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Abstract 

As catastrophe modeling systems become more sophisticated, the property insurance portfolio manager can 
receive better account loss information than ever before. We describe a software system called 
SmartWriter which effectively processes this information for the portfolio manager. Specifically. the 
system deterounes: 

• Appropriate pricing for an account 
• Which accounts to remove from a portfolio to maximize risk-adjusted return 
• How to merge two books of business 
• Where to grow or shrink business geographically to achieve maximum diversification benefits 

We utilize a number of optimiTation techniques to address these issues. We formulate the problem as a 
large mathematical program with numerous loss scenarios (lO,O00 or more). We then describe an 
algorithm to solve the resulting stochastic optmaization problem in order to maximize risk-adjusted return. 
expected utility, or other uscr..defined porformance measures. 

The SmartWriter system is a PC-based Windows application. USF&G, a large propeR" and casualty 
insurance company, currently employs SmartWriter as an integral part of its decision making process. 



1. Introduction 

'The insurance portfolio manager and underwriter require sophisticated analytical tools to assist 
decision making. Just as an asset portfolio manager, such as a mutual fund director, can 
immediately see the effects of  adding a security or option to his portfolio's risk and return profile, 
the insurance portfolio manager needs to understand the effects of  adding an additional account to 
the business line. In addition, there are many other issues the manager must address, such as: (1) 
Should an existing account be renewed and, if so, at what price? (2) Where are the best areas to 
expand the current portfolio? (3) How can two books of business be merged profitably? 

We have developed a decision support system, called SmartWriter, which answers these 
questions for one application area, the catastrophe property business. SmartWriter employs data 
from earthquake and hurricane modeling systems to show the effects of  adding a now account or 
subtracting an existing account from the current portfolio. In addition, SmartWriter optimizes the 
portfolio composition to produce a portfolio meeting user-specified characteristics. Although we 
are describing SmartWriter in the context of  catastrophe prope~y, the methodology applies to 
Directors & Officers, Errors & Omissions, Workers Compensation, and ocher insurance lines. 

The paper proceeds as follows. Section 2 .describes the method for evaluating an incremental 
account and the return on capital mo~'.hodology. Section 3 lays out the optimization model to 
address the questions raised above. The algorithm for solving the problem is described in Section 
4, and results are presented in section 5. We conclude with some next stops in Section 6. 

2. Modeling an incremental account 

Suppose we have a portfolio of insurance liabilities. As an example, we look at a portfolio of  
commercial businesses insured against earthquakes in California by USF&G, a large property and 
casualty insurance company. A potential new piece of business is presented to the portfolio 
manager, who must decide whether to write the account or reject it. Of course, some negotiating 
with the insurance broker who presents the account is possible, so the portfolio manager would 
also like to know the required premium to meet a profitability hurdle. Before analyzing the 
incremental business, we need to d0'fine a profitability measure for the existing portfolio. Two 
measures are return on allocated capital and expected utility. 

2. I Return on Capital 

In this method, capital is assigned to a portfolio (or business unit) based on the risk of the 
portfolio. Risk is calculated based on characteristics of  the cumulative loss distribution and 
portfolio profitability. For the catastrophe property business, capital is often a function of points 
in the tail of  the distribution, similar to Value at Risk (VAR). For simplicity, we focus on a smgle 
point oft.he loss distribution, the 99 tb percentile, and calculate the capital requirements as the 
funds needed to pay the loss incurred at the 99 ~ percentile. This is referred to as the "l-in-I O0 
year loss", since one would expect the loss to be as bad or worse than this level once every 
hundred years. More complex formulas based on multiple points of  interest on the loss 
distribution are possible (see Mulvey et al, 1997). Equation 1 shows the allocated capital 
calculation: 



capital = p F1(0.99) - (p - e) (1) 

where p is a discount factor, F is *he cumulative distribution function for*he loss, p is *he 
premium received and • is *he non-catastrophe expenses. The discount factor p is necessary since 
we receive premiums and pay out expenses (e.g. commissions) at *he beginning of*he year, and 
losses are incurred during*he year. Thus, we calculate*he capital required at*he beginning of*he 
year, and discount losses, so *hat all terms are on *he same basis. 

To calculate retain, we first define expected catastrophe loss as the expected value of*he loss 
distribution. Expected margin is simply premium less expense less expected cat loss. Expected 
return on capital (ROC) is calculated by dividing expected margin by the allocated capital: 

ROC -- (p - e - El(x)) / capital (2) 

where f(x) is the loss distribution and Ef(x) is the expected value of the distribution. 

We define *he marginal capital for an account as *he difference in capital required for the 
portfolio with the account and *he portfolio without *he account. Return on marginally allocated 
capital (ROMAC) has the same expected margin for *he numerator and marginal capital in *he 
denominator. Define % as the capital required for *he portfolio with *he account and .% as the 
capital for*he port_folio excluding *he account. Then the marginal capital m~ and *he return on 
marginal capital (ROMAC) is defined as:  

me = c~ - ~ C3) 

ROMAC = (p - e - Ef(x)) / n'~ (4) 

ROMAC captures *he diversification benefit of*he account with respect to the portfolio. An 
account with a high ROMAC doesn't require much additional capital allocation for *he portfolio 
as a whole, and thus is a good diversifier. Conversely, an account may have a high return on 
capital on a stand-alone basis, but a low ROMAC, and thus is most likely located in an area of 
high concentration. 

To facilitate combining loss distributions, we discretize *he sample space and create numerous 
scenarios. Each scenario represents a year's worth of catastrophes. We can *hen determine losses 
for *he account, in each scenario and combine accounts scenario by scenario to determine portfolio 
losses. Although k is not necessary to have scenarios for the above calculations (since capital 
with and without an account can be calculated separately with no need for combining accounts), it 
wil l  be important in performing *he optimization described in Section 3. 

2.2 Expected Utility 

An altomatiw approach to allocated capital is expected utility, Given an asset position for a 
business line (or company) at*he start of  a year, define a van Neumann-Moregnstern utility 
function over *he range of possible asset positions at *he end of*he year (see Bell [1995] for an 
example). Each portfolio will *hen have an expected utility value calculated from its loss 
distribution. Portfolios can be compared simply on expected utility, with higher expected utility 
being more desirable. To see whether to add an account to a portfolio, compare the expected 
utility before and alter *he addition. 



There are advantages and disadvantages to the retum on capital and expected utility approaches. 
Return on capital is a familiar financial ratio and is easily explained. Allocating capital based on 
points on the loss distribution is straightforward and captures, to some extent., the risk inherent in 
the business. Unlike expected utility, however, the return on capital does not provide a definitive 
answer on whether to add a new piece of business (e.g., i fa  new account has below average 
return on capital and above average ROMAC). The expected utility framework takes into 
account all points of the loss distribution whereas return on capital methods generally incorporate 
only a few. Expected utility provides a definitive recommendation, but does not have an 
immediately intuitive interpretation. For example, a portfolio manager can appreciate that adding 
a new account will boost return on capital from 12.0% to 12.5%, but may not as readily interpret 
increasing expected utility from 3.45 to 3.47. Depending on the model, expected utility can be 
easier to solve (see Berger [1995]) since it fits more easily into a mathematical programming 
framework than return on capital, which requires sorting a discrete distribution; Sections 3 and 4 
discuss this issue further. This comparison is summarized in Table 1. 

Allocated Capital 

Expected Utility 

Advanta$es 
..Easy to explain 
Returns have intuitive meaning 

Handle entire loss distn, st once 
Convex math progm'n 

Disadvantages 
Extra work to sort discrete disttibulions 
Limited points on loss distnbmion 

Hard to determine utility function 
Results not intuitive 

Table I: Comparison of allocated capital and expected millty objective functions 

2.3 Sample Decision 

We present SmartWriter analysis (Table 2) of  an account recently offered to USF&G's 
commercial property business. Although we have akered the raw output to protect 
confidentiality, the returns are consistent with the actual analysis. 

Premium 
Expenses 
Expected Catastrophe Loss 
Expected Profit 

Loss at 99=% = F'=(0.99) 
Capital Required 
Return on Capital: ROC 
Ret. on Marginal: ROMAC 

Now Account Current Portfolio Combined 
$980 $3,800 
$294 $1,140 

$71 $615 
$615 $2,045 

$5,200 $14,300 
$4,200 $11,600 
14.6% 17.6% 
19.8% 

$4,780 
$1,434 

$686 
$ 2 ~ 6 0  

$18,100 
$14,700 

18.1% 

Table 2: New account analysis. All numbers in ($000), except where indicated. 

The SrnartWriter output is divided into three columns. The first column is the new account as a 
stand alone business. The expected income for the account, after taking expenses and expected 
catastrophe losses from the premium, is $615,000. The new account requires $4,200,000 in 
capital based on the i-in-100 year loss o f  $5,200,000. This yields a return o f  14.6%, which is 
below our hurdle rate o f  15%. 



The second column contains data on the portfolio as it stands today, and the final column is the 
portfol io performance i f  the new account were added. Note that the capital requirement for the 
combined portfolio is less than the sum o f  the new account and current portfolio capital: This 
indicates that the new account wil l  diversify the business to some extent. Two additional items 
help quantify this diversification. The ROMAC for the new account is 19.8%, which means that 
the marginal return for adding the account divided by the marginal capital is significantly over the 
hurdle rate. The second item to note is the increase in the ROC for the portfolio from 17.6%to 
18.1% i f the account is added. For these reasons, the account was considered a good prospeot, 
even though on a stand alone basis it was slightly below the hurdle rate. 

3. O p t i m i z a t i o n  M o d e l  

Optimization is the process & f ind ing  good solutions to a mathematical model. In the context o f  
insurance underwriting, several problems are amenable to optimization. For a portfolio o f  large 
commercial accounts, the optimizer could locate the five accounts most in need o f  repricing, or 
the subset of'the current portfolio which maximizes return. For a homeowners portfolio, the book 
&business is managed less on a home-by-home basis and more on a zip code, county, or state 
level; the optimizer can focus on which counties to expand market penetration and which zip 
codes to reduce premium volume. The next section describes SmartWriter optimization for 
c o m m e r c i a l  port:folios,  and  the f o l l o w i n g  sec t ion  For h o m e o w n e r  books .  

3.1 Commercial Por t fo l ios  

Section 2 defined a method For comparing portfolios o f  accounts, either with retum on capital or 
expected utility. We can now formulate an optimization model for choosing an optimal subset o f  
accounts For the given portfolio. As mentioned above, we will define a discrete set o f  scenarios, 
where each scenario represents a number o f  catastrophes for a year. This facilitates the problem 
of'combining loss distributions. For general continuous loss distributions, there is no simple 
met.hod that can be used. 

3. I. I Var i ab les  and  Ob jec t i ve  

Def ine  the  f o l l o w i n g  sets: 

{ 1, 2 . . . .  N} - set  o f  a c c o u n t s  in the  po r t fo l io  
{ 1, 2 . . . .  S} - set o f  loss  scena r ios  

Define the Fol lowing  input parameters: 

pl = premium for account i 
ei = n o n - c a t s t r o p h e  expense  fo r  a c c o u n t  i 
1= = loss (in do l la rs )  fo r  a c c o u n t  i in scena r io  s 
7r, = p robab i l i t y  o f  s cena r io  s 
p = discount factor 

Define the fol lowing decision variables: 

xl, i = |  . . . . .  N - a m o u n t  o f  a c c o u n t  i in the  por t fo l io  

O u r  objec t ive  is to  m a x i m i z e  return on capi tal :  



Max E,-Ls Ei.l.s n, (xi (pi - el - 1~)) / [p F'1(0.99) - sum xl (Pl - e0] 

where F~(0.99) is calculated from the revised loss distribution xi*l~. 

(5) 

Note that correlations are implicitly captured in the analysis. Since the entire loss distribution is 
calculated for the objective fimction, the correlation among accounts will affect the return on 
capital. 

3. 1.2 Constraints 

The following are constraints that can be added to the model. 
An account can either be in the portfolio or out of  the portfolio so we add a binary constraint 

x l c  {0,1) 

If one or more properties must be retained, we add: 

xl = I 

The total premium for the portfolio can not be reduced past a specified level, MinPrem: 

Ei-i.~xl * pi) >= MinPrem 

The expected income on the portfolio can not be reduced past a specified level, Minlnc: 

Ei-i.N (xl *( Pi -  ei - 1~) > Minlnc 

3.2 Expansion problem 

Another problem facing insurers is where to grow a portfolio e r a  large number of  small accounts, 
for example the homeowners market in California. These portfolios can not be analyzed account 
by account, since underwriters do not have the flexibility of  choosing to write one home and not 
another. Accounts must be aggregated to a meaningful level: not too large so that accounts 
within a group possess similar characteristics, but not too small so that they can be managed 
effectively, such as with target marketing. The following model chose the zip code level as a 
reasonable trade-offbetween these competing demands. The objective function remains the 
same, but we change a few variable and constraint definitions. Our emphasis now is determining 
how much premium to retrieve from each zip code. We assume that the loss characteristics 
within a zip code are constant. Zip codes where this is not the case can be broken down into 
smaller units. 

Define the following sets: 

{ I, 2 . . . .  Z) - see  of  zip codes in the region 
{ l, 2, ... S} - set of loss scenarios 

Define the following input parameters: 



e = non-catstrophe expense ratio 
l= = loss per dollar of  premium in zip cede z in scenario s 
7t, = probability of  scenario s 
p = discount faclor 

Define the following decision variables: 

x~, z=l,... , Z -  amount o f  premium from zip code z in the portfolio 

Our objective is to maximize retum on capital: 

Max 3~.-1.s Z~-i~z n, ( x~  e* xz - 1=* x,.)) / [p F'1(0.99) - Y~.zz (xz - e* x,)] 

where FZ(0.99) is calculated from the revised loss distribution 1=* xz. 

Constraints similar to the ones in the pruning example above can be added; we give a few 
examples here. The premium level across zip codes can be bounded between two values, 
MinPrem and MaxPrem: 

MinPrem < xz< MaxPrem 

Alternatively, the total expansion of  the portfolio can be limited to a dollar value, MaxPort: 

~z-Lz Xz <= MaxPort 

4. Solution Procedure 

The models described in the previous section are not easily solved with traditional mathematical 
programming procedures, due to the necessity of  the sorting during the capital allocation 
calculation. We employ a number of  metaheuristic search procedures to find the global optimum 
value for the problem. For all of  these, it is important to find good starting points, which we 
describe first, followed by the search algorithm. 

4.1 Elite Solutions 

Elite solutions are points in the decision space which are believed to be good locations for a local 
search (also called intensification, since the local area is being explored thoroughly). One method 
for generating elite solutions for this example depends on the profitability of  the portfolio as a 
whole and on the individual accounts. If the portfolio is profitable, then a candidate elite solution 
would be the entire portfoho, or the portfolio with a small subset of  poor performing accounts 
removed. Alternatively, for a poorly perfoyming portfolio, a candidate elite solution could be a 
small subset of  profitable accounts, or no accounts at all. Another approach ranks accounts by 
profitability and correlation with the portfolio as a whole; an account with high profitability and 
low correlation would be included in an elite portfolio. 

A more profitable approach relies on problem-specific information. Suppose the optimization 
procedure is run monthly or quarterly. Optimal solutions from previous runs can be stored and 
will provide good elite solutions, even if the portfolio has changed measurably since the last run. 



Of course, accounts no longer in the portfolio but in the previous optimal solution must be 
removed. 

After a number of  elite solutions have been generated using some or all of  the methods above, the 
solutions are ranked in terms of atlractiveness. This ranking will then determine the order for the 
local searches (see next section). Ranking can be based on objective function value alone, but to 
fully explore promising areas of  the decision space we can use a weighted average of the 
objective fimction and the distance from higher ranked elite solutions. As more solutions are 
ranked, the benefit for diversification increases. 

4.2 Tabu Search 

Tabu search was originally developed by Glover and has proven highly effective for solving 
combinatorial optimization problems. (See Glover [1989] for an introduction). The procedure 
searches a feasible region by monitoring key attributes of  the points that comprise the search 
history. Potential search iterates possessing attributes that are undesirable with respect to those 
already visited become tabu; appropriate penalties discourage the search from visiting them. We 
provide details below. 

Consider a general non-convex optimization problem of the form: 

minimize fix), x e X 

x 

where the function fx )  corresponds to the return on capital objective in Equation 5. 

Our adaptation of tabu search has three basic elements: 
• a function g(x) = fx )  + d(x) + t(x). The function d(x) penalizes x for infeasibility. The 

function t(x) penalizes x for being labeled tabu. 
• the current iterate x~, 
• a neighborhood of the current point N~. 

The procedure generates a new iterate x,,w by selecting the element of  N~for which g(x) is 
smallest. The tabu restrictions represented in t(x), can address short-, intermediate-, and long- 
term components of  the search history. Short-term monitoring is designed to prevent the search 
from returning to recently visited points, allowing the procedure to "climb out of  valleys" 
associated with local minima. Short-term monitoring can also serve as a rudimentary 
diversification vehicle. Intermediate- and long-term monitoring techniques provide for a much 
more effective diversification of  search over the feasible region. In addition, the elite solutions 
described previously also provide diversification. See Glover [1990] for additional details. 

Details of  four processes are required to define our adaptation of tabu search: formation of  the 
neighborhood of the current point, assignment of  tabu pemlties, termination of search procedure, 
and greedy selectTon of the new iterate from the neighborhood of potential moves. 

Neighborhood formation proceeds as follows. Let ~ = (x~ . . . . . .  x~) be the current point; the 
decision vector thus has n components. For the example in Section 3.1, this would be a vector of  
zeros and ones, where a "one" indicates the account is in the portfolio. Each member of the 
neighborhood ofxo, No, is formed by modifying one of  its components either up or down by an 
amount equal to some value stepsize. Note that this operation implicitly defmes a discretization 



of the continuous feasible region. There are thus 2n members of No. We call each of  these 
members a potential move; one of  these will become the new iteratE, i.e. - the actual move. Each 
potential move is characterized by two move attributes: index changed and new value. Attribute 
index changed is equal to j, where xj, is the component ofx~ whose value is changed by the 
potential move; new value is the value that the component being changed by the potential move 
assumes (formally: new value = x i~, such that j = imtex changed). 

The manner in which we assign tabu penalties -- and thus define the fiJnction t(x) -- to each 
potential move relies on exploitation of  short-term search history; the methodology is based on 
the technique developed in Glover, Mulvey, and Hoyland [1996]. The assignment is based on a 
comparison of the move anributes of each potential move and those of  the iterates comprising the 
recent search history. The maintenance of  two data structures is necessary: 1) the tabu list, and 
2) ame o f  last change list. The tabu list is composed of  the attributes of the T most recent 
search iterates: tabu list is thus a T x 2 array where T = TABU LIST SIZE. The 
time o f  last change list is an n x 1 array, where time of" last change hstj= the last iteration 
during which the actual maya's  index changed attribute equaled j. We also define fBEST as the 
best objective value (in terms of minimization) found by the procedure at any point in the search 
process. 

Three criteria govern our assessment of  the tabu status of  each potential move (xp): 

Condition I: do the move attributes ofxp match any of  those in the tabu list? 
Condition 2: is length of stay < REQUIRED STAY, where length of stay 

= current iteration - time q/" last changq .where j = index changed? 
Condition 3: is f(xp) < flea,sT and Xp e X? 

If either of  the first two Conditions are true, we assign an appropriate tabu penalty to the potential 
move, discouraging the search from moving to x v Condition I prevents the search from 
revisiting a point whose move attributes match those of  points recently visited. It is this operation 
that allows the search process to move away from local minima, as we described earlier. 
Condition 2 insures that a variable is not changed too soon after it becomes the basis for an actual 
move; it thus is a vehicle for short-term search intensification If the final condition is satisfied, 
we eliminate the tabu penalty for xp: this allows the search to move to a tabu point if the objective 
value associated with this point is better than that of the best point found thus far. (This is our 
implementation of the concept ofa.spiratian crHeria; we refer the reader to Glarer [ 1990] for 
details.) 

We present three termination criteria: 

1) Total time exceeds a preset maximum 
2) Total iterations exceed a preset maximum 
3) The amount of time spent without any improvement in the solution exceeds a preset 

maximum 

Finally we address the greedy criterion for selecting from the set. o f  potential moves the actual 
move, and thus the new iterate. The standard approach for selecting the new iterate is to find the 
point in the neighborhood o f  the current iterate for which g(x) = f(x) ~- d(x) + t(x) is smallest, a 
process that by definition requires evaluation of  every member of  the neighborhood. This 
strategy can degrade the effectiveness of  the search when the computational effort required to 
evaluate ~x) is prohibitive. The greedy search strategy addresses this difficulty. It calls for the 
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evaluation of the set of potential moves to cease when a neighbor fax is found which f(x) < f(~) 
and d(x)= t(x)= 0, i.e. - x is feasible, not tabu, and shows improvement. 

5. Results 

Below is the SmartWriter output for a California earthquake portfolio with 173 accounts. The 
results are from real company data, but the numbers have been disguised to protect client 
confidentiality. We ran the analysis on a Windows 95-based PC with 64MB of memory, with run 
time between 5 and 10 minutes, depending on parameter settings. 

The optimizer recommended the removal of 16 accounts from the portfolio. Table 3 shows 
summary information before and after the optimization for the portfolio as a whole. 

On the whole, this was a profitable book of business, but there were a small number of poorly 
performing accounts. Not only did these accounts have a poor expected return, but they had a 
severe effect, in the tail of the distribution. Expected income only decreased by $100,000 (3%), 
hut the loss at the 99 = percentile decreased by over $15MM. Return on capital jumped from 
14.7%to 37.5%. We have seen this with other books of business as well: a small percentage of 
accounts represent a large portion of the tail of the loss distribution. 

l / i , i , t ~ l , t . l  t.~t ~,a=.,il-iilt~ 
Number of accounts 

Premium 
Expenses 
Expected Cat Loss 
Expected Income 

Loss at 99~% = Fn(0.99) 
Capital Required 
Return on Capital: ROC 

Table 3: Portfolio before and after o 

173 

$5,600 
$1,700 

$500 
$3,400 

$28,600 
$23,200 

14.7% 

157 

$5,200 
$1,600 

$300 
$3,300 

$12,900 
$8,800 
37.5% 

~tlmlzation. Unless otherwise noted, numbeN are In (~100). 

Ideally, the portfolio manager should reprice these accounts upon renewal instead of terminating 
them. Although market conditions will determine the extent to which this is feasible, 
SmartWriter provides output on all the accounts targeted by the optimizer. Table 4 contains 
information for one of these accounts. 
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Premium 
Expenses 
Expected Cat Loss 
Expected Profit 

Loss at 9 9 %  = F1(0.99) 
Capital Required 
Return on Capital: ROC 
Rct. on Marginal: ROMAC 

Premium needed to meat 15% ROC hurdle 
Premium needed to meet 15% ROMAC hurdle 

Table 4: Account targeted for removal or repriclng by optimizer. 

Account A 
$20 

$6 
$12 

$Z 

$780 
$740 

0.3% 
0.4% 

$150 
$145 

For this example, the'premium needed to meet the stand alone return on capital hurdle of 15% is 
$150,000, much greater than the current premium of $20,000. Repricing is most likely not an 
option for this account, but for examples where the current ROC is closer to the hurdle rate, 
rspricing can be viable. 

5.1 Portfolio Expansion 

As with the pruning portfolio example above, portfolio financials are available before and after 
optimization. Rather than repeat the above tables, we display the graphical output available from 
SmartWriter. Since t.he analysis was conducted at a zip code level, fmancials can be displayed in 
map form for quick understanding. We show an example below. 

Figure I shows profitability by zip code, if each zip code is evaluated on a stand alone basis, for 
the San Francisco Bay area. Dark green indicates zip codes with a high expected ROC per home, 
light green less profitable, and red low profitability. These maps can be generated for expected 
income, marginal capital, and for the results of the optimization: optimal concentration by zip 
code. For confidentiality reasons, we do not give the recommended map for concentration, but it 
overlaps the map below to a large extent. Most zips that are low profitability the optimizer 
recommends moving away from, and for zips with high profitability, the optimizer recommends a 
greater penetration. The optimizer takes into account, however, the problems with 
overproducing m a number of closely located zip codes which all may be affected by the same 
earthquake. 
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Figure I: Expected return on capital by ~lp code for the San Francisco bsy area. Dark linden indicates mc~t 
profitable zip coda red indicates poor performing zip codes. 

6. Next Steps 

The portfolio management system can be readily extended to account for overlapping risks across 
business lines and asset investment categories. The concept is to develop a price of risk for each 
product-location under each scenario at each time period. These prices are available directly 
fi'om the optimal decision variables for the strategic planning system. See Mulvey et al. (1998). 

Ideally, one would like to link the liability decision with the asset investment strategy. In this 
paper we focused on the clay-to-day underwriting decisions and take the asset return as a fixed 
input. In the filture, one could tailor the asset portfolio in conjunction with the liability portfolio, 
such as purchasing catas~'ophe options or catastrophe-linked b o n ~  for the property business line. 

Another extension is the addition of multi-year contracts. As the catastrophe market continues to 
soften, these contracts may become more desirable for insurer and insured: They provide price 
protection for both parties. These can be linked with capital market projections which produce a 
range of possibilities (scenarios) a number of years ahead, such as the Towers Perrin CAP:Link 
system. 

Finally, reinsurance decisions can be directly integrated into the optimization model. A desired 
profit distribution could be entered along with the current portfolio and a range of reinsurance 
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options and treaties, and the optimizer would choose the best reinsurance options to match the 
desired profit distribution as closely as possible. 
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