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can be represented in terms of the distribution values. For example, the factor between the development 
periods j and j + 1 is: 

(2.1) rj = F ( j  + 1) / F ( j ) .  

We work with one function in particular, the transformed log-normal: 

[ Ih' 1 (2.2) F(t)  = F ( t ; / 2 , o ' , r )  = • s g n ( l n t )  ln t  ;/2,o" ; t > 0, 

where • is the normal distribution with mean /2 and standard deviation o.  The parameter r is the 
exponent of the function. Our selection of this function is dictated by the fact that, of all the functions that 
we tested, it best describes the WC payment patterns. We have more to say on this in section 6. 

To simulate the non-stochastic variations in the ata factors, we allow the three function parameters 

to vary by accident year. Let k denote an accident year and (/2k ,Ok, rk ) denote the corresponding 
function parameters. We assume that these parameters can be expressed in the following polynomial 
forms: 

(2.3) /2k = / 2 + ( k - l ) a j  + ( k - l ) 2 a 2  + ( k - l ) J a 3 + K  

a ,  = c r + ( k - 1 ) / ~  + ( k - l ) 2 / ~  + ( k - l ) 3 / ~ + K  

r k = r + ( k - l ) z  I + ( k - I )  2Z2 + ( k - l )  3Z~+K 

The right hand side (RHS) of(2.3) has the following interpretations: (/2, or, ¢') are the base 

parameters, (c~l,/~, Zi ) are the linear annual changes, ( a  2 ,,/~, Z2 ) are the quadratic annual changes, 
and so on. We also refer to the first set as the base coefficients, the second the linear coefficients, the third 
the quadratic coefficients, and so forth. All coefficients are assumed independent. For any given problem, 
only some are statistically significant. A major part of the analysis is the determination of all those. 

If all annual changes are statistically insignificant, the parameters and the ata factors do not vary 
by accident years. In that case, we retrieve somewhat the traditional chain ladder, but the methodology to 
estimate the factors differs from the traditional approach. 

If any of the annual changes is statistically significant, the parameters and the ata factors vary by 
accident years, and thus exhibit non-stochastic variations. In such case, each accident year in effect has its 
own payment pattern, different from those of any other year. 

There are many reasons for non-stochastic variations in the parameters. A major one is that the 
insurance operations are changing. Another is that the environmental climate in which the insurance 
operates is changing. Clearly, there can be many other factors. Equations (2.3) are simply our attempt to 
measure the extent to which all these factors affect the payment patterns. It is important to realize that 
(2.3) does not compel the accident years to have different payment patterns. It simply allows that 
possibility. If it turns out that the accident years have a statistically similar payment pattern, then the 
annual changes should be statistically insignificant. 

We define the partial derivatives as follows: 

8 F  ,~F 8 F  (2.4) G=-yT, H=~,  K=-~-. 
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3. THE GOVERNING EQUATION 

Let YO be the cumulative paid loss amount for accident year k at development year j .  Then 

the loss factor is: 

Yk.j+l 
(3.1) q o  -- 

YO 

and the development factor is: 

F ( j +  I;p~ ,o'k , r , )  
(3.2) to= F(j;pk,~r,,r~) 

We define the governing equation as: 

(3.3) q o  = r o  + l n ( r o ) c o '  co ~N(O's2)" 

The c O ' s  are assumed independent and normally dis~ibuted with mean zero and standard deviation s .  

We call c O and l n ( r  o ) c  o the error and the error term, respectively. Equation (3.3) simply says that 

successive payments should obey.the payment pattern, with some stochastic error. As its name implies, a 
governing equation contains the basic assumptions and governs the behavior of  the model. Given it, 
everything else should logically follow. 

We note that the development factors are in essence a proxy for the payment pattern. If all actual 
and estimated ata factors closely match, then we infer that the disu'ibution accurately depicts the real 
payment pattern. If there is a consistent mismatch in some of the factors, then we cannot make that 
inference. 

Undoubtedly, the most unusual feature of(3.3) is the scaling function I n ( r o ) .  It is needed 

because the magnitudes of  the error terms change drastically throughout the development. The magnitude 
is large at the beginning of development, it is small near fall development, it is zero at fall development, 
and it goes through the whole continuum in between. In section 8, we discuss this subject in detail with 
numerical examples. 

We mention two mathematical anomalies which the scaling function prevents. First, suppose that 

we are very far in the tail where all development has definitively ceased. Therefore, qo = | " l four  

model is any good, it would also predict r O = 1. Hence the error term must be zero, and the presence of 

the scaling function ensures that equality. 
Secondly, suppose we want to compute the variance of the ultimate loss amount. As will be 

shown in section 5, that includes the sum of  an infinite series, each term of  which corresponds to the error 
term in (3.3). If the scaling function wereabsent, the infinite series and the variance would have no finite 
limits. But if it were present, the terms in the series would approach zero asymptotically, and the series 
would have a finite limit. 

In section 7, we show that, without a scaling function, the model cannot satisfy the normality 
assumption. In section 8, we demonstrate that, in such case, the error terms are not properly scaled. 

We will primarily work with (3.3), but the general form of  the governing equation is: 

(3.4) qo = ro + w(yo)b(ro )co" 
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,¢~ is the error, b(rkl) is the scaling function, w(ykl ) is the proportionality function, and the 

product of all three, w(y~ )b(r~ )e~ ,  is the error term. The scaling function must satisfy the following 

conditions: 

(3.5) b(r) > 0, for r > I ; and b ( l )  = 0.  

We call w(y~ ) the proportionality function, because it dictates the loss amount proportionality 

ofthe error term. If we multiply (3.4) by y ~ ,  then: 

(3.6) Ytj÷, = y~[r~ + w(y~)b(r~)e~]. 

For the particular form of (3.3), w(y~) = l ,  and the error term is proportional to y ~ .  We 

therefore call that the linear proportionality function. Similarly, when w(y~ ) = l /y~ 2 and 

In(y~ ) / y ~ ,  the proportionality functions are square root and logarithmic, respectively. 

A priori, we do not have any reference to prefer one set of scaling and proportionality functions 
over another. In section 9, we test a number of them and compare their numerical results, with the 
deviations and chi square values as the measuring sticks. Our conclusion is that the most appropriate 
model has the logarithmic scaling function and the linear proportionality function, as in (3.3). 

MUR.PHY (1995) presented three models which can be written as follows: 

(3.7) Ykd+t = y~r + 6~ , Least Squares Multiplicative (LSM); 

Ykd+l = y~(r  + ~t ), Simple Average Development (SAD); and 

y,.j,~ = y~r + y~2 6~, Weighted Average Development (WAD). 

There are two major differences between (3.6) and (3.7). Murphy's models do not have a scaling 
function. And they assume the development factor r to be constant in any given development period, 

whereas we allow r~ to vary within a development period. The forms of(3.7) have different 

proportionality functions. With our terminology, SAD takes the linear function, and WAD takes the square 

root function. For LSM, w(ykl ) = l/y~ . 
For their chain-ladder stochastic models, many authors (VERRALL, 1990; ZEHNWlRTH, 1990) have 

assumed that the loss amounts are log-normally distributed. STANARD (1985) and HALLIWELL (1996) have 
shown that such models have inherent upward bias. MACK (1995) argued that they suffer higher 
variability. Our model bypasses these difficulties, because (3.3) implies that the loss quantities are 
normally distributed, as will be shown in section 5. 
, The normal distribution for the loss amounts has two additional advantages. First, if the liability 
for an accident year is normally distributed, the sum for all accident years is also normally distributed., and 
the variance of the sum can be calculated. Secondly, suppose we have another model which also gives 
normally distributed estimates, the combination of estimates from the two models is normally distributed. 

The governing equation (3.3) is to be used in two ways, matching and estimation: 
a) Matching. There are forty-five points (ata factors) in fable 2. We apply (3.3) to every point. 

From this matching, we obtain estimates for the n variables so as to minimize the sum of squares of 
errors. 

b) Estimation. For the particular case of(3.3), (3.6) becomes: 

(3.8) e,j . ,  -- y~[r~ + In(r,),~ ]. 
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Equation (3.8) gives the estimate at the next period based on the actual or estimated value at the 

previous period. If y~/ is an actual amount, we assume that there is no error associated with it; actually, 

this assumption is a direct consequence of  the governing equation itself. And all the variance of the 

estimate Yhj÷t comes from the parameter error in r~ and the process error in ~'~. If y ~  is an estimated 

amount, then its variance also contributes to that of the next estimate. Our convention is that the RHS of 

(3.6) and (3.8) should take the actual yq whenever available. 

MACK (1995) made an important distinction. In many models (VERRALL, ZEHNWIRTH), Ylt/ in 

(3.8) is the expected value; whereas, in the traditional chain ladder, it is the actual value. In this paper, the 
latler is the case. 

To recapitulate, our entire model consists of equations (2.2), (2.3), (3.1), (3.2) and (3.3). For a 
given set of data, we have to find all the statistically significant coefficients of (2.3) such that the sum of 
squares of  errors in (3.3) are minimized, given that the payment patterns are specified by the cumulative 
distribution function in (2.2). The governing equation of (3.3) deserves its name because it has the central 
role of  linking together all the different elements of the system. 

4. THE ITERATIVE REGRESSION PROCESS 

As described in the previous section, the system is a highly non-linear one; therefore it is 
impossible to obtain the solution in closed form or in one step. Instead, we apply the methods of 
perturbation theory to derive an iterative regression process, the application of which systematically leads 
to the solution. 

To minimize the algebra, all derivations in this section are for the model in which only the base 
coefficients ( / j ,  O', 3) are variables. In the general model, we have to solve the regression system for n 
variables. 

We begin by perturbing every variable: 

( 4 . 1 )  / J - - ~ / J + A / J ,  or --> or + A or , r ~ r + A r .  

w e  may think of a perturbation as the replacement of a value ( / j ,  for instance) by the sum of  that 

value and an infinitesimal increment ( A/J ). The value is a known quantity, and the increment is an 
unknown quantity to be found. The reason why a perturbation is helpful is that, since the increment is 
assumed infinitesimal, we may retain only the linear terms in the Taylor's series expansions. Instead of a 
non-linear system, we in effect solve a series of linear systems. The successive solutions of the linear 
systems lead us closer and closer to the solution of the non-linear system. 

First, we supply a guess ( / j ,  or, ~'). Based on that guess, the regression process gives us the 

incremental (A/J,  Aor, A t ) .  The sum of  the guess and the increment provides the next guess. We keep 
up the iteration process until it converges to the solution. 

Using the definition of  the derivatives in (2.4), the perturbation of F has the following form: 

(4 .2)  F ( j ; / J +  A/j ,  c r +  Aor, r + A t )  = F ( j ; / j ,  or, r )  + 

G(j ;  IJ, or, r ) A / j  + H(j ;  /j, or, r ) A o r  + K( j ;  u ,  or, r ) A r .  

In a more general case where, for instance, atj and ct 2 are also variables, the RHS of(4.2) would include 

the terms (k  - 1 ) G A ~  I and (k  - !)  2 G A a  2 . 

Using (4.2) in (3.2), we have the following for the perturbation ofthe development factor: 
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+ ( Gj.j+~ 
r 1 A/~ + 

• .. F,a. ,  F ~ )  ] 

where Fk. ,, = F ( j ; / t  t ,ok,  r k ), and so on. We give the full derivation 0f(4.3) in Appendix A. If we 

substitute (4.3) into (3.3), the result is: 

(G,a., Gq)  (H,,+, HU) (K,o., K ) 
r - -  - -  ~kt+r -" k)/ ~ *.j.J (4.4)  mL F,.j., F•) ~L F,.j., ~-Jaa+ro[-~- Ar+In(rt,)no=q,l-r O . 

After division by the scaling function. (4.4) yields exactly a regression system for the increment 
variables (A~,Ao',Ar). In matrix form, we have: 

(4.5) M a  + e = b ,  

A=(AI.t, Ao',Ar) r, ~={6~}, b={(q~-rq)/In(,q)}. 

M is a 45  x 3 coefficient matrix. This matrix change s after every iteration, since after each one, we have 

a new set ofcoefficienm. For example, the row of M for accident year k and development period j has 

the following elements: 

,-,j [a~.., a~] 
(4 .6)  M; ='i~)L F~,j . F , j '  

r~ [ Hk.,~ , H~] 

M ~  l n ( % ) L F * a * '  Fj¢ " 

In the more general case of n variables, M would be a 45 x n matrix, and A an n -dimensional vector. 
The solution of (4.5) so as to minimize the sum of squares of errors is well known in multiple 

regression analysis. It is, 

(4 .7)  A = ( M  r M)-'  M rb. 

The sum of(4.7) and the current guess constitutes the succeeding guess. When the process is 
stable and leads toward the solution, the sum of squares of errors of the succeeding guess is always smaller 
than that of the current guess. Therefore, if we continue the iteration until the guesses no longer vary, the 
resultant solution is guaranteed to have the smallest possible sum. We can see from (4.7) that the solution 
must satisfy: 
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(4 .8)  ( M T M )  - '  M r b  = O. 

This actually may only be a local solution. Globally, the possibility of multiple solutions cannot 
be discounted. In practice, however, we have never encountered multiple solutions. 

The vector in (4.7) indicates the general direction in which the solution lies. When the initial 
guess is very far from the solution, if we take full steps as indicated by (4.7), the guesses may quickly 
become unstable. In such cases, we should take steps that are fractions of the full steps. The steps should 
be sufficiently small until the iterative process enters some stable mode, then the step size may be 
increased. We have even encountered situations in which, by taking full steps, the guesses spiral stably 
toward the solution, but very slowly. In such cases, the full steps overstep the solution, and the 
convergence can be accelerated by taking smaller steps. 

Finally, there exists the possibility of no convergence at all. This may be the result of  either of 
two scenarios. First, the distribution being used may not be stable in the iterative regression scheme. For 
instance, we find any Pareto-type distribution to be highly unstable. Secondly, the distribution may not be 
the right one for the loss data being considered. 

When the distribution is the transformed log-normal, the convergence is quite fast, and the initial 
guess need not be close to the solution. 

The estimate for the variance of errors is: 

9 10-k - -  F~ 

(4 .9)  s 2 =  1 ~ e 2  q~ a~  .,Z..aZ_~ ky, ~'~ = 
- '~ - "*-I  J-, ln(r~ ) 

The denominator in (4.9) is the number of degrees of freedom: 45  is the number of data points, 
and n is the number of variables. From (4.1), we have the following relationship for the variances of the 
coefficients: 

(4. l 0)  Var(iJ) = Var(Ala) , 

and so on. From standard regression analysis, we obtain the parameter variance matrix as: 

(4.1 I) 
[ Var(u) Cov(l~,a) 

[ Cov(u,r) Cov(o',r) 

co,w, r) l 

Var(r) J 

5. THE ULTIMATE ESTIMATES 

In this section, we assume that the iterative regression process has found all the coefficients and 
we have to obtain the estimates of  the ultimate loss amounts and their variances. In particular, consider the 

k-th accident year, which has Yk.I I-k as the last actual cumulative paid amount. Using (3. I) and (3.3), the 

estimate for the loss amount at the next period is: 

(5.1) Y,.n-k+, =Y*, t t -kq*, , - ,  = Yk.u- , [ re .u- ,  + l n ( r e . t , - , ) c e . , , - , ] .  

ARer mother iteration, the estimate for the succeeding period is: 
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(5.2) Yk.,t-**2 = Yk..-*qiJl-*qk.~l-k.t = 
y,.,,_,[r,.,,_,+ ln(r , . , ,_ ,  )e , . , ,_ ,  l[r,. , ,_,+, + ln(r , . , ,_ ,÷,)e , . , ,_ ,+,  l '  

At~er repeated iterations, the estimate for the ultimate amount can be expressed as: 

(5.3) Y*= Y*:,-*I-'Iq*.,,-*.j =Y*.,t-*/I-K0 [r*:t-**j  + l n ( r , . t , - , ÷ j ) ¢ * . , , - , . / ] '  
J-0 

In (5.3). we have an infinite variety of  error terms. There are the linear error terms, containing 

ct / .  There are the quadratic error terms, containing eta 6ta ; and so on. A linear term is proportional to s .  

a quadratic term to s ~ . Since s is generally small, the linear terms dominate in absolute value over the 
other error terms. We are thus justified in retaining only the linear terms, and (5.3) becomes: 

(5.4) Y, = Y,.tl-* 1 + - -  e~.,_k+ j . 
F*."-k L " r*.H-k'J 

Equation (5.4) is correct to the leading order. The ultimate loss is normally distributed, since it is 
the sum of normally distributed quantities. Taking the expected value of (5.4), we have: 

E{y,}-- y,.._, /F,.._, 

,Fk.H_ , = F ( ]  ] - k ; ~ ,  ,0" , ,  r ,  ) is the percent paid to date, and its reciprocal is die age-to- 

ultimate factor. Equation (5.5) says that the expected ultimate amount is the product o f  the paid-to-date 
amount and the age-to-ultimata factor, as we would expect. In the rest of  this section, for the sake of  

brevity, we write y ,  to denote the expected value of  the same quantity. 

To obtain the variance from (5.4), we use the following formula. Let l i  / = X Y  be the product of  
two independent stochastic quantities, then 

(5.6) Var(W)= X2[Var(Y)]+ Y'[Var(X)]+[Var(X)IVar(Y)], 

where the bars denote expected values. If  we apply (5.6) to (5.4), then we have: 

2 2 r c , s 
(5.7) Var(y,) = Y, lt-klVarl"~--l +-~'~"'--Z..,l - -  I 

' L \~*."-*) t ' * . ' i - *s '° \  rk'i'-*÷S ) 
=o 2 

+s'Var( I IZ¢ ln(r,.,,_**./).l ] 

t 4 . , , - , . S , . 0 t  ri.li-,+j )J" 

In the derivation of(5.7), we assume that there is no error associated with the actual Y*.II-* • The 

variance in (5.7) is the sum of  three terms. The first is the parameter error, which is just the variance of  the 
age-to-ultimate factor. 

The second term is the process error. It is the sum of an infinite series, because, at each 
development period, an additional amount of  error contributes to the total, and theoretically there are an 
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infinite number of  periods. In Appendix B, we prove that the series possesses a finite limit. We can also 
see the pivotal role of the scaling function: without it, the series would have no finite limit. 

The third term is the product of the parameter and process errors. Every variance is proportional 

to s 2 ; every product of variances is proportional to s 4 , and hence negligible. In the following derivations 
and calculations, we ignore those terms altogether. To the leading order, the variance in (5.7) is therefore 
the sum of the parameter and process errors. 

To estimate the parameter error in (5.7), again we resort to perturbation: 

(5.8) 
F,.u_ , (/.t÷ A/z, ~r + Ao ' ,  r + A t )  

1 F G,  ._, 
F , ._ , (p  ~r r) El- F , ' . ,  ~ " -  

H ,  ,, , K ,  ,,_, l 

F,.._, , . ,_, j 

The derivation of(5.8) is in Appendix A. 
Taking the variance of(5.8), we have: 

(5.9) Vat ~ = ~ 1 [ ~  j Var(p)+2 F, 2 Cov(ll, o')+A , 
L k,u-, J k,tl-k 

where the dots represent the other variances and covariances. Finally, after collecting terms, (5.7) 
b e c o m e s :  

(5.10) Var(y',)=y, IL -J ~o,<,,+, F,.,,_ k'~'T----' ~ovt/.t.cr,+A+S J.oL.L./ --r,.t,_,.j "lj J" 

We define the sum total of  all the ultimate losses as: 

l0 

(5.11) yT = ~ y , .  
k=l 

We note that Yr is normally distributed. It can be shown that the variance is: 

(5.12) Var(yr) = Var(u) Yk G* 'u- *  + 2Cov(u,o') Yk - ~ -  Z.,Y, - -  
. ,.,,-,JL,, F,.,,_,J 

10 ~ 2 

+A + s Z.,Y, Z , /  ~ / • 
~-~ J-OL ,.tt-~.j j 

Comparing (5.10) to (5.12), we observe that: 

(5.13) Yk Gk'"-k ~ lo G~.._k 

Fk,~ l-k _I YJ Fk: l-k _I ' 
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and so  on. Therefore, we conclude that: 

10 

(5.14) ~ Var(yk)  ~ Var(yr ) .  
k.i 

In words, the sum of  the variances does not equal the variance o f  the sum. If  the ultimate losses 
have negative correlation, the former is greater. If  they have positive correlation, the latter is greater. We 
expect the second scenario, because, whatever the realization of  a random variable, it most likely affects 
the ultimate losses in the same direction. In the next section, we show with a numerical example that such 
is the case. To numerically evaluate each series, we sum up the first fifty terms. 

6. NUMERICAL RESULTS 

In the previous two sections, we present the mathematical formulas, for the most part assuming 
only the base coefficients are statistically significant. In this section, we present the numerical solution to 
the Table 1 triangle. For this problem, four of  the annual changes are significant; therefore, the reader will 
have to modify the formulas in the previous sections to obtain the numerical solutions in this one. The 
statistically significant coefficients for the Table I triangle are: 

# cr r ~ Z, ~ X2 
estimate .7582 1.0838 .8988 -.0.459 .0450 .0028  -.0057 

s.d. .0051 .0085 .01114 .0047 .0079 .0005 .0011 
TIble 3: Estimates and standard deviations of the coefficients. 

In the parlance of  section 10, the solution has the correct parametrization. Our criterion for 
statistical significance is that an estimate must be at least twice as large in absolute value as its standard 
deviation. This criterion translates into: if the true value of  a variable were indeed zero, we have a 4.6% 
probability o f  accepting it as a non-zero variable. 

With the values in Table 3, the equations of  (2.3) simplify to: 

(6.1) pk = p ,  % = a + ( k - l ) ~ + ( k - l ) 2 ~ ,  

r, = r + ( k - l ) z ~  + ( k - l ) 2 Z 2 ,  l ~ k ~ 1 0 .  

The process with which we obtain (6.1) is as follows. We begin with the model in which all 
coefficients up to and including the cubic ones are variables. In such model, we have twelve coefficients to 
estimate. We apply the iterative regression process to obtain the solution. If  there are at least two 
statistically insignificant coefficients in the solution, we eliminate the most obviously insignificant one. 
We continue the process until all remaining coefficients are statistically significant. 

In going from the estimation of  twelve variables to that of  seven variables, we have to examine six 
permutations of  the model. Each permutation has a unique set of  variablas to be estimated. Given the 
assumptions that the base coefficients are always significant, which may not be true for the mean, and that 

all fourth- and higher-power coefficients are always insignificant, there are 2 9 = 51 2 permutations, for a 
distribution ofthree parameters. In a format like EXCEL, which we use for this paper, we have to 
construct a separate spreadsheet for each permutation. We have fortunately systematized the process, so 
that a complete conversion from one permutation to another takes only a few minutes. We construct 
permutations as needed; we do not construct all at the same time. In some languages such as APL, which 
we have used in the past, one set of  computer code suffices for all possible permutations, including 
different sizes of  the data. Despite this obvious advantage of  APL, we highly recommend EXCEL, given 
the choice between the two mediums. A programming error, especially a subtle one that does not result in 
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an unreasonable solution, is much more likely to escape detection in APL. And it is much easier to build 
additional features into an EXCEL spreadsheet than into an APL code. 

From (6. I), we estimate the mean to be a constant, and both the deviation and the exponent to be 
quadratic curves. Substituting the values in (6.1) into the formula for the transformed log-normal of(2.2), 
we obtain the values of  the c.d.f.'s: 

AY I 2 3 4 $ 6 7 8 9 l0 
I .2421 .4857 .6196 .7047 .7629 .8048 .8352 .8604 .8795 .8949 
2 .2331 .4812 .6259 .7180 .7802 .8243 .8567 .8812 .9001 .9151 
3 .2249 .4776 .6315 .7293 .7947 .8402 .8730 .8972 .9157 .9299 
4 .2475 .4751 .6363 .7384 .8058 .8521 .8848 .9087 .9265 .9401 
$ .2111 .4739 .6402 .7450 .8135 .8599 .8925 .9159 .9332 .9462 
6 ,2059 ,4740 .6429 .7487 ,8174 .8637 .8960 ,9190 .9360 .9487 
7 .2019 " .4756 .6445 .7495 .8174 .8633 .8953 .9182 .9350 .9477 
8 .1994 .4787 .6447 .7472 .8135 .8586 .8902 .9131 9301 .9429 
9 .1983 .4834 .6437 .7418 .8057 .8494 .8805 .9032 .9207 .9340 
l0 .1986 .4896 .6412 .7332 .7935 .8354 .8658 .8885 .9060 .9198 

Table 4: The values of t.he cumulative distribution functions. 

Let's give an example of  how one value in Table 4 is calculated. From (6.1), we obtain the 
parameters for the fifth accident year as (.7582,.9446,.9872). From (2.2), we get that 

F (4;.7582,9446,9872)=.7450. 
Table 4 says that, for the first accident year, 24.2% of  the ultimate amount has been paid aRer one 

year, and 88.5% after 10 yem's. We then calculate the tail factor as the reciprocal o f  88.5%. We note that 
the tail factors vary by accident years, 

To obtain the estimated ata factors, we compute the quotients of  successive values in Table 4. 

AY t 2 ' 3 4 ~ 6 7 8 9 
I 2.006 1.276 1.137 1.083 1.055 1.039 1.029 1.022 1.018 
2 2.064 1.301 1.147 1.087 1.057 1.039 1.029 1.021 1.017 
3 2.124 1.322 1.155 1.090 1.057 1.039 1,028 1.021 1.016 
4 2.185 1.339 1,160 1.091 1.057 1.038 1.027 1.020 1,015 
5 2.245 . 1.351 1.164 1.092 1.057 1.038 1.026 1.019 1.014 
5 2.245 1.351 1.164 1.092 1.057 1.038 1.026 1.018 1.014 
6 2.303 1.356 1.165 1.092 1.057 1.037 1.026 1.018 1.014 
7 2.355 1.355 1.163 1,091 1.056 1.037 1.026 1.018 1.014 
8 2.401 1.347 1.159 1.089 1.055 1.037 1.026 1.019 1.014 
9 2.438 1.331 1.152 1.086 1.054 1.037 1.026 1.019 1.014 
10 2.465 1.310 1.143 1.082 1.053 1.036 1.026 1.020 1.015 

slope 0.055 0.011 0.004 0.002 O.O01 0.000 -0.001 -O.O01 
Table 5: The estimated age-to-age factorY. 

'The match between Tables 2 and 5 is generally quite close. The slopes in the two tables match 
almost exactly. To make them directly comparable, those in the latter are calculated using only factors 
above the diagonal. The close match of  the factors implies that the transformed log-normal adequately 
describes the payment patterns of  the data. 

We also consider using one o f  the following throe distributions as the c.d.f.: the transformed 
normal, the transformed log-gamma, and the transformed gamma. For every of  these functions, either a 
solution cannot be found, or there is a consistent mismatch o f  the ata factors somewhere in the triangle. 
We therefore believe that none of the three functions describes well the payment patterns of Workers ' 
Compensation. 

The table below presents the estimated cumulative paid amounts: 
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AY i 2 3 4 5 6 7 8 9 l0 
l 2409 4833 6155 7021 7581 7994 8302 8535 8741 8900 
2 2602 5370 7062 8042 8734 9232 9593 9863 10078 10227 
3 3105 6595 8588 9952 10872 11509 11952 12292 12548 12744 
4 3316 7245 9697 11180 12224 12918 13412 13802 14072 14278 
5 3416 7669 10403 12148 13339 14091 14639 15023 15307 15520 
6 3831 8821 12117 14048 15309 16131 16733 17164 17480 17717 
7 4527 10662 14292 16641 18093 19107 19814 20321 20693 20973 
8 4923 11846 16001 18624 20279 21401 22188 22759 23182 23503 
9 5300 12921 17178 19796 21501 11668 23499 24110 24570 24925 
10 5488 13528 17716 20257 21925 23082 23921 24549 25032 25412 

Generally, we have quite good agreement between Tables 1 and 6. Let 's  give an example of  how 

one value in the latter table is calculated. From Table 5, we have that r~4 = 1.092 .  Therefore, the 

estimate for Ys5 = 1.092 * 1 2 2 1 6  = 1 3 3 3 9 .  

The estimates for the ultimate paid amounts and the corresponding standard deviations are: 

AY Ul~mate S.D. 
I 9939 45 
2 11176 40 
3 13704 51 
4 15188 62 
5 16403 73 
6 18676 91 
7 22132 124 
8 24925 166 
9 26688 288 
I0 27629 583 

total 186459 980 
Table 7: Ultimate estimates. 

Comparison of  Tables 6 and 7 indicates that a considerable amount o f  liabilities lies in the tail. 
The standard deviation o f  the total is computed using (5.12). Under the assumption of  mutual 
independence of  ultimate estimates, the deviation of  the total would only be 700. Since the variance of  the 
sum is considerably greater than the sum of  the variances, we infer that the ultimate estimates have a high 
degree of  positive correlation. 

7. THE CHI SQUARE TEST 

In this section, we apply the chi square goodness-of-fit test to demonstrate the normality of  the 
results. We also show that the model without the scaling function does not satisfy the normality 
assumption. 

We define the normalized error as the quotient o f  the error and its standard deviation. From (3.3), 
we have: 

(7.1) e~ - - . 
s sin(%) 

The normalized errors should follow the standard normal distribution. To test i f  that indeed is the 
case, we divide the real line into five intervals: ( -  oo,- .  842), ( - .  842,-.  253), ( - .  253,253),  (.253,.842), 
and (.842, oo). We note that, i f  a random variable is normally distributed, each interval should contain 

20% of  the observations. We define the following two quantities: U~ as the number of  observed e t j ' s  in 

interval i ,  and /'~ as the number o f  expected eo  's. Then the quantity Z 2 is defined as: 
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It is well known that 2 '2 follow the chi square distribution with four degrees of  freedom. 

With s = . 0 2 9 8 ,  we obtain the following normalized errors from Tables 2 and 5: 

AY I 2 3 4 5 6 7 8 9 
I -0.160 0 .502  -0.740 -0.198 -0.366 -0.723 1252 1.073 -1.349 
2 1.044 -1.219 -0158 0 .199  -0.131 -0.336 0.388 -2.872 
3 -1.434 0 . 5 3 8  0 . 7 0 2  0 .556  -0.345 0 . 5 4 7  0.431 
4 -0,056 -1.005 0 .515  -0,253 -0.144 1.873 
5 0.383 0.525 1.446 -0.286 0.621 
6 1.183 -0.668 -0.451 -1.184 
'7 -0.997 0 .182  -0.817 
$ 0.269 0.656 
9 -0.145 

TIb le  8: The normaliTzcd error. 

In Table 8, if there are either large positive or negative values grouped in at least one column, then 
the distribution does not fit well the payment patterns. We do not detect such a scenario in Table 8. The 
expected and observed frequencies arc: 

Interval I 2 3 4 5 
V, 9 9 9 9 9 

Ut  7 9 10 13 6 

Table 9: The error fl'cquencies. 

The values in Table 9 give Z 2 =3.33. If  the normalized errors come from the standard normal 

distribution, then there is a 50% probability that the chi square distribution with four degrees of  freedom 
exceed 3.33. The normality assumption for the governing equation of(3.3) is therefore accepted. 

If  we use the model without a scaling function, many of  the normalized errors, 26 to be exact, are 

bunched together in the middle interval, and Z z =43.56. The probability of  the chi square distribution 
exceeding that value is nil. We therefore reject the normality assumption. In the next section, we discuss 
the reason why the model fails the test in that case. 

8. ORDERS OF ERROR MAGNITUDES 

In this section, we consider the differing orders of  error magnitudes, and how the proper 
recognition of  them is inextricably linked to the scaling function. We also indicate the reason that the 
model without the scaling function does not pass the normality test. We begin by considering the variances 

of  the two points at opposite ends of  the triangle, ql9 and q91 • 

From (3.3), the quantity q lg ,  which has the realized value of  1.0168, has the following formula: 

(8.1) q i l  = ri9 + ln(rl9)el9 

Taking the expected value of  (8. I), we get: 

(8.2) E { q , 9 } :  = r,.,o/R,, =Lo 75. 
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We obtain from (8.1) the variance as: 

2 2 
(8.3) Var(q,9 ) = Var(rl�)+ s [ln(rl�)] . 

The process error has the value: 

2 2 
(8.4) s [In(r,9)] = [.0298 * 1n(1.0175)] 2 = 2.7 * 10 -7 . 

To obtain the parameter error, we use the perturbation form for an ata factor of(4.3): 

[ (H,.,o 
(8.5) rt9 (/.t + A/t, cr + Ao', f + A r)  = rt9 I I  + / """ + 

Taking the variance of(8.5), we have: 

H19~ 

191[.~- ~ Var(/t) + A  = 3 .2"  10 -I.  

L', '. '° 

Combining terms, (8.3) gives a deviation of.000S. A normally distributed random variable with 
mean 1.0175 and deviation .0005 has a 10% probability of being less than 1.0168, the realized value. 

The estimate for Yl,10 can be obtained from (3.1) as: 

(8.7) Yu0 = Yl�q19 • 

The expected value of(g.7), given that Yt9 = 8747 ,  is: 

(8.8) E{y,.~oly,9 = 8747} = y,�E{q,9} = 8 7 4 7 ' 1 . 0 1 7 5  = 8900.  

And the variance of Yij0 is: 

(8.9) Var(y,.,o[y,9 = 8 7 4 7 ) =  y~�Var(q,°) = (8747 * .0005) 2 = 4.792 . 

A normally distributed random variable of mean 8900 and deviation 4.79 has a 10% probability of 
being less than 8894, the realized value. 

The point q�l, which has the realized value of 2.434, has the following formula: 

(8.10) q�~ = r�l + ln(r91)¢91 • 

The mean and the variance are: 

(8.11) E{q�, } = E{r�, }= F92/F�, = 2 . 4 3 8 ,  
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(8.12) Var(q91) = Var(rg,) + s2[ln(Gs)] 2 . 

The process and parameter variances are: 

(8 .13)  s2[In(rg , ) ]  2 = [ . 0 2 9 8 " 1 n ( 2 . 4 3 8 ) ]  2 = 7 . 1 " 1 0  -4 , 

(8 .14)  Vat(to,)= "l[ x~2 Var(I.t)+A + 8 '  = Fo, Var(z2) 2.7  * 10-4. 

Combining terms in (8.12) gives a deviation of .031. A normally distributed random variable of 
mean 2.438 and deviation .031 has a 45% probability of being less than 2.434, the realized value. 

The mean and variance of Y92 are: 

(8 .15)  E{Y921yg, = 5 3 0 0 } =  y91 *E{rg,}=5300*2.438=12921. 

(8 .16)  Var(Yg~lyg, = 5 3 0 0 ) =  y~,Var(qg~) = ( 5 3 0 0 " . 0 3 1 )  2 = 1652 . 

We note that the variances of qt9 and qg~ have very different orders of magnitudes. Their ratio 
is: 

(8 .17)  Var(qg,) : (  .028 "~ ~ 3 2 0 0 .  
Var(qt9 ) ~ . 0 0 0 7 )  

The variance of qg~ is therefore several thousand times that of q~9. This is not surprising, 
because there is much more development, and variability, at the former than at the latter. The relative 
values of 2.438 and 1.018 attest to this. We can carry this further by saying that the error of a point at full 
development is zero. This conclusion is not only re~.sonable, but also inescapable, if we think with this 
perspective: given a realized value at full development, the estimate at the succeeding period is known with 
absolute certainty, namely that very same value. We note that, at full development, the parameter error is 
also zero, because an infinitesimal perturbation of the parameters cannot nudge the c.d.f, from unity, 

The role of the scaling function is imperative in that it is the mechanism through which the 
different orders of errors are recognized. Without it, the process errors of(8.4) and (8.13) would be 
exactly equal, and the ratio in (8. [ 7) would be very close to unity. In effect, the model would not be able 
to differentiate the widely divergent orders of  errors. For points far from full development, the variances 
are understated; and for points close to full development, they are overstated. Because the normalized 
error is essentially the ratio of the actual error to the expected average error, the effect on it is just the 
opposite. For points far from full development, the normalized errors are overstated; and for points close 
to full development, they are understated. It is therefore not surprising that the model without the scaling 
function cannot pass the normality test. 

9. COMPARISON OF SCALING AND PROPORTIONALITY FUNCTIONS 

In this section, we want to compare the effects of different scaling functions. First, we set the 

proportionality function w(yl¢ ) = I in (3.4), then calculate the solutions to the Table I triangle using four 

different scaling functions, in addition to the logarithmic. In Table 10, we show the total liabilities, the 
deviations, the chi square values, and the implied percentages. 
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N , . e  b(r~ ) YT deviation Z 2  p . . . .  t co . . . .  t 

I logarithmic I n ( ¥ ¥  ) 186,459 980 3.33 50.4% good 

2 linear y~ _ ] 186,469 1095 5.11 27.6% good 

3 zquaro nmt (y¥ _ 1)112 186,794 1331 11.11 2.5% fair 

4 sqmtro ( r¥  -- l )  2 179,448 10146 10.00 4.0% poor 

5 no scaling 1 187,037 divergent 43.56 0.0% invalid 
r l  :I r l  [ i ; i l~,} ,,i.t., i ~,],l,) i~-.~1 i ~ ' 1 ~ I ~  

For the no scaling function, the infinite series for the process errors o f  (5.10) have no limits. 
The two best scaling functions are the logarithmic and the linear. Their" estimates are identical, for all 
intents and purposes. The logarithmic gives the slightly lower deviation and chi square value. 

Incidentally, as their argument  approaches unity, these two functions have the same asymptotic 
behavior. Symbolically,  

(9 .1 )  I n ( r ) -  r -  I, r - + l .  

No other function in Table I0 shares this property. We believe that the two functions do indeed have the 
correct  error scaling. 

We have analyzed quite a number  o f  different loss triangles. The logarithmic and the linear 
invariably give nearly identical estimates and deviations, but the former consistently gives the lower chi 
square values. We therefore select the logarithmic as the most appropriate scaling function. 

In Table 1 I, with the logarithmic scaling function, we compare  three proportionality functions: the 
linear, logarithmic and square root. 

n ,me y ~ w ( y ~ )  YT devi,tlon y 2  percent Comment 

I Linear y ¥  186,459 9g0 3.33 50.4% good 

2 Log~ithrnlc ]/ ' l(y~ ) 186,902 I 182 9.78 4.4% fair 

3 Squaro root 1/2 186,626 1041 5.56 23.5% fair 
Y~ 

Tlble I I: Comparison of proportionaiity functions. 

A m o n g  the three proportionality functions, the linear gives the least deviation and chi square 
value. 

From the results in Tables 10 and I I, we choose the logarithmic scaling function and linear 
proportionality function as the best combination. 

10. PARAMETRIZATION 

A solution is overparametrized if it quantifies at least one statistically insignificant coefficient. A 
solution is underparametrized if it omits at least one statistically significant coefficient. A solution has 
correct parametrization if it is neither overparametrized nor underparametrized.  

In general, overparametrization leads to a smaller sum o f  squares o f  errors. But this does not lead 
to greater accuracy.  This is manifested in two ways. First, the number  o f  degrees o f  ffreedom, the 
denominator  in (4.9), decreases, counteracting the smaller numerator.  Secondly and more importantly, 
since more variables have to be estimated, the mutual interference among  them increases and the elements 
o f  the inverse matrix in (4. I I) generally increase in absolute value. 
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Underparametrization has the reverse effects: the sum of squaras of errors increases, the number 
of  degrees of freedom increases, and the elements of the inverse matrix generally decrease. 

For the Table l triangle, Table 12 quantifies the results of parametrization. The 
ovcrparametrizatinn quantifies all function parameters up to and including the quadratic coefficients. The 
underparametrized solution quantifies only the base coefficients. 

Solution YT devinUon 

l Correct paxamettization 186,459 980 
2 Ove~"ametrizatlon 182.097 5490 
3 Unde~ameltizntion 188,852 2535 

Tnble 12: Patamctrization. 

The ove~aran~etrized solution has a much larger deviation, And, in this particular example, it is 
consistent. That is, ifthe solution of mean 182,097 and deviation 55490 indeed is correct and unbiased, 
there is considerable probability of attaining at least the correctly parameu'ized value of 186,459. 

Our experience indicates that overparametrization invariably leads to higher deviations. The 
reason for this is simple: the more variables there are to be estimated, the less accuracy with which they can 
be estimated. The decreased accuracy ~'anslates into higher parameter errors. In our numerical tests, we 
usually find the overparametrized solutions to be consistent. 

In this case, the underparametrized solution yields a consistent estimate and a higher deviation. 
But experience tells us that underparametrization can lead to inconsistent estimates and lower deviations. 
An underparametrized estimate is inconsistent when the difference between itself and the correctly 
parametrized estimate is well outside the range of the underparametrized deviation. The reason for lower 
deviations due to underparametrization is: the fewer variables there are to be estimated, the more accuracy 
with which they can be estimated. The reason for inconsistent results is: some statistically significant 
variables are being omitted. 

The discussion in this section indicates that, if high deviations and misleading results are to be 
avoided, we must insure correct parametrization. 

I I. DISCUSSION 

A) Cumulative distribution functions. We only use functions ofthree parameters, because we 
believe only they must have at least that number of  parameters to have the flexibility to describe real 
payment patterns. We identify four such candidates: the transformed log-normal, transformed normal, 
transformed log-gamma, and transformed gamma. We find all Paretu-type functions to be unstable in our 
iterative regression scheme. 

Of  the four functions, only the log-normal works well for Workers Compensation, Products 
Liability and Medical Malpractice, the longest tailed liability lines. But none works well for Commercial 
Auto Liability, Personal Auto Liability and Commercial Multiple Peril, the shorter tailed liability lines. 
Fortunately, we have developed a class of functions for the latter lines. We will present it in another paper. 

B) ?~pe of data. The data on which we tested these models have always been paid loss. The 
question is whether the model could work as well on reported data. As formulated in this paper, the answer 
is negative. We give two reasons for this and suggest a possible remedy. The two reasons are related. 

First, a c.d.f, is by construction monotonic from zero to unity. Often a reported pattern is not, 
surpassing unity at some intervals. This happens becanse of  over-reserving: case reserves were set higher 
than actual payments. In an ideal world with perfect case reserving, this would not happen, because, when 
reported, case reserves would be set at exactly the future paid amounts. Therefore the ideal incurred 
pallem would also be monotonic. And the flip side, under-raserving, must also be prevalent. The 
inference is that actual incurred amounts have errors, because the case reserves cannot be set with perfect 
foresight. 

And that brings us to the second reason. For this model, we assume that the actual paid amounts 
have no errors. While this certainly is not entirely true, it is much less true of reported data. Therefore, in 
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working with reported data, it is imperative that we account for the errors associated with the actual data. 
Since the two reasons are more or less related, one remedy may rectiffy both. 

For the y ¢  in (3.6), we use the actual amount, and assume there is no associated error. Instead, 

we could use the estimated value, which has a quantifiable error. In effect, we are saying that since actual 
reported amounts have unknown errors, we should instead work with estimated amounts, for which the 
errors can be estimated. This also has an additional advantage that addresses the first problem: even if the 
actual reported pattern is not monotonic, the theoretical pattern could still be. This very distinction 
between using the actual and estimated values goes back to the point made by MACK (1995). The model 
based on estimated, as opposed to actual, estimates, is another interesting avenue of research. 

With the above discussion in mind, an analysis of reported data, assuming that every theoretical 
obstacle can be overcome, may yield much higher parameter and process errors than that on the 
corresponding paid data. If such is indeed the case, there may not be much additional value in the 
consideration of  reported data. 

If paid data have considerable amounts of  salvage and subrogation, they can also be non- 
monotonic. In such cases, it may be best to analyze the data gross of salvage and subrogation. 

C) Advantages of the model. We generalize the difficulties of the traditional chain ladder fall into 
three categories: non-stochastic variations in the ata factors, limited information, and tail factor. We 
recapitulate how our model addresses each category. 
i. The model simulates the non-stochastic variations in the ata factors. The statistical significance of all 

parameters is systematically determined. We have tested six liability lines, those mentioned in the first 
segment of this section. We have considered loss triangles for both individual companies and 
industry-wide data in the United States. And we have yet to encounter a single triangle in which only 
the base coefficients are statistically significant. In every case, at least some non-stochastic variations 
are evident. 

ii. Limited information, as used in the traditional chain ladder, surfaces in a few instances. One is that 
averaging may only use the last few available years. Secondly, to estimate the ata factor in any 
development period, only information in that period is used. In contrast, to make the estimation at any 
single point, our regression scheme uses information available everywhere. This should decrease the 
parameter errors. 

iii. Our model gives the tail factor for each accident year. In addition, it yields the variance of an ultimate 
loss, and it clearly divides that'variance into parameter and process errors. 
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Appendix A: 
The Derivation o f  

a Perturbation Express ion 

In this appendix, we derive the perturbation expression in (4.3). All the other parturbation 
expressions can be obtained in a similar fashion. 

In pemzrbation theory, our objective is to express any quantity, such as the LHS of (4.3): 

(A.I) % ( ~  + A u,  o ' +  A o ' , r  + A t ) ,  

as a linear function of the increments (A~, AO', At ' ) .  
We use (3.2) to write (A. I) as: 

F ( j +  1 ; ~ +  AN, o" + Act, t. + At') 
(A.2) % (/ . /+ AN, or + A(x, t. + A t )  = F ( j ; / j  + A,u, cr + Act, t. + A t.) 

We need to express the denominator of (A.2) as a perturbation expression, which is just (4.2). 

(A.3) F(j; ~ + A u, cr + Act, r + A r)  = F(j; ~, or, t') + 

G(j;/p, or, t')A/z + H(j;/J, a, t')Ao" + K(j; ~, or, t')A t" 

= F~ + G~A/~ + H ~ A o ' +  K~At'. 

In (A.3), we expressly recognize that the function parameters may vary by accident years. Similarly, 

(A.4) F(j+I; /J+Ap,  o'+Ao',t '+At')= F,j+l +G,.j+tA/p+H,j+lAo'+Kkj.lAt'. 

If we now put (A.3) in the denominator, then we have: 

1 ! 

F ( j ; p  + A u, o ' +  Acy, t. + At.) Fig +G~Ap+H~Ao'+K~At" 

1 1 

I F  G . .  H~. K~ ] 

In (A.5), we retain only ~e linear term of the following Taylor's series expansion: 

1 
(A,6) - - =  1-  x + x2-A . 

1 + x  

When we substitute (A.4) and (A.5) into (A.2), we get precisely (4.3): 
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(A.7) ,<.+ ~ . . +  ~o.  + ~ ,  = .<.  o.,[, +/~.,,, ~j,, 

~,.,+, ~~-J"<'+t~,.,.--:~, 
Eve@ perturbation expression can be derived in a similar manner, and is simply the result of 

repeated and appropriate applications of the Taylor's series expansions. 

Appendix B: 
The Finite Limit  o f  the 

Process-Error  Infinite Series 

In this appendix, we prove that the infinite seres in (5.10) has a finite limit. It is sufficient to 
show that: 

~.,, :tI,o~,,l '<=, 
,-AL r, j 

where, without loss ofgenerality, we suppress the parameter dependency on time. A is some positive 
integer, which can be as large as we wish. 

We rewrite the ,equation for the a"ansformed log-normal of(2.2) as: 

(B.2) F(t)  = ~ [ ( l n t ) ' ; / a , o ' ]  = 1 -  ~ f ( t ) d t ,  
t 

where we use the partial density function: 

dF r ( ln , ) ' - '  - ½  (lnt - 
(B.3) f ( t ) =  dt - 2 ~  t exp ' 

To obtain the asymptotic form of the development factor, we use the definition of(2.1), and 
perform successive approximations: 

(B.4) r, 

1 -  S f ( t )d t  

"<'+"+ [ ! 1 [ ! ]  F(t)  7 ~ ! -  f ( t ) d t  1+ f ( t ) d t  
1 -  f ( t ) d t  ' • 

# 

t * l  

1 + f f ( t ) d t  ~ I + f ( t )  
t 
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Taking the log of (B.4) and retaining only the first term of the resultant Taylor's series, we obtain: 

(BS) In(r,) ~ ln[l + f ( t ) ]  = f ( t ) .  

We simplify the elements of the series in (B. I) as: 

<=.o> F'*,~l'~[..,>] .. (~,)'"-" F f(~,)'-.l~l 
~,, = "~'<'>'5 7 ° ' t - t - ~ - J  J 

Therefore, (B,I) is satisfied if we have the following equality: 

( In t ) " ' - "  F COn') ' -  l ~ l ' l  

'=~' ~ '-~--e='[-I J<" 
where we drop all multiple constants. Equation (B.7) is in turn satisfied if we have the following integral 
inequality: 

~0~')"'-" [ fO~,l'-~Vl 
<=.=, !~-°=,L-t~-~- J j=,,. 

We can certainly pick an A such that: 

( lnt)  =('- ' '  
(B.9) - - < 1 ,  A < t .  

t 

Therefore, we have the following inequality: 

'('nt) 2('-') r {(,n,)'-#'~'] <Sexp[-{ ('n,)~-~/21~. 
<=.,o, !--T-='L -L~-~-J J~ ' .  c ~ ~ ~J '  
We make the following substitutions: 

(In/) ~- / .2  o" dx d, I /  

(B. I I )  x - - - ,  - , p = l - y r .  
o" ~ (o .x_ ~) '-'/~ , 

With (B. 11). equation (B. I 0) can be written as: 

z a 

(B.12) dx < oo, B = - -  
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The inequality in (B.12) holds, irrespective of the value of p ,  since the exponential decays much 
faster than any power of x .  

We thus prove the inequality of(B.I). This line of argument is applicable to any distribution, the 
partial density function of which decays exponentially. 
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