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ABSTRACT 

New treatments of  stochastic modeling and error 
correlation in dynamic financial analysis are 

introduced. The former refers to the methods for 
modeling individual insurance operations. The latter 

refers to the technique for considering the 
interactions and correlations among those 

operations. The stochastic chain ladder model, a 
new technique for loss development, is also 

introduced and is shown to be an integral part of  
DFA. 
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I. INTRODUCTION 

Dynamic financial analysis is now segregated into two different philosophies: that of stochastic 
simulation, and that of scenario testing. Feldblum ~ discussed the strengths and weaknesses of the two 
approaches. We believe that the two need not be separate and competing, but indeed need to be 
complementary. With the model proposed in this paper, we hope to narrow the gap between these two 
approaches. 

The construction of this model is motivated principally by four factors. The fast two, qualitative 
in nature, are understandability and flexibility. The other two, quantitative in nature, are the stochastic 
modeling of individual insurance components and the error correlation among those components. 

Many users and interested parties of a dynamic financial analysis model are not actuaries and 
technical analysts. Therefore, it is important that these users can gain, relatively easily, a good 
understanding and confidence in the model. 

Secondly, the usage to which a model will be applied varies widely. In some studies, the analyst 
may only be interested in the overall picture; and relatively few insurance operations need be modeled. In 
another study, a relatively large number of operations needed to be included, because more delailed 
quantitative analyses are required. A model should have sufficient flexibility to suit both extremes. 

To satisfy the above two factors, our model is controlled by a set of governing equations. One or 
more oftbese equations describes each operation. The model has understandability, because each equation 
is usually a readily accepted insurance formula. The model has flexibility, because the number of 
equations can be expanded or contracted, depending on the needs and objectives of the analyst. 

There can be several stochastic models for generating observations of an insurance variable, such 
as the loss ratio or the investment return. By far, the most popular among actuaries is the averaging 
technique, where the observations are assumed to be random about some average. In a subsequent section, 
we present two other alternatives, which we name the current-value and current-change models. We show 
that they fit the historical data used in this study better than the averaging technique. These two models 
have analogies in time-series analysis. 

An important consideration in any DFA model is the correlation among the variables considered 
in the analysis. Depending upon the sign oftbe correlation between two variables, the correlation can be 
either stabilizing or destabilizing, a concept that we will elucidate in section 4. The correlation coefficients 
among the variables will be measured. As a natural and necessary by-product, we present a technique for 
the generation of correlated random numbers. 

In this paper, we aim only to demonstrate the concept and potential of the model. We have 
simplicity as one of the objectives of the paper; therefore, the number of operations has been kept to a 
relative few. We will study a hypothetical insurer, which is assumed to have written only Workers 
Compensation for the last ten years. Our study projects five years into the future. At the end ofthat time 
frame, among other quantities, we want to examine the probability ofroin. To work with realistic data, all 
of the relevant data has been taken from the 1997 Best's Aggregates and Averages publication. 

In section 2, we present the governing system of equations used in this study. In section 3, we 
present the hypothetical initial state of the company 

In section 4, we present the stochastic modeling of the insurance random variables. In section 5, 
we model paid losses. For this purpose, we will introduce our research on the stochastic chain ladder and 
Bornhuetter-Ferguson loss reserving models. 

In section 6, a technique for the generation ofcorrelated random numbers will be introduced. In 
section 7, we pull together the materials in all the preceding sections to generate simulated solutions for the 
next five years. 

In section 8, we show that the simulated results can be assumed normally distributed. In section 9, 
we outline the many potential extensions to the model. 

In the concluding section, we summarize and discuss the criteria by which a user of dynamic 
financial analysis would evaluate one strategy or decision as being superior to another. 

Sholom Feldblum, "Forecasting the Future: Stochastic Simulation and Scenario Testing." Incorporating 
Risk Factors in Dynamical Financial Analysis. 1995 CAS Discussion Paper Program. 
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2. GOVERNING SYSTEM OF EQUATIONS 

Following is the list of  random variables that we consider for this hypothetical study: 

AS = Assets, 
L I  = Liabilities, 

S U  = Surplus, 
P L  = Paid Losses, 
]L = Incurred Losses, 
11 = Investment Income, 
EP = Earned Premiums, 
P D  = Paid Policyholders' Dividends, 
PE = Paid Underwriting Expenses, 

W P  = Written Premiums, 
I IR  = Investment Income Ratio, 

U E R  = Calendar-Year Underwriting Expense Ratio, 
P D R  = CY PoLicyholders' Dividend Ratio, 
E P R  = CY Earned Premium Ratio, 
L R  = Accident-Year Loss and LAE Ratio, 
F = value of the loss cumulative distribution fi.mction, and 

= process error of the paid loss. 

Each ofthe variables takes the argument of time. It is an understood that a variable refers to the 
value during that year (such as written premiums and paid losses) or at year-end (such as assets and 
liabilities). For simplicity, we will consider only yearly intervals. 

Consider the following system of nine equations: 

(2.1) A S ( t )  = L I ( t ) + S U ( t )  

(2.2) L1(t) = LI ( t  - 1) - PL(t )  + 1L(t) 

(2.3) AS( t )  = AS( t  - 1) + WP(t)  + 11(0 - PL(t)  - PE( t )  - PD(t )  

(2 .4)  E P ( t )  = E P R ( t )  * [rrP(t - 0 + w e ( t ) ]  

(2 .5)  l l ( t )  = l l R ( t )  * A S ( t )  

(2 .6)  e E ( t )  = U E R ( t )  * W P ( t )  

(2 .7 )  C O ( t )  = e O R ( t ) *  E e ( t )  

(2.8) 1L(t) = LR(t)  * EP(t)  

(2.9) eL( t )  = ~ LR(i)  ° EP(i)  * [F(k  + 1 ) -  F(k)]* (1 + z) 
all AY 

Even though there are many variables, many of them are inter-related. In fact, only five of them 
are independent. They are the investment income ratio (fIR), the U/W expense ratio (UER), the dividend 
ratio (PDR), the earned premium ratio (EPR), and the loss ratio (LR). In section 4, we will model the 
stochastic behaviors of these ratios from historical data and calculate their correlations. In section 6, we 
will simulate correlated random numbers for the ratios. 

The most complex equation in the above set is (2.9), which is the sum of the paid losses for all 
accident years up to the evaluation date. In section 5, we will explain our stochastic loss reserving models 
and the workings of (2.9). 

This is only an example of a set of governing equations. The analyst designs the exact set to meet 
his own needs. This offers great generality and flexibility. 
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3. THE INITIAL STATE OF THE COMPANY 

Our insurer has been in existence for the [ast ten years, and writes only Workers Compensation. 
In the following table, loss ratios, earned premiums, paid losses, and liabilities for the past ten years are 

Table 1: The Initial State of the Company 

listed. 

AY LR Ear. Prm Inc. Loss Paid Loss Liability 
1987 91.19% 5,002 4,562 4,209 353 
1988 92.91% 5,403 5,020 4,558 462 
1989 93 36% 5,835 5,471 4,865 606 
1990 91.72% 6,302 5,780 4,997 783 
1991 85.15% 6,806 5,795 4,819 976 
1992 74.40% 7,350 5,469 4,299 1,170 
1993 72.50% 7,938 5,755 4,150 1,605 
1994 72.14% 8,573 6,185 3,859 2,326 
1995 74.2 I% 9,259 6,871 3,232 3,639 
1996 75.77% 10,000 7,577 1,593 5,984 

The loss ratios were obtained from Schedule P - Part ID of the Best's Aggregates & Averages 
publication. The incurred loss is the product of the loss ratio and the earned premium. The paid loss is a 
function of the incurred loss and the cumulative distribution function, which will be explained in section 5. 
The liability is the difference between the'incurred and paid losses. 

We assume the following initial linbi]ities, surplus and assets, with the initial year being 1996: 

(3.1) L I ( 0 ) = 1 7 , 9 0 4 ;  S U ( 0 ) = 6 , 6 6 7 ;  A S ( 0 ) = 2 4 , 5 7 0 .  

The total liability is the sum of the last column in Table I, and (3.1) satisfies (2.1). We assume 
that the insurer has the following target written premiums for the next five years: 

Table 2: Target WP 
Year WP 
1997 10,800 
1998 I 1,664 
1999 12,597 
2000 13,605 
2001 14,693 

We could as easily assume that the written premium is a product of the premium-to-surplus ratio 
and the surplus: 

(3.2) • w e ( t )  = P S R ( t )  * S U ( t  - 1). 

In such case, we would add (3.2) to the set of goveniing equations in the previous section. We elect not to 
follow this route, primarily because of a lack of historical data for the Workers' Compensation premium-to- 
surplus ratios. The analytical treatment of the two cases is similar. 

4. STOCHASTIC MODELING OF THE INSURANCE RATIOS 

In this section, we present the modeling of the loss and LAE ratio, the UIW expense ratio, the paid 
dividend ratio, the investment income ratio, and the earned premium ratio. The first is on an accident-year 
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basis; the others on a calendar-year basis. All are taken from Best's Aggregates & Averages - Cumulative 
by Line Underwriting Experience. 

YEAR LR UER PDR IIR EPR 
1987 91.19% 15.00% 7.20% 10.20% 
1988 92.91% 13.40% i 9.40% 10.90% 51.20% 
1989 93.76% 13.00% 7.10% I 1.40% 51.30% 
1990 91.72% 13.40% 5.60% 10.80% 51.40% 
1991 85.15% 14.60% ! 6.00% I 11.70% 52.80% 
1992 74.40% 16.50% 6.50% 16.60% 50.60% 
1993 72.50% 17.20% 6.60% ] 14.60% 48.10% 
1994 72.14% 18.60% 9.20% t 13.90% 46.40% 
1995 74.21% 20.30% 9.50% 16.70% 46.30% 
1996 75.77% 23.30% 9.00% 16.90% 47.60% 

The corresponding ratios for future years are, of  course, random. The simulation of  the random 
numbers is determined by the historical patterns. There are two things to consider in these patterns: the 
pattern within each set of  ratios, and the correlation between any two sets of  ratios. 

To determine the pattern within each set of  ratios, we consider three models: the average-value 
model, the current-value model, and the current-change model. For a given set of  data, we pick the model 
that gives the least error deviation. 

The average-value, or the averaging, model states that a random number is normally distributed 
about some average: 

(4 .1)  x~ = x + ,s , .  

The first term on the right-hand side (RHS) of  (4. I) is the average; the second is the uncorrelated errors of  
mean zero and some standard deviation. If  we apply (4.1) to the loss ratios of  Table 3, we have: 

( 4 . 2 )  x 8 2 . 4 % ,  O ' (C~)= C = 9 . 3 7 % .  

Therefore, the loss ratios have a mean o f  82.4%, and the standard deviation of  the errors is 9.37%. Note 
that n is the number o f  observations, and the degree of  freedom is one less than that value since an average 
has to be estimated. 

There are two sources oferror  in the average-value model. There is the parameter error, 
associated with the uncertainty in the estimation of  the average. Also, there is the process error, which is 
associated with the random errors. 

If we take a closer look at the loss ratios in Table 3, the average-value model does not seem to be 
appropriate. In the earlier years, 198%91, all the ratios arc greater than the average. In the later years, 
1992-96, they are all smaller. Therefore, we next propose the current-value model: 

(4 .3 )  x i .  I = x i + e't. ~ . 

This model says that a random number tends to stay about its current value. The errors are assumed to be 
uncorrelated and of  mean zero. If we apply (43 )  to the loss ratios, we get: 

( 4 . 4 )  o ' ( ¢ j )  = ,s = 4 . 4 4 % .  

2 1 2  



The deviation of  the average-value model is much greater than that of  the current-value model, 
indicating that the latter is a much better fit for the observed loss ratios. . 

Contrary to the average-value model, there is only one source of  error in (4.3), the process error, 
since no parameter has to be estimated in that equation. 

If we look even more closely at the loss ratios in Table 3, we notice that an increase in the ratio 
tends to be followed by another increase, a decrease tends to be followed by another decrease. Therefore, 
we propose a third model, the current-change model: 

(4 .5 )  %÷1 = xi+~ - x i ,  z~+~ = z i +E~+~. 

This model says that the next change tends to be equal to the current change. And, like the current-value 
model, it only has process error. I f w e  apply (4.5) to the loss ratios, we get: 

(4.6) a(ee,) = I l - z e a l  ''2 =4.09%. 
t,n ~ J 

Since the current-change deviation is smallest, it represents the best fit, and we choose it to model the loss 
ratios in our analysis. 

It makes a great deal of  difference which model is chosen to represent a set of  random variables, 
For instance, if we choose the average-value model for the loss ratios, then the simulated 1997 loss ratios 
have a mean o f  82.4% and deviation o f  9.37%, as shown in (4•2). If  we choose the current-value model, 
they have a mean of  75.8% and deviation of  4.44%. If we choose the current-change model, they have a 
mean of  77.4% and deviation of  4.09%. 

For the other four ratios, we will use the current-change model. The error terms have the 
following deviations: 

Table 4: The Standard Deviations of  the Ratios [ 
LR UER PDR fIR [ EPR I 4.09% 1.57% 1.49% 2.06% [ 1.49% 

We now turn to the calculation of  the correlation between any two sets of  errors. Let 's consider 
the loss and the dividend ratios. They have the following errors: 

Table 5: Values of two Error Sets 
YEAR LR I PDR 

1988 .022 
1989 -.009 -.023 
1990 -.029 -.015 
1991 -.045 •004 
1992 -.042 .005 
1993 .089 .001 
1994 .016 .026 
1995 .024 .003 
1996 -.005 -.005 

The correlation coefficient of  the two sets in Table 5 equals •185. The correlation coefficient is 
defined as: 

(4.7) p(A, B) = Coy(A, B) 
~r(A)o-(B) 

l 'he correlation coefficients among the five ratios are found to be: 
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Table 6: Correlation Coefficients of the Five Insurance Ratios 
LR UER PDR IIR EPR 

LR 1.000 0.000 0.185 -0.528 -0.486 
UER 1.000 0.000 0.000 0.132 
PDR 1.000 0.000 -0.429 
IIR 1.000 0.000 

EPR 1.000 

For any coefficient with an absolute value smaller than. 1, we assume it to be statistically insignificant and 
set it equal to zero. 

For this study, we use the empirical coefficients. For a genuine study, the analyst should decide 
whether the observed correlations seem reasonable. He may decide to override them ifthey do not. 

The significance of Table 6 is this: not only should the simulated folios have the deviations in 
Table 4, but they should have the correlations shown there. These have real consequences regarding the 
stability of the insurance process. For instance, that the loss and investment ratios have a negative 
correlation is destabilizing. The negative correlation means that a higher-than-average loss ratio tends to be 
coupled with a lower-than-average investment ratio, and vice versa. Taking the former case, the higher- 
than-average loss ratio means more loss payments, and the lower-than-average investment ratio means less 
investment income. If two quantities in conjunction tend to have the same effects on the balance sheet, 
then the correlation is destabilizing. Conversely, if they tend to impart opposite effects, then the correlation 
is stabilizing. 

Every correlation in Table 6 destabilizes, except for the positive correlation between the expense 
and the earned premium ratios. In this case, if the insurer experiences higher-than-average expenses, then it 
also experiences higher-than-average earned premiums. The two have opposite impacts on the balance 
sheet, because the higher outgo (expenses) counteracts the higher income (earned premiums). 

We emphasize that there are other reasonable stochastic models for the variables. This aptly 
demonstrates the tremendous flexibility and variety available to the analyst. The bottom line is that he 
should have confidence that the underlying model is representative of the future. 

We are grateful to a review who pointed out that the current-value and current-change models 
have analogies in time-series forecasting. 

5. STOCHASTIC MODELING OF PAID LOSSES 

We have developed two stochastic loss reserving models: one based on the traditional chain ladder 
method, and the other on the Bomhuetter-Ferguson method. We have written a paper on each of these 
models.23. The interested reader should contact the author for copies of  the papers. 

Basically, we model the stream of paid losses for an accident year as a function of a cumulative 
distribution function. The function that we use for Workers Compensation loss payment is the transformed 
lognormal: 

(5.1) F(t;/~,cr, r)=~tgn(Int)llnt[';/2,o- }. 

In (5.1), ~ is the normal distribution of mean /1 and deviation o ' .  The argument t is measured in years. 

Let an accident year have earned premium EP and loss ratio LR. Let Y, be the incremental 

loss payment for that accident year between the report years- t and l + I .  Then the stochastic Bornhuetter- 
Ferguson model gives the following relationship: 

2 Son T. Tu, "The Application of Cumulative Distribution Functions in the Stochastic Chain Ladder 
Model," Scruggs Consulting Research Paper. This paper is in. the process of publication in the Casualty 
Actuarial Society Forum. 
3 Son T. Tu, "The Stochastic Bornhuetter-Ferguson Model," Scruggs Consulting Research Paper. 
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(5.2) Y,,  = E P * L R * [ F ( t + I ) - F ( t ) ] * ( I + c , . , ) ,  

where the process error C I is a normal distributed random variable of zero mean and some deviation. 

In our paper on the stochastic Bomhuetter-Ferguson model, we demonstrate how to fit (5.2) to a 
triangle of incremental payments and come up with estimates of the function parameters. From an actual 
Best's Aggregates and Averages paid loss u-iangle, we derive the following estimates: 

Table 7: The Estimates for the Parameters  
Estimate Deviation 

/3 .7840 .0591 

o" .9733 .0360 

z" .9286 .0352 

If we use the estimates in Table 7 in (5.1), then we can obtain the following values for the 
distribution function: 

Table 8: The Values of the Cumulative Distribution Function 

F .2103 [ I [ I ] 1 " 4 7 0 3  .6239 .7211 .7861 .8316 .8646 .8892 .9080 

Table 8 says that, after one year, 21.03% of payments for any accident year has been paid. After 
ten years, 92.27% has been paid, and therefore 7.73% has yet to be paid. 

The function parameters also have the following matrix of correlation coefficients: 

Table 9: The Matrix of  Parameter  Correlation Coefficients 

1.000 .9815 -.7633 

1.000 -.8180 

f I .ooo 

The way that we use (5.2) in the DFA model is as follows. For any calendar year, the loss 
payments are the sum of  the paid losses for all accident years. The paid loss for each accident year is 
modeled by (5.2). 

For the ten accident years in the past, we assume that the earned premiums and loss ratios are 
fixed, given by the values in Table 1. For the five accident years in the future, the earned premiums and 
loss ratios are stochastic quantities, given by numerical simulation. For this exercise, the process error in 
(5.2) has a standard deviation of  10.36%. 

6. GENERATION OF CORRELATED RANDOM NUMBERS 

Section 4 shows the necessity to generate five correlated insurance ratios. Section 5 shows the 
necessity to generate three correlated function parameters. In this section, we present a general technique 
to generate correlated random numbers. For instance, from Table 4, the errors of the loss ratios and the 
investment income ratios have expected deviations of 4.09% and 2.06%, respectively. But additionally, 
from Table 6, those errors have an expected correlation coefficient of°.528. In this section, we will 
introduce a technique to generate errors with the desired correlation characteristics. We will present some 
very technical work, which is needed for the sake of stochastic realism. But the reader may decide to skip 
this section without fear of losing the continuity among the other sections. 
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We will work with three variables. The technique can be easily generalized to any number of 

variables. Let's suppose that we need to generate three normally distributed random numbers X ,  Y, Z ,  
and together they have the following variance matrix: 

(6.1) 

Var(X) Cov(X,Y) Cov(X,Z)] 
Var(X) = |Cov(X, Y) Var(Y) Cov(r, Z) |. 

I I LCov(X,Z) Cov(Y,Z) Vat(Z) J 

Instead of this problem, we are going to generate three uncorrelated normally distributed numbers 

A, B, C such that: 

IVar(A) 0 ] 
(6.2) Var(A) = Var(B) O0 

[ O0 O V a r ( C )  

Note that the second problem is much simpler than the original one. 
We express the two sets of numbers as: 

(6.3) A = X ,  

B= Y +b~X, 
C = Z  +c~X +c~Y, 

where b~ ,c~ ,¢2 are unknown variables to be found. We will use the condition of no correlation among 

,4, B,C to determine these unknowns. The condition that 

(6.4) Cov(A, B) = O. 

We apply (6.4) to the first two equations of(6.3) to derive: 

(6.5) btVar(X ) = -Cov(X,Y). 

The conditions that 

Cov( A, C) = Cov( B, C) = O, (6.6) 

yield 

(6.7) c I Var(X) + czCov(X , Y) = -Coy(X, Z),  

c~ [Var(r) + b, Cov(X, Y)] = -Cov(Y, z)  - b, Cov(X, Z). 

The first equation of(6.6) and the first and third equations of(6.3) give the first of(6.7). The 
second equation of (6.6) and the last two equations of(6.3) yield the second of (6.7). Equations (6.5) and 

(6.7) give the values of the unknown b z ,c  I ,c  2 . Taking the variance of(6.3), we have: 
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(6.8) Var(A) = Var(X), 

Var( B ) = Var( Y) + b ~ Var( X ) + 2b, Cov( X,  Y), 

Var( C) = Var( Z) + c~ Var( X )  + c~ Var( Y) + 2[ctCov( X , Z) + c~Cov( Y, Z) + ctc2Cov( X , J 

Now we generate three uncorrelated random numbers with the variances in (6.8). Then we can 
invert (6.3) to obtain: 

(6.9) X = A, 

Y = B -b IX ,  

Z = C - q X - c ~ Y .  

In summary, we generate three uncorrelated random numbers A, B,C. Their variances are given 

by (6.8). Then we derive X ,  Y, Z from (6.9). The latter set of random numbers has an expected variance 
matrix of(6. I). 

This technique can be used for any number ofcorrelated variables. The equations for the 
unknown coefficients, corresponding to (6.5) and (6.7), become quite long and involved, but they fit a very 
regular and predictable pattern. 

7. NUMERICAL SIMULATION 

In this section, we outline the numerical simulation scheme to obtain quantitative results ofthe 
modeled insurance process. In this scheme, we conduct 200 trials. For a genuine analysis, at least 1000 
should be done. 

We want to project the study five years into the future. For each year and for each trial, we 
generate five random numbers for the five insurance ratios discussed in section 4. In the generation of the 
random ratios, we take into account the correlation coefficients in Table 6. For instance, the 200 loss ratios 
have an expected deviation of 4.09%, and the 200 dividend ratios have an expected deviation of 1.49%. 
Moreover, the 200 pairs of loss and dividend ratios have an expected correlation coefficient of.185. As we 
mentioned earlier, the loss ratios and earned premiums for the past ten accident years are considered non- 
stochastic, and shown in Table 1. 

For each trial, we generate a set of three function parameters, for use in the Iognormal cumulative 
distribution function, having the variances and covariances shown in section 5. This accounts for the 
parameter errors in the paid losses. For each incremental payment, we also generate the process error in 
(5.2). 

For each trial, we substitute the simulated numbers into equations (2.1)-(2.9). Therefore, for each 
random variable at each time t ,  we have a series of 200 realized values. Then we can simply take the 
mean and deviation of these values, which represent the mean and deviation of the random variable. 

8. NORMAL DISTRIBUTION OF NUMERICAL RESULTS 

From the numerical simulation, we can obtain the estimate and deviation of any random variable. 
Ideally, we would want to approximate every random variable as being normally distributed, because then 
the percentiles for the variable can be readily estimated. In this section, we will use the chi square 
goodness-of-fit test to show that the variables are approximately normally distributed. 

Among the numerical details, in this section we look only at the surplus, The following table 
gives the means and deviations of the surplus for the next five years. It also includes the probability of 
ruin, (defined as the insurer having negative surplus), the number of expected ruins, and the number of 
observed ruins, among the 200 trials. 
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Table i0: Numerical Results of the Surplus 
Year Mean Deviation % ruin Expected Observed 

0 6,667 0 
1 10,455 830 0.0 0 0 
2 15,071 1,871 0.0 0 0 
3 20,199 4,372 0.0 0 0 
4 26,356 8,595 0.1 .2 0 
5 33,770 14,699 1.1 2.2 2 

To establish the ruin probabilities in Table 10, we assume the distribution oftbe surplus to be 
normal with the given, means and deviations. We then compute the probability that the surplus reach zero 
in any given year. The expected number of ruins is then the product of that probability and 200. The fact 
that the expected and observed values are very comparable indirectly validates the merit of our approach. 

To establish percentiles, we can of course take the distribution found among 200 trials. But a 
more desirable and convenient way would be to establish that the simulated results are approximately 
normally distributed. We note that the assumption of normal distribution cannot be taken for granted, 
since, even though the simulated random numbers are assumed normally distributed, equations (2. I).-(2.9) 
contain products of normally distributed simulated numbers, which generally do not follow that 
distribution. 

For a numerical example, we take the surplus of the fifth year, and see if the simulated results 
could be reasonably approximated as being normally dis~buted. We use the chi-square goodness-of-fit 
test to either validate or reject this assumption. For the fifth-year surplus of mean 33,770 and deviation 
I4,699, we divide the whole spectrum of (---~o, oo) into ten intervals of equal probability. For instance, the 
second interval runs fi'om 14,933 to 21,399, representing the 10 th and 20 ~ percentiles, respectively. If the 
distribution is normally distributed, 20, or I0%, of the outcomes would be expected to fall into this interval. 
The following table presents the observed and expected frequencies for our simulated set: 

Table I 1: The Chi Square Test for the Fifth-Year Surplus 

Obs. ll7 221 235 I 149 I :6 [ :8 I 178 187 199 20 l0 
Exp. 20 20 20 20 20 20 20 20 20 20 

The chi-square value is: 

(8.1) z ~ = ~ ( ° ' :  ~')~ E- ~ = 6.50. 
i-I 

.2 .2 should follow the chi-square distribution with nine degrees of fi'eedom, giving a probability of 69%. 
In other words, if the 200 simulated fifth-year surplus values are normally distributed, there is a 69% 
probability that their chi-square value would be greater than 6.50. Therefore, the normal-distribution 
assumption is accepted. 

We use the chi-square test on many of the random variables, and, by and large, the assumption of 
normal distribution is reasonably satisfied. 

9. EXTENSIONS OF THE MODEL 

In conducting the study, we use historical data. In other words, we assume that our insurer would 
continue on the same trends as found in the past. But we can also use scenario or assumed data in the 
model. For instance, after looking at the probabilities of ruin in Table I I, management finds them too 
great, and decides on two simultaneous changes in operations. First, written premiums could be curtailed. 
Secondly, underwriting standards could be strengthened, so as to decrease the level and variability of the 
loss ratios. If the analyst can quantify these changes, they can be built into the model. The model can in 

218 



turn quantify the degrees of  the necessary changes, in order to decrease the probabilities o f  rain to 
acceptable levels. 

The model can be used as a tool of  scenario testing. For instance, the analyst may discard the 
historical loss ratios, and decides a future loss ratio of  75% with a deviation of.05 is reasonable. He can 
then carry out the simulation and analysis with these scenario values. 

For the study, we chose a situation as simple as possible. But the model offers great flexibility. 
As more and more operations are added to the analysis, the number of  governing equations would increase. 
Below we list some of  the many other operations that the model can readily accommodate. 

Muhi-lines insurer: We expect that as more lines are added, the financial results would stabilize. 
This is especially t2"ue i f  the loss ratios of  the various lines have no or negative correlation. 

Differing investment strategies: We can allocate the available investment assets into different 
segments, such as bonds, stocks, and real estate. We can also consider sub-segments within each major 
category: such as, taxable versus tax-exempt bonds. The model can give us an idea of the optimal 
investtnent strategy, given a corporate objective, such as growth versus stability. 

Tax liabilities: This item can be readily built into the model. 
Interest rates and inflation: These two affect the investment income and the loss payments. There 

are many theories concerning how inflation affects the stock and bond markets. Once the analyst decides 
to use a particular theory or model, it can be readily integrated into the framework of our DFA model. 
Regarding the loss payments, things are not so apparent. There are many ad-hoc techniques to account for 
inflation. But to our knowledge, there is no mathematically rigorous model that can explain how inflation 
affects insurance loss payments. 

Reinsurance: Two aspects of.this item may be considered. One is the default rate of the 
reinsurers. A default occurrence can be modeled as a Poisson process. Secondly, we can consider different 
reinsurance strategies, such as excess versus quota-share, and their effects on the balance sheet. 

Catastrophes: Ifthe insurer has much property exposures, we have to consider this aspect. An 
existing software package can be incorporated into this model. 

Varying payment patterm: For the same line of business, the payment patterns for the different 
accident years may vary. We analyze this situation in our loss-reserving papers. For this study, we 
simplify, and elect not to account for the varying patterns. 

SAP/GAAP bases: The model can be used in either basis. In the latter, unrealized capital gains, 
deferred acquisition costs, etc. have to be considered. 

I O. CONCLUSION 

We have presented a dynamic financial analysis with two key ingredients: stochastic modeling of 
the individual operations and the error con'elation of  the operations in concert. One of  its strengths lies in 
its use of  the set of  governing equations. 1"his set can be contracted or expanded, depending on whether the 
actuary wants a simpler or more extensive analysis. 

A user of  dynamic financial analysis can evaluate the desirability of  a strategy over another on 
several criteria: stability, profitability, and growth, among others. For stability, he should determine that 
the variability of  the results and the probability of  ruin are kept to acceptably low levels. For profitability, 
he should look at the overall income, which in our simplified example is: 

(l O. 1) EP(/ )  + II( t )  - IL(t)  - PE( t )  - ' P D ( t ) .  

In our example, we assume built-in growth. But we can certainly model it as a function of  other variables, 
such as equation (3.2). 

We note that the three aforementioned criteria are in many ways conflicting. But with dynamic 
financial analysis, the user has a better idea o f  wber¢ the best compromise lies, given the objectives and 
constraints of  the company. 
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