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ABSTRACT

The loss process model and simulation procedures proposed by James M. Stanard in 1985 are

extended in numerous ways, including provision for serial autocorrelation of parameters,

mixtures of claim types, conditional selection of sample points, and a much greater variety of

reserving methods. The extended model is used to explore many questions arising in practical

loss reserving and to assist the loss reserver in choosing the best estimator for particular data

conditions.

I. INTRODUCTION

A recurrent theme in the literature of loss reserving is a debate over the relative merits of

traditional versus statistical estimators for aggregate reserves and ultimate losses. Both

approaches start with grouped data consisting of “triangles” of reported and closed claim counts

and of incurred and paid losses. Both approaches seek to complete the paid loss triangle to a

parallelogram, from which reserves, ultimate losses, and future cash flows may be derived. The

two approaches differ, broadly speaking, in that the traditional techniques emphasize certain

intermediate quantities as aids to the loss reserver’s judgement, and produce point estimates,

while the statistical techniques emphasize formal models, incorporate judgement through the

process of successive model building, fitting, and validation, and produce both point estimates

and measures of variability.

Proponents of both approaches recognize that a model with too many parameters may fit

historical data well yet produce unstable forecasts. However, they address this problem in
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different ways. Users of traditional techniques often start by estimating a large number of

parameters, such as development factors and accident-year claim levels, and then apply

judgement constraints and adjustments to achieve forecast stability. By contrast, users of

statistical techniques generally start with few parameters and add new ones only as necessary to

achieve a satisfactory fit.

Recently a fusion of sorts has occurred as studies have shown that the most popular of

traditional loss reserve techniques, the chain-ladder, in fact has desirable properties as an

estimator for certain statistical models [14][16], that each of several methods of averaging

development factors may be appropriate under the right conditions [14], and that measures of

variability may be calculated for the chain-ladder [13]. However, the question remains open as

to which estimators are best suited to any given case arising in practice, when the occurrence,

reporting, investigation, settlement, and payment of claims may be complex and may not

produce loss triangles fitting simple models.

In 1985, James N. Stanard [20] attacked this problem by (a) modelling the loss process rather

than the loss triangles, (b) generating synthetic data using particular parameter values and a

particular number of accident and development years, (c) applying several estimators to the

synthetic data and iterating the process thousands of times, (d) tabulating the differences

between forecast and “actual” (i.e. simulated) ultimate losses, and (e) calculating the means and

standard deviations of these prediction errors. Although Stanard’s use of simulation to compare

reserving methods is the core of his paper, his examples are also interesting. They prove just

how large the variance of prediction errors can be under reasonable assumptions, they strongly

suggest that the conventional chain-ladder technique is both biased and unstable, they

demonstrate that reserving techniques that do not attempt to estimate accident year effects may

outperform those that do, and they show the desirability of not giving undue weight to the

experience of immature accident years.
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Stanard’s lead has been followed by Daniel M. Murphy [14], who used Stanard’s simulation

model to compare different averages of development factors with development by linear

regression; by Edward F. Peck [16], who, in a 1995 discussion of Stanard’s paper, studied

various weighted averages of development factors; by John W. Rollins [18], who compared paid

loss development with a “structural” reserving method involving closed claim counts and

average severities; and by Prakash Narayan and Thomas V. Warthen III [15], who used several

different simulation models to compare traditional reserving methods with a regression

technique.

In this paper, we extend Stanard’s model in several directions and use it to test the efficiency of

numerous reserving techniques and variations. The results reported here may help the loss

reserver select those estimators likely to produce the best estimates of reserves, or of individual

accident-year ultimates, for actual cases. More generally, the procedures described here may be

used to obtain best estimates, by first setting up an appropriate model of the loss process, then

running simulations using a set of candidate estimators, and finally applying the best-performing

estimators to the actual data. The author will provide software, on request, enabling the

interested reader to reproduce all of the associated exhibits and to conduct further investigations

on his or her own.

II. MODEL EXTENSIONS

We extend Stanard’s methodology by using a more complex simulated loss process, by refining

the simulation procedure itself so as to allow approximate conditional distributions and more

comprehensive reports, and by using a much larger number of reserving techniques and

adjustments.
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Extensions to the Simulated Loss Process

Stanard [20] postulated a five-stage model of the loss process: claim frequency, report lag,

payment lag, claim severity, and case-basis reserve error. For his main exhibits, he assumed a

normal distribution of claim frequency by year with a uniform distribution to months within the

year; exponential distributions of report and payment lags; lognormal distribution of severities;

and lognormal distribution of reserve errors, applied multiplicatively to the severities. For some

of his exhibits, he also postulated both a severity trend and a fraction of inflation persisting

through the interval between occurrence and payment, following Butsic [4]. To test the

sensitivity of his results, Stanard also ran tests with some of the distributions rendered constant

or otherwise altered.

While this is a simple model of the loss process, it is richer than the models of loss triangles that

underlie many statistical loss reserving techniques. Furthermore, it is more than adequate for a

preliminary investigation of the properties of reserve estimators, which, as pointed out by

Robertson [17], “should work in artificially simplified situations” if they work in real life.

However, we believe that certain extensions to Stanard’s model can make it more realistic in

ways that are essential to a proper comparison of reserving techniques.

The most important of these extensions is provision for random shifts, over time, in the means

(or other location parameters) of the various distributions. This is accomplished by drawing the

means from a second-level distribution having the form of a first-order autoregressive process,

or, in the limiting case, a random walk process. We believe that such serial autocorrelation of

parameters achieves similar results to modeling the insurance process in greater detail: for

example, by assuming that some of the risks exposed each month allow their coverage to lapse

and are replaced with new risks drawn from a wider population, while the others continue with

parameters unchanged. We also believe that this accords with the observation that a given
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volume of recent experience, in insurance or other time series, has more predictive utility than

the same volume of more remote experience.

A second important extension is provision for a mixture of claim types, each with its own

distribution of frequency, severity, lags, and errors. Such a mixture comes closer to the demands

placed on real-world loss reserving methods than does a model with a single claim type.

Other extensions to Stanard’s model include provision for seasonality factors for claim

frequency; additional choices regarding the form of each distribution; provision for maximum

report and payment lags; provision for a deductible and/or limit; provision for a non-zero

probability that a claim (whose size as drawn from the severity distribution is used as the

starting point for the case reserve) will actually close without payment; corresponding provision

for an assumed probability of closure without payment to be used to discount the case reserve

itself; provision for an initial reserve applicable to all claims upon reporting; and provision for

specifying the number of months after reporting at which the first regular valuation takes place.

One final difference from Stanard’s model is that we generate claim frequencies monthly, rather

than generating them annually and then distributing them to months. We believe that the latter

approach introduces an artificial negative correlation between pairs of months within the same

year.

Extensions to the Simulation Procedure

Stanard reports the mean of the prediction errors across the entire sample of simulated claim

histories, thereby approximating the mean of the unconditional distribution of prediction errors.

What is usually of greater interest, however, is the conditional distribution of prediction errors

given a particular known claim history.



�

In most of what follows, we also use the entire sample and report the unconditional mean and

standard deviation of the prediction errors. However, when we wish to investigate conditional

distributions, we have available three alternative approaches. First, we may define a measure of

distance on the space of all known claim histories, and then include in our sample only those

simulated claim histories whose known portion falls within a given “acceptance radius” of some

particular claim history. Second, we may define a Boolean condition on the known claim

history, and include in our sample only those simulated claim histories satisfying the condition.

Third, we may define a numeric function of the known claim history, and cross-tabulate one of

the results of the simulation process (such as the prediction error for total reserves) against the

value of this function.

Stanard’s emphasis is on the prediction of ultimate losses by accident year; ours is about equally

divided between ultimate losses by accident year and total reserves over all accident years. Also,

Stanard expresses prediction errors as percentages of mean actual ultimate losses for each year,

including the losses which are known at the evaluation date. We follow Stanard’s practice when

dealing with individual accident years, but we relate the prediction error of total reserves to

mean runoffs rather than mean total claims.

A word is in order regarding Stanard’s tail adjustment, which corrects for the fact that none of

the reserving methods he studied can be expected to project incurred loss development beyond

the lag represented by the latest known development period in the first accident year. The

adjustment consists of adding to all results the sample mean of the tail beyond that lag. This

completely eliminates the measured bias attributable to the failure to project the tail, but leaves

the variance and standard deviation unchanged.

In effect, the tail contributes to the process variance, which is already a large part of the total

variance of the prediction errors, and makes it even larger; Stanard’s adjustment lets this larger
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variance stand. An alternative adjustment would be to compare predicted ultimate losses with

actual (simulated) losses excluding development beyond the last known lag. We have retained

Stanard’s adjustment for the sake of comparability, but we prefer to reduce the importance of the

tail by using more development years than did Stanard. Note that no adjustment is needed in

situations where the loss reserving techniques themselves include a tail projection.

Finally, we compare the performance of all the reserving methods included in each simulation

run, as measured by their absolute prediction errors on a particular item (such as total reserves)

for each trial, giving both absolute rankings and pairwise comparisons.

Extensions to the Set of Reserving Techniques

Stanard considers only estimators that are functions of the matrix of known case-basis incurred

losses, while acknowledging that other statistics, such as matrices of claim counts or limited

losses, might lead to more efficient estimators. Since Stanard’s simulation model automatically

generates triangles of reported and closed claim counts and paid losses, in addition to case-basis

incurred losses, we drop his restriction and consider estimators that are functions of these four

basic triangles.

We require our estimators to predict not only ultimate losses by accident year, but also the

complete matrix of estimated future payments by accident year versus development year.

Therefore the triangle of known paid losses is always necessary, to calculate the reserves and to

distribute them to future payment periods, even when ultimate losses are projected from other

data.

Some of our estimators also make use of exposures, though these are not treated as random

variables.
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By thus broadening the range of estimators considered, we are able to compare the relative

merits of paid versus incurred loss development and of reserving techniques involving separate

consideration of frequency and severity. We do restrict attention to estimators using data

grouped into discrete cells, but we have considerable flexibility in the choice of the incurral and

development intervals defining these cells. In what follows, the term “accident year” refers to

the incurral interval and “development year” to the development interval, whether or not these

intervals are actually twelve months in length.

III. STANARD’S SIMULATIONS REVISITED

As a preliminary application of our system, we replicate Stanard’s main results and then

consider the effect of changing some of his loss process assumptions.

Replication of Stanard’s Results

Exhibit 1 repeats the calculations summarized in Stanard’s Exhibits I through V, using the same

four estimators (chain-ladder, modified Bornhuetter-Ferguson [2], Cape Cod [3], and additive

[3]) and the same structure and process parameters, with the exception, mentioned above, that

our claim frequencies are generated monthly rather than annually. Each set of calculations was

iterated 10,000 times, using the same initial random seed and therefore drawing the same sets of

sample data.

In each section of the exhibit, the “reserves” row displays the prediction error of ultimate claims

less claims paid as of the end of year 4, summed over years 0 through 4, i.e. not including year 5

which is entirely in the future as of the evaluation date.

The purpose of this exercise is to confirm that our model and loss reserving algorithms are

substantially the same as Stanard’s, giving results differing from his within a range which might



	

reasonably be attributed to chance. This appears to be the case for the prediction errors in

sections I through IV of Exhibit 1, with about the expected number of differences between them

and Stanard’s corresponding prediction errors being significant at the 5% level, using a normal

approximation.

However, ten of the 19 available differences for section V are significant, and all 19 of these

differences are greater than zero. It appears that here the two models and/or sets of reserving

techniques do differ systematically. Provisionally, we ascribe this to differences between the

methods of adjusting incurred losses for inflation. Stanard deflates the incurred losses

themselves to a constant-dollar level, performs the reserve calculations, and restores inflation to

the results. We follow the same procedure for paid losses, but we separate incurred losses into

paid losses and reserves and deflate these two components separately, paid losses from dates of

payment and reserves from date of valuation.

As a general rule, the mean prediction error for year 0 is zero after Stanard’s tail adjustment,

since the estimation methods being considered do not attempt to project the tail beyond the last

known lag for the first year. In sections IV and V of Exhibit 1, however, positive means are

shown for these prediction errors. This is also a result of the difference in methods of inflation

adjustment. We deflate the triangle of known incurred losses to a constant-dollar basis, apply the

estimation method to generate a matrix of known and projected paid losses, and then reflate the

paid loss triangle; Stanard deflates and reflates only the incurred losses. The last step in our

procedure brings in the expected inflation between the valuation date and the dates the

remaining losses for the first accident year are paid, which is not accounted for by Stanard’s

procedure. As the tail adjustment itself is unaffected, the net result is a difference in mean

prediction errors after tail adjustment.



�


In summary, there are minor non-random differences between our model and Stanard’s. But the

conclusions which may be drawn from an examination of the means and standard deviations of

the prediction errors are essentially the same.

Effect of Modifying the Loss Process Assumptions

Stanard ran his simulations with three different trend assumptions, and performed sensitivity

tests in which uniform distributions were substituted for the original normal, exponential, etc.,

but he did not report the effect of letting some of the other key assumptions vary. With an eye

toward using a more complex model later in this paper, we here investigate the effects of (a)

increasing the number of accident and development years, (b) increasing the expected claim

frequency, (c) using a mixture of claim types with different distributions, (d) applying a fixed

initial “fast track” reserve value to all claims at the date of reporting and for a certain number of

months thereafter, (e) modeling some of the parameters using a second-level distribution in the

form of an autoregressive process, and (f) introducing an abrupt change in frequency between

two of the accident years.

Increasing the number of accident and development years. If all other parameters are

unchanged, then increasing the number of development years reduces the magnitude of

Stanard’s tail adjustment or eliminates it entirely. It also reduces or eliminates the differences

between estimates based on paid losses and estimates based on incurred losses, to the extent that

these differences simply reflect the relative immaturity of the paid loss data. Increasing the

number of accident years reduces sampling error, especially when the loss process is stationary.

These are all advantages both for simulation studies and for practical loss reserving.

Exhibit 2 shows results like those of section II of Exhibit 1 (incurred losses, no trend) but this

time with ten accident and ten development years, rather than the six and five years,
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respectively, of Stanard. Note that the latest year (year 9) is 12 months emerged as of the

valuation date; no year is entirely in the future. As expected, the standard deviations of the

prediction errors are reduced.

The difference between the modified Bornhuetter-Ferguson standard deviations and the Cape

Cod standard deviations, which was quite pronounced when using just 5 years’ data, is now

largely eliminated. This is because the modified Bornhuetter-Ferguson estimates of expected

losses give equal weight to each years’ chain-ladder developed losses, which are increasingly

variable the more recent and immature the year. When only five years are used, the averages are

dominated by immature years, whereas when the number of years is doubled to ten, all of the

newly added years are mature and the highly variable immature years become a smaller fraction

of the whole.

There is also a reduction in the bias of the chain-ladder and Bornhuetter-Ferguson estimates;

possible reasons for this are discussed below.

Increasing the expected claim frequency. The model used by Stanard to illustrate his simulation

procedures has expected frequency of 40 claims per accident year, with variance 60. This

practically assures that every year will have at least twenty or so incurred losses. But Stanard’s

18-month mean reporting lag and 12-month mean payment lag lead to a good chance that one or

more cells in the first column of the paid or even the incurred loss triangle will be zero, making

it impossible to calculate unweighted arithmetic averages of development factors. In fact, when

drawing a sample of size 10,000 or so there is some chance that the paid loss triangle in some

trial will be zero in all relevant cells in the first column, making it impossible to calculate

weighted or unweighted paid loss development factors at that lag.
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Having zero cells in the first column is commonplace and is not a significant drawback to

practical loss reserving. It simply calls for the exercise of judgement in selecting either the first

development factor or the ultimate losses for the latest year, which is usually the only one

affected. Indeed, as pointed out by Gogol [11], the non-zero probability of a zero denominator

renders the expected value of development factors infinite, and even when the development

factors are capped there may remain an upward bias, so the loss reserver must be prepared in

any case to adjust or replace outlying factors.

In a simulation study, however, the failure of a reserving method to generate results in one

iteration invalidates the means and standard deviations for the entire run. Thus using a small

model may limit the scope of a simulation study to those reserving methods that are unlikely to

be affected by any zero cells, such as incurred loss development methods using dollar-weighted

average development factors. Increasing the expected claim frequency makes it possible to use

simulations to compare a wider range of reserving methods, with the understanding that any

special advantages or disadvantages of reserving methods in dealing with thin data will have to

be considered separately.

Exhibit 3 shows the effect on section II of Exhibit 1 of multiplying the mean and variance of the

expected claim frequency by a factor of 10. The increased volume of experience at all lags

reduces the standard deviation of prediction errors by removing much of the sampling error; the

remaining prediction errors are largely caused by unavoidable process variance.

Mixture of claim types. It would be unusual in practice for a collection of losses to be

homogeneous in the sense that its frequencies, severities, lags, and case reserve errors could all

be described by simple distributions. But it may well be possible to identify two or more types

of claims, each describable by simple distributions, that together account for most of the losses.
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Exhibit 4 shows the effect on section II of Exhibit 1 of introducing a second claim type, with the

mean and variance of the frequency doubled, the mean and standard deviation of the severity

multiplied by .2, and the mean report lag reduced from 18 to 6 months. The payment lag and

reserve error distributions are left unchanged. The revised model is therefore a mixture of low

frequency, slowly reported, major claims and higher frequency, quickly reported, minor claims.

As in Exhibit 3, but to a lesser extent, the mean prediction errors and standard deviations have

generally been reduced, as has the difference between the Modified Bornhuetter-Ferguson and

the Cape Cod estimators.

Fast-track reserves. It is customary to assign an average reserve to each claim on first notice and

to postpone detailed evaluation for a few weeks to let information accumulate. If the claim

closes sooner, no detailed evaluation will be necessary.

To illustrate the effect of this practice, Exhibit 5 shows the results in section II of Exhibit 1

modified by letting each claim have reserve $10,000 for the first three months following

reporting. Thereafter, it is reserved in the same manner as in Stanard’s paper, including the

random reserve error. Note that $10,000 is close to the actual average severity of $10,400

assumed by Stanard.

The result is slightly lower bias and smaller standard deviations than were observed with the

original model, especially for years 3 through 5 and for the chain-ladder and modified

Bornhuetter-Ferguson estimators.

Second-level distribution of parameters. As set out in the first part of his paper, Stanard’s model

is quite general, allowing each accident year to be governed by a separate vector of parameters,

of unspecified length and values. But, when implemented in his examples, the model is

necessarily reduced to specifics, which may favor one estimator over another.
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In particular, Stanard’s illustrations treat all parameters as fixed or trended; they do not consider

the possibility of random shifts in the parameters over time. As a consequence, detrended runoff

patterns are stationary. This makes it advantageous to include all accident years in averages. It

also gives an edge to those reserve methods, such as Bornhuetter-Ferguson, Cape Cod, and

additive, that project the same runoff at each lag independent of accident year.

Exhibit 6 illustrates the effect of allowing the mean frequency, severity, and reserve error factors

to vary, following a first-order autoregressive process. This is the same structure that we shall

use in Section IV below. Specifically,

y(1) =m(1)+e(1)

y(t+1) = m(t+1)+�(y(t)-m(t))+e(t+1)

e(t) ~ N(0,s), identically and independently of each other and of the y’s

Here t is a time index measured in months, y is the vector of means for the parameter in

question, � is the lag-1 autocorrelation coefficient of the y’s (our program allows � to be

between 0 and 1, inclusive; when � equals 1, the model becomes a random walk), m is an

assumed vector of means for the second-level distribution, and s is the standard deviation of the

second-level distribution. The standard deviations of the parameter itself are a separate

assumption, and, if these vary from month to month, the term involving � in the equation for

y(t+1) is multiplied by the ratio of the successive standard deviations.

In Exhibit 6, the values of s for frequency, severity, and reserve errors are .1, 400, and .02,

respectively, while the value of � is .9816 for all three distributions. This value of � gives an

annual, or lag 12, autocorrelation coefficient of about 0.8.

As expected, the chain-ladder method, with its responsiveness to change from accident year to

accident year, improves considerably, while the Cape Cod and additive methods perform
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slightly less well than before. The modified Bornhuetter-Ferguson method improves somewhat,

apparently because of the reduced bias and error variance of the chain-ladder at the latest years.

In short, using this particular model with shifting parameters brings the methods closer to each

other but does not change their ordering.

Abrupt change in conditions. While Exhibit 6 shows the robustness of the Bornhuetter-

Ferguson, Cape Cod, and additive methods in the face of a moderately shifting loss process, it is

possible that an abrupt change in the accident-year frequencies or severities might so invalidate

these methods as to make the chain-ladder perform relatively better. Exhibit 7 shows the results

of a simulation like that in Exhibit 6, but with the mean frequency reduced 40% between years 2

and 3. This introduces a large positive bias in the projected ultimate claims for years 3, 4, and 5

and in the reserves, for the estimators that work “across” accident years, while leaving the bias

of the chain-ladder estimator essentially unchanged. Even with a shift of this magnitude, the

chain-ladder method only outperforms the others in some of the cells.

Many of the above adjustments to Stanard’s model reduce the bias as well as the standard errors

of prediction for the chain-ladder estimator. Adjustments with this effect include increasing the

number of accident years, increasing the claim frequency, using a mixture of claim types, and

using fast-track reserves. Gogol [11] attributes the existence of the chain-ladder bias to the

positive probability of very small denominators in the link ratios. The magnitude of the bias

appears to be related to the sampling distributions of the denominators of these ratios. When this

distribution is tightly clustered relative to a non-zero mean, the bias is small; when the

distribution is more diffuse, so that the sample includes more values close to zero, the bias is

greater.

In all of the foregoing Exhibits, the link ratios have been estimated from dollar-weighted

averages of the observed development factors. Increasing the number of accident years tightens
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the sampling distribution of each denominator (relative to its mean), as does increasing the

claim frequency or introducing a second claim type, simply by increasing the expected number

of reported claims. Using fast-track reserves tightens the sampling distribution at the early lags

by reducing the variance of the case reserves.

IV. DETAILED MODEL FOR SUBSEQUENT SIMULATIONS

Exhibit 8 displays the model of the loss process used in the comparisons of reserving techniques

to follow. It is more complex in several respects than the model employed by Stanard for his

illustrations.

First, the new model involves a greater number of average annual claims, a shorter mean report

lag, and a longer mean payment lag, so as to resemble primary coverage on a midsized

policyholder rather than a working excess reinsurance treaty. Second, the new model involves a

mixture of two claim types, with different frequency, severity, and lag distributions. Third, the

means of the frequency, report lag, and reserve error distributions for both claim types are

themselves generated by autoregressive processes as described above. Fourth, the number of

accident years through the evaluation date has been increased from five to eight, making the

effect of Stanard’s tail adjustment negligible. Following Stanard, we number the years 0 through

7.

Finally, the year beginning beyond the evaluation date has been eliminated. While several

reserving techniques can indeed project future incurral periods, such periods do not contribute to

the loss reserves, nor is it customary to rely entirely on the reserve estimator to project losses for

a future rating period.
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Occasionally, we may introduce trend assumptions or other variations of the above model to

illustrate the sensitivity of the techniques being discussed to particular conditions in the data.

V. LOSS RESERVING QUESTIONS ADDRESSED VIA SIMULATION

Now we use our extended simulation technique to investigate several questions that arise in

practical loss reserving. While simulation can only answer such questions approximately, and

only for a particular loss model, the results below, and the underlying procedure, may help guide

the loss reserver in choosing the most promising estimators and judgement adjustments for

actual cases.

Paid versus Incurred Loss Development

When data permits, the first question is often whether to estimate ultimate losses from the paid

or from the incurred loss triangle. Exhibit 9 addresses this question using the same four

reserving methods tested by Stanard, applied to the new model of the loss process.

In Exhibit 9 and those that follow, there are two new lines, labeled “# best” and “rank sum”.

The “# best” row reports the number of trials in which each reserving method produced the least

absolute prediction error, for total reserves, among the methods considered. While interesting,

this is only a rough guide to the best-performing methods. When two or more methods are

similar, they may split the majority of the “best” rankings and allow another, less successful,

method to appear better than it would if only one of the similar methods were included. Since

the runoff process itself has a large variance, a biased or erratic reserving method that tends to

produce the highest or lowest estimates in the set may still rank “best” in a substantial fraction,

albeit less than half, of the trials. Also because of the large process variance, if one reserving
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method tends to be bracketed by two other methods, it will seldom produce the best estimate for

a single trial but may nevertheless have the smallest mean squared error.

The “rank sum” row reports the sum, over all ranks r, of r times the number of times each

method had rank r in absolute prediction error for reserves. This is a more useful measure of

performance than the foregoing.. Lower scores are better, with a minimum possible score of 1

times the number of trials, here 10,000. Ordering the methods on this measure is equivalent to

ordering them on the number of “wins” in 10,000 sets of all possible pairwise comparisons.

With the higher claim frequency, smaller frequency standard deviation, and larger number of

accident years, the biases in Exhibit 9 are smaller than those observed in Stanard’s model, as are

most of the standard deviations of the prediction errors. For the early accident years, the

standard deviations are nearly equal for all the incurred-loss reserving methods. This does not

mean that each reserving method gives identical predictions for each sample data set, but simply

that the variance of the predictions is insignificant compared to the unavoidable variance of the

claims process itself.

Some of the paid-loss reserving methods have non-zero bias even for year 0, because they use

less mature data than the incurred methods and Stanard’s tail adjustment, based on incurred

losses, does not remove all of the paid tail. The first three of the paid-loss methods are adjusted

for development in the tail beyond the last known lag, using the ratio of incurred to paid losses

at that lag in year 0, which for this simulation averages about 1.01; the fourth paid-loss method

(additive) does not contain this adjustment. Its projections are therefore slightly understated

relative to the other paid-loss methods. If the paid-loss additive results were adjusted by this

factor, they would exhibit biases only slightly worse than those of the best-performing method,

the incurred-loss additive.
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For this particular model, the estimates based on incurred losses generally outperform those

based on paid losses. But if case reserve adequacy were to change abruptly, then reserves based

on incurred losses might be less accurate than reserves based on paid losses. Even if case

reserving were simply biased and/or highly variable, much of the advantage of incurred loss

estimators might be overcome by noise. To illustrate the latter possibility, Exhibit 10 repeats the

calculations of Exhibit 9 but with the mean and standard deviation of severities increased by

25%, a probability of 20% of closure without payment introduced, the mean reserve error factor

changed from 1 to 1.25, the standard deviation of the reserve errors changed from about 1.414 to

5, and the reserve on first notice changed from $4,000 to $5,000.

The probability of closure without payment together with the increased severity leave the mean

severity over all claims unchanged, but the absence of a corresponding assumed probability of

closure without payment in the case reserving formula means that the case reserves are

conservative by 25%. Additional conservatism is provided by the mean reserve error factor’s

being greater than 1 and by the increase in the reserve on first notice, and the whole case

reserving process is made more erratic by the increase in its standard deviation.

Comparing Exhibit 10 with Exhibit 9, we see a general worsening of the bias and standard

deviation for the incurred loss estimators, reversing, in many cells, the advantage of the incurred

over the paid loss estimates in Exhibit 9. The reordering of the “rank sum” row is especially

striking.

Methods of Averaging Development Factors

The question of how best to average paid or incurred development factors has received

considerable attention in the literature [14][16].
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Exhibit 11 compares four different methods of averaging: arithmetic, dollar-weighted, least-

squares, and geometric. The first two of these averages have been in common use for many

years; the last two were suggested by Murphy [14]. The arithmetic average produces greater bias

than the others and somewhat greater standard deviation. There is little difference among the

other three, except that least-squares averaging appears to reverse the usual positive biases for

recent accident years.

Depth of Averaging

Another common question facing the loss reserve practitioner is how many years’ development

factors to include in each average. It is commonly believed that development factors change

over time with changes in claims handling practices and case reserving guidelines and

personnel. Therefore the use of recent years only in the averages may produce factors closer to

those presently being experienced than the use of all available years, albeit at the expense of

greater sampling error.

Our present model is not ideally suited to illustrate the possible superiority of smaller but more

recent averages, as it treats the reporting lag pattern as changing by accident year, and the

payment lag pattern by report year, rather than allowing both to change by calendar year.

Exhibit 12 illustrates four different depths of averaging, with the rest of the assumptions the

same as in the incurred chain-ladder column of Exhibit 9. In this case, despite the shifting

report-lag parameter, the all-year average remains best, the biases, standard errors of prediction,

and rank sums all increasing as the number of years in the averages decreases.

Exclusion of Extreme Values from Averages

Excluding the greatest and least values from each column of development factors is commonly

thought to make the resulting averages more robust estimators. This is borne out by comparing
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Exhibit 13, which excludes extreme values, with Exhibits 11 and 12. Note that Exhibit 13

includes the dollar-weighted average, with which the exclusion of extreme values is not often

combined. The standard deviations of the reserves and most of the accident year ultimates are

reduced modestly, and the biases are reduced substantially. This technique should be used with

caution, however, for reasons given by Wu [24].

Judgement Maximum Development Factors

In his discussion of Murphy [14], Gogol [11] assumes that the loss reserver would replace

infinite or very large average development factors with judgement maximum values, to avoid

the problem of infinite expectations. He goes on to show that, under mild conditions and

reasonable assumptions regarding the loss process, there is still an upward bias in single or

linked development factors.

Exhibit 14 shows the results of the incurred chain-ladder, modified Bornhuetter-Ferguson, and

Cape Cod estimators when the development factors are capped at 5.00 for 12 to 24 months and

at 2.00 for other lags. The effect on bias and standard deviation is slight in this case, because the

size of the case makes these maxima difficult to pierce, but the principle of stabilizing the

estimates by capping the development factors appears sound.

Weighted Average of Calculated and Reference Development Factors

Actuaries often append companywide or industrywide development factors to loss development

printouts as a guide in choosing “selected” factors. This judgement procedure may be automated

in a natural way by taking, at each lag, a weighted average of the calculated and reference

development factors, where the weights z for the calculated factors are related to the volume v of

the data by a credibility formula z = v/(v+k). Exhibit 15 illustrates this procedure applied to the

same three estimators as in Exhibit 14. Here, the measure of volume v is the total losses
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available, to the selected depth of averaging, in the denominators of the observed development

factors; k is $600,000, chosen purely for illustrative purposes; and the reference factors are .42,

.83, .95, .98, and 1.00. These reference factors were determined by sampling with a larger claim

frequency and with fixed lag patterns to simulate “industry” data.

Note that, when dollar-weighted averaging of development factors is used, this procedure

automatically handles the infinite-expectation problem, as lags with zero denominators have

credibility zero, causing the reference factor to be substituted.

The stabilizing effect of the reference development factors is quite evident in Exhibit 15, where

the bias of all three tested estimators has nearly been eliminated and the standard deviations

reduced.

Graduation of Development Factors

When triangles of paid or incurred losses are completed using the chain-ladder technique, the

results are sometimes faulted for perpetuating chance fluctuations in the observed experience in

later lags where the data is thin. A possible solution to this problem is to graduate the later

development factors, constraining them to bear a reasonable relationship to each other. Some

authors [19][23] have proposed fitting curves to do this and/or to extrapolate into the tail beyond

the known data.

Exhibit 16 illustrates the fitting of Richard Sherman’s inverse power curve [19], to development

factors using both paid and incurred chain-ladder estimators. Each graduation is applied first to

all development factors, and second to all development factors after the first. The results support

the latter procedure, at least for paid losses; fitting to all points tends to depress ultimate claims

and reserves except for the latest year, apparently because the inverse power curve decays too

rapidly to fit the data well at the early lags.
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Choice of Incurral and Development Intervals

Although loss triangles for P/C lines are commonly presented accident year versus development

year (with the latter possibly offset from the former by some months), data may actually be

available in finer intervals, such as accident year versus development quarter or accident quarter

versus development quarter. Finer development intervals are obviously useful for making off-

anniversary loss projections, and finer accident intervals for accommodating rapidly changing

exposures. More interesting is the question whether smaller intervals on one or both axes

improve the quality of predictions when exposures are not changing.

Exhibit 17 addresses this question by applying the paid and incurred chain-ladder estimators to

the same portfolio of claims as in Exhibit 9, but recompiled into cells, first by accident year

versus development quarter, and second by accident quarter versus development quarter. The

results are mixed. Shortening the development interval to three months while leaving the

accident interval at one year has practically no effect on the prediction errors. However,

shortening both the accident and development intervals to three months makes the biases and

standard deviations worse with the paid chain-ladder estimator, but slightly better with the

incurred chain-ladder estimator.

Pure Bornhuetter-Ferguson Estimates

In their 1972 paper, Ronald Bornhuetter and Ronald Ferguson assumed that the loss reserver

would use a priori values for expected losses or expected loss ratios, rather than deriving these

from the loss data itself. Exhibit 18 compares this “pure” Bornhuetter-Ferguson method with the

same Cape Cod calculations shown in Exhibit 9, which estimate expected losses from the data

and have only a small bias. The pure Bornhuetter-Ferguson estimates are better than the Cape

Cod estimates both for paid and for incurred loss projections. Of course the accuracy of the a
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priori  value of expected losses is crucial. Here we used $480 per unit of exposure, a slight

understatement.

Gluck’s Decay Factor

In 1997, Spencer Gluck [10] proposed using an exponential decay factor, between 0 and 1, to

give less weight the more remote the accident year when estimating expected losses for a given

year in the Cape Cod method. Thus estimated expected losses are not constant across accident

years but may drift over time, making them responsive to trends or to other variations in the

underlying data. Gluck points out that a decay factor of 1 is equivalent to the straight Cape Cod

method while a decay factor of 0 is equivalent to the chain-ladder. He gives a technique for

estimating an optimal decay factor from the data but generally uses judgement values from 50%

to 100% with a default value of 75%.

Exhibit 19 shows the results of setting Gluck’s decay factor to .9, .8, .7, and  .6 in paid and

incurred Cape Cod calculations; these may be compared with the pure Cape Cod and chain-

ladder results shown in Exhibit 9. In this case, there is apparently not enough drift to the mean

frequency to cause any of the estimators using Gluck’s weights to outperform the pure Cape

Cod. The biases and standard deviations generally rise, though slowly, as D decreases from 1

(Cape Cod) to 0.6.

Mixtures of Bornhuetter-Ferguson and Chain-ladder Estimates

Exhibit 20 investigates the proposition that the chain-ladder estimates might be better for mature

accident years and Bornhuetter-Ferguson (actually Cape Cod) estimates better for immature

years. It uses a weighted average of the two estimates, with the weight given to the Cape Cod

estimate equalling the expected fraction of each accident year’s ultimate claims that is

unemerged as of the latest known lag. For this data, the performance of the mixed method is
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much better than the straight chain-ladder but it shows no advantage over the straight Cape Cod

estimator.

Linear Combination of Estimates Based on Paid and on Incurred Losses

Exhibit 21 illustrates the results of using weighted averages of paid and incurred chain-ladder

and of paid and incurred Cape Cod reserve estimates. As seems to be common in practice,

weights of .5 and .5 have been used in both cases. The average of the paid and incurred Cape

Cod estimators generally outperforms either separately,  in terms of standard deviations and

rankings, but the average of the paid and incurred chain-ladder estimators performs only about

as well as the incurred estimator alone.

Performance in the Presence of Undetected Trend

Exhibit 22 illustrates the performance of all eight reserving methods shown in Exhibit 9, but this

time with the data incorporating a severity trend of 8%, which is assumed to be undetected (or

ignored) and is not adjusted for in any of the estimators.

Severity trend affects the paid or incurred chain-ladder estimators in two ways. First, accident-

year inflation tends to give greater weight to the more recent development factors in dollar-

weighted averages. In principle, this makes the averages more responsive to shifts in lag

patterns, but, with the modest trend assumed here, the effect is minor. Second, post-incurral

inflation increases all development factors. For paid-loss development, with a constant trend, the

factors increase in parallel with inflating losses; there is little impact on percentage prediction

errors. For incurred-loss development, however, the factors increase only to the extent that

claims are closed at each lag, since our model (in this respect unchanged from Stanard)

postulates no change in the case reserve until settlement. As some claims are not settled by the

last lag in our data, the calculated ultimate development factors do not increase in parallel with
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the inflating losses, and percentage prediction errors are forced somewhat downward, as can be

seen in Exhibit 22.

Our severity trend assumption has a greater impact on those estimators that average losses

across accident years. The modified Bornhuetter-Ferguson and Cape Cod expected losses are

averages over all years, and are therefore too low for the later ones, which account for most of

the reserves. The additive projected losses at each lag are averages over the earlier years only,

and are therefore too low for all years. Both patterns are evident in Exhibit 22.

Methods of Accommodating Trend

For the above reasons, it may be felt desirable to adjust for trend when using those reserving

methods that take averages across accident years.

It is possible to adjust any reserve estimator for inflation by deflating the losses entering the

calculation to a common index level and then reflating the projected losses. But simpler means

are sometimes available. For methods that relate losses to exposure, it may be sufficient to use

an inflating exposure measure, such as premium, or a synthetic measure incorporating trend,

such as units of exposure multiplied by a trend factor. For the Bornhuetter-Ferguson method and

its variations, it is also possible to trend the underlying chain-ladder losses, loss ratios, or loss

rates internally, before averaging to obtain expected losses, and then reverse the trending at the

end of the calculations.

Exhibit 23 compares the paid and incurred Cape Cod variation of the Bornhuetter-Ferguson

method with no inflation adjustment, with internal adjustment, and with deflation and reflation

of losses. The simulated trend is 8% per annum with 50% of the trend persisting between

occurrence and settlement; the adjustments within the reserving methods assume 8% trend. The

unadjusted columns repeat the biases shown in Exhibit 22. Both of the adjustment methods
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greatly reduce these biases. Surprisingly, the use of trending internal to the Cape Cod

calculation slightly outperforms the more complex deflating-reflating procedure.

Frequency x Severity Methods

When claim counts are available, one may estimate ultimate frequency and ultimate severity

separately, using a chain-ladder estimator for each, and then combine them to obtain an estimate

of ultimate losses. Exhibit 24 shows the results of using this “frequency x severity” estimator.

When applied to paid losses, there is some improvement over the chain-ladder estimator, but

when applied to incurred losses, there is practically no change. The improvement in the paid loss

case may be due to the fact that our implementation of the paid frequency x severity estimator

uses reported rather than closed claim counts, and thus is, in a sense, a hybrid of paid and

incurred estimators.

Average Payment Development and Case Reserve Development

Robert J. Finger’s average payment development method [7] projects ultimate claims from

ultimate average payments, estimated by developing average payments per closed claim

(assuming constant ratios of ultimate average payments to average payments at each lag), or

from trended average "implied reserves" per open claim (assuming that average reserves change

from accident year to accident year at a known inflationary rate), or as a weighted average of

these two estimates. Calculations proceed stepwise from the earliest accident year, making use

at each step of the ratios and reserves implied by the ultimate average payments for earlier

accident years.

Finger’s somewhat similar case reserve development method [8] assumes that the redundancy

(or inadequacy) in the case reserves for a given accident year is a function of the lag, and may be

estimated from the average redundancy of the reserves for earlier accident years at the same lag.
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Redundancy includes both development of known claims and emergence and development of

IBNR claims. Calculations proceed stepwise from the earliest accident year, making use at each

step of the reserves for all earlier accident years implied by those years’ paid losses and

calculated ultimate losses.

Exhibit 25 illustrates these two estimators. Average payment development exhibits a modest

positive bias but is better than the paid chain-ladder estimator, especially for recent accident

years and especially in terms of standard deviations. Case reserve development, on the other

hand, does not perform as well as the incurred chain-ladder estimator, nor does it show any

particular advantage over the paid chain-ladder estimator.

Clarke’s London Market Method

Harold E. Clarke [5] fits three-parameter curves, of the form A(1-exp(-t/B)^C), to partial loss

ratios at successive stages of development of each incurral period and obtains preliminary

estimates of ultimate loss ratios from the asymptotes of these curves. He then obtains final

estimates of ultimate loss ratios by regression of the preliminary estimates against partial loss

ratios at each lag. Partial loss ratios are emerged claims divided by emerged premium,

appropriate in the London Market reinsurance context; our implementation uses ultimate

premium or any other measure of exposure, or an assumption of constant exposure, so that "loss

ratio" may also mean pure premium or total losses.

Exhibit 26 shows that Clarke’s method has a pronounced negative bias when applied to paid

losses and a pronounced positive bias when applied to incurred losses, at least for this sample of

data sets; the standard deviations are moderate.

Clarke emphasizes that his approach is interactive and he uses curve plots to aid the loss

reserver in the exercise of judgement. This interactivity is lost in a simulation, where explicit
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formulas must substitute for judgement; we expect the results of applying Clarke’s method

interactively would be better than those shown here.

Loglinear Models

R.J. Verrall [22] (see also [12]) and Benjamin Zehnwirth [6][25][21] have created statistical

estimators which apply linear models to the logarithms of the incremental paid losses or loss

ratios. As a consequence, the fitted mean for a cell depends on the variance as well as the mean

of the transformed value for that cell, and the predicted mean may be much greater than the

mean simulated by a process which does not distribute the cell values lognormally. These

loglinear models are also somewhat awkward in dealing with zero or negative incremental cells.

Verrall fits a linear model with row and column (lag) effects to the transformed data, using

maximum likelihood, Bayesian, and empirical Bayesian estimation. Zehnwirth fits three-

parameter Hoerl curves to the lag patterns, using adaptive filtering to let the parameters vary

over time. His procedure is intended to be interactive, with successive adjustments of the

second-level variances of the parameters to achieve an appropriate balance between fit and

parsimony. As with Clarke’s method, this interactivity is lost in a simulation.

Exhibit 27 shows Verrall’s maximum-likelihood, Bayesian, and empirical Bayesian chain-

ladder models, and two runs of Zehnwirth: one using fixed parameters and the other allowing

the parameters to vary modestly for the first five years. For this particular simulation, Verrall’s

empirical Bayesian model and Zehnwirth’s fixed-parameter model do well (among paid loss

estimators) in terms of both bias and standard deviations.
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Berquist-Sherman Adjustments

Berquist and Sherman [1] introduced several means of adjusting loss development calculations

for changes in conditions, two of which, the disposal rate adjustment and the case reserve

adequacy adjustment, may be applied to the data entering any reserve calculation. The disposal

rate adjustment uses interpolation [9] to place paid claims or other quantities on a level

consistent with the latest ratio at each lag of closed claim counts to projected ultimate claim

counts. The case reserve adequacy adjustment adjusts average case reserves per open claim to

the latest level at each lag, de-trended at an assumed annual rate, derives the total case reserves,

and adds these to paid claims to obtain adjusted case-basis incurred claims.

Exhibit 28 illustrates the disposal rate adjustment applied to the paid chain-ladder estimator and

both adjustments applied singly and together to the incurred chain-ladder estimator. While the

disposal rate adjustment does not improve the results, the case reserve adequacy adjustment,

used by itself, does reduce the bias in the incurred chain-ladder estimator, at the expense of

somewhat higher standard deviations for most years.

Combination of Adjustments

In the foregoing paragraphs we have seen that the use of incurred loss development, dollar-

weighted or least-squares averages, exclusion of extreme values, a weighted average of

calculated and reference development factors, or graduation of development factors each

improve the efficiency of the basic chain-ladder estimator, at least for our particular sample of

simulated data sets. In Exhibit 29, we examine the effect of various combinations of these

selections and adjustments on the incurred chain-ladder estimator. Of those shown, the most

successful combines dollar-weighted averages and reference factors. Exhibit 29 also shows the

result of this same combination on the Cape Cod estimator: exceptionally small biases at all but
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the latest accident years and exceptionally low standard deviations both for the latest accident

years and for the reserves.

Means and Standard Deviations of Prediction Errors Conditional on the Known Data

To use Monte-Carlo simulation to investigate the distribution of reserve errors given a particular

set of known data, it would be most useful to be able to draw a sample all of whose points

contained exactly the same known data and differed only in their runoffs. Unfortunately, this is

not practical; the same loss process governs both the known and the runoff data, and the

probability of obtaining precisely the same known data on two runs is exceedingly small. One

way around this problem is to draw a sample of points close, if not identical, to the given set of

known data.

Exhibit 30 returns to the estimators of Exhibit 9 and illustrates the effect of screening each

sample point for proximity to a particular set of “case data”, here the first sample data set with

dollar values rounded to the nearest thousand. Proximity is defined by a Euclidean metric, the

square root of the sum of squares of the differences between the two data sets in the latest

cumulative paid losses for each accident year. This is actually only a partial metric as it does not

distinguish between sample data sets that differ in other ways than the latest cumulative paid

losses.

Even with such a weak definition of closeness, we must still allow considerable latitude if we

wish to include a reasonable proportion of the trial sample points in the final sample. Defining

an acceptance radius as a multiple of the norm of the “case data” using the metric described

above, we find that a radius of .4 results in the acceptance of some one-seventh of the trial

sample points. For this particular sample, “case data”, and acceptance radius, the most of the
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positive reserve biases are reduced or negative biases increased, and the standard deviations of

the reserve errors are generally reduced.

The above procedure is a special case of sampling the distribution conditional on satisfaction of

an arbitrary Boolean relation on the known data. Exhibit 31 illustrates the incurred-loss

estimators from Exhibit 9, applied to those sample data sets where the latest accident year

incurred losses at the first evaluation are within 25% of the average incurred losses at first

evaluation of the earlier accident years. This excludes those situations where an unusually high

or low latest accident year would attract the attention of the loss reserver and lead to a

judgement adjustment. As might be expected, the main effect of this particular Boolean screen is

to eliminate completely, indeed reverse, the positive bias in the chain-ladder ultimate claims for

the latest accident year. It also reduces the positive bias, or increases the negative bias, in the

methods which involve averages of losses or loss ratios across accident years.

Detailed Distributions of Prediction Errors

Stanard [20] remarks that, with the chain-ladder estimator, a few sample points create very large

positive prediction errors and contribute to the observed positive bias, whereas most of the

sample points actually produce negative prediction errors. This is borne out by our tests.

When generating Section II of Exhibit 1,  we obtained details on the distribution of prediction

errors for year 4. While the mean error for the chain-ladder estimator is about $142,000 (before

Stanard’s tail adjustment), the median is about -$64,000, and 5,935 of the 10,000 sample points

have prediction errors less than zero. The three largest positive errors are about $81,300,000,

$56,800,000, and $26,500,000, while the three  largest negative errors are about -$5,300,000, -

$3,000,000, and -$2,900,000. The mode of the distribution, when grouped into bands of width
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$100,000, is the band from -$200,000 to -$100,000. The other three estimators in Exhibit 1

produce more symmetrical error distributions.

When generating Exhibit 9, we obtained details on the distribution of prediction errors for total

reserves. While the mean error is about $75,000 for the incurred chain-ladder estimator, the

median is about -$8,300 and 5,072 of the sample points have prediction errors less than zero.

The three largest positive errors are about $9,000,000, $7,400,000, and $5,900,000, while the

three largest negative errors are about -$3,400,000, -$2,500,000, and -$2,400,000. The mode of

the distribution, when grouped into bands of width $200,000, is the band from -$200,000 to $0.

The other three incurred-loss estimators produce more symmetrical and concentrated

distributions than this, while the four paid-loss estimators follow a pattern similar to the

incurred-loss estimators, but considerably less concentrated.

For these two tests, we also defined an independent variable against which to tabulate the

prediction errors; this variable was the incurred losses at first evaluation for the latest accident

year (year 4 in Exhibit 1 and year 7 in Exhibit 9).

Since the chain-ladder estimate of the latest accident year is a multiple of the claims at the first

evaluation, a linear regression of the prediction errors of ultimate claims against the claims at

first evaluation should certainly be significant. For the simulation in Exhibit 1, the coefficient of

variation R2 is 39.8%, the t statistic for the slope is 81.35 (df=9,998) and the slope itself is

4.868; in effect this is an average ultimate development factor for lag 12 months. This

relationship is obviously significant despite the fact that the prediction errors do not display

equal variances when grouped by ranges of values of the independent variable, but instead

increase almost monotonically. The other reserving methods also produce extremely significant

regressions, though with smaller slopes, as would be expected given their indirect dependence

on the emerged claims for the latest accident year.
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For the simulation in Exhibit 9, where the dependent variable is the reserve rather than ultimate

claims for the latest accident year, we expect the strength of the relationship to be lower though

it should still be significant and the slope positive. Indeed, R2 is now just 19.5%, t is 49.3 and

the slope is 1.983. The assumption of equal variances is again violated, with variance increasing

at the upper end of the range of the independent variable. The regressions for the other

estimators considered, including all the paid methods, are significant but weaker than for the

incurred chain-ladder. Interestingly, the regressions for the paid Cape Cod and additive

estimators have a small negative slope.

VI. CONCLUSIONS

Several judgement adjustments to the chain-ladder and related reserving methods have been

shown to improve its efficiency when tested using simulated loss histories involving mixtures of

claim types and serial autocorrelation of parameters. In most scenarios, the chain-ladder method

with these adjustments does not show any clear superiority to Buehlmann’s additive method, the

Cape Cod variation of the Bornhuetter-Ferguson method or the Cape Cod variation with the

same adjustments. Scenarios have been suggested, however, in which the relative performance

of the methods might be reversed. Other reserving methods, including loglinear models, have

been tested and found promising. In some cases, their promise may only be fully realized when

they are used interactively rather than reduced to rules suitable for a simulation. Finally, our

procedure allows the loss reserver to choose the best reserve estimator for a given case, from a

set of candidates, by modeling the loss process for the case in some detail and then using

simulation to compare the performance of the different estimators.
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Exhibit 1. Replication of Stanard's Results
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

I. Claim Counts Only
0 0 3.6 0 3.6 0 3.6 0 3.6
1 .2 6.3 .2 6.3 .2 6.2 0 6.1
2 .3 9.2 .2 8.8 .1 8.7 -.1 8.6
3 .7 14.1 .4 12.3 .2 12.0 0 11.9
4 1.4 29.4 .6 17.8 .3 17.3 .1 17.3
5 n.a. n.a. .3 21.4 0 20.8 -.2 20.8

Reserve 1.1 16.7 .6 12.9 .3 12.3 0 12.1
II. Incurred Losses

0 0 23.4 0 23.4 0 23.4 0 23.4
1 3.0 54.7 3.4 67.7 2.2 49.3 .2 51.9
2 7.3 126.3 6.4 76.5 3.5 53.8 .3 53.6
3 12.9 106.3 9.8 95.0 4.5 65.2 .5 63.6
4 38.7 334.7 12.1 116.2 3.6 77.9 -.1 74.6
5 n.a. n.a. 12.1 112.1 2.5 76.1 -.1 75.3

Reserve 26.4 185.7 13.4 126.8 5.8 76.1 .3 75.1
III. Severity Trend 8%; a=.5

0 0 24.5 0 24.5 0 24.5 0 24.5
1 3.2 56.9 4.7 78.3 2.6 50.9 -0.2 51.9
2 7.6 137.5 7.5 86.6 2.8 53.8 -1.7 51.9
3 13.3 111.1 8.1 102.6 .3 64.4 -5.2 61.6
4 39.6 360.5 2.5 116.4 -8.9 73.3 -13.8 69.5
5 n.a. n.a. -7.7 107.3 -19.7 70.6 -22.7 69.4

Reserve 27.2 201.0 9.0 133.0 -1.9 69.4 -9.1 65.5
IV. Severity Trend 8%; a =.5; Inflation Adjustment in Estimates 8%

0 .3 25.1 .3 25.1 .3 25.1 0.3 25.1
1 3.6 58.1 3.9 72.2 2.6 52.4 .5 55.0
2 8.0 134.4 7.0 81.3 3.9 57.2 .5 56.8
3 13.7 111.8 10.6 100.7 5.1 68.7 1.0 68.0
4 39.4 340.5 12.9 121.8 4.1 80.2 .2 76.4
5 n.a. n.a. 12.8 115.7 3.0 76.7 .3 75.9

Reserve 27.7 192.6 14.3 128.9 6.4 76.1 1.0 74.7
V. Severity Trend 10%, then 6%; a =.5; Inflation Adjustment 10%

0 .4 25.4 .4 25.4 .4 25.4 .4 25.4
1 3.8 59.2 4.2 73.7 2.9 53.3 .7 56.0
2 8.9 137.9 7.9 83.2 4.7 57.8 1.1 57.5
3 15.8 115.1 12.4 103.3 6.7 69.5 2.2 74.2
4 44.1 355.2 16.4 126.7 7.3 82.2 3.1 78.6
5 n.a. n.a. 19.4 122.4 8.9 78.8 5.9 78.2

Reserve 31.2 201.3 17.1 133.7 9.0 78.4 3.1 78.1
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Exhibit 2. Stanard's Model Extended to 10 Years by 10 Years
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 0 .6 0 .6 0 .6 0 .6
1 0 2.2 0 2.2 0 2.1 0 3.3
2 0 4.9 0 4.9 0 4.9 -.1 5.8
3 .2 12.2 .2 11.9 .2 11.8 0 12.3
4 .4 21.4 .3 21.5 .3 21.4 .1 21.7
5 1.0 26.2 .5 26.0 .3 25.0 -.1 26.1
6 .8 58.5 .4 57.2 .1 56.7 -.5 57.1
7 2.1 52.1 .8 44.4 .2 43.1 -.6 43.0
8 4.1 95.6 1.3 62.5 .2 59.7 -.7 58.3
9 18.8 186.8 3.9 68.5 1.8 62.4 1.0 61.1

Reserve 11.1 100.8 3.0 63.9 1.2 58.0 -.3 57.8

Exhibit 3. Stanard's Model with Frequencies Increased by a Factor of 10
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 0 7.6 0 7.6 0 7.6 0 7.6
1 0.3 14.0 .2 13.8 .1 13.7 -.2 13.7
2 1.1 19.8 .8 18.4 .6 18.1 0 17.9
3 2.2 34.5 1.5 27.3 .9 26.4 .2 25.0
4 5.1 56.7 1.7 29.4 .7 26.1 0 24.8
5 n.a. n.a. 2.0 27.4 .7 24.8 .2 24.5

Reserve 3.7 35.4 1.8 27.8 1.0 25.8 0 24.8
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Exhibit 4. Stanard's Model with Mixture of Two Claim Types
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 0 18.1 0 18.1 0 18.1 0 18.1
1 1.4 28.2 1.1 29.7 .9 27.3 0 30.4
2 2.6 43.1 2.0 39.4 1.5 37.7 -.2 38.1
3 4.2 57.7 2.1 50.5 1.1 47.5 -1.1 47.8
4 12.5 109.8 4.4 61.9 2.1 55.9 0 54.6
5 n.a. n.a. 3.5 59.1 .5 54.0 -.9 53.8

Reserve 9.8 77.7 4.5 63.8 2.7 57.5 -.6 58.5

Exhibit 5. Stanard's Model with Fast Track Case Reserve of $10,000 for First Three Months
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 0 23.4 0 23.4 0 23.4 0 23.4
1 2.8 53.8 3.0 66.0 2.0 49.3 .3 48.7
2 6.5 117.9 4.7 73.0 2.8 56.0 0 55.4
3 10.4 97.6 6.6 82.7 3.3 63.5 0 62.1
4 19.9 206.2 7.5 93.6 2.5 72.2 -.3 70.5
5 n.a. n.a. 7.7 95.8 1.9 75.4 -.2 74.6

Reserve 16.8 141.6 9.3 111.8 4.5 74.8 .0 72.9

Exhibit 6. Stanard's Model with Mean Frequency, Severity, and Reserve
Errors Drawn from Second-level Distributions; �=.9816

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 19.7 .0 19.7 .0 19.7 .0 19.7
1 2.6 50.9 2.4 46.2 1.6 41.2 -.6 47.6
2 6.1 68.4 5.3 65.5 3.2 57.9 -.1 58.3
3 13.3 135.8 9.1 96.3 4.9 85.6 .7 82.6
4 35.8 251.7 12.8 106.1 5.4 83.3 1.5 79.4
5 n.a. n.a. 10.4 106.5 2.0 90.2 -.6 89.7

Reserve 24.5 146.0 12.6 103.8 6.4 82.9 .6 82.4
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Exhibit 7. Stanard's Model with Mean Frequency, Severity, and Reserve
Errors Drawn from Second-level Distributions; �=.9816

Mean Frequency Reduced 40% Starting with Year 3
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size =10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 24.4 .0 24.4 .0 24.4 .0 24.4
1 1.9 39.5 .5 39.6 .6 37.4 -.7 43.6
2 6.6 72.6 2.1 60.6 2.0 57.3 .2 61.5
3 12.4 220.4 19.5 158.3 19.2 150.5 17.6 143.7
4 33.4 292.7 32.2 126.4 30.8 104.0 29.8 103.8
5 n.a. n.a. 39.5 124.5 38.6 105.7 37.1 107.1

Reserve 21.2 155.4 20.1 115.0 19.5 102.4 16.8 108.4
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Exhibit 8. Loss Process for Subsequent Simulations
Claim Type I Claim Type II

Frequency distribution (monthly) Normal Normal
Second-level distribution of means AR(1) AR(1)

Mean 4 8
Standard deviation .1 .2

Autocorrelation coefficient .9816 .9816
Standard deviation 2 4

Report lag distribution Exponential Exponential
Second-level distribution of means AR(1) AR(1)

Mean 12 6
Standard deviation .2 .1

Autocorrelation coefficient .9816 .9816
Maximum lag 60 60

Payment lag distribution Exponential Exponential
Mean 24 12

Maximum lag 60 60
Severity distribution Lognormal Lognormal

Mean 10,000 1,000
Standard deviation 40,000 2,000

Butsic's trend parameter a .8 .8
Probability that claim is closed without payment 0 0

Deductible 0 0
Limit 1,000,000 1,000,000

Case reserve error distribution Lognormal Lognormal
Second-level distribution of means AR(1) AR(1)

Mean 1 1
Standard deviation .02 .02

Autocorrelation coefficient .9816 .9816
Standard deviation 1.4142136 1.4142136

Assumed probability that claim is closed without payment 0 0
Reserve at first notice 4000 4000

Number of months until first evaluation 2 2
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Exhibit 9. Comparison of Paid and Incurred Loss Development
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Estimators Applied to Paid Losses
 0 .0 5.0 .1 6.5 .1 6.3 -1.0 4.1
1 .5 14.1 .5 12.8 .4 12.4 -.9 9.5
2 1.1 20.2 1.0 19.0 .7 18.4 -.9 9.5
3 1.8 27.0 1.7 25.0 1.0 23.9 -.8 22.1
4 1.9 34.7 1.9 31.3 .9 29.7 -1.1 28.2
5 3.2 46.8 2.8 37.8 1.2 35.2 -.8 33.9
6 5.1 69.8 3.0 45.5 .7 41.3 -1.2 40.0
7 16.5 170.2 4.3 52.1 1.4 46.4 -.4 45.5

Reserve 11.6 87.2 5.9 58.1 2.4 49.9 -2.7 42.7
# best 1431 767 1300 1913

rank sum 55934 47135 43830 43040
Estimators Applied to Incurred Losses

0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .2 8.3 .2 8.4 .2 8.3 .0 9.1
2 .5 14.2 .4 14.1 .4 13.9 -.1 14.7
3 1.0 20.7 .7 20.2 .7 20.1 .0 20.7
4 1.1 26.6 .6 25.6 .6 25.4 -.2 25.8
5 1.7 34.3 1.1 31.7 .9 31.4 .0 31.6
6 2.8 47.6 1.2 39.6 .9 39.1 -.1 38.6
7 6.1 73.2 2.5 46.7 1.8 45.3 .9 44.7

Reserve 5.1 47.3 2.6 40.6 2.1 39.5 .2 40.5
# best 1839 388 673 1689

rank sum 46382 42139 40715 40825
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Exhibit 10. Comparison of Paid and Incurred Loss Development
Case Basis Reserve Errors Increased from Basic Model

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Estimators Applied to Paid Losses
 0 .0 7.2 .2 9.6 .2 8.9 -1.3 4.5
1 .7 17.4 .7 16.4 .6 15.6 -1.2 11.2
2 1.0 23.7 1.1 22.2 .7 21.1 -1.4 17.6
3 1.4 31.0 1.6 29.2 .7 27.6 -1.5 24.8
4 2.4 39.3 2.3 34.7 1.0 32.5 -1.4 30.1
5 3.3 50.5 2.6 41.5 .6 38.4 -1.8 36.3
6 7.3 80.1 4.5 49.3 1.6 44.7 -.7 42.8
7 19.2 182.0 4.5 56.9 1.0 51.0 -1.2 49.7

Reserve 13.6 96.7 6.7 66.9 2.5 57.6 -4.0 46.1
# best 1783 951 1492 2422

rank sum 50307 41303 38397 37642
Estimators Applied to Incurred Losses

0 .0 7.2 .0 7.2 .0 7.2 .0 7.2
1 .6 15.6 .6 15.7 .6 15.6 .1 16.9
2 1.6 26.4 1.2 26.6 1.2 26.3 .2 27.9
3 2.5 37.7 1.7 37.4 1.8 37.0 .1 38.5
4 3.0 44.8 1.7 44.0 1.7 43.5 -.5 45.0
5 3.9 55.1 1.8 53.4 1.8 52.8 -.6 53.9
6 6.9 69.6 3.5 61.7 3.3 60.9 .7 61.4
7 9.6 92.8 4.0 62.1 2.9 60.1 .6 59.6

Reserve 10.8 72.0 5.5 65.7 5.1 63.9 .3 68.3
# best 1344 303 492 1213

rank sum 49694 48206 46175 48276
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Exhibit 11. Comparison of Methods of Averaging Development Factors
Incurred Chain-ladder Method

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Arithmetic Dollar-weighted Least Squares Geometric
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .2 8.3 .2 8.3 .2 8.3 .2 8.3
2 .7 14.0 .5 14.2 .4 14.4 .5 13.9
3 1.7 20.5 1.0 20.7 .4 21.2 1.2 20.2
4 2.6 26.4 1.1 26.6 -.1 27.1 1.5 25.9
5 5.1 34.9 1.7 34.3 -1.0 34.6 2.7 33.5
6 10.1 50.3 2.8 47.6 -3.0 46.7 4.6 47.1
7 24.1 83.5 6.1 73.2 -7.9 67.7 8.3 72.2

Reserve 17.1 50.6 5.1 47.3 -4.3 46.6 7.3 45.4
# best 4140 720 3705 1435

rank sum 25772 24638 26659 22931

Exhibit 12. Comparison of Depths of Averaging Development Factors
Incurred Chain-ladder Method with Dollar-weighted Averages
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
All Years 5 Years 4 Years 3 Years

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .2 8.3 .2 8.3 .2 8.3 .2 8.3
2 .5 14.2 .5 14.2 .5 14.2 .5 14.2
3 1.0 20.7 1.0 20.7 1.0 20.7 1.0 20.7
4 1.1 26.6 1.1 26.6 1.1 26.6 1.2 26.9
5 1.7 34.3 1.7 34.3 1.8 34.6 2.1 35.5
6 2.8 47.6 3.1 48.3 3.5 49.2 4.1 50.6
7 6.1 73.2 7.5 76.4 8.7 79.5 10.7 85.0

Reserve 5.1 47.3 5.8 48.9 6.4 50.5 7.6 53.6
# best 3047 1938 2050 2965

rank sum 22835 24498 25687 26980
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Exhibit 13. Results of Excluding Extreme Values in Averaging Development Factors
Incurred Chain-ladder Method

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Dollar-weighted
All Years

Dollar-weighted
5 Years

Arithmetic
All Years

Least Squares
All Years

Geometric
All Years

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0 .0 5.0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .2 8.3 .2 8.3 .2 8.3 .2 8.3 .2 8.3
2 .5 14.2 .5 14.2 .7 14.0 .4 14.4 .5 13.9
3 1.0 19.8 1.0 19.8 1.2 19.6 .8 20.0 1.0 19.6
4 1.0 25.0 1.0 25.0 1.2 24.9 .8 25.1 1.1 24.8
5 1.0 31.6 1.0 31.6 1.7 31.6 .6 31.7 1.3 31.5
6 .8 44.7 1.0 45.3 2.5 45.2 .0 45.2 1.6 45.1
7 1.6 67.9 2.4 69.6 6.6 70.3 -.3 68.6 2.9 69.3

Reserve 2.4 41.7 2.7 42.7 5.4 42.3 .9 42.7 3.3 42.1
# best 1902 485 3048 2662 1903

rank sum 28660 30803 28329 32050 30158

Exhibit 14. Use of Judgement Maximum Development Factors
Estimators Applied to Incurred Losses

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod
Year Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 5.0 .0 5.0 .0 5.0
1 .2 8.3 .1 8.3 .1 8.2
2 .5 14.1 .4 14.1 .4 13.9
3 1.0 20.7 .7 20.2 .7 20.1
4 1.1 26.6 .6 25.6 .6 25.4
5 1.7 34.2 1.1 31.7 .9 31.4
6 2.8 47.5 1.2 39.5 .9 39.1
7 6.0 73.2 2.5 46.7 1.8 45.3

Reserve 5.1 47.3 2.6 40.6 2.0 39.4
# best 3970 659 5371

rank sum 22010 19623 18367
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Exhibit 15. Weighted Average of Calculated and Reference Factors
Estimators Applied to Incurred Losses

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod
Year Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 5.0 .0 5.0 .0 5.0
1 .0 7.4 .0 7.4 .0 7.4
2 .0 12.7 .0 12.6 .0 12.6
3 .0 18.9 -.2 18.6 -.2 18.6
4 -.1 24.5 -.3 23.9 -.3 23.8
5 -.1 31.9 -.4 30.0 -.5 29.9
6 .3 44.4 -.4 37.9 -.5 37.7
7 3.2 68.6 1.3 45.1 .9 44.1

Reserve 1.3 41.1 .0 35.4 -.2 34.8
# best 3989 635 5376

rank sum 21954 19500 18546

Exhibit 16. Results of Graduating Development Factors
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Inverse Power

All Lags
Paid Chain-ladder

Inverse Power
Lags > 24 Months
Paid Chain-ladder

Inverse Power
All Lags

Inc'd Chain-ladder

Inverse Power
Lags > 24 Months
Inc'd Chain-ladder

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .4 11.5 .2 11.6 .4 7.0 .4 7.0
2 -2.1 16.1 -2.4 16.3 .6 11.8 .7 11.8
3 -6.9 21.4 -7.2 21.6 .4 17.5 .4 17.5
4 -11.2 28.4 -11.1 28.5 -.3 22.7 -.2 22.8
5 -15.9 37.7 -12.5 38.2 -2.1 29.3 -1.4 29.7
6 -16.6 55.7 8.9 72.8 -5.9 41.0 .0 45.4
7 26.6 182.8 20.7 174.7 5.1 78.8 3.4 70.6

Reserve -10.0 82.0 -1.4 82.5 -.7 40.4 1.3 39.5
# best 1318 2170 2946 3566

rank sum 30397 26648 22125 20830
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Exhibit 17. Use of Incurral and/or Development Intervals Smaller than Annual
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Accident Years
Devel. Quarters

Paid Chain-ladder

Accident Quarters
Devel. Quarters

Paid Chain-ladder

Accident Years
Devel. Quarters

Inc'd Chain-ladder

Accident Quarters
Devel. Quarters

Inc'd Chain-ladder
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 5.0 .2 9.1 .0 5.0 .1 5.5
1 .5 14.1 .6 15.7 .2 8.3 .2 8.5
2 1.1 20.2 1.1 22.1 .5 14.2 .5 14.1
3 1.8 27.0 1.9 27.7 .9 20.7 .9 20.6
4 1.9 34.7 1.9 35.2 1.1 26.6 1.1 26.4
5 3.2 46.8 3.2 46.8 1.7 34.3 1.8 34.4
6 5.0 69.8 5.9 74.8 2.8 47.6 2.9 47.5
7 16.4 170.2 35.7 501.8 6.0 73.2 5.5 67.5

Reserve 11.5 87.2 19.4 201.8 5.1 47.3 5.0 46.4
# best 2217 1989 2708 3086

rank sum 27014 28046 22860 22080

Exhibit 18. Cape Cod versus Pure Bornhuetter-Ferguson Methods
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Paid Loss
Cape Cod

Paid Loss
Pure B-F

Incurred Loss
Cape Cod

Incurred Loss
Pure B-F

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0 .1 6.3 -.1 3.2 .0 5.0 .0 5.0
1 .4 12.4 -.1 9.5 .2 8.3 .0 8.5
2 .7 18.4 -.1 15.4 .4 13.9 -.1 14.2
3 1.0 23.9 .0 20.7 .7 20.1 -.1 20.2
4 .9 29.7 -.3 26.3 .6 25.4 -.4 25.2
5 1.2 35.2 .1 31.4 .9 31.4 -.3 30.8
6 .7 41.3 -.2 36.7 .9 39.1 -.4 37.4
7 1.4 46.4 .9 40.8 1.8 45.3 .7 41.6

Reserve 2.4 49.9 .1 32.8 2.1 39.5 -.2 35.2
# best 2104 3343 1931 2622

rank sum 27500 23293 26353 22854
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Exhibit 19. Use of Gluck's Decay Factors in Cape Cod Method
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
D=.9 D=.8 D=.7 D=.6

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Estimators Applied to Paid Losses

 0 .1 6.2 .1 6.1 .1 6.0 .1 5.8
1 .4 12.4 .4 12.4 .4 12.5 .4 12.5
2 .7 18.4 .7 18.4 .7 18.5 .8 18.6
3 1.0 23.9 1.1 24.0 1.2 24.1 1.2 24.3
4 1.0 29.8 1.1 30.0 1.2 30.3 1.3 30.6
5 1.4 35.5 1.6 35.9 1.8 36.5 2.0 37.2
6 .9 41.7 1.2 42.4 1.5 43.4 1.8 44.9
7 1.6 46.8 1.8 47.7 2.1 49.3 2.6 51.7

Reserve 2.7 50.6 3.0 51.7 3.4 53.1 3.9 55.0
# best 2372 373 357 1720

rank sum 43464 45360 48053 51205
Estimators Applied to Incurred Losses

0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .1 8.2 .1 8.2 .1 8.2 .1 8.2
2 .4 13.9 .4 13.9 .4 13.9 .4 13.9
3 .7 20.1 .7 20.1 .7 20.1 .7 20.1
4 .6 25.4 .7 25.4 .7 25.5 .8 25.5
5 1.0 31.5 1.1 31.7 1.2 31.8 1.3 32.0
6 1.1 39.4 1.3 39.8 1.5 40.4 1.7 41.0
7 2.0 45.9 2.3 46.9 2.7 48.3 3.1 50.1

Reserve 2.3 40.0 2.5 40.6 2.8 41.4 3.1 42.2
# best 2564 257 278 2079

rank sum 39540 41759 44148 46471

Exhibit 20. Weighted Average of Chain-ladder and Cape Cod Estimates
Weights Equal Expected Fractions Unemerged

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Paid Loss Estimates Incurred Loss Estimates
Year Mean Std Dev Mean Std Dev

0 .0 5.8 .0 5.0
1 .5 13.1 .2 8.3
2 .9 19.3 .5 14.1
3 1.5 25.3 .9 20.6
4 1.4 31.8 1.0 26.2
5 1.8 38.5 1.6 33.3
6 1.2 45.1 2.1 44.0
7 1.4 47.8 2.7 52.7

Reserve 3.4 52.0 3.5 41.7
# best 4581 5419

rank sum 15419 14581
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Exhibit 21. Weighted Average of Paid and Incurred Estimates
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Paid Incurred Average

Year Mean Std Dev Mean Std Dev Mean Std Dev
Chain-ladder estimator

 0 .0 5.0 .0 5.0 .0 5.0
1 .5 14.1 .2 8.3 .4 8.5
2 1.1 20.2 .5 14.2 .8 13.7
3 1.8 27.0 1.0 20.7 1.4 19.0
4 1.9 34.7 1.1 26.6 1.5 24.8
5 3.2 46.8 1.7 34.3 2.5 32.8
6 5.1 69.8 2.8 47.6 3.9 47.6
7 16.5 170.2 6.1 73.2 11.3 102.3

Reserve 11.6 87.2 5.1 47.3 8.3 55.7
# best 1341 1863 1067

rank sum 43745 35679 34642
Cape Cod Estimator

0 .1 6.3 .0 5.0 .1 5.6
1 .4 12.4 .2 8.3 .3 7.9
2 .7 18.4 .4 13.9 .5 12.8
3 1.0 23.9 .7 20.1 .8 17.4
4 .9 29.7 .6 25.4 .7 22.2
5 1.2 35.2 .9 31.4 1.0 27.4
6 .7 41.3 .9 39.1 .8 34.1
7 1.4 46.4 1.8 45.3 1.6 42.7

Reserve 2.4 49.9 2.1 39.5 2.2 37.3
# best 2297 2134 1298

rank sum 35127 32179 28628
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Exhibit 22. Comparison of Paid and Incurred Loss Development
Severity Trend = 8%, a = .5; No Inflation Adjustments

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Estimators Applied to Paid Losses
 0 .0 4.8 .5 8.3 .4 7.3 -1.0 4.9
1 .6 15.3 1.5 16.2 .9 14.6 -1.1 10.6
2 1.2 21.6 2.7 22.2 1.2 20.0 -1.9 16.8
3 2.1 28.7 3.2 27.6 .5 24.8 -3.6 22.3
4 2.2 35.4 1.8 32.2 -2.1 29.0 -6.8 27.0
5 3.5 46.7 -1.1 37.2 -6.5 33.2 -11.4 31.6
6 5.2 67.0 -7.8 42.5 -15.0 37.5 -19.5 36.3
7 16.6 151.2 -16.4 46.5 -25.1 40.7 -28.5 39.9

Reserve 11.8 81.9 -7.2 53.1 -18.1 41.4 -27.3 34.5
# best 1570 834 1051 1191

rank sum 54087 47029 46421 53321
Estimators Applied to Incurred Losses

0 .0 4.8 .0 4.8 .0 4.8 .0 4.8
1 .2 8.4 .3 9.1 .3 8.8 .0 8.7
2 .5 13.8 .6 14.4 .5 13.9 -.3 13.4
3 .8 19.9 .9 19.5 .6 19.1 -.7 18.4
4 .9 25.0 .3 23.6 -.2 23.0 -1.8 22.3
5 1.2 31.8 -.8 28.3 -1.6 27.7 -3.6 26.8
6 1.2 43.1 -4.8 34.1 -6.1 33.3 -8.4 32.4
7 -1.0 67.1 -15.3 40.3 -17.7 38.9 -19.8 38.2

Reserve 1.2 43.2 -7.7 34.4 -9.7 32.3 -13.4 30.3
# best 2179 577 847 1751

rank sum 43435 38550 37762 39395
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Exhibit 23. Inflation Adjustments
Severity Trend = 8%, a = .5; Trend for Inflation Adjustments 8%

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Paid Loss Cape Cod Estimates Incurred Loss Cape Cod Estimates

No Adjustment

Loss Rates
Trended Inside

Cape Cod
Calculations

Losses Deflated,
then Reflated

After
Calculations No Adjustment

Loss Rates
Trended Inside

Cape Cod
Calculations

Losses Deflated,
then Reflated

After
Calculations

Year Mean
Std Dev

Mean
Std Dev

Mean
Std Dev

Mean
Std Dev

Mean
Std Dev

Mean
Std Dev

0 .4 7.3 .1 5.9 .2 6.2 .0 4.8 .0 4.8 .0 5.0
1 .9 14.6 .4 13.5 .5 13.7 .3 8.8 .2 8.3 .2 8.6
2 1.2 20.0 .8 19.6 .8 19.8 .5 13.9 .3 13.5 .3 13.9
3 .5 24.8 1.1 25.2 1.2 25.3 .6 19.1 .5 19.0 .6 19.7
4 -2.1 29.0 1.1 30.2 1.2 30.3 -.2 23.0 .4 23.5 .5 26.1
5 -6.5 33.2 1.6 35.0 1.6 35.1 -1.6 27.7 .4 28.7 .5 30.0
6 -15.0 37.5 1.2 40.0 1.3 40.1 -6.1 33.3 -.3 34.7 -.3 36.1
7 -25.1 40.7 2.2 43.8 2.3 43.9 -17.7 38.9 -.7 40.9 -1.2 41.6

Reserve -18.1 41.4 3.0 46.1 3.1 46.4 -9.7 32.3 .1 34.8 .1 36.0
# best 1755 1440 1617 2198 1321 1669

rank sum 40989 35224 35265 34339 30774 33409

Exhibit 24. Frequency x Severity Methods
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Paid Loss

Frequency x Severity
Incurred Loss

Frequency x Severity
Year Mean Std Dev Mean Std Dev

0 -1.0 4.1 .0 5.0
1 -.6 11.2 .2 8.3
2 -.1 18.4 .5 14.1
3 .7 25.7 1.0 20.8
4 .8 33.7 1.1 26.6
5 2.1 45.3 1.8 34.3
6 4.1 69.2 2.9 47.7
7 15.5 168.2 6.2 73.3

Reserve 8.3 83.8 5.2 47.4
# best 3778 6222

rank sum 16222 13778
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Exhibit 25. R. J. Fingers' Methods
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Average Payment

Development
Case Reserve
Development

Year Mean Std Dev Mean Std Dev
0 .0 5.0 .0 5.0
1 .5 13.6 1.9 19.0
2 1.1 19.6 4.0 30.0
3 1.8 25.9 5.5 35.7
4 1.9 32.7 6.0 38.1
5 2.7 41.0 6.9 46.1
6 3.0 49.0 8.1 60.7
7 4.4 52.8 11.2 84.5

Reserve 5.9 54.7 16.8 66.1
# best 5192 4808

rank sum 14808 15192

Exhibit 26. H.E. Clarke's London Market Method
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000
Estimator Applied to Paid Losses Estimator Applied to Incurred Losses

Curves Fit to All Lags
Curves Fit to All Lags

Except First Curves Fit to All Lags
Curves Fit to All Lags

Except First
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .7 13.4 2.7 14.3 4.3 13.4 6.2 14.0
1 -.8 16.1 1.8 17.1 4.6 15.5 6.9 16.1
2 -2.7 18.9 -.1 19.2 4.7 16.8 7.4 18.0
3 -6.2 23.9 -3.0 24.3 5.3 22.2 8.9 24.9
4 -8.8 30.6 -5.2 30.9 5.0 25.8 10.3 32.2
5 -10.6 37.1 -2.9 50.7 5.2 32.1 9.3 39.7
6 -9.8 57.7 -4.1 59.4 5.3 46.2 9.9 50.5
7 -8.6 80.7 -2.4 90.5 7.4 65.1 11.3 82.0

Reserve -18.0 51.6 -5.1 57.9 16.1 43.8 27.1 53.5
# best 2133 2368 3103 2396

rank sum 27017 25128 22512 25343
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Exhibit 27. Loglinear Models
Estimators Applied to Paid Losses

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

R.J. Verrall's Bayesian Model B. Zehnwirth's Adaptive Model
Maximum
Likelihood

Pure
Bayesian

Empirical
Bayesian

Fixed
Parameters

Varying
Parameters

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0 -1.0 4.1 -1.0 4.1 -1.0 4.1 -1.0 4.1 -1.0 4.1
1 2.2 18.3 .7 7.7 .4 12.7 -.4 8.1 .0 8.5
2 4.1 25.6 .6 13.5 .0 17.9 -2.1 14.1 -.1 16.7
3 6.8 30.7 -.1 19.3 -.9 22.8 -4.6 19.8 -.1 26.7
4 10.2 38.4 1.2 26.1 -2.2 28.3 -4.1 26.1 6.4 44.4
5 20.8 54.3 3.2 33.2 -2.0 34.0 -.6 32.4 10.4 51.8
6 48.5 103.4 8.1 43.0 -.7 40.9 4.3 40.9 14.2 59.9
7 165.3 413.1 14.9 53.0 2.7 46.8 13.7 49.2 21.6 68.2

Reserve 98.6 188.2 10.6 43.7 -1.4 47.0 1.9 40.0 19.7 82.5
# best 1226 2956 2198 1924 1696

rank sum 39575 25081 27175 25726 32443

Exhibit 28. Estimators with Berquist-Sherman Adjustments
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000

Paid Chain-ladder,
Disposal Rate
Adjustment

Incurred Chain-ladder,
Disposal Rate
Adjustment

Incurred Chain-ladder,
Case Reserve Adequacy

Adjustment

Incurred Chain-ladder,
Disposal Rate and Case

Reserve Adequacy
Adjustments

Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .7 12.9 .2 8.0 .4 13.5 .1 12.9
2 1.0 18.7 .6 13.7 .8 19.2 .3 17.9
3 1.7 25.6 1.1 20.4 1.1 24.7 .1 24.1
4 1.9 33.2 1.3 26.5 1.0 30.7 .0 29.8
5 3.7 45.8 2.4 34.3 1.2 37.1 .5 36.5
6 10.1 71.0 5.8 48.9 .9 44.0 2.9 44.1
7 23.9 178.0 18.5 84.3 1.9 52.2 13.3 57.6

Reserve 16.5 88.9 11.5 50.3 2.8 51.2 6.6 51.2
# best 1855 3724 2216 2205

rank sum 28666 24106 23594 23634
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Exhibit 29. Combinations of Options and Adjustments
Estimators Applied to Incurred Losses; Extreme Values Excluded from Averages

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000

Chain-ladder,
Dollar-weighted,

Ref. Factors

Chain-ladder,
Dollar-weighted,

Graduation

Chain-ladder,
Least Squares,
Ref. Factors

Chain-ladder,
Least Squares,

Graduation

Cape Cod,
Dollar-weighted,

Ref. Factors
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 5.0 .0 5.0 .0 5.0 .0 5.0 .0 5.0
1 .0 7.4 .4 7.0 .0 7.4 .4 7.0 .0 7.3
2 .0 12.7 .6 11.8 -.1 12.8 .6 11.8 .0 12.6
3 .0 18.4 .3 17.4 -.1 18.5 .3 17.4 -.1 18.1
4 -.1 23.6 -.4 22.6 -.2 23.7 -.5 22.6 -.2 22.9
5 -.6 30.2 -1.8 29.0 -.9 30.2 -2.1 29.0 -.7 28.5
6 -1.1 42.5 -1.7 42.7 -2.1 42.3 -2.9 42.3 -1.4 36.5
7 .1 65.1 -.7 66.7 -2.9 64.1 -4.6 65.2 -.3 43.2

Reserve -.6 37.3 -1.2 36.3 -2.4 37.2 -3.4 35.7 -1.1 31.9
# best 1144 1577 1032 1769 4478

rank sum 29801 30435 31551 31978 26235
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Exhibit 30. Comparison of Paid and Incurred Loss Development
Sample Points Screened for Proximity to Case Data

Prediction Errors as Percent of Mean Actual Ultimate Losses
Sample Size = 10,000 (after 72,530 trials)

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Estimators Applied to Paid Losses
 0 .0 5.7 .3 7.0 .3 7.0 -1.2 5.0
1 .3 13.3 .8 14.3 .7 14.0 -1.3 9.9
2 .0 18.9 1.0 19.3 .7 18.8 -2.2 15.5
3 2.5 23.3 1.4 21.6 .9 21.0 -2.7 18.5
4 12.6 27.0 .9 20.0 .4 19.3 -2.9 17.6
5 -5.5 40.9 2.3 38.8 .9 37.0 -3.2 35.1
6 .8 57.3 3.6 43.2 1.9 40.8 -1.5 39.2
7 4.2 117.2 2.1 47.7 -1.0 44.8 3.3 43.5

Reserve 9.5 67.7 5.5 50.6 3.0 45.7 -6.4 35.2
# best 1453 805 1476 1815

rank sum 55285 46647 43634 42257
Estimators Applied to Incurred Losses

0 .0 5.7 .0 5.7 .0 5.7 .0 5.7
1 .2 9.2 .2 9.6 .2 9.5 .0 9.8
2 .2 15.0 .1 15.6 .1 15.4 -.4 15.7
3 .8 19.2 .4 18.7 .4 18.6 -.4 18.6
4 1.7 19.7 .1 17.4 .0 17.3 -.7 17.2
5 -.2 36.4 .0 34.8 -.1 34.6 -1.3 34.4
6 1.2 45.4 .6 38.8 .3 38.4 -.7 37.8
7 3.3 68.2 1.7 45.5 1.1 44.3 .2 43.6

Reserve 3.1 44.5 1.2 38.6 .8 37.6 -1.3 37.3
# best 1651 389 754 1657

rank sum 48106 43083 41429 39559
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Exhibit 31. Comparison of Paid and Incurred Loss Development
Sample Points Screened for Regularity of Latest Accident Year at First Evaluation

Estimators Applied to Incurred Losses
Prediction Errors as Percent of Mean Actual Ultimate Losses

Sample Size = 10,000 (after 24,755 trials)

Chain-ladder

Modified
Bornhuetter-

Ferguson Cape Cod Additive
Year Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

0 .0 40.7 .0 39.1 .0 38.6 .0 40.1
1 .2 5.2 .1 5.2 .1 5.2 .0 5.2
2 .5 8.4 .4 8.2 .4 8.1 .0 9.1
3 .8 14.6 .4 14.5 .4 14.4 -.2 15.3
4 .6 21.0 .1 20.5 .1 20.5 -.7 21.1
5 1.9 26.3 1.0 25.3 1.0 25.2 .1 25.7
6 2.7 33.3 .8 30.9 .7 30.8 -.1 30.9
7 -3.0 45.7 -.8 37.8 -1.0 37.5 -1.6 37.2

Reserve 1.4 43.3 .8 42.6 .7 42.5 -1.0 42.5
# best 4052 300 1408 4240

rank sum 26327 25030 24046 24597


