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ABSTRACT

A new stochastic model based on the traditional
chain ladder is introduced. It makes explicit use
of cumulative distribution functions and payment
patterns. It incorporates a mathematical
rationale for non-stochastic variations in the age-
to-age factors. Perturbation methods are used to
obtain and justify the solution. Estimation of
liabilities in the tail is a natural product of the
model. All stochastic variables are assumed to be
normally distributed, and the assumption is then
confirmed with the chi square goodness-of-fit test.
Extensive numerical solutions of an actual
problem are given. Several new avenues of
related research are suggested.
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can be represented in terms of the distribution values. For example, the factor between the development
periods j and j +1 is:

@n r, = F(j +1)/ F(j).

We work with one function in particular, the transformed log-normal:
(22) F() = F(t;p,0,7) = cp[sgn(ln:)llnz]';p, 0']; >0,

where @ is the normal distribution with mean g and standard deviation 0. The parameter 7 is the
exponent of the function. Our selection of this function is dictated by the fact that, of all the functions that
we tested, it best describes the WC payment patterns. We have more to say on this in section 6.

To simulate the non-stochastic variations in the ata factors, we allow the three function parameters

to vary by accident year. Let k denote an accident year and (g, , 0, , 7, ) denote the corresponding

function parameters. We assume that these parameters can be expressed in the following polynomial
forms:

(2.3) H = p+(k-Da, +k-Da, +(k -1y a,+K
o, =0+k=-1D)R +k-1DR +(k-1)’B+K
o=t (k=Dy + k=17, +(k=1) 4K

The right hand side (RHS) of (2.3) has the following interpretations: (&, 0, T) are the base

parameters, (@, /%, ,) are the linear annual changes, (@,,/3,, 7,) are the quadratic annual changes,
and so on. We also refer to the first set as the base coefficients, the second the linear coefTicients, the third
the quadratic coefficients, and so forth. Al coefficients are assumed independent. For any given problem,
only some are statistically significant. A major part of the analysis is the determination of all those.

If all annual changes are statistically insignificant, the parameters and the ata factors do not vary
by accident years. In that case, we retrieve somewhat the traditional chain ladder, but the methodology to
estimate the factors differs from the traditional approach.

If any of the annual changes is statistically significant, the parameters and the ata factors vary by
accident years, and thus exhibit non-stochastic variations. In such case, each accident year in effect has its
own payment pattern, different from those of any other year.

There are many reasons for non-stochastic variations in the parameters. A major one is that the
insurance operations are changing. Another is that the environmental climate in which the insurance
operates is changing. Clearly, there can be many other factors. Equations (2.3) are simply our attempt to
measure the extent to which all these factors affect the payment patterns. It is important to realize that
(2.3) does not compel the accident years to have different payment patterns. It simply allows that
possibility. If it tuns out that the accident years have a statistically similar payment pattern, then the
annual changes should be statistically insignificant.

We define the partial derivatives as follows:

oF oF oF
(24) =E, H=E’ K=—ar—.
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3. THE GOVERNING EQUATION

Let y,, be the cumulative paid loss amount for accident year k at development year j. Then
the /oss factor is:

Vi jn

31 = ,
31 9y Y

and the development factor is:

- F(.j+l;#k:o'k)1“)
(32) Ty = FUi 0,7

We define the governing equation as:
(33) gy =ry +in(ry)e;, &~ N(0,s%).

The &y 's are assumed independent and normally distributed with mean zero and standard deviation § .

We call &, and In(r,, )&, the error and the error term, respectively. Equation (3.3) simply says that

successive payments should obey the payment pattern, with some stochastic error. As its name implies, a
governing equation contains the basic assumptions and governs the behavior of the model. Given it,
everything else should logically follow.

We note that the development factors are in essence a proxy for the payment pattern. If all actual
and estimated ata factors closely match, then we infer that the distribution accurately depicts the real
payment pattern. If there is a consistent mismatch in some of the factors, then we cannot make that
inference. i

Undoubtedly, the most unusual feature of (3.3) is the scaling function In(r,y) . Itis needed

because the magnitudes of the error terms change drastically throughout the development. The magnitude
is large at the beginning of development, it is small near full development, it is zero at full development,
and it goes through the whole continuum in between. In section 8, we discuss this subject in detail with
numerical examples.

We mention two mathematical anomalies which the scaling function prevents. First, suppose that
we are very far in the tail where all development has definitively ceased. Therefore, ¢ ¥ = 1. Ifour

model is any good, it would also predict ry = 1. Hence the error term must be zero, and the presence of

the scaling function ensures that equality.

Secondly, suppose we want to compute the variance of the ultimate loss amount. As will be
shown in section 5, that includes the sum of an infinite series, each term of which corresponds to the error
term in (3.3). If the scaling function were absent, the infinite series and the variance would have no finite
limits. But if it were present, the terms in the series would approach zero asymptotically, and the series
would have a finite limit.

In section 7, we show that, without a scaling function, the model cannot satisfy the normality
assumption. In section 8, we demonstrate that, in such case, the error terms are not properly scaled.

We will primarily work with (3.3), but the general form of the goveming equation is:

(34) gy =1y +w(y,)b(r,)se, .
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&, isthe error, b(r, ) is the scaling function, w(y,,) is the proponionality function, and the
product of all three, w(y,, )b(ry; )£y , is the error term. The scaling function must satisfy the following
conditions:

(35) b(ry>0, for r>1;and (1)=0.

We call w(y,y) the proportionality function, because it dictates the loss amount proportionality

of the error term. If we multiply (3.4) by Yy then:

36 Vi = y.y[rly + W(}’y )b(’u)fy]-

For the particular form of (3.3), W(y,;) = 1, and the error term is proportional to y,;. We
therefore call that the linear proportionality function. Similarly, when w(y, ) = l/y,';2 and
In(yy) / ¥y » the proportionality functions are square root and logarithmic, respectively.

A priori, we do not have any reference to prefer one set of scaling and proportionality functions
over another. In section 9, we test a number of them and compare their numerical results, with the
deviations and chi square values as the measuring sticks. Our conclusion is that the most appropriate
model has the logarithmic scaling function and the linear proportionality function, as in (3.3).

MURPHY (1995) presented three models which can be written as follows:

37 o1 = Yyl + &, Least Squares Multiplicative (LSM);
Yrjun =¥yt + &y q P
¥y =y, (r + &), Simple Average Development (SAD); and
k., j+1 1] ki

Vi =Yyt + y,:,/2 £y, Weighted Average Development (WAD).

There are two major differences between (3.6) and (3.7). Murphy’s models do not have a scaling
function. And they assume the development factor r to be constant in any given development period,
whereas we allow r; to vary within a development period. The forms of (3.7) have different
proportionality functions. With our terminology, SAD takes the linear function, and WAD takes the square
root function. For LSM, w(yy) =1/y, .

For their chain-ladder stochastic models, many authors (VERRALL, 1990; ZEHNWIRTH, 1990) have
assumed that the loss amounts are log-normally distributed. STANARD (1985) and HALLIWELL (1996) have
shown that such models have inherent upward bias. MACK (1995) argued that they suffer higher
variability. Our model bypasses these difficulties, because (3.3) implies that the loss quantities are
normally distributed, as will be shown in section 5.

. The normal distribution for the loss amounts has two additional advantages. First, if the liability
for an accident year is normally distributed, the sum for all accident years is also normally distributed., and
the variance of the sum can be calculated. Secondly, suppose we have another model which aiso gives
normally distributed estimates, the combination of estimates from the two models is normally distributed.

The governing equation (3.3) is to be used in two ways, matching and estimation:

a) Matching, There are forty-five points (ata factors) in Table 2. We apply (3.3) to every point.
From this matching, we obtain estimates for the 1 variables so as to minimize the sum of squares of
€erTors.

b) Estimation. For the particular case of (3.3), (3.6) becomes:

(38) Yagu = y,y[ry +In(s, )a,y].
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Equation (3.8) gives the estimate at the next period based on the actual or estimated value at the
previous period. If y,; isan actual amount, we assume that there is no error associated with it; actually,
this assumption is a direct consequence of the governing equatjon itself. And all the variance of the
estimate y, ., comes from the parameter error in #,; and the process error in & . If y, is an estimated
amount, then its variance also contributes to that of the next estimate. Our convention is that the RHS of
(3.6) and (3.8) should take the actual y,; whenever available.

MACK (1995) made an important distinction. In many models (VERRALL, ZEHNWIRTH), Yy in

(3.8) is the expected value; whereas, in the traditional chain ladder, it is the actual value. In this paper, the
latter is the case.

To recapitulate, our entire mode! consists of equations (2.2), (2.3), (3.1), (3.2) and (3.3). Fora
given set of data, we have to find all the statistically significant coefficients of (2.3) such that the sum of
squares of errors in (3.3) are minimized, given that the payment patterns are specified by the cumulative
distribution function in (2.2). The governing equation of (3.3) deserves its name because it has the central
role of linking together all the different elements of the system.

4. THE ITERATIVE REGRESSION PROCESS

As described in the previous section, the system is a highly non-linear one; therefore it is
impossible to obtain the solution in closed form or in one step. Instead, we apply the methods of
perturbation theory to derive an iterative regression process, the application of which systematically leads
to the solution.

To minimize the algebra, all derivations in this section are for the model in which only the base

coefficients (4, o, T) are variables. In the general model, we have to solve the regression system for n

variables.
We begin by perturbing every variable:

[(CR)) o> pu+Au, c>oc+Aa, THTHAT.

We may think of a perturbation as the replacement of a value ( 4, for instance) by the sum of that
value and an infinitesimal increment (Az). The value is a known quantity, and the increment is an

unknown quantity to be found. The reason why a perturbation is helpful is that, since the increment is
assumed infinitesimal, we may retain only the linear terms in the Taylor's series expansions. Instead of a
non-linear system, we in effect solve a series of linear systems. The successive solutions of the linear
systems lead us closer and closer to the solution of the non-linear system.

First, we supply a guess (4,0, 7). Based on that guess, the regression process gives us the

incremental (Ax, Ao, At) . The sum of the guess and the increment provides the next guess. We keep
up the iteration process until it converges to the solution.
Using the definition of the derivatives in (2.4), the perturbation of F has the following form:

(42) F(jiu+bdu,o+ Ao, 7+A7r)= F(ju,0,7)+
G(j; p0,0)Au+ H(j, u,0, 7)Ao+ K(j, 4, 0,7T)AT .

In a more general case where, for instance, @, and @, are also variables, the RHS of (4.2) would include

the terms (k — 1)GA@, and (k —1)*GAa, .
Using (4.2) in (3.2), we have the following for the perturbation of the development factor:
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Gl‘jﬂ ij
(4.3) ry(u+dp, o+ Ao, t+Ar) =1 (uo,0)| 14| ——-——lAu+
Ft,/q Fg

[H&,;.l _fli)Aa+[K1Jol —ﬁ)AT
Fk,jol th Fk.jol Flj

where F, = F(j; p4,,0,,7,), andso on. We give the full derivation of (4.3) in Appendix A. Ifwe
substitute (4.3) into (3.3), the result is:

Gu Gy H . Hy Ko Ky
(4.4) ry(;_::—-a A;z+ry 7‘7—?’; A0'+r,y- ?,,;__I‘T A1'+ln(r,j)£,y =qy—1ly-

After division by the scaling function, (4.4) yields exactly a regression system for the increment
variables (Ag,A0,A7) . Inmatrix form, we have:

(4.5) MA+e=b,
T
a=(amboar), s={g}). b={g, -n) 0},
M isa 45x3 coefficient matrix. This matrix changes after every iteration, since after each one, we have

a new set of coefficients. For example, the row of M for accident year & and development period j has
the following elements:

(4.6) ML- T giJ_L_G_*/
1"(’:.1-) Fk.jol Fy

pro ti e Hy

ln(rkj) Fk,ju Fy

In the more general case of 1 variables, M would be a 45x 7 matrix, and A an 7 -dimensional vector.
The solution of (4.5) so as to minimize the sum of squares of errors is well known in multiple
regression analysis. It is,

@7 A=(M"M)"M's.

The sum of (4.7) and the current guess constitutes the succeeding guess. When the process is
stable and leads toward the solution, the sum of squares of errors of the succeeding guess is always smaller
than that of the current guess. Therefore, if we continue the iteration until the guesses no longer vary, the
resultant solution is guaranteed to have the smallest possible sum. We can see from (4.7) that the solution
must satisfy:
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48 (M™M)'MTb=0.

This actually may only be a local solution. Globally, the possibility of multiple solutions cannot
be discounted. In practice, however, we have never encountered multiple solutions.

The vector in (4.7) indicates the general direction in which the solution lies. When the initial
guess is very far from the solution, if we take full steps as indicated by (4.7), the guesses may quickly
become unstable. In such cases, we should take steps that are fractions of the full steps. The steps should
be sufficiently small until the iterative process enters some stable mode, then the step size may be
increased. We have even encountered situations in which, by taking full steps, the guesses spiral stably
toward the solution, but very slowly. In such cases, the full steps overstep the solution, and the
convergence can be accelerated by taking smaller steps.

Finally, there exists the possibility of no convergence at all. This may be the result of either of
two scenarios. First, the distribution being used may not be stable in the iterative regression scheme. For
instance, we find any Pareto-type distribution to be highly unstable. Secondly, the distribution may not be
the right one for the loss data being considered.

When the distribution is the transformed log-normal, the convergence is quite fast, and the initial
guess need not be close to the solution.

The estimate for the variance of errors is:

9 10~k

-r,.
@9) 5= nzz:,’,, =y

k=l jul ln(r

The denominator in (4.9) is the number of degrees of freedom: 45 is the number of data points,
and » is the number of variables. From (4.1), we have the following relationship for the variances of the
coefficients:

(4.10) Var(u) =Var(Ay) ,

and so on. From standard regression analysis, we obtain the parameter variance matrix as:

Var(u) Cov(u,0) Cov(u,7)
(411 Var(P)=|Cov(u,0) Var(e) Cov(o,)|=s*(M™M)".
Cov(u,ry Cov(o,r) Var(z)

5. THE ULTIMATE ESTIMATES

In this section, we assume that the iterative regression process has found all the coefficients and
we have to obtain the estimates of the ultimate loss amounts and their variances. In particular, consider the

k-th accident year, which has Y11 8s the last actual cumulative paid amount. Using (3.1) and (3.3), the
estimate for the loss amount at the next period is:

(51 Yeaeent = Vent-e9ea-k = h,u-k["&,u-a +In(r )en,u-&]'

After another iteration, the estimate for the succeeding period is:
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(52) Yiptens2 = Y-k Qe 1-e9ei-aa =

Yeai-x [’k.n-k +In(ry 114 Y110 ][rk.l kot F 10101 G i1 ]

After repeated iterations, the estimate for the ultimate amount can be expressed as:

(53) Y = Ven-x l-!qk,ll—hj =Vil1-k I-I[rk,ll—hj + ln(rk,l]-hj )ek,ll-k+j]'
Je im0

In (5.3), we have an infinite variety of error terms. There are the linear error terms, containing
&,; . There are the quadratic error terms, containing &€, ; and so on. A linear term is proportional to 5 ,

a quadratic term to s?. Since § is generally small, the linear terms dominate in absolute value over the
other error terms.  We are thus justified in retaining only the linear terms, and (5.3) becomes:

Yrai-k & In(7y pasy)
(54) M = F 1+ Exn-kej

E11-k o0 T pi-is)

Equation (5.4) is correct to the Jeading order. The ultimate loss is normally distributed, since it is
the sum of normally distributed quantities. Taking the expected value of (5.4), we have:

(55) E{}'k} = Vi -k /Fk,ll-k :

Feie = FQY =k y,0,,7,) is the percent paid to date, and its reciprocal is the age-to-

ultimate factor. Equation (5.5) says that the expected ultimate amount is the product of the paid-to-date
amount and the age-to-ultimate factor, as we would expect. In the rest of this section, for the sake of

brevity, we write y, to denote the expected value of the same quantity.

To obtain the variance from (5.4), we use the following formula. Let W = XY be the product of
two independent stochastic quantities, then

(56) Var(W) = X*[Var(1)] + Y*[Var (X)) + [Var () [Var()].

where the bars denote expected values. If we apply (5.6) to (5.4), then we have:

P! kA1-ke j ’
6D Vo) =k Var[ — } ; Z[n(" )]
k-k

+
sz.ll-l J=0 rk.u-h/
2
1 < ln(’ - +‘)
+s2Var( )Z[ L) X
Fona /i Ttk j

In the derivation of (5.7), we assume that there is no ervor associated with the acrual y, ,,_, . The

variance in (5.7) is the sum of three terms. The first is the parameter error, which is just the variance of the
age-to-ultimate factor.

The second term is the process error. It is the sum of an infinite series, because, at each
development period, an additional amount of error contributes to the total, and theoretically there are an
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infinite number of periods. In Appendix B, we prove that the series possesses a finite limit. We can also
see the pivotal role of the scaling function: without it, the series would have no finite limit.
The third term is the product of the parameter and process errors. Every variance is proportional

to s°%; every product of variances is proportional to s5*, and hence negligible. In the following derivations
and calculations, we ignore those terms altogether. To the leading order, the variance in (5.7) is therefore
the sum of the parameter and process errors.

To estimate the parameter error in (5.7), again we resort to perturbation:

1 1 G i1
(58) = 1- Au—
Fopa(u+bu,o+Ao,t+A7) Ry (4,0,7) Fin
Hy i K, i1 }
———Ac-——"A7|.
ﬂ,ll-l k11-k
The derivation of (5.8) is in Appendix A.
Taking the variance of (5.8), we have:
2
1 1 Gy ik Giai-x i 1
(59) Var[ ] = l: - Var(up) + 2———=——Cov(u,0)+A ¢,
Fk,ll—-k szl -k Fk.ll—k FAZ.M

where the dots represent the other variances and covariances. Finally, after collecting terms, (5.7)
becomes:

Gk.l 1-k Hk.l'l-l'

2
F;.Il—k

Gk.ll-k

Fina

Cov(p,o)+A +5* Y,

j=0

2
] Var(u) +2

1
(510) nv04)=yi[ [ﬂOhth

Tetimkej

We define the sum total of all the ultimate losses as:

(511) Yr=2 Vi

We note that y; is normally distributed. It can be shown that the variance is:

5 2]

kel kJ1-k

2
(512)  Var(y,)= Var(ﬂ)[Zyk F“' ‘J +2cOv(;:,a)[Z 2 F‘”“ }[

KL=k
A +sziyzzl:1n(’kn k+j)] .

Feti-kay

Comparing (5.10) to (5.12), we observe that:

10 G, ?
513 -k k11-k
©13) ;[}’. lrk,ll—kjl |:Z & Fknk:l
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and so on. Therefore, we conclude thar:

10

(5.14) Var(y,)# Var(y;).
k=t

In words, the sum of the variances does not equal the variance of the sum. If the ultimate losses
have negative correlation, the former is greater. 1f they have positive correlation, the latter is greater. We
expect the second scenario, because, whatever the realization of a random variable, it most likely affects
the ultimate losses in the same direction. In the next section, we show with a numerical example that such
is the case. To numerically evaluate each series, we sum up the first fifty terms.

6. NUMERICAL RESULTS

In the previous two sections, we present the mathematical formulas, for the most part assuming
only the base coefTicients are statistically significant. [n this section, we present the numerical solution to
the Table 1 triangle. For this problem, four of the annual changes are significant; therefore, the reader will
have to modify the formulas in the previous sections to obtain the numerical solutions in this one. The
statistically significant coefficients for the Table 1 triangle are:

H o (2 A Z B b4

estimate 7582 1.0838 8988  -.0459 0450 .0028 -.0057
s.d. L0051 .0085 .0lL14 .0047 0079 .0005 0011

Table 3: Estimates and siandard deviations of the coefficients.

In the parlance of section 10, the solution has the correct parametrization. Our criterion for
statistical significance is that an estimate must be at least twice as large in absolute value as its standard
deviation. This criterion transiates into: if the true value of a variable were indeed zero, we have a 4.6%
probability of accepting it as a non-zero variable.

With the values in Table 3, the equations of (2.3) simplify to:

(6.1) Ho=H, o=0+k-DF+*k-1)4,
T, =Tr+(k-Dg, +(k-1)1 g, 1Sk<10.

The process with which we obtain (6.1) is as follows. We begin with the model in which all
coefficients up to and including the cubic ones are variables. In such model, we have twelve coefficients to
estimate. We apply the iterative regression process to obtain the solution. If there are at least two
statistically insignificant coefficients in the solution, we eliminate the most obviously insignificant one.

We continue the process until all remaining coefficients are statistically significant.

In going from the estimation of twelve variables to that of seven variables, we have to examine six
permutations of the model. Each permutation has a unique set of variables to be estimated. Given the
assumptions that the base coefficients are always significant, which may not be true for the mean, and that

all fourth- and higher-power coefficients are always insignificant, there are 2° = 512 permutations, for a
distribution of three parameters. In a format like EXCEL, which we use for this paper, we have to
construct a separate spreadsheet for each permutation. We have fortunately systematized the process, so
that a complete conversion from one permutation to another takes only a few minutes. We construct
permutations as needed; we do not construct all at the same time. In some languages such as APL, which
we have used in the past, one set of computer code suffices for all possible permutations, including
different sizes of the data. Despite this obvious advantage of APL, we highly recommend EXCEL, given
the choice between the two mediums. A programming error, especially a subtle one that does not result in
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an unreasonable solution, is much more likely to escape detection in APL. And it is much easier to build
additional features into an EXCEL spreadsheet than into an APL code,

From (6.1), we estimate the mean to be a constant, and both the deviation and the exponent to be
quadratic curves. Substituting the values in (6.1) into the formula for the transformed log-normal of (2.2),
we obtain the values of the c.d.f.’s:

AY 1 2 3 4 F] 6 7 8 9 10
1 2421 4857 6196 .7047 .7629 .8048 8352 .8604 8795 .8949
2 2331 4812 .6259 7180 7802 .8243 .8567 8812 .9001 9151
3 2249 4776 6315 7293 71947 .8402 8730 3972 9157 9299
4 2475 4751 .6363 .7384 .8058 .8521 8848 9087 9265 .9401
] 2111 4739 6402 .7450 8135 .8599 8925 9159 9332 9462
6 12059 4740 16429 .7487 8174 .8637 .8960 9190 9360 9487
7 2019 4756 6448 7495 8174 8633 8953 9182 9350 9477
8 1994 4787 6447 7472 8135 8586 .8902 8131 9301 9429
9 .1983 4834 6437 7418 8057 8494 .8805 .9032 9207 9340
10 .1986 4896 6412 .7332 .7935 .8354 .8658 3885 .9060 9198
Table 4: The vatues of the lative distribution fi

Let’s give an example of how one value in Table 4 is calculated. From (6.1), we obtain the
parameters for the fifth accident year as (.7582,.9446,.9872). From (2.2), we get that
F (4;.7582,.9446,.9872)=.7450.

Table 4 says that, for the first accident year, 24.2% of the ultimate amount has been paid after one
year, and 88.5% after 10 years. We then calculate the tail factor as the reciprocal of 88.5%. We note that
the tail factors vary by accident years,

To obtain the estimated ata factors, we compute the quotients of successive values in Table 4.

AY 1 2 © 3 4 5 3 7 8 9

1 2.006 1.276 1.137 1.083 1.055 1.039 1.029 1.022 1.018
2 2.064 1.301 1.147 1.087 1.057 1.039 1.029 1.021 1.017
3 2,124 1.322 1.155 1.090 1.057 1.039 1.028 1.021 1.016
4 2.185 1339 t.160 1091 1057 1.038 1.027 1.020 1.015
5 2245 | 1351 1.164 1.092 1.057 1.038 1.026 1.019 1014
5 2.245 1.351 1.164 1.092 1.057 1.038 1.026 1.018 1.014
6 2.303 1.356 1.165 1.092 1.057 1.037 1.026 1.018 1.014
7 2.355 1.355 1.163 1091 1.056 1.037 1.026 1.018 1.014
8 2,401 1.347 1.159 1.089 1.055 1.037 1.026 1.019 1.014
9 2438 1.331 1.152 1.086 1.054 1.037 1.026 1.019 1.014
10 2.465 1.310 1.143 1.082 1.053 1.036 1.026 1.020 1.015

slope 0.055 001t 0.004 0002 000l 0.000  -0.001 -0.001

Table 5: The cstimatcd age-to-age factors.

The match between Tables 2 and § is generally quite close. The slopes in the two tables match
almost exactly. To make them directly comparable, those in the latter are calculated using only factors
above the diagonal. The close match of the factors implies that the transformed log-normal adequately
describes the payment patterns of the data.

We also consider using one of the following three distributions as the c.d.f.: the transformed
normal, the transformed log-gamma, and the transformed gamma. For every of these functions, either a
solution cannot be found, or there is a consistent mismatch of the ata factors somewhere in the triangle.
We therefore believe that none of the three functions describes well the payment patterns of Workers'
Compensation. '

The table below presents the estimated cumulative paid amounts:
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1 2 3 4 5 6 7 8 9 10

AY
1 2409 4833 6155 7021 7581 7994 8302 8535 8741 8900
2 2602 5370 7062 8042 8734 9232 9593 9863 10078 10227
3 3108 6595 8588 9952 10872 11509 11952 12292 12548 12744
4 3316 7245 9697 11180 12224 12918 13412 13802 14072 14278
s 416 7669 10403 12148 13339 14091 14639 15023 15307 15520
6 3831 8821 1217 14048 15309 16131 16733 17164 17480 17217
7 4527 10662 14292 16641 18093 19107 19814 20321 20693 20973
8 4923 11846 16001 18624 20279 2140 22188 2275% 23182 23503
9 5300 12921 17178 19796 21508 11668 23499 24110 24570 24925
10 5488 13528 17716 20257 21925 23082 23921 24549 25032 25412

Table 6: The estimated paid loss amounts.

Generally, we have quite good agreement between Tables 1 and 6. Let’s give an example of how
one value in the latter table is calculated. From Table S, we have that r;, = 1.092 . Therefore, the

estimate for y,; =1.092*%12216=13339.
The estimates for the ultimate paid amounts and the corresponding standard deviations are:

AY Ultimate S.D.

1 9939 48
2 1176 40
3 13704 51
4 15188 62
5 16403 x]
6 18676 91
7 22132 124
8 24925 166
9 26688 288
10 27629 583
total 186459 980

Table 7: Ultimate estimates.

Comparison of Tables 6 and 7 indicates that a considerable amount of liabilities lies in the tail.
The standard deviation of the total is computed using (5.12). Under the assumption of mutual
independence of ultimate estimates, the deviation of the total would only be 700. Since the variance of the
sum is considerably greater than the sum of the variances, we infer that the ultimate estimates have a high

degree of positive correlation.

7. THE CHI SQUARE TEST

In this section, we apply the chi square goodness-of-fit test to demonstrate the normality of the
results. We also show that the model without the scaling function does not satisfy the normality

assumption.
We define the normalized error as the quotient of the error and its standard deviation. From (3.3),

we have:

(7.0) e, =

The normalized errors should follow the standard normal distribution. To test if that indeed is the
case, we divide the real line into five intervals: (— 00 ,—. 842), (-. 842,—. 253), (-. 253,.253), (.253,.842),
and (.842, 00). We note that, if a random variable is normally distributed, each interval should contain

20% of the observations. We define the following two quantities: U, as the number of observed €y ’sin

interval / , and ¥, as the number of expected e,; ’s. Then the quantity ,(2 is defined as:
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(v,

2
LU -y
12 2= Z—V—)—.
tal i

It is well known that ;(2 follow the chi square distribution with four degrees of freedom.
With § =.0298 , we obtain the following normalized errors from Tables 2 and 5:

AY 1 2 3 4 £ 6 7 8 9
[} <0.160 0502 0740 -0.198 -0366 -0.723 2252 1073 -1.349
2 1044 -1219 0158 0199 -0.131 -0336 0388 -2872
3 -1.434 0.538 0702 0556 0345 0.547 0431
4 0.056 -1.005 0.515 0253 -0.144 1.873
] 0.383 0.525 1.446 -0.286  0.621
6 1.183  -0.668 -0.451 .1.184
1 0997 0182 0817
8 0.269 0.656
9 -0.145

Table 8: The normalized errors.

In Table 8, if there are either large positive or negative values grouped in at least one column, then
the distribution does not fit well the payment pattems. We do not detect such a scenario in Table 8. The
expected and observed frequencies are:

Interval 1 1 3 4 5

v 9 9 95 9 5
i

U’ 7 9 10 13 6

Table 9: The crror frequencics.

The values in Table 9 give 12 =3.33. If the normalized errors come from the standard normal
distribution, then there is a 50% probability that the chi square distribution with four degrees of freedomn
exceed 3.33. The normality assumption for the governing equation of (3.3) is therefore accepted.

If we use the model without a scaling function, many of the normalized errors, 26 to be exact, are

bunched together in the middle interval, and zz =43.56. The probability of the chi square distribution

exceeding that value is nil. We therefore reject the normality assumption. In the next section, we discuss
the reason why the model fails the test in that case.

8. ORDERS OF ERROR MAGNITUDES
In this section, we consider the differing orders of error magnitudes, and how the proper
recognition of them is inextricably linked to the scaling function. We also indicate the reason that the

model without the scaling function does not pass the normality test. We begin by considering the variances
of the two points at opposite ends of the triangle, g,and gy, .

From (3.3), the quantity ¢,,, which has the realized value of 1.0168, has the following formula:

81 q15 =1y +In(rg)e,.

Taking the expected value of (8.1), we get:

(82) E{gy} = E{ny} = F 10/ F =10175.
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We obtain from (8.1) the variance as:
2
(83) Var(q,) = Var(ns) +s*[In(r,)] -
The process error has the value:
(84) s*[in(r)]" =[0298*1n(10175)]" =2.7*107".

To obtain the parameter error, we use the perturbation form for an ata factor of (4.3):

G G H H K
85 ry(u+Au,oc+Ado,v+A7)= rl.,!:1+(—"—m— —”)Ay+(—"£———”—)Aa+(-—m—

Fuo Fy Fo  Fy Fo

Taking the variance of (8.5), we have:

2
GHO GWJ -8
— ——=| Var(u)+A |=3.2*10".
E.lo F‘|9

(8.6 Var(r,) =’|€l(

Combining terms, (8.3) gives a deviation of .0005. A normally distributed random variable with
mean 1.0175 and deviation .0005 has a 10% probability of being less than 1.0168, the realized value.

The estimate for ¥, ,, can be oblained from (3.1) as:

(CN))] Yo = Vil -

The expected value of (8.7), given that y o = 8747 , is:
(88) E{ Yol = 8747} = yuE{g,y} = 8747%10175 =8900.
And the variance of y, , is:

89y Var(y, |y, = 8747)= yiVar(q,,) = (8747*.0005)° = 4.79*.

A normally distributed random variable of mean 8900 and deviation 4.79 has a 10% probability of
being less than 8894, the realized value.

The point gy, , which has the realized value of 2.434, has the following formula:
(8.10) Gor = oy +I0(ry; )65y

The mean and the variance are:

@.11) Egy } = Efr,\}= F,y [ Fy, =2.438,
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2
(8.12) Var(q,,)=Var(r, )+ sz[ln(r9l )] .
The process and parameter variances are:

8.13)  s*[in(r,))} =[0298*In(2.438)] =7.1*107,

G, G

’ K
-1) Var(u)+A +8‘(—”

F92 F‘N

Combining terms in (8.12) gives a deviation of .031. A normally distributed random variable of
mean 2.438 and deviation .031 has a 45% probability of being less than 2.434, the realized value.

The mean and variance of y,, are:

92 91

2
(8.14) Var(r,)=ri ( -ﬁ] Var(y,)[=2.7*10"

(3.15)  Efyy)vy = 5300} = y,, * Efr,,} = 5300+ 2.438 =12921.
(8.16)  Var(yy|yy = 5300)= y}Var(g,) = (5300*.031)* = 1657.

We note that the variances of q,,and ¢, have very different orders of magnitudes. Their ratio

2
®.17) M:(ﬂ] ~3200.
Var(q,y) \.0007

The variance of gy, is therefore several thousand times that of q,,. This is not surprising,
because there is much more development, and variability, at the former than at the latter. The relative
values of 2.438 and 1.018 attest to this. We can carry this further by saying that the error of a point at full
development is zero. This conclusion is not only reasanable, but also inescapable, if we think with this
perspective: given a realized value at full development, the estimate at the succeeding period is known with
absolute certainty, namely that very same value. We note that, at full development, the parameter error is
also zero, because an infinitesimal perturbation of the parameters cannot nudge the c.d.f. from unity.

The role of the scaling function is imperative in that it is the mechanism through which the
different orders of errors are recognized. Without it, the process errors of (8.4) and (8.13) would be
exactly equal, and the ratio in (8.17) would be very close to unity. In effect, the model would not be able
to differentiate the widely divergent orders of errors. For points far from full development, the variances
are understated; and for points close to full development, they are overstated. Because the normalized
error is essentially the ratio of the actual error to the expected average error, the effect on it is just the
opposite. For points far from full development, the normalized errors are overstated; and for points close
to full development, they are understated. It is therefore not surprising that the model without the scaling
function cannot pass the normality test.

9. COMPARISON OF SCALING AND PROPORTIONALITY FUNCTIONS

In this section, we want to compare the effects of different scaling functions. First, we set the
proportionality function w(yy) =1 in (3.4), then calculate the solutions to the Table I triangle using four

different scaling functions, in addition to the logarithmic. In Table 10, we show the total liabilities, the
deviations, the chi square values, and the implied percentages.
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Name b(ry ) yr deviation Zz percent  comment

1 logarithmic ln(r,, ) 186,459 980 333 50.4% good

2 linear ’.u -1 186,469 1095 i 27.6% good

3 square root 12 186,794 1331 1111 2.5% fair
(ry—D

4 square 2 179,448 10146 10.00 4.0% poor
(n "B )]

s no scaling 1 187,037 divergent 43.56 0.0% invalid

Table 10: Comparison of scaling functions.

For the no scaling function, the infinite series for the process errors of (5.10) have no limits.
The two best scaling functions are the logarithmic and the linear. Their estimates are identical, for all
intents and purposes. The logarithmic gives the slightly lower deviation and chi square value.

Incidentally, as their argument approaches unity, these two functions have the same asymptotic
behavior. Symbolically,

©.1) In(r)~r-1, ro>1.

No other function in Table 10 shares this property. We believe that the two functions do indeed have the
correct error scaling.

We have analyzed quite a number of different loss triangles. The logarithmic and the linear
invariably give ncarly identical estimates and deviations, but the former consistently gives the lower chi
square values. We therefore select the logarithmic as the most appropriate scaling function.

In Table 11, with the logarithmic scaling function, we compare three proportionality functions: the
linear, logarithmic and square root.

Name yb’ W(y,‘/ ) yr deviation Zz percent Comment
1 Lincar y’d 186,459 980 333 50.4% good
2 Logarithmic ln( )’y ) 186,502 1182 9.78 4.4% fair
3 Square root yuz 186,626 1041 5.56 23.5% fair
&

Table 11: Comparison of proportionality functions.

Among the three proportionality functions, the linear gives the least deviation and chi square
value.

From the results in Tables 10 and 11, we choose the logarithmic scaling function and linear
proportionality function as the best combination.

10. PARAMETRIZATION

A solution is overparametrized if it quantifies at least one statistically insignificant coefficient. A
solution is underparametrized if it omits at least one statistically significant coefficient. A solution has
correct parametrization if it is neither overparametrized nor underparametrized.

In general, overparametrization leads to a smaller sum of squares of errors. But this does not lead
to greater accuracy. This is manifested in two ways. First, the number of degrees of freedom, the
denominator in (4.9), decreases, counteracting the smaller numerator. Secondly and more importantly,
since more variables have to be estimated, the mutual interference among them increases and the elements
of the inverse matrix in (4.11) generally increase in absolute value.
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Underparametrization has the reverse effects: the sum of squares of errors increases, the number
of degrees of freedom increases, and the clements of the inverse matrix generally decrease.

For the Table | triangle, Table 12 quantifies the results of parametrization. The
overparametrization quantifies all function parameters up to and including the quadratic coefficients. The
underparemetrized solution quantifies only the base coefficients.

Solution deviation
Yr
1 Correct parametrization 186,459 980
2 Overparametrization 182,097 5490
3 Underparametrization 188,852 2535

Table 12: Parametrization.

The ovetparametrized solution has a much larger deviation, And, in this particular example, it is
consistent. That is, if the solution of mean 182,097 and deviation 5490 indeed is correct and unbiased,
there is considerable probability of attaining at least the correctly parametrized value of 186,459.

Our experience indicates that overparametrization invariably leads to higher deviations. The
reason for this is simple: the more variables there are to be estimated, the less accuracy with which they can
be estimated. The decreased accuracy translates into higher parameter errors. In our numerical tests, we
usually find the overparametrized solutions to be consistent.

In this case, the underparametrized solution yields a consistent estimate and a higher deviation.
But experience tells us that underparametrization can lead to inconsistent estimates and lower deviations.
An underparametrized estimate is inconsistent when the difference between itself and the correctly
parametrized estimate is well outside the range of the underparametrized deviation. The reason for lower
deviations due to underparametrization is: the fewer variables there are to be estimated, the more accuracy
with which they can be estimated. The reason for inconsistent results is: some statistically significant
variables are being omitted.

The discussion in this section indicates that, if high deviations and misleading results are to be
avoided, we must insure correct parametrization.

11. DISCUSSION

A) Cumulative distribution functions. We only use functions of three parameters, because we
believe only they must have at least that number of parameters to have the flexibility to describe real
payment patterns. We identify four such candidates: the transformed log-normal, transformed normal,
transformed log-gamma, and transformed gamma. We find all Pareto-type functions to be unstable in our
iterative regression scheme.

Of the four functions, only the log-normat works well for Workers Compensation, Products
Liability and Medical Malpractice, the longest tailed liability lines. But none works well for Commercial
Auto Liability, Personal Auto Liability and Commercial Multiple Peril, the shorter tailed liability lines.
Fortunately, we have developed a class of functions for the latter lines. We will present it in another paper.

B) Type of data. The data on which we tested these models have always been paid loss. The
question is whether the model could work as well on reported data. As formulated in this paper, the answer
is negative. We give two reasons for this and suggest a possible remedy. The two reasons are related.

First, a c.d.f. is by construction monotonic from zero to unity. Often a reported pattern is not,
surpassing unity at some intervals. This happens because of over-reserving: case reserves were set higher
than actual payments. In an ideal world with perfect case reserving, this would not happen, because, when
reported, case reserves would be set at exactly the future paid amounts. Therefore the ideal incurred
pattern would also be monotonic. And the flip side, under-reserving, must also be prevalent. The
inference is that actual incurred amounts have errors, because the case reserves cannot be set with perfect
foresight.

And that brings us to the second reason. For this model, we assume that the actual paid amounts
have no errors. While this certainly is not entirely true, it is much less true of reported data. Therefore, in
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working with reported data, it is imperative that we account for the errors associated with the actual data,
Since the two reasons are more or less related, one remedy may rectify both.
For the Yy in (3.6), we use the actual amount, and assume there is no associated error. Instead,

we could use the estimated value, which has a quantifiable error. In effect, we are saying that since actual

reported amounts have unknown errors, we should instead work with estimated amounts, for which the

errors can be estimated. This also has an additional advantage that addresses the first problem: even if the
actual reported pattern is not monotonic, the theoretical pattern could still be. This very distinction
between using the actual and estimated values goes back to the point made by Mack (1995). The model
based on estimated, as opposed to actual, estimates, is another interesting avenue of research.

With the above discussion in mind, an analysis of reported data, assuming that every theoretical
obstacle can be overcome, may yield much higher parameter and process errors than that on the
corresponding paid data. If such is indeed the case, there may not be much additional value in the
consideration of reported data.

If paid data have considerable amounts of salvage and subrogation, they can also be non-
monotonic. In such cases, it may be best to analyze the data gross of salvage and subrogation.

C) Advantages of the model. We generalize the difficulties of the traditional chain ladder fall into
three categories: non-stochastic variations in the ata factors, limited information, and tail factor. We
recapitulate how our model addresses each category.

i.  The model simulates the non-stochastic variations in the ata factors. The statistical significance of all
parameters is systematically determined. We have tested six liability lines, those mentioned in the first
segment of this section. We have considered loss triangles for both individual companies and
industry-wide data in the United States. And we have yet to encounter a single triangle in which only
the base coefficients are statistically significant. In every case, at least some non-stochastic variations
are evident.

ii. Limited information, as used in the traditional chain ladder, surfaces in a few instances. One is that
averaging may only use the last few available years. Secondly, to estimate the ata factor in any
development period, only information in that period is used. In contrast, to make the estimation at any
single point, our regression scheme uses information available everywhere. This should decrease the
parameter errors.

iii. Our model gives the tail factor for each accident year. In addition, it yields the variance of an ultimate
loss, and it clearly divides thatvariance into parameter and process errors.
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Appendix A:
The Derivation of
a Perturbation Expression

In this appendix, we derive the perturbation expression in (4.3). All the other perturbation
expressions can be obtained in a similar fashion.
In perturbation theory, our objective is to express any quantity, such as the LHS of (4.3):

(4.1) ry(u+Au,c+Ac,t+ A7),

as a linear function of the increments (A, Ao, AT).
We use (3.2) to write (A.1) as:

F(j+hu+Au,o+ Ao, 7+ A7)
F(ju+bu,0+ Ao, 7+ A7)

(42) ry(u+du,c+Ac,t+A7)=

We need to express the denominator of (A.2) as a perturbation expression, which is just (4.2).

(43) F(ju+Au,o+ Ao, t+ A7) = F(j u,0,7) +
G(Jj;u,0,7)Au+ H(j, p,0,7)A0 + K(j; p,0,1)AT
=Fy,+G Au+ Hyho + K AT,

In (A.3), we expressly recognize that the function parameters may vary by accident years. Similarly,
(44) F(j+Lu+Ayo+do,r+Ar)=F, ;,,+G, ,Au+H, A0+ K, | Az,
If we now put (A.3) in the denominator, then we have:

1 1
F(;p+Ap,0+ 80,7+ A1) Fy +Gyhu+ HAc+K,Ar
1 1

Fy1 +(G,y. /FU)A;H(HU/FU)A0+(K,¢/FUE1 -

1| Gy Hy Ky ]
—|l-——Au-—=Aoc-——Ar|.
Fy| Ry Fy F,

(45)

In (A.5), we retain only the linear term of the following Taylor's series expansion:
(A4.6) ! 1 +x?=A
. —=1-x+x"-A.
T+x

When we substitute (A.4) and (A.5) into (A.2), we get precisely (4.3):
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Giu Gy
(A7) ry(,u+Ap,0'+A0',r+Ar)=r,q(,u,a',r) 1+ N Au+

HlJH Hly Kk.j+l Ky'
———-——|Ao+| ——-—|Ar|.
Fm By Foju By
Every perturbation expression can be derived in a similar manner, and is simply the result of
repeated and appropriate applications of the Taylor’s series expansions.

Appendix B:
The Finite Limit of the
Process-Error Infinite Series

In this appendix, we prove that the infinite series in (5.10) has a finite limit. It is sufficient 10
show that:

- 2
(B1) Z[M] <,
tmA I

where, without loss of generality, we suppress the parameter dependency on time. A is some positive
integer, which can be as large as we wish.
We rewrite the equation for the transformed log-normal of (2.2) as:

(B2) F(1) = o[(nn)"; p4,0]=1- j[ f(dr,

where we use the partial density function:

- T 2
dI:_ T (lm) 'exp _%[(lnr) —p] .

(83) f(1)=d——:/—2—7‘ y p

To obtain the asymptotic form of the development factor, we use the definition of (2.1), and
perform successive approximations:

- froa . ]
B4y =D z[l— | f(t)dt]l:l+ j'f(:)er
F(f) 1+1 4
1- [f(nar :

i

1+1

=1+ [r@drs1+ f@)

411



Taking the log of (B.4) and retaining only the first term of the resultant Taylor’s series, we obtain:

(BS) In(r,) < lof1+ 7] = £(0).

We simplify the elements of the series in (B.1) as:

2 2(s-1) r 2
(B6) [lnfi)] <[t < f%r):%(l“’r)z exp) _[(lm) #J _

Therefore, (B.1) is satisfied if we have the following equality:

® 2(r-1) T _ 2
(B7) Z(lm?z exp -[(lm) £ 1 <,

tad o

where we drop all multiple constants. Equation (B.7) is in turn satisfied if we have the following integral

inequality:
2r-1) 13 2
(lnl (lnt) —u
3—exp| - e dr <.

(B3)

ENE I )

t

We can certainly pick an A4 such that:

(1ns)"™"

(B9) -

<], A<t.

Therefore, we have the following inequality:
= (inr)*" (o) - ) | = (i) -\ {a
B.10 — ~| —— |di - — |—.
( ) J E exp pn t < !exp ]

We make the following substitutions:

() -y o & dt
(B11) x= ) , = we=—, p=1-Y.
o f(a-x_#) t
With (B.11), equation (B.10) can be written as:
T e InA4)° -
(B12) [ di<w, PR LEY
a(ax—y) o
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The inequality in (B.12) holds, irrespective of the value of p, since the exponential decays much
faster than any power of x .

We thus prove the inequality of (B.1). This line of argument is applicable to any distribution, the
partial density function of which decays exponentially.
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