
Cost of Reinsurance 0 0 0 
Cost of Index Contracts 0 0 0 
Cost of Financing Insurance 96,935,095 262,379,728 17,742,312 
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Table  4.8 

Cost of  Financing Insurance after 
Dropping the Smallest Element from the Best Solution 

Insurer #1 Insurer #2 Insu~-er #3 
Expected Net Loss 17,945,994 63,198,145 1,648,555 
Cost  of  Capital  48,508,962 145,045,517 13,023,441 
Cost of Reinsurance 0 0 1,726,342 
Cost of Index Contracts 22,252,015 42,409,10t 0 
Cost of Financing Insurance 88,706,971 250,652,763 16,398,337 

We can make two observations: 

* The introduction o f  catastrophe options and reinsurance can significantly reduce the 

cost o f  financing insurance. In the examples the cost was reduced by 8.6 % for 

Insurer #1,4 .7% for Insurer #2, and 7.8% for Insurer #3. 

• The role of  catastrophe options was more significant for the insurers whose 

catastrophe losses were better correlated with the index. Conversely the role o f  

reinsurance was more significant for the insurer whose catastrophe losses were poorly 

correlated with the index. 

The Marginal Cost of  Financing Catastrophe Insurance 

The examples illustrate that reinsurance and catastrophe options can significantly reduce 

the cost o f  financing insurance. However the analysis dots  not address the question o f  

how much the insurer needs to build the cost o f  financing into its premiums. Actuaries 

usually refer to that cost as the risk IoadJ ° 

To answer the question, we calculate the cost 'of  financing insurance, with and without 

the catastrophe lines. We call the difference between those costs the marginal cost o f  

~0 See "The Competitive Market Equilibrium Risk Load Formula for Catastrophe Ratemaking" by Glenn 
Meyers, Proceedings of the Casualty Actuarial Society LXXXIII, 1997, for background on risk loads for 
catastrophe ratemaking. That paper goes beyond the current paper by allocating the risk load to individual 
insureds. However it accounts only for the cost of capital, and does not account for reinsurance and 
catastrophe options. 
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financing catastrophe insurance. If the insurer can recover that cost in the premiums it 

charges, it should write the insurance. 

Continuing our example, the cost of financing insurance without catastrophe insurance ut 

is: K x T x o Xo. Thus the marginal cost of financing catastrophe insurance becomes 

~xc + Kx Tx(~O~o +O~c -Oxo)+(p.xR + L.g2x~)x(l  + e ) + ~ N  s .C s 
s 

We summarize the results for the three insurers in our illustrative example: 

Table 4.9 

The Marginal Cost of Financing Catastrophe Insurance 
Using the Best Solution 

Insurer #1 Insurer #2 Insurer #3 
Cost of Financing without Cats 43,908,324 103,258,865 10,764,807 
Cost of Financing with Cats 88,605,121 250,007,387 16,355,100 
Marginal Cost of Cats 44,696,797 146,748,522 5,590,293 
Marginal Cost/Expected Loss 1.283 1.538 2.343 

We do a similar calculation without considering reinsurance or contracts on a catastrophe 

Cost of Financing without Cats 
Cost of Financing with Cats 
Marginal Cost of Cats 
Marginal Cost/Expected Loss 

index. 

Table 4.10 

The Marginal Cost of Financing Catastrophe Insurance 
Without Reinsurance or Index Contracts 

Insurer#1 Insurer02 Insurer #3 
43,908,324 103,258,865 10,764,807 
96,935,095 262,379,728 17,742,312 
53,026,771 159,120,863 6,977,505 

1.522 1.668 2.925 

Here we see that the proper use of reinsurance and catastrophe options can have a 

significant effect on premiums, as the marginal cost of financing catastrophe insurance is 

substantially lower for each insurer using a mix of reinsurance and catastrophe options. 

nt Technically, we should include the expected value oflhe losses without the catastrophe insurance. But 
the locus of  this paper is on catastrophes, and the expected loss for the noncatastrophe exposure wil l  cancel 
out when we compute the marginal cost of  financing catastrophe insurance. 
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5. The Next Steps 

This paper has taken a first step beyond the insurer capital and reinsurance paradigm, by 

showing how to incorporate instruments with basis risk to reduce the cost o f  financing 

catastrophe insurance. Having taken this first step, there are a number o f  directions that 

can be taken. We list a few. 

• The insurer could consider buying catastrophe options on a regional or state index, as 

well as a national index. The additional flexibility could decrease the cost o f  

providing insurance for some insurers - such as Insurer #3 above. 

• Returns from catastrophe options could be imbedded within the reinsurance. That is, 

the reinsurance would cover the difference between the insurer's actual loss and the 

index recovery. 

• We could create a customized index to form the basis o f  settlement between the 

insurer and a reinsurer. Such an index would be based on the industry data, but with 

a customized set o f  ZIP-codes. With such an arrangement, adverse selection by the 

primary insurer would no longer be an issue. 

• A reinsurer could use the catastrophe options as a hedge for its combined exposure. 

To do this, the reinsurer would have to combine the exposure o f  all its treaties and do 

an analysis similar to that done above. The options could give the reinsurer increased 

capacity to write more catastrophe coverage. 
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Appendix 

The Calculation of the Statistics for a Maximum Event Index Contract 

This appendix gives the formulas for the statistics used in calculating the cost o f  

financing insurance. The calculations are complicated by the fact that the catastrophe 

index recovery for an event depends upon whether or not the event was the largest event. 

We solve this by calculating conditional statistics based on the event being the largest - 

and then calculate global statistics by summing over the conditional probabilities. 

We are given n (about 9000) events from the catastrophe model and the index values 

associated with each event. We assume that the events are independent and that they can 

only happen once in a year 12. The events are sorted in decreasing order o f  the index 

value. Table A.3 gives the first 30 rows o f  the of  the calculation. The following table 

gives ihe formulas used in this exhibit. 

Table A.I 
Formulas for Table A.3 

ith Row of Column Description and Formula 

Event The ith event specified by the catastrophe model 

Index Value The value of  the index if  the ith event is the largest 

The probability o f  the ith event as specified by the 
Event Probability, Pl catastrophe model 

The probability that the ith event happens and all 
larger events do not happen 

Max Event Probability, M Pi ~-~ 
MPi = Pi " l - i (  1 - P j )  

j=l 
The amount paid by the insurer's portfolio o f  

Contract Value, vi catastrophe options given that the ith event is the 
maximum event 

The loss generated by catastrophe model for the ith 
Direct Insurer Loss, xi 

event on the insurer's exposure 

The amount recovered from the reinsurance contraci ' 
Reinsurance Recovery, ri for the ith event 

Event Loss Given Max, ei e i = x i - v i - r i 

n The RMS model provides annual rates of occurrence for events. Because rates are so small, making the 
assumption that events can only happen once per year is not unreasonable. 
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Table A.I - Continued 

ith Row of Column Description and Formula 

E[Loss [ Event is the Max], El 

E[Loss 21 Event is the Max], 2El 

n 

E, =e, + EE[(x , -r , ) ]  
j - i+ l  

n 

= e i + ~ ( x j - r i ) - p i  
j - i+ l  

= e i + El+ I - el+ I + .  ( X i +  I - -  ri+ I . 1. Pi+l 

n 

~E, = E~ + E v ~ [ ( x j -  r)] 
j - i+ l  

n 

= E~ + E ( x j  - -  rj) z .pj  .(I - Pi) 
j - i+ l  

= E~+2Ei+ , -E:÷,  +(xi+ , - r i÷,)  2 "Pi+l  " ( I -  Pi+i) 

Table A.2 

Cost of Financing Insurance Statistics 

Overall Statistic Formula 

-± E[Reinsurance Recovery], gx, I-tx, - P, "rl 
i - I  

II 

Var[Reinsurance Recovery], o 2 02 = E r i  2 "Pi .(1 - P i )  Xa X R 
i=l 

E[Net Catastrophe Loss], g×c gxc = ~ M Pi " E, 

Var[Net Catastrophe Loss], 0 2 0 2 ~ 2 xc Xc = M Pi'2 E i -  ~'1 xc 
i=l  

Exercise Probabilities 

Let PEi denote the probability that maximum event catastrophe option at the level o f  

event i will be exercised. The option will be exercised if either the ith or a lower 

numbered (higher loss) event happens. That is: 

PEt = Pl, P E i  = Pi + PE,-i -(1 - P i )  
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Table  A.3 Pre l iminary  Calcu lat ions  for the Cost of  F inancing  Insurance  Statist ics  

.-..I 

Index Event Max Event Contract Direct Reinsurance Event Loss 
Event Value Probability Probability Value Insurer Loss Recovery Given Max E]Loss[Max] E]Loss^2[Max] 

100.O0 0.000001210 0.000001210 1,125,200,000 1,212,550,269 16,000,000 71,350,269 105,039,888 1.06712E+16 
89.04 0.000001210 0.000001210 1,021,700,000 1,509,161,589 16,O00,O00 471,461,589 505,149,400 2.33194E+17 
87.56 0.000001810 0.00000181C 1,021,700,000 1,303,694,653 16,000,O00 265,994,653 299,680,134 7.95274E+16 
83.48 0.000007020 0.00000702C 939,300,000 761,956,629 16,000,000 (193,343,370 (159,663,127) 4.17510E+16 
83.20 0.000007020 0.000007020 939,300,000 734,137,782 16,000,000 (221,162,218) (187,487,015) 5.3047OE+16 
82.15 0.000004660 0.00000466C 939,300,000 735,660,852 16,000,000 (219,639,148) (185,967,298) 5.23874E+16 
80.95 0.000007910 0.00000791C 939,300,000 1,004,861,128 16,000,000 49,561,128 83,225,155 8.84949E+15 
80.55 0.000050600 0.000050598 939,300,000 1,071,076,934 16,000,O00 I15,776,934 149,387,575 2.02818E+16 
79.19 0.000007020 0.000007019 856,900,000 688,269,904 16,000,000 (184,630,096) (151,024,174) 3.88460E+16 

10 77.48 0.000001810 0.00000181C 856,900,000 1,652,933,116 16,000,000 780,033,116 813,636,074 6.19226E+17 
II 76.22 0.000002590 0.00000259C 856,900,000 741,327~46 16,O00,000 (131,572,754): (97,971,674) 2.23955E+16 
12 75.55 0.000005760 0.000005759 856,900,000 654,930,780 16,000,000 (217,969,220)' (184,371,820) 5.20551E+16 
13 75.18 0.000009060 0.000009059 856,900,000 1,450,085,508 16,000,000 577,185,508 610,769,915 3.42608E+17 
14 75.11 0.000022900 0.000022898 856,900,000 1,148,344,417 16,000,000 275,444,417: 309,002,893 8.34181E+16 
15 75.05 0.000001210 0.00000121C 856,900,000 1,003,713,967 16,000,000 130,813,967l 164,371,248 2.37695E+16 
16 74.14 0.000007020 0.000007019 774,500,000 718,320,849 16,000,000 (72,179,151)[ (38,626,800 1.07551E+16 
17 73.67 0.000000460 0.000000460 774,500,000 612,322,934 16,000,000 (178,177,066)I (144,624,990) 3.68535E+16 
18 72.96 0.000002590 0.00000259C 774,500,000 607,625,092 16,000,000 O82,874,908)i (149,324,364) 3.85299E+16 
lq 72.30 0.000000767 0.000000767 774,500,000 1,035,338,915 16,000,000 244,838,9151 278,388,677 6.68006E+16 
20 72.18 0.000000460 0.000000460 774,500,000 564,886~56 16,O00,000 (225,613,544)I 092,064,034) 5.58109E+16 
21 72.05 0.000001810 0.000001810 774,500,000 1,269,991,504 16,000,000 479,491,504 513,038,744 2.37731E+17 
22 71.55 0.000021000 0.000020997 774,500,000 921,203,300 16,000,000 130,703,300 164,231,531 2.34399E+16 
23 71.48 0.000000738 0.000000738 774,500,000 582,199,078 16,000,000 (208,300,9221 (174,773,109) 4.83588E+16 
24 71.25 0.000018700 0.000018697 774,500,000 757,962,586 16,000,000 (32,537,4141 976,524 6.73762E+15 
25 70.66 0.000000202 0.000000202 774,500,000 1,078,827,927 16,000,000 288,327,927 321,841,651 9.01151E+16 
26 70.57 0.000001210 0.000001210 774,500,000 1,017,469,903 16,000,000 226,969,903 260,482,415 5.82464E+16 
27 70.29 0.000001210 0.000001210 774,500,000 1,162,380,661 16,000,000 371,880,661 405,391,786 1.45612E+17 
28 68.99 0.000001810 0.000001810 726,900,000 1,273,618,722 16,000,000 530,718,722 564,227,570 2.89618E+17 
29 68.73 0.000007250 0.000007249 726,900,000 966,395~80 16,000,000 223,495,280 256,997,239 5.66513E+16 
30 68.64 0.000007020 0.000007019 726.900.000 598.955.192 16.000.000 (143.944.808ll (110.446.942) 2.59361E+16 ,900,000 598,955,192 16,000,000 O43,944,8081 (110,446,942) 
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Abstract 

Total enterprise risk management involves a systematic approach for evaluating/controlling risks 
within a large firm such as a property-casualty insurance company. The basic idea is to coordinate 
planning throughout the organization, from traders and underwriters to the CFO, in order to 
maximize the company's economic surplus at the desired level ofenterprise risk. At present, it is 
difficult to link strategic systems, such as asset allocation, to tactical systems for pricing securities 
and selecting new products. We propose two solutions. First, we develop a "'price of risk" for 
significant decisions possessing correlated factors. Second, we create a set of dynamic investment 
categories, called hybrid assets, for use in an asset and liability management framework. We 
illustrate the concepts via an insurance planning problem, whereby the goal is to optimize the 
company's surplus. 
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I. Introduction to Dynamic Financial Planning 

Dynamic financial analysis (DFA) assumes that a large financial company can benefit by 
coordinating its operations across diverse business lines, such as insurance, banking, and 
investment management. The goal of DFA is to maximize the firm's surplus wealth, while 
keeping within desired risk tolerances. Several barriers exist to achieving this goal. First, the 
deregulation of financial markets has not kept pace with the explosion of new products and the 
merging of businesses. Second, organizational constraints limit the ability of firms to improve 
profitability. The firm may have the best information regarding risk-adjusted profit, but it may not 
act fast enough to grow the profitable activities (and shrink unprofitable activities). 

A third barrier involves the linkage of information within the firm. In this paper, we describe a 
systematic approach for linking tactical and strategic planning systems for large financial 
organizations. The goal is to establish a total integrated risk management system (TIRM). 
Prominent applications include insurance companies, banks, mutual funds, and pension plans. 
We propose an approach for transmitting signals from the optimal solution of the strategic system 
to the individual decision-makers who must carry out the optimal strategy. A key concept is the 
price of  risk, as defined within the context of a dynamic investment strategy. In addition, we 
develop the concept of a hybrid asset security. These securities involve considerable dynamic 
intervention, and they serve as benchmarks for the tactical components of  the risk management 
system. 

At present, there are a number of successful asset and liability management systems. There has 
been considerable work on the strategic aspects of asset allocation, for example, in the area of 
pension planning. See the recent book "World Wide Asset and Liability Modeling," by Ziemba 
and Mulvey (1998) and the references therein. 

Rung 5: 
Rung 4: 
Rung 3: 
Rung 2: 
Rung 1 : 

Total integrated risk management  
Dynamic asset and liability management  
Dynamic asset-only (multi-period) 
Static asset-only portfolios 
Pricing single securities 

The Risk Ladder 
Figure I 

Economic theory assumes that firms maximize their shareholder value. An enterprise risk 
management system helps the company achieve this objective in a systematic fashion. We 
employ strategic planning systems to address critical questions for an institution's long term 
survival. Some prominent issues include the company's leverage structure, investment for 
research, the amount of assets in riskier categories, such as growth equity. In addition, transaction 
and market impact costs may be high when.trying to pull out of an activity. Last, there are often 
autocorrelations in markets, and these intenemporal dependencies should be addressed. 

The fundamental approach for analyzing long-term issues is asset allocation (and its extension to 
asset and liability management - see book by Ziemba and Mulvey). A dynamic financial analysis 
requires three primary elements (Figure 2). First, we must be able to generate scenarios for the 
future across a multi-period horizon. 
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i Multi-period 
Stochastic Projection 
System Scenarios 

Ill Simulate Financial 
Organization 

I 
J Optimize Firm 

Primary Elements era Strategic Financial Planning System 
Figure 2 

1.1. Stochastic Projection System 

The purpose of the stochastic model is to estimate the uncertain parameters in the firm-wide 
simulation. A critical issue is to link the uncertain parameters to a small set of essential economic 
factors - the driving factors. Figure 3 illustrates the idea. We first estimate factors such as interest 
rates and inflation over the T-time periods by means of a stochastic difference equation, 
approximating a diffusion equation. For example, we might use the Ornstein Ulenbeck process 
for the short interest rates: 

dr, = a (r0 - r, ) + s r, dZ. 

This series displays mean reversion to the parameter r0, has volatility s, and drift a. These three 
parameters must be determined by calibration tools (see Campbell et al. 1997, and Mulvey et al. 
1996). The White noise term, dZ, represents the standard Normal (0, I) distribution function. 
Discrete samples are taken from this stochastic equation in order to derive representative set of 
scenarios. Each scenario depicts a single plausible path for all of the uncertain parameters over 
the planning period. Employing variance reduction methods, in concert with the stochastic 
optimization model can reduce the number of scenarios (see Campbell et al. 1997, and Mulvey 
and Rush 1997). 

Economic Factors 
Interest rates 
Inflation 
Currencies 

Other Factors 
Cat risks 

~l Asset returns 
v Liability cashflows 

Figure 3 
Simulation of Driving Economic Factors 

A number of scenario generators exist for projecting economic variables and asset returns. Some 
prominent examples include Towers Pen'in's CAP:Link/OPT:Link (Mulvey 1996), Wilkie's 
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investment system in the UK (Wilkie 1987, 1995), Frank Russell's VAR (Carino 1994, 1998), 
and ORTEC in the Netherlands (Boender 1995). 

There are several scenario generators for projecting liabilities. For example, catastrophic (CAT) 
modeling firms (e.g. AIR, Dames and Moore, EQE, RMS, and Tillinghast) estimates catastrophic 
risks for losses under earthquake and hurricane events. Monte Carlo simulation techniques derive 
these estimates, whereby the number of scenarios must be a large due to the rarity of the worst 
CAT events. Over 10,000 scenarios are required in most studies. 

Loss ratios for non-CAT lines of business are also modeled in the scenario generators. In many 
cases, there is adequate historical data on the losses so that estimates can be calculated in a 
reliable fashion. 

1.2. Simulate time Enterprise or Activity 

Given the stochastic scenarios, we can simulate the financial organization over the planning 
period, up to the horizon at period T. For this simulation, we must identify the dynamic decision 
rules and the market forces that will drive the firm. It is critical to focus on the company's or the 
investor's surplus. We define surplus wealth as: 

Market value (assets minus liabilities) - Present value (goals) 

The simulation of the core economic factors over time provides a linkage across business 
activities. For example, asset returns and liability ca.shflows are dependent on changes in interest 
rates and inflation. The degree of overlapping risks depends upon a combination of the decision 
strategies and the uncertainties. It is often under control of the firm. 

1.3. Control and Optimize 

Once a simulation is conducted, we can improve the company's performance by employing 
stochastic optimization techniques. For example, we can maximize the growth of the company's 
economic surplus by maximizing the expected utility of wealth, wherein utility equals 
log(wealth). 

We stress the concept that stochastic optimization algorithms are now feasible and available. We 
can solve a stochastic program with a large number of decision nodes (tens of thousands), or by 
means of a set of decision rules (and the resulting solution to the non- convex program.) See 
Mulvey and Ruszczynski 1995. Next, we define the primary equations for a strategic financial 
planning system. 

1.4 Model Structure 

The investment process consists of T time stages. The first stage represents the current date. The 
end of the planning period, T is called the planning horizon. Typically, it depicts a point in which 
the investor has a critical planning purpose, such as the repayment date of a substantial liability, 
or a natural juncture as the annual board of director's meeting. Strategic systems look out over 
several years or even decades - for insurance companies and pension plans. Tactical systems 
have much shorter time horizons - weeks, days, or even minutes. 
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At the beginning of each period, the investor renders decisions regarding the asset mix, the 
liabilities, and the financial goals. Between time steps, uncertainties take over. For example, the 
stock market and bond returns occur. As mentioned, we employ a system of stochastic differential 
equations for modeling the stochastic parameters over time. These relate a set of key economic 
factors to remaining components, such as asset and liability returns. For an example, see the 
CAP:Link system (Mulvey 1996, and Mulvey and Thorlacius 1998). The alternative modeling 
approaches address the integration of the stochastic and the optimization models in a different 
m a n n e r .  

i Decisions made at beginning of each period 
Today / / 

t = l  T = horizon 

The Planning Period ( t = 1,2 ..... T) 
Figure 4 

The primary decision variables designate asset proportions, liability-related decisions, and goal 
payments: 

gj , t  I 

yLt s 
UI,i I 

investment in asset j, time t, scenario s 
liability or product k, time t, scenario s 
goal payment 1, time t, scenario s. 

At each time period, t, the model maximizes its objective function, f(x), by moving money 
between asset categories, adjusting liabilities, and paying offgoals. There are numerous 
candidates for the objective function; see the next section. In addition, we impose constraints on 
the process such as limiting borrowing to certain ratios, addressing transactions costs whenever 
assets are bought or sold, or taking advantage of investment opportunities. There are several 
modeling approaches for including constraints. Our goal is to find a feasible point, which 
maximizes a temporal objective function. Since we are dealing with uncertainty in a temporal 
setting, the optimal solution, like all points, will encompass a set of  paths -- trajectories -- for the 
investor's wealth (or other measures such as surptus wealth). Ranking these paths is the subject of 
the next subsection. 

There are two basic equations for the flow of funds at each time-period, and scenario: 

Equation [ I ] forj 'h asset category: 

x' j., = (xj.,.z' + ri.,..') - Pi.,' + qJ.,' (l 'ti) for asset j, time t, scenario s. 

where ri.t s = 
p).ts = 

qj . t  s --~ 

t j =  

return for asset j, time t, scenario s, 
sales of  asset j, time t, scenario s, 
purchase of asset j, time t, scenario s, 
tran/;action costs for asset j. 
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Equation [2] for the cash flows: 

X' l .L=(Xl . t - I '+r l . , - I ' )  " ~ qi.,' + Z Pi."( 1 "ti) + w,'  - Z Yk.,' " Z ul.,' 
J J k t 

where w~' = cash inflows at time t, scenario s, 
cash is asset category I. 

The multi-stage investment model avoids looking into the future in an inappropriate fashion. The 
model cannot optimize over scenarios that do not represent a range of plausible outcome for the 
future. To prevent this occurrence, we add constraints to the model, called non-anticipatory 
conditions. The general form of the constraints is: 

Xj.t II = Xj.i 12 

for all scenarios sl and s2 which inherit a common past up to 
time t. 

The financial planning system addresses non-anticipatory conditions, either explicitly or 
implicitly, and special purpose algorithms are available for solving the resulting stochastic 
optimization model. 

In addition to the economic surplus, market value of assets and liabilities, we must address the 
regulatory environment. The simulation model should set constraints on the regulatory measures, 
such as STAT and GAAP, while maximizing the economic surplus. This effort requires a 
complex set of  issues when the model cuts across a multi-national company with many tax and 
cultural concerns. 

1.5 Financial Objectives 

A major element of enterprise risk management involves trading off risks and rewards. It is 
natural to expect that investments possessing more volatility will often generate greater expected 
returns than assets with lower levels of volatility. The temporal issue complicates the decision 
since longer term horizons dictate a longer time span to recoup losses, thus the more volatile 
assets may be, in fact, safer in terms of contextual risks. An example is the stock/cash 
comparison: stocks provide higher expected returns but are more volatile than cash. We must 
consider the time horizon in measuring contextual risks. 

There are numerous ways to evaluate financial risks, just as there are alternative measures of 
profitability. We might consider the chance of a loss over the next year, such as 15% -- value at 
risk. Or, we might set a profitability target and evaluate the probability of missing the target. In 
both cases, risk increases as a function of probability. An improved alternative for evaluating 
risks is to estimate the full probability distribution of shareholders equity, along with other 
measures of financial well being for the company. The scenario generators in conjunction with 
the firm simulation system provide this information. 

Calculating these curves requires a comprehensive approach for linking all major activities and 
uncertainties in a financial organization. Given a distribution, we can evaluate not only risks but 
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also compare it against reward potential. Typically, we equate reward with expected value. We 
might be interested in profit or loss over the next year per dollar of allocated capital: 

Expected profit  = Z Ps* zS / (AIIocated capital) 
$ES 

where p, is the probability of  scenario s, 
z' is the profit or loss under scenario s, 
S is a set of representative scenarios, 
Allocated capital depends upon the loss distribution (VAR). 

Comparing alternative distributions on a direct basis can be difficult for most decision-makers. To 
aid in the process, we can employ the concepts of stochastic dominance. For example, if two 
cumulative distributions cross only once and the decision-maker is risk averse, she will take the 
curve with the highest expected value if its variance is less than the alternative. Other dominance 
tests are possible, but these tests are unlikely to apply in a wide set of circumstances. 

There are two primary theories for setting up an objective function under uncertainty. First, we 
can transform random variables to deterministic values, such as the value at risk or a certainty 
equivalent. Alternatively, we can fit a classical utility function to the characteristics of  the output 
of  the model. An example is tO define risk as the volatility of the return ofa  portfolio. There are 
numerous variants of each theory. 

After 50 years, the von Neumann Morgenstern [VM] theory remains the pre-eminent approach 
for making decisions in the face of uncertainty. The resulting optimization model can be stated 
simply as follows: 

[VM] Max E(v(zr)) 

where E(V(ZT)) = Z p s * v( z s ) 
$ 

where v(z') is the VM preference function 
z ' r = investors wealth under scenario s, time T 
p, = probability of scenario s. 

Once the solution of  model VM is found, z', we determine its certainty equivalent (CE) by 
computing the inverse function at the recommended solution CE = v'l(z'). This value represents 
the exact amount that we would take in order to sell (or buy) the random variable z. While the 
VM theory is generally accepted as a theoretical measure, there are several difficulties. First, 
most executives are unable to come up with an acceptable level of  risk aversion. Second, the 
temporal aspects of  decision making are ignored in the VM theory. Thus, we are generally unable 
to decide upon a high-risk asset that will pay off in several years versus a lower returning but 
safer asset. Generally, we focus on the expected utility at the end of the planning horizon, period 
T. The intermediate points are constrained to achieving acceptable results. 

There are several heuristic approaches to decision making under uncertainty. Two of  the most 
popular are value at risk (VAR), and the risk adjusted return on allocated capital. In both cases, 
we set a level of  confidence in the return distribution as a reference point. Profits and risks are 
measured with respect to this assumed point. For instance, we might decide that the 1/100 loss 
point is the reference. Capital allocation rules are then generated by the amount of losses at this 
point. The concepts are easy to understand. But they can lead to errors since they are not 
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considering the entire distribution of gains and losses. In addition, these methods do not easily 
address the issue of overlapping risks. 

1.6 Limitations of Strategic Systems for Large Organizations 

There are several limitations to the use of a strategic financial planning system within a large 
financial institution. The first issue involves the lack of detailed information regarding the risks 
and most importantly overlapping and correlated risks. If the organization could separate 
activities that are independent of each other, they could allocate capital on a straightforward risk 
adjusted basis, such as some function of value at risk (VAR.). However, during the 1990s, 
financial organizations are merging diverse activities - traditional banking, insurance, mutual 
funds, and trust and wealth management. It is difficult to design these operations so that the risks 
are independent of each other. In addition, we discount projected future cashflows by Treasury 
interest rates when computing the market value of assets and liabilities. Therefore, even 
seemingly independent activities are linked by their dependence on interest rate movements. 

Second, the asset allocation approach runs into difficulties when portfolio managers do not 
possess well-defined investment benchmarks, or when the managers stray from the benchmarks. 
The risks for the individual tactical investors will certainly increase when correlated elements 
exist in their portfolios. Yet many financial companies decompose their activities into loosely 
managed divisions; they pay scant attention to overlapping risks. The problem is especially 
difficult when the issues involve the rare events - tails of the loss distribution. For example, 
several investors may decide to move into a single asset at the same time, and the asset drops 
dramatically. In other cases, there is a more subtle relationship between the degree of overlapping 
risks. The scenario generators should be equipped to handle this factor. 

Another challenge occurs when the strategic plan needs modifying. A tactical system can assist in 
the change of  course decisions. Yet, there needs to be close coordination of the affected systems. 
The tactical system by necessity works at a more detailed level of information, such as individual 
stocks, as compared with generic asset categories. This offers great opportunities. The prices of 
risks and target benchmarking can play a pivotal role as we show in the next section. 
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2. Linking Strategic and Tactical Planning Systems 

This section discusses the linkage oftbe strategic planning system with one or more tactical 
investment systems. As before, the critical issue entails overlapping risks, across product lines, 
and investments. We suggest three possible approaches. The first involves the creation of target 
benchmarks based on hybrid securities. Dynamic asset and liability processes form the hybrids. In 
tile second approach, we generate prices of risks for each product-location, or asset category. We 
add these prices to the profit calculations for the business units. In the third approach, we track 
the degree of overlapping risks and allocate capital based on risks. This approach requires a 
relatively conservative allocation rule or a closely monitored organization. 

Figure 5 illustrates the flow of information between the strategic system and the tactical systems. 
Herein, the target benchmarks and/or prices of risks are sent to the tactical investors - traders, 
underwriters and asset managers -- along with their capital allocation. A straightforward 
benchmark might be the Morgan Stanley Capital International Index; the goal is to exceed the 
benchmark return, while investing under the same risk profile as the MSCI index. 

Hybrid securities can play a distinguishing role in the construction of benchmarks for tactical 
asset managers. A prototypical example is the principal-protected equity bond discussed in the 
next section. For this example, the asset manager must beat this index over an assigned time- 
period. The manager has several options. First, he could attempt to replicate the security by 
following a delta or gamma neutral strategy (Hull, 1997). Alternatively, he could increase the 
equity proportions in order to gain additional returns, at the costs of additional risks. However, 
the investor must be careful when taking on increased risks. Here is where the price of risk comes 
in. The tactical system should evaluate the marginal costs of adding risks by modify the excess 
profit computations (over and above the target benchmark). The prices of risks should be 
included in the calculations. In some eases, there is adequate independence of the activities so 
that overlapping risks can be ignored. Whenever possible, the organizational design should 
artempt to reduce overlapping risks.by setting up units that are independent on a risk basis, such 
as giving a manager a separate asset category. Alternatively, the tactical manager can simply 
replicate the target benchmark at a minimum cost, thus eliminating the price of risks 
requirements. 

In a similar fashion, a product manager or insurance underwriter can be assigned a benchmark. 
An example is the amount ofallocated capital for the manager's businesses along with the risk 
adjusted profit values. As on the asset side, risk profiles should depend on the projected 
movements of the core economic factors. Moreover, as before, we can compute the price of risk 
for the activities by referring to the dual variables from the optimal solution to the strategic ALM 
system. Any decision (investment/product/line) possessing a positive margin profit will benefit 
tile company and is worthy of further analysis. The formula for adjusting profit is: 

prof i t  = net  r e v e n u e  - E l s , t  *~r s , t  

s E S  

where n,.t = optimal dual solution from 
strategic system, 

I ,, = loss under scenario s, time t. 
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Another approach is to approximate the prices of risks by computing the historical correlations 
and assume that the profits and losses are derived from a multi-normal or other suitable 
distribution. Herein, the time horizon is relatively short, one day to several weeks, and the model 
is generally single period. 

We illustrate the prices of risks via a generic tactical tool for insurance underwriters. This system 
takes in loss estimates for catastrophic events, such as hurricanes and earthquakes, and generates 
risk adjusted profitability values for the properties in the underwriter's book of business. It also 
can optimize on the parameters of the book, such as deductibles, identify properties to eliminate, 
etc., and find the best set of properties when two books are combined. A sample output of the 
system might show the expected profits displayed per zip-code, adjusted by the prices of risks. 
The underwriter can quickly gain insights into the relative areas of profitability on a geographic 
basis. 

The Strategic Planning 
System 

P r i n c e s ~ ~ ~  

Tactical System Tactical System 
(Investments) (Underwriters) 

Target Benchmarks 
Capital Allocation 

l Tactical System 
(Debt 
Management) 

Risk adjusted profits computed for each tactical .sTstem and sent back to strategic .r~stem 

Figure 5 
Coordinating the Strategic and Tactical Planning Systems 
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3. Empirical Results 

In this section, we illustrate the advantages of hybrid securities for a real world strategic planning 
model involving a large insurance company ~. The goal is to maximize the company's surplus 
over a five-year horizon. Re-balancing decisions occur annually. We employ the CAP:Link 
scenario generator for constructing 500 scenarios for the economic factors and the asset returns. 
Tillinghast-Towers Perrin actuaries performed liability projections under these same 500 
scenarios. At each period, the model revises the asset m/x, according to the target mix values, 
pays out the necessary liabilities and taxes, and distributes dividends and interest as appropriate. 

Thirteen asset categories were selected by the insurance client. These asset categories form the 
basis for many asset allocation.studies. We include two categories of Treasury inflation protected 
bonds (TIPs), mid-term and long-term, in addition to the standard assets. These assets protect the 
insurance company's liabilities against unexpected inflation. 

A strategic planning model was developed for the insurance company, in which the company paid 
out required obligations each year as dictated by the actuarial estimates, under each of the 500 
scenarios. The goal was to maximize the company's surplus at the end of the 5-year horizon. 

To solve the model, we employed a nonlinear optimization system, called OPT:Link, to generate 
the surplus efficient frontier at the end of the 5-year planning period. Figure 6 and Table I show 
the company's surplus expected values and standard deviations for the resulting mixes. Eleven 
points on the efficient frontier are displayed, from the low risk portfolio consisting of cash and 
bonds, to the high-risk portfolio consisting of smaller capitalized US stock. 

Asset Mix %: 1 2 3 4 5 6 7 8 9 10 11 

Cash-U.S.A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eqty-U.S.A 5.5 7.4 9.0 10.3 11.0 5.6 5.2 5.1 0.2 0.0 0.0 
US Real Es 9.0 10.9 11.9 12.4 13.2 16.4 18.1 17.8 12.5 1.0 0.0 
High Yld B 10.2 13.9 18.4 22.7 27.4 39.3 42.7 48.2 51.5 54.6 22.5 
LT TIPS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MT TIPS 45.8 47.1 41.7 36.0 30.9 17.6 9.8 3.0 0.0 0.0 0.0 
Sht G/C 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Mid GIC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Long G/C 15.7 15.3 11.0 8.2 4.6 0.0 0.0 0.0 0.0 0.0 0.0 
US20YrZero 0.0 0.0 0.0 0.0 0.2 2.4 1.8 0.8 0.0 0.0 0.0 
US SmCap 0.0 0.1 1.7 4.1 7.1 13.8 16.0 18.2 27.9 37.7 77.5 
EAFE 4.4 5.3 6.2 6.3 5.6 5.0 6.6 7.0 7.9 6.7 0.0 
WrIdBndXUS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Reward 7.3 7.6 7.9 8.1 8.4 9.0 9.2 9.5 9,7 9.9 10.2 
Risk 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 1.0 

Table I 
Asset Mixes for 11 Selected Points on Surplus Efficient Frontier 

i The details of the insurance company example are disguised. 

160 



; zo.So 

0.TS 

I l S  

8.7S 

1'" I ~.~$ 

7~s 

. . . . . . . . .  , E . . ° S ,  ,~ 'o ,  ° . . . . . . .  

Figure 6 
Surplus Efficient Frontier for Sample Insurance Company 

Next, we construct two hybrid securities. The first is'a dynamic combination of equity and cash, 
similar to constant proportional portfolio instirancc (CPPI). See Perold and Sharpe (1988). The 
basic idea is to set a minimum level for the asset wealth, which we call the floor. Based on this 
constant., we compute the difference between current wealth and the floor -- called the cushion. 
The hybrid security sets the stock/cash proportions equal to a linear function of the cushion value 
at the beginning of each period. We update the proportions each month (rather than the annual re- 
balancing carried out in the strategic model). The resulting hybrid stock/cash security is called 
dynamic-equity-protection (DEP). For the purpose of this study, we established the floor = 100 
and the multiplier parameter = 1.1. Figure 7 depicts the compound returns of  the DEPs over the 
five year planning period, as generated by the CAP:Link investment system. 

[nstead of following a dynamic replication strategy, we can purchase securities with the desired 
properties. Several mutual fund companies market stock/cash hybrid securities, including 
Salomon/Smith/Barney, and Merrill Lynch's Mitts. These securities trade on the New York and 
other stock exchanges. The term of the security is typically five years; they trade as non-dividend 
paying stocks. 

We construct a second hybrid security geared towards the fixed income marketplace. Again, we 
combine two traditional asset categories. Instead of stock/cash, however, we dynamically allocate 
between mortgage backs and cash in a proprietary fashion. The mix shifts towards cash when 
interest rates arc dropping, whereas the mix shifts towards bonds when interest rates are 
increasing. We label this hybrid category MBS, to indicate the association of this strategy with 
mortgage backed securities. Figure 7 lists the nominal returns for the MBS hybrid over the 5-year 
horizon. 
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We combine the two hybrid securities with the other 13 asset categories and solve the resulting 
surplus optimization problem. The advantages of the DEP hybrid for risk averse investors can be 
readily seen in Figure 8. Here, we plot an asset-only efficient frontier with downside risks at the 
6% target level. The efficient frontier solutions are considerably improved by adding the DEPs. 
They give upside gains, but limit the downside losses during downswings in the equity markets. 

The surplus efficient frontiers are displayed in Figure 9 and Table 2, with and without the two 
hybrids. By adding these securities, we improve the surplus returns and radue¢ the surplus risks. 
The stock/cash hybrid (DEPs) occurs at the higher risk levels, whereas the mortgage back/cash 
hybrid (MBS) occurs at the lower risk levels. One of these two assets is present in all of the 
efficient points. The advantages of the dynamic financial strategy are clear-cut in this real-world 

Figure 8 
Asset Only Efficient Frontiers with and without Hybrid Securities 
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Surplus Efficient Frontiers with & without Hybrid Securities 
Figure 9 

Numerous variations on the hybrid ~curity apply to insurance companies and pension plans. The 
floor and multiplier paramet~:rs are available for modifications. Alternatively, we could 
implement other decision rules, replacing the CPPI strategy with combination strategies. Due to 
computational bounds for the nonlinear stochastic program, there is a limit on the number of  asset 
categories that can be included in a strategic planning study. Still, we can readily solve models 
possessing several hundred hybrid securities with high performance PCs in mid-1998. The 
optimization model ca n readily accommodate linear constraints on the optimal asset mix, such as 
lower and upper bounds. 

Overall, the hybrid securities give the strategic planning system greater realism. They also can 
serve as target benchmarks for the tactical systems, in a more innovative manner than the 
traditional fixed asset mix or weighted indices. The target benchmarks can link to the prices of  
risks, so that the tactical manager can move away from the benchmark in a manner that continues 
to optimize the company's surplus wealth. The amount of allocated capital determines the amount 
of  movement that is possible for each tactical manager. 
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Asset 1 2 3 4 5 6 7 8 9 10 11 
Mix %: 

Cash- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
U,S.A 
Eqty- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
U.S.A 
US Real 6.3 5.6 7.2 4.4 3.6 4~5 5.1 4.6 0.0 0.0 0.0 
Es 
High YId 6.7 8.8 12.0 13.1 15.6 21,6 23.1 26.1 26.7 28.1 0.0 
B 
LT TIPS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
MT TIPS 22.4 21.4 19.2 13.3 10.9 5.7 0.0 0.0 0.0 0.0 0.0 
Sht G/C 8.5 5.7 0.6 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 
Mid GIC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Long 7.4 6.2 3.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
G/C 
US20Yr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Zero 
MBS 33.2 31.3 32.2 35.6 31.2 20.1 18.3 11.2 7.1 0.0 0.0 
US 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
SmCap 
EAFE 1.5 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
WddBnd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
XUS 
DEPS 14,0 19,7 25,2 33,1 38,6 4 8 . 0  5 3 , 4  5 8 , 2  6 6 . 2  71 .9  100.0 

Reward 
Risk 

7.5 7.8 8.2 8.6 8.9 9.6 9.9 10.2 10.5 10.8 11.1 
0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.6 

Table 2 
Selected Points on Surplus EPficient Frontier with Hybrid Securities 
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4. Conclusions 

Enterprise risk management requires a coordinated program of financial planning throughout the 
institution. Traders and arbitrageurs search out mispriced securities by option analysis and other 
tools. Portfolio managers attempt to beat popular financial benchmarks via mean/variance 
optimization. Insurance underwriters aim to exceed risk adjusted profit targets. Pension planners 
carry out asset allocation strategies to insure the soundness of their assets with respect to the 
pension liabilities. CFO's identify the optimal leverage factors to maximize shareholder value. In 
each of these cases, there must be well-defined target benchmarks for the decision-makers. A 
strategic financial planning system generates these targets. 

We have described a systematic technique for combining strategic and tactical financial planning 
systems. First, we define a price of risk for overlapping risks. These prices depend upon the 
optimal shadow prices of the strategic system. In the second step, we develop hybrid asset 
categories, such as the stock/cash example shown in Section 3. We extend traditional asset 
categories to encompass many forms of embedded options and dynamic investment strategies. 

The benchmark targets and possibly the prices of  risk are transmitted to the tactical systems. If 
the tactical manager stays relatively close to the target risk profile, he can ignore the prices of  risk 
and maximize the excess returns. Otherwise, the prices of risks must be considered when the 
investor decides to take on increased risks. Considering historical correlations can approximate 
the price of risk, but there is no guarantee that backward looking data will be appropriate for the 
future. 

An example of strategic planning is the capital management strategy for an insurance company 
presented in the previous section. We showed that the hybrid assets improve the company's risk 
adjusted returns. The solution to the strategic problem serves as targets for the tactical planning 
systems. 

Applying these techniques will enhance a financial institution's ability to maximize its 
shareholder value. In addition, enterprise risk management applies to institutions with diverse 
operations, such as a combined bank, insurance company, and mutual fund. Correlated risks are 
present in these organizations. Identifying and pricing these correlated risks will be allow the 
institution to grow its surplus in an optimal fashion, while maintaining the desired level of risks at 
the enterprise level. 
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Applications of Resampling Methods in Dynamic Financial 

Analysis 

May13, 1998 

A b s t r a c t  

Dynmnic Financial Analysis can be viewed as the process of studying profitability and sol- 

vency of an ilmurance firm under a realistic and integrated nmdel of key input random variables 

such as loss frequency and severity, expenses, reinsurance, interest and inflation rates, and asset 

defaults. Traditional nmdels of input variables have generally fitted parameters for a predeter- 

mined family of probability distributiotm. In this paper we discuss applications of some modern 

methods of non-parametric statistics to modeling loss distributions, and possibilities of using 

them for modeling other input variables for tile purpose of arriving at an integrated company 

model. Several examples of inference about the severity of loss, loss distributions percentiles 

and other related quantities based on data smoothing, bootstrap estimates of standard error 

and bootstrap confidence intervals are presented. The examples are based on real-life auto in- 

jury claim data  and the accuracy of our methods is compared with that of standard techniques. 

Model ndju~tment for inflation and bootstrap techniques based on the Kaplan-Meier estimator, 

useful in the presence of policies limits (censored losses), are also considered. 

1 Introduction 

D'Arcy,  Gorve t t ,  Herbers  and Het t inger  (1997) discuss Dynamic  Financial  Analysis  (DFA) for 

insurance  f i rms and point  ou t  the  following two sets  of key variables involved in the  process. 
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Financial Variables: 

• Short-term interest rates; 

• Term premiums; 

• Default premiums; 

• Default risk: 

• Equity premiums; 

• Inflation. 

Underwriting variables: 

• Rate level; 

• Exposures; 

• Loss frequency; 

• Loss severity; 

• Expenses; 

• Catastrophes: 

• Jurisdictiotl; 

• Payment patterns; 

• Reinsurance. 

In that classification, the financial variables generally refer to asset-side generated cash flows 

of the business, and the underwriting variables relate to the cash flows of the liabilities side. The 

process of developing a DFA model begins with the creation of a model of probability distributions 

of the input variables, including the establishment of the proper range of values of input parameters. 

The use of parameters is generally determined by the use of parametric families of distributions. 
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Fitt ing of those parameters is generally followed by either Monte Carlo simulation and integration of 

all inputs for profit testing and optimization, or by the study of the effect of varying the parameters 

on output  variables in sensitivity analysis and basic cash flow testing. Thus traditional actuarial 

methodologies are rooted in parametric approaches which fit prescribed distributions of losses and 

other random phenomena studied (e.g., interest rate or other asset return variables) to the data. The 

experience of the last two decades has shown greater interdependence of basic loss variables (severity, 

frequency, exposures) with asset variables (interest rates, asset defaults, etc.), and sensitivity of the 

firm to all input variables listed above. Increased complexity has been accompanied by increased 

competitive pressures, and more frequent insolvencies. This situation is precisely the reason why 

DFA has come to the forefront of new actuarial methodologies. In our opinion, in order to properly 

address the DFA issues one must carefully address the weaknesses of traditional methodologies. 

These weaknesses can be summarized as originating either from ignoring the uncertainties of inputs, 

or mismanaging those uncertainties. While early problems of DFA could be attributed mostly to 

ignoring uncertainty, we believe at this point the uncertain nature of model inputs is generally. 

acknowledged. Derrig and Ostaszewski (1997) used fuzzy set techniques to handle the mixture 

of probabilistic and non-probabilistic uncertainties in asset/liability considerations for property- 

casualty claims. In our opinion it is now time to proceed to deeper issues concerning the actual 

forms of uncertainty. The Central Limit Theorem and its stochastic process counterpart provide 

clear guidance for practical uses of the normal distribution and all distributions derived from it. But 

one cannot justify similarly fitting convenient distributions to, for instance, loss data and expect 

to easily survive the next significant change in the marketplace. What does work in practice, but 

not in theory, may be merely an illusion of applicability provided by powerful tools of modern 

technology. If one cannot provide a justification for the use of a parametric distribution, then 

a nonparametric alternative should be sl, udied, at least for the purpose of understanding firm's 

exposures. In this work, we will show such a study of nonparametric methodologies as applied 

to loss data, and will advocate the development of an integrated company model with the use of 

nonparametric approaches. 
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1.1 Loss Distributions for D F A  

We begin by addressing the most basic questions concerning loss distributions. The first two 

parameters  generally fitted to the da ta  are claims average size (claims average severity), and the 

number of claim occurrences per unit of exposure (claims frequency). Can we improve on these 

estimates by using nonparametric  methods? 

Consider the problem of estimating the severity of a claim, which is, in its most general setting, 

equivalent to modeling the probability distribution of a single claim size. 'I~-aditionally, this has 

been done by means of fitting some parametric models from a particular continuous family of 

distributions (cf. e.g., Daykin, Pentikalnen, and Pesonen 1994, chapter  3). While this s tandard 

approach has several obvious advantages, we should also realize that  occasionally it may suffer 

some serious drawbacks. 

• Some loss da ta  has a tendency to cluster about  round numbers like $1,000, $10,000, etc., due 

to rounding off the claim amount  and thus in practice follows a mixture of continuous and 

discrete distributions. Usually, parametric models simply ignore the discrete component in 

such cases. 

• The da ta  is often truncated from below or censored from above due to deductibles and /o r  

limits on different policies. Especially, the presence of censoring, if not accounted for, may 

seriously compromise the goodness-of-fit of a fitted parametric distribution. On the other 

hand, t rying to incorporate the censoring mechanism (which is often random in its nature,  

especially when we consider losses failing under several insurance policies with different limits) 

leads to a creation of a very complex model, one often difficult to work with. 

• The loss da ta  may come from a mixture of distributions depending upon some known or 

unknown classification of claim types. 

• Finally, it may happen that  the da ta  simply does not fit any of the available distributions in 

a satisfactory way. 

It seems, therefore, tha t  there are many situations of practical importance where the traditional 
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approach cannot be utilized, and one must look beyond parametric models. In this work we point 

out an alternative, nonparametric approach to modeling losses and other random parameters of 

financial analysis originating from the modern methodology of nonparametric statistics. Especially, 

we analyze possible inroads by the fairly recent statistical methodology known a.s bootstrap into 

dynamic financial analysis. To keep things in focus we will be concerned here only with applications 

to modeling the severity of loss, but the methods discussed may be easily applied to other problems 

like loss frequencies, asset returns, asset defaults, and combining those into models of Risk Based 

Capital, Value at  Risk, and general DFA, including Cash Flow Testing and Asset Adequacy Analysis. 

1.2  The Concept of Bootstrap 

The concept of bootstrap was first introduced in the seminal piece of Efron (1979) and relies on the 

consideration of the discrete empirical distribution generated by a random sample of size n from 

an unknown distribution F. This empirical distribution assigns equal probability to each sample 

item. In the sequel we will write fin for that  distribution. By generating an independent, identically 

distributed (lid) random sequence (resample) from the distribution Fn or its appropriately smoothed 

version, we can arrive at new estimates of various parameters and nonparametric characteristics 

of the original distribution F. This idea is at the very root of the bootstrap methodology. In 

particular, Efron (1979) points out that  the bootstrap gives a reasonable estimate of standard error 

for any estimator, and it can be extended to statistical error assessments and to inferences beyond 

biases and standard errors. 

1 .3  Overview of the Article 

In this paper, we apply tile bootstrap methods to two data sets as illustrations of the advantages of 

resampling techniques, especially when dealing with empirical loss data. The basics of bootstrap are 

covered in Section 2 where we show its applications in estimating standard errors and calculating 

confidence intervals. In Section 3, we compare bootstrap and traditional estimators for quantiles 

and excess losses using some truncated wind loss data. The important concept of smoothing the 

bootstrap estimator is also covered. Applications of bootstrap to auto bodily injury liability claims 
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in Section 4 s h o w  loss e l i m i n a t i o n  ratio estimates together with their s tandard e r ror s  in a c a s e  

of lumpy and clustered da ta  (the da ta  set is enclosed in Appendix B). More complicated designs 

tha t  incorporate da ta  censoring and adjustment for inflation appear in Section 5. Sections 6 and 

7 provide some final remarks and conclusions. The Mathematica 3.0 programs used to perform 

boots t rap calculations are provided in Appendix A. 

2 Boot s t r ap  S tandard  Errors and Confidence Intervals  

As we have already mentioned in the Introduction, the idea of bootstrap is in sampling the empirical 

cumulative distribution function (cdf) fin. This idea is closely related to the following, well known 

statistical principle, henceforth referred to as the "plug-in" principle. Given a parameter of interest 

O(F) depending upon an unknown population cdf F, we estimate this parameter  by ~ = 8(Fn). 

Tha t  is, we simply replace F in the formula for ~ by its empirical counterpart  fin obtained frmn the 

observed data.  The plug-in principlc will not provide good results if fin poorly approximates F or 

if there is information about F other than that  provided by the sample. For instance, in some cases 

we migbt know (or be williug to assume) tha t  F belongs to some parametric family of distributions. 

However, the plug-in principle and the bootstrap may be adapted to this latter situation as well. 

To illustrate the idea, let us consider a parametric family of cdf 's {Fu} indexed by a parameter 

(possibly a vector) and for some given Itl0 let ~0 denote its estimate calculated from the sample. 

The plug-in principle in this case states that  we should estimate O(Fou ) by O(Fuo ). In this case, 

boots t rap is often called parametric,  since a resample is now collected from Fp,,. Here and elsewhere 

in this work we refer to any replica of ~ calculated from a resample as "a boots t rap estimate of 

0(F)" and denote it by 0". 

2.1 The Bootstrap Methodology 

Bickel and Freedman (1981) formulated conditions for consistency of bootstrap, which resulted in 

further extensions of the Efroa's (1979) methodology to a broad range of s tandard applications, 

including quantile processes, multiple regression and stratified sampling. They also argued tha t  
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the use of bootstrap did not require theoretical derivations such as function derivatives, influence 

functions, asymptotic variances, the Edgeworth expansion, etc. 

Singh (1981) made a further point that the bootstrap estimator of the sampling distribution 

of a given statistic may be more accurate than the traditional normal approximation. In fact, it 

turns out thut for many commonly used statistics the bootstrap is asymptotically equivalent to the 

one-term Edgeworth expansion estimator, usually having the same convergence rate, which is faster 

then normal approximation. In many more recent statistical texts the bootstrap is recommended 

for estimating sampling distributions and finding standard errors, and confidence sets. The boot- 

strap methods can be applied to both parametric and non-parametric models, although most of 

the published research in the area is concerned with the non-parametric case since that  is where 

the most immediate practical gains might be expected. Let us note though that  often a simple, 

non-parametric bootstrap may be improved by other bootstrap methods taking into account the 

special nature of the model. In the lid non-parametric models for instance, the smoothed bootstrap 

(bootstrap based on some smoothed version of Fn) often improves the simple bootstrap (bootstrap 

based solely on F,) .  Since in recent years several excellent books on the subject of resampling and 

related techniques have become available, we will not be particularly concerned here with providing 

all the details of the presented techniques, contenting ourselves with making appropriate references 

to more technically detailed works. Readers interested in gaining some basic background in re- 

sampling are referred to Efron and Tibisharani (1993), henceforth referred to as ET. For a more 

mathematically advanced treatment of the subject, we recommend Shan and Tu (1995). 

2 , 2  B o o t s t r a p  S t a n d a r d  E r r o r  E s t i m a t e  

Arguably, one of the most important applications of bootstrap is providing an estimate of standard 

error of 8 (seF(O)). It is rarely practical to calculate it exactly. Instead, one usually approxi- 

mates SeF(O) with the help of multiple resamples. The approximation to the bootstrap estimate of 
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s tandard  error of 0 (or BESE) suggested by Efron (197'9) is given by 

B 

~'eB={b_~l[O'(b)-O'(.)/(B--1)}2}']2 (2.1) 

where 0"(.) = ~ = l  O'(b)/B, 13 is the total number of resamples (each of size n) collected with 

replacement from the plug-in estimate of F (in parametric or non-parametric setting), and 0°(b) 

is the original statistic 0 calculated from the b-th resample (b = 1 . . . .  ,B) .  By the law of large 

numbers 

lim g'es = BESE(O), 
B - o o  

and for sufficiently large n we expect 

BESS(O) ~ seF(0). 

Let us note tha t  B, total number of resamples, may be taken as large as we wish, since we are in 

complete control of the resampling process. It has been shown tha t  for est imating the s tandard 

error, one should take B to be about  250, whereas for different resampled statistics this number 

may have to be significantly increased in order to reach the desired accuracy (see ET). 

2.3 T h e  M e t h o d  of  P e r c e n t i l e s  

Let us now turn to the problem of using the bootstrap methodology to construct  confidence intervals. 

This area has been a major  focus of theoretical work on the bootstrap and several different methods 

of approaching the problem have been suggested. The "naive" procedure described below is by far 

the most efficient one and can he significantly improved in both rate of convergence and accuracy. 

It is, however, intuitively obvious and easy to justify and seems to be working well enough for 

the cases considered here. For a complete review of available approaches to boots t rap confidence 

intervals, see ET. 

Let us consider 0°, a boots t rap estimate of 0 based on a resvanple of size n from the original 
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sample X h . . .  , X~, and let G.  be its distribution function given the observed sample values 

a . ( x )  = P{b" < z l x i  = z i  . . . . .  X .  = 2 . } .  

Recall tha t  for any distribution function F and p E (0,1) we define the p-th quantile of F (sometimes 

also called p-th percentil#) as F-l(p) = inf{z : F(x) > p}. The bootstrap percentiles method gives 

G~q (cr) and G~'l(1 - a )  as, respectively, lower and upper bounds for the 1 - 2 a  confidence interval 

for 0. Let us note that  for most statistics ~ the distribution function of the boots t rap est imator 8" is 

not available. In practice, G~'l(c~) and G:'I(1 - a)  are approximated by taking multiple resamples 

and then calculating the empirical percentiles. In this case the number of resamples B is usually 

much larger than for estimating BESE; in most cases it is recommended that  B _> 1000. 

3 B o o t s t r a p  and S m o o t h e d  Boot s t rap  Est imators  vs Tradi- 

t ional  M e t h o d s  

In making the case for the usefulness of bootstrap in modeling loss distributions we would first like 

to compare its performance with tha t  of the s tandard methods of inference as presented in actuarial  

textbooks. 

3.1 Application to Wind Losses: Quantiles 

Let us consider the following set of 40 losses due to wind-related catastrophes tha t  occurred in 1977. 

These da t a  are taken from Hogg and Klugman (1984) (henceforth referred to as HK) where they 

are discussed in detail in Chapter  3. The losses were recorded only to the nearest $1,000,000 and 

da t a  included only those losses of $2,000,000 or more. For convenience they have been ordered and 

recorded in millions. 
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2, 2, 2, 2, 2, 2, 2, 2, 2, 2 

2, 2, 3, 3, 3, 3, 4, 4, 4, 5 

5, 5, 5, 6, 6, 6, 6, 8, 8, 9 

15, 17, 22, 23, 24, 24, 25, 27, 32, 43 

Using this da ta  set we shah give two examples illustrating the advantages of applying bootstrap 

approach to modeling losses. The problem at hand is a typical one: assuming tha t  all the losses 

recorded above have come from a single unknown distribution F we would like to use the da ta  to 

obtain some good approximation for F and its various parameters. 

First, let us look at  an important  problem of finding the approximate confidence intervals for 

the quantiles.of F.  The s tandard approach to this problem relies on the nornral approximation to 

the sample quantiles (order statistics). Applying this method, Hogg and Klugman have found the 

approximate 95% confidence i~lterval for the .85-th quan~ile of F to be between X30 and X3s which 

for the wind da ta  traaslates into the observed interval 

(9,32).  

They also have noted that  "..This is a wide interval but without additional assumptiot~s this is the 

best we can do. " Is tha t  really true ? To answer this question let us first note that  in this part icular  

case the highly skewed bhlomial distribution of the .85-th sample quantile is approximated by a 

symmetric normal curve. Thus, it seems reasonable to expect that  normal apl)roximation could 

be improved here upon introducing some form of correction for skewness. In the s tandard  normal 

approximation theory this is usually accomplished by considering, in addition to the normal term, 

the first non-normal term in the asymptotic Edgeworth expansion of the binomial distribution. 

The resulting formula is messy and requires the calculation of a sample skewness coefficient as well 

as some refined form of the continnity correction (el. e.g., Singh 1981). On the other hand, the 

boots t rap has been known to make such a correction automatically (Singh 1981) and hence we 

could expect that  a bootstrap approximation would perforxn better here ~. Indeed, in this case (in 

tThis turns out to be true only for a moderate sample size (here: 40); for binomial distribution with lazge n 
(i.e., large sample size) the effect of the bootstrap correction is negligible. In general, the bootstrap approximation 
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the notation of Section 2) we have O(F) = F- l ( . 85 )  and 0 = ff,~t(.85) .~ X(34} - the  34-th order 

statistic which for the wind da ta  equals 24. For sample quantiles the boots t rap distribution G° 

can be calculated exactly (Shao and Tu 1995, p.10) or approximated by an empirical distribution 

obtained from B resamples as described in Section 2. Using either method, the 1 - 2c~ confidence 

interval calculated using the percentile method is found to be between X(2a) and X(3s) (which is 

also in this case the exact confidence interval obtained by using binomial tables). For the wind da ta  

this translates into the interval 

(s,27) 

which is considerably shorter then the one obtained by Hogg and Klugman. 

3.2 Smoothed Bootstrap. Application to Wind Losses: Excess Losses 

As our second example, let us consider the estimation of the probability tha t  a wind loss will 

exceed a $29,500,000 threshold. In our notation tha t  means that  we wish to estimate the unknown 

parameter  1 - F(29.5). A direct application of the plug-in principle gives immediately the value 0.05, 

the nonparametr ic  estimate based on relative frequencies. However, note tha t  the same number is 

also an estimate for 1 - F(29) and 1 - F(31.5), since the relative frequency stays the same for all 

the tbreshold values not present in reported data.  In particular,  since the wind da ta  were rounded 

off to the nearest unit,  the nonparametrie method does not give a good estimate for any non-integer 

threshold. This problem with the same threshold value of $29,000,000 was also considered in HK 

(Ex.4 p. 94 and Ex.1 p. 116). As indicated therein, one reasonable way to deal with the non-integer 

threshold difficulty is first to fit some continuous curve to the data .  The idea seems justified since 

the clustering effect in the wind da ta  has most likely occurred due to rounding off the records. 

In their book Hogg and Klugman have used s tandard techniques based on method of moments 

and maximum likelihood estimation to fit two different parametric models to the wind data:  the 

t runcated exponential with cdf 

F~(z) = 1 - e -(~-15)/~ 1.5 < z < ~ (3.1) 

performs better than normal one for large sample sizes only for continuous distributions. 
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Figure 1: Empirical cdf for the wind data and two parametric approximations fitted by the maximum 
likelihood method. The solid smooth line represents the curve fitted from the exponential family 
(3.1); the dashed line represents the curve fitted from the Pareto family (3.2). The vertical line is 
drawn for reference at x=29.5. 

for ~u > 0, and the truncated Pareto with cdf 

Fc,.~(x)=l- ~ 1 . 5 < x < o o  (3.2) 

for a > 0, A > 0 .  

For the exponential distribution the method of moments as well as maximum likelihood esti- 

mator of/u was found to be # = 7.725. The M L E ' s  for the Pareto distribution parameters were 

= 28.998 and & = 5.084. Similar values were obtained using the method of moments. The 

empirical distribution function for the wind data along with two fitted maximum likelihood models 

are presented in Figure 1. It is clear that the fit is not good at all, especially around the interval 

(16,24). The reason for the bad fit is the fact that both fitted curves are consistently concave down 

for all the x's and F seems to be concave up in this area. The fit in the tails seems to be a little 

better. 

Once we determined the values of the unknown model parametem, MLE estimators for 1 - 

F(29.5) may be obtained from (3.1) and (3.2). The numerical values of these estimates, their 
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Estimate of Approx. 95% c.i. 
Fitted/vlodel 1 - F(29.5) Approx. s.e. (two sided) 

Non-paralnetric (Plug-in) 0.05 0.034 (-0.019, 0.119) 
Exponential 0.027 0.015 (-0.003, 0.057) 

Pareto 0.036 0.024 (-0.012, 0.084) 
3-Step Moving 

Average Smoother 0.045 0.016 (0.013, 0.079) 

Table 1: Comparison of the performance of estimators for 1 - F(29.5) for the wind data. All 
the confidence intervals and variances for the first three estimates are calculated using the normal 
theory approximation. The variance and confidence intervals for the estimate based on the moving- 
average smoother are calculated by means of the approximate BESE and bootstrap percentile 
methods described in Section 2. 

respective variances and 95% confidence intervals are summarized in the second and third row of 

Table 1. In the first row the same characteristics are calculated for the standard non-parametric 

estimate based on relative frequencies. As we may well see, the respective values of the point 

estimators differ considerably from model to model and, in particular, both MLE's are quite far 

away from the relative frequency estimator. Another thing worth noticing is that the confidence 

intervals for all three models have negative lower bounds - they are obviously too long, at least on 

one side. This also indicates that their true coverage probability may be in fact greater than 95%. 

In order to provide a better estimate of 1 - F(29.5) for the wind data we will first need to 

construct a smoothed version of the empirical cdf. In order to do so we employ the following 

data  transformation widely used in image and signal processing theory where a series of raw data 

{Xh Z2,.. • , xn } is often transformed to a new series of data before it is analyzed. The purpose of 

this transformation is to smooth out local fluctuations in the raw data, so the transformation is 

called data smoothingor a smoother. One common type of smoother employs a linear transformation 

and is called a linear filter. A linear filter with weights {co, cl . . . . .  cr-~} transforms the given data 
r - i  

to weighted averages ~3=o cjxt-j for t = r , r  + 1 , . . .  ,n. Notice that the new data set has length 

n - r - 1. If all the weights c~ are equal and they sum to unity, the linear filter is called a r- term 

moving average. For an overview of this interesting technique and its various applications see e.g., 

Simonoff (1007). To create a smoothed version of the empirical cdf for the wind data we have first 

used a 3-term moving average smoother and then linearized in-between any two consecutive data 

182 



1 

0.8 

0.6 

0.4 

0.2 

0 
0 i0 20 30 40 

Figure 2: Empirical cdf for the wind data  and its smoothed version obtained using the 3-term 
moving average smoother. The vertical line is drawn for reference at  x=29.5. 

points. The plot of this liuearized smoother along with the original empirical cdf is presented ill 

Figure 2. Let us note tha t  the smoother follows tbe "concave-up-down-up" pattern of the data ,  

which was not tile case with the parametric distributions fitted from the families (3.1) and (3.2). 

Once we have constructed tile smoothed empirical cdf for the wind da ta  we may simply read 

the approximate value of 1 - F(29.5) off tile graph (or better yet, ask the computer to do it for us). 

The resulting numerical value is 0.045. What  is the s.e. for that  estimate? We again may use the 

boots t rap to answer that  question without messy calculations. An approximate value for B E S E  

(with B=1000,  but the result is virtually the same for B=100) is found to be 0.016, which is only 

slightly worse then tbat  of exponential model MLE and much better then the s.e. for the Pareto and 

empirical models. Equivalently, the same result may be obtained by numerical integration. Finally, 

the 95% confidence interval for 1 - F(29.5) is found by means of the boots t rap percentile method 

with the number of replications, B=1000. Here the superiority of bootstrap is obvious, as it gives 

an interval which is the second shortest (again exponential MLE model gives a shorter interval) but, 

most importantly, is bounded away frmn 0. The results are summarized in Table 1. Let us note 

tha t  the result based on a smoothed empirical edf and bootstrap dramatically improves tha t  based 

on the relative frequency (plug-in) estimator and standard normal theory. It is perhaps of interest 
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to note also tha t  the MLE estimator of 1 - F(29.5) in the exponential model is nothing else but  a 

parametr ic  boots t rap estimator. For more details on the connection between MLE estimators and 

boots t rap,  see ET. 

4 C l u s t e r e d  D a t a  

In the previous section we have assumed that  the wind da ta  were distributed according to some 

continuous cdf F.  Clearly this is not always the case with loss data  and in general we may expect 

our theoretical loss distribution to follow some mixture of discrete and continuous cdf's. 

4 . 1  M a s s a c h u s e t t s  A u t o  B o d i l y  I n j u r y  L i a b i l i t y  D a t a  

In the Appendix B we present the set of 432 closed losses due to bodily injuries in car accidents 

under bodily injury liability (BI) policies reported in the Boston Territory (19) for the calendar year 

of 1995, as of mid-1997. The losses are recorded in thousands and are subject to various policy limits 

but have no deductible. Policy limits capped 16 out  of 432 losses which are therefore considered 

right-censored. The problem of bootstrapping censored da ta  will be discussed in the next section; 

here we would like to concentrate on another interesting feature of the data .  Massachusetts BI claim 

da ta  are of interest because the underlying behavioral processes have been analyzed extensively. 

Weisberg and Derrig (1992) and Derrig, Weisberg and Chen (1994) describe the Massachusetts 

claiming environment after a tor t  reform as a "lottery" with general damages for non-economic 

loss (pain and suffering) as the prize. Cummins and Tennyson (1992) showed signs of similar 

pat terns  countrywide while RAND (1995) and the Insurance Research Council (1996) documented 

the pervasiveness of the lottery claims in both tort  and no-fault state injury claim payment systems. 

The overwhelming presence of suspected fraud and buildup claims 2 allow for distorted relationships 

between the underlying economic loss and the liability settlement. Claim negotiators can great ly 

reduce the usual non-economic damages when exaggerated injury and /or  excessive t reatment  are 

claimed as legitimate losses. Claim payments in such a negotiated process with discretionary injuries 

2In e.uto, fraudulent claims axe those in which there w~ no injury or the injury was unrelated to the accident 
whereas buildup claims axe those in which the injury is exaggerated and/or the treatment is excessive. 
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Figure 3: Approximation to the empirical cdf for the BI da ta  adjusted for the clustering effect. 
Left panel shown the graph  plotted for the entire range of observed loss values (0,25). Right panel 
zooms in on the values from 3.5 to 5. Discontinuities can be seen here as the graph 's  "jumps" at  
the observed loss values of high frequency: 3.5, 4, 4.5, 5. 

tend to be clustered at  some usual mutually acceptable amounts,  especially for the run-of-the- 

mill strain and sprain claims. Conners and Feldblum (1997) suggest that  the claim environment, 

ra ther  than the usual rat ing variables, are the key elements needed to understand and estimate 

relationships in injury claim data.  All the da ta  characteristics above tend to favor empirical methods 

over analytic ones. 

Looking at  the frequencies of occurrences of the particular values of losses in Massachusetts BI 

claim da t a  we may see that  several numerical values have especially high frequency. The loss of 

$5,000 was reported 21 times (nearly 5% of all the occurrences), the loss of $20,000 was reported 15 

times, $6,500 and $4,000 losses were reported 14 times, a $3,500 loss was only slightly less common 

(13 times), and the losses of size $6,000 and $9,000 occurred 10 times each. There were also several 

other numerical values tha t  have occurred at  least 5 times. The clustering effect is obvious here 

and it seems that  we should incorporate it into our model. This may be accomplished for instance 

by constructing an approximation to the empirical cdf which is linearized in between the observed 

da ta  values except for the ones with high frequency where it behaves like the original, discrete cdf. 

In Figure 3 we present such an approximate cdf for the BI data.  We have allowed our adjusted edf 

to have discontinuities at  the observed values which occurred with frequencies of 5 or greater. 
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4.2 Boots t rap Estimates for Loss Elimination Ratios 

To give an example of statistical inference under this model, let us consider a problem of eliminating 

par t  of the BI losses by purchasing a re-insurance policy tha t  would cap the losses at  some level 

d. Since the BI da ta  is censored a t  $20,000 we would consider here only values of d not exceeding 

$20,000. One of the most important  problems for the insurance company considering purchasing re- 

insurance is an accurate prediction of whether such a purchase would indeed reduce the experienced 

severity of loss and if so, by what  amount.  Typically this type of analysis is done by considering 

the loss elimination ratio (LER) defined as 

EF(X,d) 
LER(d) EFX 

where EFX and EF(X,d) are, respectively, expected value and limited expected value functions 

for a random variable X following a true distribution of loss F. Since LER is only a theoretical 

quant i ty  unobservable in practice, its estimate calculated frmn the da ta  is needed. Usually, one 

considers empirical loss elimination ratio (ELER) given by the obvious plug-in estimate 

ELER(d) = Ep, (X,d) _ ~ i~ l  min(Xi,d) (4.1) 
EF. X ~ i ~  ~ Xi 

where X l , . . .  ,X= is a sample. 

The drawback of ELER is in the fact that  (unlike LER) it changes only at  the values of d being 

equal to one of the observed values of X1 . . . .  ,Xn. It seems, therefore, that  in order to calculate 

approximate LER at  different values of d some smoothed version of ELER (SELER) should be 

considered. SELER may be obtained frmn (4.1) by replacing the empirical cdf Fn by its smoothed 

version obtained for instance by applying a linear smoother (as for the wind da ta  considered in 

Section 3) or a cluster-adjusted linearization. Obviously, the SELER formula may beconm quite 

complicated and its explicit derivation may be tedious (and so would be the derivation of its s tandard  

error). Again, the bootstrap methodology can be applied here to facilitate the computat ion of an 

approximate  value of SELER(d), its s tandard error and confidence interval for any given value of d. 
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Figure 4: Approximate graph of SELER(d)  plotted for the values of d between 0 and the first 
censoring point (20) for the Bl data.  

In Figure 4 we present the gral)h of the S E L E R  estimate for the BI da ta  calculated for the values 

of d ranging from 0 to 20 (lowest censoring point) by means of a bootstrap approximation. This 

approximation was obtained by resampling the cluster-adjusted, liuearized version of the empirical 

cdf (preseuted in the left panel of Figure 3) a large number of times (B = 300) and replicating 

= S E L E R  each time. The resulting sequence of bootstrap estimates 8"(b) (b = 1 , . . . ,  B) was 

then averaged to give the desired approximation of S E L E R .  The calculation of s tandard errors and 

confidence intervals for S E L E R  was done by means of B E S E  and the method of percentiles, as 

described in Section 2. The variances and 95% confidence intervals of S E L E R  for several different 

values of d are presented in Table 2. 

5 Extensions to More Complicated Designs 

So far in our account we have not considered any problelns related to the fact tha t  often in practice 

we may have to deal with truncated (e.g., due to deductible / or censored (e.g., due to policy limit) 

data .  Another frequently encountered difficulty is the need for inflation adjustlnent,  especially with 

da ta  observed over a long period of time. We will address these important  issues now. 
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95% c.i. 
d S E L E R ( d )  s.e, (two sided) 

4 0.505 0.0185 (0.488,0.544) 
5 0.607 0.0210 (0:597,0.626) 

10.5 0.892 0.0188 (0.888,0.911) 
11.5 0.913 0.0173 (0.912,0.917) 
14 0.947 0.0127 (0.933,0.953) 

18.5 0.985 0.00556 (0.98,0.988) 

Table 2: Numerical values of S E L E R ( d )  for the BI data tabulated for several different d along with 
the standard errors and 95% confidence intervals calculated by means of the approximate BESE 
and bootstrap percentile methods described in Section 2. 

5 . 1  P o l i c y  L i m i t s  a n d  D e d u c t i b l e s .  B o o t s t r a p p i n g  C e n s o r e d  D a t a  

Let us consider again the BI data presented in Section 4. There were 432 losses reported out of which 

16 were at  the policy l imits s. These 16 losses may therefore be considered censored from above 

(or right-censored) and the appropriate adjustment for this fact should be made in our approach 

to estimating the loss distribution F. Whereas 16 is less then 4% of the total number of observed 

losses for the BI data, these censored observations are crucial in order to obtain a good estimate of 

F for the large loss values. 

Since the problem of censored data arises naturally in many medical~ engineering, and other 

settings, it has received considerable attention in statistical literature. For the sake of brevity we 

will limit ourselves to the discussion of only one of the several commonly used techniques, the 

so-called Kaplan-Meier (or product-limit) estimator, 

The typical statistical model for right-censored observations replaces the usual observed sample 

X l , . .  , Xn with the set of ordered pairs (Xl, 61),... , ( X a ,  6n) where 

6, = / 0 if X, is censored, 

(, if X~ is not censored 

and the recorded losses are ordered X i  = x l  _< X 2  = x2 _< . . .  _< X n  -- x,~ with the usual convention 

that  in the case of ties the uncensored values x~ (6, = 1) precede the censored ones (6, = 0). The 

aFifteen Io6sc~ were truncated at $ 20,000 and one loss was truncated at $25,000. 
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Kaplan-Meier est imator of 1 - F(x)  is given by 

~=,<~ \ n - i +  1 ]  (5.1) 

The product  in the above formula is that  of i terms where i is the smallest positive integer less or 

equal n (the number of reported losses) and such that  x, < x. The Kaplan-Meier estimator, like 

the empirical cdf, is a step function with jumps at  those values xl tha t  are uncensored. In fact, if 

61 = 1 for all i, i = 1 , . . .  , n  (i.e., no censoring occurs) it is easy to see tha t  (5.1) reduces to the 

usual empirical cdf. If the highest observed loss x ,  is censored, the formula (5.1) is not defined 

for the values of x greater then xn. The usual practice is then to add one uncensored da ta  point 

(loss value) xn+l such tha t  z ,  < xn+l and to define S(x) = 0 for x > x , + l .  For instance, for 

:the BI da ta  the largest reported loss was censored at 25 and we had to add one artificial "loss" at  

26 to define the Kaplan-Meier curve for the losses exceeding 25. The number 26 was picked quite 

arbitrarily, in actuarial practice more precise guess of the maximal possible value of loss (e.g. based 

on past  experience) should be easily available. The Kaplan-Meier estimator enjoys several optimal 

statistical properties and can be viewed as a generalization of the usual empirical cdf adjusted for 

the fact of censoring losses. Moreover, t runcated losses or t runcated and censored losses may be 

easily handled by some simple modifications of (5.1). For more detMls and some examples see for 

instance Klugman, Panjer and Willmot (1998 chap.2). 

In the case of loss da ta  coming from a mixture of some discrete and continuous cdf's, like, for 

instance, the BI data ,  the linearization of Kaplan-Meier estimator with adjustment for clustering 

seems to be appropriate. In Figure 5 we present the plots of a linearized Kaplan-Meier est imator 

for the BI da ta  and the approximate empirical cdf function, which was discussed in Section 4, not 

corrected for the censoring effect. It is interesting to note tha t  the two curves agree very well 

up to the first censoring point (20), where Kaplan-Meier estimator s tar ts  to correct for the effect 

of censoring. It is thus reasonable to believe tha t  for instance the values of S E L E R  calculated 

in Table 2 should be close to the values obtained by bootstrapping the Kaplan-Meier estimator. 

This, however, does not have to be the case in general. The agreement between the Kaplan- 
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Figure 5: Linearized and adjusted for clustering Kaplan-Meier estimator of the true loss distribution 
F for the BI da ta  plotted along with the empirical cdf described in Section 4 which was adjusted 
for the clustering effect but disregarded censoring. The two curves agree very well up to the first 
censoring point (20), where Kaplan-Meier estimator (lower curve) starts  to correct for the effect of 
censoring. 

Meier curve and the smoothed cdf of the BI data  is mostly due to the relatively small number of 

censored values. The estimation of other parameters of interest under the Kap[an-Meier model (e.g. 

quantiles, probability of exceedance, etc) as well as their s tandard errors may be performed using 

the boots t rap methodology outlined in the previous sections. For more details on the problem of 

boots t rapping censored data,  see for instance Akritas (1986). 

5.2  Inflation Adjustment 

The adjustment  for the effect of inflation can be handled quite easily in our setting. If X is our 

random variable modeling the loss which follows cdf F ,  when adjusting for inflation we are interested 

in obtaining an estimate of the distribution of Z = (1 + r)X, where r is the uniform inflation rate 
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over the period of concern. If Z follows a cdf G then obviously, 

= F  z 

and the same relation holds when we replace G and F with the usual empirical cdf 's or their 

smoothed versions. 4 In this setting bootstrap techniques described earlier should be applied to the 

empirical approximation of G. 

6 S o m e  F i n a l  R e m a r k s  

Although we have limited the discussion of resampling methods in DFA to modeling losses, even 

with this narrowed scope we have presented only some examples of modern statistical methods 

relevant to the topic. Other important  areas of applications which has been purposely left out here 

include kernel estimation and the use of resampling in non-parametric regression and auto-regression 

models. The latter includes for instance such important problems as bootstrapping time series data ,  

modeling time correlated losses and other time-dependent variables. Over the past several years 

some of these techniques, like non-parametric density estimation, have already found their way 

into actuarial  pracgice (cf. e.g., Klugman at al. 1998). Others, like bootstrap,  are still waiting. 

The purpose of this article was not to give a complete account of the ulost recent developments in 

non-parametric statistical methods but rather to show by example hog' easily they may be adapted 

to the real-life situations and how often they may, in fact, outperform the traditional approach. 

7 C o n c l u s i o n s  

Several examples of the practical advantages of the bootstrap methodology were presented. We 

have shown by example that  in many cases bootstrap provides a better approximation to the 

true parameters of the underlying distribution of interest then the traditional, textbook approach 

relying on the MLE and normal approximation theory. It seems that  bootstrap may be especially 

4Subcls~.ses of losses may inflate at different rates, soft tissue vs hard injuries for the BI data of, an example. The 
theoretical cdf G ma:,' be then derived using multiple inflation rates as welt. 
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useful in the statistical analysis of da ta  which do not follow any obvious continuous paranmtric 

model (or mixture of models) or /and contain a discrete component (like the BI da ta  presented in 

Section 4). The presence of censoring and truncation in the data  does not present a problem for the 

boots t rap which, as seen in Section 5, may be easily incorporated into a s tandard  non-parametric 

analysis of censored or t runcated data.  Of course, most of the boots t rap analysis is typically done 

approximately using a Monte Carlo simulation (generating resamptes), which makes the computer  

an indispensable tool in the bootstrap world. Even more, according to some leading boots t rap 

theorists, automation is the goal: "One can describe the ideal computer-based statistical inference 

machine of the future. The statistician enters the da ta  . . .  the machine answers the questions in 

a way tha t  is optimal according to statistical theory. For s tandard errors and confidence intervals, 

the ideal is in sight if not in band" (quoted from page 393 of ET). 

The resampling methods described in this paper can be used (possibly after correcting for time- 

dependence) to handle the empirical da ta  concerning all DFA model input variables, including 

interest rates and capital market returns. The methodologies also apply to any financial intermedi- 

ary, such as a bank or a life insurance company. It would be interesting, indeed it is imperative, to 

make bootstrap-based inferences in such settings and compare their effectiveness and applicability 

with classical parametric,  trend-based, Bayesian, and other methods of analysis. The boots t rap 

computer  program (using Mathematica 3.0 programming language, see Appendix A) tha t  we have 

developed here to provide smooth estimates of an empirical cdf, BESE, and boots t rap confidence 

intervals could be easily adapted to produce appropriate estimates in Dynamic Financial Analysis, 

including regulatory calculations for Value at  Risk and Asset Adequacy Analysis. It would also 

be interesting to investigate further all areas of financial managenmnt where our methodologies 

may hold a promise of future applications. For instance, by modeling both the asset side (interest 

rates and capital market  returns) and the liabilities side (losses, mortality, etc.), as well as their 

interactions (crediting strategies, investment strategies of the firm) one might create nonparametric 

models of the firm, and use such a whole-company model to analyze value optimization and solvency 

protection in an integrated framework. Such whole company models are more and more commonly 

used by financial intermediaries, but we propose an additional level of complexity by adding the 
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bootstrap estimation of their underlying random structures. This methodology is immensely com- 

putationally intensive, but it holds great promise not just for internal company models, but also for 

regulatory supervision, hopefully allowing for better oversight avoiding problems such as insolven- 

cies of savings and loans institutions in the late 1980s, life insurance firms such as Executive Life 

and Mutual Benefit, or catastrophe-related problems of property-casualty ilmurers. 
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Appendix A 
The computer program written in Mathematica 3.0 programming language used to calculate bootstrap replications, 
bootstrap standard errors estimates (BESE) and bootstrap 95% confidence intervals using the method of  percentiles. 

(* Here we include the standard statistical libraries to be used in our bootstraping program *) 

<< St atist Its" Oat aManlpulat ion" 
<< Statlst its" ContlnuousDIst ribut ions" 

(* Here we define resampling procedure "boot[]" as well as empirical cdf functions: usual empirical cdf "empcdf[]" and its 
smoothed version "cntcdf[]" . Procedure "inv[]' is used by "boot[l" *) 

(* Arguments for the procedures are as follows: 
"boot[]" has two arguments: "lst" (any data list of numerical values) and ,"nosam" (number of  resamples, 

usually nosum=Length[lst] 
"empcdf[]" and "cntcd.f[]" both have two arguments "lst" (any data list of  numerical values) and "x" -the 

numerical argument of function *) 

Inv[x_, Intx_] :=  

Module[{nlx. Length[Istz]}, 
If Ix**0, lstx[[1]], 
I£[x =- I, istx[[nlz]] , k - Floor[(nlz- I) z]; 
((nlx-1) x-k) (istz[[k+2]] -Istx[[k+1]]) +Istx[[k+l]] 

] 
] 

]; 

boot[ix_, nosam] l- Module[{tt, i, a, n, lstz}, Istz - Sort [lx] ; n - Length[Ix] ; 
Istx= Platten[{{21stx[[l]] - Istx[[2]]}, Istx, {21stx[[n]] -Istz[[n- 1]]}}]! 
tt a Rand~Array[UniformDistrlbution [0, i], nosam] ; 

F o r [ i  - 1, i <* nonam , i++ ,  o [ i ]  - l n v [ t t [  [ i ]  ] ,  l s t x ]  ] ; 
Table[all], {i, I, nonam}] 
]~ 

c n t c d f  [ 1 s t _ ,  z_ ]  : .  Modu le  [ { 1 1 .  S o r t  [ Z s t ] ,  n - L e n g t h [ L s t ] ,  I = 1 } ,  

l l * F 1 9 t t e n t ( ( a l X [ [ X ] ] - 1 1 [ [ 2 ] ] } ,  lX,  { 2 1 1 [ [ . ] ] - 1 1 [ [ n - = ] ] ) ) ] ~  
While[£ <- n+2 && x>ll[[i]], £++]; 
If[i == I# 0, If[i-= o÷3, I, ((x- 11[[1- 1]]) / (11[[i]] -11[[i- 1]]) ÷ (i-2)) / (o+ I)]] 
]J 

empcdf  l i s t _ ,  x_] : °  M o d u l e [ { l l  * S o r t  l i n t ] ,  o • L e n g t h [ l o t ] ,  I . 1 ) ,  
wh£1e [£ <0 n &a x > 11 [ [ i ]  ] ,  i . . ]  I 

I £ [ i - : l ,  O, ( i - l )  / n )  
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(* Here we define the bootstrap replications of statistic them[] 
Procedure "them[]" calculates a statistic from the list of date "Ist". 
Procedure "replicate[]" replicates the statistic "thctaN" "norep" number of frees using procedure "boot []" with 
parameters *lst" and 'nosam". As a result of this procedure we obtain a list of replicated values of "them[]" *) 

t h e t a [ I s t _ ]  i -  I ;  (* d e f i n e  your There s t a t i s t i c  b e t e l )  

r e p l i c e t e [ l s t _ ,  norep_,  n o s ~ ]  s .  Module[{l ,  1 1 -  {}}, For [ i -  1, i ~ o n o r e p ,  i÷÷,  
11 - F l e t t e n [ { l l ,  t h e t e [ b o o t [ l s t ,  uosam]]}] 
] ;  11 

1; 

(*Here we calculate BESE and 95% confidence inte~al b~ed on the method of percentiles ~ r  1000 replications *) 

(* run " r e p l i c a t e [ l "  p rocedure ,  s t o r e  the  r e s u l t s  in  v a r i a b l e  " l i s t o f r e p "  *) 

l l e t o f r e p  - r e p l i c e t e [ I s t ,  norep ,  noeam]; 

(* BESE*) 
V e r i e e c e [ l i s t o f r e p ]  

(* 95 i con f idence  i n t e r v a l  f o r  number of  r e p l i c e t i o e s  (eorep) -1000 *) 

95 c l  - { l i s t o f r e p [ [ 2 5 ] ] ,  l l s t e f r e p [ [ 9 ? 5 ] ] }  

©G.Rempala. TheaboveprogramwaswdttcnusingMathematica 3~ programminglanguage. Ma~emat~aisa registe~d 

trademurk of Woffram Research, Inc. 

197 



Appendix B Maaoach~oottS BZ Data 

NO Injury Type Total Amt Paid Policy Limit 

1 05 $393 $20 ,000  
2 O1 $20 ,000  $500 

$500 3 06 $20,000 
4 08 $900 $20 ,000  
5 06 

05 
7 05 
8 05 

9 05 
i0 
ii 

05 
05 
04 12 

13 05 
14 05 
15 
16 

05 
05 
05 I? 

$i,000 
$I,000 
~1,250 
~1,500 
$1 ,500  
$1,525 
~1,631 
$1,650 
$1,700 
$1,700 
~I,800 
$1,950  
$2 ,000 

$20 ,000  
$20,000 
$20,000 
$20 ,000  
$20,000 
$20 ,000  
$100,000 
$20,000  
820 ,000  

$2 ,100  

$20 ,000  
$20,000 
$20 ,000  
$20 ,000  

1B 05 $25 ,000  
19 05 $2 ,007  $20 ,000  
20 05 $20 ,000  

05 
05 

21 
22 
23 

$2 ,100  
$2,100 
$2,250  05 

$20F000 
$20 ,000  
$20 ,000  
$20,000 24 05 $2 ,250  

25 05 $2 ,250  $20 ,000  
26 05 • $2 ,250 $20 ,000  

05 
05 

27 $2r270 
$2 ,300  28 

29 $2,300 05 

$20,000 
$20,000  

$2,500 

$20,000  
$20 ,000  30 05 82 ,375  

31 05 $2 ,450  $20 ,000  
32 05 $2 ,500 $20 ,000  
33 05 

05 $2,500 34 
$100,000 
$20,000 

35 06 $2,500 $20,000 
36 01 $2,600 $20,000 
37 05 $2,750 $20,000 
38 05 $2 ,800 $20 ,000  
39 05 $2 ,813  

05 
05 

40 
41 

$2,900 
$3,000 
$3,000 
$3r000 
$3,000 

42 05 
43 05 
44 05 
45 05 

$20 ,000  
$20 ,000  
$20 ,000  
820,000 
$20,000  
$20 ,000  
$20 ,000  
$20 ,000  

63 ,000 
46 05 $3 ,000  
47 05 83 ,000  $20 ,000  
48 06 $3 ,000 

$3r000 
$3~000 
$3,000  

49 06 
50 99 
51 06 

$20 ,000  
$50 ,000  
$20 ,000  
820 ,000  

52 05 $3 ,000  $20 ,000  
53 05 820 ,000  83 ,000 

$3 ,000  $20 f000  
$20 ,000  

54 04 
55 05 $3 ,150  
56 05 $3 ,250  $20 ,000  
57 05 $3 ,300  

$3 ,300  
$20 ,000  

58 05 $20 ,000  
59 05 $3 ,300  $20 ,000  
60 04 $20 ,000  
61 

$3 ,500  
$3 ,500  04 $ 1 , 0 0 0 , 0 0 0  

$20 ,000  62 05 $ ] , 5 0 0  
63 01 $3 ,500  $20 ,000  
64 05 $3 ,500  $20 ,000  
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Appendix B Massachusetts sI Data 

NO Z~Jury Type Total Amt Pald Policy Limit 

65 05 $3,500 $20,000 
66 05 $3,500 $20,000 
67 05 $3,900 $20,000 
68 05 
69 

$3r500 $20f000 
04 63,500 $20,000 

70 05 03,500 $20,000 
?1 09 $3,500 $50,000 
72 99 $3,500 $20f000 
73 05 $3,650 $20,000 
74 05 $3,700 $20,000 
75 05 $3,700 $20,000 
76 05 $3,700 $20,000 
77 05 $3,750 $20,000 
78 05 $3,750 $20,000 
79 05 $3,750 $20,000 
80 05 $3,750 $20,000 
01 06 $3,900 $20,000 
82 05 $4,000 620,000 
83 05 $4,000 $ 1 , 0 0 0 , 0 0 0  
84 05 $4,000 $20,000 
e5 05 $4,000 $20,000 
86 05 $4,000 $20,000 
57 04 $4,000 $20,000 
85 06 $4,000 $20,000 
89 05 $4,000 $20,000 
90 05 $4,000 $20,000 
91 05 $4~000 
92 

q2o,ooo 
09 $4,000 $20,000 

93 05 $4,000 $20,000 
94 01 $4,000 $20,000 
95 05 $4,000 $25,000 
96 05 $4,250 $20,000 
97 06 $4,250 $20,000 
98 06 $4,278 $50,000 
99 05 $4,396 $25,000 
i00 05 $4,400 $20,000 
101 05 $4,476 $20,000 
102 05 $4,500 $20,000 
103 05 $4,500 $20,000 
104 05 $4,500 $25,000 
105 05 $4,500 $20,000 
106 i0 $4,500 $20,000 
107 0S $4,500 $20,000 
i08 05 $4,521 $20,000 
109 05 $4,697 $20,000 
110 05 $4,700 $20,000 
iii 05 $4,700 $20,000 
112 05 $4,700 $20,000 
113 04 $4,725 $20,000 
114 05 $4,750 $20,000 
115 05 $5,000 $20,000 
116 05 $5,000 $I00,000 
117 05 $5,000 $20,000 
118 05 $5,000 $20,000 
119 05 $5,000 $20,000 
120 05 $5,000 $20,000 
121 05 $5,000 $20,000 
122 04 $5,000 $20,000 
123 05 $5,000 $20,000 
124 05 $5,000 $20,000 
125 05 $5,000 $20,000 
126 05 $5,000 $20,000 
127 09 $5,000 $20.000 
120 06 $5,000 $20,000 
129 04 $5,000 $20,000 
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Appendix B Massachusetts BI Data 

NO Injury Type 

130 01 
131 05 
132 05 
133 05 
134 05 
135 05 
136 06 
137 05 
138 05 
139 05 

Total Amt Paid 

$5,000 
$5,000 
$5,000 
$5,000 
$5,000 
$5,000 
$5,100 
$5,200 
$5,200 
$5,200 

140 05 $5,200 
141 05 $5,200 
142 05 $5,200 
143 05 
144 05 
145 05 
146 05 
147 05 
148 05 
149 05 
150 05 
151 04 
152 05 
153 05 
154 05 
155 05 
156 04 
157 05 
158 04 

05 
05 

159 
160 
161 05 
162 04 
163 05 
164 05 
165 05 
166 06 
167 05 
168 05 
169 05 
170 05 
171 05 
172 05 
173 05 
174 05 
175 05 
176 05 
177 06 
178 05 
179 05 
180 05 
181 06 
182 05 
183 05 
104 06 
185 05 
166 05 
187 05 
100 05 
189 01 

$5,200 
$5,225 
$5,250 
$5,250 
$5,292 
$5,296 
$5,300 
$5,300 
$5,300 
$5,333 
$5,333 
$5,333 

Policy Limit 

$20,000 
$20,000 
$20,000 
$20,000 

$100,000 
$20,000 
$20,000 
$20r000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$20,000 

$5,333 $20,000 
$5,344 $20,000 
$5,366 $20,000 
$5,400 
$5,400 
$5,415 
$ 5 , 4 9 7  
$5,500 

$30,000 
$20,000 
$20,000 

$100,000 
$20,000 

$5,500 $20,000 
$5,500 $20,000 
$5,500 
$5,500 
$5,566 
$5,600 
$5,716 
$5,714 
$5,714 
$5,714 
$5,714 
$5,714 
$5,714 
$5,725 
$5,750 
$5,750 
$5,750 
$5,652 
$5,898 
$5,900 
$5,964 
$5,990 
$6,000 
$6,000 
$6,000 
$6,000 
$6,000 

190 05 $6,000 
191 05 $6,000 
192 05 $6,000 

05 193 
194 05 

$6,000 
$6,000 

$20,000 
$20,000 
$20,000 
$25,000 
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  

$100,000 
$20,000 
$ 2 0 , 0 0 0  
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$25,000 
$20,000 
$ 2 0 , 0 0 0  
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
$20,000 
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A p p e n d i x  B ~ . s s a c h u a e t t s  BZ D a t a  

NO Z n J u r y  ' l E e  T o t a l  Amt P a i d  P o l i c y  L i m i t  

195 06 $6,077 $20 ,000  
196 05 96 ,078  $20 ,000  
197 05 $6,131 $20 ,000  
195 05 $6,166 $20,000  
199 05 $6,166 $20,000  
200 05 $6 ,169  $20 ,000  
201 05 $6 ,171  $20 ,000  
202 05 
203 05 

$6 ,208  
$6 ,263  

05 

$20 ,000  
$20 ,000  

$6 ,519  

204 05 $6 ,318  $20 ,000  
205 05 $6 ,399  $20 ,000  
206 05 $6 ,413  $20 ,000  

'207 05 $6 ,500  $20 ,000  
200 05 $6 ,500  $20 ,000  
209 05 $6 ,500  $20 ,000  
210 05 $6 ,500  $20 ,000  
211 05 $6 ,500  $20 ,000  
212 05 $6,500  $20 ,000  
213 05 $6 ,500  $20 ,000  
216 05 $6 ,500  ~20 ,000  
215 99 $6 ,500  $20 ,000  
216 05 $6 ,500  $20 ,000  
217 05 $6 ,500  $50 ,000  
218 05 $6 ,500  $25 ,000  
219 05 $6 ,500  $20 ,000  
220 $6 ,500  $50 ,000  
221 
222 $6 ,536  

$20 ,000  

$6 ,703  

$20 ,000  04 
223 05 $6 ,545  $20 ,000  
224 01 $6 ,558  $25 ,000  
225 06 $6 ,600  $20 ,000  
226 05 $6 ,600  $20 ,000  
227 06 $6 ,620  $20 ,000  
228 05 $6 ,700  $20 ,000  
229  06 $20 ,000  
230 01 $6 ,743  $25 ,000  
231 05 $6 ,750  $20 ,000  
232 05 $5 ,800  $20 ,000  
233 
236 

$6 ,870  
$6 ,693 

04 
05 

$ 2 0 , 0 0 0  
$50 ,000  

235 05 $6 ,098  $SO,O00 
236 05 $6 ,907 $20 ,000  
237 05 $6,933 $20,000 
238 05 $6 ,935  $100 ,000  
239 05 $6 ,077 $100 ,000  
240 05 $7 ,000  $100 ,000  
241 05 $7 ,000  $20 ,000  
242 05 $7 ,000 $20 ,000  
263 05 $7 ,000  $20 ,000  
246 05 $7 ,000  $20 ,000  
245 05 $7 ,000  $20 ,000  
246 05 $7 ,000  $20 ,000  
247 05 $7 ,014  $20 ,000  
248 04 $7 ,043  $20 ,000  
249 05 $7 ,079  $20 ,000  
250 05 $7 ,118  $20 ,000  
251 05 $7 ,163  $20 ,000  
252 05 $7 ,191  $20 ,000  
253 05 $7 ,200  $20 ,000  
254 05 $7 ,200  $20 ,000  
255 05 $7 ,250  $20 ,000  
256 04 $7,252  $20 ,000  
257 05 $7 ,304  $20 ,000  
258 01 $7 ,412  $25 ,000  
255 Ol $7 ,425  $100 ,000  
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Appendix  B Maaaach~latta BZ Data 

NO Injury 'l'y1;~e Total Am~ Paid Policy Limit 

260 05 
262 
2 6 2  
263 
264 
265 
266 
267 
268 
269 
2 7 0  
271 

05 
05 
05 
05 
05 
05 
05 
05 
89 
O1 
05 

$ 7 f 4 3 2  
$ 7 , 4 4 4  
~ 7 , 4 ~ 7  
$7,500 
$7,500 
$7,500 
$7,S00 
$7r5oo 
$7,500 
$7,500 
$7,564 
$7,820 
$7,629 

$20,000 
$50,000 
$20,000 
$20,000 
$ 2 0 , 0 0 0  
$25,000 
$20,000 
$20,000 
$20,0O0 
$20,000 
$20,000 
$20,000 
$20,000 272 18 

273 05 $7,657 $20,000 
274 01 $ 7 , 6 7 0  

$ 7 , 6 7 1  
$20,000 
$20,000 275 05 

276 04 $7,696 $100,000 
277 04 $7#700 $100,000 
278 05 $7,750 
279 05 
280 

$7~754 
$7,820 05 

$20,000 
$20,000 
$20,000 

281 04 $7,059 $20,000 
282 05 $7,888 $20,000 
203 01 $7,873 $25,000 
204 05 $7,920 $100,000 
205 05 $7,922 $20,000 
286 05 $7 ,9 t5  $20,000 
287 05 $7,954 $20,000 
288 05 $7,981 $20,000 
289 05 $8,000 $100,000 
290 05 $8,000 $100,000 
291 $0,000 $20,000 
292 10 $8,013 $50,000 
293 05 $8,073 $20,000 
294 05 $8,200 $20,000 
298 Ol 08,298 $25,000 
296 06 $8,300 $20,000 
297 Ol $0,420 $20,000 
298 05 $8,485 820,000 
299 05 $8,500 $50,000 
300 05 $8,500 $20,000 
301 99 $8,500 $20,000 
302 05 $8,500 $20,000 
303 05 $0,515 $20,000 
304 05 $8,612 $20,000 
305 05 $8,834 8100,000 
306 05 $8,806 $20,000 
307 05 $8,785 $20,000 
308 05 $8,786 $20,000 
309 05 $8,794 $20,000 
310 05 $8,005 $20,000 
311 OS $8,815 $20,000 
312 05 $8,856 $20,000 
313 05 $8,061 $20,000 
314 06 $8,882 $20,000 
315 05 $8,911 $20,000 
316 05 $8,914 $20,000 
317 05 $8,988 . $20,000 
318 05 $9,000 $100,000 
319 05 $9,000 $20,000 
320 05 $9,000 $20,000 
321 05 $9,000 $20,000 
322 05 $9,000 $20,000 
323 05 $9,000 $0 
324 05 $9,000 $20,000 
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Appendix B Massachusetts BZ Data 

NO Injury T'y'~;~e Total Amt Paid Policy Limit 

325 05 $9,000 $20,000 
326 05 $9,000 $20,000 
327 05 $9,000 $20,000 
328 05 $9,009 $20 ,000  
329 05 $9,020 $20,000 
330 05 $9,030 $25,000 
331 05 $9,051 $20,000 
332 05 $9,053 $20 ,000  
333 05 $9,073 $100,000 
334 05 $9,100 $20,000 
335 01 $9,129 $20,000 
336 05 $9,200 $20,000 
337 05 $9,208 $20,000 
338 05 $9 ,300  $20 ,000  
339 05 $9 ,355  $20 ,000  
340 05 $9,356 $20 ,000  
341 05 $9,392 $20,000 
342 05 $9,395 $I00,000 
343 05 $9,423 $20,000 
344 05 $9 ,428  $20 ,000  
345 05 $9 ,451  $100 ,000  
346 05 $9,500 $20,000 
347 05 $9,500 $20,000  
348 05 $9,602 $20,000 
349 05 $9,710 $20,000 
350 04 $9,881 $25,000 
351 05 
352 00 

$9~909 
$10 ,000  

$20 ,000  
$20,000 

$12,500 

353 06 $10,000 $20 ,000  
354 05 $10,000 $ I 0 0 , 0 0 0  
355 06 $10,000 $20 ,000  
356 04 $10 ,106  $20 ,000  
357 05 $10 ,229  $20 ,000  
358 05 $10,330 $20 ,000  
359 05 $10 ,331  $20 ,000  
360 05 $10,400 $20 ,000  
361 05 $10,505 $100 ,000  
362 04 $10 ,555  $20 ,000  
363 01 $10 ,645  $20 ,000  
354 08 $10,861  $20 ,000  
365 05 $10,960 $20 ,000  
366 05 $11,000 $50 ,000  
367 04 $11 ,000  $100 ,000  
368 05 $11,032 $20,000 
369 05 $11,144 $20,000 
370 05 $11,166 $20,000 
371 01 $11,262 $25,000 
372 05 $11,344 $50,000 
373 99 $11,353 $20,000 
374 05 $11,305 $20,000 
375 01 $11,500 $20,000 
376 05 $11,626 $20,000 
377 05 $11,035 $20,000 
378 99 $11,906 $20,000 
379 05 $11,991 $20,000 
300 04 $12,000 $20,000 
381 05 $12,000 $20,000 
382 05 $12,000 $20 ,000  
383 05 $12,214 $i00,000 
384 05 $12,274 $20,000  
385 05 $12,374 $20,000 
386 99 $12 ,380  $20 ,000  
307 03 
388 05 
309 05 

$12,509 
$12 ,621  

$20 ,000  
$20 ,000  

$100 ,000  
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Appendix B Massachueette BX Data 

NO XnJury T3'~,e Total Amt Paid Policy Limit 

390 05 $12,756 $20,000 
391 05 $12,859 $20,000 
392 05 $12 ,908  $20 ,000  
393 07 $13,000 $20,000 
394 05 $13,009 $20,000 
395 05 $13,299 $50,000 
396 04 $13,347 $20,000 
397 05 $13,500 $20,000 
398 05 $13,570 $20,000 
399 99 $13,572 $i00,000 
400 04 $14,181 $20,000 
401 05 $14,700 $20,000 
402 05 $14,953 $20,000 
403 05 $15 ,500  $20 ,000  
404 05 $15,500 $i00,000 
405 05 $15,765 $20,000 
406 18 $16,000 $20,000 
407 05 $16 ,668  $20 ,000  
408 05 ~16,794 $20,000 
409 04 $17,267 $I00,000 
410 
411 
412 
4,13 

99 
99 
15 
05 

414 99 
415 05 
416 07 
417 08 
418 08 
419 07 
420 07 

$18,500  
~15,500 
$19 ,000  
$19 ,012  
$20 ,000  

~20 ,000  
~20 ,000  
820 ,000  
$20 ,000  
$20 ,000  

$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20,000 $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  

421 03 $20 ,000  $20 ,000  
422 06 $20 ,000  $20 ,000  
423 16 $20 ,000  $20 ,000  

$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  
$20 ,000  $20 ,000  

424 05 
425 06 
426 05 
427 09 
420 05 
429 01 
430 05 
431 99 
432 02 

$22 ,652  
$2&,500 $50 ,000  
$25 ,000  $25 ,000  
$25 ,000  

$100 ,000  

$100 ,000  
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Appendix B Massachusettm BI Data 

Injury Type Deecription 

01 MINOR LACERATIONS/CONTUSIONS 

02 SERIOUS LACERATION 

03 SCARRING OR PERMANENT DISFIGUREMENT 

04 NECK ONLY SPRAIN/STRAIN 

05 BACK OR NECK & BACK SPRAINISTRAIN 

06 OTHER SPRAIN/STRAIN 

07 FRACTURE OR WEIGHT BEARING BONE 

08 OTHER FRACTURE 

09 INTERNAL ORGAN INJURY 

I 0 CONCUSSION 

11 PERMANENT BRAIN INJURY 

12 LOSS OF BODY PART 

13 PARALYSIS/PARESIS 

14 JAW JOINT DYSFUNCTION 

15 LOSS OF A SENSE 

16 FATAL I TY 

17 DENTAL 
18 CARTILAGE/MUSCLE/TENDONILIGAM~NT INJURY 

19 DISC HZRNIATION 

20 PREGNANCY RELATED 

21 PRE-EXZSTING CONDITION 

22 PSYCHOLOGICAL CONDITION 

30 NO VISIBLE INJURY 

99 OTHER 
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STOCHASTIC MODELING AND 
ERROR CORRELATION 

IN DYNAMIC FINANCIAL ANALYSIS 

SON T. Tu 
SCRUGGS CONSULTING 

ARGYLE, TEXAS 

ABSTRACT 

New treatments of  stochastic modeling and error 
correlation in dynamic financial analysis are 

introduced. The former refers to the methods for 
modeling individual insurance operations. The latter 

refers to the technique for considering the 
interactions and correlations among those 

operations. The stochastic chain ladder model, a 
new technique for loss development, is also 

introduced and is shown to be an integral part of  
DFA. 
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I. INTRODUCTION 

Dynamic financial analysis is now segregated into two different philosophies: that of stochastic 
simulation, and that of scenario testing. Feldblum ~ discussed the strengths and weaknesses of the two 
approaches. We believe that the two need not be separate and competing, but indeed need to be 
complementary. With the model proposed in this paper, we hope to narrow the gap between these two 
approaches. 

The construction of this model is motivated principally by four factors. The fast two, qualitative 
in nature, are understandability and flexibility. The other two, quantitative in nature, are the stochastic 
modeling of individual insurance components and the error correlation among those components. 

Many users and interested parties of a dynamic financial analysis model are not actuaries and 
technical analysts. Therefore, it is important that these users can gain, relatively easily, a good 
understanding and confidence in the model. 

Secondly, the usage to which a model will be applied varies widely. In some studies, the analyst 
may only be interested in the overall picture; and relatively few insurance operations need be modeled. In 
another study, a relatively large number of operations needed to be included, because more delailed 
quantitative analyses are required. A model should have sufficient flexibility to suit both extremes. 

To satisfy the above two factors, our model is controlled by a set of governing equations. One or 
more oftbese equations describes each operation. The model has understandability, because each equation 
is usually a readily accepted insurance formula. The model has flexibility, because the number of 
equations can be expanded or contracted, depending on the needs and objectives of the analyst. 

There can be several stochastic models for generating observations of an insurance variable, such 
as the loss ratio or the investment return. By far, the most popular among actuaries is the averaging 
technique, where the observations are assumed to be random about some average. In a subsequent section, 
we present two other alternatives, which we name the current-value and current-change models. We show 
that they fit the historical data used in this study better than the averaging technique. These two models 
have analogies in time-series analysis. 

An important consideration in any DFA model is the correlation among the variables considered 
in the analysis. Depending upon the sign oftbe correlation between two variables, the correlation can be 
either stabilizing or destabilizing, a concept that we will elucidate in section 4. The correlation coefficients 
among the variables will be measured. As a natural and necessary by-product, we present a technique for 
the generation of correlated random numbers. 

In this paper, we aim only to demonstrate the concept and potential of the model. We have 
simplicity as one of the objectives of the paper; therefore, the number of operations has been kept to a 
relative few. We will study a hypothetical insurer, which is assumed to have written only Workers 
Compensation for the last ten years. Our study projects five years into the future. At the end ofthat time 
frame, among other quantities, we want to examine the probability ofroin. To work with realistic data, all 
of the relevant data has been taken from the 1997 Best's Aggregates and Averages publication. 

In section 2, we present the governing system of equations used in this study. In section 3, we 
present the hypothetical initial state of the company 

In section 4, we present the stochastic modeling of the insurance random variables. In section 5, 
we model paid losses. For this purpose, we will introduce our research on the stochastic chain ladder and 
Bornhuetter-Ferguson loss reserving models. 

In section 6, a technique for the generation ofcorrelated random numbers will be introduced. In 
section 7, we pull together the materials in all the preceding sections to generate simulated solutions for the 
next five years. 

In section 8, we show that the simulated results can be assumed normally distributed. In section 9, 
we outline the many potential extensions to the model. 

In the concluding section, we summarize and discuss the criteria by which a user of dynamic 
financial analysis would evaluate one strategy or decision as being superior to another. 

Sholom Feldblum, "Forecasting the Future: Stochastic Simulation and Scenario Testing." Incorporating 
Risk Factors in Dynamical Financial Analysis. 1995 CAS Discussion Paper Program. 
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2. GOVERNING SYSTEM OF EQUATIONS 

Following is the list of  random variables that we consider for this hypothetical study: 

AS = Assets, 
L I  = Liabilities, 

S U  = Surplus, 
P L  = Paid Losses, 
]L = Incurred Losses, 
11 = Investment Income, 
EP = Earned Premiums, 
P D  = Paid Policyholders' Dividends, 
PE = Paid Underwriting Expenses, 

W P  = Written Premiums, 
I IR  = Investment Income Ratio, 

U E R  = Calendar-Year Underwriting Expense Ratio, 
P D R  = CY PoLicyholders' Dividend Ratio, 
E P R  = CY Earned Premium Ratio, 
L R  = Accident-Year Loss and LAE Ratio, 
F = value of the loss cumulative distribution fi.mction, and 

= process error of the paid loss. 

Each ofthe variables takes the argument of time. It is an understood that a variable refers to the 
value during that year (such as written premiums and paid losses) or at year-end (such as assets and 
liabilities). For simplicity, we will consider only yearly intervals. 

Consider the following system of nine equations: 

(2.1) A S ( t )  = L I ( t ) + S U ( t )  

(2.2) L1(t) = LI ( t  - 1) - PL(t )  + 1L(t) 

(2.3) AS( t )  = AS( t  - 1) + WP(t)  + 11(0 - PL(t)  - PE( t )  - PD(t )  

(2 .4)  E P ( t )  = E P R ( t )  * [rrP(t - 0 + w e ( t ) ]  

(2 .5)  l l ( t )  = l l R ( t )  * A S ( t )  

(2 .6)  e E ( t )  = U E R ( t )  * W P ( t )  

(2 .7 )  C O ( t )  = e O R ( t ) *  E e ( t )  

(2.8) 1L(t) = LR(t)  * EP(t)  

(2.9) eL( t )  = ~ LR(i)  ° EP(i)  * [F(k  + 1 ) -  F(k)]* (1 + z) 
all AY 

Even though there are many variables, many of them are inter-related. In fact, only five of them 
are independent. They are the investment income ratio (fIR), the U/W expense ratio (UER), the dividend 
ratio (PDR), the earned premium ratio (EPR), and the loss ratio (LR). In section 4, we will model the 
stochastic behaviors of these ratios from historical data and calculate their correlations. In section 6, we 
will simulate correlated random numbers for the ratios. 

The most complex equation in the above set is (2.9), which is the sum of the paid losses for all 
accident years up to the evaluation date. In section 5, we will explain our stochastic loss reserving models 
and the workings of (2.9). 

This is only an example of a set of governing equations. The analyst designs the exact set to meet 
his own needs. This offers great generality and flexibility. 
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3. THE INITIAL STATE OF THE COMPANY 

Our insurer has been in existence for the [ast ten years, and writes only Workers Compensation. 
In the following table, loss ratios, earned premiums, paid losses, and liabilities for the past ten years are 

Table 1: The Initial State of the Company 

listed. 

AY LR Ear. Prm Inc. Loss Paid Loss Liability 
1987 91.19% 5,002 4,562 4,209 353 
1988 92.91% 5,403 5,020 4,558 462 
1989 93 36% 5,835 5,471 4,865 606 
1990 91.72% 6,302 5,780 4,997 783 
1991 85.15% 6,806 5,795 4,819 976 
1992 74.40% 7,350 5,469 4,299 1,170 
1993 72.50% 7,938 5,755 4,150 1,605 
1994 72.14% 8,573 6,185 3,859 2,326 
1995 74.2 I% 9,259 6,871 3,232 3,639 
1996 75.77% 10,000 7,577 1,593 5,984 

The loss ratios were obtained from Schedule P - Part ID of the Best's Aggregates & Averages 
publication. The incurred loss is the product of the loss ratio and the earned premium. The paid loss is a 
function of the incurred loss and the cumulative distribution function, which will be explained in section 5. 
The liability is the difference between the'incurred and paid losses. 

We assume the following initial linbi]ities, surplus and assets, with the initial year being 1996: 

(3.1) L I ( 0 ) = 1 7 , 9 0 4 ;  S U ( 0 ) = 6 , 6 6 7 ;  A S ( 0 ) = 2 4 , 5 7 0 .  

The total liability is the sum of the last column in Table I, and (3.1) satisfies (2.1). We assume 
that the insurer has the following target written premiums for the next five years: 

Table 2: Target WP 
Year WP 
1997 10,800 
1998 I 1,664 
1999 12,597 
2000 13,605 
2001 14,693 

We could as easily assume that the written premium is a product of the premium-to-surplus ratio 
and the surplus: 

(3.2) • w e ( t )  = P S R ( t )  * S U ( t  - 1). 

In such case, we would add (3.2) to the set of goveniing equations in the previous section. We elect not to 
follow this route, primarily because of a lack of historical data for the Workers' Compensation premium-to- 
surplus ratios. The analytical treatment of the two cases is similar. 

4. STOCHASTIC MODELING OF THE INSURANCE RATIOS 

In this section, we present the modeling of the loss and LAE ratio, the UIW expense ratio, the paid 
dividend ratio, the investment income ratio, and the earned premium ratio. The first is on an accident-year 
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basis; the others on a calendar-year basis. All are taken from Best's Aggregates & Averages - Cumulative 
by Line Underwriting Experience. 

YEAR LR UER PDR IIR EPR 
1987 91.19% 15.00% 7.20% 10.20% 
1988 92.91% 13.40% i 9.40% 10.90% 51.20% 
1989 93.76% 13.00% 7.10% I 1.40% 51.30% 
1990 91.72% 13.40% 5.60% 10.80% 51.40% 
1991 85.15% 14.60% ! 6.00% I 11.70% 52.80% 
1992 74.40% 16.50% 6.50% 16.60% 50.60% 
1993 72.50% 17.20% 6.60% ] 14.60% 48.10% 
1994 72.14% 18.60% 9.20% t 13.90% 46.40% 
1995 74.21% 20.30% 9.50% 16.70% 46.30% 
1996 75.77% 23.30% 9.00% 16.90% 47.60% 

The corresponding ratios for future years are, of  course, random. The simulation of  the random 
numbers is determined by the historical patterns. There are two things to consider in these patterns: the 
pattern within each set of  ratios, and the correlation between any two sets of  ratios. 

To determine the pattern within each set of  ratios, we consider three models: the average-value 
model, the current-value model, and the current-change model. For a given set of  data, we pick the model 
that gives the least error deviation. 

The average-value, or the averaging, model states that a random number is normally distributed 
about some average: 

(4 .1)  x~ = x + ,s , .  

The first term on the right-hand side (RHS) of  (4. I) is the average; the second is the uncorrelated errors of  
mean zero and some standard deviation. If  we apply (4.1) to the loss ratios of  Table 3, we have: 

( 4 . 2 )  x 8 2 . 4 % ,  O ' (C~)= C = 9 . 3 7 % .  

Therefore, the loss ratios have a mean o f  82.4%, and the standard deviation of  the errors is 9.37%. Note 
that n is the number o f  observations, and the degree of  freedom is one less than that value since an average 
has to be estimated. 

There are two sources oferror  in the average-value model. There is the parameter error, 
associated with the uncertainty in the estimation of  the average. Also, there is the process error, which is 
associated with the random errors. 

If we take a closer look at the loss ratios in Table 3, the average-value model does not seem to be 
appropriate. In the earlier years, 198%91, all the ratios arc greater than the average. In the later years, 
1992-96, they are all smaller. Therefore, we next propose the current-value model: 

(4 .3 )  x i .  I = x i + e't. ~ . 

This model says that a random number tends to stay about its current value. The errors are assumed to be 
uncorrelated and of  mean zero. If we apply (43 )  to the loss ratios, we get: 

( 4 . 4 )  o ' ( ¢ j )  = ,s = 4 . 4 4 % .  
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The deviation of  the average-value model is much greater than that of  the current-value model, 
indicating that the latter is a much better fit for the observed loss ratios. . 

Contrary to the average-value model, there is only one source of  error in (4.3), the process error, 
since no parameter has to be estimated in that equation. 

If we look even more closely at the loss ratios in Table 3, we notice that an increase in the ratio 
tends to be followed by another increase, a decrease tends to be followed by another decrease. Therefore, 
we propose a third model, the current-change model: 

(4 .5 )  %÷1 = xi+~ - x i ,  z~+~ = z i +E~+~. 

This model says that the next change tends to be equal to the current change. And, like the current-value 
model, it only has process error. I f w e  apply (4.5) to the loss ratios, we get: 

(4.6) a(ee,) = I l - z e a l  ''2 =4.09%. 
t,n ~ J 

Since the current-change deviation is smallest, it represents the best fit, and we choose it to model the loss 
ratios in our analysis. 

It makes a great deal of  difference which model is chosen to represent a set of  random variables, 
For instance, if we choose the average-value model for the loss ratios, then the simulated 1997 loss ratios 
have a mean o f  82.4% and deviation o f  9.37%, as shown in (4•2). If  we choose the current-value model, 
they have a mean of  75.8% and deviation of  4.44%. If we choose the current-change model, they have a 
mean of  77.4% and deviation of  4.09%. 

For the other four ratios, we will use the current-change model. The error terms have the 
following deviations: 

Table 4: The Standard Deviations of  the Ratios [ 
LR UER PDR fIR [ EPR I 4.09% 1.57% 1.49% 2.06% [ 1.49% 

We now turn to the calculation of  the correlation between any two sets of  errors. Let 's consider 
the loss and the dividend ratios. They have the following errors: 

Table 5: Values of two Error Sets 
YEAR LR I PDR 

1988 .022 
1989 -.009 -.023 
1990 -.029 -.015 
1991 -.045 •004 
1992 -.042 .005 
1993 .089 .001 
1994 .016 .026 
1995 .024 .003 
1996 -.005 -.005 

The correlation coefficient of  the two sets in Table 5 equals •185. The correlation coefficient is 
defined as: 

(4.7) p(A, B) = Coy(A, B) 
~r(A)o-(B) 

l 'he correlation coefficients among the five ratios are found to be: 
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Table 6: Correlation Coefficients of the Five Insurance Ratios 
LR UER PDR IIR EPR 

LR 1.000 0.000 0.185 -0.528 -0.486 
UER 1.000 0.000 0.000 0.132 
PDR 1.000 0.000 -0.429 
IIR 1.000 0.000 

EPR 1.000 

For any coefficient with an absolute value smaller than. 1, we assume it to be statistically insignificant and 
set it equal to zero. 

For this study, we use the empirical coefficients. For a genuine study, the analyst should decide 
whether the observed correlations seem reasonable. He may decide to override them ifthey do not. 

The significance of Table 6 is this: not only should the simulated folios have the deviations in 
Table 4, but they should have the correlations shown there. These have real consequences regarding the 
stability of the insurance process. For instance, that the loss and investment ratios have a negative 
correlation is destabilizing. The negative correlation means that a higher-than-average loss ratio tends to be 
coupled with a lower-than-average investment ratio, and vice versa. Taking the former case, the higher- 
than-average loss ratio means more loss payments, and the lower-than-average investment ratio means less 
investment income. If two quantities in conjunction tend to have the same effects on the balance sheet, 
then the correlation is destabilizing. Conversely, if they tend to impart opposite effects, then the correlation 
is stabilizing. 

Every correlation in Table 6 destabilizes, except for the positive correlation between the expense 
and the earned premium ratios. In this case, if the insurer experiences higher-than-average expenses, then it 
also experiences higher-than-average earned premiums. The two have opposite impacts on the balance 
sheet, because the higher outgo (expenses) counteracts the higher income (earned premiums). 

We emphasize that there are other reasonable stochastic models for the variables. This aptly 
demonstrates the tremendous flexibility and variety available to the analyst. The bottom line is that he 
should have confidence that the underlying model is representative of the future. 

We are grateful to a review who pointed out that the current-value and current-change models 
have analogies in time-series forecasting. 

5. STOCHASTIC MODELING OF PAID LOSSES 

We have developed two stochastic loss reserving models: one based on the traditional chain ladder 
method, and the other on the Bomhuetter-Ferguson method. We have written a paper on each of these 
models.23. The interested reader should contact the author for copies of  the papers. 

Basically, we model the stream of paid losses for an accident year as a function of a cumulative 
distribution function. The function that we use for Workers Compensation loss payment is the transformed 
lognormal: 

(5.1) F(t;/~,cr, r)=~tgn(Int)llnt[';/2,o- }. 

In (5.1), ~ is the normal distribution of mean /1 and deviation o ' .  The argument t is measured in years. 

Let an accident year have earned premium EP and loss ratio LR. Let Y, be the incremental 

loss payment for that accident year between the report years- t and l + I .  Then the stochastic Bornhuetter- 
Ferguson model gives the following relationship: 

2 Son T. Tu, "The Application of Cumulative Distribution Functions in the Stochastic Chain Ladder 
Model," Scruggs Consulting Research Paper. This paper is in. the process of publication in the Casualty 
Actuarial Society Forum. 
3 Son T. Tu, "The Stochastic Bornhuetter-Ferguson Model," Scruggs Consulting Research Paper. 
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(5.2) Y,,  = E P * L R * [ F ( t + I ) - F ( t ) ] * ( I + c , . , ) ,  

where the process error C I is a normal distributed random variable of zero mean and some deviation. 

In our paper on the stochastic Bomhuetter-Ferguson model, we demonstrate how to fit (5.2) to a 
triangle of incremental payments and come up with estimates of the function parameters. From an actual 
Best's Aggregates and Averages paid loss u-iangle, we derive the following estimates: 

Table 7: The Estimates for the Parameters  
Estimate Deviation 

/3 .7840 .0591 

o" .9733 .0360 

z" .9286 .0352 

If we use the estimates in Table 7 in (5.1), then we can obtain the following values for the 
distribution function: 

Table 8: The Values of the Cumulative Distribution Function 

F .2103 [ I [ I ] 1 " 4 7 0 3  .6239 .7211 .7861 .8316 .8646 .8892 .9080 

Table 8 says that, after one year, 21.03% of payments for any accident year has been paid. After 
ten years, 92.27% has been paid, and therefore 7.73% has yet to be paid. 

The function parameters also have the following matrix of correlation coefficients: 

Table 9: The Matrix of  Parameter  Correlation Coefficients 

1.000 .9815 -.7633 

1.000 -.8180 

f I .ooo 

The way that we use (5.2) in the DFA model is as follows. For any calendar year, the loss 
payments are the sum of  the paid losses for all accident years. The paid loss for each accident year is 
modeled by (5.2). 

For the ten accident years in the past, we assume that the earned premiums and loss ratios are 
fixed, given by the values in Table 1. For the five accident years in the future, the earned premiums and 
loss ratios are stochastic quantities, given by numerical simulation. For this exercise, the process error in 
(5.2) has a standard deviation of  10.36%. 

6. GENERATION OF CORRELATED RANDOM NUMBERS 

Section 4 shows the necessity to generate five correlated insurance ratios. Section 5 shows the 
necessity to generate three correlated function parameters. In this section, we present a general technique 
to generate correlated random numbers. For instance, from Table 4, the errors of the loss ratios and the 
investment income ratios have expected deviations of 4.09% and 2.06%, respectively. But additionally, 
from Table 6, those errors have an expected correlation coefficient of°.528. In this section, we will 
introduce a technique to generate errors with the desired correlation characteristics. We will present some 
very technical work, which is needed for the sake of stochastic realism. But the reader may decide to skip 
this section without fear of losing the continuity among the other sections. 
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We will work with three variables. The technique can be easily generalized to any number of 

variables. Let's suppose that we need to generate three normally distributed random numbers X ,  Y, Z ,  
and together they have the following variance matrix: 

(6.1) 

Var(X) Cov(X,Y) Cov(X,Z)] 
Var(X) = |Cov(X, Y) Var(Y) Cov(r, Z) |. 

I I LCov(X,Z) Cov(Y,Z) Vat(Z) J 

Instead of this problem, we are going to generate three uncorrelated normally distributed numbers 

A, B, C such that: 

IVar(A) 0 ] 
(6.2) Var(A) = Var(B) O0 

[ O0 O V a r ( C )  

Note that the second problem is much simpler than the original one. 
We express the two sets of numbers as: 

(6.3) A = X ,  

B= Y +b~X, 
C = Z  +c~X +c~Y, 

where b~ ,c~ ,¢2 are unknown variables to be found. We will use the condition of no correlation among 

,4, B,C to determine these unknowns. The condition that 

(6.4) Cov(A, B) = O. 

We apply (6.4) to the first two equations of(6.3) to derive: 

(6.5) btVar(X ) = -Cov(X,Y). 

The conditions that 

Cov( A, C) = Cov( B, C) = O, (6.6) 

yield 

(6.7) c I Var(X) + czCov(X , Y) = -Coy(X, Z),  

c~ [Var(r) + b, Cov(X, Y)] = -Cov(Y, z)  - b, Cov(X, Z). 

The first equation of(6.6) and the first and third equations of(6.3) give the first of(6.7). The 
second equation of (6.6) and the last two equations of(6.3) yield the second of (6.7). Equations (6.5) and 

(6.7) give the values of the unknown b z ,c  I ,c  2 . Taking the variance of(6.3), we have: 
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(6.8) Var(A) = Var(X), 

Var( B ) = Var( Y) + b ~ Var( X ) + 2b, Cov( X,  Y), 

Var( C) = Var( Z) + c~ Var( X )  + c~ Var( Y) + 2[ctCov( X , Z) + c~Cov( Y, Z) + ctc2Cov( X , J 

Now we generate three uncorrelated random numbers with the variances in (6.8). Then we can 
invert (6.3) to obtain: 

(6.9) X = A, 

Y = B -b IX ,  

Z = C - q X - c ~ Y .  

In summary, we generate three uncorrelated random numbers A, B,C. Their variances are given 

by (6.8). Then we derive X ,  Y, Z from (6.9). The latter set of random numbers has an expected variance 
matrix of(6. I). 

This technique can be used for any number ofcorrelated variables. The equations for the 
unknown coefficients, corresponding to (6.5) and (6.7), become quite long and involved, but they fit a very 
regular and predictable pattern. 

7. NUMERICAL SIMULATION 

In this section, we outline the numerical simulation scheme to obtain quantitative results ofthe 
modeled insurance process. In this scheme, we conduct 200 trials. For a genuine analysis, at least 1000 
should be done. 

We want to project the study five years into the future. For each year and for each trial, we 
generate five random numbers for the five insurance ratios discussed in section 4. In the generation of the 
random ratios, we take into account the correlation coefficients in Table 6. For instance, the 200 loss ratios 
have an expected deviation of 4.09%, and the 200 dividend ratios have an expected deviation of 1.49%. 
Moreover, the 200 pairs of loss and dividend ratios have an expected correlation coefficient of.185. As we 
mentioned earlier, the loss ratios and earned premiums for the past ten accident years are considered non- 
stochastic, and shown in Table 1. 

For each trial, we generate a set of three function parameters, for use in the Iognormal cumulative 
distribution function, having the variances and covariances shown in section 5. This accounts for the 
parameter errors in the paid losses. For each incremental payment, we also generate the process error in 
(5.2). 

For each trial, we substitute the simulated numbers into equations (2.1)-(2.9). Therefore, for each 
random variable at each time t ,  we have a series of 200 realized values. Then we can simply take the 
mean and deviation of these values, which represent the mean and deviation of the random variable. 

8. NORMAL DISTRIBUTION OF NUMERICAL RESULTS 

From the numerical simulation, we can obtain the estimate and deviation of any random variable. 
Ideally, we would want to approximate every random variable as being normally distributed, because then 
the percentiles for the variable can be readily estimated. In this section, we will use the chi square 
goodness-of-fit test to show that the variables are approximately normally distributed. 

Among the numerical details, in this section we look only at the surplus, The following table 
gives the means and deviations of the surplus for the next five years. It also includes the probability of 
ruin, (defined as the insurer having negative surplus), the number of expected ruins, and the number of 
observed ruins, among the 200 trials. 
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Table i0: Numerical Results of the Surplus 
Year Mean Deviation % ruin Expected Observed 

0 6,667 0 
1 10,455 830 0.0 0 0 
2 15,071 1,871 0.0 0 0 
3 20,199 4,372 0.0 0 0 
4 26,356 8,595 0.1 .2 0 
5 33,770 14,699 1.1 2.2 2 

To establish the ruin probabilities in Table 10, we assume the distribution oftbe surplus to be 
normal with the given, means and deviations. We then compute the probability that the surplus reach zero 
in any given year. The expected number of ruins is then the product of that probability and 200. The fact 
that the expected and observed values are very comparable indirectly validates the merit of our approach. 

To establish percentiles, we can of course take the distribution found among 200 trials. But a 
more desirable and convenient way would be to establish that the simulated results are approximately 
normally distributed. We note that the assumption of normal distribution cannot be taken for granted, 
since, even though the simulated random numbers are assumed normally distributed, equations (2. I).-(2.9) 
contain products of normally distributed simulated numbers, which generally do not follow that 
distribution. 

For a numerical example, we take the surplus of the fifth year, and see if the simulated results 
could be reasonably approximated as being normally dis~buted. We use the chi-square goodness-of-fit 
test to either validate or reject this assumption. For the fifth-year surplus of mean 33,770 and deviation 
I4,699, we divide the whole spectrum of (---~o, oo) into ten intervals of equal probability. For instance, the 
second interval runs fi'om 14,933 to 21,399, representing the 10 th and 20 ~ percentiles, respectively. If the 
distribution is normally distributed, 20, or I0%, of the outcomes would be expected to fall into this interval. 
The following table presents the observed and expected frequencies for our simulated set: 

Table I 1: The Chi Square Test for the Fifth-Year Surplus 

Obs. ll7 221 235 I 149 I :6 [ :8 I 178 187 199 20 l0 
Exp. 20 20 20 20 20 20 20 20 20 20 

The chi-square value is: 

(8.1) z ~ = ~ ( ° ' :  ~')~ E- ~ = 6.50. 
i-I 

.2 .2 should follow the chi-square distribution with nine degrees of fi'eedom, giving a probability of 69%. 
In other words, if the 200 simulated fifth-year surplus values are normally distributed, there is a 69% 
probability that their chi-square value would be greater than 6.50. Therefore, the normal-distribution 
assumption is accepted. 

We use the chi-square test on many of the random variables, and, by and large, the assumption of 
normal distribution is reasonably satisfied. 

9. EXTENSIONS OF THE MODEL 

In conducting the study, we use historical data. In other words, we assume that our insurer would 
continue on the same trends as found in the past. But we can also use scenario or assumed data in the 
model. For instance, after looking at the probabilities of ruin in Table I I, management finds them too 
great, and decides on two simultaneous changes in operations. First, written premiums could be curtailed. 
Secondly, underwriting standards could be strengthened, so as to decrease the level and variability of the 
loss ratios. If the analyst can quantify these changes, they can be built into the model. The model can in 
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turn quantify the degrees of  the necessary changes, in order to decrease the probabilities o f  rain to 
acceptable levels. 

The model can be used as a tool of  scenario testing. For instance, the analyst may discard the 
historical loss ratios, and decides a future loss ratio of  75% with a deviation of.05 is reasonable. He can 
then carry out the simulation and analysis with these scenario values. 

For the study, we chose a situation as simple as possible. But the model offers great flexibility. 
As more and more operations are added to the analysis, the number of  governing equations would increase. 
Below we list some of  the many other operations that the model can readily accommodate. 

Muhi-lines insurer: We expect that as more lines are added, the financial results would stabilize. 
This is especially t2"ue i f  the loss ratios of  the various lines have no or negative correlation. 

Differing investment strategies: We can allocate the available investment assets into different 
segments, such as bonds, stocks, and real estate. We can also consider sub-segments within each major 
category: such as, taxable versus tax-exempt bonds. The model can give us an idea of the optimal 
investtnent strategy, given a corporate objective, such as growth versus stability. 

Tax liabilities: This item can be readily built into the model. 
Interest rates and inflation: These two affect the investment income and the loss payments. There 

are many theories concerning how inflation affects the stock and bond markets. Once the analyst decides 
to use a particular theory or model, it can be readily integrated into the framework of our DFA model. 
Regarding the loss payments, things are not so apparent. There are many ad-hoc techniques to account for 
inflation. But to our knowledge, there is no mathematically rigorous model that can explain how inflation 
affects insurance loss payments. 

Reinsurance: Two aspects of.this item may be considered. One is the default rate of the 
reinsurers. A default occurrence can be modeled as a Poisson process. Secondly, we can consider different 
reinsurance strategies, such as excess versus quota-share, and their effects on the balance sheet. 

Catastrophes: Ifthe insurer has much property exposures, we have to consider this aspect. An 
existing software package can be incorporated into this model. 

Varying payment patterm: For the same line of business, the payment patterns for the different 
accident years may vary. We analyze this situation in our loss-reserving papers. For this study, we 
simplify, and elect not to account for the varying patterns. 

SAP/GAAP bases: The model can be used in either basis. In the latter, unrealized capital gains, 
deferred acquisition costs, etc. have to be considered. 

I O. CONCLUSION 

We have presented a dynamic financial analysis with two key ingredients: stochastic modeling of 
the individual operations and the error con'elation of  the operations in concert. One of  its strengths lies in 
its use of  the set of  governing equations. 1"his set can be contracted or expanded, depending on whether the 
actuary wants a simpler or more extensive analysis. 

A user of  dynamic financial analysis can evaluate the desirability of  a strategy over another on 
several criteria: stability, profitability, and growth, among others. For stability, he should determine that 
the variability of  the results and the probability of  ruin are kept to acceptably low levels. For profitability, 
he should look at the overall income, which in our simplified example is: 

(l O. 1) EP(/ )  + II( t )  - IL(t)  - PE( t )  - ' P D ( t ) .  

In our example, we assume built-in growth. But we can certainly model it as a function of  other variables, 
such as equation (3.2). 

We note that the three aforementioned criteria are in many ways conflicting. But with dynamic 
financial analysis, the user has a better idea o f  wber¢ the best compromise lies, given the objectives and 
constraints of  the company. 
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ABSTRACT 
DFA makes possible a greater integration of asset management with underwrit- 

ing management. This paper looks at how investment risk and reinsurance can 

affect the overall risk to the company, and how the two can be managed simulta- 

neously. A significant underwriting variable is the risk of loss development, and 

models of the development risk are presented, with some methodology for de- 

terrnining which one is most appropriate given the data at hand. Term-structure 

models are key to asset risk modeling, and a test of these models is proposed. 
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IMPL ICAT IONS OF R E I N S U R A N C E  A N D  R E S E R V E S  ON RISK OF 

I N V E S T M E N T  A S S E T  A L L O C A T I O N  

ASSET-LIABILITY MANAGEMENT 
Property- liability insurers have traditionally managed investment and under- 

writing functions separately, except for some forays into duration matching and 

perhaps to set goals for their investment risk that recognize that they do have 

some underwriting exposure. Dynamic Financial Analysis (DFA), by jointly 

modeling asset and liability risks, provides a means to more closely integrate the 

management of investment and underwriting risk, and thereby directly manage 

the total risk of bottom line results. This paper will focus on modeling GAAP 

pre-tax surplus change, which includes the effect of unrealized gains and losses, 

but any income statement or balance sheet item could be modeled similarly. 

The principal risk elements to pre-tax surplus change are asset risk, reserve de- 

velopment, and current year underwriting results. These each have separate 

modules in the model described below, but some common economic elements, 

such as inflation and interest rates, feed all the modules. 

Looking at assets alone, higher yielding assets generally bear more risk of ad- 

verse deviation, with short-term treasury securities usually regarded as having 

the least risk and least expected return. However adding liabilities - even fixed 

liabilities - to this picture changes the risk profile. If liabilities are of medium 

term, then holding short-term assets could be of higher risk, as interest rates may 

decrease and generate less than enough investment income to cover the liabili- 

ties. Long-term investment also increases in risk in this case, as interest rates 

could go up, requiring liquidation of depressed assets to meet the liabilities. 

Long-term investments may still have higher expected returns than medium 

term, but the insurer with medium-term liabilities will be exposed to more risk 
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than the asset-only investor for using those instruments. On the other hand, me- 

dium-term assets could be carried at a greater reduction in risk than for the usual 

investor in this case. This is the rationale for duration matching. Uncertain li- 

abilities and payout timing complicates the matching process, and can render 

perfect matching impossible. Simulation of loss payment requirements against 

asset fluctuations can be used to estimate the risk of different investment strate- 

gies in this case. 

But the real world keeps intruding: if a company with medium or long-term li- 

abilities grows just with inflation, it tends to have positive cash flow. If positive 

cash flow were a certainty, assets would never have to be liquidated to pay li- 

abilities; the risk-return situation reverts back to the asset-only situation. Add to 

this accounting for bonds at amortized values and long-term investments sud- 

denly become low-risk high-return opportunities. In this paper bonds will be 

evaluated at market, which records more risk for long-term bonds, but the same 

approach could work with amortized costs - with different results expected. 

It is when cash flow is also risky that the DFA approach to asset/liability man- 

agement really shows its merits. Without the shield of reliable positive cash 

flows, the uncertainty about interest rates and loss payout requirements are back, 

complicated by the fact that cash flows will often but not always be positive. All 

of these elements can be simulated simultaneously to quantify their interactions. 

This would allow the measurement of the effect of different reinsurance strate- 

gies, through their impacts on cash flow, on the combined asset/liability risk. In- 

flation can affect both asset values, through the interest rates, as well as premium 

volume and loss payments, and so its impact is complex. Reserves may be infla- 

tion sensitive as well, which would add yet another impact on the surplus 

change. All of these effects can be captured using a DFA approach to asset- 

liability management. 
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MODELING ISSUES 

SCENARIOS AND PROBABILITY 

Prior to DFA modeling, risk was measured by scenario testing. A few scenarios 

were selected and the financial outcomes under those scenarios were computed.  

This enabled management  to have some confidence that their strategies would  

bear up under various sorts of adverse developments.  It did not, however,  allow 

for an assessment of the probability of achieving various earnings targets. With- 

out  knowing the probabilities of the various scenarios arising, management  

could have been sacrificing overall profitability to guard against some exceed- 

ingly rare eventualities. 

DFA can do more than merely increase the number  of scenarios tested. With 

good models of the underlying processes it can generate a set of scenarios that in 

some sense reflects the probability of occurrence of the various outcomes. There 

are of course issues of how well the model represents the processes being mod- 

eled - there is both art and science to modeling. The criterion to which a model  

should be judged is not its ability to generate a wide variety of scenarios, but 

rather its ability to generate scenarios according to their likelihood of occurrence. 

ASSET MODELS 

The asset model ing approach adopted here is to first generate a series of treasury 

yield curves using diffusion models. This is detailed in Appendix 1. Many other 

economic variables, such as the inflation rate and security prices, have histori- 

cally correlated to the current and past yield curves, so these variables can be 

modeled by regression and simulated from the regression models and the simu- 

lated yield curves. This builds in the correlations among these variables with ap- 

propriate levels of random fluctuation. 
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A portfolio of assets and liabilities is subject to risk from complex changes to the 

shape of the yield curve - not just simple upward and downward movements. 

Thus a yield curve model has to be able to generate curves of different shapes, 

and in accordance with the probability that they might arise. In Appendix I we 

introduce measures of yield curve shapes and compare some yield curve models 

and historical data as to the distribution of the shape of the yield curve condi- 

tional on the short term rate. It is shown there that some yield curve models, al- 

though they can generate yield curves of different shapes, tend to generate only 

very restricted shapes of yield curves for any given short-term rate. This is not 

consistent with historical data, and so those models could not be expected to 

produce scenarios in accord with occurrence probabilities. 

RESERVE DEVELOPMENT MODEI.~ 

Many different assumptions can be made about the processes that generate loss 

development. In Appendix 2 a classification scheme is outlined that groups re- 

serve development processes into 64 different classes. This is based on answering 

6 yes-no questions about the development process. Empirical methods of an- 

swering these questions based on triangulated data are also discussed. Once a 

process is identified that plausibly could have generated the loss triangle in 

question, this process can be used to simulate scenarios of future development. 

Doing this study has implications for loss reserving as well, as each process of 

generating loss emergence implies a reserving methodology. The implied meth- 

odology is essentially the one that provides the best estimates of the parameters 

of the process that is generating the development, and is explored in Appendix 2. 

In the examples below it is assumed that this study has been completed, and only 

two of these classes of processes are illustrated. The first starts by generating ul- 

timate losses, and then uses random draws around expected percentages of 

payment to generate the paid losses at each age. This is essentially the process 
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used by Stanard (1985) to testing development methods through loss simulation. 

It turns out that a parameterized form of the Bornheutter-Ferguson method is 

optimal for this process. 

The second process is similar, but the paid losses at each age are then adjusted 

up or down by the difference between actual and expected reserve inflation. In 

this case the paid losses in each year will depend on the inflation for the year, 

and the final ultimate losses will end up different from the initial ultimate origi- 

nally drawn. That sounds like a more realistic process for the generation of actual 

loss histories, but empirical tests of loss development do not always identify an 

effect of post-event inflation. If losses are sensitive to inflation after the loss date, 

the risks to holding a given set of assets will be different from what they would 

be otherwise. The optimal reserving method in this case involves estimating the 

impact of calendar-year inflation (i.e., diagonal trend) on the loss triangle. 

Mack (1994) showed that the chain ladder is optimal for the process that gener- 

ates each age's emerged loss as a factor times the cumulative emerged-to-date for 

the accident year, plus a random element. This process could be used to generate 

losses in a DFA model, but it is not illustrated here. 

UNDERWRITING RISK MODEL,S 

Models of current year underwriting risk can be intricate, but are usually 

straightforward. The approach here is to simulate large individual losses from 

models of frequency, severity, and parameter uncertainty and smaller losses in 

the aggregate from a single aggregate distribution for each line. Then the differ- 

ence between simulated and expected inflation is applied, followed by applica- 

tion of the reinsurance program. 
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SIMULATION ASSUMPTIONS 

COMMON ASSUMPTIONS 

A few simplifying assumpt ions  will be made  in all the s imulat ions in order  to 

h ighl ight  the essential e lements  being tested. These are not  intrinsic to the model,  

however.  First, it will be assumed that  all cash flows take place at  year-end or an  

infinitesimal t ime later at the beg inning  of the next year. Thus  p remiums  are all 

writ ten,  expenses are paid out, and  the remain ing  unea rned  p remiums  are in- 

vested at this instant.  A year  later the payments  to be made  for losses for tha t  

year  and  all previous  accident  years are paid out, any bonds  mature ,  coupon  

payments  are made,  etc. All losses are a s sumed  to pay out  over  a 10-year period 

wi th  an  average payout  lag of three years after policy issuance, bu t  the actual 

payout  pa t tern  may be stochastic. The following inves tment  strategies will be 

tested: shor t  t e rm - every th ing  is in one-year  treasuries; m e d i u m  te rm - all in 

three-year treasuries; long te rm - all in ten-year treasuries; and  stocks plus - 50% 

in stocks and  50% in ten-year treasuries. Surplus  is a s sumed  to be one-four th  of 

assets. 

COMPANY RISK FACTORS 

Several different hypothet ical  companies  will be s imula ted  to test how various 

unde rwr i t i ng  risks interact  wi th  the inves tment  scenarios above. The first will be 

a what- if  test of surplus  only - the reserves and  other  assets are ignored. The sec- 

ond  will assume the company  has  a fixed k n o w n  payout  pa t te rn  - i.e., no  reserve 

risk. The third will be a company  wi th  stochastic reserves - there is a dis t r ibut ion 

a round  each payout  - but  wi th  no  inflation risk - the payouts  have  a r a n d o m  

e lement  bu t  not  correlated wi th  inflation. Fourthly,  the payouts  will be assumed 

correlated with inflation. In this case the reserves will be adjusted at  year-end by 

the ratio of the actual to expected inflation factor. All these tests will be based on 

a re insurance p rogram with  a moderate ly  h igh retention. The final test will re- 

peat  the fourth  wi th  a more  conservat ive approach  to reinsurance.  
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A FEW DET"AII.~ 

For each set of company risk assumptions and each investment strategy, the dis- 

tribution of year-end pre-tax GAAP surplus is simulated. Comparisons are made 

of the mean, standard deviation, and 99 th, 90 th, 10 th and 1st percentile of each 

distribution. These percentiles correspond to the upper and lower 1-in-10 and 1- 

in-100 probability of exceeding levels. 

The strategies and risk profiles tested below are not completely realistic. They are 

intended to illustrate the capabiiities of DFA modeling in the asset-liability man- 

agement arena, and the interaction of that with reserving and reinsurance. Be- 

cause of this and for the sake of simplicity, the CIR (Cox, Ingersoll and Ross) 

model from Appendix I is used for the examples, but with different parameters. 

The initial short-term interest rate r is assumed to be 0.05, and its change is gen- 

erated by the following process: 

dr = 0.2(0.06 - r)dt + 0.075rl/2dz. 

The CPI and Wilshire 5000 stock index are simulated as measures of inflation 

and stock market performance. These are generated by regression on the yield 

curve and lags of the yield curve. The regressions were done on quarterly data, 

so for notational purposes the time periods will be expressed as quarters. Nota- 

tion such as 3L40:12 will denote the third lag of the difference between the 40 

quarter and 12 quarter interest rates, i.e., the 10 year rate less the 3 year rate seen 

9 months ago. Without the colon 0L40 isjust the 10 year rate for the current 

quarter. 

The inflation variable estimated here, denoted qccpi, is the ratio of the CPI for a 

quarter to that for the previous quarter. The variables used in the fit along with 

indications of their significance are shown in the table below. The data used is 
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from the fourth quarter of 1959 to first quarter 1997, as this was available from 

pointers within the CAS website. 

C h a n g e  in  CPI  

Variable 

l:4Lqccpi 

0L40:4 

2L40:20 

3L2:1 

Estimate T-statistic Significance Level 

0.9994 1649.4 <.01% 

-0~2668 -5.3349 < .01% 

0.8486 4.6411 <.01% 

0.7182 3.4663 .07% 

The most important indicator of inflation is recent inflation. The variable used to 

represent this, denoted l:4Lqccpi, is the average of qccpi for the past four quar- 

ters. The coincident variable, 0L40:4 has a negative coefficient. This may be due 

to inflation influencing current interest rates, but with a greater impact on short 

term than long term rates, thus flattening the yield curve. At lag 2 quarters, the 

coefficient for 2L40:20 is positive and at lag 3 quarters that for 3L2:1 is positive. 

These indicate a general tendency for a steeper yield curve to anticipate future 

inflation. The r-squared, adjusted for degrees of freedom, is 65%. The standard 

error of the estimate is 0.0051. Thus the typical predicted quarterly change is ac- 

curate to about half a percentage point. The standard error is the standard devia- 

tion of a residual normally distribution around the predicted point, which can be 

used to draw the scenario actually simulated. The actual vs. fit is graphed in Ap- 

pendix 3. The series can be seen to be fairly noisy, but the model does pick up the 

general movements over time. The residuals are graphed on a normal scale. 

Normality looks to be reasonably consistent with the observed residuals. 

The stock market variable modeled, qcw5, is the ratio of the Wilshire 5000 index 

W5 at the end of a quarter to that at the previous quarter end. In this case the CPI 

percentage change variable qccpi was included in the regression as an explana- 
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tory variable. This allows creation of scenarios that have simulated values of W5 

that are probabilistically consistent with the CPI value for the scenario. 

The fitted equation for quarter ending data 1971 through first quarter 1997 is 

shown in the table below. In this regression only two variables were used, but 

they are composite series. The first, denoted 0-4Lqccpi, is the increase in qccpi 

over the last year, i.e., the current rate less the rate a year earlier. This variable 

has a negative coefficient, indicating that an increase in inflation is bad for equity 

returns. The other variable is denoted qcrelsprd. It represents the previous quar- 

ter's increase in the long-term spread less this quarter's increase in the short-term 

spread. Here the long-term spread is the difference between 10-year and 5-year 

rates, and the short-term spread is the difference between 6-month and 3-month 

rates. The increases noted are the quarter-to-quarter arithmetic increases in these 

spreads. 

The coefficient on qcrelsprd is positive. This variable is positive if the increase in 

the short-term spread is less than the previous increase in the long-term spread, 

or ff its decrease is greater. Either could suggest moderating inflation and interest 

rates, and thus be positive for equity returns. 

Variable 

04Lqccpi 

qcrelsprd 

constant 

Quarterly Change in Wilshire 5000 

Estimate T-statistic Significance Level 

-2.7113 -3.1936 0.2% 

11.869 4.5273 <.01% 

1.02316 145.311 <.01% 

The adjusted-r-squared is only 24% for this regression, indicating that the fit is 

not particularly good. The residual standard deviation is .0721, which allows a 

fairly wide deviation from the model. The fit is graphed in Appendix 3. 
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RESULTS 

The table below shows the mean surplus, the ratio of mean to standard devia- 

tion, and several percentiles of the surplus for the case in which there are no 

losses, just investment of surplus. 

Surplus Only  

M e a n  Mean/SD 1% 10% 90°/o 

Short  

M e d i u m  

Long 

Stocks+ 

99% 

3048 - 3048 3048 3048 3049 

3053 45.3 2867 2967 3125 3227 

3071 19.5 2706 2861 3284 3407 

3136 13.1 2577 2829 3422 3760 

The ratio of mean to standard deviation is chosen as a risk measure for which 

higher is better, as is the case with all the other figures in the table. This table is 

consistent with the idea that riskier investments have higher expected return, but 

could have more adverse developments  as well. The one-year bonds have no risk 

in this case, as they are held a year and then mature. 

The next table shows the results of adding fixed liabilities to the mix. 

Short  

M e d i u m  

Long 

S t o c k s +  

F i x e d  Liabilities 

M e a n  Mean/SD 1% 10% 90% 99% 

3419 3419 3419 3419 3419 

3434 14.8 2798 3104 3705 3953 

3492 7.3 2031 2848 4094 4409 

3581 4.6 1951 2656 4630 5282 

Here the mean surplus is higher, due to the expected profits from the insurance 

business. However ,  the risk is considerably greater, due to the larger investment 

portfolio compared to the same surplus. This works at both the low and high end 

of the probability distribution. 
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Adding variability to the liabilities further increases the risk, as shown below. 

Here the change in the extreme percentiles is greater for the short-term invest- 

ments, showing that the increase in risk over fixed liabilities is greater when in- 

vesting short. 

Short 

M e d i u m  

Long 

Stocks+ 

Variable Liabilities -No Inflation on Reserves  

Mean Mean/SD 1% 10% 90% 99% 

3422 21.0 3085 3220 3626 3821 

3443 11.4 2600 3024 3786 4096 

3470 6.8 2182 2801 4117 4784 

3540 4.1 1762 2287 4661 6120 

If reserves are subject to post-event inflation, risk increases more: 

Short 

Medium 

Long 

Stocks+ 

With  Post-Event Inflation 

Mean Mean/SD 1% 10% 90% 99% 

3429 20.2 3021 3205 3635 3859 

3438 10.6 2589 2972 3816 4289 

3538 6.3 1899 2848 4242 4879 

3569 3.9 1358 2294 4613 6197 

Stocks may pose too much of a risk at the 1% level in this case, where they may 

have been an acceptable risk without post-event inflation. This illustrates the 

value of understanding the reserve-generating process when setting investment 

strategy. 

Finally, buying more reinsurance reduces the expected surplus but also the vari- 

ability of surplus. 
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Shod 

Medium 

Long 

Stocks+ 

No Post-Event Inflation with More Reinsurance 

Mean Mean/SD 1% 10% 90% 99% 

3227 55.3 3271 3351 3500 3618 

3255 14.9 2884 3156 3749 3951 

3345 6.9 2197 2865 4202 4630 

3473 4.4 1773 2564 4909 5642 

For this company, buying more reinsurance with long-term investments has 

lower expected return and more downside risk than buying less reinsurance 

with medium term investments. This strategy would give up considerable up- 

side potential, however. 

CONCLUSION 
The risks to the various investment strategies that an insurer may follow will 

change depending on underwriting risk and reserve development risk. To quan- 

tify this risk the process generating reserve development needs to be identified. 

Once that is done, the trade-offs between different investment strategies and dif- 

ferent underwriting strategies - including alternative reinsurance programs - can 

be quantified by dynamic financial analysis. 
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A P P E N D I X  1 - -  S I M U L A T I N G  A S S E T  P E R F O R M A N C E  

Most asset classes and many economic series have been found to correlate to the 

treasury yield curve. Realistic simulation of the yield curve is an involved un- 

dertaking, and a subject of ongoing research among academics and all sorts of 

financial practitioners. If any researchers have gotten this absolutely right, 

they're keeping it a secret, and probably getting wealthy. Some of the progress in 

this area is discussed below, along with some proposed tests of yield curve 

simulation methods for DFA modeling. 

Once the yield curves have been generated, the other assets and economic values 

can be simulated by regressions against the yield curve and lags of the yield 

curve ( and perhaps against the other economic variables already simulated). 

In each case, a random draw from the error term of the distribution should be 

added to the regression estimate in order to keep the correlations from being per- 

fect (unless they happen to be, which is rare). 

A good deal of the work in yield-curve simulation is done for the purpose of 

pricing or evaluating the pricing of interest-rate options. For this purpose it is 

important that the model captures the current yield curve and its short-term dy- 

namics as precisely as possible. This would be important to insurers who are ac- 

tively trading bond options. However, the usual emphasis in DFA modeling is a 

little different. The risks inherent in different investment strategies over a longer 

time frame are more of a concern. A wide variety of yield curves should be pro- 

duced to test this, but  the model producing the widest variety is not necessarily 

the most useful - the different yield curves should be produced in relative pro- 

portion to their probability of occurring. It would be nice if the short-term fore- 

casts were very close to the current curve, but this is less important for DFA than 

it is for option trading. 
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Historical data on the distribution of yield curves can be used to test the reason- 

ability of the distribution of curves being produced by any given model. How- 

ever, it is not reasonable to expect that the probability of yield curves in a small 

given range showing up in the next two or three years is the same as their his- 

torical appearance. Some recognition needs to be given to the current situation 

and the speed at which changes in the curve tend to occur. Care also needs to be 

exercised in the selection of the historical period to which comparisons are to be 

made. The years 1979-81 exhibited dramatic changes in the yield curve, and the 

analyst needs to consider how prominent  these years will be in the history se- 

lected. It seems reasonable that using a period beginning in the 1950's will give 

this unusual phase due recognition without  over-emphasizing it. 

The following are proposed as general criteria that a model  of the yield curve 

should meet: 

• It should closely approximate the current yield curve. 

• It should produce patterns of changes in the short-term rate that match those 

produced historically. 

• Over  longer simulations, the ultimate distributions of yield curve shapes it 

produces, given any short-term rate, should match historical results. 

This last criterion looks at the contingent distributions of yield curve shapes 

given the short-term rate. Thus it allows for the possibility that the distribution of 

short-term rates simulated even after several years will not match the diversity of 

historical rates. But it does require that for. any given short-term rate the distri- 

bution of yield curves should be as varied as seen historically for that short-term 

rate. It could be argued that somewhat  less variability would  be appropriate, and 

this may be so. How much less would be a matter of judgment, but too little 
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variation in this conditional distribution would  seem ill-advised when  generat- 

ing scenarios to test investment strategies against. 

To measure the distribution of yield curve shapes, some shape descriptors are 

needed. The ones used here are based on differences of interest rates of different 

maturities. The first measures are just the successive differences in yield rates for 

3-month, 1-year, 3-year, and 10-year instruments. Then the differences in these 

differences are taken, and finally the differences of those second differences. The 

first differences quantify the steepness of different parts of the yield curve. These 

would  be zero for a fiat curve. The second differences quantify the rate of change 

in the steepness as you move up the curve. These would  be zero for a linearly 

rising curve. The third difference would be zero for a quadratic curve, and so 

quantifies the degree to which the curve is not quadratic. 

These shape measures will be reviewed historically as a function of the 3-month 

rate. The patterns for these six measures are graphed below along with the re- 

gression lines against the 3-month rate. It is interesting to note that the 1-year / 

3-month yield spread appears to be independent  of the 3-month rate, but the 

longer-term spreads appear to decline slightly with higher 3-month rates. At 

least in the US economy, when the short-term rates are high, the long-term rates 

tend to show less response, perhaps because investors expect the short-term rates 

to come down, and so the yield curve flattens out or even shows reversals (i.e., 

short-term rates higher than long-term). It might be argued that the slopes of the 

regression lines are small enough compared to the noise that they should not be 

considered significant. It turns out, however,  that in testing models against this 

data the non-significance of the slope is a most significant issue - most models 

tend to produce more steeply falling slopes than the data shows. 
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YIELD CURVE MODELS 

Typically the short-term interest rate, denoted as r, is modeled directly, and 

longer-term rates are inferred from the implied behavior of r, along with market 

considerations. The model ing of r is usually done as acont inuously  fluctuating 

diffusion process. This is based on Brownian motion. A continuously moving 

process is hard to track, and processes with random elements do not follow a 

simple formula. These processes are usually described by the probability distri- 

bution for their outcomes at any point in time. A Brownian motion has a simple 

definition for the probabilities of outcomes: the change from the current position 

between time zero and time t is normally distributed with mean zero and vari- 

ance g2t for some a. If r is the short-term interest rate and it follows such a 

Brownian motion, it is customary to express the instantaneous change in r by dr  

= odz. Here z represents a Brownian motion with o=1. If r also has a trend of bt 

during time t, this could be expressed as dr  = bdt + odz. 

Cox, Ingersoll and Ross (1985) provided a model  of the motion of the short-term 

rate that has become widely studied. In the CIR model  r follows the following 

process: 

dr = a(b - r)dt + srl/2dz. 

Here b is the level of mean reversion. If r is above b, then the trend component  is 

negative, and if r is below b it is positive. Thus the trend is always towards b. 

The speed of mean reversion is expressed by a, which is sometimes called the 

half-life of the reversion. Note that the volatility depends on r itself, so higher 

short-term rates would be associated with higher volatility. The period 1979-81 

had high rates and high volatility, and studies that emphasize this period have 
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found  that  the power  of 1/2 on  r is too low. It appears  to be about  r ight  in longer 

s tudies  however .  

Nonetheless ,  the CIR model  fails to capture  other  e lements  of the m o v e m e n t  of 

shor t - term rates. There have been periods of h igh  volatility wi th  low interest  

rates, and  the rates somet imes  seem to gravi tate  towards  a t emporary  mean  for a 

while, then shift  and  go towards  some other. One way to account  for these fea- 

tures is to let the volatility parameter  s and  the revers ion mean  b bo th  be sto- 

chastic themselves.  

Andersen  and  Lund (Working Paper  No. 214, Nor thwes te rn  Universi ty  Depart-  

men t  of Finance) give one such model:  

dr = a(b-  r)dt + srkdzl k>0 

din s 2 = c ( p  - In s2)dt + vdz2 

db = j(q - b)dt + wbl/2dz3 

Here  there are three s t andard  Brownian  mot ion  processes, zl, z2, and  z3. The rate 

r moves  subject to different processes at  different times. It a lways follows a 

mean- rever t ing  process, wi th  mean  b. But tha t  mean  itself changes  over  time, 

fol lowing a mean- rever t ing  process defined by k, q, and  w. The volatili ty pa- 

rameter  s 2 also varies over  t ime via a m e a n  rever t ing geometric  Brownian mot ion  

process (i.e., Brownian  mot ion  on the log). In total there are eight  parameters:  a, 

c, j, k, p, q, v, and  w and  three vary ing  factors r, b, and  s. 

Models  of the shor t - te rm rate can lead to models  of the whole  yield curve. This is 

done  by model ing  the prices of zero-coupon bonds  wi th  different  matur i t ies  all 

paying  $1. If P(T) is the cur ren t  price of such a bond  for matur i ty  T, the implied 

cont inuous ly  c o m p o u n d i n g  interest  rate can be s h o w n  to be - ln[P(T)] /T.  P(T) it- 

self is calculated as the risk adjusted d iscounted  expected value  of $1. Here  "dis- 
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counted" means continuously discounted by the evolving interest rate r, and 

"expected value" means that the mean discount is calculated over all possible 

paths for r. This can be expressed as: 

P(T) = E'[exp(-,frtdt)] 

Where rt is the interest rate at time t, the integral is over the time period 0 to T, 

and E ° is the risk-adjusted expected value of the results of all such discounting 

processes. 

If E were not risk adjusted, P(T) could be estimated by many instances of simu- 

lating the r process to time T over small increments and then discounting back 

over each increment. The risk-adjusted expected value is obtained by using a 

risk-adjusted process to simulate the r's. This process is like the original process 

except that it tends to produce higher r 's over time. These higher rates provide a 

reward for bearing the longer-term interest rate risk. Increasing the trend portion 

of the diffusion process produces the adjusted process. In the CIR model  it is in- 

creased by Kr, where K is called "the market price of risk." Andersen and Lund 

add Krs, and also add a similar risk element to the b diffusion. 

However ,  in the case of the CIR model  a closed form solution exists which sim- 

plifies the calculation. The yield rate for a zero coupon bond of maturity T is 

given by Y(T) = A(T) + rB(T) where: 

A(T) = -2(ab/sZT)lnC(T) - 2aby/s  2 

B(T) = [1 - C(T)I/yT 

C(T) = (1 + xyeV/X - xy) -1 

x = [ ( a  - ~ . )2 + 2s2]-1/2 

y = (a - k, + l /x)/2.  

Note that neither A nor B is a function of r, so Y is a linear function of r (but not 

of T of course). Thus for the CIR model, all the yield curve shape measures de- 
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fined above are l inear functions of r, and  as the th ree -month  rate is as well, the ' 

shape measures  are strictly l inear in the th ree -month  rate. This is in contras t  to 

the historical data, which  shows a dispers ion of the shape  measures  a round  a 

perhaps  l inear relationship. The g raph  below as an example shows the historical 

and  CIR implied I year less 3 mon th  spread as a funct ion of the 3-month  rate, 

a long wi th  the historical t rend line. 

The parameters  used here for the CIR model, from Chan  etal. (1992) are: a=.2339; 

b=.0808; s=.0854, wi th  K set to .03. Different parameter  values could possibly get 

the slope closer to that  of the historical data, but  the dispers ion a round  the line 

cannot  be achieved wi th  this model. Exper imentat ion wi th  different parameter  

values suggests  that  even get t ing the slopes to match historical for all three of the 

first-difference measures  may be difficult as well. 
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Another  potential  problem wi th  the CIR model  is that  the very long-term rates 

do not  vary wi th  r at  all, but  it 's not  clear how long the rates have to be for this. 
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Historical vs A&L (Fixed Lambda) 
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The Andersen-Lund model does provide more dispersion around the trend line, 

and also has about the right slope for the 3-month to 1-year spread, as the graph 

above shows. It does not do as well with the 3-year to 10-year spread in either 

Historical vs A&L (Fixed Lambda) 
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slope or dispersion, as shown here. 
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One approach that seems to give a degree of improvement  is to let the market  

price of risk vary as well, through its own stochastic process. This would  allow 

the same short-rate process to generate different yield curves at different times 

due to different market situations. This approach is capable of fixing the slope 

and dispersion problem for the long spread, as shown below. 
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Allowing stochastic market price of risk may improve the CIR model 's  perform- 

ance on these tests as well, but it's not clear how to do this and still maintain a 

closed-form yield curve, which is the main advantage of CIR. 

The table below summarizes some of the comparisons of model  and historical 

results discussed above. For each of the models and each of the yield spreads, the 

linear relationship between the yield spread and the three-month rate is summa- 

rized by three statistics: the slope of the regression line of the spread on the 

three-month rate, the value on that line for r = .06, and the standard deviation of 
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the points around the line. The value at r = .06 was compared instead of the in- 

tercept of the line to show how the model matched historical values for a typical 

interest rate. 

The values were based on simulations of rates about three years beyond the ini- 

tial values. Thus perhaps less variability of the residuals might be justifiable than 

in the historical data, which were quarterly values from 1959 through 1997. The 

whole variety of yield curve shapes from this nearly forty-year period may not 

be likely in just three years. A longer simulation period would thus give a better 

test of these models, and a somewhat lower residual standard deviation than 

historical may be acceptable for the test actually performed. 

1 yr - 3 mo Historical  CIR AL Fixed AL Variable  

Slope 1.17% -7.31% 2.49% 1.66% 

Predicted @ 6% 0.48% 0.23% 0.44% 0.43% 

Std Dev of Residuals 0.35% 0.00% 0.25% 0.43% 

3 y r - l y r  

S lope  -8.41% -16 .58% -5.68% -2.57% 

Predicted @ 6% 0.42% 0.49% 0.39% 0.40% 

Std Dev of Residuals 0.52% 0.00% 0.12% 0.36% 

10 yr - 3 yr 

Slope -8.17% -34.23% -29.22% -9.86% 

Predicted @ 6% 0.35% 0.89% 0.29% 0.32% 

Std Dev of Res idua l s  0.48% 0.00% 0.12% 0.50% 

All the models tested had a lower residual standard deviation for the 3-year to 1- 

year spread than seen historically, but not unreasonably so for the variable price 
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of risk model. The slopes of the 10-year to 3-year spread were allsteeper than 

historical, but again the variable model was best. 

This methodology gives an indication of a method of testing interest rate gen- 

erators. There are quite a few of these in the finance literature, so none of the 

generators tested above can be considered optimal. In addition some refinement 

of the testing methodology may be able to tighten the conclusions discussed 

above. 
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A P P E N D I X  2 - S I M U L A T I N G  L O S S  D E V E L O P M E N T  

The principal task in simulating a company's loss development is identifying the 

stochastic process that generates that development. Testing different processes 

against the historical development data is a way to approach this task. The sec- 

ond task is to model how the company's carried reserves respond to the loss 

emergence scenarios generated. One assumption for this may be that the com- 

pany knows the process that produces its development, and uses a reserving 

methodology appropriate for that process. The simulation would proceed by 

generating loss emergence scenarios stochastically and then applying the se- 

lected reserving method to produce the carried reserves for each scenario. On the 

other hand, if the company has a fixed reserve methodology that it is going to 

use no matter what, then that methodology can be used to produce the carried 

reserves from the simulated emergence. 

For this discussion, "emergence" could either mean case emergence or paid 

emergence, or both. The main concern here is simulating the emerging losses by 

period. This may or may not involve simulating the ultimate losses. For instance, 

one way to generate the losses to emerge in a period is to multiply simulated ul- 

timate losses times a factor drawn from a percentage emerged distribution. This 

is appropriate when the process producing the losses for each period works by 

taking a randomized percent of ultimate losses. This method might involve some 

quite complicated methods of simulating ultimates, but all those that take period 

emergence as a percentage of ultimate will be considered to be using the same 

type of emergence pattern. Several other emergence patterns will be considered 

below, and the reserving methods appropriate for each will be discussed. Then 

methods for identifying the emergence patterns from the data triangles will be 

explored. 
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TYPES OF EMERGENCE PAT'FERNS 

Six characteristics of emergence patterns will be considered here. Each will be 

treated as a binary choice, thus producing 64 types of emergence patterns. How- 

ever there will be sub-categories within the 64, as not all of the choices are actu- 

ally binary. The six basic choices for defining loss emergence processes are: 

Do the losses that emerge in a period depend on the losses already emerged? 

Mack has shown that the chain ladder method assumes an emergence pattern in 

which the emerged loss for a period is a constant factor times the previous 

emerged, plus a random disturbance. Other methods, however, might apply 

factors only to ultimate losses, and then add a random disturbance. The latter is 

the emergence pattern assumed by the Bornheutter~Ferguson (BF) method, for 

example. 

Is all loss emergence proportional? Both the chain ladder and BF methods use 

factors to predict emergence, and so are based on processes where emergence is 

proportional to something - either ultimate losses in the BF case or previously 

emerged in the chain ladder. However, the expected loss emergence for a period 

could be constant - not proportional to anything. Or it could be a factor times 

something plus a constant. If this is the emergence pattern used, then the re- 

serving methodology should also incorporate additive elements. 

Is emergence independent of calendar year events? Losses to emerge in a pe- 

riod may depend on the inflation rate for the period. This is an example of a cal- 

endar year or diagonal effect. Another example is strong or weak development 

due to a change in claim handling methods. Thus this is not a purely binary 

question - if there are diagonal effects there will be sub-choices relating to what 

type of effect is included. The Taylor separation method is an example of a de- 

velopment method that recognizes calendar year inflation. In many cases of di- 

agonal effects, the ultimate losses will not be determined until all the develop- 

ment perio.ds have been simulated. 
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Are the parameters stable? For instance a parameter might be a loss develop- 

ment factor. A stable factor could lead to variable losses due to randomness of 

the development pattern, but the factor itself would remain constant. The alter- 

native is that the factor changes over time. There are sub-cases of this, depending 

on how they change. 

Are the disturbance terms generated from a normal distribution? The typical 

alternative is lognormal, but the possibilities are endless. Clearly the loss devel- 

opment method will need to respond to this choice. 

Are the disturbance terms homoskedastic? Some regression methods of devel- 

opment assume that the random disturbances all have the same variance, at least 

by development age. Link ratios are often calculated as the ratio of losses at age 

j+l divided by losses at age j, which assumes that the variance of the disturbance 

term is proportional to the mean loss emerged. Another alternative is for the 

standard deviation to be proportional to the mean. The variance assumption 

used to generate the emerging losses can be employed in the loss reserving proc- 

ess as well. 

Notation 

Losses for accident year w evaluated at the end of that year will be denoted as 

being as of age 0, and the first accident year in the triangle is year 0. The notation 

below will be used to specify the models. 

Cw,d: cumulative loss from accident year w as of age d 

cw,~: ultimate loss from accident year w 

qw,d: incremental loss for accident year w to emerge in period d 

fd: factor used in emergence for age d 

hw : factor (dollar amount) used in emergence for year w 

gw÷a: factor used in emergence for calendar year w+d 

ad: additive term used in emergence for age d 
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QUESTION I 

The stochastic processes specified by answering the six questions above can be 

numbered in binary by considering yes=l and no=O. Then process 111111 (all an- 

swers yes) can be specified as follows: 

qw,d = cw,dqfd + ew,a (1) 

where ew,a is normally distributed with mean zero. Here fa is a development  

factor applied to the cumulative losses simulated at age d-1. A starting value for 

the accident year is needed which could be called Cw,q. For each d it might be rea- 

sonable to assume that ew, a has a different variance. Note that for this process, 

ultimate losses are generated only as the sum of the separately generated 

emerged losses for each age. 

Mack has shown that for process 111111 the chain ladder is the optimal reserve 

estimation method. The factors fd would  be estimated by a no-constant linear re- 

gression. In process 111110 (heteroskedastic) the chain ladder would also be op- 

timal, but the method of estimating the factors would be different. Essentially 

these would use weighted least squares for the estimation, where the weights are 

inversely proportional to the variance of ew,d. If the variances are proportional to 

Cw,a.1, the resulting factor is the ratio of the sum of losses from the two relevant 

columns of the development  triangle. 

In all the processes 1111xx Mack showed that some form of the chain ladder is 

the best linear estimate, but when the disturbance term is not normal, linear es- 

timation is not necessarily optimal. 

Processes of type 0111xx do not generate emerged losses from those previously 

emerged. A simple example of this type of process is: 
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q~.d = hwfd + ew,d (2) 

Here hw can be interpreted as the ultimate losses for year w, with the factors fd 

summing to unity. For this process, reserving would  require estimation of the f's 

and h's. I call this method of reserving the parameterized BF, as Bornheutter and 

Ferguson estimated emergence as a percentage of expected ultimate. The method 

of estimating the parameters would  depend on the distribution of the distur- 

bance term ew,d. If it is normal and homoskedastic, a regression method can be 

used iteratively by fixing the f's and regressing for the h's, then taking those h's 

to find the best f's, etc. until both f's and h's converge. If heteroskedastic, 

weighted regressions would  be needed. If a lognormal disturbance is indicated, 

the parameters could be estimated in logs, which is a linear model  in the logs. 

QUESTION 2 

Addit ive terms can be added to either of the above processes. Thus an example 

of a 0011xx process would  be: 

qw,d = ad + hwfd + ew,d (3) 

If the f's are zero, this would be a purely additive model. A test for additive ef- 

fects can be made by adding them to the estimation and seeing if significantly 

better fits result. 

QUESTION 3 

Diagonal effects can be added similarly. A 0001xx model  might  be: 

qw,d = ad + hwfdgw+d + ew,d (4) 
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Again this can be tested by goodness of fit. There may be too many parameters 

here. It will usually be possible to reasonably simulate losses without  using so 

many distinct parameters. Specifying relationships among the parameters can 

lead to reduced parameter versions of these processes. For instance, some of the 

parameters might  be set equal, such as hw=h for all w. Note that the 0111xx proc- 

ess qw,d = hfa + ew,d is the same as the O011xx process qw,d = ad + ew,a, as ad can be 

set to hfd. The resulting reserve estimation method is an addit ive version of the 

chain ladder, and is sometimes called the Cape Cod method. 

Another way to reduce the number of parameters is to set up trend relationships. 

For example, constant calendar year inflation can be specified by setting 

gw÷a=(l+j) w÷d. Similar trend relationships can be specified among the h's and f's. 

If that is too much parameter reduction to adequately model  a given data trian- 

gle, a trend can be established for a few periods and then some other trend can 

be used in other periods. 

QUESTION 4 

Rather than trending, the parameters in the loss emergence models could evolve 

according to some more general stochastic process. This could be a smooth proc- 

ess or one with jumps. The state-space model is often used to describe parameter 

variability. This model assumes that observations fluctuate around an expected 

value that itself changes over time as its parameters evolve. The degree of ran- 

dom fluctuation is measured by the variance of the observations around the 

mean, and the movement  of the parameters is quantified by their variances over 

time. The interplay of these two variances determines the weights to apply, as in 

credibility theory. 

To be more concrete, a formal definition of the model follows where the pa- 

rameter is the 2 na to 3 'u development  factor. Let: 
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[~i=2nd to 3rd factor for ith accident year 

yi=3rd report losses for ith accident year 

xi=2nd report losses for ith accident year 

The model  is then: 

yi=xil~i+8i. (5) 

The error term ci is assumed to have mean 0 and variance Gi 2, 

13im~i-i +8i. (6) 

The fluctuation 8i is assumed to have mean 0 and variance vi 2, and to be inde- 

pendent  of the e's. 

In this general case the variances could change with each period i. Usually some 

simplification is applied, such as constant variances over time, or constant with 

occasional jumps in the parameter - i.e., occasional large vi's. 

If this model  is adopted for simulating loss emergence, the estimation of the fac- 

tors from the data can be done using the Kalman filter. 

QUESTIONS 5 AND 6 

The error structure can be studied and usually reasonably understood from the 

data triangles. The loss estimation method associated with a given error structure 

will be assumed to be maximum likelihood estimation from that structure. Thus 

for normal distributions this is weighted least squares, where the weights are the 

inverses of the variances. For lognormal this is the same, but.in logs. 

IDENTIFYING EMERGENCE PATTERNS 

Given a data triangle, what  is the process that is generating it? This is useful to 

know for loss reserving purposes, as then reserve estimation is reduced to esti- 
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marion of the parameters of the generating process. It is even more critical for 

simulation of company results, as the whole process is needed for simulation 

purposes. 

Identifying emergence patterns can be approached by fitting different ones to the 

data and then testing the significance of the parameters and the goodness of fit. 

As more parameters often appear to give a better fit, but reduce predictive value, 

a method of penalizing over-parameterization is needed when comparing com- 

peting models. The method proposed here is to compare models based on sum of 

squared residuals divided by the square of the degrees of freedom, i.e., divided 

by the square of observations less parameters. 

This measure gives impetus to trying to reduce the number of parameters in a 

given model, e.g., by setting some parameters the same or by identifying a trend 

in the parameters. This seems to be a legitimate exercise in the effort of identify- 

ing emergence patterns, as there are likely to be some regularities in the pattern, 

and simplifying the model is a way to uncover them. 

Fitting the above models is a straightforward exercise, but reducing the number  

of parameters may be more of an art than a science. Two approaches may make 

sense: top down, where the full model is fit and then regularities among the pa- 

rameters sought; and bottom up, where the most simplified version is estimated, 

and then parameters added to compensate for areas of poor fit. 

To illustrate this approach, the data triangle of reinsurance loss data first intro- 

duced by Thomas Mack will be the basis of model estimation. 
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Q U E S T I O N S  I R ¢  2 - -  F A C T O R S  A N D  C O N S T A N T  T E R M S  

Table I shows incremental incurred losses by age for some excess casualty rein- 

surance. As an initial step, the statistical significance of link ratios and additive 

constants was tested by regressing incremental losses against the previous cu- 

mulative losses. In the regression the constant is denoted by a and the factor by 

b. This provides a test of question I - dependence of emergence on previous 

emerged, and also one of question 2 - proportional emergence. Here they are 

being tested by looking at whether or not the factors and the constants are sig- 

nificantly different from zero, rather than by any goodness-of-fit measure. 

T a b l e  I - I n c r e m e n t a l  I n c u r r e d  Losses 

0 I 2 3 4 5 6 7 8 9 

5012 3257 2638 898 1734 2642 1828 599 54 172 

106 4179 I I I I  5270 3 1 1 6  1817 -103 673 535 

3410 5582 4881 2268 2594 3479 649 603 

5655 5900 4211 5500 2159 2658 984 

1092 8473 6271 6333 3786 225 

1513 4932 5257 1233 2917 

557 3463 6926 1368 

1351 5596 6165 

3133 2262 

2063 

T a b l e  2 - Stat ist ical  S igni f icance o f  L i n k  Rat ios  and  Constan ts  

O t o l  Jl t o 2  2 t o 3  3 t o 4  4 t o 5  5 t o 6  6 t o 7  7 t o 8  

"a' 5113 4311 1687 2061 4064 620 777 3724 

Std a 1066 2440 13543 1165 2242 2301 145 0 

"b' -0.109 0.049 i0.131 0.041 -0.100 0.011 -0.008 -0.197 

stdb 0.349 0.309 J0.283 0.071 0.114 0.112 0.008 0 

Table 2 shows the estimated parameters and their standard deviations. As can be 

seen, the constants are usually statistically significant (parameter nearly double 
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its standard deviation, or more), but the factors never are. The lack of signifi- 

cance of the factors shows that the losses to emerge at any age d+l are not pro- 

portional to the cumulative losses through age d. The assumptions underlying 

the chain ladder model are thus not met by this data. A constant amount emerg- 

ing for each age usually appears to be a reasonable estimator, however. 

Figure I illustrates this. A factor by itself would be a straight line through the 

origin with slope equal to the development factor, whereas a constant would 

give a horizontal line at the height of the constant. 

Lag I vs. Lag 0 Losses 

7000 

6000 • . • 

4000 m ~ ' 

3000 " . 

20C0 
I , " 

t¢O0 ] 

C , 

0 I030 2000 300C 4000 

, I 

Figure 1 

Although emerged losses are not proportional to previous emerged, they could 

be proportional to ultimate incurred. To test this, the parameterized BF model (2) 

was fit to the triangle. As this is a non-linear model, fitting is a little more in- 

volved. A method of fitting the parameters will be discussed, followed by an 

analysis of the resulting fit. 

To do the fitting, an iterative method can be used to minimize the sum of the 

squared residuals, where the w,d residual is [qw,d-fdhw]. Weighted least squares 

could also be used if the variances of the residuals are not constant over the tri- 

angle. For instance, the variances could be proportional to fdPhw% in which case 

the regression weights would be 1/fdPhwq. 
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A starting point for the f's or the h's is needed to begin the iteration. While al- 

most any reasonable values could be used, such as all f's equal to l / n ,  conver- 

gence will be faster with values likely to be in the ballpark of the final factors. A 

natural starting point thus might be the implied fd's from the chain ladder 

method. For ages greater than 0, these are the incremental age-to-age factors di- 

vided by the cumulative-to-ultimate factors. To get a starting value for age 0, 

subtract the sum of the other factors from unity. Starting with these values for fd, 

regressions were performed to find the hw's that minimize the sum of squared 

residuals (one regression for each w). These give the best h's for that initial set of 

f's. The standard linear regression formula for these h's simplifies to: 

hw = ~,dfdqw,d / ~dfd 2 (7) 

Even though that gives the best h's for those f's, another regression is needed to 

find the best f's for those h's. For this step the usual regression formula gives: 

fd = Ewh~qw.d / Ewh~ (8) 

Now the h regression can be repeated with the new f's, etc. This process contin- 

ues until convergence occurs, i.e., until the f's and h's no longer change with sub- 

sequent iterations. Ten iterations were used in this case, but substantial onver- 

gence occurred earlier. The first round of f's and h's and those at convergence are 

in Table 3. Note that the h's are not the final estimates of the ultimate losses, but 

are used with the estimated factors to estimate future emergence. In this case, in 

fact, h(0) is less than the emerged to date. A statistical package that includes non- 

linear regression could ease the estimation. 

Standard regression assumes each observation q has the same variance, which is 

to say the variance is proportional to f@hw% with p=q=0. If p=q=l the weighted 

regression formulas become: 

hw 2 = ~.,d[q~,d2/fd] / ,~..dfd and 

fd 2 = ~w[qw,d2/hw] / ~whw 
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T a b l e  3 - B F  P a r a m e t e r s  

Age d 

fd I "  

fd ult 

Year w 

hv I s, 

ult 

8 2 

D. 106 0.231 0 .209 

0.162 0.197 0 .204 

0 I 2 

17401 15729 23942 

15981 16501 23562 

3 4 15 6 7 8 9 

11.155 0 .117 0 .083 0.038 0 .032 0.018 0.011 

I).147 0.115 0 .082 0.037 0 .030 0.015 0 .009 

3 4 5 6 7 8 9 

26365 30390 19813 18592 24154 14639 12733 

27269 31587 20081 19032 25155 13219 19413 

For comparison, the development factors from the chain ladder are shown in Ta- 

ble 4. The incremental factors are the ratios of incremental to previous cumuIa- 

tive. The ultimate ratios are cumulativeto ultimate. Below them are the ratios of 

these ratios, which represent the portion of ultimate losses to emerge in each pe- 

riod. The zeroth period shown is unity less the sum of the other ratios. These 

factors were the initial iteration for the fd's shown above. 

Table 4 - Development Factors 

O t o l  I t o 2  2 t o 3  3 t o 4  ql. to5  5 t o 6  6 t o 7  7 t o 8  

Incremental 1.22 0.57 0.26 0.16 0.10 0.04 D.03 0.02 

O t o 9  I t o 9  2 t o 9  3 t o 9  4 t o 9  5 t o 9  6 t o 9  7 t o 9  
I 

Ultimate 6.17 2.78 1.77 1.41 1.21 I .  I 0 1.06 1.03 

0 .162 0 .197 0.204 0 .147 0.115 0.082 0 .037 0 .030 D.015 

8 t o 9  

0.01 

8 t o 9  

1.01 

0 .009 

Having now estimated the BF parameters, how can they be used to test what the 

emergence pattern of the losses is? 

A comparison of this fit to that from the chain ladder can be made by looking at 

how well each method predicts the incremental losses for each age after the ini- 

tial one. The sum of squared errors adjusted for number of parameters is the 

comparison measure, where the parameter adjustment is made by dividing the 

sum of squared errors by the square of [the number of observations less the 
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number of parameters], as discussed earlier. Here there are 45 observations, as 

only the predicted points count as observations. The adjusted sum of squared re- 

siduals is 81,169 for the BF, and 157,902 for the chain ladder. This shows that the 

emergence pattern for the BF (emergence proportional to ultimate) is much more 

consistent with this data than is the chain ladder emergence pattern (emergence 

proportional to previous emerged). 

The Cape Cod (CC) method was also tried for this data. The iteration proceeded 

similarly to that for the BF, but only a single h parameter was fit for all accident 

years. Now: 

h = ~w,afaq~,a / Zw,dfa 2 (9) 

The estimated h is 22,001, and the final factors f are shown in Table 5. The ad- 

justed sum of squared errors for this fit is 75,409. Since the CC is a special case of 

the BF, the unadjusted fit is of course worse than that of the BF method, but with 

fewer parameters in the CC, the adjustment makes them similar. This formula for 

h is the same as the formula for hw except the sum is taken over all w. 

Intermediate special cases could be fit similarly. If, for instance, a single factor 

were sought to apply to just two accident years, the sum would be taken over 

those years to estimate that factor, etc. 

Table 5 - Factors in CC Method 

0 I 2 3 4 5 6 7 8 9 

0.109 0.220 0.213 0.148 0.124 0.098 0.038 0.028 0.013 0.008 

This is a case where the BF has too many parameters for prediction purposes. 

More parameters fit the data better, but use up information. The penalization in 

the fit measure adjusts for this problem, and shows the CC to be a somewhat  
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better model. Thus the data is consistent with random emergence around an ex- 

pected value that is constant over the accident years. 

The CC method would probably work even better for loss ratio triangles than for 

loss triangles, as then a single target ultimate value makes more sense. Adjusting 

loss ratios for trend and rate level could increase this homogeneity.  

In addition, a purely additive development  was tried, as suggested by the fact 

that the constant terms were significant in the original chain ladder, even though 

the factors were not. The development  terms are shown in Table 6. These are just 

the average loss emerged at each age. The adjusted sum of squared residuals is 

75,409. This is much better than the chain ladder, which might be expected, as 

the constant terms were significant in the original significance-test regressions 

while the factors were not. The additive factors in Table 6 differ from those in 

Table 2 because there is no multiplicative factor in Table 6. 

Table 6 - Terms In Addit ive Chain Ladder 

I 2 3 4 5 6 7 8 9 

4849.3 4682.5 3267.1 2717.7 2164.2 839.5 625 294.5 172 

As discussed above, the additive chain ladder is the same as the Cape Cod 

method, although it is parameterized differently. The exact same goodness of fit 

is thus not surprising. 

Finally, an intermediate BF-CC pattern was fit as an example of reduced pa- 

rameter BF's. In this case ages I and 2 are assumed to have the same factor, as are 

ages 6 and 7 and ages 8 and 9. This reduces the number  of f parameters from 9 to 

6. The number of accident year parameters was also reduced: years 0 and I have 

a single parameter, as do years 5 through 9. Year 2 has its own parameter, as 

does year 4, but year 3 is the average of those two. Thus there are 4 accident year 
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parameters, and so 10 parameters in total. Any one of these can be set arbitrarily, 

with the remainder adjusted by a factor, so there are really just 9. The selections 

were based on consideration of which parameters were likely not to be signifi- 

cantly different from each other. 

The estimated factors are shown in Table 7. The accident year factor for the last 5 

years was set to 20,000. The other factors were estimated by the same iterative 

regression procedure as for the BF, but the factor constraints change the simpli- 

fied regression formula. The adjusted sum of squared residuals is 52,360, which 

makes it the best approach tried. This further supports the idea that claims 

emerge  as a percent of ultimate for this data. It also indicates that the various ac- 

cident years and ages are not all at different levels, but that the CC is too much of 

a simplification. The actual and fitted values from this, the chain ladder, and CC 

are in Exhibit 1. The fitted values in Exhibit 1 were calculated as follows. For the 

chain ladder, the factors from Table 4 were applied to the cumulative losses im- 

plied from Table 1. For the CC the fitted values are just the terms in Table 6. For 

the BF-CC they are the products of the appropriate f and h factors from Table 7. 

T a b l e  7 - B F - C C  P a r a m e t e r s  

Age d 0 II 2 3 

fd ° 0 .230 0.230 0.160 0.123 

Year w 0 I 2 3 4 

hw 14829 14829 20962 25895 

Calendar Year Impacts - Testing Question 3 

4 5 0 6 .040 7 8 9 
0.086 0.040 0.017 0.017 

5 6 7 8 ;9 I 
30828 20000 120000 20000 20000 20000 

One type of calendar year impact is high or low diagonals in the loss triangle. 

Mack suggested a high-low diagonal test which counts the number of high and 

low factors on each diagonal, and tests whether or not that is likely to be due to 

chance. Here another high-low test is proposed: use regression to see if any di- 

agonal d u m m y  variables are significant. An actuary will often have information 

about changes in company operations that may have created a diagonal effect. If 
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so, this information could lead to choices of model ing methods - e.g., whether  to 

assume the effect is permanent  or temporary. The diagonal dummies  can be used 

to measure the effect in any case, but knowledge of company operations will 

help determine how to use this effect. This is particularly so if the effect occurs in 

the last few diagonals. 

A diagonal in the loss development  triangle is defined by w+d = constant. Sup- 

pose for some given data triangle, the diagonal w+d=7 is found to be 10% higher 

than normal. Then an adjusted BF estimate of a cell might be: 

qw,a=l.lfdhw if w+d=7, and qw,a=fdhw otherwise(10) 

1 
3 
7 

7 
in a chain ladder 

model. The goal is to get a matrix of data in 

the form needed to do a multiple regression. 

First the triangle (except the first column) is 

2 5 4 The small sample triangle of incremental losses here will 
8 q 
10 be used as an example of how to set up diagonal dummies  

2 1 i0 0 0 0 
8 3 0 0 1 0 
10 7 0 0 0 1 
5 0 3 0 1 !0 
9 0 11 0 0 1 
4 0 0 8 0 I1 

strung out into a column vector. This is the dependent  variable. Then columns 

for the independent  variables are added. The second column is the cumulative 

losses at age 0 for the loss entries that are at age 1, and zero for the other loss en- 

tries. The regression coefficient for this column would be the 0 to I cumulative- 

to-incremental factor. The next two columns are the same for the I to 2 and 2 to 3 

factors. The last two columns are the diagonal dummies.  They pick out the ele- 

ments of the last two diagonals. The coefficients for these columns would be ad- 

ditive adjustments for those diagonals, if significant. 

This method of testing for diagonal effects is applicable to many of the emer- 

gence models. In fact, if diagonal effects are found significant in chain ladder 
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models, they probably are needed in the BF models of the same data, so good- 

ness-of-fit tests should be done with those diagonal elements included. Some ex- 

amples are given in Appendix 2. 

Another popular modeling approach is to consider diagonal effects to be a meas- 

ure of inflation (e.g., see Taylor 1977). In a payment triangle this would be a 

natural interpretation, but a similar phenomenon could occur in an incurred tri- 

angle. In this case the latest diagonal effects might be projected ahead as esti- 

mates of future inflation. An understanding of what in company operations is 

driving the diagonal effects would help address these issues. 

As with the BF model, the parameters of the model with inflation effects, qw.a = 

hwfdgw*d + ew, d, can be estimated iteratively. With reasonable starting values, fix 

two of the three sets of parameters, fit the third by least squares, and rotate until 

convergence is reached. Alternatively, a non-linear search procedure could be 

utilized. As an example of the simplest of these models, modeling qw,a as just 

6756(0.7785) d gives an adjusted sum of squares of 57,527 for the reinsurance tri- 

angle above. This is not the best fitting model, but is better than some, and has 

only two parameters. Adding more parameters to this would be an example of 

the bottom up fitting approach. 

T E S T I N G  Q U E S T I O N  4 - STABIL I 'TY  O F  P A R A M E T E R S  

If a pattern of sequences of high and low residuals is found when plotted against 

time, instability of the parameters may be indicated. This can be studied and a 

randomness in the parameters incorporated into the simulation process, e.g., 

through the state-space model. 
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2nd  to 3rd 5 - te rm mov ing  average 
2 . 4  

2 . 2  

2 

1 . 8  

1 . 6  

1.4 

1.2 

I 

Figure 2 

Figure 2 shows the 2 nd to 3 rd factor by accident year from a large development 

triangle (data in Exhibit 2) along with its five-term moving average. The moving 

average is the more stable of the two lines, and is sometimes in practice called 

"the average of the last five diagonals." There is apparent movement of the mean 

factor over time as well as a good deal of random fluctuation around it. There is a 

period of time in which the moving average is as low as 1.1 and other times it is 

as high as 1.8. 

The state-space model assumes that observations fluctuate around a mean that 

itself changes over time. The degree of random fluctuation is measured by vari- 

ance around the mean, and the movement of the mean by its variance over time. 

The interplay of these two variances determines the weights to apply, as in 

credibility theory. 

The state-space model thus provides underlying assumptions about the process 

by which development changes over time. With such a model, estimation tech- 

niques that minimize prediction errors can be developed for the changing devel- 

opment case. This can result in estimators that are better than either using all 
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data, or taking the average of the last few diagonals. For more details on the state 

space models see the Verrall and Zehnwirth references. 

QUE$?ION$ 5 ~ 6." VARIANCE ASSUMPTIONS 

Parameter estimation changes depending on the form of the variance. Usually in 

the chain ladder model the variance will plausibly be either a constant or pro- 

portional to the previous cumulative or its square. Plotting or fitting the squared 

residuals as a function of the previous cumulative will usually help decide which 

of these three alternatives fits better. If the squared residuals tend to be larger 

when the explanatory variable is larger, this is evidence that the variance is 

larger as well. 

Another variance test would be for normality of the residuals. Normality is often 

tested by plotting the residuals on a normal scale, and looking for linearity. This 

is not a formal test, but it is often considered a useful procedure. If the residuals 

are somewhat positively skewed, a lognormal distribution may be reasonable. 

The non-linear models discussed are all linear in logs, and so could be much 

easier to estimate in that form. However, if some increments are negative, a log- 

normal model becomes awkward. The right distribution for the residuals of loss 

reserving models seems an area in which further research would be helpful. 

CONCLUSION 

The first test that will quickly indicate the general type of emergence pattern 

faced is the test of significance of the cumulative-to-incremental factors at each 

age. This is equivalent to testing if the cumulative-to-cumulative factors are sig- 

nificantly different from unity. When this test fails, the future emergence is not 

proportional to past emergence. It may be a constant amount, it may be propor- 

tional to ultimate losses, as in the BF pattern, or it may depend on future infla- 

tion. 
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The addition of an additive component may give an even better fit. Reduced pa- 

rameter models could also give better performance, as they will be less respon- 

sive to random variation. If an additive component is significant, converting the 

triangle to on-level loss ratios may improve the model. Tests of stability and for 

calendar-year effects may lead to further improvements. 

267 



A P P E N D I X  3 - -  R E G R E S S I O N  G R A P H S  

Quartedy Change in the CR 1 
Predicted Versus Observ~ [ 
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Quarterly Change in the Wilshice 5000 Equity Price Index 
Predicted Versus Observed 
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Profitability Targets: DFA Provides ProbabilityEstimates 

Abstract 

This paper will discuss the analysis we undertook to address the questions described below: 

Background 

During each of the past several years, an insurance company's actual experience has been much 

worse than the plan provided to its Board. A dynamic financial analysis was performed to address 

the following questions: 

Questions 

1. What is the probability that the insurance company will meet or exceed the earnings 

estimates for the following year provided to its Board? 

2. Are the assumptions underlying the earnings estimates overly optimistic, or has the 

company had a run of bad luck? 

3. What elements of the company's business are its source of greatest risk? 

This paper will discuss the type of model we developed to address these questions, which risk 

variables (e.g., catastrophe losses, investment yield, expense ratios, etc.) were addressed in the 

model, the type of information that we collected from the company and from external sources for 

the model, and how the model results were interpreted to develop answers to the questions. 

Results 

The paper concludes with a presentation of the results of the analyses and a summary of 

management's actions. Briefly, these actions were: 

Changed underwriting guidelines and pricing for general liability business. 

Revised plan to be closer to findings of our analysis. 

Developed monthly monitoring statistics reflecting key drivers identified in analysis. 
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Profitability Targets: DFA Provides Probability Estimates 

Dynamic financial analysis (DFA) is currently used in many applications and will probably be used 

to address an even wider range of issues in the coming years. One application for which we ~ have 

used DFA is the evaluation of the likelihood that an insurer will achieve the profit levels projected in 

its financial plan. In this paper, we will describe the model and types of data used in the analysis, 

identify the risks that were specifically addressed by the model and those that were specifically 

considered outside of the scope of the project, and present illustrative model results. Finally, we will 

provide a discussion of how management used the findings of the analysis in its decision making 

process) 

Background Regardine the Comnanv 

The company for whom this engagement was performed is a medium-sized insurer that writes 

nationally, but has a regional focus. Its business is approximately 65% personal lines and 35% 

commercial lines. The company maintains excess of loss and catastrophe reinsurance to protect itself 

against large claims and property catastrophes. In addition, for one line of  business (general liability 

for this discussion), it maintains an underlying quota share with a significant sliding scale 

commission) 

In recent years, the company has experienced a number of unexpected events, primarily affecting the 

general liability book of business, that have caused it to be unprofitable. The company maintains a 

net-written-premium-to-surplus ratio of about 1.5, so capitalization and solvency are not of serious 

The author would like to thank David Appel for his contributions to this paper and his 
review of the draft. 

2 We note that, throughout this paper, the data., insurer characteristics, amounts and 
findings have been disguised to protect the confidentiality of the company for whom the actual 
project was performed. 

3 The ceding commission can range from 18% to 40% depending on the ceded loss ratio. 
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concern. The consistent lack of profitability, however, has led to a loss of credibility with the Board 

and with rating agencies. 

The Ouestions 

Company management was interested in increasing the credibility of its financial plan and the 

presentation thereof. We therefore performed a dynamic financial analysis to evaluate the probability 

that the net income and statutory surplus projections would come to fruition. If our findings were 

that it was unlikely that plan results would be achieved, management was interested in (1) the 

differences between our best estimate of the future results and its plan and (2) factors that are 

projected to lead to the most significant variation from our expected results. 

As will be discussed later, there were significant differences between the initial plan and our best 

estimates. Reconciliation of those differences (including additional information being provided, 

changes in strategy and changes in projected results) was a significant portion of the engagement. 

Identification ofthe factors that are projected to lead to the most significant variation from expected 

results served two purposes: (1) identification of possible strategies to reduce the variability and 

(2) selection of statistics for monitoring interim results to determine whether actual experience was 

as expected or whether the adverse experience was continuing. 

~Ida.e..~adcLIJarA 

Overview 

The model used to perform this analysis was a customized, early version of Milliman & Robertson, 

Inc.'s dynamic financial model software, FINANS ©. The foundation of that model is a spreadsheet 

that maintains the computations for the liability projections and the financial statements. This 

spreadsheet is similar to the financial projection models that are typically used by many property- 

casualty insurance companies for financial planning and/or valuation. It includes projections of 
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statutory, GAAP, cash and tax financial statements and estimates risk-based capital and the IRIS 

tests. 

In addition to the spreadsheet portion of the model, FINANS has a macroeconomic scenario 

generator, an asset accounting model and a report generator. The schematic below illustrates the 

major modules of the model: 

A s s e t  I 
i l iNg  Statements Generator 

S c e n l f | o s  

The macroeconomic scenario generator is a multi-equation econometric model which develops 

quarterly projections of six economic and financial variables, namely, gross domestic product growth, 

inflation, long and short term interest rates, and stock returns and dividends. These projections are 

then used to drive both the asset and liability sides off the balance sheet. 

The econometric model begins with a two stage autoregressive model of gross domestic product 

growth, where gross domestic product growth is a function off two lagged values off itself and a 

random error term. The remainder of the model is recursive, in that each subsequent variable is 

estimated as a function of a previously derived variable (and generally lagged values of itself). Thus, 

inflation is estimated as a function of gross domestic product growth (and lagged inflation), short 

term interest rates are a function of inflation (and lagged interest rates), long term rates are a function 

of short term rates, and so on. 
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The asset accounting model combines the output of the macroeconomic scenario generator with 

information regarding (1) the assets owned by the company on the valuation date, (2) the cash flows 

from underwriting derived fi'om the spreadsheet, and (3) the company's investment strategy to project 

market, book and par valuations of assets by class at each year end, as well as interest, dividends, 

capital gains (realized and unrealized), amortization, maturities and other income and cash 

transactions occurring during each year. The output of the asset accounting model is fed to the 

spreadsheet portion of the model and is integrated into the financial statements. 

At the time this project was performed, the report generator module simply collected information 

regarding each ofthe dynamic inputs and selected financial statement values and placed them in a data 

base. Analysis of results was accomplished using an Excel spreadsheet. 

Inputs 

The key inputs to the model can be separated into those related to the invested asset portfolio, those 

related to underwriting and other balances specific to the company as a whole. 

With respect to the invested asset portfolio, the model requires information regarding: 

(i) The book, acquisition and par values of each of government, municipal, 

corporate and high yield bonds by maturity and coupon. 

(2) The book, acquisition and market values of other investment classes (stocks, 

real estate, mortgages, cash and short-term investments). 

(3) The investment strategy - either the desired distribution of cash generated 

during the year among classes or the desired mix of assets at the end of the 

year. If  the former approach is taken, the user must specify the manner in 

which assets are to be disposed in situations in which cash flows are negative. 
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For each modded line of business, the user inputs information regarding premiums, losses, expenses 

and reinsurance. The company's business was divided into the following lines for modeling: 

Property. (Commercial and personal property exposures were combined due 

to limitations on catastrophe modeling in this version of the software.) 

• General liability, including other liability, products liability and special liability. 

• Workers' compensation. 

• Commercial automobile, including liability and physical damage. 

• Personal automobile, including liability and physical damage. 

For premiums, information regarding direct written premium, earning patterns and collection lags are 

provided. For losses, information regarding loss, loss adjustment expense (LAE) and 

salvage/subrogation ratios, reserve strengthening (calendar year by accident year), and payment 

patterns are required. Expenses can be broken down into commissions, premium taxes, other variable 

expenses, fixed expenses and policyholder dividends. Information regarding each of quota share, 

excess of loss, catastrophe and annual aggregate reinsurance is provided to the model. Other 

information regarding the company as a whole, such as other income, stockholder dividends and 

capital infusions, can also be entered into the model. 

Risks Modeled 

The number of risks that can be made dynamic for any given company is endless. One of the 

important roles of the DFA actuary, in conjunction with company management, is to identify those 

risks that warrant inclusion in the model. For this application, many risks were identified, several of 

which were modeled dynamically as discussed below. 
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Investment Yields and Returns: Investment returns were derived from the macroeconomic 

scenario generator. That is, interest and dividends from investments held at the valuation date and 

through the projection period were calculated based on the characteristics of the assets. Market 

values of high yields bonds and stocks were calculated in the asset accounting model using standard 

valuation formulas, Bond defaults were derived based on the economic conditions as described by 

the output of  the macroeconomic scenario generator. 

Premium: Uncertainty regarding the growth of premium (combined exposure growth and rate 

changes) was introduced. 

Losses: For each line, losses were modeled in three categories: catastrophes (only for property lines), 

large claims and the loss ratio resulting from small (all other) claims. For catastrophes, the number 

of catastrophes in excess of a certain size was modeled using a Poisson distribution. The sizes were 

drawn from a distribution derived from catastrophe modeling software. For large claims, the number 

of claims in excess of a selected threshold was modeled using a Poisson distribution with the average 

sizes (ground up) being selected from Pareto distributions. 

Fixed expenses: The ratio of fixed expenses to direct earned premium was assumed to vary using 

a Normal error term. This error term was assumed to be constant across all lines of business (i.e., 

there was 100% correlation among lines) because the parameters of the error term distribution were 

derived from companywide historical expense data. 

Statutory Assessments: With the relatively recent payment by some companies of Proposition 103 

rollbacks, the risks emanating from statutory assessments were considered important by the company. 
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Risks Not Modeled 

There were a large number of risks that were not modeled, as described below. 

Mass torts: The company has not written any exposures that have generated claims from mass torts 

in the past. Having reviewed its current book of business, it does not believe that it has material 

exposure to any mass torts. This risk was therefore not explicitly modeled. 

Loss payment patterns: Loss payment patterns were assumed to vary by line, but not accident year. 

As such., the model did not reflect the volatility in payment patterns from changes in inflation, mix of 

claims or other factors affecting payment patterns. 

Reserve strengthening: The company has historically experienced favorable development of 

ultimate losses and ALAE between their initial report and the final estimates. For conservatism, the 

model assumed that the booked reserves as of December 31, 1996 did not contain any such margin. 

Because of  the consistency of the reserve estimates, the risk related to changes in estimates was 

considered relatively small and was not modeled. 

LAE ratios: Ratios of ALAE to loss and ULAE to loss, by line, were held constant across accident 

years and scenarios. 

Reinsurance pricing: Reinsurance premium rates and contingent premium terms were held constant 

across the three-year projection period for all scenarios. With the relatively short time period covered 

by the analysis, it was believed that changes in reinsurance rates and terms would not be a significant 

factor relative to many of the other risks that were modeled. 

llliquid assets: The company has a number ofilliquid invested assets, though they comprise only 

a small proportion of invested assets. The expected value of the interest income from these assets 

was used in all scenarios and the book value of these assets was held constant. 
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Reduction in Beat's rating: A serious concern of the company is that it's Best's rating might be 

reduced in light of the recent unprofitability. A reduction in Best's rating could have a significant 

impact on the company's ability to maintain is current premium volumes and its ability to select risks 

in the marketplace. The company chose not to model the impact of  this risk, so all results are 

conditional on the assumption that the company maintains its current Best's rating. 

Data Used in Analysis 

The data provided for our analysis included: 

(l)  Management's three-year financial plan. 

(2) Five years of statutory annual statements. 

(3) The company's analysis of direct ultimate losses and LAE by accident year 

and subline, along with corresponding payment triangles and earned premium. 

These estimates were accepted as best estimates. An independent evaluation 

of reserves was outside of the scope of the engagement. 

(4) Development triangles of individual paid and incurred losses in excess of 
$500,000. 

(5) Probability distributions of catastrophe losses for all property exposures in the 

aggregate. 

(6) Policy limits profiles. 

(7) A fist of catastrophe losses exceeding $2 million for the past 10 years. 

These data were used to develop the expected value assumptions for all inputs to the model and to 

derive the parameters of the distributions for each of the modeled risks. 
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Premium 

For the expected value case, we accepted management's premium growth assumptions which 

anticipated ~proximately 5% per annum growth for personal lines and 0% per annum for commercial 

lines. A common premium growth rate was used for all commercial lines and a separate growth rate 

was used for personal lines. The premium growth rates were assumed to be Normally distributed 

with a standard deviation of 2.5%, a minimum of 0% for personal lines and -5% for commercial lines 

and a maximum of 10°,4 for personal lines and 5% for commercial lines. The base case assumptions 

regarding direct written premium by line for each of the three projections years are shown in 

Exhibit 1. Also shown in that exhibit are the projected percentages of premium earned and collected 

in the year written. 

Losses 

As discussed previously, the model separates losses into the following categories: (I) catastrophes, 

(2) ground up losses on claims exceeding a selected size ($500,000 per claim for this analysis) and 

(3) small losses. 

The historical loss experience by line and accident year was first decomposed into the three 

components. As indicated previously, data were available to remove the impact of catastrophe losses. 

The development of individual claims in excess of  $500,000 per claim was used to derive projections 

of the ultimate cost of large claims. These projections and the catastrophe losses were subtracted 

fi'om direct ultimate losses to estimate small losses. Exhibit 2 shows the decomposition of  property 

and general liability losses into the three components. Similar analyses were performed for the other 

lines. 

The expected number of catastrophe losses in excess of $5 million per event per year (0.25) was 

derived ffi'om the catastrophe model output. The distribution of these events was also derived from 

the catastrophe model output, as shown on Exhibit 3. Because there are only relatively small 

variability in premium volume projected, no adjustments were made to the catastrophe loss 
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parameters across iterations. These assumptions correspond to a ratio of catastrophe losses to 

property premium of approximately 9%. 

The historical frequency and size of large claims was reviewed to derive assumptions for use in the 

projection period. Exhibit 4 shows the number, projected frequency and projected average cost of 

large general liability claims for Accident Years 1987 through 1996. Initially, we selected a frequency 

of large general liability claims of 0.30 claims per $1 million of general liability premium and an 

average cost per large claim of $1.2 milfion. These assumptions were much higher than those implicit 

in management's assumptions (which anticipated that the recent large claim experience reflected a 

run of bad luck, not a precursor of future losses) and much higher than would have been expected 

based on the excess of loss reinsurance pricing. In light of the relatively small number of claims, the 

lack of available industry information regarding large claims from the particular niches written by the 

company and the reinsurer's evaluation of the company's large loss exposure, we introduced 

uncertainty with respect to the expected frequency of large general liability claims. That is, the model 

assumed a 20% chance that the expected frequency of large general liability claims is 0.225, a 

50% chance that it is 0.30 and a 30% chance that it is 0.35. 

For all other lines, the frequency of large claims was much more stable, so a single expected 

frequency ofclaims was selected. A Poisson distribution was used to model the actual number of 

large claims for each line in each scenario using a mean equal to the expected number of large claims 

(frequency times direct earned premium). The expected frequencies of large claims for lines other 

than general liability are shown in Table 1. 

Table 1: Large Claim Assum 

Line 
Expected 
Frequency 

~tions 

Expected 
Severity 

Property 0.15 $1 million 

Workers compensation 0.05 1.5 million 

Commercial auto 0.25 700 thousand 

Personal auto 0.01 600 thousand 
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Pareto size of loss distributions were used to model the cost of individual claims. For each line, the 

parameters of the Pareto distribution were selected aRer reviewing: 

(1) The historical experience regarding large claims by size. 

(2) The average claim cost implicit in reinsurance pricing (aRer 

consideration of the historical distribution of policy limits). 

(3) Changes in the distribution of policy limits. 

(4) The average claim costs implicit in insurance industry increased limits 

factors (assuming the company's large claim frequency is appropriate). 

To simplify modeling, the Pareto parameters were selected so that the claim size distribution implicitly 

incorporated the policy limit distribution• That is, the claim sizes selected from the Pareto distribution 

are assumed to have already been capped by any applicable policy limits• The occurrence and size 

of large losses was assumed to be independent across lines and time• 

Using cascading regression and applying judgment, models of the small loss ratios were derived. The 

formulas for the small loss ratios are as follows: 

I/rj, k = a + b(Hl~, l,k ) + Z  Cx(ff~.x) + ~ dx(H~-I~) + .f~lj) + ej 
x.~k xtk 

where l/r is loss ratio 

j is the year, 

x is line of business, 

k is the specific line of business being modeled, 

i is the interest rate, 

a, b, c, d and fare constants and 

e is a Normal random variable. 
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The resulting loss ratios (small, large, catastrophe and total) are summarized on Exhibit 5. 

E~enses 

We reviewed historical ratios of ALAE and ULAE to loss by accident year and line to select these 

ratios for use in the model. The selected ratios are shown on Exhibit 6. 

For the base case, we accepted the company's assumptions regarding commissions and premium 

taxes. The base case assumptions are presented in Table 2. 

Table 2: Base Case Assumptions 

Ratio to 
Written 

Type of Expense Premium 

! Commissions 17.3% 

Premium Taxes ! 2.7% 

Fixed expenses were projected from 1996 levels assuming that fixed expenses increased (1) with CPI 

inflation and (2) with 50% of any increase in direct earned premium. In addition, the ratio of fixed 

expenses to direct earned premium was assumed to have a random component. To incorporate this 

random component, we added a percentage drawn from a Normal distribution with a mean of 0 and 

a standard deviation of 1% of direct earned premium to the expenses otherwise derived for each line 

of business. (The same percentage was added for each line.) The standard deviation of the error term 

was derived after reviewing ten years of expense ratios (excluding premium taxes and agents' 

commissions) after adjustment for a change in accounting and a significant one-time expenditure. 

Statutory Assessments 

A discrete distribution of statutory assessments (including assigned risk and guaranty fund 

assessments, rollbacks, excess profits refunds and the like) was derived after considering the 

distribution of premium by state and a probability distribution of assessments as a percentage of direct 
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premium in a state. The resulting probability distribution of statutory assessments as a percentage 

of countrywide direct written premium is shown on Exhibit 7. 

Reinsurance 

The company purchases primarily excess of loss reinsurance. The attachment point is $1 million per 

claim for all lines, except general liability for which it is $5 million per claim. There is no ceding 

commission in any of the excess of loss contracts. It is assamed for modeling purposes that premiums 

are ceded and losses are recovered quarterly in arrears. The 1997 ceded premium for the excess of 

loss coverage is shown in Table 3. 

Table 3 : 1 9 9 7  Ceded Excess of Loss Premium 

Line 

i 997 Ceded 
Premium 
(ooos) 

Property $ 360 

General liability !,440 

Workers' compensation 600 

Commercial auto 360 

Personal auto 2 

For general liability, the company also entered into a quota share agreement under which 75% of 

losses and premium are ceded. This contract has a significant slide on the ceding commission. The 

provisional commission is 25%. For each point increase in the pure ceded loss ratio above 55%, the 

commission is decreased by 0.8 percentage points, subject to a minimum of 18% and a maximum 

of 40%. The commission provision applies to each accident year individually. 
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For property, cat~L'~U'ophe reinsurance is also purchased in the layer $50 million excess of $10 million. 

The cost of  the catastrophe reinsurance is $4.5 million. There are two reinstatements available at 

a rate on line ~ of 5%. 

All reinsurance is assumed to be collectible; that is, credit risk from reinsurers is not modeled. 

muRralizc_R~mlts 

As was discussed earlier in this paper, the scope of the engagement entailed: 

(1) Evaluation of the fikelihood that actual results would equal or exceed 

those in the company's plan. 

(2) Identification of differences in assumptions between us and the 

company. 

(3) Identification of key drivers of results. 

The dynamic financial model was used to derive 2,000 possible results based on the assumptions 

presented previously. The results of these iterations were used to address the company's questions. 

Probabifity of Attaining Plan Results 

Exhibit 8 shows the probability distribution of net income by year and 1999 projected surplus. 

Figure I shows the distribution of 1997 net income graphically. Also shown on Exhibit 8 are the 

income and surplus amounts in the company's three-year financial plan and our estimates of the 

probability of attaining those results. As can be seen., the analysis indicated that there is a relatively 

low probability that the company's targets will be attained. 

4 For every dollar recovered fi'om the catastrophe reinsurer for the first two catastrophes 
in excess of the attachment point, 5¢ is paid as reinstatement premium. 

288 



Figure 1: Distribution of Net Income 
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Differences in Assumptions 

As was indicated in the discussion of assumptions, one significant difference in assumptions was the 

frequency of large general liability claims. We pointed out that the company had entered a new type 

of business in the early 1990s and that the earlier favorable experience with large genera] liability 

claims was not indicative of the ~ture. We therefore calculated the probability that the actual number 

of large claims for 1994 through 1996 would have been observed using expected values of 

management's assumptions of 3 large claims per year and our three assumptions regarding the 

number of large claims of 7.2, 9.2 and 10.7. These probabilities are shown in Table 4. 

Table 4: Probabilities 

Expected Number 
of Large Claims 

Probability of Last 
Three Year's Results 

6.0 0.1% 

7.2 1.3% 

9.2 17.4% 

I 0.7 46.0% 
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The other significant difference in assumptions relates to fixed expenses. The company had projected 

that fixed expenses related to commercial lines would remain constant, but planned to keep the same 

level of personnel. That is, the company did not reflect the impact of wage inflation on salaries and 

related expenses. Atter reviewing our model and seeing the impact ofinflation, the company revised 

its expense projections. 

Key Drivers 

The process used to identify key drivers was: 

(I)  Identify all of the independent variables monitored in the analysis, as 

shown in Exhibit 9. 

(2) Use a t-test to determine whether there was a statistically significant 

correlation between each variable and calendar year net income. 

(Several approaches, including stepwise regression, were used to 

ensure that correlation among independent variables did not distort the 

findings.) Those variables whose correlation with net income were 

not statistically significant were dropped fi'om this list. 

(3) Calculate the impact on net income if each of the statistically 

significant independent variables were at its 90th and 99th percentile. 

Those variables that were found to have statistically significant 

correlation with net income, but had much less than a $1 million 

impact on net income at the 90th percentile were excluded. 
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The remaining variables and several measures o f  their impact o n  net income are shown in Table 5. 

Table 5: Impact on Net Income 

Average 
1997 

Variable Value 

Small Loss Ratio - 
General Liability 25.0% 

Small Loss Ratio - 
Commercial Auto 45.0% 

Small Loss Ratio - 
Personal Auto 68.0% 

Small Loss Ratio - 
Workers' Compensation 67.5*/, 

Small Loss Ratio - 
Property 43.0*/0 

Number of Large 
Property Claims 9.7 

Number of Large 
General Liability Claims 9.3 

Number of Large 
Commercial Auto Claims 9.7 

Number of Large Workers' 
Compensation Claims i. 1 

Number of Catastrophes 0.25 

Underwriting Expenses 
(Deviation from Expected) 0% 

B 

Net Income Impact 
if 10% Worse than 

Expected (thousands) 

$ 775 

1,739 

3,877 

1,457 

Probability 
of 10% 

Worse than 
Expected 

Net Income Impact of 
90th Percentile 

Adverse Deviation 
(millions) 

16% $-!.0 

190 -2.6 

3% -2.8 

22% -2.6 

2,790 15% -4.0 

970 36% -3.3 

i,116 

679 

165 

141 

34% -4.4 

31% -2.3 

30% -2.9 

25% -2.5 

N/A N/A -2.8 

Management Use of Results 

Company management made a number of  changesto  its plan, its underwriting and its monitoring 

tools in response to our findings. The comPany first reviewed our report to identify those 
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assumptions for which our best estimate significantly differed from the assumptions underlying its 

plan. Three or four such assumptions were found, most of which related to the general liability book 

of  business. The company therefore carefully reviewed its current book of  business and made 

numerous changes to its underwriting guidelines. It also made several changes to the manner in 

which individual accounts are rated and will make increased use of facultative reinsurance to limit its 

exposure to large claims. The company presented these changes to us and its analyses supporting its 

estimates of the impact of these changes on the key assumptions underlying our model. 

In addition to making these changes to operations, the company revised its plan to make it somewhat 

less favorable. We then evaluated the analyses and revised the assumptions underlying our model. 

Although we still project that there is less than a 50% change of attaining the plan results, our 

projections are much closer to the plan than was displayed on Exhibit 9. 

Finally, management is using the information regarding key drivers to monitor results on a monthly 

basis. With the importance of attaining the results in the financial plan, the company wants to identify 

possible sources of  adverse deviation as quickly as possible. 
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Exhibit 1 

Sample Insurance Company 

SUMMARY OF PREMIUM DATA 

Direct Written Premiom 
Line 1997 1998 1999 

Percent 
Collection Earned 

Lag in Year 

Property $64,889 $ 6 5 , 6 6 8  $68,951 2.4 46.4% 

General Liability 31,000 31,000 31,000 2. I 53.6% 

Workers' Compensation 21,586 21,586 21,586 1.8 60.1% 

Commercial Auto 38,638 38,638 38,638 2.2 51.0% 

Personal Auto 57,018 60,636 64, 435 2.1 53.4% 

Notes: I. Dollar amounts are in thousands. 
2. Premium collection lag is stated in months. 
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Exhibit 2 

Accident 
Year 

1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 

Sample Insurance Company 

SUMMARY OF HISTORICAL LOSS DATA 

General Liability and Property 

(1) (2) (3) (4) (5) 
Small 

Ultimate Losses on Direct Loss 
Direct Large Catastrophe Earned Ratio 
Losses Claims Losses P r e m i u m  [(i)-(2)-(3)]/(4) 

$ 7,316 $ 0 
9,668 0 

10,752 2,800 
14,000 4,000 
11,368 0 
15,240 4,000 
13,860 3,200 
19,788 12,000 
16,276 7,200 
21,012 13,200 

General Liability 

0 $28,640 
0 32,736 
0 36,340 
0 41,396 
0 42,244 
0 38,992 
0 36,240 
0 36,636 
0 35,124 
0 32,336 

Property 

1987 $13,172 $ 0 $ 0 $31,893 
1988 13,654 0 0 37,408 
1989 18,904 1,929 0 38,580 
1990 23,952 3,870 0 43,002 
1991 29,352 6,174 2,460 47,038 
1992 24,484 4,356 0 46,459 
1993 27,086 5,561 0 49,427 
1994 41,806 12,059 9,750 53,597 
1995 33,618 6,401 0 60,247 
1996 35,466 7,012 0 62,330 

25.5% 
29.5% 
21.9% 
24.2% 
26.9% 
28.8% 
29.4% 
21.2% 
25.8% 
24.2% 

41.3% 
36.5% 
44.0% 
46.7% 
46.7% 
43.3% 
43.6% 
46.4% 
45.2% 
45.7% 

Note: Dollar amounts are in thousands. 
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Exhibit 3 

Sample Insurance Company 

DISTRIBUTION OF CATASTROPHE LOSSES 

Probability Amount 

0.5% $200 
3.0% 130 
1.5% 110 
i.5% 90 
1.5% 70 
2.5% 60 
2.5% 50 
2.5% 44 
2.5% 38 
25% 32 
2.5% 26 
2.5% 20 
5.0% 18 
5.0% 16 
5.0% 14 
5.0% 12 
5.0% i0 
9.5% 9 

10.0% 8 
10.0% 7 
10.0% 6 
10.0% 5 

Note: Dollar amounts are in millions. 
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Sample Insurance Company 

SUMMARY OF GENERAL LIABILITY LARGE CLAIMS 

Exhibit 4 

(1) (2) (3) 
Number Projected 

Accident of Large Projected Average 
Year Claims Frequency Cost 

(4) 
Losses on 

Large Claims 
(l)x(3) 

1987 0 0.00 . . . .  

1988 0 0.00 . . . .  

1989 4 0.11 $ 700 $2,800 

1990 4 0.I0 1,000 4,000 

1991 0 0.00 . . . .  

1992 4 0.10 1,000 4,000 

1993 4 0.11 800 3,200 

1994 12 0.33 1,000 12,000 

1995 8 0.23 900 7,200 

1996 12 0,37 1,100 13,200 

Notes: 1. Large claims are those that exceed $500,000. 
2. Frequency is per $1 million premium. 
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Exhibit 5 

Sample Insurance Company 

SUMMARY OF LOSS RATIO ASSUMPTIONS 

Line 

(1) (2) (3) (4) 
Direct 

Small Large Catastrophe Loss 
Loss Loss Loss Ratio 
Ratio Ratio Ratio (1)+(2)+(3) 

Property 43.0% 15.0% 8.7% 66.7% 

General Liability 25.0% 36.0% 0% 6 !.0% 

Workers' Compensation 67.5% 7.5% 0% 75.0% 

Commercial Auto 45.0% 17.5% 0% 62.5% 

Personal Auto 68.0°,4 0.6% 0% 68.6% 
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Exhibit 6 

Sample Insurance Company 

SUMMARY OF LOSS ADJUSTMENT EXPENSE RATIO ASSUMPTIONS 

Line 
ALAE/Loss ULAE/Loss 

Ratio Ratio 

Propeny 10.5% 6.0% 

General Liability 15.0% 5.0% 

Workers' Compensation 8.0% 4.5% 

Commercial Auto 8.5% 7.0% 

Personal Auto 8.0% 7.0% 
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Exhibit 7 

Sample Insurance Company 

STATUTORY ASSESSMENTS 

Probability 

Statutory 
Assessments/ 

Direct Written 
Premium 

95% 0.5% 

3% ! .0% 

1% 2.0% 

1% 5.0% 
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Exhibit 8 

Sample Insurance Company 

STATUTORY RESULTS 

Mean 

1997 

$2,020 

Net Afle~Taxlneome 
1998 

$1,740 

1999 

$ 855 

1999 
Surplus 

$120,852 

Probability 
(Min) 0°.,6 $-.40,231 $-40,456 $.-41,342 $ 64,729 

1% -21,026 21,320 22, ! 16 86,912 
5% -10,998 -11,201 -12,089 101,731 

10% -8,020 -8,213 -9, ! l 8 106,444 
20% -4,305 -4,558 -5,508 112,337 
25% -2,754 -3,012 -3,887 ! 14,765 
30% -1,647 -i,892 -2,808 116,562 
40% -432 -667 -I,589 119,668 
50°/0 2,213 2,070 1,137 122,115 
60% 3,874 3,609 2,707 125,816 
70°/0 5,879 5,616 4,696 127,994 
75% 6,992 6,612 5,698 128,275 
80°/0 7,963 7,716 6,833 134,001 
90*/0 10,720 ! 0,529 9,628 136,349 
95% i 2,952 12,689 11,754 136, 981 
9~/0 16,341 16,028 15,117 142,560 

(Max) 100°/0 22,616 22,327 21,472 147,783 

Plan 4,000 4,500 5,000 131,500 
P{x>Plan} 38% 35% 28% 15% 

Note: Dollar amounts are in thousands. 
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Exhibit 9 

Sample Insurance Company 

LIST OF VARIABLES TESTED 

Gross Written Premium 
Commercial Lines 
Personal Lines 

Underwriting Expense Deviation 

Statutory Assessments 

Number of Catastrophes 

Size of Each Catastrophe 

Small Loss Ratio 
Property 
Commercial Auto 
General Liability 
Workers' Compensation 
Personal Auto 

Number of Large Claims 
Property 
Commercial Auto 
General Liability 
Workers' Compensation 
Personal Auto 

Average Cost of Large Claims 
Property 
Commercial Auto 
General Liability 
Workers' Compensation 
Personal Auto 

Inflation 

Short and Long Term Rates 
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Pricing Catastrophe Reinsurance With Reinstatement 
Provisions Using a Catastrophe Model 

Richard R. Anderson, FCAS, MAAA 
Weimin Dong, Ph.D. 

Abstract 

In recent years catastrophe reinsurers' use of catastrophe models has been increasing until 
currently virtually all of the catastrophe reinsurers in the world use a catastrophe model to 
aid them in their pricing and portfolio management decisions. 

This paper explicitly models various types of reinstatement provisions, including 
reinstatements that are limited by the number of occurrences and by the aggregate losses; 
and reinstatement premiums based on the size of loss and by the time elapsed to the first 
occurrence. The paper also investigates the effects on the fair premium of a catastrophe 
treaty when various reinstatement provisions are considered. 

This is an expansion of the methods developed in papers by Leroy J. Simon and Bjom 
Sundt, which were written before the widespread use of catastrophe models. 

The catastrophe model used for this paper is the Insurance / Investment Risk Assessment 
System (IRAS) produced by Risk Management Solutions, Inc. 
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Pricing Catastrophe Reinsurance With Reinstatement 
Provisions Using a Catastrophe Model 

Introduction 

In recent years catastrophe reinsurers' use of catastrophe models has been increasing until 
currently virtually all of the catastrophe reinsurers in the world use a catastrophe model to 
aid them in their pricing and portfolio management decisions. 

Leroy Simon's 1972 paper [1] on catastrophe reinsurance investigated the relationships 
between various provisions of catastrophe reinsurance treaties to ensure consistency in 
pricing between contracts. In his paper he assumes that each loss causes a total loss to the 
layer of  reinsurance. Bjorn Sundt expanded on this theme in his paper in 1991 [2], 
focusing on reinstatements based on aggregate losses. This paper applies the methods 
outlined in these previous works to the output of a catastrophe model to calculate a fair 
premium for a catastrophe treaty when reinstatement premium is considered. 

The paper develops the fair premium for catastrophe reinsurance with various types of 
reinstatement provisions, including reinstatements that are limited by the number of 
occurrences and by the aggregate losses; and reinstatement premiums based on the size of 
loss and by the time elapsed to the first occurrence. The paper also investigates the 
effects on the fair premium of a catastrophe treaty when various reinstatement provisions 
are considered. 

The catastrophe model used for this paper is the Insurance / Investment Risk Assessment 
System (IRAS) produced by Risk Management Solutions, Inc. 

As background, we start with some descriptions of reinstatement provisions and how they 
are applied. We then describe an event loss table, the output of the catastrophe model 
that gives us all of the information that we need to perform the calculations. Next we turn 
our attention to the calculation of the fair premium of catastrophe treaties with various 
types of reinstatement provisions. First we discuss reinstatement provisions that limit the 
number of occurrences, then reinstatement provisions that limit the aggregate losses. 
Finally we investigate reinstatement premiums that are pro rata as to time. 

Reinstatement Provisions 

A common feature of many catastrophe reinsurance contracts is a reinstatement 
provision. A reinstatement provision puts a limit on either the number of occurrences or 
the aggregate losses that will be paid under the contract. For example, i fa  contract has a 
provision for one reinstatement based on the number of occurrences, then the reinsurer 
will be responsible for at most two occurrences (original occurrence plus one 
reinstatement). If the contract has a provision for one reinstatement based on aggregate 
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losses, and the limit is $1 million, then the reinsurer will be responsible for at most $2 
million in aggregate, regardless of the number of occurrences. 

The reinstatements may be free or paid. If the reinstatements are free, then all of the 
premium is paid up front. For paid reinstatements, a portion of the premium is paid 
following the occurrence of an event. For example, i fa  contract has a provision for one 
paid reinstatement, then after the first event the cedant will pay some premium to the 
reinsurer to reinstate the coverage for a second occurrence. This additional premium is 
called the reinstatement premium. The reinstatement premium may vary based on the 
amount of reinstatement (pro rata to full limit) or the time remaining in the contract (pro 
rata to full time). In this paper we will limit the discussion to reinstatement premium that 
is pro rata to full limit, and is either 100% to time or pro rata to full time. 

E v e n t  L o s s  T a b l e  

An "event" as we use it in this paper is a scenario taken from the set of all possible 
outcomes. For example, event e might be an earthquake of magnitude 7.3 on the San 
Andreas fault centered two miles offthe coast of San Francisco; and event h might be a 
category 3 hurricane making landfall in Dade county Florida with a specific track, central 
pressure, etc. The final product from an IRAS analysis is a table of events with their 
expected losses and annual occurrence rates. The set of events in the Event Loss Table 
(ELT) represents the full range of possible outcomes that can occur to a portfolio. 

Suppose that we have a catastrophe treaty ofLMTexcess ATT, where LMTis the limit of 
the treaty, and ATTis the attachment point of the treaty. Denote the gross loss for the f  h 
event as GLOSSj and the expected loss to the catastrophe treaty as Lj. We have 

L, = ~TTr(GLOSSj - A77')f/(GLOSSj)dGLOSSj + LMT[I- Fi(ATT + LMT)] (1) 

where 
fj(GLOSSj) = probability density of the gross loss given that eventj has occurred 
Fj(A TT + LMT) = cumulative probability that the gross loss ~ ATT + LMT, given 

that eventj has occurred 

In the ELT shown below in Table I, 2j is the annual rate of occurrence for event j,  and Lj 
is the expected loss to the catastrophe treaty for event j,  calculated from equation (I). 

Table Event-Loss Table (ELT) 
Event Rate Expected Loss 

t A L, 
2 ~ L2 

J x~ Lj 
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I J I I I 
We assume here that each event is an independent random variable, each with a Poisson 
frequency distribution ~. We assume that the occurrence o f  one event will have no effect 
on the rate or the expected loss o f  any other event. We look at these multi-events (the 
occurrence o f  one or more events) as a compound Poisson process 2 with a total rate equal 
tO: 

=~"2j (2) 
Y 

Hence, the probability o f  exactly n occurrences in a year for this process is given by 

Xfe -~. p(n) = - -  (3) 
n! 

The average annual loss (AAL) for even t j  is given by the expected frequency t imes the 

expected severity, which, given our Poisson frequency assumption,  is AjLj. Because we 
assume that each event is an independent random variable, the total AAL is the sum of  
the A A L ' s  for all events: 

AA L = ~,, Aj L, (4) 
) 

This represents the pure premium of  a treaty with unlimited free reinstatements. 

With all o f  this as background, we now turn our attention to the calculation o f  the fair 
premium o f  catastrophe treaties with various types o f  reinstatement provisions. First we 
discuss reinstatement provisions that limit the number  o f  occurrences, then reinstatement 
provisions that limit the aggregate losses. For each o f  these cases we assume that the 
reinstatement premiums are pro rata as to limit and 100% as to time. Finally we 
investigate reinstatement premiums that are pro rata as to time, where we calculate the 
expected arriving time for the occurrence o f  an event. 

Reinstatements Limited by the Number of Occurrences 

The reinstatement premium will be paid whenever an event occurs with losses to the 
catastrophe treaty and the reinstatements are not already used up. The amount  o f  
reinstatement premium (Preinst) is 

Other frequency distributions, such as Negative Binomial, may be appropriate for some perils or regions. 
The use of  these distributions is beyond the scope of  this paper. 
2 For more information on Poisson processes, see references [41, [5], and [6] 
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P,~.i,,,, = R . c .  L 

where 
R = Premium rate paid up front (rate on line) 
c = fraction of reinstatement premium rate versus up-front premium rate 
L = loss to the catastrophe treaty, which is a random variable. 

(5) 

It can be seen that the reinstatement premium forrnula (5) is pro rata as to limit by noting 
/hat R, the rate on line, equals the premium (P) divided by the limit (LMT): 

P L 
P,,i,,,., = • c .  L = P .  c.  - -  (6) 

LMT LMT 

We calculate the fair up-front premium rate (ignoring expense and risk load charges) by 
setting the expected premium collections equal to the expected loss payments. 

First we calculate the expected loss to the catastrophe treaty as the expected severity 
times the expected frequency. 

The expected loss given an event has occurred (expected severity) is given by 

~ 2.,. Li 

S(L)=  ' (7) 
2 

To calculate the expected frequency, we make use of the limited expected value function 3. 
The expected number of occurrences limited to k occurrences is given by 

E(n ;k )  = ~ min(n,k), p(n)  
u - I  
/~-L (8)  

= ~ _ n . p ( n ) + k . ( I -  F ( k -  I)) 

where 
p(n) = the probability that exactly n events will occur, as calculated by equation (3) 
F(k-l) = the cumulative probability that k-I or fewer events will occur. 

Let nor be the number of occurrence reinstatements allowed. The total number of 
occurrences covered by the contract is nor+l (one original occurrence + nor additional 
occurrences). We define Eo(L;nor  + 1) to be the expected loss limited to nor+l 
occurrences, which is the expected severity times the expected frequency: 

E, , (L;nor  + 1) = S ( L ) .  E(n;nor  + 1) (9) 

3 For more information on the limited expected value function, see Hogg and Klugman[3] 
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The subscript O in Eo(L;nor + I) stands for occurrence, to differentiate this from the case 
where the reinstatements are limited by the aggregate losses, which we will discuss later. 

The expected premium collected is equal to the up front premium plus any reinstatement 
premiums collected. 

E( P) = R.  L M T  + R .c ,  Eo( L;nor ) (10) 
where 

R = rate on line for the contract 
Eo(L;nor) = expected loss limited to nor occurrences (no reinstatement premium is 

collected following the nor+ 1 'h occurrence). 

Setting the expected premium equal to the expected losses, we get 

R. LMT + R.  c. Eo(  L;nor ) = Eo( L;nor + 1) (I 1) 

Solving for R, we get the fair up front rate on line: 

Eo( L;nor + 1) 
R = ( L M T  + c. E o (L; nor)) (12) 

For example, assume that we have a simple event loss table (ELT) with ATT= $2 million 
and LMT = $2 million as shown in Table 2: 

Table 2 Sample ELT 
Cat. Loss 4 Event Annual Rate Gross Loss 

I 0.1 5 million 2 million 
2 0.2 3 million 1 million 

For this case, the expected severity for the catastrophe treaty is 

0.1.2+0.2.1 
S(L)  = = 1.333 million 

0.1 + 0.2 

The expected losses and premium rates with various numbers of  reinstatements are given 
in Table 3 for c = 1.0: 

Table 3 Expected Losses and Fair Premium Rates when c = l 

] Number of  Reinst. [ Expected Loss (in $million) [ Rate on Line [ 

4 For simplicity, the losses to the catastrophe treaty in this table are calculated assuming that the gross 
losses are constant. The actual output from the computer model calculates the catastrophe losses using 
equation (I). 
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0 0.34558 0.17279 
I 0.39482 0.16833 
2 0.39962 0.16687 
3 0.39998 0.16668 

0.40000 0.16667 

In this example, as the number of reinstatements increases, the up-front premium 
decreases, because the expected additional reinstatement premiums outweigh the higher 
expected losses. There can be situations where this is not the case, and the up-front 
premium increases as the number of reinstatements increases. This can happen, for 
example, when the expected severity is very low relative to the limit. 

If c = 0 (free reinstatements), then equation (12) reduces to 

R = E ° ( L ; n ° r  + 1) (13) 
L!l,f/" 

and the fair up-front premium rates are shown in Table 4: 

Table 4 Expected Losses and Fair Premium Rates when c = 0 

NumberofReinst. Expected Loss(in $million) Rate on Line 
0 0.34558 0.17279 
I 0.39482 0.19741 
2 0.39962 0.19981 
3 0.39998 0.19999 

0.40000 0.20000 

In this case, as the number of reinstatements increases, the up-front premium also 
increases, since the losses would be higher (because losses for more occurrences are 
paid), but there are no additional reinstatement premiums (because c = 0). 

It is not uncommon to set the pure premium to the average annual loss from equation (4), 
which is $0.4 million in this example. If the rate on line is based on this pure premium, 
then it is equivalent to collecting up-front premium with unlimited free reinstatements, as 
shown in the last row of Table 4. 

Reinstatements Limited by A~,2re~ate Losses 

When the reinstatements are limited by the number of occurrences, there can be some 
situations in which the buyer of the reinsurance will have a difficult decision to make. 
For example, suppose that one event has occurred with a very small loss to the 
catastrophe treaty. If the instmer makes a claim, it will use up one reinstatement for a 
small recovery. If it doesn't make a claim, then perhaps no other events follow, and it 
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loses a chance of recovery. To avoid this dilemma, it is common practice to limit the 
reinstatement by aggregate losses rather than by number of occurrences. 

Here the number of reinstatements refers not to the number of occurrences, but to the 
number of limits. Thus, a contract with nlr reinstatements will pay at most nlr+l times 
LMT, regardless of  the number of occurrences. 

We calculate the fair up-front premium rate by again setting the expected premium 
collections equal to the expected loss payments. 

To calculate the expected losses, we must first calculate the aggregate loss distribution. 
In this compound Poisson process, the probability of exactly n occurrences is given in 
equation (3). Given n events have occurred, the aggregate loss i s calculated in equation 
(14): 

A = L I + L 2 +- . .+  L. (14) 

The distribution of A can be obtained by Panjer's recursive approach [4] and [5], by the 
use of Fourier transforms as described by Heckman & Meyers [6], or by a simulation 
approach. LetflA) and F(A) be the probability density function and cumulative 
probability distribution of the aggregate losses obtained by one of these approaches. Note 
that this distribution is for the aggregate losses, not separated into the frequency and 
severity pieces as we did for the reinstatements based on the number of occurrences. 

For a continuous aggregate loss distribution, the limited expected value of A limited to 
A m is: 

E(A; A,,) = Smin(A, A=)f(A)dA 
o 

Am 

= IAf(A)eA + m.,O- F(A))  
o 

(15-C) 

For a discrete aggregate loss distribution, the limited expected value of A limited to Am 
is: 

E(A;A.,) = £min (A , ,A . , ) .  f(A~) 

m-I 

= ~A; .f(A~)+ A., .(I- F(A.,_,)) 
iol 

where the Ai's are sorted in ascending order. 

( 15 -D) 
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Because a contract with nlr reinstatements will pay at most nlr+l times LMT, the 
expected loss for a treaty with nlr reinstatements is then the limited expected value of  the 
aggregate losses limited to (nlr+I).LMT. We define the expected loss for the treaty as 
EA(L;nlr + 1): 

E~(L;nlr  + I) = E(A;(nlr  + 1). LMT) (16) 

The expected reinstatement premium is proportional to the aggregate losses capped at the 
treaty limit. If  nlr reinstatements are allowed, then the expected reinstatement premium is 
proportional to the aggregate loss capped at nlr limits, Adding the up-front premium, we 
get the total expected premium: 

E(P)  = R. LMT + R . c - E ~ ( L ; n l r )  (17) 

Setting the expected premium equal to the expected loss, we get: 

R. L MT  + R .c.  E A( L;nlr) = E A( L;nlr + 1) (18) 

Solving for R, we get the fair up-front premium rate with nit  reinstatements: 

E~(L;nlr  + 1) 

R - ( L M T + c .  E~(L;nlr))  (19) 

For an example, we used the same event loss table as for the occurrence-limited example 
(Table 2), and calculated the aggregate loss distribution using Panjer's approach ~ (see 
Appendix A for the calculations). The probability distribution is shown in Table 5: 

Table 5 Aggregate Loss Distribution 

Aggregate lossA (in $million) ProbabilityflA) Cumulative F(A) 
0 0.7408182 0.7408182 
I 0.1481636 0.8889818 
2 0.0888982 0.9778800 
3 0.0158041 0.9936841 
4 0.0052351 0.9989192 
5 0.0008416 0.9997608 
6 0.0002026 0.9999634 
7 0.0000298 0.9999932 
8 0.0000058 0.9999990 

5 Here we make a simplifying assumption that the losses to the catastrophe treaty, given that an event has 
occurred, are constant. The actual output from the computer model shows not ooty the expected loss, but 
the coefficient of variation of the losses, from which a distribution can be assumed. 
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9 0.0000008 
10 0.0000001 

For c = 1.0, we have results as shown in Table 6: 

Table 6 Ext~ected Losses and Fair Pi 

I 0.9999998 
0.9999999 

Premium Rates when c = 1 
NumberofReinst. Expected Loss(in $million) Rate on Line 

0 0.37020 0.18510 
1 0.39864 0.16819 
2 0.39996 0.16674 
3 0.40000 0.16667 

0.40000 0.16667 

Comparing Table 6 with Table 3, notice that the expected loss for occurrence-based with 
no reinstatement is lower than the expected loss for aggregate-based with no 
reinstatement. This is because for aggregate-based, more than one occurrence will be paid 
if the aggregate loss of the first occurrence is less than the limit. For example, i fa  
contract has a provision for n r  reinstatements, then the occurrence-based reinstatements 
provide nr+l occurrences which have loss values less than or equal to the limit; the 
aggregate-based reinstatements provide nr+l limits of coverage for as many occurrences 
as needed (at least nr+l) to reach the aggregate limit. Also note that for one or more 
reinstatements, the aggregate-based rate on line is less than the occurrence-based rate on 
line. This again is because the expected additional reinstatement premiums outweigh the 
higher additional losses. 

And for e = 0, we have results as shown in Table 7: 

Table 7 Ex ~ected Losses and Fair Premium Rates when c = 0 
NumberofReins t . [  Expected Loss(in $million) Rate on Line 

0 I 0.37020 0.18510 
1 I 0.39864 0.19932 

I 
2 0.39996 0.19998 
3 I 0.40000 0.20000 

0.40000 0.20000 

There is a significant difference between the fair premium rate for no reinstatement and 
the fair premium rate based on AAL, which is equivalent to unlimited free reinstatements. 
In the above examples, the up-front premium rates are 0.1729 and 0.1851 for occurrence- 
based and aggregate-based, respectively, versus 0.2 based on the AAL. The difference 

increases with the increase of the total occurrence rate 2, particularly for occurrence- 
based contracts. Table 8 shows the impact of the total occurrence rate on the premium 
rates, keeping the severity distribution unchanged. 

Table 8 Impact of Total Occurrence Rate on Premium 
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2 
0.03 
0.3 

3.0 
3000 

Occurrence-Based* Aggreg~e-Based* Unlimited Free Reinstatements  

0.0197 0.0199 0.02 

0.1729 0.1851 0.20 
0.6335 0.9004 2.00 
0.6667 1.0000 2000 

* No reinstatements 

The limiting case o f  the premium rote for an occurrence-based contract with no 

reinstatements as A --~ oo is the expected severity divided by the limit, since it is a 
certainty that an event will occur, and when it does occur the expected loss is equal to the 
expected severity. The limiting case o f  the premium rate for an aggregate-based contract 

with no reinstatements as 2 ~ oo is unity, since it is a certainty that the full aggregate 
limit will be paid. 

Reinstatement Premiums Pro Rata for Time 

Often, the reinstatement premium is proportional to the remaining time in the reinsurance 
contract after an occurrence. Given a loss, the reinstatement premium would be 

e,,,~, = R . c . Z .  (1 - z) (20) 

And the total collected reinstatement premium for a contract limited by nor number  o f  
occurrences 6 is 

rain(no.or) 

TotP,~,~ = i=~ R.c. L, (21) 

where t is the time of  the loss in years (assuming a one-year contract) and n is the number  
o f  occurrences in the year. The time remaining in the contract is I - t. For example,  i f a  
loss occurs on October l X o f  an annual contract with an effective date o f  January I ~t, then 
t = 0.75, and the time remaining is 0.25. 

The expected value o f  the total collected reinstatement premium is 

Fmin(n.,nor) 1 
 ETo,p.,.oJ: L, (1- , , )  (22) 

Fmin(n~°') 1 = R.c .E[  i=~ L, . ( l - I , )  (23) 

6 Reinstatements limited by the aggregate losses are left for further study. 
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Since the L f s  are independent of the ti's, 
mm(n ,no r )  

= R . c .  ~ E ( L , ) . E ( 1 - t , )  (24) 

Since the L f s  are independent of each other, E(Li) equals the expected severity: 

m i n ( n , n o r )  

= R . c .  ~ S ( L ) . E ( I - t , )  (25) 
i=l 

nnia( n .nor ) 

= R .c .S (L ) .  ~-'~E(l-t,) (26) 
i - I  

Since Eo(L;nor ) = S(L) . E(n;nor), 
n o r  

ZRT  
= R.c.E,,(L;nor).  i.t (27) 

E(n;nor) 

where RTi is the expected time remaining after the t,h occurrence. 

Adding the up-front premium, we get the total expected premium collections: 

nne  

RT, 
E(P) = R.c .E . (L;nor) .  ~'~ (28) 

E(n;nor) 

To calculate the fair premium amount, we set the expected premium collections from 
k 

equation (28) equal to the expected losses from equation (9). Letting Ok = i.t , we 
E(n;k) 

get 

R. LMT + R .c. E,,( L;nor).0~, = E,( L;nor + 1) (29) 

Solving for R, we get the fair up front rate on line: 

Eo( L;nor + 1) 
R = (LMT+c.  Eo(L;nor)-O,o,) (30) 

We calculate the expected remaining time RTk by integrating the distribution of the 
arriving time. Given the assumption ofa  Poisson process, the distribution of the arriving 
time for the k ~h occurrence is given by a Gamma distribution, as shown in equation (31): 
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2(2t)~k-')e -~ 
f~(t)  - ( k - l ) !  (31) 

The expected time remaining after the k ~h occurrence is 

RT, = ~(I - t)f, (oat (32) 

For k = 1, this reduces to equation (33). See Appendix B for the derivation. 

,~+e -a - I  
RT~ = 2 (33) 

Table 9 shows the expected remaining time after the first occurrence for various ,2 values. 

Table 9 Expected Remaining Times 

RTi 01 
0.003 0.0015 0.5002 
0,03 0.0149 0.5025 
0.3 0.1361 0.5250 
3.0 0.6833 0.7191 
30 0.9667 0.9667 

3000 0.9997 0.9997 

The limiting case o f  81 as 2 ~ 0 is 0.5, and the limiting case of  8 / a s  2 ~ oo is unity. 

The expected losses and premium rates with various numbers of  reinstatements are given 
in Table 10 for c = 1.0, using the event loss table from Table 2: 

Table 10 Ext~ected Losses and Fair Premium Rates When c = 1 

NumberofReins t .  Expected Loss(in $million) Rate on Line 
0 0.34558 0.17279 
1 0.39482 0.18090 
2 0.39962 0.18176 
3 0.39998 0.18180 

0.40000 ' 0.18182 

It is interesting to observe that the summation of  the remaining time for a one year period, 
l i t  

RT k , converges to 2 / 2 when nr approaches infinity (see Appendix C for the proof)). 
k - I  

Since E(n;oo) = ~,, Ok converges to 0.5. Hence, the fair premium converges to 
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E o ( L ; ~ )  
R = - 0.18182 

( L M T  + c . E o  ( L; oo) . 6~ l 

0A 

(2.0 + 1.0.4.0.5) 

Comparing Table 10 with Table 3, the up-front premium when considering the 
remaining time is higher because the cost of a reinstatement after an occurrence is lower. 

It should be noted that although earthquakes occur uniformly throughout the year, 
hurricanes and tornadoes are seasonal. Particularly, along the Atlantic coast, most 
hurricane landfalls are in September or October. Thus, the above derivation would need 
to be modified to account for this seasonality. The consideration of seasonality is beyond 
the scope of this paper. 

Summary 

This paper has shown how to use the output from a catastrophe model to calculate the fair 
premium of  catastrophe treaties with reinstatement provisions. The basis for the analysis 
is the catastrophe model's event loss table, which contains all of the information needed 
to make the calculations. 

The paper also investigated the effects on the fair premium of a catastrophe treaty when 
various reinstatement provisions are considered. Some of the findings: 

Basing the up-front premium on the average annual loss to a treaty, disregarding 
reinstatements, is equivalent to assuming that there are unlimited free reinstatements. 
If, on the other hand, reinstatements are limited and paid, then the up-front premium 
will be lower because fewer losses will be covered (because the reinstatements are 
limited) and some of the premium will be paid after an event has occurred (because 
the reinstatements are paid). 

Unless the expected severity is very small relative to the limit, the more paid 
reinstatements allowed the lower the up-front premium will be. This is because the 
additional reinstatement premiums expected to be collected will outweigh the 
additional expected losses. 

Reinstatement provisions based on aggregate losses will have higher expected losses 
than those based on the number of occurrences. In general, if the number of 
reinstatements is one or more, the up-front premiums will be less for aggregate-based 
reinstatements than for occurrence-based reinstatements. This again is because the 
additional expected reinstatement premiums will outweigh the higher expected losses. 

If the reinstatement premium is proportional to the remaining time in the reinsurance 
contract after an occurrence, then the up-front premium should be higher because less 
reinstatement premiums will be collected. 
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In this paper we did not consider expenses or ris k loads, which are areas for further study. 
Other areas that deserve further study are reinstatement provisions that are limited by 
aggregate losses and have reinstatement premiums pro rata for time; and the effect of 
seasonality on the expected reinstatement premiums. 
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Appendix A 

Calculation of the aggregate loss distribution 

We use the recursive method as described in "The Aggregate Claims Distribution and 
Stop Loss Reinsurance" by Harry H. Panjer. Mr. Panjer uses for his examples fixed 
benefit life insurance claims. Here we make the translation that an event that causes loss 
to the catastrophe treaty is one claim. 

Using Mr. Panjer's notation, our event loss table (Table 2) is show below as Table AI: 

Table A 1 Event Loss Table 

Loss Amount =jU 
$1,000,000 

Rate =0[ 
0.2 

jo[ = e i 
0.2 

2 $2,000,000 0,1 0.2 

Total 0.3 0.4 

U is the greatest common divisor of  the loss amounts for the claims, in this case 
$1,000,000. Thenj  is the loss amount divided by U. 

Note that the sum of  the Ej's is the average annual loss. 

Let Pi represent the probability that the aggregate loss will be exactly iU, and n be the 
number of events in the event loss table. Mr. Panjer derives the recursive formula for Pi: 

where 

1 min(z,n) 

P, = Z E.,P,_, 
! i=l 

Ej tO 

(M) 

(A2) 

Applying these formulas to the values in our event loss table, we get: 

PO = exp(-0.3) = 0.7408 
P! = 0.2 * 0.7408 = 0.1482 
P2 = (1/2) * (0.2 * 0.1482 + 0.2 * 0.7408) = 0.0889 
P3 = (1/3) * (0.2 * 0.0889 + 0.2 * 0.1482) = 0.0158 
P4 = (1/4) * (0.2 * 0.0158 + 0.2 * 0.0889) = 0.0052 
etc. 

These are the probabilitiesJ~A) shown in Table 5. 
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Appendix B 

Expected time remaining after the first occurrence 

RT~ = ~(1-t)ft(t)dt 

= ~ft(t)dt- ~,f,(t)dt 

e_Z 
L ~ Jo 

e-2 =2C -e-~ + I_] + 2(_~..(2 + 1)_ ~. ) 
k 2 2J 

2+e  -a -1 
2 

(BI) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 
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A p p e n d i x  t2 

Proof  o f  the convergence o f  the summat ion o f  remaining times 

Assuming  the contract period T is one year, we have 

= -  

Set k '=  k - 1 , and we have 

RT, = . f , t O -  t) . (~  - 
*-~ o t ~ - o  s: ! j 

I 

= ~X(l - t)dt = 0.5~ 
o 

( c1 )  

(C2) 

(C3) 

(¢4)  
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Catastrophe Risk Mitigation: 
A Survey of Methods 

by Lewis V. Augustine, ACAS, MAAA 
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INTRODUCTION 

Until the late 1980's, insurers typically handled catastrophe risk through the purchase of  a cat 
reinsurance treaty. Despite its low retention, cat losses were not expected to pierce this layer. In 
fact, from 1980 through 1988, aggregate industry cat losses averaged only $1.5 billion annually 
with a standard deviation of  $0.7 billion. However, these statistics deteriorated immensely in the 
following years, due to Hurricanes Andrew, Hugo, and Iniki, the Loma Prieta and Northridge 
Earthquakes, and years of poor winter weather. Average annual cat losses in these years 
increased seven-fold to $9.8 billion. Even more shocking was the volatility around this average, 
with the standard deviation increasing to $7.4 billion ~. 

Following Hurricane Andrew in 1992, the cat reinsurance market hardened, due to "payback" for 
the hurricane, insolvencies, and a general reluctance to write reinsurance at any price. Out of 
this capacity shortage emerged a host of  products aimed at tapping new sources of  capital to help 
insurers and reinsurers mitigate their cat risk. The capital markets with trillions of  dollars 
invested in stocks, bonds, and real estate, seemed the likely candidates to lead this charge. In 
fact, the Chicago Board of Trade (CBOT) developed and began trading options and futures 
contracts based on ISO property losses in late 1992. Since that time, the following products have 
also emerged: 

I. The Catastrophe Risk Exchange (CATEX) 
2. PCS Cat Options 
3. Contingent surplus notes / Act of God Bonds / Cat Equity Puts 
4. Special purpose reinsurers 

In this paper, I will analyze these "non-traditional" methods of reducing and/or transferring cat 
risk; "traditional" reinsurance mechanisms will also be examined. None of the reinsurance 
concepts are new. However, they may not have been viewed in light of  cat mitigation in the 
past. With the property reinsurance market the softest in five years, it is essential to consider 
these traditional products whenever we evaluate any of the alternatives. 

These statistics are based on Property Claim Services (PCS) loss estimates. It should be recognized that I 
performed these calculations based on cats greater than $5 Million. Now, PCS only records cats greater 
than $25 Million. 
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TRADITIONAL 

I. P E R  O C C U R R E N C E  C A T  E X C E S S  O F  L O S S  T R E A T Y  

Perhaps the most common form of reinsurance for handling cat risk is the per occurrence excess 
of loss cat treaty. These treaties typically apply after all other reinsurance, protecting the 
insurer's net line. They are usually split into five to seven layers, each with a retention, limit, and 
co-participation. Division into layers is done for several reasons. First, it allows reinsurers 
flexibility to participate on the layers of their choice. Some prefer the higher premiums 
associated with the lower layers. Other would rather sacrifice premium for the lower probability 
of loss in the upper layers. 

Second, per program capacity is usually several times greater than per layer capacity. 

Example 
A reinsurer offers a maximum layer limit of $1 million and a maximum program limit of $5 
million. An insurer looks to place a cat treaty of  $100 million x $50 million, split into five equal 
layers of  $20 million. Considering its maximum limits, the reinsurer can offer $1 million limits 
on each layer for a total of $5 million. If the program was not split into layers, the reinsurer 
could only offer $1 million in total limits (The program would be viewed as one layer). 

Third, it allows the insurer more flexibility in establishing co-participation percentages by layer. 
This is similar to the first point above. An insurer may have different preferences for risk at 
various layers. Through the use of co-participation, this variability of risk appetite can be more 
easily satisfied. 

In the years prior to Hurricane Andrew, cat treaty retentions were set at relatively low levels. 
such as $15 million - $25 million. When reinsurers realized the destruction that could be caused 
by cats, the markets tightened. Cat treaty retentions moved upwards toward $100M, rates 
increased, and cat capacity was difficult to obtain. Today, rates are softening, but not to the 
levels seen before Andrew. 

From a reinsurer's standpoint, cat treaties are viewed as pure risk reinsurance. Neither the 
insurer nor the reinsurer expect to use the treaty, except possibly the first layer. Even then, only 
under remote circumstances. As such, the reinsurer should expect no payback for losses, if 
losses do occur. 

A typical cat treaty covers one occurrence above the retention. If the contract contains an 
automatic reinstatement clause, the insurer must immediately pay a premium to reinstate the 
limit when the retention is breached. This provides coverage for a second occurrence in the 
reinsured layer. For this reason, they are usually viewed favorably by insurers. However, if the 
first cat occurs towards the end of  the treaty period, reinstatement premium is a cost with little 
potential benefit. Reinstatement premiums can be proportional to the amount of  limit used, the 
time remaining in the treaty period, or a combination of  both. 

II .  Q U O T A  S H A R E  R E I N S U R A N C E  

Quota share is one of  the oldest forms of  reinsurance and simplest to understand. Deals are 
transacted between the insurer and reinsurer directly or through a broker. In its purest form, the 
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insurer agrees to cede X% of  all premiums and losses to the reinsurer. The reinsurer will pay the 
cedant a ceding commission, which is loosely equal to the expense of  writing and servicing the 
risk directly. The financial impacts of  a simple quota share treaty can be seen in Appendix 1. If  
the direct expense ratio equals the ceding commission, the direct, ceded and net financial ratios 
will mirror each other. 

Although it is possible to get an earnings enhancement with a quota share, it is an inefficient 
means to that end. However, it is an effective way to reduce the probable maximum loss 2 in a 
region, state, or country. A quota share treaty may be s truc~red to function as a cat treaty. 
Suppose a company has the following underwriting expectations: 

1997 direct accident year loss + ALAE ratio = 60% 
1997 direct calendar year earned premium = $500 million 
1997 direct expense ratio = 35% 
1997 direct Noah  Atlantic PML = $400 million 

The 60% loss ratio only covers budgeted cat and non-cat losses. 

Since the goal is to reduce the North Atlantic PML, a 25% quota share treaty for the North 
Atlantic only, having a 35% ceding commission and a 125% occurrence limit is purchased. In 
addition, there will  be a loss corridor from 50% to 70% where the cedant is responsible for 100% 
of  the losses. Since we expect to be within the corridor and, therefore, share underwriting results 
with the reinsurer below it, the treaty will  mainly function as cat protection against a large event. 
To determine the amount of  cat protection available, it is bes! to translate these treaty terms into 
those commonly found in a cat treaty. 

We are expecting a 60% loss ratio for the accident year, which is in the middle of  the corridor. 
The 10 points over this plan to the top of  the corridor may be viewed as retention on the PML. 
For our plan this will be a $50 mill ion retention on the $400 million PML. Above the $50 
million, we can start ceding 25% of  the PML. This is similar to co-participation, which is 
present in most cat treaties. In this case, we will have a 75°,4 co-participation on the $350 
million remaining loss. In cat treaty terminology, this is 25% part of  350 million x 50 million. 
The ceded portion of  the PML would be 25% of  $350 million or $87.5 million. As you can see, 
the net PML is reduced to $312.5 million. 

Besides the PML protection, one other less obvious aspect o f  this treaty compared to a cat treaty 
is the relatively low price. In this example,  we expect to pay a 15% margin or $18.75 million 
and receive an occurrence limit of  $156.25 million. This is a 12% rate on line, which would be 
an attractive rate for a cat treaty with similar limits. In addition, there is usually room to cede at 
least part of  a second occurrence with no associated reinstatement costs. On the other hand, 
there is usually an aggregate limit less than two times the occurrence limit. 

A summary of some of  the advantages of  a quota share to an insurer is as follows: 

2 The probable maximum loss (hereafter referred to as "PML") is the maximum loss that will occur under 
normal circumstances. One example could be a large Homeowners fire loss, where the sprinkler system 
works to specifications. The home may be partially salvageable. This is in contrast to the maximum 
possible loss. which is the absolute worst loss that could occur. 
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1. PML reduction. 
2. Allows an insurer to grow in areas where cat risk is not fully known. Under this scenario, the 

insurer could purchase a quota share treaty the first year and reduce it in subsequent years as 
more is learned about the true risk in the area. 

3. Immediate Statutory surplus relief equal to the amount of the ceding commission; minimal 
GAAP equity relief 

4. Protection against non-cat losses 

On the other hand, some of the disadvantages are as follows: 

1. May be ceding a portion of our narrow direct Underwriting profit margin in a good year 
2. If an insurer becomes too dependent on reinsurance, it will become costly when prices harden 
3. Potentially, a false crutch for unmanaged, excessive growth 
4. Should expect topay back reinsurer in the long run 
5. Credit risk of the reinsurer, especially during the most critical time -- following a large event 
6. Giving away a small cash flow benefit 

I I! .  A G G R E G A T E  EXCESS OF LOSS T R E A T Y  (XOL) 

In the early 1990's, the NAIC and FASB began revising and implementing new regulations 
regarding reinsurance risk transfer. To qualify as reinsurance, a treaty must transfer 
underwriting and timing risk to the reinsurer; otherwise, no credit on losses can be taken and the 
transaction must be accounted for as a deposit. With these new regulations, finite risk 
reinsurance initially shrunk in popularity, but is growing again. It provides a good middle 
ground for insurers seeking a balance between reinsurance and straight financing 

Aggregate excess of loss covers have been around for many years. One of the primary functions 
of a typical treaty is stabilizing current year earnings, while transferring a small amount of risk. 
If the company's goal is to achieve their accident year plan, it would purchase an aggregate XOL 
treaty that attached at the plan loss ratio or dipped down into the plan. Some insurers choose to 
accept a small amount of volatility in their plan and set the retention a few points above plan. In 
either case, the reinsurer provides a limit above the retention, Which acts as a buffer against 
adverse results. Finite deals of this type are often characterized by one or more of the following 
features: 

• Additional premiums based on a multiple of ceded losses 
• Multi-year structure 
• Sublimits 
• Co-participation 
• Funds Withheld accounting, limiting the actual cash flow to the margin paid 

Essentially, the treaty provides acceleration of future investment income into the current period. 
In other words, we give up part of an uncertain future to lock in a benefit today. Although the 
reinsurer may incur losses soon after the treaty period begins, the reinsurer will not begin paying 
losses until direct paid losses exceed the insurer's retention. Therefore, the reinsurer often 
sacrifices current period accounting results for an economic gain. 

Appendix 2 shows an example of the accounting and cash flow of an accident year aggregate 
excess of loss treaty attaching four points above plan. In this example, the incurred loss ratio 
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ends up seven points above plan. All losses are incurred in the 1997 calendar year and there is 
no adverse or favorable development. Direct losses are paid equally over a ten year period. The 
investment income given up is roughly equal to the "Funds Withheld Investment Credit". These 
investment income amounts are cumulative. As you can see, the volatility of the accident year 
loss ratio is mitigated. The 85% direct loss ratio is reduced to 80.5% on a net basis. The 
reinsurer, on the other hand, suffers a 1997 loss ratio in excess of 200%. 

One investment income benefit is not shown here. By ceding premium to the reinsurer, the 
insurer can release the surplus supporting this premium and use it for general business purposes. 
These opportunities may provide greater returns than the narrowly defined investments of 
surplus as stated by statutory guidelines. 

Cat risk is one of the major threats to the reinsurer's economic gain under an aggregate XOL. 
Under expected circumstances the reinsurer will pay nothing for ceded losses since the plan will 
be achieved. If there is adverse development due to poor Worker's Compensation or other long- 
tailed lines, the reinsurer will book an incurred loss, but the payments to the insurer will not 
begin for several years. When a cat occurs, the reinsurer becomes more exposed to timing risk. 
Cats are usually substantially paid within a few months of occurrence. This can significantly 
shorten the duration of the [lability stream, leading not only to an accounting gain for the insurer, 
but also possibly an economic gain. 

From the insurer's perspective, an aggregate XOL treaty is a good way to accomplish the dual 
result of locking in current period profits while securitizing cat risk. Because of the timing risk 
cats present to the reinsurer, these treaties often have a sublimit capping the amount of cat tosses 
subject to the treaty. However, for a large, diversified book the reinsurer would be more willing 
to set the sublimit fairly high. 

The following shows some of the advantages and disadvantages of an aggregate excess of loss 
treaty: 

Advantages 

1. Current period income stability 
2. Cat protection 
3. Surplus protection 
4. Favorable stock analyst response, possibly leading to "buy" recommendations 
5. Structure passes reinsurance accounting guidelines on a conceptual basis 
6. Should be favorable to rating agencies 

Disadvantages 

1. Giving up future investment income for present underwriting income 
2. Cat losses are paid quickly on the direct side, but may not be reimbursed on a paid basis for 

many years (i. e. no cash flow benefit) 
3. Specific features dictated by the market may cause failure of risk transfer tests 
4. Credit risk, compounded by the long reserve tail 
5. Could have large income and surplus hits if commuted early 
6. Accident year help only; no coverage for prior years' reserve strengthening 
7. Difficult to administer 
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BLENDED TRADITIONAL / NON-TRADITIONAL 

IV. THE C A T A S T R O P H E  RISK E X C H A N G E  (CATEX) 

CATEX became operational on October I, 1996. It is a facility where insurers, reinsurers, and 
brokers can buy, sell, and trade insured risks. Subscribers to the exchange anonymously post 
potential deals on a highly secure CATEX E-mail system. Other parties do not have access to 
the system. CATEX is completely neutral to the deal. However, they help facilitate deals 
through providing standardized contracts and even arranging collateral if necessary. 

Charter: CATEX is a for profit entity, licensed as a neutral reinsurance intermediary by the New 
York Insurance Department. The Department has the right to oversee and examine them in 
accordance with regulations. 

Potential Members: Any insurer, reinsurer, or broker licensed or approved in New York. 
Unlicensed companies can also trade on the Exchange through a licensed intermediary. 

Idea: CATEX was originally conceived as a facility for diversifying one's book of business. For 
example, a company heavily concentrated in Florida Hurricane could trade some of this exposure 
through CATEX to another insurer for Vermont Freeze. There are thousands of other 
possibilities. Recognizing that some of these exposures are not equivalent, the New York 
Insurance Department allows cash as part of the deal. 

Interest in the original Exchange was not great, delaying the opening of it by over a year. In 
1996, however, the New York Insurance Department approved cash only transactions 
(effectively reinsurance) on CATEX making the Exchange a lot more popular. Some well 
known companies are now part of the Exchange, including Travelers/Aetna, USF & G, Gerling 
Global, Employers Re, Everest Re, Lloyds of London, Jn addition, many of the major 
reinsurance brokers and all the Lloyds syndicates are members. 

The Trade - An Example: 

• Company A posts $10 million of insured values subject to Florida hurricane it wants 
to trade away 

• Company A remains anonymous 
• Company B has a large exposure to Kobi earthquake 
• Florida Hurricane is 15 times riskier than Kobi earthquake 
• Company B decides it is interested in beginning a negotiation at which point both 

parties mutually agree to reveal their identities 
• After reviewing their book, B decides it can take on this Florida exposure, but insists 

on a co-participation and $1 million cash 
• A will agree to a 25% co-part., but no cash; in addition, they insist on a riskiness 

relativity of 10 
• B finds this acceptable and the deal is completed 
• CATEX runs a computer program to randomly generate $10 million of insured 

values in Florida and $100 million of insured values in Kobi from the two books of 
business; this will minimize the risk of adverse selection 

Accounting: transactions are recorded according to Statutory reinsurance accounting procedures. 
An imputed premium is agreed upon by the two parties, which will be the ceded and assumed 
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premium for both parties. Losses are reduced for recoveries in the same manner as reinsurance. 
If hurricane losses are $40,000 and earthquake losses are $10,000, the accounting would look 
like the following for the two companies: 

Company A Company B 
Earned Premium - HO ($100,000) $100,000 
Earned Premium - EQ 100,000 (100,000) 

Incurred Loss & LAE - HO 10,000 
Incurred Loss & LAE - EQ 10,000 

30,000 
0 

Commissions 16,500 16,500 

Premium: An imputed premium of $100,000 was agreed upon by the two parties. Company A 
cedes $100,000 of hurricane premium and assumes an equal amount of earthquake premium. 

Losses: Net losses are shown above. Company A incurs $40,000 of direct hurricane losses. 
They have a 25% co-participation, so they retain $10,000 and cede $30,000. Company B incurs 
$10,000 of direct earthquake losses. They have no co-participation, so they cede the entire 
$10,000 to A. 

Commissions: In swap deals, CATEX charges $150 per $1 million in insured values traded, to 
each party. In the transaction above, there are $ I I 0 million of insured values, so the commission 
expense is $16,500 for each party. For cash deals, 75 basis points of the cash premium is 
charged. This is comparable to a reinsurer's brokerage fee. 

Loss Occurrence: Following a cat occurrence, as defined by PCS or AM Best, CATEX will 
determine if the loss pierces the layer. If it does, both parties will be notified. Like reinsurance, 
the ceding company determines proximate cause, pays and settles all losses. The cat remains 
open for 18 months following occurrence. Once the cat is paid, proofofpayment is presented to 
the assuming company, which will then reimburse the cedant. 

Advantages 

I. Geographical diversification of the portfolio 
2. Diversification of perils 
3. Greater diversification leads to greater spread of risk, creating capacity 
4. Alternative sources of reinsurance 
5. Benefits flow through underwriting income 
6. State of the art P/C provided with internet capabilities 
7. May be able to package trades into an asset-backed security to tap financial markets 
8. PML reduction 

Disadvantages 

I. Under swaps, risk is not transferred; it is traded for an equal amount of risk 
2. Need a dedicated phone line to realize full capability of internet 
3. Although the ceding company determines the loss, disputes are bound to occur; how will they 

be settled? 
4. Need more participation from major insurers to create liquidity 
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NON- TRADITIONAL 

V. P R O P E R T Y  CLAIMS SERVICES (PCS} C A T A S T R O P H E  O P T I O N S  

PCS Cat Options grew out oflSO Cat Futures, which were first offered in December, 1992. PCS 
Cat Options were originally conceived as a way to tap into the trillions of dollars available in the 
financial markets. The standardized contracts are traded on the Chicago Board of Trade 
(CBOT), which guarantees their financial integrity. There has never been a default on the 
exchange. There are nine PCS industry loss indices tracked: National, Eastern, Northeastern, 
Southeastern, Midwestern, Western, Florida, Texas, and California. 

On each index, two different sized contracts are traded. The small cap contract tracks industry 
cat losses between $0 and $20 billion. These are appropriate for hedging against high frequency 
cats, such as hail and tornadoes. The other contract is for high severity losses, those ranging 
from $20 billion to $50 billion. A company purchases PCS Cat Options as a hedge against direct 
cat losses. 

Accounting period: the indices track cats occurring either in an accident quarter or accident 
year. These were developed to get at the seasonal nature of cats. Since hurricanes usually only 
occur in the third calendar quarter,.a Florida accident quarter contract could be purchased. For 
California, on the other hand, only accident year contracts are offered, since earthquakes are not 
seasonal. In addition to length of contract, the parties to the contract must decide on a 
development period, which runs either six-months or twelve-months after the end of the 
coverage period. 

Index valuation: the index value equals the industry cat losses during the loss period divided by 
$100 million. Quotes are in the following format: ###.# and each point is worth $200. 
Reported losses within the contract period and developed through the development period enter 
the index. 

How can a company use options? One obvious function is for buying a layer of reinsurance. 
This is accomplished by buying an Option Call Spread. A Call is purchased because the buyer 
wants to lock in a price for losses in the event that the loss index increases. An Option Call 
Spread is done by buying a Call Option at the retention and simultaneously selling a Call Option 
at the (limit + retention). These points on the index are referred to as strike prices. 

Example - Perfect Hedge 
We want to hedge against California Earthquake. We have a I% market share and would have 
an equivalent share of all losses. We have a cat treaty starting at $50 million, but would like to 
purchase protection below it, between $30 million and $50 million. We must answer the 
following questions: 

• What are the industry strike prices? 
• How many options should we purchase to be perfectly hedged? 
• How much should we pay? 

Let's answer each question. To determine the strike prices, we must calculate the industry limits 
corresponding to the layer we desire to purchase. Since we are I% of the industry, these 
amounts are as follows: 
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Retention = $30 million / 1% = $3 billion; Strike price = $3 billion / $100 million = 30 
Limit + Retention = $50 million / I% = $5 billion; Strike price = $5 billion / $100 million = 50 

This shows that we must purchase 30/50 call options, to provide coverage for industry losses 
between $3 billion and $5 billion. Each contract will provide a $4,000 (20 points x $200 / point) 
vertical strip of protection in this layer, but how many of these strips will we need? We want 
$20 million in overall protection and each option provides $4,000. Therefore we will need to 
purchase 5,000 30/50 call options to be perfectly protected in the layer. 

What will this cost? The premium is a negotiated item, Since insurers and reinsurers are the 
primary participants, the pricing has thus far followed reinsurance rates. As supply of capital 
from financial markets increases, prices may decline from these levels. 

For the Option Call Spread we just purchased there are three possible loss outcomes: 

1. The index ends up < 30 - the spread expires worthless and the purchaser only loses the 
premium paid for it. 

2. The index ends up > 50 - the purchaser realizes a gain of 20 points on each contract. The total 
gain will be 20 points x $200 per point x 5,000 contracts = $20 million, less the premium paid. 

3. The index ends up between 30 and 50, say at 40. The total gain will be (40 - 30) points x 
$200 per point x 5,000 contracts = $10 million, less the premium paid. 

Unlike typical option contracts, PCS cat options can only be exercised at expiration. Example 
one above expires worthless, while two and three are "in the money". This is one possible 
structure ofa PCS Option. There are many others. 

The greatest risk facing insurers buying Option Call Spreads is basis risk. An imperfect hedge 
can result if: 

• The company experiences a large cat loss, but the industry does not 
• The industry experiences a large cat loss, but the company does not 

In these cases the recovery from the contracts will be less than and greater than the needed 
recovery, respectively. 

Anyone opening an account is eligible to buy and sell options. To date, however, there has not 
been much trading activity in Cat Options. Most of the participants have been members of the 
insurance industry. One encouraging statistic is over 3,000 contracts were traded on September 
5, 1996, providing $6.6 million in limits. On the other hand, this amount equaled the prior 
quarter's total activity. Lack of appeal is due in part to the fact that results flow through 
investment income, not underwriting income, as is the case with nearly all of the capital markets 
solutions. From an economic perspective, Cat Options offer the same benefits as reinsurance. 
Rather than go through advantages and disadvantages of Options, it is instructive to compare and 
contrast them to reinsurance: 
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Cat Options 
Standardized contracts 
Reimbursed for incurred losses 
6 to 12 month tail 
No implied payback 
Basis risk 
No credit risk 
Limited Market 
Flows through investment income 
Large potential capital supply 
No coverage disputes 
Anyone can become a "reinsurer" 
Real risk transfer 
Industry loss trigger 

Reinsurance 
Customized contracts 
Reimbursed for paid losses 
Indefinite tail 
May have implied payback 
Perfect hedge 
Credit risk 
Large, international market 
Flows through underwriting income 
Limited capital supply 
Disputes/Arbitration part of the business 
May need approval for accounting advantages 
Real risk transfer 
Company loss trigger 

V]. C O N T I N G E N T  SURPLUS NOTES / " A C T  OF G O D "  BONDS / CAT EQUI TY PUTS 

Although these products come in many forms, they have one overriding purpose: to protect the 
company's surplus in the event of a catastrophe. Usually investment banks or brokers arrange 
their placement. Each of the products will be discussed followed by their common advantages 
and disadvantages• 

A. Contingent Surplus Notes 

The most well-known deal (and only one as of 8/96) was done by Nationwide. In early 1996, 
Nationwide determined that they needed a pool of funds to draw upon in case surplus was 
threatened. The product acquired the name "Contingent" because surplus notes were not issued 
immediately. There was the possibility of issuing them sometime in the future. Cat risk was the 
most important risk Nationwide was guarding their surplus against, but not the only one. There 
is no direct link between occurrence of a catastrophe and issuance of the Notes. 

The deal works as follows: 

• Nationwide Mutual establishes Nationwide Trust subsidiary 
• The Trust sells corporate bonds to investors worth $400 million; coupons = Treasury + 240 

basis points 
• With the proceeds, the Trust purchases US Treasuries, that act as collateral for the bonds 

At this juncture, Nationwide conducts business as usual. At some point in time, they could 
exercise their option to issue surplus notes. The transactions would be: 

• Nationwide Mutual issues surplus notes to Nationwide Trust 
• The Treasuries are sold to purchase the surplus notes 
• The surplus notes replace the Treasuries as collateral on the corporate bonds 
• Investors are still owed full principal; coupon rate remains unchanged 

The costs to Nationwide are two-fold. First, they are paying a 240 basis point premium over the 
Treasuries they have purchased as collateral. Second, if they draw upon the capital by 
liquidating the Treasuries and interest rates have risen, they face a loss on the face value of the 
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Treasuries. Investors face the credit risk of replacing (risk-free) Treasuries with Nationwide 
surplus notes. 

As a final point, all principal and interest payments to note holders require approval from the 
domiciliary commissioner before they are paid. This is a way that the commissioner will be sure 
that certain obligations are taken care of before the notes are paid. These obligations may 
include payments to policyholders after a large event. 

B. "Act of God" Bonds 

Unlike Contingent Surplus Notes, there is a direct relationship between occurrence of a cat and 
repayment of the bond. These deals are a little more common and typically work like this: 

• Alpha Insurance Company issues five-year bonds to investors at a coupon rate above 
treasuries 

• The coupons are guaranteed for a fixed amount of time, say three years 
• If no cats occur, Alpha pays investors five annual coupons as well as the principal at the end 

of five years 
• If a cat occurs and losses reach the coverage trigger a number of things could occur, 

depending on the wording of'the deal: 

1. Reduced coupon payments following the guarantee period 
2. Reduced principal payments 
3. Risk of loss to principal and interest 

As would be expected, the more the investor puts at risk, the greater the return over the Treasury 
rate. In deals where principal is guaranteed, a portion of the proceeds is invested in Treasuries 
that will mature to the face value of the bonds. In another actual deal where coupons and part of 
the principal were put at risk, the investor received 1,000 basis points over Treasuries. 

C. Cat Equity Puts (CatEPuts) 

A unique sort of cat financing product was developed by AON, a well-known insurance and 
reinsurance intermediary. The first deal involved Centre Re of New York and RLI Corporation 
of Illinois in the latter half of 1996. RLI had suffered major losses from the Northridge 
Earthquake in January of 1994 and sought traditional and non-traditional solutions in case a 
similar event happened in the future. They ended up with the following deal: 

• Centre Re sells a Put option to RLi for three years 
• The option allows RLI to put $50 million of non-voting RLI preferred stock to Centre Re in 

the event of a California earthquake 
• RLI pays Centre Re $1 million per year for the Put option, for a total of $3 million 

Note the specific coverage trigger, unlike Contingent Surplus Notes. This limit sits on top of all 
existing cat coverage. Relating the cost to reinsurance produces an annual rate on line orS1 
million / $50 million = 2%. However, this is too simplistic a view. With reinsurance, the 
reinsurer provides capital in the event of a loss and the deal is done. This is an exchange of 
uncertainty for certainty. With CatEPuts, the "reinsurer" provides capital and could obtain an 
equity stake in the insurer in return. This is an exchange of uncertainty for equity. The equity is 
in the form of convertible preferred stock. Half of the stock is convertible to common stock 
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three years after the event and the other half in four years. Unlike the preferred stock, common 
stock has voting rights. 

Under GAAP accounting, CatEPuts are considered a part of surplus, not a liability like debt 
would be. 

There are two contractual features worth noting. First, RLI has three to four years to buy back 
the shares at market rates and avoid giving up the equity stake in the company. It was 
acknowledged that Centre Re does not want to become a shareholder in RLI. Second, If the loss 
were so large as to cause surplus to fall below a threshold, the deal would be null and void. 

AON is working on similar deals ranging in size from $100 million to $500 million. 

The following lists show the advantages and disadvantages for the three products: 

Advantages 

1. Surplus protection 
2. Lack of correlation with stock and bond markets 
3. No basis risk - you get what you pay for 
4. Possibly tap into alternate sources of capital within the insurance industry, namely life 

insurers and pension funds 
5. Surplus notes are accounted for as equity, but are treated like debt for tax purpose, since their 

interest is tax deductible 
6. Easier to construct multi-year deals than reinsurance 
7. A. M. Best has promoted CatEPuts as "...an effective way to secure extra cat coverage" 
8. Could be effective second event products 
9. No reinstatement costs 

Disadvantages 

I. Liquidity risk, as evidenced by the failed USAA deal in the summer of 1996 
2. Education - investors know about asset risks, but how many understand cat risk? Adverse 

selection may result 
3. Cat risk may not be something an investor wants to have in his/her portfolio, especially with a 

limited upside in exchange for possible loss of principal and interest 
4. These products are virtually junk bonds, subordinated to policyholder, stockholder, and debt- 

holder obligations 
5. Credit risk 
6. Results do not flow through underwriting income 

VlI.  SPECIAL PURPOSE REINSURERS / S E C U R I T I Z A T I O N  

Special purpose reinsurers are established to provide reinsurance to one client. Often they are 
formed in places like Bermuda to take advantage of favorable regulation and to keep the 
transaction offthe parent company's books. One deal completed towards the end of 1996 was 
done by Goldman Sachs for St. Paul Reinsurance. The deal works as follows: 
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• St. Paul Re establishes George Town Re 
• George Town Re issues two types of securities to investors: 

I. Notes maturing in ten years - $44.5 million 
2. Preference shares maturing in three years - $24 million 

• George Town Re becomes a quota share retrocessionaire for St. Paul Re under a ten-year 
reinsurance treaty 

• George Town Re invests $23.2 million ofthe Notes in ze¢o-coupon bonds to provide 
collateral for the Note principal maturing in ten years 

• The rest of the proceeds ($45.3 million) will be used as collateral for reinsuring St. Paul Re 

Please see Appendix 3 for a graphical portrayal of this transaction. 

One of the unique features of this deal is the multiple tranche structure. The Notes are highly 
rated by S & P and Moody's, while the Preference Shares are unrated. The Notes provide a 
highly securitized principal because they are collateralized. However, interest payments are 
contingent on the reinsurance results. The Preference Shares, on the other hand, have no 
associated collateral. Therefore, not only is the interest at risk, so is the principal. 

To mitigate the investment risk transferred to investors, the business reinsured is a diversified 
portfolio of low-frequency, high-severity reinsurance business. There are also sublimits on the 
different classes of business assumed by George Town Re, similar to finite risk reinsurance. 

The initial transaction between the insurer and the special purpose reinsurer is considered 
reinsurance, assuming the risk transfer tests (FAS I 13, Chapter 22) are passed. However, the 
deal between the reinsurer or trust fund and the bondholders shall not be construed as insurance 
or reinsurance. This portion is fully subject to investment laws. 

Advantages 

1. Keeps financing transactions off parent's books 
2. Varying levels of risk offered by multiple tranches may attract a wider audience of investors 
3. Company specific trigger, not industry 
4. No basis risk 
5. Less regulation with offshore reinsurer 
6. Increased reinsurance capacity for St. Paul Re 
7. Locks in pricing for a number of years 
8. Benefits flow through underwriting income 

Disadvantages 

1. Both securities offer a large amount of risk; the reward is not specified 
2. Liquidity risk 
3. Credit risk to investors 
4. Structure is untested thus far, since there have been no major catastrophes 
5. Not much feedback from regulators 
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VII I .  M I S C E L L A N E O U S  

In addition to the items listed above, a few other forms o f  securitization should be mentioned: 

I. Bermuda Cat  Reinsurers - these reinsurers arose in the wake o f  Hurricane Andrew as another  
source o f  cat reinsurance capacity.  Many were formed through investment banks,  such as J. P. 
Morgan and GE Capital.  These markets  offered no cat capaci ty  as o f  1989. However ,  they 
currently provide 36% o f  the total cat capaci ty  in the reinsurance markets.  Much o f  this was  
reallocated away  from the London and domestic  reinsurance markets.  Some character is t ics  o f  
these reinsurers are: 

• Write property reinsurance only 
• Use many of  the industry cat models  to evaluate risk 
• General ly  reinsure limits up to their capital and surplus level: this results in 

Premium: Surplus levels less than 50% 

2. Lines o f  Credit - credit lines are one o f  the oldest capital sources. An insurer or reinsurer,  
based on its credit  rating, pays a bank a percentage o f  the credit line to al low it to d raw upon 
under a variety o f  circumstances.  

Insurers could use lines o f  credit as a bridge loan fol lowing a catastrophe. Since cats present a 
t remendous t iming risk to insurers, cash flow may not be available when a cat hits. However ,  it 
may  be known that earnings throughout  the year  will be sufficient to pay for the cat. If  the 
insurer had purchased a line o f  credit, it could draw down the funds necessary to pay for the cat. 
The cost to the insurer will be the initial fee and the interest accrued when paying back the line 
o f  credit. Since some o f  the companies  will be able to pay this back in under a year,  the latter 
cost should be minimal.  
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CONCLUSION 

This paper has surveyed some of the core products on the market today geared to mitigate cat 
risk. There are numerous other products that retain some of the major features of one or more of 
the items listed above, but are tailored for individual customers. Reinsurance and alternative 
products share the characteristic that each contract is unique. 

Reinsurance continues to be the primary means of handling cat risk. However, the new products 
are showing up more and more in the insurance periodicals as companies use them for deals. I 
believe education is the key to unlocking some of the capital routinely being invested in the 
financial markets. Not many people outside of the insurance industry truly understand insurance, 
let alone insurance contracts. This problem is exacerbated when we start talking about specifics, 
such as catastrophes, paid versus incurred losses, and reinsurance. Like anything new, there will 
be a learning curve. Once more people begin looking into these new forms of"reinsurance" and 
understanding them, I believe they will become more common, leading to greater liquidity and 
competitive pricing. 
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A P P E N D I X  1 

Accounting for a Quota Share Treaty 

Assumptions 
Direct Premium = $1000 
Direct L/R = 60% 
Direct E/R = 35% 

Direct PML = $200 
Quota Share = 25% 
Ceding Commission = 35% 

Direct Ceded Ne_.! 
Premium 1000 250 750 
Losses 600 150 450 
PML 200 50 150 
Expenses 350 87.5 262.5 
U/W Margin 50 12.5 37.5 
L/R 60% 60% 60% 
Combined Ratio 95% 95% 95% 

This transaction shows a year-end $12.5 decrease in Statutory and GAAP earnings, due to 
ceding profitable business. At intermediate points during the year, GAAP earnings will 
be better. 

There is immediate Statutory surplus relief in a quota share transaction. This stems from 
the fact that we cede an unearned premium reserve (liability) and an equal amount of cash 
(asset). However, we also receive a ceding commission (cash), so Statutory surplus is 
increased by this amount. This benefit goes away under GAAP, since we are ceding 
DAE (asset) equal to the ceding commission. 
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APPENDIX 2 

AGGREGATE EXCESS OF LOSS EXAMPLE - ACCOUNTING AND CASHFLOW 

Subject Premium 
Plan Loss Ratio 
Retention 
Aggregate L=mit 
Leverage Factor 

Direct 
Earned Premium 
Incurred Loss Ratio 
Incurred Losses 
Paid Losses 
Cume Paid Losses 

Cashflow 

Ceded 
Eam,ed Premium 
Incurred Losses 
Paid Losses 
Margin 
Funds Withheld Inv. Credit 
Funds Withheld 

Cashflow 

5,600.000,00074% I 

78% 4,368.000,000 
500.000.000 

2.25 

1997 199.~ 
5,600,000,000 

85% I 
4.760.000.000 

1999 200.__0 200.__.! 200.~ 2003 "2004 2005 20._.~ 

476,000,000 476,000,000 476,000,000 476,000,000 476,000.000 476.000.000 476,000,000 476,000,000 476,000,000 476,000,000 
476,000,000 952,000.000 1,428.000,000 1,904.000,000 2,380.000,000 2,856,000,000 3.332,000.000 3,806.000,000 4,284.000,000 4,760,000.000 

5,124,000,000 (476,000,000) (476,000,000) (476,000,000) (476.000.000) (476.000.000) (476,000,060) (476,000,(X)0) (476,000,000) (476.000,000) 

174.222,222 
392,000,000 

392,000,000 
10,000,000 

0 12,316,667 25,557,083 39,790.531 55.091,488 71,540.016 89,222.184 108.230,514 128.664.470 150,630,971 
164.222,222 176.538.889 189.779,306 204.012.753 219,313,710 235,762.238 253,444,406 272.462,737 292,886,692 (T7.146,806) 

10,000.000 - - (77,146.806) 

Ne_J 
Earned Premium 
Incurred Losses 
Incurred Loss Ratio 
Paid Losses 
Cume Paid Losses 

5.425,777.778 
4,368,000.000 

80.5% I 
476,000,000 476,000.000 476.000.000 476,000,000 476,000.000 476,000,000 476.000.000 476.000.000 476,000.000 8,4,000,000 
476.000,000 952.000.000 1,428.000.000 1,904,000,000 2,360.000,000 2.856,000,000 3.332.000,000 3.808.000,000 4,284.000,000 4.368.000,000 

Cashflow 5.114,000.000 (476,000,000) (476,000.000) (476.000.000) (476,000.000) (476,000.000) (476.000.000) (476.000,000) (476.000.000) (398.853,194) 



APPENDIX3 

SPEClAL PURPOSE REINSURER 

• Share Cessions _ _  - _ _  
~ C a p i t a l = $ 2 3 . 2 ~ S  

[ I 1. 10-year notes = $44.5M 
ference shams = $24M 
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Workers' Compensation D-Ratios, An 
Alternative Method of Estimation 

by Howard C. Mahler, FCAS, MAAA 
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W O R K E R S '  C O M P E N S A T I O N  D - R A T I O S ,  

AN A L T E R N A T I V E  M E T H O D  O F  E S T I M A T I O N  

BY HOWARD C. MAHLER, FCAS, MAAA 
THE WORKERS' COMPENSATION RATING AND 

INSPECTION BUREAU OF MASSACHUSETTS 

A b s t r a c t  

This paper presents a new method of estimating D-Ratios by class based on 
estimated average claim costs by class, that is being used in Massachusetts 
Workers' Compensation. 
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WORKERS'  COMPENSATION D-RATIOS, AN ALTERNATIVE 

METHOD OF ESTIMATION 

This paper will present a new method of estimating D-Ratios by class that is being used 

for Massachusetts Workers' Compensation. l This method based on average claim cost is 

compared to the prior method in Table 8. 

Backeround 

In Workers' Compensation Experience Rating claims are generally split into a Primary 

and Excess portion. In Massachusetts and most other states, the portion of each claim below 

$5,000 is Primary. The portion above $5,000 is Excess, but all the dollars above a certain limit 

(which is currently $175,000 in Massachusetts) are excluded from Experience Rating. 

The D-Ratio (Discount Ratio) is defined as the ratio of the future Expected Primary 

Losses to the Expected Primary plus Excess Losses. 2 A separate D-Ratio for each classification 

in each state is needed. For Massachusetts the D-Ratios are generally between 10% and 30%. 3 

The effect on the Experience Modification of a difference in D-Ratios is discussed in the 

Appendix. All other things being equal the higher the D-Ratio the lower the Experience 

This method turns out to be similar to one presented by Arthur Bailey [1]. 

2 In Workers' Compensation experience rating Expected Losses are obtained by multiplying payrolls by class times 
the corresponding Expected Loss Rates by class. Then for each class the Expected Primary Losses are the product 
of the Expected Losses times the D-Ratio for that class. 

J In a state with lower average claim costs but using the same $5,000 dividing point, the percentage of primary 
losses would be higher and thus the D-Ratios would be higher. 
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Modification. 4 In order to get an accurate Experience Modification one desires the best estimate 

o f  D-Ratios. 5 

There are two basic problems in est imating D-Ratios. First, we are interested in the 

expected ffi~lJ;ltm value. Therefore, we need to adjust the past data to reflect future conditions. 

This  is relatively routine and involves the usual  severity trend and on-level factors for law 

amendments  used elsewhere in mtemaldng.  6 An example is shown in Table 1. Note that the 

factors in Table 1 adjust the data 7 available at the time o f  the rate indication to the expected level 

o f  the data that will be used to experience rate insureds during the policy effective per iod)  

Ove~iew o f  Methodoloev 

This  paper will focus on the second and more difficult problem. The volume o f  data by 

class in a state is insufficient in most  cases to allow a good estimate o f  the D-Ratio directly from 

the data for that class. 

However,  one can work with the larger groupings. 9 Currently, there are five Industry 

Crroups generally used for Workers '  Compensat ion for ratemaking: Manufacturing,  Contracting, 

4 A. I0 higher D-Ratio will result in a .04 to .07 lower Experience Modification, as discussed in the Appendix. 

As well as the best estimate of other inpu~ such as Expected Loss Rates, credibilities, etc. 

6 See for example Kallop [2] or Feldblum [3]. 

7 Unit Statistical Plsn data is usually compiled into a report called Schedule Z. 

s Generally one would use three years of data to experience rate insureds. For example, during 1996 one would 
genenilly use 1994 at fast report, 1993 at second report, and 1992 at third report. At the time one was estimating D- 
Ratios for 1996, one might have available 1992 at fast report, 1991 at second report and 1990 at third report. In 
that case one would adjust the 1992 data at fast report to level expected for the 1994 data at fast report, etc. 

9 Hazard Groups were u'ied, but the use of Induslry Groups did a better job of estimating D-Ratios. A major 
problem is that over 90% of the experience is concemrated in Hazard Groups 2 and 3. 
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Goods and Services, Office and Clerical, and Miscellaneous. In Massachuset ts  (and states with a 

similar or larger volume o f  data ~°) each Industry Group has a sufficient amount  o f  data to 

estimate its D-Ratio directly from the data. (See Table 2.) 

The Construction Industry Group stands out from the other four as having a very 

significantly lower D-Ratio. II Thus  this breakdown splits out many o f  the classes with the 

lowest D-Ratios. Also, as will be seen, much  o f  the remaining variation within Industry Group 

can be captured via relative average claim costs by class. 

The methodology consists o f  estimating the D-Ratio o f  each class relative to the D-Ratio 

o f  its Industry Group. (These estimated relativities will be balanced to unity.) This relative D- 

Ratio for each class will in turn be estimated from the relative average claim cost for that class. 

Classes with higher than average severities will be estimated to have lower than average D- 

Ratios. In other words, if the average claim size is larger, more o f  the claim is excess and less is 

primary. 

Estimated Relative Average Claim Costs b_v Class 

The estimated Relative Average Claim Costs by class are calculated based on the most  

recent seven years o f  Unit Statistical Plan data at second report. 12 Average Claim Costs are 

calculated based on data excluding fatal, permanent  total, and medical-only claims, as was used 

,0 In states with very small amounts of data one could calculate a statewide D-Ratio and spread it to Industry Group 
based on the relativities over a longer period of time or in other states. 

t, More large claims apparently lead to a smaller percent of primary losses. 

,2 Second repon is the approximate average maturity of data used for experience rating. Unit Statistical Plan Data is 
submitted on every individual claim of size $2,000 or more. Evaluations are currently on a paid plus case reserve 
basis at the twst five reports. First report is I$ months from policy inception. Subsequent reports are at 12 month 
intervals. 
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in the development of the model discussed subsequently. Table 3 is an example for the Office 

and Clerical Industry Group for Composite Policy Year 91/92.13 

For each year, for each Industry Group, the Relative Average Claim Cost for a class is the 

ratio of the Class Average Claim Cost to the Industry Group Average Claim Cost. Figure l 

shows the results for two classes in the Office and Clerical Industry Group. For each class, the 

seven years of Observed Relative Average Claim Costs are combined by taking a weighted 

average using claim counts as weights. (See Table 4.) 

However, there are only limited data for smaller classes. Therefore, Credibility has been 

used to combine the Observed Relative Average Claim Cost by class with unity. (Unity 

corresponds to the Industry Group average.) Credibility is taken equal to: 

Jnumb~ of claims 
z = ~/ 2,500 

A class with 2,500 or more claims is assigned a credibility of 1. The classical full 

credibility criterion of 2,500 claims for severity was selected based on adjusting a criterion for 

frequency of about i,000 claims by multiplying by the square of the coefficient of variation of 

about 2.5.14 The results herein are relatively insensitive to the precise choice of the full 

credibility criterion} 5 While a more "sophisticated" credibility method might have been 

employed, in the author's opinion classical credibility is more than adequate for this particular 

t~ Composite Policy Year 91/92 includes all experience on policies with effective dates between 7/I/91 and 6/30192. 

'~ See Longley-Cook [4]. 1082 and 683 are common criterion for ~11 credibility for frequency mentioned by 
Longley-Cook. The Appendix of Longley-Cook's paper recommends multiplying by the square of  the coefficient 
of variation to get a criterion 'for average claim costs. The observed square of  the coefficient of  variation for the 
severity for permanent partial and temporary total claims is about 2.5. The square of the coefficient of  variation = 
varianceYmean 2. 

Is For a discussion of this subject see Mah|er [5]. 
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application, t6 The range o f  estimated D-Ratios is so small that minor changes in the estimated 

relative claim costs have relatively little final impact. 17 

For example, the relative average claim costs by year for class 4361 are shown in Table 4. 

There is sufficient fluctuation ffi'om year to year that any reasonable credibility method would 

assign significantly less than full weight to this data. For example, suppose instead o f  35.9% 

credibility, 20% credibility were assigned. The relative average claim cost would be .957 rather 

than .923. The estimated relative D-Ratio would be 1.029 rather than 1.05 I. The resulting 

estimated D-Ratio would be .24 rather than .25 as shown in Table 7. This difference is well 

within the inherent error o f  the whole estimation procedure. 

The relative average claim cost is estimated for each class as seen in Column 11 o f  

Table 4: 

Estimated Relative Average Claim Cost = 1 + Z (Observed Relative Average Claim Cost - 1) 

These estimated R.elative Average Claim Costs Is are then used in the model, that will be 

described next, in order to derive estimated Relative D-Ratios. 19 

Model o f  Average Claim Cost vs. D-Ratio 

As seen in Column 12 o f  Table 4, within industry groups, the overall average D-Ratio is 

spread to each classification using the following model: 

~6 For a comparison of the practical impact of using classical credibility versus Bayesian/Btthlmann credibility see 
Mahler [5]. Mahler [6] discusses the use of different criteria to select optimal credibilities. Mahler [6] and Mahler 
[7] discuss the possible impact of shitting parameters over time. Taking into account the impact of shifting 
parameters over time here is a possible area of future research. 

sT See the Appendix. 

Is See Column (I I) of Table 4. 

t9 See Column (12) of Table 4. 
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(Relative D-Ratio - 1) = (- 2/3) (Relative Average Claim Cost - 1) 

The form of  the model is based on the fact that larger claims contribute a smaller 

percentage to primary losses than do smaller claims. For example, a $3,000 claim has 100% of 

its losses as primary, while a $100,000 claim has 5/100 = 5% of  its losses as primary. Thus 

classes with higher than average claim sizes will be expected to have a smaller percent of their 

losses as Primary, and therefore, have lower than average D-Ratios. 

The particular coefficient used in the model was selected in Table 5, based on an 

examination of the historical relationship between average claim costs and D-Ratios. 2° 

Separately for each Industry Group weighted least squares regressions were performed on 

Relative Average Claim Costs and Relative D-Ratios by class. Table 6, Page 1 shows the Office 

and Clerical Industry Group. 21 

The most recent Unit Statistical Plan data (lst, 2nd, and 3rd report combined) by class is 

used (without adjustment for law amendment or trend). An Observed D-Ratio is calculated in 

Column 4 of Table 6 for each class as the ratio of Losses Limited to $5,000 to Losses Limited to 

$175,000. The Relative D-Ratio in Column 5 of Table 6 for each class is the class D-Ratio 

divided by the average for the Industry Group. 

As was done previously, the Average Claim Cost by class is calculated for other than 

fatal, permanent total, and medical-only claims. The fatal and permanent total claims are rare 

~0 In s o m e  sense  the proportionality constant is a s eco nd  us e  of  credibility. The proportionality constant measures 
how much o f  a dev ia t ion  from average one would expect in D-Ratio based on a certain deviation from the average 
severity. 

2, Table 6, Pages 2 and 3 shows the similar calculation for the ConsU'uetion Industry Group. 
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and usually very large, and therefore would introduce undesirable random fluctl.lations. 22 The 

medical-only claims are very numerous but due to their very small size, account for a very small 

percent of total losses. 23 Based on the author's attempts to devise a method, apparently the 

medical only claims mask the important differences between classes which would be expected to 

lead to different D-Ratios. 

Potentially valuable information has been '"thrown away" in the calculation of the relative 

average claim costs by excluding fatal, permanent total and medical-only claims. However, the 

resulting relative average claim costs by class showed a strong correlation with the relative D- 

Ratios z4 by class. As in any actuarial computation, it would be possible to devise some way to 

incorporate this additional information in some manner to some extent. This is an area of 

potential future research, although given the small range of D-Ratios it is unlikely in the author's 

opinion to have much practical impact. There is some advantage to simple practical methods that 

work, without unnecessary technical refinements of no practical importance to the particular 

application. 

The Relative Average Claim Cost by class in Column 9 in Table 6 is the class Average 

Claim Cost in Column 8 divided by the Industry Group Average Claim Cost. For purposes of the 

regression, the Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0. 

u An alternative would have been to include fatal and permanent total claims, but to cap their size as is done for 
purposes of experience rating. In that case, the standard for full credibility of the observed relative average claim 
cost would be adjusted upwards. 

z3 The medical onlys usually account for a significant proportion of primary lossesl 

Which include the impact of claims of all injury kinds. 
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This prevents a small class with an extreme observed average claim cost over these three years, 

from unduly influencing the regression results. 25 

The weights used in the regression are the number o f  claims by class in Column 7. Then 

as stated previously, a weighted least squares regression between Relative Average Claim Costs 

and Relative D-Ratios by class is performed separately for each Industry Group. Figure 2 shows 

the regression for the Office and Clerical Industry Group. 

These regressions yield five different estimates o f  an appropriate proportionality constant 

to be used in the model. As shown in Table 5, a single proportionality constant is selected within 

the indicated range, z6 The choice o f  a single proportionality constant is not a necessity for 

application o f  the method. That was the author 's  judgment  given the ability to only examine data 

from one state over a limited period o f  time. Given data from more states or more years a 

different choice might have been made. In any case, each user o f  the method could select 

appropriate proportionality constants at this stage o f  the procedure based on the available 

information and his own judgment. 

Then a Relative Average D-Ratio for each class in the Industry Group is calculated in 

Column 12 o f  Table 4, using the selected proportionality constant. 

Table 7 shows the calculation o f  the D-Ratios for these classes. The relative D-Ratios are 

balanced to unity in Column 4 using the Expected Losses by class. In Column 5 the Indicated D- 

As seen in Table 5, the results of capping were quite significant for the Miscellaneous Industry Group in this 
review. 

26 A similar range was indicted in a prior review. However, there is considerable fluctuation in the slopes of the 
regressions. Performing similar regressions in additional states and over more periods of time might allow one to 
select different proportionality constants by Industry Group. Again, given the small range of D-Ratios, it is unclear 
how much impact such a refinement could have on the estimated D-Ratios. 
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Ratios by class are the product of the balanced relativity D-Ratio for each class times the 

indicated D-Ratio for the Industry Group, in this case .2355 from Table 2 for the Office and 

Clerical Group. 

For class 8742 (Salespersons) its estimated relative claim cost is i.143, higher than 

average for the Office and Clerical Group. This yields an estimated relative D-Ratio of 

I - (2/3) (!.143 - I) = .905, lower than average for the Office and Clerical Group. After 

balancing to unity the relative D-Ratio becomes .911. Then the estimated D-Ratio for class 8742 

is (.911) (.2355) ~ .21. 

Similarly, for every class its observed relative average claim cost will be used to estimate 

its claim costs relative to its Industry Group. Then this in turn is used to estimate for each class 

its relative average D-Ratio. Then the estimated D-Ratio for each class is the product of its 

relative D-Ratio and the estimated D-Ratio for its Industry Group. Table 7 shows the final 

estimated D-Ratios for each class in the Office and Clerical Industry Group. 27 

Com_oarisqn to a Prior Method 

The prior method used in Massachusetts was generally along the lines described in 

Gillam [8], 28 although some of the details differed. As shown in Table 8 in the prior method one 

calculated three "partial D-Ratios" as follows. 

D (Serious) = Primary Serious Losses (Indemnity & Medical) 
Serious Indemnity Losses 

D (Non - Serious) = Primary Non - Serious Losses (Indemnity & Medical) 
Non - Serious Indemnity Losses 

27 Similar exhibits would be produced for the other four Indusu'y Groups. 

See Pages 238-239, 249-251 of PCAS 1992. 
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D (Medical) = 
Medical Only Losses 

Total Medical Losses 

The above statewide partial D-Ratios were used to calculate the D-Ratios by using the 

following formula: 

D-Ratio = (P . ) (D, )  + (P . ) (D . )  + ( P . ) ( D . )  LEF, where p.,  p . ,  and p .  
p ,  + p .  + P .  

are the adopted partial pure premiums underlying the rate for a class for the serious, non-serious, 

and medical losses, respectively; D~, D., and Dm are the statewide partial D-Ratios; and LEF is the 

. . . .  2 9  
appropnate loss elmunauon factor. 

For example, in the filing for 1/1/95 Massachusetts Workers' Compensation rates, the 

part ia l  D -Ra t i os  were:  

D, = .089 

O. = .521 

Dm = .110 

For example, for Class 8810 (Clerical Risks) the partial pure premiums from the 

classification ratemaking process were 

P, = .10 P. = .07 Pm = .08. 

Thus, the estimated ratio of Primary Losses to Total Losses for this class was: 

(30)  ( .089) + (.07) (521)  + (.08) (.110) = .217. 
.10 + .07 + .08 

29 Loss Elimination Factors (LEFs) varied by hazard group. Multiplication by the LEF was necessary since actual 
losses used in individual risk experience ratings are limited. The LEF removed that portion of the pure premium which 
is excluded in the individual risk experience rating. 
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The Loss Elimination Factor (LEF) 3° for Hazard Group 231 was 1.035. So for Class 8810 

the estimated ratio o f  Primary Losses to limited losses entering experience rating was the product 

(.217) (1.035) = .22. Thus, the proposed D-Ratio for Class 8810 was .22. The D-Ratios for 

every other class were calculated similarly, with P~, P, and P,,, differing by class and LEF 

varying by Hazard Group. 

The concept o f  this prior method is that those classes with more serious losses and fewer 

non-serious losses would tend to have a corresponding higher proportion of  large claims 

resulting in more excess and less primary losses. In practice, there are a number o f  potential 

difficulties. 

First, the division between serious and non-serious losses is not always clear cut; it may 

depend on individual insurers statistical coding practices particularly at early reports. 32 

Combined with the limited data available for smaller classes and/or smaller states, this can lead 

to uncertainty in the relative sizes o f  the partial pure premiums P~ P,, and Pro.J3 

Second, the Medical Pure Premium Pm is being multiplied only by a ratio of  medical only 

losses to total medical losses. Since this ratio is generally smaller than the average D-Ratio, the 

more medical losses a class has compared to similar classes the lower the estimated D-Ratio. 

30 This factor takes into account the limit on the dollars of claims that enter into experience rating. While the 
concept is used in the new alternative method, a separate such factor is not calculated. 

3t Class 8810 is in Hazard Group 2. 

32 A claim reported as Temporary Total is non-serious while one reported as Partial Disability (including the 
possibility of total benefits prior to partial benefits) is either serious or non-serious. At early reports prior to any 
partial disability payments, carrier judgments may determine whether a claim is reported as Temporary Total or 
Partial Disability. 

33 This can occur even if their sum: P, + P, + P,  is fine for estimating class relativities. 
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Yet, a larger proportion of medical losses from both large and small accidents is not obviously a 

determinant of the proportion of primary dollars of loss. 

Third, for the determination of  primary and excess losses the medical and indemnity 

pieces of a claim are summed together rather than divided apart and treated separately. 34 Thus, 

the prior method employed a split not inherently present in the specific real world phenomena we 

are trying to measure and/or estimate. 

In spite of all these potential problems, this prior method did a reasonable job. To some 

extent this is due to the relatively small range of D-Ratios compared to the large range of 

classification rates. 35 One step that could have been added to the prior method was to balance the 

tinal estimated D-Ratios by class back to those observed in the (adjusted) data either by Industry 

Group or overall. This would have removed any bias or off-balance introduced. 

Conclusions 

The method presented employs a series of relatively simple techniques to estimate D- 

Ratios by class from D-Ratios by Industry Group. This differs from the prior methodology 

which for each class weighted together "partial D-Ratios" using formula pure premiums broken 

down into serious, non-serious, and medical. These two methods are contrasted in Table 8. The 

method presented has the advantage of taking into account the actual severity data for each class 

(to the extent it is credible) in estimating the D-Ratio for each class. 

In addition, no specific distinction is made in most states based on injury kind for experience rating. 

35 While class rates could easily vary from 20 cents to 100 dollars, D-Ratios might range flora about .10 to .30. 
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Experience Rating Credibilities, Prima~ vs Excess Figure 3 
Massachusetts Workers' Compensat ion 
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Table 1 

Massachusetts Workers' Compensation 
Combined Severity Trend and Law Amendment Factors " 

A. Severity Trends* 

Composite ~:!/~:::~:.:: i~!~.~Jt~'~ii0RtYltt]C~'~KIn#':~::i~::~"~:~::::~:~:~ 
Policy Year I 2 3 4 5 

~i:~:i Ji~!~::~::~# ~ ~ M ~  . ~  1.,¢/#i~l~/fi/'~ :i~!~:::':~:::::~i~:~:::!~:~.~.~ .... 
I 2 3 4 5 6 

90/91 
91/92 
92/93 

1.08227 1.0827 1.08227 1.0827 i.0827 
1.0699 1.0699 1.0699 1.0699 1.0699 
1.0756 1.0756 !.0756 1.0756 1.0756 

1.1746 1.1746 1.1746 1.1746 !.1746 1.1746 
1.1170 I.I170 1.1170 1.1170 1.1170 1.1170 
!.1077 1.1077 1.1077 !.1077 1.1077 1.1077 

B. Law Amendmant Factors 

90/91 
91/92 
92/93 

0.771 0.692 0.848 0.961 0.745 
0.97/9 0.959 0.999 1.038 0.965 
1.026 1.015 1.022 1.040 1.007 

1.007 1.007 1.007 1.007 1.007 1.007 
1.012 1.012 1.012 1.012 1.012 1.012 
1.021 1.021 1.021 1.021 1.021 1.021 

C. Combined Severity Trend and Law Amendment Factors (A x B) 

90/9 I 
91/92 
92./93 

0.8548 0.7492 0.9181 1.0405 0.8066 
1.0474 1.0260 1.0688 1.1106 1.0325 
1.1036 !.0917 1.0993 1.1186 1.0831 

1.1828 1.1828 1.1828 1.1828 1.1828 1.1828 
1.1304 1.1304 1.1304 1.1304 1.1304 1.1304 
1.1310 1.1310 1.1310 1.1310 1.1310 1.1310 

* The trend factors arc adjusting for the effects of inflation expected during the two year period between the Schedule Z data used in 
the calculation of D-Ratios and the data that will be used to calculate Experience Modifications during the policy year effective 
period 7/1196 to 6/330/97. 
(This data corresponds to C.P.Y. 92/93, 93194, and 94195.) 



MASSACHUSET]'S WORKERS' COMPENSATION 
Observed D-Ratios by Industry Group 

Table 2 

(1) (2) (3) (4) 
= (2) / (3) 

Adjusted Adjusted 
Industry Schedule Z Schedule Z 
Group Losses limited Losses limited Observed 

to $5,000 to $175,000 D-Ratio 

Manufacturing 107,469,897 431,334,977 0.2492 

Construction 52,105,826 351,216,628 0.1484 

Office & Clerical 55,821,603 237,007,928 0.2355 

Goods & Services 160,437,682 629,524,720 0.2549 

Miscellaneous 47,147,170 200,469,410 0.2352 

(2), (3): Schedule Z losses (1 st, 2nd, and 3rd report combined, includes all injury kind) 
Losses  are adjusted using the Law and Trend Factors shown in Table 1. 
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MASSACHUSEI"r8 WORKERS' COMPENSATION 

Relative Average Claim Cos~ 

Industry Group: Office & Cledcal 

Composite Policy Year 9t/92 ~2nd  Report 

(1) (2) (3) (4) (S) 

= (2)•(3) =(4)/'1"1"(4) 

Class 

Losses Number o1 Average 

(Indemnity+Mad) Claims Claim Cost 

Relative Average 

Claim Cost 

Table 3 

4361 512.291 33 15,524 1.002 

7610 771,191 58 13,296 0.858 

8601 1,290,543 91 14,182 0.915 

8742 14,203.155 635 22,367 1.444 

8748 847,220 45 18,827 1.215 

8800 469.388 42 11,176 0.721 

8803 597,359 17 35,139 2.2268 
8810 31,745,677 2.039 15,569 1.005 

8820 2,075.642 87 23,858 1.540 

8832 4,516.909 266 15,981 1.096 

8833 8,752,453 730 11.990 0.774 

8868 7.753,t83 704 t 1,013 0,711 

8901 47,799 8 5.975 0.386 

9156 416,680 21 19.842 1.281 

Total 73,999.490 4,776 15,494 

(2),(3): Los,ms and Number of Claims are as reposed, but excluding any Fatal. Permanent Total, 

and Medical Only Claims. (Losses are neither limited nor acljusted.) 
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MASSACHUSE'I ' rS WORKERS' COMPENSA'nON 

Est lmst~: l  Relat ive D-Rstlo 

InduBby Group:  Off ice & Clerical 

(1) (2) (3) (4) (6) (6) (77) (8) (9) (10) 

85/86 86/87 87188 88/89 89/90 90/91 91/92 Combined 

Class Relative Relative RefaUve Relative Relative Relative Relative Relative 

Code ACC ACC ACC ACC ACC ACC ACC ACC Credibility 

(11) (12) 

= 1+(10)x[(9)-1] * 1-{2/3)x[(11)-1 

Estimated Estimated 

Relative Relaffva 

ACC D-RaUo 

4361 0.680 0.920 0.640 0.708 1.087 0.428 1.002 0.785 0.359 

7610 1.625 1.351 0.839 0.034 1.127 0.969 0.888 1.059 0.382 
8601 0.983 1.440 1.169 1.069 1.026 0.919 0.015 1.100 0.613 

8742 1.211 1.161 1.031 1.221 1.028 1.017 1.444 1.143 1.000 

8748 2.065 1.747 2.151 1.967 2.130 1.626 1.215 1.895 0.425 

8800 0.626 0.728 1.025 0.830 0.883 1.365 0.721 0.889 0.361 

8803 0.416 1.124 0.472 1.893 0.830 1.109 2.266 1.029 0.274 

8810 0.982 1.021 1.044 1.040 %066 1.113 t.005 1.040 1.000 

8820 1.800 1.307 1.630 1.639 1.236 1.216 1.540 1.4,50 0.413 

8832 1.031 1.233 1.536 1.178 1.051 1.037 1.096 1.150 0.769 

8833 0.952 0.7'73 0.814 0.792 0.863 0.884 0.7"74 0.837 1.000 

8868 0.806 0.908 0.828 0.678 0.796 0.724 0.711 0.77/4 1.000 

8901 1.019 0.556 1.128 1.066 0.78.8 0.567 0.388 0.817 0.263 

9156 0.490 0.668 1.005 1.066 0.701 0.604 1.261 0.803 0.261 

0.023 1.051 

1.023 0.985 

1.061 0.959 

1.143 0.905 
1.380 0.747 

0.960 1.027 

1.008 0.995 

1.040 0.073 

1.188 0.878 

1.115 0.923 

0.837 1.109 

0.774 1.151 

0.952 1.032 

0.949 1.034 

(8): See Table 3. 

(9): Seven Years of relative average claim costs are combined by taking • weighted average using claim counts as weights. 

(10): Credibility = square root of (7-ym-.Jatm-count by class 1 2.500) limited to unity. 

(11): Relative Average Claim Costs are uedibllity weighted with unity. 

(12): Relative D-Rat~ = 1 - (2/3) (RetstJ've ACC - 1). where the. pmportlonat~ constant ~s setscted based on 

separate regressions rffi to data for each Indust W group. See Table 5. 
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MASSACHUSETTS WORKERS'  COMPENSATION 
Determining the Proportionality Constant for Relative D-Ratio 

Table 5 

(1) (2) (3) 

Computed Computed 
Industry Proportionality Proportionality 
Group Constant Constant (Capped) 

Manufacturing -0.568 -0.694 

Construction -0.719 -0.737 

Offi~ & Clerical -0.650 -0.650 

Goods & Services -0.523 -0.540 

Miscellaneous -0.374 -0.898 

Selected [ - 2/3 [ 

(2) The proportionality constant is selected based on separate regressions 
fit to the relative average claim costs (for Permanent Partial and 
Temporary Total Claims) versus relative D-Ratios by class. 
Data is from Schedule Z for first, second, and third report combined. It is not adjusted. 

(3) The Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0. 
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MASSACHUSEI"fS WORKERS' COMPENSATION 
Determining the Proportionality Constant for RelaUve O-Ratio 

Industry Group: Office & Cledoal 

Table 6 
Page 1 

(1) (2) (3) (4) (5) (6) (7) 
Losses Losses Total 

Class Limited Umited Relative Losses Number of 
Cede to $5,000 to $t75,000 D -Ra t i o  D-Ratio ° (Ind.+Mad.) Claims 

(8) 

ACC 

(9) 

Relative 
ACC ° 

4361 417,428 1,169,121 0.357 1.532 1,198,587 113 10,607 
7610 703,047 2,787,015 0.252 1 ,082  2,538,887 162 15,672 
8601 1,233,601 4,762,304 0.259 1 .112  4,836,242 282 17,150 
8742  7,650,471 50,311,049 0.211 0 .906  37,593,218 1,880 19,996 
8748 659,224 3,592,017 0.184 0.790 3,566,061 1',56 22,859 
8800 395,163 1,791,027 0.221 0.948 1,727,521 114 15,154 
8803 258,653 1,468,291 0.176 0.755 1,423,213 63 22,591 
8810 23,295,475 103,767,838 0.224 0.961 103,870,417 6,013 17,274 
8 8 2 0  1 ,007,946 5,777,652 0.174 0 . 7 4 7  5,615,590 234 23,998 
8832  2,884,430 13,5270932 0.213 0 .914  13,111,606 768 17,072 
8833  6,682,957 26,771,313 0.250 1.073 25,744,078 1,988 12,950 
8868  7,705,442 26,671,767 0.289 1,240 24,622,778 2,164 11,378 
8901 130,497 342 ,235  0.381 1.635 310,662 28 11,095 
9156 568,573 1,237,821 0.459 1.970 974,157 81 12,027 

0.650 
0.969 
1.061 
1.237 
1.414 
0.937 
1.397 
1.068 
1.484 
1.050 
0.801 
0.704 
0.686 
0.744 

Total 53.592,907 229,977,382 0.233 227,133,017 14,046 16,171 

The welohted-least-souares solution for the stmloht-line reoression fi.e., v= b+mx~ is aiven bv the formulas': 

E w r  E wx = Ewxr-(~wx×Ewr)/~w a n d  b = -~--.(.-~-) 
= ~wx,_12wx), lZ w 

where X = Relative ACC - 1, Y = Relative D-Ratio - 1, and W = Claim CouP, t 

Reoression Result: 
Uncapped Result => Y = 0.020- 0,650 X => Proportionality Constant = I ..0.650 I 

I I Capped Result => Y = 0.020 - 0.650 X => Proportionafity Constant = ..0.650 

(2),(3): 
(6).~: 

Latest schedule Z data, 1at Report (PY92J'93), 2nd Report (PY91/92), and 3rd Report (PY90/91). 
Latest Schedule Z data at 1st, 2nd, and 3rd report and injury kinds 3,4, and 5, (pan.anent partial and temporary total claims). 
The proportionality constants are calculated based on two separate weighted least squares regressions of 
Relative Avera9e Claim Costs and Relative D-Ratios by class. 
For the capped result, the Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0. 
The proportionality constants will be used to determine the slope of the line, Relative D-Ratio = 1 - rn (Relative ACC -1). 
Weights for the regression are the number of claims for the three years used to compute the relative ACC. 
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MASSACHUSETTS WORKERS' COMPENSATION 

Determining the Proportionality Constant for Relative D-Ratio 

Industry Group: Consb'uctJon 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Losses Losses Total 

Class ~mRed UmRed Relative Losses Number of Relative 
Code to $5.000 to $175.000 D-RaUo D-RatUo" (lnd.+Me,~.) Claims ACC ACC" 

Table 6 
Page 2 

3~5 
3~4 
3726 
~20 
5O22 
~37 
5O4O 

5057 
5059 
5O69 

5102 
51~ 
51~ 
5183 
51~ 
5190 
5213 
5215 
5~1 
52~ 
5~3 
5~8 

~03 
~5437 
5443 
5445 
5462 
~72 
~73 

~79 
548O 
~91 
5506 
5~7 
5508 
55~ 
5538 
5~5 
5547 
5606 
~10 
5645 
~51 
5701 
5703 
5705 
6OO3 

0 0 0.000 0.000 0 0 
290.960 1,356,389 0.215 1.463 1,338.905 73 

2.021,485 10,603,943 0.191 1.299 9,381.940 519 
473,608 3.361,013 0.141 0.959 3,539.978 99 
184,446 710,580 0.260 1.769 688,540 44 

1.890,905 18,396.114 0.103 0.701 18,147,377 473 
59,546 878,054 0.068 0.463 872,591 12 

282,117 2,423,818 0.116 0.789 2,464,765 61 
179,242 1,832,777 0.098 0.667 2,065,949 45 
197.854 2,806,431 0.071 0.483 2,766,448 47 

0 0 0.000 0.000 0 0 
348,074 2,560,599 0.136 0.925 2,548,968 80 
418.689 2,866,815 0.146 0.g93 4.275,866 100 
523,541 3,121.718 0.168 1.143 2,5,47.110 114 

5,468,919 30.309,688 0.180 1.224 30,120,877 1,364 
514,284 2,657,775 0.194 1.320 2,711.444 130 

4,846.811 26,036,511 0.186 1.265 28.324,142 1,231 
2,298.598 20,666,128 0.111 0.755 22.559.557 498 

540,583 2,818,636 0.192 1.306 3,650,903 151 
2,0,41,603 14,044,385 0.145 0.986 14,136,217 478 

323.049 2,458.801 0.131 0,891 2,445,396 72 
135,945 721,686 0,188 1.279 706,148 43 
313,358 3,019,976 0.104 0.707 3.302,631 78 
12,711 130,765 0.097 0.660 128,604 3 

1,007.087 6,336.159 0.159 1.082 6,510,484 250 
2,844,361 15,628.306 0.153 1.041 19,259,851 712 

4,503 4.503 1.000 6.803 4,503 1 
1,582,566 12,917.375 0.123 0.837 12.756,711 383 

428.823 2,839.970 0.151 1.027 2,872,793 102 
10,044 51.123 0.196 1.333 51,079 2 
56,427 243,086 0.232 1.578 237,221 13 

1.919,025 13,372.65,4 0.144 0.980 14.356.638 504 
1,404,9~ 8,703,239 0.161 1.095 8,882,747 363 

240.153 1.758,259 0.137 0.932 1,811,186 56 
0 0 0.000 0.000 0 0 

473.963 3,770,454 0.126 0.857 3,539,603 113 
606,373 5,260.851 0.115 0.782 5,017,185 131 

15.586 170,900 0.091 0.619 170.314 3 
399.010 1,498.814 0.266 1.810 1,527.072 129 

1,820,815 11.952,588 0.152 1.034 11,691,223 451 
92.886 931,065 0.100 0.680 933.751 24 

1,053,311 8,262.439 0.127 0.864 8,101.488 264 
1,875,797 12,448,637 0.135 0.918 13,197,169 384 

293,814 2 ,738,318 0.107 0.728 2,704,521 67 
4,247,167 25,132,765 0.169 1.150 27,353,628 1,125 

733,647 5,371,526 0.137 0.932 4,861,738 180 
0 0 0.000 0.000 0 0 

28,082 67,179 0.4t8 2.844 54,059 4 
7,784 74,872 0.104 0.707 74,872 2 

120,541 1,013,355 0.119 0.810 1,009,488 27 

0 
18,341 
18,077 
35,757 
15,649 
38.367 
72,716 
40,406 
45,910 
.58.881 

0 
31.837 
42,759 
22,343 
22.083 
20,857 
23,009 
45,300 
24,178 
29.574 
33.964 
18.422 
42,341 
42,868 
26.042 
27.050 
4,503 

33,307 
28,165 
25.540 
18.248 
28,485 
24.415 
32,343 

0 
31.324 
38,299 
56,771 
11,838 
25,923 
36,906 
30,687 
34,368 
40,366 
24,314 
27,010 

0 
13,515 
37,436 
37,388 

0.000 
0.645 
0.836 
1.258 
0.550 
1.350 
2.558 
1.421 
1.815 
2.071 
0.000 
1.120 
1.504 
0.786 
0.77"7 
0.734 
0,809 
1.593 
0.850 
1.040 
1.195 
0.578 
1.489 
1.508 
0.916 
0.952 
0.158 
1.172 
0.991 
0.898 
0.642 
I.~X~2 
0~859 
1.138 
0.000 
1.102 
1.347 
1.997 
0.418 
0.912 
1.369 
1.079 
1.209 
1.420 
0.855 
0.950 
0.000 
0.475 
1.317 
1.315 
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MASSACHUSE'f ' rS WORKERS' COMPENSATION 

Determining the Proport ional i ty  Constan t  for  Relative D-Ratio 

Industry  Group: Consb'uct lon 

Table 

Page 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Losses Losses Total 

Class Limited Limited Relative Losses Number of RelatJve 
Code to $5,000 to $175,000 D-Ratio D-Ratio" (Ind.+Mad.) Claims ACC ACC" 

6005 0 O O.000 0.000 0 O 0 
6204 428,238 3,353,397 0.128 0.871 3,334,883 103 32,378 
6217 2.835,335 22,451,780 0.126 0.857 23,588.377 628 37.581 
6229 123,324 513,513 0.240 1.633 486,348 33 14,738 
6233 147,313 1,319.626 0.112 0.762 1,394,680 29 48.092 
6251 301,721 t ,808,839 0.167 1.136 1,558,398 46 33,878 
6252 4,6,410 178,983 0.259 1.762 162.315 7 23.188 
6306 346.744 3.057,488 0.113 0.769 3,324,338 -80 41.554 
6319 459.265 3,943,188 0.116 0.789 4,298,717 108 39,803 
6325 68,290 404,803 0.169 1.150 219,621 14 15.687 
6400 190,150 1,031,940 0.184 1.252 993,606 53 18,747 
7538 78,217 524,010 0.149 1.014 515,923 lg 27,154 
7601 133,924 1.114,583 0.120 0.816 1,100,339 37 29,739 
7855 33,647 569.450 0.059 0.401 565,803 6 94,301 
8227 720,884 4.705,343 0.153 1.041 4,511,813 193 23,377 
9530 0 0 O.000 O.000 0 O 0 
9534 55,093 611.613 0.090 0.612 610,404 10 61,040 
9545 24,015 32,868 0.731 4.973 26,532 7 3,790 
9549 41,916 100,213 0.418 2.844 97,394 11 8.854 
9552 227,315 1,298,740 0.175 1.190 1.284,387 57 22,533 
9553 15,104 145,338 0.104 0.707 145,234 3 48,411 

Total 50,709,904 344,496,754 0.147 353,900,770 12,449 28,428 

The welehted-leaat-sauams solution for the straleht-IInA reomsalen (i.e.. v= b+mx'~ is oiven by the formulas*: 

. =  ~ w x Y - ( ~ w x ) ( ~ w r ) l ~ w  
and 

WY ~ WX 

where X = Relative ACC - 1, Y = Relative D-Ratio - 1, and W = Claim Count 

R~rassloTI Resa~ 

Uncappod Result => Y = 0.057- 0.719 X =>Propodional/tyConstant=l-0.719 I 
Copped Result => Y - 0.057 - 0.737 X -> Proportionality Constant ,-0.737 

(2), (3): Latest schedule Z data, 1st Report (PY92/93), 2nd Report (PY91/92), and 3rid Report (PY90/91). 

(6), (7): Latest Schedule Z data at 1eL 2nd, and 3rd report and Injury kinds 3,4, and 5, (perrnanent partial and temporary total claims). 
The pmpo~onality constants am calculated based on two separate weighted least squama regressions of 

Relative Average. Claim Costs and Reisthm D-Raaos by class. 

For the capped result, the Relative Average Claim Cost by class is constrained to be between 0.5 and 2.0. 

The proportionality constants will be used to detamnlne the elope of the line, Relathte D-Ratio = 1 - m (Relative ACC -1). 
We~hts for the ragrassl, on  are ~ numt~r of cts|ms fo~ the three yaa~ used to compute the ratatNe ACC. 
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MASSACHUSE1TS WORKERS' COMPENSATION 
D-Ratios, Adjusted for Trend and Law Factors 

Industry Group: Office & Cledcal 
D-Ratios Balanced to: 0.2358 

Table 7 

Phraseology 

(1) (2) (3) (4) (5) 
Expected Estimated Balanced 

Class Losses Relative Relative Indicated 
Code ($ million) D-Ratio D-RaUo D-Ratio 

Photographer-All Emp-.CleficaI,Sales-& Dr 4361 
Radio or TV Broadcast-All Emp,Clar-& Dr 7610 

Engineer or Architect-Consulting 8601 
Satesperson,Colleetor, Massenger-Outaida 8742 
Auto Sales or Service Agcy-Saleaperson 8748 

Mailing or Addressing Co.-& Clerical 8800 
Auditor,Accountant,Etc-Tmvellng 8803 
Cledcal Office Employees NOC 8810 

Attomey-All Emp-CledcaI,Meesenger & Dr 8820 
Physician.-.& Cledcal 8832 

Hospital-Professional Employees 8833 
School-Professional Emp & Cledcal 8868 

Telephone/Telegraph Co-Office Emp & CI 8901 
"rheatro-Players,Entertalnem,M usldans 9156 

1.1 1.051 1.058 0.25 
2.0 0.985 0.992 0.23 
3.7 0.859 0.966 0.23 
24.5 0.905 0.911 0.21 
2.8 0.747 0,752 0.18 
1.2 1.027 t .034 0.24 
2.1 0.995 1.002 0.24 
72.8 0.973 0.980 0.23 
3.9 0.876 0.882 0.21 
10.5 0.923 0.930 0.22 
19.3 1.109 1.117 0.26 
20.2 1.151 1.189 0.27 
0.2 t .032 1.039 0.24 
0.0 1.034 1.041 0.25 

Weighted Average = 0.993 1.000 0.23 

(2): Expected lo~.u~,s are the three years of payrolls Umee the Indicated Expected Loss Ratos. 
(3): From Table 4. 
(4): Relative D-Ratios are balanced to unity using the expected losses as weights, where 

Balanced Relative D.Ratio = (Estimated Relative D-Patio) / (Estimated Relative D-Ratio Weighted Average) 
(5): Proposed D-Ratio = (Balanced Relative D-.Ratlo) x (leduatJy Group Observed D-Ratio) 

Industry Group Observed D-Ratio is from Table 2. 
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ZAIK,E_Ii 

O V E R V I E W  OF  T W O  M E T H O D S  O F . E S T I M A T I N G  D - R A T I O S  

Prior Massachusetts Method 
a n d / o r  Gi l l am [8], P C A S  19921 

Adjust the reported data for changes expected 
between the data available now and that to be 
used for experience rating in the future. 

2. Calculate 3 Partial D-Ratios. 

Serious Serious Primary Losses 

Partial D - Ratio Serious Indemnity Losses 

Non - Serious Non - Serious Primary Losses 
m 

Partial D - Ratio Non - Serious Indemnity Losses 

Medical Medical Only Losses 

Partial D -  Ratio Medical Losses 

3. For each class take the estimated Serious, Non- 
Serious and Medical Partial Pure Premiums used 
to determine classification rate relativitias. 

4. Weight the Partial D-Ratios from Step 2 using 
the Partial Pure Premiums from Step 3. 

5. Adjust for the impact on the D-Ratio of  those 
losses excluded from Experience Rating? 

Current Massachusetts Method 
(Al terna t ive  Method) 

1. Adjust the reported data for changes expected 
between the data available now and that to be 
used for experience rating in the future. 

2. Calculate D-Ratios by Industry Group. 2 

3. 

4. 

Estimate Average Relative Claim Cost by 
Class within Industry Group. 

Spread to each class the Average D-Ratio for 
each Industry Group from Step 2 using 
Relative Average Claim Costs in Step 3. 

The National Council on Compensation Insurance has been updating their methodologies every few years. Details 
have changed and continue to change, but the over-all approach has remained the same. 

The denominator of the D-Ratios is total losses minus those excluded from experience rating. The numerator is 
Primary Losses. 

3 The denominator of the D-Ratios should be expected total losses minus those expected to be excluded from 
experience rating. 

3 7 0  



~g.EK~LO.IX 

where: 

Let the experience modification be given by: 

M_ ( l -  z.)E~ + z. A,+O-z,)e, +z, 
E 

= (1 - Zp) O + Zp ( A / E )  + (1 - Z~) ( 1 -  D)  + Zx (As/E) 

Ap = Actual Primary Losses 

A x = Actual Excess Losses 

Ep = Expected Primary Losses 

Ex = Expected Excess Losses 

E = E , + E ~  

Zp = Primary Credibility 

Z, = Excess Credibility 

D = E, / (E , ,+E9 = E / ~  

then for all the other inputs fixed, for a change in the D-Ratio the change in the experience 

modification is 

°--Y-= (1, z , ) - 0 -  z~)=-(z,  - z.) 
0D 

Thus, the sensitivity of the modification to the D-Ratio depends on the difference 

between Z v and Z,. Since Zp > Z ,  the larger D, the smaller the experience modification. Primary 
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Appendix 

credibilities are usually 40*/0 to 70% higher than excess credibilities with the result varying by 

size of risk. For example, for Massachusetts I the differences in credibility are shown in Figure 3. 

Therefore, a .10 difference in D-Ratio (holding everything else equal) will produce 

between a .04 and .07 difference in the Experience Modification depending on the size of the 

insured. A very large difference in D-Ratios 2 produces only a relatively modest difference in the 

Experience Modification. This is why D-Ratios are rounded to two decimal places. This is also 

why detailed technical refinements to a methodology to estimate D-Ratios are unlikely to have 

much practical impact. 

Revised Experience Rating Plan with g = 7. See, for example, Mahler [9]. 

2 For example, in Massachusetts the D-Ratios range from about. I 0 to about .30. 
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Techniques for the Conversion of Loss 
Development Factors 

by Louis Spore, ACAS, MAAA 
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Abstract 

It sometimes happens that accident year development factors are 
available and policy year factors are not and vice versa. The 
purpose of this paper is to formulate a mathematical technique for 
converting from one form into another under various assump-tions 
concerning the time during the calendar year that policies are 

written. The connection between the policy year factor and the 
influence of changing exposures on accident year development is then 
explored. 
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TECHNIQUES FOR THE CONVERSION OF LOSS DEVELOPMENT FACTORS 

i. Overview 

This paper begins by deriving a general formula to convert 
accident year factors into policy year age-to-age loss 
development factors. To help understanding, a first simplifying 
assumption that the policies are written uniformly over the 
policy year is made and then further generalized to situations 
where only the average written date is known. The inverse of 
this formula then gives the means of converting accident year 
factors back to policy year factors. An analogy to the effect on 
accident year factors from changes in exposure leads to a 
reformulation of the problem. A practical example taken from 
real data illustrates the techniques. 

2. Notation and Analysis 

It will be necessary to make a few definitions first. Let: 

a~ = the (incremental) dollar amount expected to be reported for 
an individual risk at development period k. 

ak Cm = the corresponding dollar amount for a policy period. 
gk = the accident year factor that develops incurred losses from 

age k to age k+l. 
fk = the policy year factor that develops incurred losses from 

age k to age k+l. 
n = the number of policies written in a policy year. 

g, = 1+ a~ . , .  fk -- I + - - a " ) '  Y (1) 
k ' k 

E a, EaT' 
j - i  1-1 

Which implies that 

(gk-l)gk-I whenk ~ 2 
a~., _ (g,-i - i )  

a k 
g ~ - I  whenk = 1 

(2) 

A similar relationship holds for ak Cp; The importance of this 
ratio will become evident after examining the process of policy 
creation and the future claims associated with them. The proof 
is in Appendix A. 
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Scenario 1 - Policies are written uniformly over the calendar 
year. 

Assume that each policy has a development pattern that 
corresponds to an accident year and that, for n policies written 
during the year, the first policy is written at time 1/n, the 
second policy at time 2/n, the third at 3/n etc. Then the last 
policy will be written on December 31 of the calendar period and 
will not contribute any losses to it. To avoid the use of 
multiples of 12, we shall let the integer 1 stand for the first 
12 months, 2 for 24 months etc. Hence g~ will stand for the 12 
to 24 month accident year age-to-age factor. Since each policy 
has the development pattern of an accident year, the first policy 
will contribute [(n-l)/n]a, of losses to the first 12 months of 
the policy year. The second policy written will contribute [(n- 
2)/n]a I to the first 12 months of the policy year. By extension 
of this reasoning, the first 12 months of the policy year will 
experience losses reported of (i/n) [l+2+...+(n-l)]a1=(n-l)al/2. 
The second year of the policy period will have losses reported 
equal to the first 12 months of an accident year for the last 
policy written to i/n times the first 12 months of an accident 
year for the first policy written, in addition to the beginnings 
of the 24-month accident year development on policies as they 
begin to expire in the second year. The 12-month accident year 
con-tribution to the second year will be (I/n) (n+...+l)a~, and 
the 24-month contribution will be (i/n) (n-l+n-2+...+l)a 2. We can 
now use the principle of induction to derive the following 
relation-ships: 

a ~  ) = (n - l ) a , / 2  

a ~  ) = (n + l ) a , / 2  + (n - 1 ) a 2 / 2  

a ~  ') -- ( .  - l ) a  k / 2 + ( .  + l ) a ~  i / 2 
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Which together with equation(1 ) - that 

.4=1+ 
[(n - 1)ak. , + (n + l)ak] 

k k 
[(n - I)~ a, + (n + I)~ a,_,] 

#*I I * I  

[(n - l ) a , .  ! + (n + l)ak] 
= 1 + (3) 

n a i + (n - .  1)a,  

This holds for k=l by letting the summation term be zero for this 
case. Dividing top and bottom by nat, letting n approach 
infinity and substituting our expression for ak+z/ak we get the 
following transformation: 

&-,O +g,) (1 +~k) 
A - - -  - ( 4 )  

(I +gk-I) (I +gEl) 

By allowing go to be infinity this formula will be true for all 
integer values of k21. The algebraic details are again left to 
Appendix B. 

Scenazio 2 - The policies aren't written evenly over the calendar 
year but the average written date is known. 

Let T be the average written date as a percentage of the year. 
Let t~ be the time the k-th policy is written as a percentage of 
the whole year. Generalizing the argument above, we get that: 

al (pl = It (i - tl)]a 1 
I=i 

a~ p) : [t tl]a1+ [t ( 1 - t l ) ] a  2 
i-i . t - 1  

a~ ;) = [t ti]ak-l+ It (i- ti)]ak 
i"l i'l 

= nrak_ 1+n(l-r) a k (5) 
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Repeating the previous analysis gives us the following 
modification : 

[gk(l- T) + T] 

fk = gk-1 [g~_z( I_ T) + ~"] 

= [gk(l-T) + T] (6) 

Notice that T=i/2 is the same as assuming uniform writings over 
the whole year. (This also follows by letting tk=k/n and finding 
T as n approaches infinity). Also, by using T instead of an 
assumption about when the policies are written, the n term will 
cancel from the ratio, making the limiting value the same as the 
finite value for the same T. 

The inverse problem of finding the accident year factors from the 
policy year factors follows immediately from (6) and induction: 
where, for the sake of convenience, a = T/(i-T) and f0 = i. 

g, : A - ~  

g2 ~ - = - a  

k 

l*l  

g* = k-I 

J=o t=o 

- ~x (7) 

The assumption in this approach is that the losses reported in 
successive years are proportional to the time the policy has been 
in force. This, in turn, depends on the written date. If T=i, 
then all of the policies are written at the end of the calendar 
year and fk=gk_1. This means that the policy year is exactly the 
same as an accident evaluation at one period earlier. If T=0, 
all policies are written at the beginning of the period, then 
fk=gk and the policy year and accident year are identical. The 
fundamental assumption necessary to this approach is that there 
be a policy year of exactly one year and that the average date of 
the policies written during that year is known. Also the 
accident year factors should begin at the 12 to 24 month 
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development age and increase in 12 month increments. If the 
accident year factors are known at other development ages, a 
simple approach would be to fit a curve to the known factors and 
then use the curve to get the year end factors. Equation (6) 
would give the corresponding year-end factors for the policy 
year. A new curve fit to these factors would then give the 
policy year factors at the desired development ages. Table 1 
illustrates these concepts and the effect that the average 
written date has on the derived policy year factors. 

A word needs to be said about the assumption that the development 
of an individual risk resembles the development of an accident 
year. To see that this is so, it is only necessary to develop 
the accident year expected losses in terms of the expected losses 
for each risk. If A i represents the reported incurred (incre- 
mental) losses at development period i, a little thought will 
demonstrate that A~ = ~(l-tj)a I. Briefly, the reason is that the 
development of losses that occurred in the calendar year in which 
the policies were written depends only on the length of time that 
the policies were in force. A policy written on December 31 
would have no impact on accident year development , although it 
will have an effect on the policy year development. 

Thus gk = 1 + Ak÷x/~al = 1 + ak÷i/~a j. 

Another assumption, that the expected losses for each risk is the 
same, is necessary to make the formulation of the problem more 
tractable. To know the actual risk parameters at the time the 
risk iswritten would require information virtually impossible to 
obtain. Each risk can be regarded as having the same dis- 
tribution as the aggregate distribution. Since the number of 
risks drops out of the ratios for the factors, this assumption 
does no harm. 

It is often assumed that because the average accident date of the 
policy year'is December 31 and that the average accident date of 
the accident year is July i, the 12-month policy year development 
factor is the same as the 6- month accident year factor. Under- 
lying this is actually two assumptions: (i) that the date of loss 
is exactly 1/2 of the policy period and (2) that the average 
written date is July i. The approach taken above accepts the 
average date of loss implied by the accident year factors and 
permits a more flexible assumption about the average written 
date. 
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T a b l e  1 

= 0 . 2 o  

A g e  A Y  F a c t o r s  
9 1.869 

21 1.163 
33 1.066 
45 1.036 
57 1.022 
69 1.015 
81  1.011 
93 1.008 

~ itte a F¥ ~ a c t o r s  
A g e  AY F a c t o r s  a s  p e r ( 6 )  
12 1.500 1.833 
24 1.125 1.193 
36 1.056 1.071 
4 8  1.031 1.037 
60 1.020 1.023 
72 1.014 1.015 
8 4  1.010 1.011 
96 1.008 1.008 

Age P Y F a c t o r s  
9 2.612 

21 1.243 
33 1.069 
45 1.044 
57 1.026 
69 1.017 
81  1.012 
93 1.009 

I = U . / b  

A g e  AY F a c t o r s  
9 1 . 8 8 9  

21 1.163 
33 1.066 
45 1.036 
57 1.022 
69 1.015 
81 1.011 
93 1.008 

I 
~IR@O ~T ~ a C ( O  r6 

A g e  AY F a c t o r s  a s  p e r  (6) 
1.5oo - - E E  

24 1.125 1.193 
36 1.056 1.071 
46 1.031 1.037 
60 1.020 1.023 
72 1.014 1.015 
8 4  1.010 1.011 
96 1.006 1.006 

A g e  PY F a c t o r s  
5.679 

21 1.443 
33 1.126 
45 1.053 
57 1.028 
69 1.016 
81 1.010 
93 1.007 

3. An Alternate Interpretation 

The policy year is similar to the situation in which the exposure for 
each accident year is increasing. This is because each policy 
written is an increase in exposure for the calendar accident year. 
If we can succeed in translating the concept of policies written into 
exposures assumed we could use (7) to adjust the accident year 
factors for an increase in exposure. 

To do this, let El_ I represent the exposure at the beginning of 
accident year i where E 0 is the exposure at the beginning of the 
first year. This situation is different from the beginning of a 
policy year in that, for a policy year, the exposure always begins at 
zero. The average "written" date for accident year i now includes a 
mass of "policies" at T = 0 equal to El_ I. We now rewrite (5) for 
accident year 1 as follows: 

a~ = Eoa I + (Ea-E o) (i-Tl)aa 

a~ (Ei-E O) [T'ai + (i-T')a2] + Eoa 2 

a k = (E l-E 0) T'ak. I + (i - T 1) a k + Eoa k (8) 

As before, T' is the average exposure date for the increase, but 
now the a's stand for the reported cost per unit of exposure. 
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use (6) and (7) without modification, we find a T that is equivalent 
to the expressions in (8) by setting E 0 = 0 in the last line of (8), 
replacing T' by T and letting it equal the original expression. 
Equating the coefficients of ak_ I or ak gives T = (i-Eo/Ei)T'. What it 
means to have an average date for the new exposures needs some 
clarification. If the exposures are new stores or new employees, the 
average opening date or average hire date is the correct 
interpretation. However, if the exposure is payroll or sales, a 
natural assumption of uniform increase over the year means that T' = 
1/2. So if E I = 2E 0 then T = 1/4. 

The interpretation so far has only been for an increase in exposure. 
However, (8) would hold without modification under conditions of 
declining exposure. The expression for T would be negative since it 
was derived under the assumption of a beginning exposure of zero. 
Under this condition, no decline in exposure is possible. However, 
the algebra is equivalent even though allowing T to be negative makes 
no conceptual sense. 

How do we use this information? We want to use equation (7) to 
factor out the increase in the development factors due to the 
increase in exposure. First note that the relevant term in (7) is 
= T/(I-T). Since we know what happens when T is zero or 1 we 
restrict our discussion to the case where 0<T<i. If it is true that 
Ei/E 0 = E2/E I = ... = El/El_ I (i.e., the increase in exposure is a 
constant percentage of the previous exposure), then it is easy to 
check that T I = T 2 = ... =T~ if T', the average date of the exposure 
increase, is the same for all accident years where T i is the adjusted 
date for accident year i. Thus, as long as there is an increase at 
the same rate j, there should be no overall change in the factors 
after the first increase. However we might want to adjust the new 
factors to develop a new year where the changes have stopped. Also, 
the most common situation, where exposure is changing but at 
different rates introduces the problem of how to adjust the factors 
to be appropriate for the exposure level of each accident year. To 
begin, we will keep the same notation but let the f's stand for the 
growth accident year factors (the "policy year")and the g's will be 
the accident year factors with growth removed (the "accident year"). 
As an additional refinement, we will add a superscript to distinguish 
the accident year being adjusted. Thus, fjCi*will be the unadjusted 
factor for the i-th year and the j-th development period. The 
flattened factor will be gjC~,. Finally, we will add primes to 
represent the factors adjusted to the growth level of a different 
year. If we desire to adjust the i-th year to the level of the n-th 
year, we first flatten year i and then re-inflate to the level of 
year n. If n is the latest year having only the 12-24 month 
development factor, each year i will have its 12-24 month factor 
adjusted to year n. First deflating, we get:g~ c~* = f, ci~_ ~, and then 
inflating: fl el*' = gl old + ~n = fl el* - al + ~,. Similarly, the 24-36 

month factor will be adjusted for all accident years as illustrated 
in the derivation of equation (9) below. We proceed in this fashion 
for each year i. The alphas are calculated from the adjusted average 

iThe same rate in both percentage dollar increases and at 
the same time as measured by the average date. 
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exposure date from the beginning to the end of the year corresponding 
to the subscript: 
~i = Ti/(l-Ti)where Tx = (I-Ei-,/Ei)T' and f011~=l. 

An example of the method is in Appendix C. Sheet 1 shows a real 
Workers Compensation incurred loss development triangle. The 

/2 0 - aci 

(g~O + ac.) 

.~112 + 

/) _ act acn - aci 
= ( / ~ 0 _  

( / ~ 0  _ ac, + ac.) 
ac~ 

(d~ 0 - acl + ac.) 
OF 

k , ,-~ [ I - - /2  
°' °II  + 

y=l  j=l J=O m=O 
(9) 

selected factors are the average of the overall average and the 
average after removing the largest and smallest values for the years 
for the years for which the latter exists and the overall average for 
the remaining years. Sheet 2 shows the exposure which is number of 
employees hired. The assumed average hire date is in the middle of 
the fiscal policy year (T'=I/2). The adjustment for each accident 
year is for the change in the number of employees from the beginning 
to the end of the year. Thus the adjustment is from year i to year 
n=i+l in the following derivation. 

Although not true in this example, an examination of the variance in 
the factors by column sometimes reveals that the adjustment actually 
increases the variance for some ages while decreasing it for others. 
The obvious explanation would be that there is a lag in the influence 
of new exposures. New employees would not have the linear influence 
on the incidence of new claims as the derivation of the formulas 
would imply. It would generally be several years after employment 
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before a claim would be filed. However if the exposure is increasing 
at the same rate every year the influence of the increase in the 
older years would nullify this argument. The increase at a faster 
rate would make the adjustment too large, but an increase at a slower 
rate would make it too small. Another explanation would be that a 
change in hiring practices or safety programs would make new 
employees have different loss potential from older ones. Also the 
average date of hire will vary from year to year, making the T'=i/2 
assumption invalid. There are other complications such as the change 
in operations or reserving practices that would distort the results 
as well. 

4. Summary 

A formulaic approach to transform policy year age-to-age development 
factors into accident year age-to-age factors has been found that 
helps to clarify the relationship hidden in the definitions. The 
formulas derived from the investigation of that relationship led to a 
better understanding of the effect of the changes in exposure on the 
development of accident year factors. 
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APPENDIX A 

Proof of  equation (2) in the text: 

~k~ I 
g t = l +  t 

~ aa 
i=! 

= l + ak*l  
k-I  

E a  r + 121 
iffil 

= I  + a k * l / a k  
k-I 

ata~ +I 
i=1 

J 

= ] + a k ' l l a k  
which implies 

1 
- -  + 1 
(g*-i - 1) 

a, t g*-, ] 

a,..........!, g*- l 
'~* t g ,_ , -  l ) 

3 8 4  



APPENDIX B 

Sheet 1 

(n - l)ak.  I + (n + l ) a  k 
f k = l +  t - I  

2 n ~  a, + (n - l ) a  k 
t - l  

( 1  - l ln )ak . l lak  +(l + 1/n) 
= 1 4  

k - I  

2 ~  a , /a  k + (1 - 1 / n )  
I=1 

at.l/a k + l 
= 1 +  

k-I 

2 E  a/ak + l 
1=1 

(gk - 1)gt_ l 
+1 

(g*-I - 1) 
= 1 +  

2 - - + |  

(gk-I - 1) 

= 1 + g e g k - I - I  
gk-l + 1 

let n-oo we get 

from (2) and (1) in the text 

gt-l( 1 + gk) 

(I + gk-l) 

( I i )  

3 8 5  



Appendix B 
Sheet 2 

Proof of Equation (6) in the text: 

k , T a  k + , (1  - T)ak. t 

" '  . r E . , . ,  +.0 - ~ g E  a, 
I - I  I - I  

T + (1 - T)(a, .  l / ak) '-'.) •s.•l al l a  + ( l = T ) ( a k . | l a , )  a, l a k .  l 

_ ( , , - , I  
T + ( I -  L)gk_l~ g k _ ~ _  1 ) 

T (1 - T)gk. l (g  k - I)  I 

( g , _ , - I ) *  ~ k _ l ' S  D 

[Since a u = O] 

T(g,. l - I) + (I - T)g~.l(g k - I) 

T * g ,_ l ( l  = T) 

I + ~  
k 

E a,~) 
I=I 

gk- l  + ( I  - T ) g k _ l ( g  k - I )  
= 

T + (I - T)gk_ t 

(1 - T)g k + T 

= g*- t  (1 - T)g k_ t ÷ T 

=A 

3 8 6  



APPENDIX C 

WORKERS COMPENSATION 

Incurred Loss Development 

Sheet I 

Incurred as of months 
Policy Period 12 2_4 ~ ~.8 6..Q 7.2 

86-87 127,543 237,609 255,255 261,471 293,234 286,390 292,540 
87-88 238,622 336,699 447,647 474,771 657,817 673,145 
88-89 413,446 629,368 692,177 743,374 759,378 
89-90 483,344 755,863 815,980 717,682 
90-91 441,426 551,559 610,788 
91-92 592,559 832,558 
92-93 649,736 

Policy Period 12-24 ~ 36-48 48-60 60-72 72-84 84- Ult. 

86-87 1.863 1.074 1.024 1.121 
87-88 1.411 1.330 1.061 1.386 
88-89 1.522 I. 100 1.074 1.022 
89-90 1.564 1.080 0.880 
90-91 1.249 1.107 
91-92 1.405 

0.977 1.021 
1.023 

Average 1.502 1.138 1.010 1.176 
Wtd. Avg 1.456 1.124 0.994 1.156 

Avg-HI/LO 1.476 1.096 1.042 1.121 
Selected 1.476 1.124 1.010 1.156 

Cumulative 1.994 

1.000 1.02 I 
1.009 1.02 I 

1.009 1.021 

12-ult. 24-ult. 36-ult. 48-ult. 60-ult. 72-ult. 84-ult. ] 
I 

1.352 1.203 1.191 1.031 1.021 1.000 j 
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A p p e n d i x  C 

Exposure T Alpha T = 1/22 

85-86 193 
86-87 228 0.075 0.0814 
87-88 239 0.023 0.0236 
88-89 317 0.123 0.1405 
89-90 340 0.034 0.0354 
90-91 339 -0.001 -0.0011 
91-92 419 0.095 0.1050 
92-93 444 0.029 0.0298 

Sheet 2 

Adjusted to 93-94 accident year level 

12-24 24-36 36-48 48-60 

86-87 1.81 I 1.054 
87-88 1.417 1.330 
88-89 1.412 1.078 
89-90 1.558 1.078 
90-91 1.280 l.l I 1 
91-92 1.330 

Variance 

1.024 
1.062 
1.076 
0.879 

1.126 
1.384 
1.015 

0.1200 0.0898 0.0774 0.1315 
1.468 1.130 1.010 1.175 
1.502 1.138 1.010 1.176 

60-72 

0.970 
1.025 

0.0274 

72-84 

0.995 

0.0000 

84- Ult. 

0.998 
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THE APPLICATION OF 
CUMULATIVE 

DISTRIBUTION FUNCTIONS 
IN THE STOCHASTIC 

CHAIN LADDER MODEL 

SON T. Tu 
SCRUGGS CONSULTING 

ARGYLE, TEXAS 

ABSTRACT 

A new stochastic model based on the traditional 
chain ladder is introduced It makes explicit use 
of  cumulative distribution functions and payment 

patterns. It incorporates a mathematical 
rationale for non-stochastic variations in the age- 
to-age factors. Perturbation methods are used to 

obtain andjusti~ the solution. Estimation of  
liabilities in the tail is a natural product o f  the 

model All stochastic variables are assumed to be 
normally distributed, and the assumption is then 

confirmed with the chi square goodness-of-fit test. 
Extensive numerical solutions of  an actual 

problem are given. Several new avenues of  
related research are suggested 

KEYWORDS 

Chain ladder; Loss reserving; 
Cumulative distribution functions; Tail factor; 

Stochastic models; Perturbation theory. 
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can be represented in terms of the distribution values. For example, the factor between the development 
periods j and j + 1 is: 

(2.1) rj = F ( j  + 1) / F ( j ) .  

We work with one function in particular, the transformed log-normal: 

[ Ih' 1 (2.2) F(t)  = F ( t ; / 2 , o ' , r )  = • s g n ( l n t )  ln t  ;/2,o" ; t > 0, 

where • is the normal distribution with mean /2 and standard deviation o.  The parameter r is the 
exponent of the function. Our selection of this function is dictated by the fact that, of all the functions that 
we tested, it best describes the WC payment patterns. We have more to say on this in section 6. 

To simulate the non-stochastic variations in the ata factors, we allow the three function parameters 

to vary by accident year. Let k denote an accident year and (/2k ,Ok, rk ) denote the corresponding 
function parameters. We assume that these parameters can be expressed in the following polynomial 
forms: 

(2.3) /2k = / 2 + ( k - l ) a j  + ( k - l ) 2 a 2  + ( k - l ) J a 3 + K  

a ,  = c r + ( k - 1 ) / ~  + ( k - l ) 2 / ~  + ( k - l ) 3 / ~ + K  

r k = r + ( k - l ) z  I + ( k - I )  2Z2 + ( k - l )  3Z~+K 

The right hand side (RHS) of(2.3) has the following interpretations: (/2, or, ¢') are the base 

parameters, (c~l,/~, Zi ) are the linear annual changes, ( a  2 ,,/~, Z2 ) are the quadratic annual changes, 
and so on. We also refer to the first set as the base coefficients, the second the linear coefficients, the third 
the quadratic coefficients, and so forth. All coefficients are assumed independent. For any given problem, 
only some are statistically significant. A major part of the analysis is the determination of all those. 

If all annual changes are statistically insignificant, the parameters and the ata factors do not vary 
by accident years. In that case, we retrieve somewhat the traditional chain ladder, but the methodology to 
estimate the factors differs from the traditional approach. 

If any of the annual changes is statistically significant, the parameters and the ata factors vary by 
accident years, and thus exhibit non-stochastic variations. In such case, each accident year in effect has its 
own payment pattern, different from those of any other year. 

There are many reasons for non-stochastic variations in the parameters. A major one is that the 
insurance operations are changing. Another is that the environmental climate in which the insurance 
operates is changing. Clearly, there can be many other factors. Equations (2.3) are simply our attempt to 
measure the extent to which all these factors affect the payment patterns. It is important to realize that 
(2.3) does not compel the accident years to have different payment patterns. It simply allows that 
possibility. If it turns out that the accident years have a statistically similar payment pattern, then the 
annual changes should be statistically insignificant. 

We define the partial derivatives as follows: 

8 F  ,~F 8 F  (2.4) G=-yT, H=~,  K=-~-. 
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3. THE GOVERNING EQUATION 

Let YO be the cumulative paid loss amount for accident year k at development year j .  Then 

the loss factor is: 

Yk.j+l 
(3.1) q o  -- 

YO 

and the development factor is: 

F ( j +  I;p~ ,o'k , r , )  
(3.2) to= F(j;pk,~r,,r~) 

We define the governing equation as: 

(3.3) q o  = r o  + l n ( r o ) c o '  co ~N(O's2)" 

The c O ' s  are assumed independent and normally dis~ibuted with mean zero and standard deviation s .  

We call c O and l n ( r  o ) c  o the error and the error term, respectively. Equation (3.3) simply says that 

successive payments should obey.the payment pattern, with some stochastic error. As its name implies, a 
governing equation contains the basic assumptions and governs the behavior of  the model. Given it, 
everything else should logically follow. 

We note that the development factors are in essence a proxy for the payment pattern. If all actual 
and estimated ata factors closely match, then we infer that the disu'ibution accurately depicts the real 
payment pattern. If there is a consistent mismatch in some of the factors, then we cannot make that 
inference. 

Undoubtedly, the most unusual feature of(3.3) is the scaling function I n ( r o ) .  It is needed 

because the magnitudes of  the error terms change drastically throughout the development. The magnitude 
is large at the beginning of development, it is small near fall development, it is zero at fall development, 
and it goes through the whole continuum in between. In section 8, we discuss this subject in detail with 
numerical examples. 

We mention two mathematical anomalies which the scaling function prevents. First, suppose that 

we are very far in the tail where all development has definitively ceased. Therefore, qo = | " l four  

model is any good, it would also predict r O = 1. Hence the error term must be zero, and the presence of 

the scaling function ensures that equality. 
Secondly, suppose we want to compute the variance of the ultimate loss amount. As will be 

shown in section 5, that includes the sum of  an infinite series, each term of  which corresponds to the error 
term in (3.3). If the scaling function wereabsent, the infinite series and the variance would have no finite 
limits. But if it were present, the terms in the series would approach zero asymptotically, and the series 
would have a finite limit. 

In section 7, we show that, without a scaling function, the model cannot satisfy the normality 
assumption. In section 8, we demonstrate that, in such case, the error terms are not properly scaled. 

We will primarily work with (3.3), but the general form of  the governing equation is: 

(3.4) qo = ro + w(yo)b(ro )co" 
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,¢~ is the error, b(rkl) is the scaling function, w(ykl ) is the proportionality function, and the 

product of all three, w(y~ )b(r~ )e~ ,  is the error term. The scaling function must satisfy the following 

conditions: 

(3.5) b(r) > 0, for r > I ; and b ( l )  = 0.  

We call w(y~ ) the proportionality function, because it dictates the loss amount proportionality 

ofthe error term. If we multiply (3.4) by y ~ ,  then: 

(3.6) Ytj÷, = y~[r~ + w(y~)b(r~)e~]. 

For the particular form of (3.3), w(y~) = l ,  and the error term is proportional to y ~ .  We 

therefore call that the linear proportionality function. Similarly, when w(y~ ) = l /y~ 2 and 

In(y~ ) / y ~ ,  the proportionality functions are square root and logarithmic, respectively. 

A priori, we do not have any reference to prefer one set of scaling and proportionality functions 
over another. In section 9, we test a number of them and compare their numerical results, with the 
deviations and chi square values as the measuring sticks. Our conclusion is that the most appropriate 
model has the logarithmic scaling function and the linear proportionality function, as in (3.3). 

MUR.PHY (1995) presented three models which can be written as follows: 

(3.7) Ykd+t = y~r + 6~ , Least Squares Multiplicative (LSM); 

Ykd+l = y~(r  + ~t ), Simple Average Development (SAD); and 

y,.j,~ = y~r + y~2 6~, Weighted Average Development (WAD). 

There are two major differences between (3.6) and (3.7). Murphy's models do not have a scaling 
function. And they assume the development factor r to be constant in any given development period, 

whereas we allow r~ to vary within a development period. The forms of(3.7) have different 

proportionality functions. With our terminology, SAD takes the linear function, and WAD takes the square 

root function. For LSM, w(ykl ) = l/y~ . 
For their chain-ladder stochastic models, many authors (VERRALL, 1990; ZEHNWlRTH, 1990) have 

assumed that the loss amounts are log-normally distributed. STANARD (1985) and HALLIWELL (1996) have 
shown that such models have inherent upward bias. MACK (1995) argued that they suffer higher 
variability. Our model bypasses these difficulties, because (3.3) implies that the loss quantities are 
normally distributed, as will be shown in section 5. 
, The normal distribution for the loss amounts has two additional advantages. First, if the liability 
for an accident year is normally distributed, the sum for all accident years is also normally distributed., and 
the variance of the sum can be calculated. Secondly, suppose we have another model which also gives 
normally distributed estimates, the combination of estimates from the two models is normally distributed. 

The governing equation (3.3) is to be used in two ways, matching and estimation: 
a) Matching. There are forty-five points (ata factors) in fable 2. We apply (3.3) to every point. 

From this matching, we obtain estimates for the n variables so as to minimize the sum of squares of 
errors. 

b) Estimation. For the particular case of(3.3), (3.6) becomes: 

(3.8) e,j . ,  -- y~[r~ + In(r,),~ ]. 
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Equation (3.8) gives the estimate at the next period based on the actual or estimated value at the 

previous period. If y~/ is an actual amount, we assume that there is no error associated with it; actually, 

this assumption is a direct consequence of  the governing equation itself. And all the variance of the 

estimate Yhj÷t comes from the parameter error in r~ and the process error in ~'~. If y ~  is an estimated 

amount, then its variance also contributes to that of the next estimate. Our convention is that the RHS of 

(3.6) and (3.8) should take the actual yq whenever available. 

MACK (1995) made an important distinction. In many models (VERRALL, ZEHNWIRTH), Ylt/ in 

(3.8) is the expected value; whereas, in the traditional chain ladder, it is the actual value. In this paper, the 
latler is the case. 

To recapitulate, our entire model consists of equations (2.2), (2.3), (3.1), (3.2) and (3.3). For a 
given set of data, we have to find all the statistically significant coefficients of (2.3) such that the sum of 
squares of  errors in (3.3) are minimized, given that the payment patterns are specified by the cumulative 
distribution function in (2.2). The governing equation of (3.3) deserves its name because it has the central 
role of  linking together all the different elements of the system. 

4. THE ITERATIVE REGRESSION PROCESS 

As described in the previous section, the system is a highly non-linear one; therefore it is 
impossible to obtain the solution in closed form or in one step. Instead, we apply the methods of 
perturbation theory to derive an iterative regression process, the application of which systematically leads 
to the solution. 

To minimize the algebra, all derivations in this section are for the model in which only the base 
coefficients ( / j ,  O', 3) are variables. In the general model, we have to solve the regression system for n 
variables. 

We begin by perturbing every variable: 

( 4 . 1 )  / J - - ~ / J + A / J ,  or --> or + A or , r ~ r + A r .  

w e  may think of a perturbation as the replacement of a value ( / j ,  for instance) by the sum of  that 

value and an infinitesimal increment ( A/J ). The value is a known quantity, and the increment is an 
unknown quantity to be found. The reason why a perturbation is helpful is that, since the increment is 
assumed infinitesimal, we may retain only the linear terms in the Taylor's series expansions. Instead of a 
non-linear system, we in effect solve a series of linear systems. The successive solutions of the linear 
systems lead us closer and closer to the solution of the non-linear system. 

First, we supply a guess ( / j ,  or, ~'). Based on that guess, the regression process gives us the 

incremental (A/J,  Aor, A t ) .  The sum of  the guess and the increment provides the next guess. We keep 
up the iteration process until it converges to the solution. 

Using the definition of  the derivatives in (2.4), the perturbation of F has the following form: 

(4 .2)  F ( j ; / J +  A/j ,  c r +  Aor, r + A t )  = F ( j ; / j ,  or, r )  + 

G(j ;  IJ, or, r ) A / j  + H(j ;  /j, or, r ) A o r  + K( j ;  u ,  or, r ) A r .  

In a more general case where, for instance, atj and ct 2 are also variables, the RHS of(4.2) would include 

the terms (k  - 1 ) G A ~  I and (k  - !)  2 G A a  2 . 

Using (4.2) in (3.2), we have the following for the perturbation ofthe development factor: 
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+ ( Gj.j+~ 
r 1 A/~ + 

• .. F,a. ,  F ~ )  ] 

where Fk. ,, = F ( j ; / t  t ,ok,  r k ), and so on. We give the full derivation 0f(4.3) in Appendix A. If we 

substitute (4.3) into (3.3), the result is: 

(G,a., Gq)  (H,,+, HU) (K,o., K ) 
r - -  - -  ~kt+r -" k)/ ~ *.j.J (4.4)  mL F,.j., F•) ~L F,.j., ~-Jaa+ro[-~- Ar+In(rt,)no=q,l-r O . 

After division by the scaling function. (4.4) yields exactly a regression system for the increment 
variables (A~,Ao',Ar). In matrix form, we have: 

(4.5) M a  + e = b ,  

A=(AI.t, Ao',Ar) r, ~={6~}, b={(q~-rq)/In(,q)}. 

M is a 45  x 3 coefficient matrix. This matrix change s after every iteration, since after each one, we have 

a new set ofcoefficienm. For example, the row of M for accident year k and development period j has 

the following elements: 

,-,j [a~.., a~] 
(4 .6)  M; ='i~)L F~,j . F , j '  

r~ [ Hk.,~ , H~] 

M ~  l n ( % ) L F * a * '  Fj¢ " 

In the more general case of n variables, M would be a 45 x n matrix, and A an n -dimensional vector. 
The solution of (4.5) so as to minimize the sum of squares of errors is well known in multiple 

regression analysis. It is, 

(4 .7)  A = ( M  r M)-'  M rb. 

The sum of(4.7) and the current guess constitutes the succeeding guess. When the process is 
stable and leads toward the solution, the sum of squares of errors of the succeeding guess is always smaller 
than that of the current guess. Therefore, if we continue the iteration until the guesses no longer vary, the 
resultant solution is guaranteed to have the smallest possible sum. We can see from (4.7) that the solution 
must satisfy: 
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(4 .8)  ( M T M )  - '  M r b  = O. 

This actually may only be a local solution. Globally, the possibility of multiple solutions cannot 
be discounted. In practice, however, we have never encountered multiple solutions. 

The vector in (4.7) indicates the general direction in which the solution lies. When the initial 
guess is very far from the solution, if we take full steps as indicated by (4.7), the guesses may quickly 
become unstable. In such cases, we should take steps that are fractions of the full steps. The steps should 
be sufficiently small until the iterative process enters some stable mode, then the step size may be 
increased. We have even encountered situations in which, by taking full steps, the guesses spiral stably 
toward the solution, but very slowly. In such cases, the full steps overstep the solution, and the 
convergence can be accelerated by taking smaller steps. 

Finally, there exists the possibility of no convergence at all. This may be the result of  either of 
two scenarios. First, the distribution being used may not be stable in the iterative regression scheme. For 
instance, we find any Pareto-type distribution to be highly unstable. Secondly, the distribution may not be 
the right one for the loss data being considered. 

When the distribution is the transformed log-normal, the convergence is quite fast, and the initial 
guess need not be close to the solution. 

The estimate for the variance of errors is: 

9 10-k - -  F~ 

(4 .9)  s 2 =  1 ~ e 2  q~ a~  .,Z..aZ_~ ky, ~'~ = 
- '~ - "*-I  J-, ln(r~ ) 

The denominator in (4.9) is the number of degrees of freedom: 45  is the number of data points, 
and n is the number of variables. From (4.1), we have the following relationship for the variances of the 
coefficients: 

(4. l 0)  Var(iJ) = Var(Ala) , 

and so on. From standard regression analysis, we obtain the parameter variance matrix as: 

(4.1 I) 
[ Var(u) Cov(l~,a) 

[ Cov(u,r) Cov(o',r) 

co,w, r) l 

Var(r) J 

5. THE ULTIMATE ESTIMATES 

In this section, we assume that the iterative regression process has found all the coefficients and 
we have to obtain the estimates of  the ultimate loss amounts and their variances. In particular, consider the 

k-th accident year, which has Yk.I I-k as the last actual cumulative paid amount. Using (3. I) and (3.3), the 

estimate for the loss amount at the next period is: 

(5.1) Y,.n-k+, =Y*, t t -kq*, , - ,  = Yk.u- , [ re .u- ,  + l n ( r e . t , - , ) c e . , , - , ] .  

ARer mother iteration, the estimate for the succeeding period is: 
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(5.2) Yk.,t-**2 = Yk..-*qiJl-*qk.~l-k.t = 
y,.,,_,[r,.,,_,+ ln(r , . , ,_ ,  )e , . , ,_ ,  l[r,. , ,_,+, + ln(r , . , ,_ ,÷,)e , . , ,_ ,+,  l '  

At~er repeated iterations, the estimate for the ultimate amount can be expressed as: 

(5.3) Y*= Y*:,-*I-'Iq*.,,-*.j =Y*.,t-*/I-K0 [r*:t-**j  + l n ( r , . t , - , ÷ j ) ¢ * . , , - , . / ] '  
J-0 

In (5.3). we have an infinite variety of  error terms. There are the linear error terms, containing 

ct / .  There are the quadratic error terms, containing eta 6ta ; and so on. A linear term is proportional to s .  

a quadratic term to s ~ . Since s is generally small, the linear terms dominate in absolute value over the 
other error terms. We are thus justified in retaining only the linear terms, and (5.3) becomes: 

(5.4) Y, = Y,.tl-* 1 + - -  e~.,_k+ j . 
F*."-k L " r*.H-k'J 

Equation (5.4) is correct to the leading order. The ultimate loss is normally distributed, since it is 
the sum of normally distributed quantities. Taking the expected value of (5.4), we have: 

E{y,}-- y,.._, /F,.._, 

,Fk.H_ , = F ( ]  ] - k ; ~ ,  ,0" , ,  r ,  ) is the percent paid to date, and its reciprocal is die age-to- 

ultimate factor. Equation (5.5) says that the expected ultimate amount is the product o f  the paid-to-date 
amount and the age-to-ultimata factor, as we would expect. In the rest of  this section, for the sake of  

brevity, we write y ,  to denote the expected value of  the same quantity. 

To obtain the variance from (5.4), we use the following formula. Let l i  / = X Y  be the product of  
two independent stochastic quantities, then 

(5.6) Var(W)= X2[Var(Y)]+ Y'[Var(X)]+[Var(X)IVar(Y)], 

where the bars denote expected values. If  we apply (5.6) to (5.4), then we have: 

2 2 r c , s 
(5.7) Var(y,) = Y, lt-klVarl"~--l +-~'~"'--Z..,l - -  I 

' L \~*."-*) t ' * . ' i - *s '° \  rk'i'-*÷S ) 
=o 2 

+s'Var( I IZ¢ ln(r,.,,_**./).l ] 

t 4 . , , - , . S , . 0 t  ri.li-,+j )J" 

In the derivation of(5.7), we assume that there is no error associated with the actual Y*.II-* • The 

variance in (5.7) is the sum of  three terms. The first is the parameter error, which is just the variance of  the 
age-to-ultimate factor. 

The second term is the process error. It is the sum of an infinite series, because, at each 
development period, an additional amount of  error contributes to the total, and theoretically there are an 
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infinite number of  periods. In Appendix B, we prove that the series possesses a finite limit. We can also 
see the pivotal role of the scaling function: without it, the series would have no finite limit. 

The third term is the product of the parameter and process errors. Every variance is proportional 

to s 2 ; every product of variances is proportional to s 4 , and hence negligible. In the following derivations 
and calculations, we ignore those terms altogether. To the leading order, the variance in (5.7) is therefore 
the sum of the parameter and process errors. 

To estimate the parameter error in (5.7), again we resort to perturbation: 

(5.8) 
F,.u_ , (/.t÷ A/z, ~r + Ao ' ,  r + A t )  

1 F G,  ._, 
F , ._ , (p  ~r r) El- F , ' . ,  ~ " -  

H ,  ,, , K ,  ,,_, l 

F,.._, , . ,_, j 

The derivation of(5.8) is in Appendix A. 
Taking the variance of(5.8), we have: 

(5.9) Vat ~ = ~ 1 [ ~  j Var(p)+2 F, 2 Cov(ll, o')+A , 
L k,u-, J k,tl-k 

where the dots represent the other variances and covariances. Finally, after collecting terms, (5.7) 
b e c o m e s :  

(5.10) Var(y',)=y, IL -J ~o,<,,+, F,.,,_ k'~'T----' ~ovt/.t.cr,+A+S J.oL.L./ --r,.t,_,.j "lj J" 

We define the sum total of  all the ultimate losses as: 

l0 

(5.11) yT = ~ y , .  
k=l 

We note that Yr is normally distributed. It can be shown that the variance is: 

(5.12) Var(yr) = Var(u) Yk G* 'u- *  + 2Cov(u,o') Yk - ~ -  Z.,Y, - -  
. ,.,,-,JL,, F,.,,_,J 

10 ~ 2 

+A + s Z.,Y, Z , /  ~ / • 
~-~ J-OL ,.tt-~.j j 

Comparing (5.10) to (5.12), we observe that: 

(5.13) Yk Gk'"-k ~ lo G~.._k 

Fk,~ l-k _I YJ Fk: l-k _I ' 
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and so  on. Therefore, we conclude that: 

10 

(5.14) ~ Var(yk)  ~ Var(yr ) .  
k.i 

In words, the sum of  the variances does not equal the variance o f  the sum. If  the ultimate losses 
have negative correlation, the former is greater. If  they have positive correlation, the latter is greater. We 
expect the second scenario, because, whatever the realization of  a random variable, it most likely affects 
the ultimate losses in the same direction. In the next section, we show with a numerical example that such 
is the case. To numerically evaluate each series, we sum up the first fifty terms. 

6. NUMERICAL RESULTS 

In the previous two sections, we present the mathematical formulas, for the most part assuming 
only the base coefficients are statistically significant. In this section, we present the numerical solution to 
the Table 1 triangle. For this problem, four of  the annual changes are significant; therefore, the reader will 
have to modify the formulas in the previous sections to obtain the numerical solutions in this one. The 
statistically significant coefficients for the Table I triangle are: 

# cr r ~ Z, ~ X2 
estimate .7582 1.0838 .8988 -.0.459 .0450 .0028  -.0057 

s.d. .0051 .0085 .01114 .0047 .0079 .0005 .0011 
TIble 3: Estimates and standard deviations of the coefficients. 

In the parlance of  section 10, the solution has the correct parametrization. Our criterion for 
statistical significance is that an estimate must be at least twice as large in absolute value as its standard 
deviation. This criterion translates into: if the true value of  a variable were indeed zero, we have a 4.6% 
probability o f  accepting it as a non-zero variable. 

With the values in Table 3, the equations of  (2.3) simplify to: 

(6.1) pk = p ,  % = a + ( k - l ) ~ + ( k - l ) 2 ~ ,  

r, = r + ( k - l ) z ~  + ( k - l ) 2 Z 2 ,  l ~ k ~ 1 0 .  

The process with which we obtain (6.1) is as follows. We begin with the model in which all 
coefficients up to and including the cubic ones are variables. In such model, we have twelve coefficients to 
estimate. We apply the iterative regression process to obtain the solution. If  there are at least two 
statistically insignificant coefficients in the solution, we eliminate the most obviously insignificant one. 
We continue the process until all remaining coefficients are statistically significant. 

In going from the estimation of  twelve variables to that of  seven variables, we have to examine six 
permutations of  the model. Each permutation has a unique set of  variablas to be estimated. Given the 
assumptions that the base coefficients are always significant, which may not be true for the mean, and that 

all fourth- and higher-power coefficients are always insignificant, there are 2 9 = 51 2 permutations, for a 
distribution ofthree parameters. In a format like EXCEL, which we use for this paper, we have to 
construct a separate spreadsheet for each permutation. We have fortunately systematized the process, so 
that a complete conversion from one permutation to another takes only a few minutes. We construct 
permutations as needed; we do not construct all at the same time. In some languages such as APL, which 
we have used in the past, one set of  computer code suffices for all possible permutations, including 
different sizes of  the data. Despite this obvious advantage of  APL, we highly recommend EXCEL, given 
the choice between the two mediums. A programming error, especially a subtle one that does not result in 
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an unreasonable solution, is much more likely to escape detection in APL. And it is much easier to build 
additional features into an EXCEL spreadsheet than into an APL code. 

From (6. I), we estimate the mean to be a constant, and both the deviation and the exponent to be 
quadratic curves. Substituting the values in (6.1) into the formula for the transformed log-normal of(2.2), 
we obtain the values of  the c.d.f.'s: 

AY I 2 3 4 $ 6 7 8 9 l0 
I .2421 .4857 .6196 .7047 .7629 .8048 .8352 .8604 .8795 .8949 
2 .2331 .4812 .6259 .7180 .7802 .8243 .8567 .8812 .9001 .9151 
3 .2249 .4776 .6315 .7293 .7947 .8402 .8730 .8972 .9157 .9299 
4 .2475 .4751 .6363 .7384 .8058 .8521 .8848 .9087 .9265 .9401 
$ .2111 .4739 .6402 .7450 .8135 .8599 .8925 .9159 .9332 .9462 
6 ,2059 ,4740 .6429 .7487 ,8174 .8637 .8960 ,9190 .9360 .9487 
7 .2019 " .4756 .6445 .7495 .8174 .8633 .8953 .9182 .9350 .9477 
8 .1994 .4787 .6447 .7472 .8135 .8586 .8902 .9131 9301 .9429 
9 .1983 .4834 .6437 .7418 .8057 .8494 .8805 .9032 .9207 .9340 
l0 .1986 .4896 .6412 .7332 .7935 .8354 .8658 .8885 .9060 .9198 

Table 4: The values of t.he cumulative distribution functions. 

Let's give an example of  how one value in Table 4 is calculated. From (6.1), we obtain the 
parameters for the fifth accident year as (.7582,.9446,.9872). From (2.2), we get that 

F (4;.7582,9446,9872)=.7450. 
Table 4 says that, for the first accident year, 24.2% of  the ultimate amount has been paid aRer one 

year, and 88.5% after 10 yem's. We then calculate the tail factor as the reciprocal o f  88.5%. We note that 
the tail factors vary by accident years, 

To obtain the estimated ata factors, we compute the quotients of  successive values in Table 4. 

AY t 2 ' 3 4 ~ 6 7 8 9 
I 2.006 1.276 1.137 1.083 1.055 1.039 1.029 1.022 1.018 
2 2.064 1.301 1.147 1.087 1.057 1.039 1.029 1.021 1.017 
3 2.124 1.322 1.155 1.090 1.057 1.039 1,028 1.021 1.016 
4 2.185 1.339 1,160 1.091 1.057 1.038 1.027 1.020 1,015 
5 2.245 . 1.351 1.164 1.092 1.057 1.038 1.026 1.019 1.014 
5 2.245 1.351 1.164 1.092 1.057 1.038 1.026 1.018 1.014 
6 2.303 1.356 1.165 1.092 1.057 1.037 1.026 1.018 1.014 
7 2.355 1.355 1.163 1,091 1.056 1.037 1.026 1.018 1.014 
8 2.401 1.347 1.159 1.089 1.055 1.037 1.026 1.019 1.014 
9 2.438 1.331 1.152 1.086 1.054 1.037 1.026 1.019 1.014 
10 2.465 1.310 1.143 1.082 1.053 1.036 1.026 1.020 1.015 

slope 0.055 0.011 0.004 0.002 O.O01 0.000 -0.001 -O.O01 
Table 5: The estimated age-to-age factorY. 

'The match between Tables 2 and 5 is generally quite close. The slopes in the two tables match 
almost exactly. To make them directly comparable, those in the latter are calculated using only factors 
above the diagonal. The close match of  the factors implies that the transformed log-normal adequately 
describes the payment patterns of  the data. 

We also consider using one o f  the following throe distributions as the c.d.f.: the transformed 
normal, the transformed log-gamma, and the transformed gamma. For every of  these functions, either a 
solution cannot be found, or there is a consistent mismatch o f  the ata factors somewhere in the triangle. 
We therefore believe that none of the three functions describes well the payment patterns of Workers ' 
Compensation. 

The table below presents the estimated cumulative paid amounts: 
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AY i 2 3 4 5 6 7 8 9 l0 
l 2409 4833 6155 7021 7581 7994 8302 8535 8741 8900 
2 2602 5370 7062 8042 8734 9232 9593 9863 10078 10227 
3 3105 6595 8588 9952 10872 11509 11952 12292 12548 12744 
4 3316 7245 9697 11180 12224 12918 13412 13802 14072 14278 
5 3416 7669 10403 12148 13339 14091 14639 15023 15307 15520 
6 3831 8821 12117 14048 15309 16131 16733 17164 17480 17717 
7 4527 10662 14292 16641 18093 19107 19814 20321 20693 20973 
8 4923 11846 16001 18624 20279 21401 22188 22759 23182 23503 
9 5300 12921 17178 19796 21501 11668 23499 24110 24570 24925 
10 5488 13528 17716 20257 21925 23082 23921 24549 25032 25412 

Generally, we have quite good agreement between Tables 1 and 6. Let 's  give an example of  how 

one value in the latter table is calculated. From Table 5, we have that r~4 = 1 .092 .  Therefore, the 

estimate for Ys5 = 1.092 * 1 2 2 1 6  = 1 3 3 3 9 .  

The estimates for the ultimate paid amounts and the corresponding standard deviations are: 

AY Ul~mate S.D. 
I 9939 45 
2 11176 40 
3 13704 51 
4 15188 62 
5 16403 73 
6 18676 91 
7 22132 124 
8 24925 166 
9 26688 288 
I0 27629 583 

total 186459 980 
Table 7: Ultimate estimates. 

Comparison of  Tables 6 and 7 indicates that a considerable amount o f  liabilities lies in the tail. 
The standard deviation o f  the total is computed using (5.12). Under the assumption of  mutual 
independence of  ultimate estimates, the deviation of  the total would only be 700. Since the variance of  the 
sum is considerably greater than the sum of  the variances, we infer that the ultimate estimates have a high 
degree of  positive correlation. 

7. THE CHI SQUARE TEST 

In this section, we apply the chi square goodness-of-fit test to demonstrate the normality of  the 
results. We also show that the model without the scaling function does not satisfy the normality 
assumption. 

We define the normalized error as the quotient o f  the error and its standard deviation. From (3.3), 
we have: 

(7.1) e~ - - . 
s sin(%) 

The normalized errors should follow the standard normal distribution. To test i f  that indeed is the 
case, we divide the real line into five intervals: ( -  oo,- .  842), ( - .  842,-.  253), ( - .  253,253),  (.253,.842), 
and (.842, oo). We note that, i f  a random variable is normally distributed, each interval should contain 

20% of  the observations. We define the following two quantities: U~ as the number of  observed e t j ' s  in 

interval i ,  and /'~ as the number o f  expected eo  's. Then the quantity Z 2 is defined as: 

4 0 3  



#-I "Vl " 

It is well known that 2 '2 follow the chi square distribution with four degrees of  freedom. 

With s = . 0 2 9 8 ,  we obtain the following normalized errors from Tables 2 and 5: 

AY I 2 3 4 5 6 7 8 9 
I -0.160 0 .502  -0.740 -0.198 -0.366 -0.723 1252 1.073 -1.349 
2 1.044 -1.219 -0158 0 .199  -0.131 -0.336 0.388 -2.872 
3 -1.434 0 . 5 3 8  0 . 7 0 2  0 .556  -0.345 0 . 5 4 7  0.431 
4 -0,056 -1.005 0 .515  -0,253 -0.144 1.873 
5 0.383 0.525 1.446 -0.286 0.621 
6 1.183 -0.668 -0.451 -1.184 
'7 -0.997 0 .182  -0.817 
$ 0.269 0.656 
9 -0.145 

TIb le  8: The normaliTzcd error. 

In Table 8, if there are either large positive or negative values grouped in at least one column, then 
the distribution does not fit well the payment patterns. We do not detect such a scenario in Table 8. The 
expected and observed frequencies arc: 

Interval I 2 3 4 5 
V, 9 9 9 9 9 

Ut  7 9 10 13 6 

Table 9: The error fl'cquencies. 

The values in Table 9 give Z 2 =3.33. If  the normalized errors come from the standard normal 

distribution, then there is a 50% probability that the chi square distribution with four degrees of  freedom 
exceed 3.33. The normality assumption for the governing equation of(3.3) is therefore accepted. 

If  we use the model without a scaling function, many of  the normalized errors, 26 to be exact, are 

bunched together in the middle interval, and Z z =43.56. The probability of  the chi square distribution 
exceeding that value is nil. We therefore reject the normality assumption. In the next section, we discuss 
the reason why the model fails the test in that case. 

8. ORDERS OF ERROR MAGNITUDES 

In this section, we consider the differing orders of  error magnitudes, and how the proper 
recognition of  them is inextricably linked to the scaling function. We also indicate the reason that the 
model without the scaling function does not pass the normality test. We begin by considering the variances 

of  the two points at opposite ends of  the triangle, ql9 and q91 • 

From (3.3), the quantity q lg ,  which has the realized value of  1.0168, has the following formula: 

(8.1) q i l  = ri9 + ln(rl9)el9 

Taking the expected value of  (8. I), we get: 

(8.2) E { q , 9 } :  = r,.,o/R,, =Lo 75. 
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We obtain from (8.1) the variance as: 

2 2 
(8.3) Var(q,9 ) = Var(rl�)+ s [ln(rl�)] . 

The process error has the value: 

2 2 
(8.4) s [In(r,9)] = [.0298 * 1n(1.0175)] 2 = 2.7 * 10 -7 . 

To obtain the parameter error, we use the perturbation form for an ata factor of(4.3): 

[ (H,.,o 
(8.5) rt9 (/.t + A/t, cr + Ao', f + A r)  = rt9 I I  + / """ + 

Taking the variance of(8.5), we have: 

H19~ 

191[.~- ~ Var(/t) + A  = 3 .2"  10 -I.  

L', '. '° 

Combining terms, (8.3) gives a deviation of.000S. A normally distributed random variable with 
mean 1.0175 and deviation .0005 has a 10% probability of being less than 1.0168, the realized value. 

The estimate for Yl,10 can be obtained from (3.1) as: 

(8.7) Yu0 = Yl�q19 • 

The expected value of(g.7), given that Yt9 = 8747 ,  is: 

(8.8) E{y,.~oly,9 = 8747} = y,�E{q,9} = 8 7 4 7 ' 1 . 0 1 7 5  = 8900.  

And the variance of Yij0 is: 

(8.9) Var(y,.,o[y,9 = 8 7 4 7 ) =  y~�Var(q,°) = (8747 * .0005) 2 = 4.792 . 

A normally distributed random variable of mean 8900 and deviation 4.79 has a 10% probability of 
being less than 8894, the realized value. 

The point q�l, which has the realized value of 2.434, has the following formula: 

(8.10) q�~ = r�l + ln(r91)¢91 • 

The mean and the variance are: 

(8.11) E{q�, } = E{r�, }= F92/F�, = 2 . 4 3 8 ,  
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(8.12) Var(q91) = Var(rg,) + s2[ln(Gs)] 2 . 

The process and parameter variances are: 

(8 .13)  s2[In(rg , ) ]  2 = [ . 0 2 9 8 " 1 n ( 2 . 4 3 8 ) ]  2 = 7 . 1 " 1 0  -4 , 

(8 .14)  Vat(to,)= "l[ x~2 Var(I.t)+A + 8 '  = Fo, Var(z2) 2.7  * 10-4. 

Combining terms in (8.12) gives a deviation of .031. A normally distributed random variable of 
mean 2.438 and deviation .031 has a 45% probability of being less than 2.434, the realized value. 

The mean and variance of Y92 are: 

(8 .15)  E{Y921yg, = 5 3 0 0 } =  y91 *E{rg,}=5300*2.438=12921. 

(8 .16)  Var(Yg~lyg, = 5 3 0 0 ) =  y~,Var(qg~) = ( 5 3 0 0 " . 0 3 1 )  2 = 1652 . 

We note that the variances of qt9 and qg~ have very different orders of magnitudes. Their ratio 
is: 

(8 .17)  Var(qg,) : (  .028 "~ ~ 3 2 0 0 .  
Var(qt9 ) ~ . 0 0 0 7 )  

The variance of qg~ is therefore several thousand times that of q~9. This is not surprising, 
because there is much more development, and variability, at the former than at the latter. The relative 
values of 2.438 and 1.018 attest to this. We can carry this further by saying that the error of a point at full 
development is zero. This conclusion is not only re~.sonable, but also inescapable, if we think with this 
perspective: given a realized value at full development, the estimate at the succeeding period is known with 
absolute certainty, namely that very same value. We note that, at full development, the parameter error is 
also zero, because an infinitesimal perturbation of the parameters cannot nudge the c.d.f, from unity, 

The role of the scaling function is imperative in that it is the mechanism through which the 
different orders of errors are recognized. Without it, the process errors of(8.4) and (8.13) would be 
exactly equal, and the ratio in (8. [ 7) would be very close to unity. In effect, the model would not be able 
to differentiate the widely divergent orders of  errors. For points far from full development, the variances 
are understated; and for points close to full development, they are overstated. Because the normalized 
error is essentially the ratio of the actual error to the expected average error, the effect on it is just the 
opposite. For points far from full development, the normalized errors are overstated; and for points close 
to full development, they are understated. It is therefore not surprising that the model without the scaling 
function cannot pass the normality test. 

9. COMPARISON OF SCALING AND PROPORTIONALITY FUNCTIONS 

In this section, we want to compare the effects of different scaling functions. First, we set the 

proportionality function w(yl¢ ) = I in (3.4), then calculate the solutions to the Table I triangle using four 

different scaling functions, in addition to the logarithmic. In Table 10, we show the total liabilities, the 
deviations, the chi square values, and the implied percentages. 
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N , . e  b(r~ ) YT deviation Z 2  p . . . .  t co . . . .  t 

I logarithmic I n ( ¥ ¥  ) 186,459 980 3.33 50.4% good 

2 linear y~ _ ] 186,469 1095 5.11 27.6% good 

3 zquaro nmt (y¥ _ 1)112 186,794 1331 11.11 2.5% fair 

4 sqmtro ( r¥  -- l )  2 179,448 10146 10.00 4.0% poor 

5 no scaling 1 187,037 divergent 43.56 0.0% invalid 
r l  :I r l  [ i ; i l~,} ,,i.t., i ~,],l,) i~-.~1 i ~ ' 1 ~ I ~  

For the no scaling function, the infinite series for the process errors o f  (5.10) have no limits. 
The two best scaling functions are the logarithmic and the linear. Their" estimates are identical, for all 
intents and purposes. The logarithmic gives the slightly lower deviation and chi square value. 

Incidentally, as their argument  approaches unity, these two functions have the same asymptotic 
behavior. Symbolically,  

(9 .1 )  I n ( r ) -  r -  I, r - + l .  

No other function in Table I0 shares this property. We believe that the two functions do indeed have the 
correct  error scaling. 

We have analyzed quite a number  o f  different loss triangles. The logarithmic and the linear 
invariably give nearly identical estimates and deviations, but the former consistently gives the lower chi 
square values. We therefore select the logarithmic as the most appropriate scaling function. 

In Table 1 I, with the logarithmic scaling function, we compare  three proportionality functions: the 
linear, logarithmic and square root. 

n ,me y ~ w ( y ~ )  YT devi,tlon y 2  percent Comment 

I Linear y ¥  186,459 9g0 3.33 50.4% good 

2 Log~ithrnlc ]/ ' l(y~ ) 186,902 I 182 9.78 4.4% fair 

3 Squaro root 1/2 186,626 1041 5.56 23.5% fair 
Y~ 

Tlble I I: Comparison of proportionaiity functions. 

A m o n g  the three proportionality functions, the linear gives the least deviation and chi square 
value. 

From the results in Tables 10 and I I, we choose the logarithmic scaling function and linear 
proportionality function as the best combination. 

10. PARAMETRIZATION 

A solution is overparametrized if it quantifies at least one statistically insignificant coefficient. A 
solution is underparametrized if it omits at least one statistically significant coefficient. A solution has 
correct parametrization if it is neither overparametrized nor underparametrized.  

In general, overparametrization leads to a smaller sum o f  squares o f  errors. But this does not lead 
to greater accuracy.  This is manifested in two ways. First, the number  o f  degrees o f  ffreedom, the 
denominator  in (4.9), decreases, counteracting the smaller numerator.  Secondly and more importantly, 
since more variables have to be estimated, the mutual interference among  them increases and the elements 
o f  the inverse matrix in (4. I I) generally increase in absolute value. 
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Underparametrization has the reverse effects: the sum of squaras of errors increases, the number 
of  degrees of freedom increases, and the elements of the inverse matrix generally decrease. 

For the Table l triangle, Table 12 quantifies the results of parametrization. The 
ovcrparametrizatinn quantifies all function parameters up to and including the quadratic coefficients. The 
underparametrized solution quantifies only the base coefficients. 

Solution YT devinUon 

l Correct paxamettization 186,459 980 
2 Ove~"ametrizatlon 182.097 5490 
3 Unde~ameltizntion 188,852 2535 

Tnble 12: Patamctrization. 

The ove~aran~etrized solution has a much larger deviation, And, in this particular example, it is 
consistent. That is, ifthe solution of mean 182,097 and deviation 55490 indeed is correct and unbiased, 
there is considerable probability of attaining at least the correctly parameu'ized value of 186,459. 

Our experience indicates that overparametrization invariably leads to higher deviations. The 
reason for this is simple: the more variables there are to be estimated, the less accuracy with which they can 
be estimated. The decreased accuracy ~'anslates into higher parameter errors. In our numerical tests, we 
usually find the overparametrized solutions to be consistent. 

In this case, the underparametrized solution yields a consistent estimate and a higher deviation. 
But experience tells us that underparametrization can lead to inconsistent estimates and lower deviations. 
An underparametrized estimate is inconsistent when the difference between itself and the correctly 
parametrized estimate is well outside the range of the underparametrized deviation. The reason for lower 
deviations due to underparametrization is: the fewer variables there are to be estimated, the more accuracy 
with which they can be estimated. The reason for inconsistent results is: some statistically significant 
variables are being omitted. 

The discussion in this section indicates that, if high deviations and misleading results are to be 
avoided, we must insure correct parametrization. 

I I. DISCUSSION 

A) Cumulative distribution functions. We only use functions ofthree parameters, because we 
believe only they must have at least that number of  parameters to have the flexibility to describe real 
payment patterns. We identify four such candidates: the transformed log-normal, transformed normal, 
transformed log-gamma, and transformed gamma. We find all Paretu-type functions to be unstable in our 
iterative regression scheme. 

Of  the four functions, only the log-normal works well for Workers Compensation, Products 
Liability and Medical Malpractice, the longest tailed liability lines. But none works well for Commercial 
Auto Liability, Personal Auto Liability and Commercial Multiple Peril, the shorter tailed liability lines. 
Fortunately, we have developed a class of functions for the latter lines. We will present it in another paper. 

B) ?~pe of data. The data on which we tested these models have always been paid loss. The 
question is whether the model could work as well on reported data. As formulated in this paper, the answer 
is negative. We give two reasons for this and suggest a possible remedy. The two reasons are related. 

First, a c.d.f, is by construction monotonic from zero to unity. Often a reported pattern is not, 
surpassing unity at some intervals. This happens becanse of  over-reserving: case reserves were set higher 
than actual payments. In an ideal world with perfect case reserving, this would not happen, because, when 
reported, case reserves would be set at exactly the future paid amounts. Therefore the ideal incurred 
pallem would also be monotonic. And the flip side, under-raserving, must also be prevalent. The 
inference is that actual incurred amounts have errors, because the case reserves cannot be set with perfect 
foresight. 

And that brings us to the second reason. For this model, we assume that the actual paid amounts 
have no errors. While this certainly is not entirely true, it is much less true of reported data. Therefore, in 
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working with reported data, it is imperative that we account for the errors associated with the actual data. 
Since the two reasons are more or less related, one remedy may rectiffy both. 

For the y ¢  in (3.6), we use the actual amount, and assume there is no associated error. Instead, 

we could use the estimated value, which has a quantifiable error. In effect, we are saying that since actual 
reported amounts have unknown errors, we should instead work with estimated amounts, for which the 
errors can be estimated. This also has an additional advantage that addresses the first problem: even if the 
actual reported pattern is not monotonic, the theoretical pattern could still be. This very distinction 
between using the actual and estimated values goes back to the point made by MACK (1995). The model 
based on estimated, as opposed to actual, estimates, is another interesting avenue of research. 

With the above discussion in mind, an analysis of reported data, assuming that every theoretical 
obstacle can be overcome, may yield much higher parameter and process errors than that on the 
corresponding paid data. If such is indeed the case, there may not be much additional value in the 
consideration of  reported data. 

If paid data have considerable amounts of  salvage and subrogation, they can also be non- 
monotonic. In such cases, it may be best to analyze the data gross of salvage and subrogation. 

C) Advantages of the model. We generalize the difficulties of the traditional chain ladder fall into 
three categories: non-stochastic variations in the ata factors, limited information, and tail factor. We 
recapitulate how our model addresses each category. 
i. The model simulates the non-stochastic variations in the ata factors. The statistical significance of all 

parameters is systematically determined. We have tested six liability lines, those mentioned in the first 
segment of this section. We have considered loss triangles for both individual companies and 
industry-wide data in the United States. And we have yet to encounter a single triangle in which only 
the base coefficients are statistically significant. In every case, at least some non-stochastic variations 
are evident. 

ii. Limited information, as used in the traditional chain ladder, surfaces in a few instances. One is that 
averaging may only use the last few available years. Secondly, to estimate the ata factor in any 
development period, only information in that period is used. In contrast, to make the estimation at any 
single point, our regression scheme uses information available everywhere. This should decrease the 
parameter errors. 

iii. Our model gives the tail factor for each accident year. In addition, it yields the variance of an ultimate 
loss, and it clearly divides that'variance into parameter and process errors. 
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Appendix A: 
The Derivation o f  

a Perturbation Express ion 

In this appendix, we derive the perturbation expression in (4.3). All the other parturbation 
expressions can be obtained in a similar fashion. 

In pemzrbation theory, our objective is to express any quantity, such as the LHS of (4.3): 

(A.I) % ( ~  + A u,  o ' +  A o ' , r  + A t ) ,  

as a linear function of the increments (A~, AO', At ' ) .  
We use (3.2) to write (A. I) as: 

F ( j +  1 ; ~ +  AN, o" + Act, t. + At') 
(A.2) % (/ . /+ AN, or + A(x, t. + A t )  = F ( j ; / j  + A,u, cr + Act, t. + A t.) 

We need to express the denominator of (A.2) as a perturbation expression, which is just (4.2). 

(A.3) F(j; ~ + A u, cr + Act, r + A r)  = F(j; ~, or, t') + 

G(j;/p, or, t')A/z + H(j;/J, a, t')Ao" + K(j; ~, or, t')A t" 

= F~ + G~A/~ + H ~ A o ' +  K~At'. 

In (A.3), we expressly recognize that the function parameters may vary by accident years. Similarly, 

(A.4) F(j+I; /J+Ap,  o'+Ao',t '+At')= F,j+l +G,.j+tA/p+H,j+lAo'+Kkj.lAt'. 

If we now put (A.3) in the denominator, then we have: 

1 ! 

F ( j ; p  + A u, o ' +  Acy, t. + At.) Fig +G~Ap+H~Ao'+K~At" 

1 1 

I F  G . .  H~. K~ ] 

In (A.5), we retain only ~e linear term of the following Taylor's series expansion: 

1 
(A,6) - - =  1-  x + x2-A . 

1 + x  

When we substitute (A.4) and (A.5) into (A.2), we get precisely (4.3): 
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(A.7) ,<.+ ~ . . +  ~o.  + ~ ,  = .<.  o.,[, +/~.,,, ~j,, 

~,.,+, ~~-J"<'+t~,.,.--:~, 
Eve@ perturbation expression can be derived in a similar manner, and is simply the result of 

repeated and appropriate applications of the Taylor's series expansions. 

Appendix B: 
The Finite Limit  o f  the 

Process-Error  Infinite Series 

In this appendix, we prove that the infinite seres in (5.10) has a finite limit. It is sufficient to 
show that: 

~.,, :tI,o~,,l '<=, 
,-AL r, j 

where, without loss ofgenerality, we suppress the parameter dependency on time. A is some positive 
integer, which can be as large as we wish. 

We rewrite the ,equation for the a"ansformed log-normal of(2.2) as: 

(B.2) F(t)  = ~ [ ( l n t ) ' ; / a , o ' ]  = 1 -  ~ f ( t ) d t ,  
t 

where we use the partial density function: 

dF r ( ln , ) ' - '  - ½  (lnt - 
(B.3) f ( t ) =  dt - 2 ~  t exp ' 

To obtain the asymptotic form of the development factor, we use the definition of(2.1), and 
perform successive approximations: 

(B.4) r, 

1 -  S f ( t )d t  

"<'+"+ [ ! 1 [ ! ]  F(t)  7 ~ ! -  f ( t ) d t  1+ f ( t ) d t  
1 -  f ( t ) d t  ' • 

# 

t * l  

1 + f f ( t ) d t  ~ I + f ( t )  
t 
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Taking the log of (B.4) and retaining only the first term of the resultant Taylor's series, we obtain: 

(BS) In(r,) ~ ln[l + f ( t ) ]  = f ( t ) .  

We simplify the elements of the series in (B. I) as: 

<=.o> F'*,~l'~[..,>] .. (~,)'"-" F f(~,)'-.l~l 
~,, = "~'<'>'5 7 ° ' t - t - ~ - J  J 

Therefore, (B,I) is satisfied if we have the following equality: 

( In t ) " ' - "  F COn') ' -  l ~ l ' l  

'=~' ~ '-~--e='[-I J<" 
where we drop all multiple constants. Equation (B.7) is in turn satisfied if we have the following integral 
inequality: 

~0~')"'-" [ fO~,l'-~Vl 
<=.=, !~-°=,L-t~-~- J j=,,. 

We can certainly pick an A such that: 

( lnt)  =('- ' '  
(B.9) - - < 1 ,  A < t .  

t 

Therefore, we have the following inequality: 

'('nt) 2('-') r {(,n,)'-#'~'] <Sexp[-{ ('n,)~-~/21~. 
<=.,o, !--T-='L -L~-~-J J~ ' .  c ~ ~ ~J '  
We make the following substitutions: 

(In/) ~- / .2  o" dx d, I /  

(B. I I )  x - - - ,  - , p = l - y r .  
o" ~ (o .x_ ~) '-'/~ , 

With (B. 11). equation (B. I 0) can be written as: 

z a 

(B.12) dx < oo, B = - -  
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The inequality in (B.12) holds, irrespective of the value of p ,  since the exponential decays much 
faster than any power of x .  

We thus prove the inequality of(B.I). This line of argument is applicable to any distribution, the 
partial density function of which decays exponentially. 
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