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A Coopers & Lybrand research report 

ABSTRACT 

Mortgage insurance indemnilies a mortage lender against loss on default by the 
borrower. The sequence of events leading to a claim under this type of 
insurance is relatively complex, depending not only on the credit worthiness of 
the borrower but also on a number of external economic factors. 

Prominent among these external factors are the loan to valuation ratio of the 
insured loan, the disposable income of the borrower, and movements in 
property values. A broad theoretical model of the functional dependencies of 
claim frequency and average claim size on these variables is established in 
Sections 6 and 7. Section 8 fits these models, extended by other “internal” 
variables such as the geographic location of the mortgaged property, to a real 
data set. 

Section 9 compares the fitted model with the data, and finds an acceptable tit 
despite extreme fluctuations in the claims experience recorded in the data 
set. 

KEYWORDS 

Mortgage insurance; housing price index; loan to valuation ratio; regres- 
sion. 

I. INTRODUCTION 

Mortgage insurance indemnifies a mortgage lender against loss on default by 
the borrower. The typical sequence of events leading to the invocation of the 
indemnity is as follows. 

The amount of the mortgage is repayable by a sequence of instalments, 
perhaps monthly, over a period of some years, up to perhaps 25 or in a few 
cases more. If a borrower fails to meet one or more of these instalments, 
arrears collection procedures will be instigated. If it appears that the borrower 
is experiencing financial difficulties which threaten his capacity to pay the 
scheduled instalments, the lender’s initial response will usually be to attempt 
rehabilitation of the borrower, possibly by some form of rescheduling of the 
debt repayment. 

In many cases this will render the borrower’s difficulties temporary. In other 
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less fortunate cases it will become clear that the borrower is quite unable to 
repay the debt. The lender will then force sale of the mortgaged property, and 
retain that part of the sale proceeds required to discharge the remaining debt. 
In the majority of sales, the proceeds will be sufficient for this purpose, but if 
they are not the mortgage insurance indemnity is invoked to reimburse the 
lender for the shortfall. 

It is an elementary observation that inflation of property values reduces the 
call on mortgage insurance; the proceeds of property sales cover a greater 
proportion of the corresponding debts. It is also clear from the above 
description that a loan needs to go through several stages (healthy -+ in arrear 
-+ property under management + sale of property) before a mortgage 
insurance claim arises, and each of these stages involves some delay. As will be 
discussed in Section 3, each of them also depends on its own specific economic 
factors. 

For these reasons, the underlying process generating mortgage insurance 
claims is complex and dependent on several variables which are exogenous to 
the insurance portfolio. Consequently, mortgage insurance run-off arrays, 
whether in terms of numbers or amounts of claims, exhibit very different 
characteristics from those of other lines of business. A striking example of this 
is given in Section 2. 

These different characteristics necessitate rather different modelling tech- 
niques. The purpose of the present paper is to illustrate these techniques by 
means of a case study. Since this study is specific to a particular portfolio, it 
cannot be claimed that the modelling techniques illustrated are generally 
applicable. It is hoped, however, that they are fairly generally indicative of the 
type of modelling which needs to be attempted: 

2. NUMERICAL EXAMPLE: PRELIMINARY DISCUSSION 

The following data are given as an indication of the difficulties likely to arise if 
a mortgage insurance portfolio is subjected to conventional run-off analysis. 
More detail of the data on which this paper is based appears in Appendices E and G. 

Year of 
l0an 

advance 

Number of claims, per 10,000 loan advances, emerging in development year (a) 

0 I 2 3 4 5 6 7 8 9 10 

1980 30 18 6 0 0 0 6 
1981 116 42 31 5 0 0 0 
1982 54 27 45 36 13 13 4 
1983 25 20 20 23 9 0 3 
1984 0 13 24 55 35 5 0 
1985 1 21 134 68 15 6 
1986 0 17 30 4 2 
1987 3 I 0 2 
1988 0 0 5 
1989 0 0 
1990 0 

(a) Development year is delined as year of emergence of claim minus year of loan advance. 
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Let the term relative claims frequency denote the number of claims per 
10,000 loan advances, If C, denotes the relative claim frequency in develop- 
ment year j of year of advance i, and A, denotes the age-to-age factor: 

(2.1) A, = jf Cik i Cik’ 
k=O I k=O 

then the following table of age-to-age factors is obtained. 

Year of 
loan 

advance i 

Age-to-Age factor in development year j = 

1 2 3 4 5 

1984 2.86 2.50 1.38 I .04 I .oo 
1985 7.12 1 /I4 1.07 1.03 
1986 2.71 I .08 I .os 
1987 I .oo 1.50 

The great instability in these ago-to-age factors is evident in the sense of 
variability within a development year. The basic reason for the instability is 
clear from the first table. It is the apparent correlation between relative claim 
frequency and year of emergence of claim, i.e. with the number of the diagonal 
in the table. Such a data structure suggests application of the separation 
method (TAYLOR, 1977, 1986), with the model structure: 

(2.2) E[C,j] = ‘jlli+j. 

The separation method yields the following parameter estimates. 

i i/ k A 

0 
I 
2 
3 
4 
5 
6 

i 
9 

10 

0.00 
0.06 
0.20 
0.22 
0.14 1984 366 
0.11 1985 167 
0.03 1986 195 
0.03 1987 350 
0.02 1988 196 
0.00 1989 48 
0.20 1990 29 

This produces the following comparison between observed and fitted relative 
claim frequencies. 
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Year of Observed and lilted (shown in bold type) relative claim frequency in development year 
loan 

advance 0 I 2 3 4 5 6 7 8 9 IO Total 

1980 30 52 18 18 6 6 0 90 30 06 6 60 94 
1981 116 79 42 24 31 21 5 11 0 5 0 I 0 0 195 140 
1982 54 72 27 36 45 28 36 38 13 6 13 1 4 0 193 I81 
1983 25 21 20 33 20 42 23 50 9 21 0 1 3 1 101 169 
1984 0 I 13 9 24 38 55 76 35 28 5 5 0 I 131 I59 
1985 I I 21 II 134 69 68 42 I5 7 6 3 245 133 
1986 0 I 17 20 30 38 4 IO 2 4 53 73 
1987 31 Ill 0 9 2 6 6 28 
1988 010 3 5 6 5 9 
1989 000 2 0 2 
1990 0 0 0 0 

The table indicates that the separation method achieves a reasonable fit. No 
formal goodness-of-lit statistics are examined, because this model is later 
discarded. The difficulty is that, despite the reasonableness of the tit, the 
sequence of escalation index numbers 1, is peculiar by normal standards. Until 
some explanation of this peculiarity is found, it is impossible to produce any 
reliable projection of the sequence into future years. 

One of the major objectives of subsequent ,sections of this paper will 
therefore be to obtain such an explanation. The discussion of this aspect of the 
modelling problem is taken up in Section 3. 

3. THE PROCESS OF CLAIM OCCURRENCE 

3.1. Major financial factors 

As pointed out in Section I, a loan must traverse several stages of financial 
deterioration before producing a mortgage insurance claim. These stages are 
subject to different financial influences. Of these separate influences, two are of 
particular prominence : 

(a) the onset of financial difficulties for the borrower; and 
(b) in the event of forced sale, the extent to which the sale proceeds repay the 

outstanding loan. 

These two factors are discussed in the following two sub-sections. 

3.2. Onset of borrower’s financial difficulties 

Despite its importance in a borrower’s budget, the mortgage payment instal- 
ment will nevertheless be to some extent a residual item in that budget. It will 
rank after tax and consumer expenditure on necessities (food, clothing, etc.). In 
addition, most past loans have been of a type whereby the amount of 
instalment varies with variations in current day interest rates. 
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It appears, therefore, that a reasonable measure of the degree of financial 
pressure on mortgage borrowers would be provided by an estimate of the 
average residual income after allowance for tax, consumer expenditure and 
mortgage instalment. This residual income, called here the home affordability 
index (HAI), was constructed in the following form: 

Home affordability index = average weekly gross household income 
minus 

tax 

minus 
consumer expenditure 

minus 
mortgage instalment, 

expressed as a percentage of gross income. 

A baseline distribution of gross household income over these categories of 
expenditure was derived from a 1988/89 household expenditure survey (HES) 
conducted by the Australian Bureau of Statistics. The items of expenditure for 
this base year were adjusted to other years in various ways, indicated by the 
following table. 

Item of income or expenditure 

Gross household income 
Tax 
Consumer expenditure 

Mortgage instahnents 

Adjustment from year to year according to 

Average weekly earnings 
Average weekly earnings (a) 
Consumer price index 

Average weekly earnings (b) 
Mortgage interest rates (b) 

(a) Preliminary investigation indicated little variation in the effective average tax rate over the 
period concerned. 

(b) The average amount of a new loan was assumed to change in proportion with average weekly 
earnings. These loans were assumed repayable over periods of 20 years, and the average 
mortgage instalment calculated on the basis of the most common interest rate charged in the 
year concerned in respect of the loan portfolio under analysis. 

The component time series used in the construction of the HA1 (at year end) 
are set out as Appendix F. 

The resulting HA1 (at mid-year) is as set out in the following table. 
The rather,irregular progression of this index is seen in Appendix F to derive 

from quite reasonable component indexes. Each of these components may be 
projected over future years, producing a rationally based projection of HAI. 
This situation may be contrasted with that which arises on application of 
“black box” estimates of past claims escalation, as in Section 2, and in which 
no guidance as to future escalation is available. 
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Year Home affordability index 

1979 loo.0 
1980 104.8 
1981 111.9 
1982 101.7 
1983 104.1 
1984 128.9 
1985 128.3 
1986 101.7 
1987 87.4 
1988 90.6 
1989 81.5 
1990 81.2 

3.3. Recovery of outstanding loan on forced sale 

The HAI of Section 3.2 provides an indication of the likelihood that an 
individual borrower will experience financial difficulty in a particular year. 
However, such difficulty, while a necessary condition, is not sufficient for the 
emergence of a mortgage insurance claim. It is quite possible the borrower’s 
difficulties are such as to force sale of the property, but that property values 
will be sufficient for the entirety of the outstanding loan amount to be 
recovered by the lender. 

Whether or not this is the case will depend mainly on movements in property 
values between the date of advance of the loan and the date of the forced sale. 
In Sydney these movements may be estimated by reference to the Housing Price 
Index (HPI) computed and published by Residex Pty Limited. The following 
table was derived from that index with slight modification. 

Year ended 
30 June 

Housing price index 
(Sydney) at mid-year 

(30/6/79 = 100) 

1980 115.3 
1981 145.1 
1982 158.6 
1983 158.4 
1984 168.2 
I985 177.2 
1986 182.4 
1987 191.5 
1988 245.8 
1989 363.5 
I990 430.7 
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Evidently, the greater the increase in value of properties generally, the less 
the chance that forced sale of a particular property will lead to a loss to the 
mortgage lender. 

3.4. Lags in claims process 

While movements in the HA1 (Section 3.2) and HP1 (Section 3.3) have been 
identified as major variables in the frequency of mortgage insurance claims, it 
is to be expected that there will be a lag between cause and effect in each 
case. 

Information from the company operating the mortgage insurance portfolio 
discussed in this paper was that, broadly: 

(a) the average period between mortgage instalments falling in arrears and the 
property being taken under management (if indeed this latter occurred) 
was about 6 months; and 

(b) the average period between taking a property under management and 
effecting its sale was also about 6 months. 

On the basis of this information, it might be reasonable to expect lags of: 

(a) 12 months between movements in the HA1 and the consequent movement 
in claim frequency; and 

(b) 6 months between a movement in the HP1 and its consequent movement 
in claim frequency. 

Thus, it has been assumed in subsequent modelling that a claim frequency 
experienced during year t is dependent upon: 

(a) the value of the home affordability index at the middle of year t- 1; 
and 

(b) the value of the HP1 at the end of year t- 1. 

Examination of alternatives suggested that this choice of lags provided about 
the best fit of model to data. Further detail on the incorporation of the HA1 
and HP1 in the model is given in Section 6.2. 

4. DATA 

4.1. Variables affecting claims experience 

Section 3 identified the HA1 and HP1 as likely to be major explanatory 
variables of claim frequency. Other variables in this category include: 

(a) the proportion of the original property value advanced by way of 
mortgage, i.e. the loan to valuation ratio (LVR); 

(b) the geographic area of the mortgaged property (described in more detail in 
Section 4.2); 

(c) the agreed term of the mortgage loan; 
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(d) the type of property mortgaged (e.g. new house, old unit, land only, 
etc.); 

(e) the financial type of the loan (e.g. reducible loan with variable interest, 
interest only instalments with fixed interest rate, etc.). 

In addition, it is likely that claims experience will vary with development year, 
even in the absence of movements in the HA1 and HPI. This would reflect a 
process of natural selection operating on each year’s mortgage advances, 
whereby the poorest risks succumb to financial pressures relatively early, and 
the remainder survive the mortgage term. 

It is clear that the major variable affecting claim size will be the size of the 
original loan. In addition, the explanatory variables (a) to (e) of claim 
frequency potentially affect claim size also. 

4.2. Form of data 

As the tables of Section 2 indicate, claims experience relates to the period 1984 
to 1990. In fact, the 1984 experience covers only 7 months of that year. 

Data supplied in respect of these claims consisted of a claim by claim 
tabulation, recording in each case the relevant variables identified in Sec- 
tion 4.1 : 

(a) year of advance; 
(b) amount of loan; 
(c) value of property; 
(d) geographic area of property; 
(e) term of loan; 
(f) type of property; 
(g) financial type of loan; 
(h) year of emergence of claim. 

The tabulated geographic area was the postal code of the property. These 
codes were grouped into 14 broad urban and rural regions within the states of 
New South Wales and Australian Capital Territory, as follows: 

Metropolitan regions 1 to 5; Canberra (6); Newcastle (7); Wollon- 
gong (8); Central Coast (9); North Coast (10); South Coast (11); Blue 
Mountains (12); Southern Highlands (13); Other (14). 

The exposure base for the study consisted of all loans advanced over the 
years 1980 to 1990 inclusive. These were recorded, loan by loan, according to 
the variables (a) to (g) listed above as potentiahy affecting claim frequency. 

As the data described above constitute a unit record file, it is not practical to 
present the full detail here. It is not even practical to tabulate cells of data since 
there are 1499 exposure cells. However, Appendix G gives a tabulation of 
exposures and claims according to year of advance and development year. It is 
to be stressed that, while such a tabulation is interesting, it omits a great deal 
of the raw data. 
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5. EXPLORATORY DATA ANALYSIS 

5.1. Claim frequency 

Section 4.1 identified a number of characteristics of individual loans (such as 
LVR, term of loan, etc.) which might have a bearing on the likelihood of those 
loans leading to claims. These characteristics will be referred to here as risk 
variables. 

Initially, data concerning claim numbers were analysed according to the risk 
variables listed in Section 4.1. This provided initial guidance concerning the 
types of loans which were subject to high or low risk of default. 

The results of this analysis are summarized in the following sequence of bar 

According to Dwellha type Claim fr uency pa Iwo dvanc 
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These charts raise the following possibilities : 

(a) claim frequency peaks in the second, third and fourth years after the year 
of advance; 

(b) claim frequency increases dramatically with increasing loan to valuation 
ratio (LVR); 

(c) claim frequency increases significantly with increasing term of loan; 
(d) certain geographic areas experience conspicuously higher or lower claim 

frequencies than average; 
(e) defaults appear to be confined totally to reducible loans carrying a 

variable interest rate; 
(f) claim frequency appears highest in relation to land, higher in relation to 

new properties than old, and lowest in relation to improvement loans. 

As stated, these are raised as possibilities only, rather than conclusions. 
Without further analysis, it would be impossible to determine whether all of 
these variables affect the default risk directly, or some of them are merely 
correlated with the genuinely operative risk variables. 

For example, it might be the case that term of loan has no bearing on default 
risk. but aDDears to be relevant because LVR does have such a bearing and 
long terms-are associated with high LVRs. 

The question of possible correlation between risk variables is remarked upon 
further in Section 8.1. 

5.2. Claim size 

Initially, data concerning claim sizes were analysed according to the risk 
varibles listed in Section 4.1. This provided initial guidance concerning the 

Claim size to loan amount ratio 

0.6 
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4 

2 
0.3 
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types of loans which led to larger or smaller losses when default occurred. The 
detailed results of this analysis are set out in Appendix D. The results indicate 
little variation in claim size with any of the risk variables except development 
year. The variation of claim size with development year is graphed in the 
preceding chart. 

The chart suggests that the greater the time elapsed between advance of loan 
and default, the greater the claim size to loan amount ratio, i.e. the greater the 
loss on default expressed as a proportion of the original advance. This result is 
confirmed by formal regression analysis, as described in Section 8.2. 

Since growth in property value generally increases with development year, 
this chart is consistent with the predicted form (7.2) of model. 

6. FORM OF CLAIM FREQUENCY MODEL 

6.1. General 

In the following the basic units of tabulation of claims data will be referred to 
as cells. A cell will consist of an item of data associated with a particular 
combination of year of advance, development year, and any sub-set of the risk 
variables identified in Section 4.1. 

It is reasonable that the total effect of risk variables on claim frequency 
should be multiplicative, i.e. 

(6.1) expected relative claim frequency = function (development year, HAI, 
HPI) 
X 

function (risk variables, e.g. LVR, 
geographic area, etc.). 

The form of the first of the two functions on the right will be discussed in 
Section 6.2. As far as the second function is concerned, a reasonable first 
approximation would consist of the product of a factor in respect of each of 
the risk variables present. Equation (6.1) then becomes: 

(6.2) expected relative claim frequency = function (development year, HAI, 
HPI) 
X 

factor dependent on LVR 
X 

factor dependent on geographic area 
X 

etc. 

Interactions between the factors making up this product could be added if 
necessary. 
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Expected relative claim frequency (per loan advanced) is adjusted by a factor 
of 7/12 in all cells whose experience relates to 1984. This allows for the fact that 
the data include only 7 months’ claims (Section 4.2). 

Some of the risk variables identified in Section 4.1, e.g. financial type of 
loan, are categorical by nature. Others, e.g. LVR, are continuous by nature. It 
was convenient for exploratory analysis of the data to convert all variables (i.e. 
risk variables, not HA1 and HPI) to categorical form. Details appear in 
Section 5.1. The categorical form of data was retained in the final modelling, 
described in Section 8.1. 

6.2. Dependence on development year and economic variables 

Preliminary analysis (Section 5.1) indicated that relative claim frequency, 
expressed as a function of development year, was generally consistent with the 
shape of a Hoer1 curve. Appendi.x B provides a theoretical underpinning of this 
observation. Consequently, the model adopted for relative claim frequency in 
the absence of any other effects took the form: 

(6.3) const. x (j+ %)’ exp (- ci), 

where i represents development year. 
The modification of (6.3) by HA1 and HP1 raises some questions. Consider 

HA1 first. 
As noted in Section 3.2, the HAI may be regarded as a measure of the 

average borrower’s residual income after payment of mortgage instalment. An 
individual borrower will experience difficulties in payment of mortgage instal- 
ment if this residual income turns negative. The frequency with which this 
occurs in the event of movements of HA1 will depend on the distribution of 
individual residual incomes, rather than just the average of this distribution 
represented by HAL There is virtually no information available in respect of 
this distribution. 

There is, however, some evidence that individual gross incomes are subject to 
a Paretian distribution (MANDELBROT, 1960). 

If a similar assumption is made about residual incomes after payment of 
mortgage instalment (i.e. HAI), then Appendix A demonstrates that, to first 
approximation, logged claim frequency will contain a term linear in R(i+j)/R(i), 
where i denotes year of advance, j development year, and R(r) the HA1 
experienced in year t. Allowance for the one year lag in the effect of HAI, as 
discussed in Section 3.4, modifies this term to R(i+j- 1)/R(i) (1 in the case 
j = 0). 

Because of the approximations leading to this result in Appendix A, an 
alternative linear term involving 

log [R(i+j- 1)/R(i)] for j2 1; 

or 

(6.4) 0, for j=O, 
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was tried. This latter form produced a slightly better fitting regression than the 
unlogged ratio, and has been adopted henceforth. In fact, both alternatives 
produced quite similar results. 

Appendix B, particularly (B.lO), demonstrates that, under seemingly reason- 
able’assumptions about the accumulation of the amount of mortgage debt on 
default, and about property values on resale, claim frequency should also 
contain the following factor involving LVR and HPI: 

L’[H(i+j)/H(i)]-‘, v const. > 0, 

where L denotes LVR and H(t) the HP1 experienced in year t. In order to 
accommodate the lag in the effect of HP1 discussed in Section 3.4, this last 
expression should be modified to the following: 

L”[H(i+j- %)/H(i)]-‘, j2 1; 

or 

(6.5) L’, j=O, 

where H(t - %) is interpreted a the HP1 experienced at the end of year t - 1. 
Note that (6.5) indicates that claim frequency should include the same power 

of both LVR and HPI. However, this result was derived in Appendix B on the 
assumption that LVR affected the proportion of principal outstanding at 
default, but not the risk of default itself. In practice, it is likely that LVR is 
correlated with the ability of the borrower to meet financial commitments, in 
which case it intrinsically affects the risk of default. For this reason, (6.5) 
should be generalized to the following: 

L”[H(i+j- %)/H(i)]-“, j> 1; 

or 

(6.6) LA, j=O. 

Combination of (6.2) to (6.4) and (6.6) yields the following model: 

(6.7) expected relative claim frequency in development year j of year advance i 

= const. X (j+ %)” exp (- cj) 
X L”[R(i+j- l)/R(i)lmP [H(i+j- %)/H(i)]-” 

x factor dependent on geographic area 
X etc. for j 2 1 , 

and with the two square bracketed terms removed in the case j = 0. 
Let p(i, j) denote the expected relative claim frequency (6.7), and E(i) the 

number of loans advanced in year i. Let N(i, j) denote the number of claims 
emerging in development year j of year of advance i. Then the claim frequency 
model adopted was: 

65.8) N(i, j) N Poisson [E(i) p(i, j)]. 
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It should be noted that the precise form of dependency of relative claim 
frequency on LVR and HP1 in (6.7) relies upon distributional assumptions 
made in Appendix B. If these assumptions .were varied, the form of (6.7) would 
change. Consequently, an alternative to (6.7) is considered in Section 8.1, in 
which the terms involving LVR and HA1 are replaced by: 

exp (AL) exp [ - v H(i+j- %)/H(i)]. 

This alternative model turns out to be inferior to (6.7). 

7. FORM OF AVERAGE CLAIM SIZE MODEL 

Appendix C shows that, on the same seemingly reasonable assumptions as in 
Appendix B (referred to in relation to the development of (6.5)), the average 
claim size in respect of loans advanced in year i should progress over 
development years according to the following parametric form: 

(7.1) 

where 

E[Q (i, j)] = const. x H(i+j)/H(i), 

Q(i, j) = the claim ratio (i.e. ratio of claim size to original loan size) experi- 
enced in development year j of year of advance i; 

H(t) = HP1 experienced during year t. 

One may note the interesting effect whereby average claim size increases with 
development year even though outstanding principal is decreasing. Clearly this 
result derives from the assumptions made in Appendices B and C. Different 
assumptions would lead to a different parametric form in (7.1). However, an 
examination of the development of Appendix C indicates that the property of 
increasing E[Q(i, j)] with H(i+j) derives only from an assumption that the 
variable y has a decreasing failure rate, where y = a//? and 

a = a random variable representing the factor by which outstanding principal 
has been enlarged after default by arrears of principal and interest and any 
other costs, 

p = a random variable representing the factor by which the property value has 
been reduced by the forced nature of the sale and the associated 
expenses. 

While there is no particular evidence concerning the failure rate of y, it is 
interesting to note that the seemingly reasonable assumption of a Pareto 
distribution leads to the result (7.1) which is found in Section 8.2 to accord 
with experience, at least to the extent that the claim ratio trends upward with 
increasing property factor. However, because the Pareto assumption may be a 
little too specific, it is reasonable to widen the model (7.1) to the following: 

(7.2) Q (i, j) = a+ 6 H(i+ j)/H(i) + error term, 

where approximately 
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(7.3) error term - N(0, a*). 

The appropriateness of this error term is discussed further in Section 8.2. 

8. FITTING THE MODEL 

8.1. Claim frequency 

By (6.7) and (6.8), 

(8.1) log E[N(i, j)] = log E(i) + const. + a log (j+ !A) - cj 

+ 2 log L-p log [R(i+j- 1)/R(i)] 
- v log [H(i+j- %)/H(i)] 

+ term dependent on geographic area 

+ etc., j 2 1 , 

with the two square bracketed terms on the right omitted for the case j = 0. 
This linear form, subject to the error structure (6.8), was fitted to the data 
using GLIM (Generalised Linear Interactive Modelling) (Royal Statistical 
Society, 1987). Various combinations of the potential explanatory variables 
listed in Section 4.1 were tried, and the main results are reported in the next 
table but one. 

Geographic area 

Original coding (a) First aggregation Second aggregation 

I 
4 > AREA I 

Area 1 

3 Area 3 

Area 4 
Area 5 I 

2 Area 2 AREA 2 

I 
10-12 1 

9 
14 ) 

13 

AREA 3 

Area 7 

Area 9 

a Area g AREA 4 

(a) As set out in Section 4.2. 
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The results of the trial regressions are displayed in the following table. 

Variable 
Coetlicient in variable at left (a) in Regression No. 

I 2 3 4 5 6 7 

Regression constant 
Development year 
Log (development year+ %) 
LVR (d) 
Log (LVR) 
Log (home affordability factor) (b) 
Property growth factor (c) 
Log (property growth factor) 

- 3.039 - 3.070 - 2.036 -3.017 

Indic;;; ;ariables (r) : 

AREA 3 
AREA 4 
Area 2 
Area 3 
Area 4 
Area 5 
Area 6 
Area 7 
Area 8 
Area 9 

0.60 
0.16’ 

-0.35' 
- 0.26* 

1.05 
1.15 

- 5.33* 
0.81 

60 5 Term < 120 months 3.749 
120 5 Term < 180 months 2.95’ 
180 5 Term < 240 months 2.00. 
240 5 Term 2.74. 

Dwelling: 
Improvements & increases 
All other than improvements, 
increases & land only 
Dwelling type missing 

-9.505 
- 1.093 

4.908 
I.100 

- 12.18 - 10.50 -9.848 - 12.90 - 5.116 - 5.943 
- I.143 - I.218 -1.097 - 1.096 -1.119 -0.8536 

5.066 4.558 4.906 
I.144 0.994 1.100 

0.52 
0.87 

- 5.24 

I .33* 

3.64* 
7.051 

- 

4.903 5.076 4.505 
1.099 

8.93 8.413 
-2.158 

3.015 
-4.636 - 5.658 

0.52 0.53 0.5131 
0.87 0.87 0.8772 
5.24 - 5.25 - 7.254’ 

3.06’ 

Deviance (e) 854 549 632 611 610 593 527 

(a) Dependent variable in regression log (claim frequency), as in (8.1). 
An asterisk attached to a coefIicient in the table indicates that this coefticient differs from zero 
by less than 2 standard errors. 

(b) The home amordability factor is the ratio of values of HA1 appearing in (8.1). 
(c) The property growth factor is the ratio of values of HP1 appearing in (8.1). 
(d) The variable referred to here is in fact 

IOx LVR-3.5. 

The variable log (LVR) uses the genuine LVR. though grouped in ranges of IO percentage 
points width. Each such range is represented by its mid-value. 

(e) Deviance is a measure of goodness of lit, related to the log likelihood ratio of the model. A 
lower deviance implies a better fit. 

(f) The variables Area k and AREA m have already been described as O-I indicator variables. The 
variables listed subsequently in the table are also of the O-l indicator type, taking the value I if 
the loan is subject to the risk variable displayed, 0 otherwise. 
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By (6.8) and (8.1), the model is multivariate Poisson with multiplicative 
structure of the mean. GLIM fits this by maximum likelihood. Note that the 
logarithmic form of (8.1) is no more than a convenience of expression. It could 
equally have been written in its unlogged (multiplicative) form. In particular, 
(8.1) does not imply that the observations N(i,j) (many of which are zero) are 
to logged. 

For the interpretation of this table, special reference should be made to 
geographic area of the mortgaged property. On the strength of the chart of 
Section 5. I, a number of areas, seemingly similar in claim frequency and/or 
physically contiguous, were aggregated. The areas at this initial level of 
aggregation were denoted by “ Area k “. These were O-l variables, taking the 
value I if the property lay in the relevant area, 0 otherwise. 

Regression I in the table indicated that further aggregation was possible. The 
new variables resulting from this aggregation were denoted by “AREA m “, 
and were O-l variables, each of which consisted of the sum of the relevant 
variables Area k. The key to the two aggregations is as shown in the previous 
table but one. 

It may be noted that the trial regressions included alternative versions of 
(8.1) in which the terms dependent on LVR and HP1 were replaced by their 
respective unlogged forms, as discussed at the end of Section 6.2. These 
alternatives were, however, inferior to (8.1) in terms of fit. 

Regression 7 provided the best tit of model to data, and was adopted as the 
final model. This final model, expressed in non-symbolic form, was as 
follows : 

(8.2) 

CLAIM FREQUENCY = 
(per 1000 advances) 
IN DEVELOPMENT YEAR I 

2.624 (I + ,/1)-” exp (- 0.8536 I) 

’ 
(LVR)8.4” 
I 

[(HOME AFFORDABILITY FACTOR)2,‘58 

x 

(PROPERTY GROWTH FACTOR)‘6’8] 

x 

I if AREA I 

1.670 if AREA 2 

2.404 if AREA 3 
0.0007 if AREA 4 

where 
HOME AFFORDABILITY FACTOR and PROPERTY GROWTH FAC- 

TOR are the ratios involving H and R respectively in (8.1). 
The formula in the box indicates that claim frequency: 

(a) moves sharply upward with increasing LVR; 
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(b) moves sharply downward as property values or disposable incomes after 
mortgage instalments increase; 

(c) varies significantly by geographic area, exhibiting a particularly low value 
in the Wollongong district. 

Because of correlations of the type discussed at the end of Section 5. I, not all 
of the risk variables exhibited a significant effect on claim frequency. 3 

8.2. Average claim size 

The form of the model was suggested in Section 7 as the following 

(7.2) Q(i,j) = a+b H(i+j)/H(i)+error term, 

where approximately 

(7.3) error term - N(0, a*). 

This model appears unnatural to the extent that the normal error term would 
permit claim sizes to be negative. This would be avoided by the inclusion of an 
error term which was by nature positive. An example would be a lognormal 
error term, as would be incorporated in an alternative model of the form: 

(8.3) log Q&j) = log a+b log [H(i+j)/H(i)]+error term, 

where 

(8.4) error term - N(0, 0’) . 

Equivalently, 

(8.5) Q(i,j) = ~~[H(i+j)/H(i)]~~error term, 

where 

(8.6) error term = lognormal (0, a*). 

Note that both forms (7.2) and (8.5) accommodate the theoretical form 
(7. I). 

Ordinary regression produced the following two alternative models. 

Parameter Unlogged model (a) Logged model (b) 

b” 0.1622 0.0494 0.3083 0.1555 

02 0.0257 0.8676 

(a) This is the model described by (7.2) and (7.3). Of the 425 observed claim ratios, 2 large values 
have been excluded as outliers. 

(b) This is the model described by (8.3) and (8.4). 
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In fact, neither of the two models considered in the preceding table produced 
an ideal fit to the data. Their respective residuals are tabulated in the following 
table. 

Values of standardized 
residuals 

Relative frequency of standardized residual in 

Unlogged model Logged model 

% % 

less than -3 0 -3 to -2 0 : 
-2 to -I I2 8 
-I to 0 47 32 

0 to I 24 44 
I to 2 10 I2 
2 to 3 5 0 

more than 3 I 0 

Total 100 100 

These two tabulations of standardized residuals are very much reflections of 
each other about the origin. While the unlogged model is somewhat skewed to 
the right, the logged model is about equally skewed to the left. This suggests 
that the correct model lies somewhere between normal and log normal. Such a 
model might be of the form (7.2), but with the error term strictly positive and 
skewed to the right but less so than log normal. 

Note that the fitted values of claim ratios, according to the two alternative 
models, are : 

(8.7) 
EQ(i,j) = a+ bH(i+j)/H(i) for unlogged model; 

w3) = a[H(i+j)/H(i)lb exp (% a*) for logged model. 

In the event, (8.8) produced a rather heavy upward bias, about 18% in total, 
in fitted values of claim amount relative to observed amounts. The form of this 
comparison was exactly as reported in Section 9.2, but with the unlogged 
model used there replaced by the logged. 

This result appears to indicate that the exponential scaling factor in (8.8) is 
not robust against the non-normality in the error term of (8.4), as was 
demonstrated in the above table of standarized residuals. 

On the other hand, Section 9.2 indicates that the unlogged model provides 
an adequate fit, and accordingly it was adopted. 

9. MODEL VERIFICATION 

9.1. Claim frequency 

The model adopted in Section 8.1 has been used to compute standardized 
residuals according to several variables. The resulting residual plots appear 
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below. Note that each residual relates to the aggregation of all experience at 
the value of the independent variable displayed. For example, the first residual 
in the first plot may be obtained from the second table of the present 
sub-section as : 

(8 - 6)/& = 0.8. 

A plot of the residuals of all cells (taken over all explanatory variables) 
would not be helpful since the great majority of cells contain very small 
expectations. . 

These plots appear generally satisfactory in terms of magnitude, with the 
exception of year of default 1984. This one anomaly, in the relatively distant 
past, involves relatively few claims (see first table below) and is insuffkient to 
invalidate the model. 

The plot against year of advance contains a downward trend. If included in 
the model, year of advance appears as a highly significant explanatory 
variable; other things equal, claim frequency declines by 29 % as between each 
year of advance and the next. Naturally, the effects of the other explanatory 
variables, particularly those which are time dependent, change. 

While this model provides a superior fit to the data, the abstract nature of 
the year of advance effect is problematic. It might be interpreted as a factor 
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representing improvement in underwriting. However, in this case, the total 
improvement over the decade of underwriting would be almost 97%, which 
might strain credulity. 

It seems more likely that year of advance is acting as a proxy for some other 
unidentified explanatory variable(s). When this variable is omitted from the 
model, its effect is largely captured by the other explanatory variables. 

Moreover, an examination of the fitted numbers of claims (using the model 
which omits year of advance effect) against the data suggests that the apparent 
trend in the residuals may not be particularly meaningful (see second table 
below). 

The following table displays the actual and model numbers of claims 
underlying the above plot of standardized residuals by experience year. 

Period 
Number of claims emerging 

Actual Model 

1984 (7 months) 28 13 
1985 32 24 
1986 .53 54 
1987 168 174 
1988 103 115 
1989 21 22 
1990 20 24 

Total 425 425 

The table illustrates the close agreement between actual and model numbers 
of claims for all experience years except 1984, despite the extreme fluctuations 
in numbers of claims. 

More detailed information is given by the following table which tabulates 
experience and model simultaneously by year of advance and development 
year, and from which the above table may be derived. 

Year of Observed and fitted (shown in bold type) number of claims in development year 
loan 

advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

I0 ’ 2 3 4 5 6 7 

3 1.8 3 1.5 I 1.2 
13 4.5 8 4.8 6 4.4 1 4.9 

I 7 4.9 6 7.6 10 8.7 8 11.4 3 3.5 
5 1.6 7 5.3 7 8.8 8 14.7 3 5.2 0 0.5 

0 0.1 7 4.3 13 15.5 30 37.7 19 16.8 3 1.8 0 0.8 
I 0.3 16 16.2 104 86.6 53 56.7 I2 7.6 5 3.8 
0 0.2 14 17.1 24 24.6 3 4.8 2 3.1 
3 0.3 I 6.2 0 2.7 2 2.5 
0 0.4 0 2.7 8 5.6 

0 1.2 
0 1.4 
3 0.3 
I 0.2 

Total 

8 6 
28 20 
38 37 
31 36 
72 77 
91 I71 
43 50 

6 12 
8 9 
0 7 
0 0 

22 



GREG TAYLOR 

The following table presents these results in the same format as in Section 2, 
enabling comparison of the present set of results with those from the 
separation method. 

Year of 
loan 

advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

- 

i 

Observed and fitted (shown in bold type) relative claim frequency in development year 

0 

00 
1 0 
0 0 
3 0 
00 
00 
00 

I 2 =I= 
54 38 

25 8 20 16 
13 8 24 28 
21 21 134 Ill 
17 21 30 30 

I6 0 3 
02 5 3 
0 6 

II6 41 
27 34 
20 26 
55 69 
68 73 

4 6 
2 3 

30 I8 
42 25 
45 39 
23 43 
35 31 
I5 IO 
2 4 

8 9 

00 
0 0 

lo 
- 
s 0 

- 

Total 

64 43 
I95 122 
193 179 
101 109 
131 140 
245 224I 
53 62 

6 I2 
5 5 
0 6 
0 0 

9.2. Average claim ratio 

For each claim in the experience, a fitted value of its claim ratio was calculated 
according to (8.7) using the values of a and b tabulated in Section 8.2. Each of 
these claim ratios was multiplied by the associated amount of its loan, to 
produce a fitted claim size. 

Observed and fitted claim sizes were then summarized in 2-way tabulations 
by year of advance and development year. These tabulations are displayed in 
Appendix E, and reduced to their corresponding l-way tabulations below. 

Year of 
advance 

1980 
1981 
1982 
I983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Total 

Amount of claims Amount of claims 

Observed Fitted 

Ratio : 

Observed 

fitted 

Development 
year 

Observed Fitted 

Ratio : 

Observed 

fitted 

$000 s 000 % 

51 70 73 
294 312 94 
398 374 106 
354 323 110 
632 642 98 

1931 2063 425 472 cl 
46 69 67 

259 222 117 
0 0 
0 0 

4388 4545 97 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 

s 000 % 000 % 

32 46 70 
425 471 90 

1750 1844 95 
I051 1133 93 
674 642 105 
321 301 107 

47 38 124 
31 35 88 
56 28 199 

0 0 
I 7 14 

4388 4545 97 
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It should be particularly noted that the fitted amounts of claims, according 
to the above description are conditional upon the observed numbers of claims. 
This is a proper approach to examination of the tit’of the average claim size 
model. Agreement between model and data appears satisfactory. 

It is useful to carry out some check that the common dependence of the 
claim frequency and claim size models on the HP1 does not lead to unwanted 
correlation between the two. That this does not in fact occur is indicated by the 
following scatter plot of the observed fitted ratios of average claim size against 
a similar ratio for number of claims. 

Each point represents a particular combination of year of advance and 
development year. To give a simple indication of the significance of the plotted 
points, they are divided into “ large cells” and “small cells “. The former are 
those cells containing a fitted number of claims in excess of 5; otherwise the 
cell is “ small “. 

t 

+ 

1 2 3 4 
Ratio observed/fitted - numbers 

, Largecells + Smallcells 

9.3. Loan sizes associated with claims 

While Section 9.2 models the claim size which will arise from a particular loan 
size if a claim occurs, it provides no indication of which loan sizes are likely to 
lead to claims. 

There is no particular reason to believe that the sizes of loans associated with 
claims will be representative of the entire portfolio of loans advanced. Indeed, 
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the table below indicates that, on average, it is the larger loans that lead to 
claims. 

Care is needed here, however, as the model of claim frequency in Section 9.1 
conditions on LVR and other risk factors, for which average loan sizes may 
differ from the portfolio average, and so without further analysis it is not clear 
to what extent the inclusion of these factors in the model will effectively select 
average loan sizes above the portfolio average. This question is also examined 
in the following table. 

Year of advance 

1980 
1981 
1982 
1983 
1984 
‘985 
1986 
1987 
1988 

Average 

As a percentage of portfolio average loan size 

average loan size associated 
with past claims (a) 

average loan size weighted 
by model numbers of 

future claims (b) 

% 

135 (8) 
144 (28) 
1’9 (38) 
116 (31) 

85 (72) 
95 (191) 

144 97 ‘8; 
24’ 63) 

% 
96 

102 
10’ 
102 
102 
102 
103 
100 
98 

109 (c) (42% 
I 

‘02 (d) 

(a) The numbers of claims on which the ratios are based are shown in parenthesis. For each year of 
advance, the average size of loans associated with recorded claims has been calculated and 
related to the portfolio average (for that year of advance). 

(b) For each combination of year of advance and risk variables, the average loan advanced and 
model claim frequency (according to the model of Section 8.1) are calculated. The average loan 
advanced, weighted by model claim frequency, is then calculated for each year of advance. 

(c) Average of the entries in the column, weighted by numbers of claims shown in parenthesis. 
(d) Unweighted average of the entries in the column. 

The table suggests that the average loan size associated with claims of a 
particular cell for a particular year of advance is about 7% higher than the 
overall average loan size for the cell. 

Thus, a forecast of future claim amount for a particular cell of development 
year j of year of advance i would be computed as: 

1.07 x average loan size in year of advance i 

x fi(i,i) &(&A, 

where fi(i, j), &(i, j). are estimates of N(i, j) and Q(i, j) from Sections 9.1 
and 9.2. 

An alternative approach to the above would be to include loan size as an 
explanatory variable in the claim frequency model of Section 8.1. This might be 

25 



MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE 

awkward in practice, however, because it would increase very considerably the 
number of data cells entering into the regressions of Section 8.1. 

10. CONCLUSION 

Section 8 tits models to the claim frequency and claim ratio in the mortgage 
insurance portfolio examined. Section 9 verifies that these models provide a 
reasonable fit to the data. 

The models therefore can be, and indeed have been, used to estimate the 
liability for claims still to emerge in respect of past years of loan advance. In 
order to carry out this estimation, one needs to project future values of the 
HAI and HPI. This in turn requires projection of incomes, tax rates, mortgage 
interest rates and growth in property values. Projections such as these are, 
problems of substance in their own right, but are beyond the scope of the 
present paper. 
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APPENDIX A 

DEPENDENCE OF CLAIM FREQUENCY 
ON HOME AFFORDABKLITY INDEX 

Let X denote the random variable representing the proportion of an individ- 
ual’s income required for tax, consumption and mortgage instalment. Assume 
this variable to be Pareto distributed, i.e. with p.d.f.: 

(A.11 f(x) = kx-‘-I, k const. 

The borrower will experience financial difficulties if X 2 1, which occurs 
with probability : 

(A.2) P[X 2 l] = kx-‘/alx=, . 

Now, suppose that X shifts by a factor of c to X’ = cX. Then the probability 
(A.2) shifts to 

b4.3) P[X’ 22 l] = P[X 2 l/c] = kx-‘/al,= ,,r. 

Comparison of (A.2) and (A.3) shows that the probability (A-2) has shifted 
by a factor of c’. Now note that the scale shift of X to CX must shift the mean 
of X by a factor of c: 

(A.41 E[X’] = cE[X]. 

Let 

Y= I-X, 
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and note that 

(A.5) E[Y] a HAI. 

Then the factor by which HA1 changes when X changes to X’ is: 

64.6) R = {I - E[X’]}/{ 1 - E[X]} 

= (1 -w>/(l -PO7 

where 

p = E[X]. 

Inversion of (A.6) yields: 

(A.7) c = [I -R(l -,u)]/p. 

Thus, the shift in HA1 by a factor of R causes the frequency with which 
borrowers experience difficulties to shift by a factor of: 

(‘4.8) C = = {[I - RQ -N/4”. 
Now, it is convenient to analyse log (claim frequency), which will depend on 

log (frequency of borrower’s difficulties), and (A.8) shows that this latter will 
depend on an additive term of: 

log co! = a. log {[I -R(l -p)]/p} 
- -aR(l -p)+const., 

for small values of (I -,u) R. 
Thus, to first approximation, the model of expected log (claim frequency) 

should include a linear term in R, the ratio by which HA1 has changed since 
advance of the loan(s) in question. 

APPENDIX B 

DEPENDENCE OF CLAIM FREQUENCY 
ON HOUSING PRICE INDEX, LVR AND DEVELOPMENT YEAR 

Consider a loan taken at time f = 0. Let V(I) be the value of the associated 
property at time I, and P(t) the amount of principal then outstanding. Then 

03.1) V(f) = ~(O)[HOYHo-819 
VW f(f) = P(O).l-(f)T 

where 

H(f) = HP1 at time f; 

J(t) = proportion of principal still to be repaid at time f. 

By (B.1) and (B.2), 

(B.3) P(f)/V(f) = u-0) ~Kol~(~)* 
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where 

(B.4) L = P(O)/V(O) = loan to valuation ratio. 

Suppose that the borrower has encountered financial difticulties at some time 
s < t. At time t sale of the property is forced. At that point, the debt in respect 
of the loan will be P(t) a(f), where 

a(t) = a random variable representing the factor by which outstanding princi- 
pal has been enlarged by arrears of principal and interest and any other 
costs. 

Similarly, the net proceeds of the sale of the property will be V(r)P(t), 
where 

B(f) = a random variable representing the factor by which the property value 
has been reduced by the forced nature of the sale and the associated 
expenses. 

Then the ratio of outstanding debt to sale proceeds is: 

03.5) X(f) = Y(f) p(f)lv(f), 
where 

u3.6) ~(0 = W/N). 

By (B.3) and (B.5), 

03.7) x(f) = wwYwN-‘f(~) Y(f). 
A claim will occur if X(f) > 1, i.e. if 

w3) Y(f) ’ WO)IHKN Kfwl-‘~ 
Now suppose that y(t) is Pareto distributed with d.f. 

VW F(Y) = 1 - (Y/Q) - “, ~>a, 

assumed independent of f. Then, by (B.8), the probability of occurrence of a 
claim is: 

(B. 10) P [X(f) > l] = {af(f) L[H(f)/H(O)]-I}‘. 

Thus, expected claim frequency varies as a power of L[H(t)/H(O)]-'. Note 
also that claim frequency for policies of a particular term n varies over 
development years f by a factor of 

(B.1 I) 1.f (f)l’ a bal’~ 
which has the shape illustrated by the solid line in the following diagram. 

However, note the above assumption that the distribution of the factor y(f) 
is independent off. While perhaps largely true, it will break down as t + 0 as the 
screening procedures of the lender force claim frequency toward zero. Hence, 
the curve (B. I I) of frequency over development year will be modified for small 
f in the manner indicated by the broken line in the diagram. 
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When allowance is made for the variety of original terms n, the dependence 
of claim frequency on development year is seen to be represented by a weighted 
average of curves of the type illustrated in the diagram. 

APPENDIX C 

DEPENDENCE OF AVERAGE CLAlM SIZE 
ON HOUSING PRICE INDEX 

As noted just prior to (B.8), the financial difficulties of a borrower will lead to 
a claim if x(t), as defined there, exceeds 1. In fact, by the same argument as 
led to that result, the amount of the claim will be 

(C.1) A(t) = ~0) P(t)-PO) v(t) 
= 8(f) V(t) [X(f)- 11. 

Note that /I(r) and y(l) (and hence X(f)) will not be independent, even if 
a(t) and /3(t) are.. For general random variables Y and Z, let ,u~ and pz denote 
their means, uy and vz their coefficients of variation, and prz their correlation. 
It is straightforward to demonstrate that: 

K.2) aw = PYPZ(1 +PYzoYuz). 

I By (C.1) and (C.2), 

(C.3) E[A Cl)1 = V(r) E[X(t)- 11, Pp(l +PgxqI~x), 
where E[ Y]+ denotes E[ yl Y > 01. 

Now, by (B.5) 

(C.4) E[XO)- 11, = W(t)-- ~(~)/PO)l+ fv)/V(t). 
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MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE 

By the Pareto assumption (B.9), 

(C.5) m(l)- y(olp(t)l+ = [V(l)lP(~)l v/(v- I), 
whence (C.3) and (C.4) yield: 

CC.61 HA (t)l = V(f) &?u +fQxyx) av- 1) 
a V(O) H(r)IH(O) [by (B.111 

if pLg, vB, vx and pgx are the assumed independent of t. 
Thus, the expected average claim size is directly proportional to property 

values, all other things equal. This has the interesting effect of causing average 
claim size in respect of a group of identical policies usually to increase with 
development .year even though outstanding principal is decreasing. 

APPENDIX D 

EXPLORATORY ANALYSIS OF CLAIM SIZE 

Dl. Variation of claim ratio with loan to valuation.ratio 

Loan to 
valuation 

ratio 

Number 
of claims 

Claim to loan ratio 

Sample 
Sample 

standard mean 
deviation 

95% confidence limits (a) 

Lower Upper 

up to 50% I 55.8 % 
50 to 60% I 56.9 % 
60 to 70% 8 23.3% 13.7% 11.8% 34.8 % 
70 to 80% 36 23.9% 19.2% 17.4% 30.4 % 
80 to 90% 189 22.9 % 18.4% 20.3 % 25.6% 
over 90% 191 23.5% 15.6% 21.3% 25.7 % 

(a) These are the symetric r-distribution confidence limits. Where the sample size is less than 2, the 
confidence limits do not exist. 

D2. Vahtloa of claim ratio with term 

Term 
Number 

of claims 

240 & more 

(a) See Appendix Dl. 

- 
T Claim to loan ratio 95% confidence limits (a) 

Sample 
Sample 

I I 

standard Lower 
mean 

deviation 

I 
Upper 

71.4% 
50.7% 
33.9% 
23.7 % 
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D3. Variation of claim ratio with area 

Area 
Number 

of claims 

MI, M4 
M2 
M3 
M5 
Can berm 
Coastal 
Newcastle 
Wollongong 
Other 

29 
63 
77 

5 
4 

100 
32 

0 
II6 

(a) See Appendix DI. 

D4. Commentary 

- 

T Claim to loan ratio 95% confidence limits (a) 

Sample 
mean 

16.5% 
21.2% 
16.5% 
25.8% 
23. I % 
24.6 % 
31.7% 

27.5% 

Sample 
standard 
deviation 

Lower 

11.7% 12.0% 
15.0 % 17.5% 
12.6% 13.7% 
14.8% 7.5% 
13.0% 2.4 % 
18.2% 21.0% 
17.2% 25.6% 

19.4% 23.9 % 

Upper 

20.9 % 
25.0% 
19.4% 
44.1% 
43.8 % 
28.2% 
37.9% 

31.1 % 

All pairs of confidence limits in Appendices Dl to D3 straddle the overall 
mean of 23.4% except in four cases. All four of these cases relate to area of 
residence, and are found in Appendix D3. 

APPENDIX E 

COMPARISON OF OBSERVED AND FI’ITED CLAIM AMOUNTS 

The following are the amounts of claim observed in respect of each combina- 
tion of year of advance and development year. 

Year of 
advance 

1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

- 
T 

0 

s 

0 
9591 

0 
22882 

0 
0 
0 

Amount of claims observed in development year 

I I 2 I 3 
I I 
I 

4 7 

s IE % 

II5151 
71488 29799 

60085 71469 61801 
45337 68811 32541 I 

161743 1060021 474840 
150351 219581 28174 

7054 0 15810 
0 258976 

OI 

s 
28522 
6971 I 1 

102851 
85959 

I80820 
179612 
26638 

31 

% 
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MODELLING MORTGAGE INSURr$NCE CLAIMS EXPERIENCE 

The following are the amounts of claims fitted to each combination of year 
of advance and development year by the procedure described in Section 9.2. - 

T Amount of claims fitted in development year 
Year of 
advance 

0 I 2 6 7 8 9 10 

% 

0 
14819 

0 
30697 

0 
0 
0 

% 

51324 
68421 

1 a5929 
151670 

13995 
0 
0 

% 

56280 
96763 

121228 
1089849 
258058 

0 
221693 

s 
25853 
84727 
70032 
29094 
26301 
64647 

s 
9332 
9687 

19012 
0 
0 

$ 
0 
0 

27658 
7572 

% 
0 
0 

28253 

s 
0 
0 

s 
7380 1980 

1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
I989 
1990 

Each cell in this table is of the form: 
actual number of claims 
X 

fitted average claim size. 
Hence comparison of the table with the previous one examines only 

variation of experience from model amounts of claim. 
An alternative version of the preceding table consists of cells of the form: 

fitted number of claims 
X 

fitted average claim size. 

This table is as follows. 

Amount of claims titted in development year 
Year of 
advance 

t- 0 
-I- 

I 2 3 4 5 6 10 

I s 

15962 
41551 

188718 
185146 
86881 

0 
0 

39396 
73512 

144634 
907194 
264079 

0 
153966 

0 

44040 
55278 
80326 

324560 
617384 
66099 
29185 

% 
16472 
55444 

II 1986 
136558 
148532 
82395 
31805 

s 
13202 
61935 
99883 
50459 
I5693 
49662 

6 
II077 
47805 
22086 

0 
0 

% 
52 1980 

1981 
1982 
1983 
1984 0 
1985 4668 
1986 0 
1987 3131 
1988 
1989 0” 
1990 0 

For cells in which where are no claims observed, the procedure of Section 9.2 does not produce a 
fitted average claim size. These cells, indicated in bold, have been assigned a fitted amount of claims 
equal to zero. 
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APPENDIX F 

HOME AFFORDABILITY INDEX 

Economic indicators 
- 

Year 
(as at 

Aver- 

31 De- w 

cember) 
weekly 

ear- 
\ nings 

I 
% 

1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

224.35 
246.00 
278.25 
315.90 
346.70 
375.90 
405.40 
428.20 
450.85 
477.70 
521.65 
560.75 
600.68 

Con- 
sumer 
price 
index 

82.4 
91.1 

100.0 
110.2 
123.4 
130.9 
136.0 
147.5 
161.4 
173.1 
187.7 
203.0 
213.0 

Mort- 

gage 
interest 
rates (a) 

p.a. 

11.50% 
11.50% 
12.00 % 
14.50% 
15.50% 
14.00% 
13.50% 
15.00% 
15.50% 
14.50% 
14.25 % 
17.25 % 
15.50% 

T 
Gross 
house- 

hold 
income 

(b) 

s per 
week 

562.14 
617.05 
697.94 
192.38 
869.64 
942.88 

1016.88 
1074.07 
I 130.88’ 
I 198.23 
I 308.47 
1406.55 
1506.69 

Household expenditure 

Tax 
W 

% per 
week 

118.28 
129.70 
146.70 
166.55 
182.79 
198.19 
213.74 
225.76 
237.70 
251.86 
275.03 
295.64 
316.69 

Con- 
sumer 
expen- 
diture 

W 

% per 
week 

326.2 1 
360.65 
395.89 
436.27 
488.52 
518.22 
538.41 
583.93 
638.96 
687.66 
743.08 
803.65 
843.24 

Mort- 

gas 
instal- 
ment 

@I 

% per 
week 

64.40 
70.61 
82.26 

107.18 
123.78 
124.22 
130.4 I 
149.07 
160.96 
162.07 
174.68 
211.71 
214.46 

Residual income 

4mount 

f per 
week 

53.85 
56.08 
73.10 
82.39 
74.54 

102.26 
134.33 
115.30 
93.25 
9664 

115.68 
89.48 

132.30 

As per- 
centane 

of- 
gross 

9.569% 
9.089 % 

10.473 % 
10.397 % 
8.572% 

10.846% 
13.210% 
‘0.735 % 
8.246 % 
8.066 % 
8.841% 
6.362 % 
a.781 % 

(a) The most common interest rates applying to loans in the mortgage insurance portfolio under 
analysis. 

(b) These four columns were derived in a consistent manner from the HES, as described in 
Section 3.2. 
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APPENDIX G 

DATA 

The data described in Section 4.2 are summarized in the following table. This 
should be considered in conjunction with the qualification set out in the final 
paragraph of Section 4.2. 

Year of 
Number Number of claims (a) recorded in development year 

advance 
of loans 

advanced 0 1 2 3 4 5 6 7 8 9 IO 

1980 1700 3 3 1 0 0 0 1 
1981 1917 I3 8 6 I 0 0 0 
1982 2231 7 6 IO 8 3 3 1 
1983 3426 5 7 7 a 3 0 I 
1984 5496 0 7 13 30 19 3 0 
1985 7787 1 16 104 53 12 5 
1986 8077 0 I4 24 3 2 
1987 9910 3 
1988 17646 0 

; 0 2 
a 

1989 11878 0 0 
I990 13614 0 

(a) Development year is defined as year of emergence of claim minus year of loan advance. Claims 
emerging in 1984 represent the experience of only 7 months. 
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The Parameter Variance Adjustment 
in Lognormal Linear Models for Loss Reserves: 

Bayesian vs. Frequentist Analysis 

by Fred Klinker 

Abstract: In lognormal linear models for loss reserve 
estimation, losses are assumed to be lognormally 
distributed, where the expectations of the logarithms.of 
losses are assumed linear in explanatory variables. A 

parameter variance term appears in the exponent of the 

estimator for expected losses. There is disagreement 
regarding the sign of this term. It will be argued in this 

note that the sign depends on whether one adopts a Bayesian 
or Frequentist viewpoint. Each sign is correct within the 
appropriate paradigm. 

A number of actuarial papers have considered lognormal 
linear models for loss reserve estimation, among them 

Verrall [11], Verrall [12], Wright [14], and Zehnwirth [15]. 

This list is illustrative only and is far from exhaustive. 

In such models, losses (generally incremental, not 
cumulative) are assumed to be lognormally distributed, where 
the expectations of the logarithms of losses are assumed 
linear in explanatory variables. A parameter variance term 

appears in the exponent of the estimator for expected 
losses. There is disagreement regarding the sign of this 
term. The disagreement is implicit rather than explicit; 

none of the above referenced authors appears to acknowledge 
the different sign in other authors' works. However, Gary 

Venter, in his introduction to the papers on variability in 

reserves included in the Spring 1994 CAS Forum, specifically 
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in his comments on Verrall [12], notes that "...adjusting 
the maximum likelihood estimator of the lognormal mean for 
bias involves some controversy, with different authors 

advising upward or downward or no adjustment." (Venter 

[lo], paw 97.1 It will be argued in the rest of this note 
that the sign of the adjustment depends on whether one 

adopts a Bayesian or Frequentist point of view. Each sign 
is correct within the appropriate paradigm. 

Aside from its discussion of an admittedly technical fine 
point which may not interest many actuaries, this note may 
also serve to remind readers of the fundamental distinctions 

between Bayesian and Frequentist paradigms and the fact that 
the two do not always yield the same result. This last 

.-,. 
reminder is useful, since the statistical model most 

actuaries are most familiar with, the normal linear model, 

yields the same result whether from a Frequentist viewpoint 
or from a Bayesian (with uninformative prior), although the 
interpretation of the result differs somewhat according to 
viewpoint. (Regression and ANOVA are common examples of 

linear models. The normal linear model in a Frequentist 

setting assumes normally distributed errors. In a Bayesian 

setting, normal priors and normal errors are assumed, 
resulting in normal posteriors.) This happy coincidence of 
Bayesian and Frequentist results is not preserved in many 
other models, including lognormal linear models. 

In subsequent sections of this note, first the general 
Bayesian and Frequentist paradigms are discussed, then the 
estimators that follow from these paradigms. Lastly, the 
special case of lognormal linear models is introduced. 
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Paradioms: Bavesian vs. Freouentist 

The general problem is as follows. The state of nature is 
described by the parameter )A. There is a quantity of 
interest, y, whose expectation, conditional on p, is a 
function of fi, E[ylp)=f(b). If the state of nature were 

known to be 1, both Bayesians and Frequentists would 

probably agree that a good estimator for y is f(p). 
However, the state of nature is not known. Data, x, either 
a single observation or a collection of observations, is 
collected in an attempt to determine ).L and y. But Bayesians 
and Frequentists proceed differently. 

First, the Frequentist approach: The state of nature, ~1, is 
considered to be fixed, although unknown. The Frequentist 
refuses to quantify uncertainty surrounding p via a 
probability distribution on p. On the other hand, the 

Frequentist considers not only the actual outcome of the 

experiment, x, but also other outcomes that might have been, 
but weren't. The possible outcomes are described by a 
probability distribution on x, conditional on the fixed but 
unknown p. Expectations and variances of functions of x are 
calculated over x, conditional on p. The focus is on 

finding unbiased estimators (i and 2 such that E[P(x) Ipl=p 

and E[f(P(x) 1 Ipl=f(p) =E[Y[P] . 

Consider next the Bayesian point of view. Uncertainty 
surrounding the state of nature, p, is quantified via a 

prior probability distribution on b. This prior can be 
Objective Bayes (an uninformative prior), Subjective Bayes 
(based on personal estimates of probabilities), or Empirical 

Bayes (based on previous data from similar problems). Data, 
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x, is observed, and, based on this data and Bayes’ Rule, a 
posterior distribution for p follows. All inferences are 
conditioned on the observed data. There is no consideration 

'given to other outcomes that might have come to pass but 

didn't. The focus is no longer on unbiased estimators. 
Unbiasedness is a Frequentist notion which requires taking 

expectations over actual and possible observed data, whereas 
the Bayesian does not consider the randomness of the data 
after the data has been observed and instead conditions on 

that observed data. Instead, the Bayesian desires an 
estimator which minimizes Bayes Risk across all states of 
nature still considered possible after observing x. 
Expectations and variances are calculated over b via the 
posterior distribution for /J, conditioning on x. Adopting 
the standard loss function (quadratic), the minimum Bayes 

Risk estimator for y is its posterior expectation, 

E[ylxl =E(E[yl~.~l~x) =E[f(p) 1x1 . 

To summarize the key distinctions between Bayesian and 
Frequentist, the Frequentist considers the data, x, to be a 

random variable, but not p, which is considered fixed, 
although unknown. The Frequentist continues to worry, even 
after the data is observed, about observational outcomes 

that could have come to pass but didn't, and considers 

expectations and variances over x, conditional on )J. The 
Bayesian conditions all inferences on the observed data, x, 

and considers ~1 to be the random variable over which 
posterior expectations and variances are calculated. The 
Bayesian steadfastly refuses to be concerned about outcomes 
that could have come to pass but didn't. To clear up a 
common misconception, it is this conditioning on x which is 

the heart of the Bayesian paradigm, not the invocation of 

Bayes' Rule. Even some Frequentist methods invoke Bayes' 
Rule. 
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Before leaving this foundational section of this note, a few 
clarifying comments are in order. 

1) In the above Frequentist discussion, I have focused on 
unbiased estimators. It should at least be noted that 
Frequentists do occasionally invoke considerations 
other than unbiasedness. However, it is certainly true 

that unbiasedness is one of the first characteristics 

that a new statistics student learns and one that is 
invoked often. 

2) In the above Bayesian discussion, by mentioning Bayes 
Risk and loss functions, I have implicitly adopted a 

decision theoretic approach to Bayesian statistics. It 
should be noted that Bayesian theory and statistical 
decision theory are not synonymous. There are 
practicing Bayesians who are not decision theorists, at 
least not knowingly. And there are decision theorists 

who are not Bayesian, but rather quite decidedly 

Frequentist. On the other hand, of those discussions 
of Bayesian foundations with which I am familiar, all 

the best seem to adopt a decision theoretic viewpoint. 
Once one rejects the questionable Frequentist 
"objectivity", one seems driven naturally towards a 

decision theoretic viewpoint. Statistics appears to be 
less a method of discovering Vruth" and more an aid to 
rational decision making. Any Bayesian can calculate 
the posterior expectation, E[y;x]. Only the Bayesian 
with a decision theoretic bent knows why this might be 

the appropriate quantity to calculate, because it 

minimizes posterior Bayes Risk under the most popular 
loss function, expected squared error. 
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The above has only scratched the surface. For those 
interested in more, Silvey [9] is a good introduction to 

Frequentist inference. There is a rapidly expanding 
literature on Bayesian foundations. Two good discussions 

are Berger [2] and Efron [6]. I particularly recommend the 

first of the two as an excellent discussion of Bayesian 
philosophy. (This is the source which first pounded into me 
the central role played by conditioning arguments.) The 
second of the two compares Bayesian and Frequentist 
paradigms. Although more applied, Gelman and others [E] and 
West and Harrison (131 also have interesting insights on 

Bayesian foundations. 

Estimators: Bavesian vs. Freouentist 

Suppose, first, that the function f(p) of the previous 
section of this note is linear in p. Then the following two 
operations commute: 1) taking expectations and 2) evaluating 
the function. In the Frequentist paradigm, 

E[f(P(x))lr]=f(E[P(x)l~])=f(~) for p(x) an unbiased 

estimator of cc. In other words, 3=f and P((l(x)) =f(P(x)) is 

an unbiased estimator for E[ylp]=f(p). In the Bayesian 

paradigm, E[ylx]=E[f(p)Ix]=f(E[plx])=f(&), where p,=E[/~[x] 
is the posterior expectation of p conditional on the 
observed x. Comparing the Bayesian and Frequentist 

estimators for y, they are of the same functional form as 
long as we identify the Bayesian /b, with the Frequentist 

P(x). Why is the class of linear f so important? Because 

the normal linear model, already mentioned in the 
introduction, falls into this class. 
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Now assume that f is non-linear and take the Taylor series 
expansion to second order, about )J in the Frequentist case, 
and about c(" in the Bayesian. It is not suggested that this 

calculation produces good estimators in all situations, but 
second order is the lowest order in which interesting 
phenomena arise, which are at least suggestive of the form 
of adjustments required for non-linear f. Considering first 
the Frequentist case, 

E[f(P (xl 1 I ~1 = E[f(p) + f’(p) (0 bd -p) + $f”(p) (P(x) -p121pl 

= f(p) + +fQ) Var[P(x) I pl 

(1) 

where p(x) is an unbiased estimator for /A, and where the 

variance in the last line is the variance of the estimator 
p(x) conditional on p. This equation suggests that f(p(x) 1 

would not in general be an unbiased estimator for f(p) and, 
further, that the following might be aooroximatelv unbiased. 

(2) f(P(x)) = f(P(x)) -+ffl(p(X)) var[p(x) 1pl 

The unknown p in the second derivative of f has been 

replaced by its unbiased estimator. The variance would also 
have to be estimated somehow. The unbiasedness would 
presumably be only approximate for a couple of reasons. 
First, higher order terms in the Taylor series expansion 

have been ignored. Second, both the p (in the second 
derivative) and the variance in the variance adjustment term 

of equation (2) must be estimated, hence this variance 
adjustment term is itself a random variable, not a constant. 
There is no guarantee that the expectation of this random 

variable will be exactly numerically equal to the variance 
adjustment term of equation (l), barring a very judicious 
choice of variance estimator. 
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The Bayesian calculation is similar to the Frequentist- 

E[f(p) Ix] = E[f(p.J +f’(p,) (CI-Px) +jfU(CLx) (~-clx)2~xl 

(3) 
= f(rx) 

Equation (2) is the approximately unbiased estimator for y 
in the Frequentist case, equation (3) the approximate 

estimator for y in the Bayesian. Both have an adjustment 
for parameter variance. As before, upon identifying the 

Frequentist F(x) with the Bayesian c(~, the functional forms 

would be identical, exceot that the sisns of the oarameter 

The Losnormal Linear Model, 

Consider first the lognormal distribution. A random 

variable z is said to be lognormally distributed with 
parameters ).b and a if and only if the natural log of z is 
normally distributed with expectation p and standard 

deviation a. p and a2 are therefore the expectation and 
process variance in the log scale. Back in the original 
scale, the expectation of z, conditional on )J and a, is 

E[z~jb,o]=exp(~+.502). For the actuarial reader unfamiliar 

with the lognormal distribution, past actuarial papers, such 

as Bickerstaff [3] and Finger [7], have made use of this 

distribution and include either a brief description or 
technical appendix on the lognormal. Those who desire 
considerably more detail on the lognormal distribution may 
consult Aitchison and Brown [l] or Crow and Shimizu [5]. 
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Consider now the lognormal linear model. The data, x, and 
the quantity of interest, y, are assumed to be lognormally 
distributed, with expected logs that are linear in 
explanatory variables. The state of nature is characterized 
by the expectation of log(y), w, and the process standard 
deviation of log(y), u. fi will be linear in explanatory 
variables and their associated regression coefficients. The 
parameter variance of p will depend on variances and 
covariances of the estimated regression coefficients via 

standard regression formulas involving the process variance 
and the structure matrix. In what follows, the process 
variance and the parameter variance will be assumed known. 

The fact that process and parameter variances must generally 
be estimated from the data is a technical complication which 
must be considered when designing exact estimators but which 

contributes nothing to the discussion at the present 
elementary level. So we will treat u as a known rather than 
unknown descriptor of the state of nature and write 

E[yl~l=exp(~)exp(.5az)=f(~). (The additional problems 
introduced by unknown process and parameter variances, which 

must also be estimated, are treated in Verrall [ll] and 

Verrall [12]. These two papers further reference Bradu and 
Mundlak [4], a highly educational paper in itself.) 

The Frequentist now considers the problem to be one of 

estimating p an :[ylp]=f(p) from observed data x using 

unbiased estimaturs. Given the assumption that logs are 
normally distributed and linear in explanatory variables, 

standard regression analysis on the logs yields an unbiased 

linear estimator for W, call it p(x), and an expression for 
the parameter variance of this estimator, Var[@(x) IpI, in 

terms of the process variance, assumed known, and the 
structure matrix of the regression. Applying equation (2), 
an approximately unbiased estimator for f(p) is: 
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(4) 

f(p(x)) = fcpw) l- 
( 

$var rp (x) ‘PI) 

m f(fl(x))e 
q 

-+ [P (x) Id) 

= expF(x) -$Vdr[p(x) Ipl +-+a’) 
( 

The first approximation follows from equation (2), because, 

given the present definition of f(b)=exp(p)exp(.5u*), the 
second derivative of f with respect to p is equal to f(p) 
itself. The second approximation follows if the parameter 
variance is small (because l-x = eSX if x small), which is 
probably the regime in which equation (2) is valid anyway. 

(It should be noted that equation (4), derived under the 

above approximations, is an exact unbiased estimator for 
f(p) if the variance terms are known, rather than estimated 
and the distribution of the data, x, is such that the 
estimator, p(x), is not only unbiased but normally 

distributed.) The second term in the exponent is the 

adjustment for parameter variance and appears with a 
negative sign. 

Consider now the Bayesian estimator, E[ylx]. After 
observing the data x, ).L has a posterior distribution with 

expectation & and variance Var[plx]. Applying equation 

(31, 
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(5) 

E[Y:xl = lz[f(p) :x1 

ti f(p,) 
( 
l++var[plxl 

1 

= f(p,)e 
-4 

++p:x1 
1 

= ex 
4 

pr+ $Var[p!xl + $0’ 
1 

This holds to the same level of approximation as equation 

(4). (Actually, if the posterior distribution for fi is 
normal with expectation pLx and variance Var[plx], then 

equation (5) follows exactly, without approximation, because 
then exp(p) is itself lognormally distributed.) Again, the 
second term in the exponent is the adjustment for parameter 

variance, but in the Bayesian setting it appears with a 
positive sign. 

Note that equations (4) and (5) have the same functional 
form, except that the signs on the parameter variance term 
are reversed. Why? The Frequentist recognizes that his 
unbiased estimator for )L, p(x), has finite, non-zero 
variance. Because of the convex shape of the exponential 

function, excursions of F(x) above p result in excursions 

of exp(P(x)) above exp(b) of greater magnitude than 

excursions of exp(P(x)) below exp(p) due to excursions of 

(l(x) below u. As an estimator of exp(p), exp(p(x)) is 
therefore biased upward, and the bias is greater the greater 
the variance of the estimator p(x), the larger the 

excursions of p(x) from /.k. The exp(-. 5Var[P(x) 1~1) factor 

removes this bias (approximately). 

The Bayesian, on the other hand, estimates 
E[ylx]=E[f(u)lx]=E[exp(p+.5u2)Ix]. Again, because of the 
convex shape of the exponential function, excursions of p 
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above fi,,=E[pix] have a larger impact on exp(p) than 

excursions of fi below ~1,. Upward excursions of fi are more 
dangerous than downward excursions because of their greater 
impact on exp(fi), and the Bayes estimator, being a minimum 
risk estimator, augments the naive estimator exp(p,+.5u2) 
with the factor exp(+.War[plx]) to protect against the more 
dangerous upward excursions. 

In closing this section of this note, what relation do the 
above results bear to those of other authors? I don't see 
an explicit parameter variance adjustment in Zehnwirth 1151. 
However, I know from the manual for his ICRFS loss reserving 

system and from private conversations with him that 
Zehnwirth is solidly in the Bayesian camp and advocates, or 
at least at one time advocated, the positive sign on the 
parameter variance adjustment. Verrall [12] actually 
appears to advocate both signs, depending on whether he is 

describing an unbiased Frequentist estimator or a Bayesian 

estimator, but he doesn't draw attention to the change in 
sign. 

First, Verrall's equation (4.16) provides an unbiased 
Frequentist estimator. (Although he doesn't refer to this 

estimator as Frequentist, he notes its unbiasedness, which 

is a Frequentist notion. Furthermore, he invokes Bradu and 
Mundlak [4], which is a Frequentist paper.) To establish 

the connection between his notation and ours, note that Z 

is the vector of values of explanatory variables associated 
with our quantity of interest, y. fi is the vector of 

regression coefficients associated with these explanatory 
variables, or rather the true but unknown values of these 

coefficients. Q is the vector of estimates of these 

regression coefficients derived from the regression. ZB 
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and ZQ are therefore inner products representing, 

respectively, our p and our p. From Verrall's equation 

(4.16)s the unbiased estimator for E[ylb]=exp(p+.5u2) is 

(6) exp(P)g -AZ(X'X)-'Z'S' 
m 2 [ 

+1&G 
2 1 

where X is the regression structure matrix and s2 is an 
unbiased estimator for u2. g,,,(t) is defined via power 

series expansion in Verrall's equation (4.5). It is clear 
from this definition that, as m becomes large, g,,,(t) tends 

to exp(t). m becomes large when the data base on which the 
regression is performed becomes large, without a 
corresponding increase in the number of explanatory 
variables. In this limit, the unbiased estimator for E[yl~] 
of expression (6) above becomes 

(7) exp p 
( 

- $2(x/x) -1~‘~2 + $s2 
i 

From standard regression theory, the second term in the 

exponent is precisely -l/2 times the variance of the 
estimator 0. This estimator (7) therefore reproduces 

equation (4) above. 

Lastly, Verrall provides, the middle of page 409, Bayesian 
estimators for posterior expected losses for lognormally 
distributed losses with parameters 13 (our p) and u, where 
the posterior distribution of 0 is normal with expectation m 

(our p,) and variance r2 (our Var[fiix]). Verrall's 

estimator is 

(8) 

which reproduces equation (5) above. 
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I--. - 

Concludina RemarQ 

So, which is the correct estimator in a lognormal linear 
model setting, equation (4) or equation (5)? Do we add or 
subtract a parameter variance adjustment? Each is correct, 
m its own Dw I Bayesian or Frequentist. 
Unfortunately, for the lognormal linear model, unlike for 

the normal linear model, the result depends on the paradigm. 
It is up to the actuary to select the paradigm and, hence, 
the sign of the parameter variance adjustment. 
Unfortunately, there is no clear guidance as to which is 
appropriate for the loss reserving problem. Neither 
paradigm is without problems regarding its theoretical 

foundations, as Efron [6] is quick to point out. 

A number of observations may be appropriate in closing, 
first some statistical ones, then some actuarial ones. 

1) While calculating the Bayesian posterior mean, E[yix], 

it may be worthwhile to reflect on the fact that many 

Bayesians consider the greatest strength of the 
Bayesian paradigm to be its ability to produce readily 
interpretable posterior distributions and confidence 
intervals. (See, in particular, Gelman and others 

[8].) These Bayesians would consider someone who went 
to the trouble of constructing a Bayesian analysis only 

to extract posterior means and nothing else to have 
discarded most of the information revealed by their 
analysis. Yet, because of the very narrow focus of 

this note, I have ignored posterior variances, 

Var[ylx], posterior predictive distributions for y, and 
posterior intervals resulting from those distributions. 
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2) A hard core Bayesian who wished to remain a Bayesian 
and yet was troubled by the above Bayesian/Frequentist 
discrepancy might be able to construct a valid Bayesian 
decision analysis that would reproduce the Frequentist 
unbiased result by considering loss functions other 

than quadratic, resulting in minimum Bayes Risk 

estimators other than the Bayesian posterior 
expectation, E[ylx]. I have not investigated what loss 
function might bring Bayesian and Frequentist analyses 
into agreement, but I might guess that such a loss 
function would appear quite ad hoc. 

3) Both the unbiasedness of the Frequentist estimator and 
the minimum risk of the Bayesian estimator are 
predicated on the selected lognormal linear model being 
a reasonable approximation to reality. While we debate 
unbiasedness vs. minimum risk (tastes great vs. less 

filling), let us not forget that, if our model does not 
adequately approximate reality (incremental losses are 
not lognormally distributed, or expected logs are not 

linear in explanatory variables, or we have failed to 
include in the model important explanatory variables, 

etc) , then, relative to a more adequate model, our 

Frequentist estimator is quite likely to be biased, and 
our Bayesian estimator is unlikely to be minimum risk. 

NOW, a few actuarial comments. 

1) The Bayesian increases the indicated loss reserve for 

risk; the Frequentist reduces the indicated reserve to 
correct for presumed bias. The Bayesian indicated 

reserve is more conservative than the Frequentist. The 
Bayesian increase is, in effect, a kind of risk load. 
For those model parametrizations I have seen, the 
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2) 

3) 

greatest effect of parameter variance, percentagewise, 
tends to be out in the tail, at high development ages, 

because age tends to be selected as one of the 

explanatory variables and tends to be highly leveraged 

at high ages. Intuitively, out in the tail, at high 

development ages, is where an actuary would want the 
greatest risk load and conservativeness, because this 
is where the greatest uncertainty, percentagewise, 
lies. 

The Frequentist loss reserver might believe the 
Bayesian indicated reserve to be redundant on average, 
because it fails to adjust for bias. Have you, or 

anyone you know, ever seen a truly redundant loss 

reserve (or Nessie, or Bigfoot)? 

In the presence of controversy, with no clear 
indication as to how to resolve that controversy, 
perhaps we should employ the time-honored practice of 

practical actuaries everywhere: compromise. Ignore the 
parameter variance adjustment altogether. This 

produces indications intermediate between the bias 

adjusted Frequentist indication at the low end and the 
risk adjusted Bayesian indication at the high end. 

My first preference would be for the Bayesian estimator 
because of its conservativeness, and because it is most 
conservative in the tail, where conservativeness is most 
appropriate. Upon failing to get my first preference, my 

second preference would be to ignore the parameter variance 

adjustment altogether. Why make any adjustment when we 
can't even agree on the sign of the adjustment? I would be 
very loathe to quote the Frequentist indication, to reflect 

the downward adjustment for bias, which is probably being 
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mis-estimated anyway because our selected lognormal linear 
model, on which the indicated bias is based, is likely to be 
an oversimplification of reality. 
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AN INTRODUCTION TO CREDIBILITY 

Credibility theory provides important tools to help the actuary deal with the randomness 
inherent in the data that he or she analyzes. Actuaries use past data to predict what 
can be expected in the future, but the data usually arises from a random process. In 
insurance, the loss process that generates claims is random. Both the number of claims 
and the size of individual claims can be expected to vary from one time period to 
another. If $1.500.000 in losses were paid by an insurer during the past year, one 
might estimate that $1.500,000 would likely be paid in the current year for the same 
group of policies. However, the expected accuracy of the estimate is a function of the 
variability in losses. Using credibility theory, the actuary estimates the randomness 
inherent in the data and then calculates a numeric weight to assign to the data. 

Here is a dictionary definition of credible: 

credible: Offering reasonable grounds for being believed 

The actuary wants to know how much to believe the data that's being analyzed. To use 
the data to predict the future, this "belief in the data" must be quantified so that 
calculations can be made. This leads us to actuarial credibility: 

actuarial credibility: the weight to be given to data 
relative to the weight to be given to 
other data 

If we cannot fully believe our data, we may call on other information or data to 
supplement the data at hand. The data at hand and the supplemental data are each given 
an appropriate numeric weight in calculating an estimate. 

The variability in insurance loss data can be seen in Table 1 which shows the loss 
experience for a group of policies covering contractor's pickup trucks. The last column 
shows that the average loss per truck varies widely from one year to the next. Any one 
year is a poor predictor of subsequent years. 

The variability in the average loss per pickup truck is depicted graphically in Figure 
1. The expected average loss (pure premlum) is $500 which we would observe if our body 
of data were infinite in size. But. for limited sample sizes, the observed average 
losses are randomly distributed. Note that as our sample size increases. the 
variability of the observed average loss decreases 
becomes more concentrated around the $500 value. 

- the probability density curve 

probability density curve flattens out. 
For a smaller sample size, the 

If our sample body of data consists of 50.000 
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trucks we can rely upon the observed average loss to estimate the true expected average 
loss to a much greater extent than if the data came from a smaller sample of only 3000 
trucks. 

FIGURE 1 

0 250 500 750 1000 

Pure Premium 

The actual dlstribution of pure premiums is not symnetric as shown in the prior graph, 
but is instead skewed to the right as shown in Figure 2. More of the observations would 
actually fall below the mean of $500 and the mode of the distribution is less than $500. 
The smaller the body of data, the greater the asymnetry in the graph. In an extreme 
case we could consider only one truck. In most years the truck would have no losses 
for an observed average loss of SO in those loss-free years. But. every few years there 
would be a loss or, perhaps, several losses and the observed average loss would be 
substantial. 

FIGURE 2 

0 250 500 

Pure Premium 
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This leads us to a comnon problem that may occur when a group of non-actuaries is 
reviewing average losses or loss ratios for a series of years. The data may show, for 
example, four years with excellent loss ratios but a fifth year with a very high loss 
ratio. The five-year average may be close to some target loss ratio. Unfortunately, 
what frequently happens is that one of the reviewers will say that the one bad year is 
an anomaly that was caused by several severe claims and that the bad year should be 
thrown out of the data. This is a big mistake1 For a small body of data, this pattern 
in the loss ratios is exactly what we expect to see. The majority of the loss ratios 
will look better than average, with a few being quite large. This doesn't mean that 
we should ignore the few high values; it usually means that our body of data is small. 

The basic formula for calculating credibility weighted estimates is: 

Estimate = 2 x [Observation] + (1-Z) x [Other Information], 

and 0 I 2 51. 

If our body of data is so large that we can give full weight to it in making our 
estimate, then we would set Z=l. If the data is not fully credible, then Z would be 
a number somewhere between 0 and 1. What is the "Other Information" that we might use 
in our formula? That depends on what we are trying to estimate. In Table 2. the left 
hand column shows our observed data and the right hand column may be the "Other 
Information" that we might use in the above formula. 

Observation 

TABLE 2 

Other Information 

Pure premium for a class 

Loss ratio for an individual 
risk 

c-8 Pure Premium for all classes 

++ Loss ratio for entire class 

Indicated rate change for a 
territory 

Indicated rate change for 
entire state 

++ Indicated rate change for 
entire state 

c-8 Trend in loss ratio 

Suppose you are trying to estimate the indicated rate change for a territory within a 
state, but your company has a limited volume of business in the territory. An option 
may be to weight the indicated change from territorial data alone with the indicated 
change for the entire state. This way you have reflected territorial experience in your 
rate change to the extent that it is credible. 

The loss ratios shown below in Table 3 were produced in a computer simulation that 
modeled the insurance random loss process. The expected loss ratio is 60 for both the 
small and big states, but the observed (simulated) loss ratios will randomly vary around 
this value. As we would expect, the variation is much larger for the small state. In 
the larger state the loss ratio hovers around 60 in each year. Five-year average loss 
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ratios were calculated and then state indicated rate changes were calculated using the 
expected loss ratio of 60 as the permissible loss ratio. 
state -28.3% = (43/60 - 1.000). 

For example, in the small 
Using one of the formulas that we will discuss in a 

moment, credibility values Z were calculated for each state. 

1990 
1991 
1992 
1993 
1994 

Total 

Permissible Loss 
Ratio 

State Indication 

Credibility 

TABLE 3 

Small State 

Earned Loss 
($000) Ratio 

FY 1:; 

72 62 
74 
74 

1; 

360 43 

60 

-28.3% 

10% 

Large State 

Earned Loss 
($000) Rat10 

7,100 58 
7.120 58 
7.180 
7,200 :a0 
7,400 61 

36.000 59 

60 

-1.7 

100% 

Perhaps this data comes from a line of insurance that has an aggressive insurance to 
value program such that the inflationary trend in losses is exactly offset by the annual 
increases in the amount of insurance. In this case the trend in our loss ratio would 
be 0%. (For our data, we know that the trend in the loss ratio is 0% because each year 
has an expected loss ratio of 60.) We will apply our complement of credibility factor 
(1-Z) to this information. So, we would get the following two indications: 

small state: .lO X [-28.351 + (1 - .lO) X [O.O%] = -2.8% 

large state: 1.00 x [-1.731 + (1 - 1.00) x [ O.O%] = -1.7% 

In both cases we know the right answer1 We should take a 0.0% rate change in each state 
because our expected loss ratios are what we used for the permissible loss ratios. But. 
because of the randomness inherent in our data, our indications are slightly off the 
mark. 

The important thing in the prior example is that we greatly improved the accuracy of 
our rate indication in the small state by incorporating credibility. We gave only a 
10% weight to the raw indication arising from the small state's loss ratio. This had 
the result of dampening the effect of the randomness. To the extent possible we would 
like to use our observed data to calculate our estimate rather than rely on 
supplementary data, but given the randomness present in our observations. we need to 
temper the data. Using credibility theory we weight an estimate based on limited data 
with data from other sources. We want to find a weight 2 that allows us to rely on our 
limited data to the extent reasonable, but which also recognizes that our limited data 
is variable. 
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There are two widely used formulas for the credibility Z as shown side by side in Table 
4. For the classical credibility formula, 
the case of Mhlmann credibility, 

if n > N then Z is set equal to 1.00. In 

infinity. 
Z asymptotically approaches 1.00 as n goes to 

Classical Credibility 

TABLE 4 

Bdhlmann credibility 

Also called: Also Called: 

(1) Limited Fluctuation Credibility (1) Least Squares Credibility 
(2) Empirical Bayesian Credibility 
(3) Bayesian Credibility 

In both formulas n is a measure of the size of the body of data and is an indicator of 
the variability of the loss ratio or pure premium calculated from the data. n can be 
any of the following: 

. number of claims 
* amount of incurred losses 
* number of policies 
. earned premium 
* number of insured unit-years. 

These are not the only possibilities for n. but n needs to be some measure that grows 
directly with the size of the body of data that we have collected. 

In practice both of the formulas can give about the same answer if N and K are chosen 
appropriately as displayed in Figure 3. Note that in the classical credibility case, 
when n is greater than or equal to 10,000. Z is identically 1.00. 

1.20 

T 
FIGURE 3 

0.80 
I 

Z 0.60 
n’(n+1600) 

0.40 

Number of Claims 
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Classical Credibility 

First we will discuss the classical credibility formula. Classical credibility attempts 
to restrict the fluctuation in the estimate to a certain range. N is calculated such 
that for fully credible data with n=N and Z-1.00. the observed pure premium or loss 
ratio will fall within a band about the expected value a specified percentage of the 
time. This is illustrated in Figure 4. 

FIGURE 4 

CLASSICAL CREDIBILITY 
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If N=5,200 claims, then the observed Pure Premium Is within 10% of 
the “true” value 90% of the time. 

In this example the measure of the size of the body of data is the expected number of 
claims. When our body of data is large enough so that we expect 5,200 claims in our 
observation period, the observed pure premium will fall within k=lO% of the true value 
P=90% of the time; that is, 90% of the time our pure premium calculated from our body 
of data will fall into the interval [450,550]. Both the 90% probability and the 10% 
width of the range must be selected by the ratemaker. If you wanted much less variance 
in your estimate you might select a P=99% probability and a k=2.5% error in your 
estimate. Of course! it would require a much larger body of data in the observation 
period to achieve this level of certainty. 

The full credibility standard N is a function of the selected P and k values. A larger 
P value results in a larger N and a smaller k also produces a larger N. In order to 
calculate the N that corresponds to the selected P and k. one needs to make certain 
assumptions and also know something about the loss process. In classical credibility 
one assumes that the frequency of claims can be modeled by a Poisson distribution. 
Also, one needs an estimate of the average claim size and the variance in claim sizes. 
Using these an estimate of the variance in total losses can be computed. The next 
assumption is that the distribution of the total losses is normal, i.e. bell-shaped. 
Then, the N value can be calculated. This is all covered in much detail in the syllabus 
material for the actuarial exam that tests credibility theory. 
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One does not have to use the number of claims in the classical credibility formula, but 
instead can use earned premium, number of policies, or some other basis. We could 
convert our formula developed above to an earned premium basis. Suppose that in 
reviewing our data we calculate that on average there is approximately $2,500 in earned 
premium for each claim; that is, the ratio of earned premium to the number of claims 
is 62,500. A full credibility standard of (2,500 dollars/claim) x (5.200 claims) = 
613.000.000 could be used in place of the 5.200 claims. Then, the credibility assigned 
to any data could be calculated from the earned premium of the data. 

To calculate the full credibility standard, the denominator in the formula, the amount 
of variability acceptable in fully-credible data must be defined by the selection of 
P and k values. For less than fully credible data the square-root formula determines 
the credibility 2. Figure 5 displays graphically the calculation of partial 
credibility. 

FIGURE 5 
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In the graph the width of the curve representing the variability of data which just 
meets the standard for full credibility is represented by D. D can be considered the 
standard deviation of the curve. (If you prefer, D can be two standard deviations.) 
Likewise, d is the width corresponding to a smaller body of data that is less credible. 
It turns out that the credibility that should be assigned to the smaller body of data 
in this model is 2 = D/d. the ratio of the standard deviation of the pure premium of 
the fully credible data to the standard deviation of the pure premium of the partially 
credible data. We will allow a standard deviation of size D. but if our body of data 
has a standard deviation of d. then we apply a weight of D/d to the data. If the pure 
premium (p.p.) calculated from the data is expected to have a standard deviation of d. 
then the quantity Z x (p.p) has a standard deviation of D, which is our target. 

62 



BOhlmann Credibilltv: 

The least-squares credibility model uses the credibility formula: 

Z = n/(n + K) 

K is defined by the following intimidating expression: 

K= Expected Value of the Process Vxiance 
Variance of the Hypothetical Means 

A good way to think about least-squares credibility is in the context of experience 
rating where the rate charged to an insured is a manual rate modified to reflect the 
experience of the individual insured. The losses incurred by an insured are random, 
so an insured's loss ratio will fluctuate. The term "process variance" is the variance 
in the loss ratio of the risk. The "expected value of the process variance" is the 
average value of the variance across the risks within the population. Since each risk 
is unique, the expected loss ratios of the individual risks at the manual rates will 
vary across the population because the manual rates are based on averages calculated 
for groups of risks who are classified alike in the rating plan. Each risk has it's 
own "hypothetical mean" loss ratio. The "variance of the hypothetical means" is the 
variance across the population of risks of their individual hypothetical mean loss 
ratios. 

In Figure 6 there are two risks, risk #I and risk 62. each with its own loss ratio 
distribution curve. The process variance Is a function of the width of the curve 
indicated by the [l] in the figure. As mentioned above the width of the curve can be 
thought of as some multiple of the standard deviation. The process variance is the 
square of the standard deviation. So the wider the curve, the larger the process 
variance. [2] marks the difference in the hypothetical means between the risks. The 
variance in the hypothetical means across the population is a function of the 
differences in the hypothetical means between the risks. 

When the process variance of the rlsks is large in relation to the difference in the 
means of the risks, K is large. A large K means that the credibility Z = n/(n +K) is 
small. Looking at the second graph in Figure 6, we see that there is a broad band where 
the two risks' loss ratios overlap. Since the loss ratio of each risk is so variable, 
it makes sense to give more weight to the manual rate calculated from the average 
experience of a large group of similar risks and less weight to the experience of the 
individual risk. 

Small process variances in relation to the differences in the means of the risks results 
in a small K value and a larger credibility Z. This scenario is represented by the 
bottom graph in Figure 6. The distributions of the two risks do not overlap. The 
larger credibility Z means more weight is assigned to the experience of the individual 
risk and less, (1-Z). to the experience of the population. 

Several Examoles 

Examples of credibility formulas developed by the Insurance Services Office are 
displayed in Table 5. The first set of formulas are used in Homeowners ratemaking and 
are based on the classical credibility model. The measure of the size of the body of 
data and its consequent variability is in the units of house-years; that is, one house 
insured for one year contributes one unit. In making a statewide change 240.000 house- 
years are required for full credibility, and with that large of a body of data, the 
observed experience should be withln 5% of the actual value 90% of the time. In 
computing territorial changes within the state, 60.000 house-years are assigned full 
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FIGURE 6 

CALCULATION OF K 
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credibility and the observed territorial experience is expected to be within 10% of the 
expected value of 90% of the time. As stated previously, the actuary needs to decide 
on the units for n. the size of the P value, and the size of the k value. 

TABLE 5 

Credlblllty Formulas 
Insurance Services Office 

Homeowners: Owners Forms 

~ 

Manufacturers & Contractors 

Statewide Changes Relotivities 

z-&z ~=Gz 

n = number of occurrences in n = number of occurrences in 
three years five years 

90% confident within 7% 95% confident within 5% 
of actual value of actual values 

General Liability Experience Rating 

z- L 
L + $177,000 

L = expected loss costs (including ALAE) 
at $100.000 basic limits 

The next set of formulas in Table 5 are used by IS0 in Manufacturers & Contractors 
ratemaking. Statewide changes require 8,000 claims (occurrences) in a three-year 
period, and with this many expected claims, the experience of the body of data should 
be within 7% of the expected value 90% of the time. The full credibility standard for 
relativities within M&C, such as class relativities. is much tougher with 25.000 claims 
required for a P=95% and k=5%. 

The selection of P and k is probably more art than science. If the body of data that 
the actuary is working with is of limited size and there is no good surrogate for the 
data to which to assign the complement of credibility, then the actuary may select a 
smaller P and larger k to produce a smaller requirement for full credibility. If the 
actuary wants to make the rates more responsive to current experience he or she may also 
select a smaller P and a larger k. If rate stability is the most important goal then 
larger P and smaller k may be selected. 
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The last formula in Table 5 is the credibility to be assigned to an individual insured's 
data in General Liabllity experience rating and it is based on the BLlhlmann model. In 
a loss cost environment. L reoresents the exoected loss costs (exoected incurred losses 
and allocated loss adjustment expenses) for'the individual risk.' Before the advent of 
loss costs, premium designated by E was used instead of L. The expected loss costs 
included in L are $100.000 basic limits losses. IS0 has recently converted from $25.000 
basic limits to $100,000. At $100.000 basic limits it was necessary to increase the 
K value in the denominator to $177,000 from its previously smaller value that applied 
when $25.000 basic limits losses were used in computing the experience rating 
adjustment. If unlimited losses were used in the experience rating formula, then an 
even larger K value would be necessary because the expected value of the process 
variance would become even larger. 

Reducing Variabilitv of the Data 

The data used by ratemakers in the insurance business arises from a random process; in 
fact, it is this randomness that makes insurance necessary. The ratemaker is confronted 
with the task of finding the proper premiums to charge insureds without knowing for sure 
what the cost will be to the company to provide the insurance. The ratemaker estimates 
the cost of future payments in insurance claims by his or her company by analyzing past 
costs. The ratemaker wants to use the most relevant data to estimate future costs, but 
he or she must also deal with the variability inherent in the data. 

One way to decrease the variabflity in ratemaking data is to use a larger body of data. 
Here are several ways to do this: 

. include more years in the experience period 
- use Bureau data 
. combine data into fewer, but larger groups 

Each of these involves a tradeoff. If more years are included in the experience period 
then it becomes necessary to apply larger trend factors to the older data and trend can 
be tough to estimate. Also, the book of business to which new rates will apply may be 
different from the business that produced the experience years ago. The same goes for 
Bureau data. The insureds included in Bureau data may be very different from the 
average insured in the ratemaker's data. Combining the data into fewer, but larger 
groups, may limit a company's ability to effectively compete against competitors who 
can better identify the proper price to charge an insured. 

Another approach to decreasing the variability in losses used in ratemaking is to: 

* cap large losses 
- remove catastrophes 

Of course, if we do either of the above we must put something back to make up for the 
losses we removed. One method to cap large losses is to do basic limits ratemaking by 
state, territory, class, etc., and calculate basic limits rates. Then, rates for higher 
limits are comouted usina increased limits factors calculated based on the aaareaate 
data for many states and ilasses. Another approach is to limit all losses at ;ome-set 
amount, for example $150.000. and then to prorate the excess losses amount back by 
state, territory, class, etc. Catastrophe losses can be removed from the data and a 
catastrophe load substituted in its place. This load can be computed from a very long 
observation period, thirty years or more for weather losses. or a computer model that 
attempts to model the catastrophe loss process. 
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AN INTRODUCTION TO BASIC CREDlBlLllY 

TALK BY HOWARD C. MAHLER 

MARCH 1996 

CAS RATEMAKING SEMINAR 

In my talk, I will try to reinforce and expand on the ideas Gary Dean presented in 

his talk. 

I will start off my talk by using the following set of graphs taken from my ‘Student’s 

Guide to Buhhann Credibility and Bayesian Analysis” to illustrate some simple credibility 

ideas in terms of experience rating or individual risk rating. The goal of experience rating 

is to use an individual insured’s experience to help predict the future. Assuming the 

individual risk’s experience were observed to be worse than average, we would predict 

his future experience would also be likely to be somewhat worse than average. 

Therefore, we would be likely to charge this insured somewhat more than average. 

As mentioned by Gary Dean, credibility Quantifies how much worse or better an 

insured’s m experience is expected to be based on a particular deviation from 

average observed in the pa& These graphs should illustrate some of the ideas Gary 

Dean mentioned, such as why more weight is given to an individual’s experience in 

certain situations. Also, those of you familiar with linear regression should see much that 

is familiar. (With the widespread use of personal computers, anyone can do a linear 

regression.) 

2757 
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The first graph, Exhibit I, shows simulated claim counts for 100 insureds divided 

into two equal groups. In this graph, the “Good Risks” are labeled with crosses and the 

“Bad Risks” with circles. In both the real world and many of the subsequent graphs, the 

risks come without such labels attached. (If they did come with such labels, we would not 

need to use credibility.) Assume we have 100 insureds all in the same risk classification, 

territory, etc. 

The 50 Bad Risks each have an expected Claim Frequency of 15 while the 50 

Good Risks each have an expected Claim Frequency of 10. For each of the 100 

insureds I have plotted a single prior year against a single subsequent year of claim 

counts. (For example, one of the Good Risks had 4 claims in the prior year and 5 claims 

in the subsequent year. This is indicated by a cross at the point (4. 5)). There is 

considerable overlap between the groups. Nevertheless, the Good Risks are more likely 

to be in the lower left while the Bad Risks are more likely to be in the upper right. 

The next graph, Exhibit 2, shows the same 100 insureds without labels. Here we 

have tit a least squares regression line to the points. One could use this fitted line to 

predict a future year’s experience based on an observation. Since the line slopes 

upwards, we see that a bad former year would lead one to predict a worse than average 

subsequent year. 

So if one observed 20 claims for an insured, one might predict about 15 claims for 

that insured next year, compared to the overall average of 12.5. This least square’s line 

is approximately: 

Y=.4OX+ 7.6 

This can be put in the form of the “Basic Formula” discussed by Gary Dean: 
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Estimate = Z (observation) + (1 - Z) (overall average) 

with the credibility Z = 40% 

With only 100 insureds. this result is subject to considerable random fluctuation. 

The simulation with many more insureds would give a credibility of 113. (This can be 

derived using methods taught on the CAS, Part 48 Exam, which were touched on by 

Gary Dean.) 

The credibility is just the slope of the straight line.. It is the weight given to the 

observation. 

Note the way that the fitted line passes through the point (12.5, 12.5) denoted by 

a plus. Average experience in the prior year yields an estimate of average experience in 

the subsequent year. 

Note that the line Y = X, with a slope of unity, would correspond to 100% 

credibility, while the line Y = 12.5 with a slope of zero, would correspond to zero 

credibility. In general, the slope and the credibility will be between zero and one. 

These general features displayed in Exhibit 2, will carry over to subsequent 

exhibits. The least squares line will slope upwards and pass through the point denoting 

average experience in the prior and subsequent period. The slope will be (approximately) 

equal to the credibility. 

The next graph, Exhibit 3, is similar to Exhibit 2 but shows fhret: years of prior 

experience rather than one. Note that the X-axis is now the m claim frequency 

observed over three years. We expect three years of data to contain more useful 

information and thus be given more weight than would one year. In fact, when we fit a 

straight line we see a larger slope of about 60% (actually 56%) corresponding to a 
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credibility of 60%. As Gary Dean noted, one way to increase the credibility of data is to 

increase the volume of data. 

In the case of Exhibits 2 and 3, the credibility is equal to N/(N + K) where N = # of 

years of data and K = 2. As mentioned by Gary Dean, this formula is used quite often, 

with the “Buhlmann Credibility Constant” K dependent on the statistical properties of the 

particular situation. Note that for Exhibit 2, Z = & = 5, while in Exhibit 3, 

z= & = 60%. (In the next set of graphs, K will equal .22.) 

The next graph, Exhibit 4, shows 100 risks divided this time into Excellent Risks 

and Ugly Risks. The Excellent Risks are shown by asterisks and the Ugly Risks by 

wedges. The mean frequencies are 5 and 20 rather than 10 and 15 as in the previous 

Exhibits. Therefore, the two groups are much more spread apart. Since there is more 

dispersion between risks, each risk’s data will be given more credibility than in the first 

graph. 

This can be seen in the next graph, Exhibit 5, where a straight line has been fit to 

these points. The line has a much larger slope than the first line, corresponding to higher 

credibility of about 62%. (Again the results of an experiment with only 100 drivers differs 

from the theoretical result due to random fluctuation.) So due to the larger variation in 

hypothetical means (holding everything else equal) in Exhibit 5 versus Exhibit 2, the 

credibility increased from 33% to 82%. The value of the individual risks information 

ed r&Qyq to the information contained in the grand mean. Conversely, the 

&&value of the information contained in the grand mean m. 
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The next graph, Exhibit 6. combines the four different types of insureds. This 

starts to approach the real world situations where risks’ expected claim frequencies are 

along a continuous spectrum, rather than being of unique types. (One could approach a 

continuous situation similar to the Gamma-Poisson frequency process.) We can see 

plenty of overlap between the four types, although since we labeled the insureds, we can 

discern the grouping of different types. 

The next graph, Exhibit 7, shows a line fit to all four types. There the slope of 72% 

is between the slopes of either 40% and 78% we got when dealing with just two groups. 

This makes sense since the variation of the hypothetical means is in between those two 

situations. 

The following graphs will all involve 125 Excellent and 125 Ugly Risks, but rather 

than dealing with just claim frequency will deal with claim seventy as well. By looking at 

dollars of loss rather than numbers of claims, as can be seen on the next graph, Exhibit 8, 

we introduce more random fluctuation. Therefore, the relative value of the observation is 

less compared to average; the credibility goes down. As mentioned by Gary Dean, one 

way to decrease the credibility of data is to ~ the variability of the data. 

As can be seen on the next graph, Exhibit 9, the slope of the ftied line is 51.5%. 

The theoretical credibility is 53% compared to 82% for the corresponding claim frequency 

situation. The greater random fluctuation, which is quantified by the larger “process 

variance” has decreased the credibility assigned to the observations. 

In practical applications, one often limits the size of claims entering into Experience 

rating. As Gary Dean mentioned, one way to decrease the variability of the data is to cap 

losses. The final graph, Exhibit 10, shows the results of capping each claim at $25,000. 
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(This capping can be either just for the purposes of experience rating or could involve an 

actual policy limit.) The fitted line between prior limited losses and subsequent limited 

losses is 71.4%. The theoretical credibility of 70% when using limited losses compares to 

53% for total losses. Capping the losses has reduced the random fluctuations, i.e., has 

reduced the process variance, thereby increasing the credibility assigned to the 

experience. (Basic limit losses are less volatile than total limits losses.) (For more on 

how to analyze Experience Rating Plans, see for example, “An Analysis of Experience 

Rating” by Glenn Meyers in PCAS 1985 and my discussion in PCAS 1987.) 

So far my talk has illustrated the concept of using credibility for individual risk 

rating. As Gary Dean mentioned, credibility is also used in classification rating, reserving, 

trending, and other areas. Whenever an actuary wishes to make an estimate, credibility 

can be useful to overcome the problem of limited data. 

Let X be the quantity we wish to estimate. For example, X might be the expected 

losses for a Workers’ Compensation class relative to the statewide. i.e., X is the class 

relativity. In my previous example, X was a risk’s future expected experience relative to 

average. 

As shown in Exhibit II, in the “Basic Formula” we weight together two estimates of 

the quantity X. In that case we usually write: 

x = z Y, + (1 - Z) Y, 

where 2 is called the credibility and 1 - i! is called the complement of credibility. In the 

experience rating example, Y, was the risk’s observed experience while Y2 was the 

overall average experience. 
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As listed on Exhibit 12, the estimators Yi can have many sources. (This subject is 

discussed in more detail in Joseph Boor’s paper “The Complement of Credibility” in the 

Fall 1995 CAS Forum.) 

For example: 

1. The recent observation(s) of X. 

2. The recent observation(s) of the same quantity as X, but for a superset. 

3. The recent observation(s) of a similar quantity to X; there may be an 

adjustment necessary. 

4. Past estimates(s) of X. There may be an adjustment for the intervening 

period of time. 

5. The result of a model. 

6. The result of judgment. 

Exhibit 13 shows those rules I think will aid you in using credibility for m 

applications. 

Rule 

Spend a lot of time and effort deciding on or choosing the Yr. Each Yr should be a 

reasonable estimate of X. 

So for example, if trying to estimate a medical claim cost trend it may not make 

much sense to assign the complement of credibility to an estimate based on the general 

overall rate of inflation. It might make sense to look at some other measure of medical 

inflation rather than a measure of general inflation. 

Rule 

Spend a lot of time and effort computing, collecting data on, or estimating each Yr. 
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If you are going to include a value in your weighted average, it makes sense to try 

to carefully quantify that value. 

Rule 

The procedure is generally forgiving of small “errors” in the weights. Therefore, do 

not worry overly much about getting the weights exactly right. 

In our experience rating example, you can confirm that for most risks, small 

changes in the credibility do not result in major changes in the estimate of their future 

experience. 

This is discussed in my paper “An Actuatial Note on Credibility Pammeters” in 

PCAS 1966. Exhibit 14 illustrates the effect of changing K, the Buhlmann credibility 

parameter, on the credibility. As can be seen, changes in K of less than a factor of 2 

would result in relatively small changes in credibility. In turn, these small changes in 

credibility usually result in small changes in estimates of the quantities of interest. 

Rule 

The concept of credibility is a r&t& concept. A relative weight can only be 

assigned to any single estimator, if you know what all the other estimators are. 

For example, assume you have two estimators each of which has been assigned 

“only” 50% credibility. This merely indicates that the two estimators are equally good or 

equally bad, not whether they are good or bad in some absolute sense. 

Rule 

The less random variation in an estimate, the more weight it should be given. In 

other words, the more useful information and the less noise, the more the weight. We 
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saw that limited losses were given more weight than unlimited losses, since the limited 

losses had less random variation. 

Rule 

The more closely related to the desired quantity, the more weight an estimator 

should receive. 

For example, observations more ,distant in time usually deserve less weight. A 

given quantity of data from the same state would probably receive more weight than data 

from outside the state. 

Ruu!L 

Cap the changes in relativities that result from the use of credibility. 

A properly chosen cap may not only add stability, but may even make the 

methodology more accurate by eliminating extremes, 

An example of a practical use of credibility involves revising the definitions of 

automobile insurance territories in Massachusetts. Each town’s relative loss potential is 

determined based on four years of data and a relatively complicated credibility 

methodology. For frequency, the complement of credibility is given to a road density 

model. For seventy, the complement of credibility is given to a combination of the county 

average severii and the state average severity. Then towns with similar estimated loss 

potential are grouped together. Here we will ignore the details of the procedure which are 

explained in Robert Conger’s paper, “The Construction of Automobile Rating Temloties in 

Massachusefts” in PCAS 1987. and discuss one aspect of the results of the reviews 

conducted over the last decade. 
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It has been demonstrated that use of this credibility technique produces “better” 

predictions on average. However, credibility is a linear process, and thus the extreme 

cases may not be dealt with as well as they might. 

For example, Exhibit 15 shows the results of applying the same methodology 

consistently over time to two small towns, each with somewhere around 5,000 exposures 

per year. 

1984 1986 
Review Review 

1988 
Review 

1989 
Review 

1991 
Review 

1993 
Review 

1995 
Review 

Acushnet 1 5 1 6 1 6 1 6 I 7 I 8 I 8 11 

6 2 1 2 2 2 
I 

The results for the first town, Acushnet, are typical. The relative loss potential 

varies somewhat from review to review, with a change in indicated territory of plus or 

minus one from time to time. In this particular case there is an upward drift over time 

relative to the statewide average. 

The results for the second town, Brewster, are not typical. In fact, Brewster was 

chosen as the most extreme case of fluctuating experience over the period of time from 
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the 1984 review to the 1989 review. As you can see in Exhibit 16, the estimated relative 

loss potential swung up and then down. This in turn resulted in large changes in the 

indicated territories. This occurred in spite of relying on four years of data, so that the 

data periods used in the reviews overlap. This occurred in spite of the use of credibility, 

which ameliorated the effect of the large fluctuations in the experience of this town. 

Such large swings are unlikely. However, when dealing with 350 towns, 

something that only has a .3% chance of happening per town, on average occurs for one 

town. 

This problem is dealt with by capping territory movements. The actual cap chosen 

was to restrict movements in any one revision to at most one territory either up or down. 

This is an example of the third rule I discussed earlier. 

Another example of a practical use of credibility, is the Workers’ Compensation 

Experience Rating Plan. This is an individual risk rating plan conceptually similar to my 

first set of graphs involving Excellent, Good, Bad, and Ugly risks. Around 1989 or 1990, 

the National Council on Compensation Insurance made a major revision to their Workers’ 

Compensation Experience Rating Plan. Among the changes was a major revision to the 

credibilities assigned to an individual insured’s loss experience relative to average. This 

was based on an extensive and detailed study by the NCCI actuaries. (See for example, 

William R. Gillam’s paper “Parametrizing the Workers’ Compensation Experience Rating 

Plan” in PCAS 1992 and my discussion in PCAS 1993.) Without getting into any details, 

Exhibit 17 shows you the overview. 

Primary Losses are the first layer of losses while Excess Losses are those above 

them. Z, is the credibility assigned to primary losses. For the prior plan, it is shown by 
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dots; for the revised plan by circles. Similarly, Zx is the credibility assigned to excess 

losses. For the prior plan, it is shown by solid squares; for the revised plan, it is shown by 

open squares. In each case, the credibility assigned to the primary losses is greater than 

that assigned to the excess losses, since excess layers are more volatile than basic limits 

losses. 

Note that the credibility varies by size of risk. The more expected losses, the more 

credibility is assigned to the insured’s own experience and the less that is assigned to the 

manual rate. (Note that the maximum credibility for the revised plan is less than 100%. 

The credibilities for the revised plan are based on a refinement of the Buhlmann 

Credibility formula discussed by Gary Dean.) 

Exhibit 18 shows the changes in credibilities. For smaller risks, the revised plan 

assigns higher credibilities than the prior plan. For larger risks, the revised plan assigns 

lower credibilities than the prior plan. Thus, large insureds with good experience get 

smaller credits under the revised plan, while large insureds with bad experience get 

smaller debits under the revised plan. The theoretical credibility work by the Actuaries at 

the National Council that led to this revision, had a major impact on thousands of 

businesses across the country. So “theoretical credibility” can have immense practical 

impact. 

A final example of a practical use of credibility, is the estimation of relative average 

claim costs for workers compensation classes. Exhibit 19 shows the calculation of the 

observed average claim costs for the classes in the Offrce and Clerical Industry Group for 

one year. we divide losses by the number of claims. Then for each class we calculate 

the j&&e average claim cost by dividing the classes’ average claim cost by that for the 
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industry group. Note that I have not limited the size of claims, but that I have excluded 

the large lifetime claims which would produce the most random fluctuation. 

So far we have not used credibility. However, since some classes have very few 

claims in a single year, I would not want to rely on the results of one year of observations. 

Exhibit 20 puts together the results of seven years of observations. We observe 

considerable random fluctuation in the relative claim costs. I take an average over the 

seven years for each class and then use credibility. 

For each class its observed relative claim cost is given credibility equal to the 

square root of its number of claims divided by 2,500. A class with 2,500 or more claims 

over 7 years is assigned full credibility. The Complement of credibility is assigned to 

unity, an average claim cost equal to the overall average for the Industry Group. Applying 

the Basic Formula on Exhibit 11 to this case the estimated relative average claim cost is: 

Z (observed average claim cost) + ( 1 - Z)(l) 

as shown in Column 12 of Exhibit 20. 

Exhibit 21 graphs the Credibility in this case. Exhibit 22 compares the credibility 

from the use of the square root formula to that using Z = N / ( N + K) with K = 350 claims. 

The credibilities are similar. 

I have tried to illustrate a few of the many applications of credibility. I’ve given a 

number of general rules which you should find useful in your own work with credibility. 

The theory behind the use of credibility can be complex. However, the use of 

credibility itself is set up precisely so that it can be understood by a layman. While 

ratemakers may differ in their knowledge of credibility theory, all ratemakers should be 

completely familiar with credibility practice. 
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where 

Exhibit I I 

“BASIC FORMULA” 

X= ZY, + (1 -Z)Y2 

X is the quantity to be estimated 

Y, and Y2 are estimators of X 

Z is credibility 
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Exhibit 12 

The estimators Vi can have many sources. For 
example: 

1. 

2. 

The recent observation(s) of X. 

The recent observation(s) of the same 
quantity as X, but for a superset. 

3. The recent observation(s) of a similar 
quantity to X; there may be an adjustment 
necessary. 

4. 

5. 

Past estimate(s) of X. There may be an 
adjustment for the intervening period of time. 

The result of a model. 

6. The result of judgement. 

25554 
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Exhibit 13 

Rule 1A: 

Spend a lot of time and effort deciding on or choosing the Yi. 

Each Y, should be a reasonable estimate of X. 

Rule 76: 

Spend a lot of time and effort computing, collecting data on, or 

estimating each Y,. 

Rule i&l: 

The procedure is generally forgiving of small “errors” in the 

weights. Therefore, do not worry overly much about getting the 

weights exactly right. 

Rule 28: 

The concept of credibility is a relative concept. A relative 

weight can only be assigned to any single estimator, if you know what 

all the other estimators are. 

Rule ZC: 

The less random variation in an estimate, the more weight it 

should be given. In other words, the more useful information and the 

less noise, the more the welght. 
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Exhibit 13 

Rule 20: 

The more closely related to the desired quantity, the more 

weight an estimator should receive. 

Rule 3: 

Cap the changes in relativities that result from the use of 

credibility. 
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Credibility = N / (N+K), Various Values of K 
_----..------_-.--__.-~----....~~~~~.~.~~.~~~.~.~~..~.....~~~~~~~~~--...~~..~. 
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Exhlbitl5 

Massachusetts Private Passenger Automobile 

I ; ,,,,, a:,.,::, L I ;;::,I: i -,:, ,.; .i , ~~lndli,,t,d::T~i~i~,~~~i~~~~~~~~~~~~.~, . 9 ?;:::‘.~ @; 1 :.,’ ‘;;: 

1984 1988 1988 1989 1991 1993 1995 
Review Review Review Review Review Review Review 

Acushnet 5 6 6 6 7 8 8 

Brewster 3 6 2 1 2 2 2 

2555-5 
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Estimated Loss Potential Relative to Statewide Average 
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Primary and Excess Credibilities Exhibit 17 
NCCI Revised vs. Prior Workers’ Compensation Experience Rating Plans 

100 _ ..----____.....-__._-....--.--.......... _ . ..___._.... _.._.__ 

. . _ _ _ _ . . . 
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For g =2 (State Reference Point of $500,000) and Self-Rating Point.of $1 million. 
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Primary and Excess Credibilities Exhibit 18 
NCCI Revised vs. Prior Workers’ Compensation Experience Rating Plan 
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Exhibit 19 

MASSACHUSETTS WORKERS’ COMPENSATION 

Relative Average Claim Costs 
Industry Group: Office 8 Clerical 

Composite Policy Year 85188 @2nd Report 

Phraseology 

(1) 

class 

(2) (3) (4) (5) 
= W(3) = (4)W4) 

Losses Number of Average Relative Average 
(Indemnity+MedicalJ Claims Claim Cost Claim Cost 

Pholcgrspher-All Emp-Clerkal.Ssles-JI Dr 
Radio or IV &ofxtcest-All Emp.Cler-(L Dr 
Engineer or Architect-Consuning 
Salesperson.Colledor.Messenger-OutsMe 
Auto Sales or secvica Agcj-Salesperson 
Mailing or Addressing Co-6 Clerical 
Audiior,Aoxuntant.EtGTraveling 
Clerical Cttim Employees NOC 
Attnmey-All EmpCkrtcul.Messenger a Or 
Physician-a Clerical 
HospitsCProfessional Employees 
SchooCProfessional Emp a Clerkal 
TelephonelTelegraph Co-Ctike Emp (L Cl 
Thea&Pbyers.Entertsinem,Musidans 

4361 
7610 
a601 
a742 
a748 
a600 
a803 
am0 
a820 
8832 
a833 
8868 

231,122 33 7.004 0.660 
702.919 42 16,736 1.625 

1.35a.461 134 10.123 0.963 
a.77t.00a 703 12.477 1.211 
1.552666 73 21,269 2.065 

245,229 38 6,453 0.626 
i 84,289 43 4.286 0.416 

24.323.122 2.404 lo.118 0.982 
741.565 40 18,539 I .a00 

1.444953 136 10.625 1.031 
11.766.162 1.199 9.a0a 0.952 
5.263573 634 6.302 0.606 

146.908 14 10,493 1.019 
131.147 26 5.044 0.496 

Tots1 56.855.084 5.519 10,302 

(2).(3): Losses and daims are as reported under the Unit Statistical Plan, but exduding any Falal. Permanent Total. 
or Medical Only Ctslms. (Losses an? paid plus case reserves and ara neither limited nbr adjusted.) 
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MASSACHUSETTS WORKERS COMPENSATION 
Estimated Relattve Average Claim Cost 

Industry Group: Office 8 Clerical 

Exhibit 20 

(1) (2) 

ays6 
Class Relative 
COd0 ACC 

4361 0.680 
7610 1 .a25 
a601 0.9a3 
a742 1.211 
a748 2.065 
a800 0.828 
a803 0.418 
8810 0.982 
8820 1.800 
a832 1.031 
a833 0.952 
8888 0.808 
8901 1.019 
9156 0.490 

(3) 

a6ia7 a7/8a wa9 
Relative Relatie Relative 

ACC ACC ACC 

0.920 0.640 0.708 
1.351 0.839 0.934 
1.440 1.169 1.069 
1.161 1.031 1.221 
1.747 2.151 1 .ea7 
0.725 1.025 0.830 
1.124 0.472 1.693 
1.021 l&l4 1.040 
1.307 1.630 1 a39 
1.233 1.536 I.176 
0.773 0.814 0.792 
0.905 0.828 0.675 
0.556 1.128 1.068 
0.668 1.005 1.066 

(4) (5) (6) 

ACC 

I.087 0.428 1 .oo2 
1.127 0.969 0.858 
1.026 0.019 0.015 
I ,028 1.017 1.444 
2.130 1.626 1.215 
0.883 1.365 0.721 
0.830 1.109 2.268 
1.066 1.113 1.005 
1.236 1.216 1.540 
1.051 1.037 I.096 
0.863 0.884 0.774 
0.7M 0.724 0.711 
0.788 0.567 0.386 
0.701 0.604 I ,281 

0 

Ml 
Relative 

ACC 

(8 

ACC 

(9) 

Relative 
ACC 

Number Estimated 
Of Relative 

Claims Credibility ACC 

0.785 323 0.359 0.923 
1.059 364 0.382 1.023 
1.100 939 0.613 1.061 
1.143 5.828 l.oM) 1.143 
I .a95 452 0.425 1.380 
0.889 325 0.361 0.060 
1.029 laa 0.274 I .ooa 
1 .o40 17.195 l.c00 1.040 
1.450 426 0.413 1.186 
1.150 1.478 0.769 1.115 
0.837 6.819 l.OOO 0.837 
o.T14 5.211 l.OOO 0.774 
0.817 173 0.263 0.952 
0.803 170 0.261 0.949 

(10) (11) (12) 
= l+(l l)X[(9)-1) 

(Z)-(a): Calwlated as per Exhibit 19. 
(9): Seven Years of relative average daim costs we combined by taking a weighted average using claim counts as weights. 

(10): Tots1 of Seven Years of claim counts. 
(11): Credibility = square root of (7-yrs-daim-count by dass I2.500) limited to unily. 
(12): Relative Average Claim Costs am credibility weighted with unity. 
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“Classical Credibility”, with Full Credibility Assigned to 2500 Claims Exhibit 
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Credibility, Comparing Two Different Formulas Exhibit 22 
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Errata and Additional Material Related to Errata and Additional Material Related to 
“Accounting for Risk Margins “ “Accounting for Risk Margins “ 

by Stephen W. Philbrick, FCAS by Stephen W. Philbrick, FCAS 

Originally published in the CAS Forum, Spring 1994 Edition, Originally published in the CAS Forum, Spring 1994 Edition, 
Including Selected Papers from the Including Selected Papers from the 

1994 Variability in Reserves Prize Program 1994 Variability in Reserves Prize Program 

105 



TO CAS MEMBERS, 

In the Spring 1994 edition of the CAS Forum, is the paper “Accounting for Risk Margins”. 

That paper has been read by a number of people who have identified a few areas where 

formulas or numbers are either in error or potentially misleading. While several people 

brought this to my attention, and I am grateful to each for identifying these items, I would 

particularly like to thank Andrew Rippert who brought most of these items to my attention. 

The following four pages summarize the appropriate corrections. On the first three pages, I 

have explained in narrative form most of the suggested changes. In particular this narrative 

contains the intellectual justification for an alternative formula for NRM, that may be more 

intuitive to some. 

One the last page, I have provided a quick summary which can be used as a reference, or 

used to make corrections to the original text. 

My apologies to any who were misled by any of the errors, and my thanks again to those 

that took the time to bring these issues to my attention. 

Stephen W. Philbrick 
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Errata and Additional Material related to Accounting for Risk Margins, 
. . Stephen W. Phipty Fos 

On page 26 and in footnote 12 on page 27, there is a reference to the coefficient of 
variation of the assumed aggregate distribution. The CV value used to create the example 
is shown as ,128. which represents the actual value rounded to three decimal places. 
Anyone attempting to reproduce the calculations may prefer to use the value carried out 
to more decimal places. The assumed value of the CV is .12848, to five decimal places. 
(I created the portfolio from a number of individual risks, each of which had “round” 
values for the mean and CV. However, the individual risk detail was not relevant to the 
rest of the paper. so I omitted the details of the calculation of the portfolio parameters.) 

Similarly. on page 36 (and subsequent calculations) the factor used to calculate 
the total asset need is shown to three decimal places as I .233. This factor, carried out to 
six decimal places. is I .233475. This factor is not shown explicitly on page 27, but is 
used to calculate the value of $359.42. 

On page 27. the footnote contains two formulas. The first is stated as: 

c(z - A)dF =.003 

This formula is correct under the assumption that the distribution has been normalized 
such that the expected losses are equal to 1 .O. A more general formula is obtained by 
multiplying the right side of the equation by the mean losses. Alternatively, the mean loss 
amount could be placed in the denominator of the left side. Thus, we solve for A such 

that: 

or: 

c(z-A)dF=.003$zdF 

. r(z- A)df 
=.003 

lam 
zdF 

The second formula contains an alternative representation. Unfortunately, the limits of 
integration were shown incorrectly. The limits of integration should be zero to A. In 
addition. to make the formula general rather than normalized. multiply the right side by 
the mean: 

1; zdF + A[1 - F(A)] =.997 j; zdF 

On page 37. the formula shown as: NRh4t = (ROR - i)c BRMt 
(1 +ROR)’ 
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Should be shown as: NRMI = (ROR - i)t 
BRMj 

j=l (I + ROR)“’ 

This formula is the easiest one to use in practice. However, an alternative formulation is 
easier to understand conceptually. This formula is written as: 

NRMI = (ROR - i)2 x 
j=l (1 + i)j+’ 

This formula can best be understood by thinking about the process of establishing an 
insurance company to take on this specific risk. The insurance company will need an 
amount over and above the mean(discounted) losses to account for the possibility that 
actual losses exceed the expected. The amount in addition to the mean losses will be 
contributed by both the investor and the insured, such that the investor can earn a fair rate 
of return on the investment. 

Assuming that the insured will pay the mean losses. we now examine how the amount 
over and abo\fe the mean losses should be apportioned between the two parties. The 
investor will contribute an initial amount of surplus, SF&l,, into the company at 
inception. However. our losses are not fully extinguished by the end of the first year. so 
our investor is committed to leaving surplus in the company in subsequent years. 

The surplus commitment is represented by the string of surplus values, SRMj. (Ignore the 
denominator t’or the present.) While the investors surplus commitment is in the future for 
all years other than SRM,,, the loss amounts used in the calculation of the SRMj have 
been calculated by discounting future losses back to time zero, so the implied surplus 
value is the present value of the future surplus commitment. The investor wishes to earn a 
return of ROR on the investment. so we must pay the investor a total of ROR times the 
present value of the surplus commitment. However. the surplus placed in the company’ 
will earn investment income at rate i. so we can reduce the amount required to be paid by 
the policyholder by this amount, hence the (ROR-i) factor. Finally, the amount paid by 
the policyholder (NRM,) will be paid into the company at time zero. and this amount will 
earn investment income over its life. Some of the narrow risk margin will be returned to 
the investor at each year end, so the calculation of the investment income earned over the 
life of the policy, is not straightforward. However. it works out that the adjustment for 
investment income earned by NRMecan be handled by dividing the SRMj values by 
(I+i)’ +I 

It is tempting to presume that this factor in the denominator is the factor to discount the 
surplus requirements back to time zero. in which case the exponent seems wrong. 
However, each SRM, value is ultimately derived from 4, which represents unpaid losses 
discounted back to time zero. Instead. this factor accounts for the investment income 
earned on the narrow risk margin over its lifetime. 
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On page 38. the following four quantities are shown: 

BRMe = ,233 

L,=%l3l.O0 

NRMo=$16.14 

SRMo = X114.87 

The last two are correct. but the first two quantities should have been shown as: 

Lo = $561 .O’) 

BRMo=23;sL0=S131.00 

On page 44, in the section labeled “Balance Sheet (Year X+1)“, there are 
references to BRM,, NRM,, and SF&It. These should be references to BRMs, NRM2, and 
SRM2, respectively. 

On page 79, the statement is made that P = E(z) + R. In the middle of the page it 
says “On average (or over the long run), the company will pay E(z), leaving profits of R 
on capital of C. Thus: 

R 
- = return on capital ” 
C 

This statement is correct if we ignore investment income. The inclusion of 
investment income does not affect E(z), because we have defined our loss variable to be 
on a discounted basis. However, part of the return to the investor arises from investment 
income earned on surplus, as well as investment income earned on the Narrow Risk 
Margin. Denote these as ii, and ii a, respectively. Consequently, it would be more 
accurate to state that “On average (or over the long run), the company will pay E(z), 
leaving a profit consisting of R plus iis plus ii g. Thus: 

R+ii, +ii, 

C 
= return on capital” 
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Summary of Changes and Additions 

.128 .12848 
_..- -_- 

I 
Assumption, 
page 27 

I 2% 

calculate the total 
asset need, page 36 j 1.233 1.233475 
(and other pages) I , 

_-- 1 
First Expected ) 
Deficit formula in j 
Footnote 12 

[ f;(z - A)dF =.003 &= zdF 
/ I 

Deficit formula in 1 j;zdF + A[1 -F(A)] =,997 jr zdF 

; -_ 
Formula on 

j NRM, =(ROR-i)z BRM’ NRMI = (ROR - i)T BRMj page 3 7 
(l+ROR)’ / j=, (1 + ROR)“’ 

I 
I 
/ 

formula to the one ( 
I 
/ NRlv& = (ROR - i)pE 

jz, (1 + i)“’ 
I 

i -_ 
Quantities on BRM, = ,233 Lo = $56 1.09 
page 38 I 

L,=$l31.00 I BRMo=.233xL,=$131.00 

I .-- 
1 Variables on : BRM, / BM2 

( 
R+ii,+ii, _ 

c ““l”,t, on capital 



Loss Estimates Using S-Curves: 
Environmental and Mass Tort Liabilities 

by Bruce E. Ollodart, FCAS 
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Loss Estimates Using S-Curves 

Enoironmental and Mass Tort Liabilities 

Abstract 

This paper discusses the application of S-Curve modeling for estimating certain 

environmental and mass tort liabilities. Emphasis is placed on pollution and asbestos 

liabilities, which are a significant component of the total environmental and mass tort 

liabilities for many insurance companies and manufacturers. The general concept of S 

Curve modeling is discussed, followed by a technical discussion explaining its 

application to asbestos and pollution liabilities. Included are comments on the 

advantages and disadvantages of the technique. 
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Loss Estimates Using S-Curves 

Environmental and Mass Tort Ltabilitfes 

Introduction 

Manufacturers, their insurers and reinsurers, as well as many other commercial 

enterprises have environmental and mass tort liabilities that must be estimated and 

managed. Such liabilities arise from many sources including environmental pollution, 

asbestos, medical implants, carcinogenic toxins, lead, radiation and other toxic 

exposures. Typically, these liabilities can be characterized by a historical period of 

exposure to a substance or process that produces latent health problems or property 

conditions that result in legal liabilities for bodily injury and/or property damage. The 

latency period can be many years, adding to the difficulty of estimating the exposure. 

For example, a chemical manufacturer legally dumped toxic wastes from 1940 to 1975 

and then became legally liable for the property damage caused by these wastes as a 

result of 1980 superfund legislation. Similarly, a medical device manufacturer made 

artificial mandibular joints that were implanted in thousands of patients and later 

stopped sale of the devices once it was discovered they produced serious side affects for 

which the manufacturer was held liable. 

Environmental and mass tort liabilities typically arise suddenly as a result of long term 

exposure to a given agent or process (for example, asbestos or dumping industrial 

waste). Problems with data, including lack of historical precedents, poorly defined 

exposure periods, and improper data capture are common difficulties of estimating the 

value of these liabilities. Often, only calendar year data is available. Pollution claims, 

for example, have been attributed to multiple accident or policy periods by court 

decisions. Estimating the ultimate liability for these claims is often not feasible using 

traditional actuarial techniques, and highly sophisticated procedures involving a large 

number of claim by claim reviews are expensive and so time consuming that once 

performed, cannot be easily updated, but can quickly become outdated due to 

legislative and judicial changes. 
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Loss Estimates Using S-Curves 

Envfromnental and Mass Tort Liabilities 

The S-Curve approach, because it assumes a general pattern for loss emergence, can 

overcome many of these problems, is easy to apply, and can be updated readily as new 

information becomes available. As demonstrated in this paper, the Xurve is a 

projection technique that has many of the characteristics of traditional loss development 

techniques. 

S-Curves have been proposed by other actuaries as a method for evaluating pollution 

liabilities. However, technical difficulties with the sensitivity of the underlying 

assumptions halted most serious pursuits in this area. This paper provides techniques 

for overcoming these problems and increasing the objectivity, flexibiliv, and usefulness 

of the S-Curve approach for actuarial analysis. 

Background 

S-Curves can lx used to analyze cumulative distributions for paid losses, reported 

losses, and claim counts. For purposes of this discussion, S-Curves will represent 

cumulative calendar year amounts for paid losses. The techniques and assumptions 

used work equally well for other cumulative forms of data. S-Curves have the 

following general shape: 
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Loss Estimates Using S-Curves 

Environmental andMass Tort Liabflfties 

The x-axis represents time, while the y-axis represents the cumulative amount paid As 

a cumulative dtsttibution, the first half of the curve indicates an accelerating rate of 

payment up to the inflection point of the curve, then the incremental payments begin to 

taper off and eventually stop. For a given S-Curve equation, the inflection point will be 

the point at which the first derivative reaches its maximum value and the second 

derivative changes sign. Depending on the type of exposures modeled, the 

representative !S-Cwe can be very steep in the center or almost flat. The particular S 

Curve that best fits a company’s historical data will depend on several factors including 

the length of exposure, the beginning pertod of exposure, the claim Mtlement practices 

of the company, the time since claims were first reported and the legal process that 

affects policy coverage. 

!S-Curves CM effectively represent the pattern of emergence for environmental and mass 

tort clatms. A typical scenario involves detection of a health problem and/or a property 

condition, discovery of the agent or process that caused the situation, a period of 

statutory and legal developments that establish legal liability regarding the agent or 

process, an exodus from the production of the agent or process, a period in which 

policyholders and their insurers find themselves reacting to mounting claims activity 

related to the agent or process, a change in insurer coverage (usually eliminating future 

exposure to these claims), a period of increasing reserves and loss payments, then a 

long period of run-off of these claims. In terms of cumulative calendar year paid loss 

activity, it is easy to picture the resulting S shaped curve such scenarios produce. 

S-Curve Functions 

Previously, it has been suggested that the arc-tangent curve, because of its S shape and 

finite tail, be used for modeling purposes. Our research has determined that the arc- 

tangent is not flexMe enough for environmental and mass tort liability modeling 
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Loss Estimates Using S-Curves 

Environmental and Mass Tort Liabilities 

purposes. An alternative family of Xurves based on power and gamma flUlCtiOllS 

works much batter and provides much more flexibility in curve selection. In this paper 

we deal primarily with the power functions, as they are easier to model. An example of 

a gamma function application is included for reference. 

The general form of the power function is: 

The dependent variable y represents the cumulative paid losses, s is a scalar coefficient 

greater than zero; x is the year of projection (or year corresponding to the historical 

data), b represents the time at which the curve’s inflection point occurs, p is an odd 

power between zero and one, and c is a constant representing the projected cumulative 

paid loss at time b. 

The power p is typically chosen from among the family of fractional powers l/3,1/5, 

3/5,1/7,3/7,5/7,1/g, etc. Testing of the various powers indicates that a few of them 

can adequately represent most of the S-Curves requtred for analyztng envtronmental 

and mass tort data. It is not necessary to fit all possible values of p. In our models, we 

fit approximately ten different values of p and select the best fits from among them. 

When x is less than b, the odd power returns a negative value. When x equals b, the 

value of y is equal to c, which occurs at the inflection point. When x is greater than b, 

which occurs after the inflection point, the difference between x and b is positive. These 

relationships give the curve its S shape. 

The s parameter determines the change in height of the curve for each time increment, 

and p determines the shape of the curve. 

A positive c parameter is a constant that brings the curve above the x-axis and is 

selected such that y is equal to zero at the beginning period of claims emergence. For 
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Loss Estimates Using S-Curves 

Enuironmental and Mass Tort Lfabtlities 

example, if c equals zero, then b, the inflection point, would occur where y equals zero 

(that is, the x-axis would cut the curve at b). 

The power curve does not converge for large values of x. Therefore, a matcimum 

number of years of run-off must be selected. Otherwise, the model will produce an 

infinite ultimate loss. We select our maximum number of run-off years at a point when 

incremental changes in the Curve become small, typically after about 30 years for 

pollution and 20 years for asbestos, a runoff period that we feel is reasonable based on 

other factors. 

Power curves are symmetrical around the intlection point, a property that is useful 

when the inflection point is not observable in the data. A gamma function can be 

derived that is asymmehical around the inflection point providing added flexibility to 

the curve fitting process. 

Several actuaries have suggested fitting curves to the incremental paid data. The first 

derivative of the power curve, dy/dx, is given by the following equation and represents 

the shape of the curve corresponding to the calendar year incremental paid losses: 

Ppdx-b) F-1 

This is a bell shaped curve that has an undefined value at its inflection point (where x 

equals b) when p is less than one. This implies that curve fitting using the incremental 

data cannot be achieved for the power curve for values of p less than one, as no value of 

b will minimim the squared error for the fit in these cases. Curve fits using other types 

of functions (gamma, lognormal) may work on incremental data. 
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Loss Estimates Using S-Curves 

Environtnental and Mass Tort Liabilities 

Fitting S-Curves 

To fit an S-Curve, numerical methods are used in our model. By minimMng the sum of 

the squared errors between the fitted curve and the historical data, a numerical 

algorithm is used to determine the best fitting parameters s, b, and c. As noted above, 

approximately ten values of p are selected and separate fits are made for each p value. 

The fit is performed on the cumulative data. Depending on the relationship between 

the data and the fitted !3-Curve, this approach may give more weight to the squared 

error in the most recent data poink as these points will contain the cumulative errors 

from all prior years. We believe this has a positive influence on the fit as it helps 

minimis error in the most crucial part of the curve (the most recent poink). That is, 

precedence is given to minhizhg the cumulative error over minimkng error for all 

points on the curve. 

The S-Curve, depending on the value of p, can be very sensitive to the selection of the b 

parameter. To make the selection of b less subjective, we constrain the numerical 

algorithm as follows: 

1. The year in which y first becomes positive is fixed based on the earliest date that the 

losses are first paid. This gives the curve a realistic starting point This point can be 

varied plus or minus a few years to improve the goodness of fit, but should be 

within a reasonable range of the known starting date. 

2. The value of b is constrained to be at least four years after the year in which 

payments are first made. This constraint keeps the algorithm from selecting b 

unreasonably close to the starting date, an outcome that may mintmke squared 

errors but is not reasonable for projection purposes. The four year period should be 

used as a guide, as varying the parameter value may provide unproved fit without 

sacrificing reasonability. 
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3. The parameters s and c must be positive. 

For a given value of p, the other parameters are selected, subject to the above 

co219traint9, such that the sum of the squared errors is minimized. 

Once a series of Curves have been fitted to the historical data, the best fits must be 

selected. Standard measures of goodness of fit do not work well with S-Curves because 

of their non-linearity. We developed several relative goodness of fit tests. These tests, 

along with graphical representations of the fit, help to determine which S-Curves 

provide the best fit to the data. Two of these tests are as follows: 

The variable yr indicates fitted values, yd indicates data values, and n is the number of 

data values in the fit. R, compares the squared error of the fitted values to the squared 

fitted values, with lower values indicating better relative fit Rr compares the squared 

error of the natural logarithms of the fitted values from the data to the squared error of 

the natural logarithms of the data from the average, with higher values indicating better 

relative fit A third alternative, based on the q statistic, is to use an absolute difference 

in the numerator of R, instead of a squared difference and drop the square in the 

denominator, with lower values indicating better relative fit 

In practice, we have experienced problems where two fits of the same data using the 

same value of p both nkknize the squared error. This may occur when the data does 

not fit a particular Scurve we& is extremely volatile, or is too immature. In such cases, 

there is enough “slack” in the shape of the curve to obtain more than one best fit. This 

is caused by some interdependence between the b and c parameters where, for certain 
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data sets, several combinations of b and c can result in minimimd squared error. Our 

numerical algorithm stops when it finds the first of these solutions. To address this 

limitation, we run our numerical algorithm twice. The first run determines an initial set 

of parameters. The second run uses the output of the first run for seed values. In 

almost all cases, the second fit is either identical to the first fit or is improved and 

subsequent fittings do not yield unproved results. This approach essentially eliminates 

the “slacK’ problem. 

In the final selection process, actuarial judgment must be used to determine which fits 

best represent the data and are reasonable for the purpose(s) intended. We typically 

select the best two or three fits from our analysis to determine a range of ultimate 

values. Consideration is also given to the quality of the underlying data and its 

applicability for extrapolation into the future. 

Examples Using Insurance Industry Data 

Power Function 

To show how the SCurve model utilizing a power function performs using actual data, 

we have prepared examples based on insurance industry pollution and asbestos claim 

information. This data ia based on information from a select group of companies and 

does not represent an industry-wide composite. Exhibits 1 and 2 show these results for 

asbestos and pollution claims, respectively. The input data, the results of the numerical 

algorithm, best fit statistics, graphical representations of the fit, and resulting estimates 

of ultimate loss are shown on the exhibits. 

120 



Loss Estimates Using S-Curves 

Enviromnental and Mass Tort Lfabilities 

Observations regarding these examples in&de: 

1. The curve fits are still showing fairly large payouts at the end of our projection 

period. The length of the projection period could be lengthened, the curve forced to 

zero over a period near the end of the selected projection peiod, or the curve can be 

truncated as in our example. In certain cases, the p-t value of loss payments 

beyond our projection period will not be significant 

2. The asbestos and pollution paid losses through 1995 in the projection are 

approximately 60 and 40 percent of the projected ultimates, respectively. 

3. The fit statistics are based on 1981 to 1995 and 1984 to 1995 for asbestos and 

pollution, respectively. This period was selected for practical reasons to reflect 

differences in the emergence of asbestos and pollution and to emphasize goodness 

of fit over a certain period of years. It may bs more appropriate to test goodness of 

fit over the entire data set or a different portion of the data set depending on the 

application. 

There are cases where use of a gamma function may improve the fit or at least offer a 

good alternative to the power function. In practice, we found the power function to be 

reasonable in most cases. Cases that may be improved using a gamma function usually 

involve &mmetical Scurve shapes where the data is already fairly mature and an 

inflection point is clearly visible in the data. One form of the gamma function used was 
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where X is a scalar, a is the shape parameter, c is a constant, I is the initial year of 

payment, u is the projection year, and r represents the number of years from the first 

year of payment to the projection year plus one (e.g., if the initial year of payment is 

1980 and you are estimating the 1995 value, then I is 1980, o is 1995 and t = o - I + 1 is 

16). Both 1 and a must be greater than zero. Parameters a and I have roles in the 

gamma function that are comparable to the corresponding parameters p and s in the 

power function The c parameter is included to improve the fit in certain cases and is 

optional. The inflection point for this g-a function is given by (1+/I, as 

determined by setting the second derivative equal to zero and solving for 1. 

On Exhibit 3, we show a gamma function S-Curve fit to the asbestos data used in 

Exhibit 1. The parameter c produces a disjointed looking change in the fit near the 

beginning years but improves the overall fit for the latter years. The curve turns faster 

in the projection years than the power curve used in Exhiiit 1 and runs off fairly well 

during the truncated projection period The fit statistics are also comparable in quality 

to the power curve. 

Advantages and Disadvantages of the S-Curve Approach 

The following lists are based on practical application of the model as well as feedback 

we have received from other actuaries. The advantage or disadvantage of using this 

approach is dependent on the type of application involved. 

The advantages of the S-&rve approach include: 

1. Usesreadilyavailabledata 

2. Is a pure achmrial approach in the sense that it does not have to depend on claim 

department estimates 
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3. Comparable to a loss development approach as it performs aggregate loss 

projexztions rather than individual claim or policy projections 

4. Can be used with paid and reported data for both dollars and counts 

5. Is easy to update with more current information as the data matws 

6. Provides a basis for testing the sensitivity of key assumptions including judgment 

concerning future changes in judicial or legislative practices 

7. can be performed fairly quickly 

8. Appears to produce reasonable results for many environmental and mass tort 

liabilities 

9. Does not require analysis and testing of a large number of assumptions and 

variables 

The disadvantages of the S-Curve approach include: 

1. May be impossible to select best fitting curves with a reasonable range of outcomes 

2. Somedatasetswillbetoo’ unmatwe for valid application of the model 

3. Comparable to loss development methods applied to new lines of business - the 

ultimate pattern of runoff for the tail remains uncertain until the data becomes fairly 

mature 
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INTRODUCTION 

The CAS Committee on Management Data and Information has developed a paper 
entitled, “Guidance Regarding Management Data and Information”. The purpose of 
this paper is to provide guidelines to be used in designing and managing data systems in 
the following areas: collection of data, ensuring the quality of data, raternaking reserving, 
undewriting, marketing, claims, financial analysis and investments. 

The Committee is looking for comments 6om the membership to improve the paper as to 
its value as well as any suggestions to improve it. 

Respectively, 

CAS Committee on Management Data and Information 

Arthur R. Cadorine Chairperson 
Mark S. Allaben 
Randall E. BNbaker 
Richard N. Gibson 
Holmes M. Gwynn 
Larry A. Haemer 
Israel Krakowski 
Richard W. Nichols 
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Before deciding what data elements should be captured, the internal (underwriters, actuaries, 
accountants, etc.) and externai (NAIC, regulators, legislators, statistical agents, etc.) information 
needs must be determined, and data collection capabilities considered. Current data availabiity, its 
quality and the data coilection costs need also be considered. While each of the organizations have 
different requirements for how the data are displayed, the system used to coUect the data should be 
designed with each of the users’ needs in mind. 
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GUIDANCE REGARDING MANAGEMENT DATA AND INFORMATION 

The purpose of this paper is to provide guidelines to be used in designing and managing data 
systems in the following areas: collection of data, ensuring the quality of data, ratemakmg, 
reserving, underwriting, marketing, claims, financial analysis and investments. 

Data needs to be managed as a critical resource. Information needed to make business decisions 
is best when it is timely, accurate, easily obtainable and consistent with the same information 
produced in other reports. To control the costs of providing this information, data, as weU as 
systems, should not be redundant and it should be consistently detined and shareable. 

Actuaries should be making significant contributions in the design and management of systems for 
collecting data and reporting usdirl and accurate management information to serve as the basis for 
sound decision making. 

The statement consists of three parts: 

I. Data Collection 
II. Data Design 

. 

III. Management Information Considerations 

I: DATA COLLECTIOhI 

Data collection can be separated into two areas: Data Capture and Data Quality Control. Data 
Capture is concerned with the what, when and how of data to capture. Data Quality Control 
should ensure that the data being captured processed and reported is accurate, complete, and 
collected in a cost effective manner. 



Moat data is captured in code. ‘Ike should be an established code structure incorporating 
the considerations listed below. The actual use of the data and the cost to collect and store 
the data also need to be considered. Low redundancy of data, fast processing, flexible 
acoeas to data and low storage costs may be contlicting design considerations. 

1. Data requirements should be compatible and consistent to the extent possible, i.e.: 
monoline and muhiline data. 

2. Data elements should be defined to have only one meaning. 

3. Common data &rnents should be defined similarly, regardless of line, business or 
function supplied. 

4. FlexibUity should accommodate expansion of data elements to anticipate future needs. 

5. Codes should be constructed to meaningtIly represent information. 

6. Consideration should be given to how often the data will be updated. Will the tile be 
on-line or chsnged daily, weekly, monthly, quarterly, etc.? 

7. Where possible, codes which are established and understood in a wider context should 
beused. 

B. PATA OUALlTY CONTROL 

Data Qtr.&y Control should ensure that the data being captured, processed and reported is 
accurate, complete and collected in a cost e!Tective manner. Data Quality principles apply 
to the worktlows for getting data into the system, the internal system checks, and the 
worktlows for getting data out of the system. 

1. A data quality control function should be established and standards of data quality 
should be developed and monitored within and across operational areas. 

2. Critical processing points should be identified. Control procedures at these points 
should be developed and documented to assure that data which is transferred, translated 
or reproduced is complete and accurate, with,appropriate backup and audit trails. 

3. Edits should be hrstalled to check accuracy, validity and reasonableness. These edits 
should be perUormed as closely 89 possible to the data entry source, and any errors 
detected should be corrected as closely as possible to the point of discovery of the 
error. 
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4. Balancing or reconciliation procedures and standards should be established in the initial 
project description. Special reports and techniques should be developed to test data 
awuracy on a selected basis. 

5. The monitoring of data quality is an ongoing process. Reconciliation reports and edit 
error reports should be produced and examined regularly. 

6. Changes made to a data field or to processing, must be thoroughly tested in order to 
assure data integrity is maintained. It is important adequate time is allowed to achieve 
this objective. 

Data should be managed as a critical resource. To truly control cost, data, as well as systems, 
should not be redundant; it should be consistently derived, consistently defined and shareable. 
Numerous data elements can be captured, but they are of limited value unless the data is efficiently 
organized in a way to maximize the use and value of the information. Every information system 
should be designed with flexibiity to respond to different requests. The following concepts should 
be considered in the design of the data,base. 

The ideal repository of data collected is a single central location. Here, all the detail collected could 
be stored and accessible to all report systems. Thus updates, corrections, and controls could be 
maintamed at one location. Multiple locations of the same data elements require more stringent 
controls to guarantee that all data bases are updated uniformly. 

B. DETAILED DATA BAS.B 

The data base should contain all reported data elements to satisfy the needs of internal and external 
Users. 

C. &QADICw 

The existence and wide availability of a data dictionary will help assure consistency by the various 
users of a system. Definitions of data elements, as weU as lists of codes, should be available to and 
commonly understood by both the providers and end users of data 
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D. DATA BASE DESIGN / 

The design or organization of the data should address the following considerations: 

1. Low redundancy of data, fast processing, flexible access to data, and low storage 
costs may be conflicting design considerations. 

2. Run time, storage costs, volume restrictions or other processing constraints may 
necessitate the creation of multiple summarized or segmented data bases to fulfill 
different user needs. The smaller data base(s) enables report generation systems to 
run faster, since there are many less records to be accessed. A summarized subset of 
the central data base should incur lower storage cost. Summarized and/or segmented 
data sh’ould be updated automatically from the central source to avoid the potential 
control problems for updating multiple locations of the same data elements. 

E. NON STANDARD REOUESTS 

While many reports may be specified to extract information on a regular schedule, data bases 
should be flexible and organized to facilitate ad hoc report requests as well as direct user access to 
the central data base and/or segmented data bases. 

F. STORAGE 

The retention period of data in the data base depends on the number of years of data needed for 
meaningfitl analyses, legal and regulatory requirements. The form of storage depends on access 
requirements, such as immediate access or overnight access. 

III. MANAGEMENT INFORMATION CONSIDERATIONS 

How the data will be used has an effect on how the data files are managed. The basic use of the 
data must be well understood when designing file structure and access. Detail appropriate to the 
intended use of the data base should be stored. 

The following examples serve to illustrate the need to capture different data in different levels of 
detail for different purposes. It is not intended to be a complete list of all possible Management 
Information System considerations. In evaluating these needs, be sure to consider any 
requirements for evaluating reinsurance programs. 
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A. RATEMAKING 

There are several acceptable methods of capturing data for ratemaking purposes including calendar 
year, calendar/accident year, report year or policy year. The nature of the coverage being provided 
and data availability will determine which is most appropriate. There are three general types of 
data needed in any ratemaking process: 

1. Premium and exposure information which could be on a written or earned basis. 
Adjustments to premium, such as retro adjustments, experience, schedule or other 
modifications, should be collected as needed. Information should be organized to 
monitor changes in the mix of business, such as available by class, territory, policy limit 
and state within each line or subline of business. 

2. Loss and claim information should be collected the the same categories as premiums. In 
addition, historical loss development patterns of paid and incurred loss amounts, claim 
counts and loss adjustment expenses are needed to be available to properly estimate 
their ultimate values and current frequency and severity trends. Changes in the 
underlying loss distribution are analyzed by reviewing data segregated by size of claim 
and against different policy limits or deductible levels. 

3. Expense information should be available to determine the appropriate provisions for 
various categories of expenses including unallocated loss adjustment expenses, 
commissions, other acquisition expenses, taxes, licenses and fees, general administrative 
expenses and dividends. 

Insurance ratemaking takes place in the broad economic environment that affects every business. 
The ratemaker may supplement internal information with external economic data or industry-wide 
ratemaking data. 

B. RESERVING 

Reserves can be categorized as premium or loss reserves. Premium reserves include a variety of 
subcategories such as unearned premium, earned but not reported, audit, dividend, retro premium 
reserves, and contingent commission reserves. The techniques and data required to calculate 
premium reserves vary depending on the subcategory. For example, the unearned premium reserve 
calculation usually requires only the written premium amount, the appropriate policy effective and 
expiration dates, and the booking date. For other subcategories, calculations may involve the need 
for other premium exposure or loss information. 
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Information needed for the loss reserving finction should be sufficient to analyze the essential 
characteristics of the claim reporting and settlement process. Information is usually organized in a 
two dimensional matrix that reflects the historical claim process in some way. The correct 
matching of the matrix to the reserving task is critical to the effectiveness of the reserving function. 
Each loss reserving matrix is usually defined by: I) the characteristics of its dimensions, which are 
time related, 2) its data groupings, and 3) the statistics displayed. 

1. Dimensions 

One dimension is usually accident periods, report periods, or policy periods. In other 
words, losses are grouped according to the date of loss, the date of reporting or the policy 
effective date. 

The second dimension usually reflects development of maturity levels thereby showing a 
particular accident or report period’s history. 

2. Data Grouoinns 

Groupings can reflect line of business, class, limit, type of loss or geographical location. 
Data can be configured on a gross, direct, assumed, ceded, or net basis. The degree of 
refinement should reflect a balancing of the possibly conflicting goals of homogeneity and 
credibility. 

3. Statistics 

Typically, counts and dollar amounts are collected for reserve calculations. They may be 
displayed either cumulatively or incrementally. Some examples are: 

i. Counts - open/outstanding claims, closed claims with or without 

payment, reported claims, reopened claims. 

ii. Amounts-paid, outstanding or incurred loss and/or allocated loss 

adjustment expense. 

In addition, when evaluating reinsurance reserves, other data items may be usehI such as 
policy retention, layer limit, and codes indicating occurrence or aggregate coverage. 
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C. UNDERWRlTMG/MARKETRG 

Whether the underwriting and marketing functions are handled in one or many departments, their 
management information needs are similar. Information is needed 1) to monitor and reevaluate 
marketing objectives and underwriting policy, and 2) to monitor and appraise the performance of 
individual producers and underwriters. 

Areas that might be monitored include the following: 

1. Distribution of the current book of business, and how it has changed over time. Trends 
in premium and loss experience. 

2. Underwriting results (including expenses) by type of distribution system (agency vs. 
brokerage vs. direct mail), if applicable. 

3. Amounts of new business, non-renewed business, cancellations, endorsements, renewal 
changes and hit ratios. 

4. Use of experience modifications, dividends, schedule modifications, preferred rating 
programs, and other individual risk rating modifications to test for conformance to 
pricing guidelines. 

5. Changes in average premium and growth of gross premium. 

In each case, the reporting categories should include information on production source (agent, 
underwriter, branch), line of business, territory, coverage, and class. 

D. CLAIMS 

Management information required by the claims function generally falls into three areas: 1) claim 
count transactional data, 2) information on open claims, and 3) information on closed claims. The 
level of detail required ranges from data by individual claim adjuster to data by unit, branch, region, 
company, or national. Time periods covered can be weekly, monthly, quarterly, year-to-date, or 
the latest twelve months. Data generally should be available by type of claim, i.e., line of business, 
coverage, cause of loss, etc., with identitication of catastrophe losses and applicable reinsurance. 

1. Claim count information includes the number of claims opened, the number of claims closed 
with payment, the number of claims closed without payment, the number of claims 
reopened, and the number reclosed. Appropriate ratios between the various claim counts 
should be calculated. The average lag between initial reporting, establishment of a reserve, 
and final payment should be monitored. 
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2 Information on open claims can include the number of open claims, the number of pending 
law suits, the amount of reserves and average reserve on open claims by age since opened, 
the amount of reserves and average reserve on open claims by size of reserve, paid and 
reserved amounts for allocated loss adjustment expenses, and partial payments on pending 
claims. 

3. Information on closed claims can include average paid claim cost (with comparisons by unit 
within a branch or region or state), claims closed by size of loss, claims closed by length of 
time to close, analysis of salvage and subrogation recoveries, and analysis of paid allocated 
loss adjustment expenses (by type, by adjuster, by law firm, etc.). 

E. FINANCIAL ANALYsIs/lNvEsTMENTs 

Management information needed to support the financial analysis and investment function generally 
breaks down into two areas: cash flow and operating results. 

1. In cash flow analysis, the concern is to be able to meet current period obligations. Reports 
should be available to analyze current cash items such as net premiums collected, net 
investment income received, cash on hand and on deposit and the maturing assets. Payout 
of liabilities should be estimated, including expected loss and loss adjustment expenses, 
commissions, salaries, other expenses, stockholders and policyholders dividends, and 
interest payable. Besides displaying the above dollar amounts, management reports should 
provide analysis of trends in the various items to help maximize cash flow in the future. 

2. In order to develop and analyze operating results, management information is needed which 
summarizes all the financial activities of the company. Data is needed which will help the 
company maximize total return and grow surplus while maintaining an adequate cash flow 
to meet expected liabilities. The types of information needed should include the following: 

i. Mix of current investments and the related interest and dividend income, including 
bonds (amortized and cash value), preferred stocks, common stocks, real estate, 
capital gains, cash, etc. 

ii. 

.*. 111. 

Premium income by line of business. 

Loss and loss adjustment expense payments, by line of business projected by calendar 
year. 

iv. Stockholder and policyholder dividend requirements. 

V. Tax liabilities - Federal and State. 

vi. Expense requirements - commissions, salaries, overhead, etc. 
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F. FINANCIAL REPORTING 

Information is required to meet financial reporting obligations. The information normally includes 
direct and net calendar period premium, losses, expenses and investment income. The major 
obligations are: 

1. Statutory reporting 

2. Trade associations and bureaus 

3. Shareholder reporting 

4. Income tax reporting 
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WHITE PAPER ON DATA QUALITY 

The CAS Committee on Management Data and Information is 

pleased to present this White Paper on Data Quality. This paper 

presents a discussion of data quality standards applicable to 

actuaries and insurance data managers; expands on data quality 

issues faced by actuaries and insurance data managers; and, 

elaborates on various data quality tools and practices used in 

preparing actuarial analyses and work products. 

This paper is the result of a joint team of insurance 

professionals representing the Casualty Actuarial Society and the 

Insurance Data Management Association. The members of the 

project team are: 

Arthur R. Cadorine, Chairperson 

Mark S. Allaben 

Holmes M. Gwynn 

Richard W. Nichols 

Dr. Richard A. Marr 

Richard T. Schulz. 

The Committee is indebted to these individuals for the production 

of this paper, but especially to Richard T. Schulz, who authored 

most of the material. The Committee thanks all the individuals 

from both the Casualty Actuarial Society and the Insurance Data 

Management Association that reviewed various drafts of the paper 

and provided helpful suggestions and assistance. 

The Committee's charge includes furthering the development 

and dissemination of data management theory and principles; 

identifying topics for research and discussion; monitoring 
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professional developments and regulatory activities; establishing 

liaisons with other organizations working in this area; and 

sponsoring panels, seminars, and other public forums on data 

management issues. 
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Mark S. Allaben 

Randall E. Brubaker 

William E. Burns 

Richard N. Gibson 

Holmes M. Gwynn 

Larry A. Haefner 

Israel Krakowski 
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147 



WNITE PAPER ON DATA QUALITY 

I. Introduction 

A. Data as an Asset 
B. Data Quality - Actuaries & Data Managers 

II. Data Quality Btandards 

A. Actuarial Standard of Practice No. 23 
B. IDMA Data Quality Certification Model 

III. Data Quality Terms 

A. Ascertaining Data Quality 
B. Accuracy of Data 

IV. Data Reliability Tools 

A. Reliability of Data & Data Audits 
B. Statistical Data Monitoring System (SDMS) 

V. Professional Responsibilities 

A. The Responsibility of the Actuary on Reasonability 
B. Responsibilities of the Data Manager on the Quality 

VI. Concluding Remarks 

A. What's Next? 
B. Conclusion 

148 



WHITE PAPER 011 DATA QUALITY 

I. Introduation 

B . Data as an Asset 

Today, more than ever before, insurers have the ability to 

tap into the detailed information which they collect as a result 

of the insurance contract. Access to this information has 

changed in the last decade due to the rapidly improving 

capabilities of computer technology, the declining cost of 

computer hardware & software products, and the expanding 

knowledge of data systems designers and programmers. The 

proliferation of the personal computer, compact disc (CD-ROM) 

storage drives, hookups to local area network (LAN) computer 

environments and the ever increasing pace of computer chip and 

data storage technology has allowed access to not only an 

organization's in-house detailed data but to broad based 

insurance aggregate data (i.e., industrywide data) and external 

non-insurance data useful to insurers (e.g., motor vehicle 

reports, geographic information, construction information). 

In addition, the declining role of rate bureaus in the 

pricing of insurance risks has increased the need of the 

individual company to rely more on their own internal information 

in greater detail. 

The concept that data is an asset means more detailed 

management information leading to: 

- improved business opportunities (e.g., for marketing 

purposes); 

- greater fraud detection; 

- enhanced underwriting review (e.g., via motor vehicle 

reports); 
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- greater evaluation of loss control factors or risk 

management procedures; and, 

- greater ability to use the data in actuarial analyses 

(e.g., for pricing, loss reserve analyses). 

The need to protect and enhance the quality of data available 

for use is self-evident. 

B. Data Oualitv - Actuaries & Data Manaaers 

In July of 1993, the Actuarial Standards Board (ASB) adopted 

Actuarial Standard of Practice No. 23 - Data Quality. The 

standard adopted was the result of over three years of discussion 

by an Ad Hoc Data Quality Task Force of the Specialty Committee 

of the Actuarial Standards Board. Exposure drafts were 

circulated and comments solicited from members of the American 

Academy of Actuaries. The resulting document established a 

standard which provides greater consistency in actuarial practice 

with respect to the responsibility of the actuary regarding the 

quality of the data. The standard also recognizes the diversity 

of actuarial work, the diversity of data available in that work 

and the need for judgment dependent upon the intended use of the 

analysis. 

In the summer of 1994, the Insurance Data Management 

Association (IDMA) formed a working group to develop a data 

quality opinion framework. The resulting framework and 

guidelines, entitled "IDMA Data Quality Certification Model for 

Insurance Data Management" was released on March 9, 1995. This 

framework is designed to give guidelines to an insurance data 

manager in order to monitor, measure, and, potentially, certify 

the quality of data in his/her organization. 

Using these two documents, this White Paper attempts to 

broaden and merge the collective thinking on this subject for 



insurance actuaries and data managers. Specifically, the paper 

will discuss issues relating to: 

1. the importance of data collection and processing; 

2. reviewing the data for appropriateness, reasonableness and 

comprehensiveness relevant to the analysis undertaken; 

3. certifying the accuracy and validity of the data; 

4. materiality considerations of imperfect data; 

5. the standards and procedures used to determine the extent 

of imperfect data; and, 

6. the responsibility of certification and disclosure. 

II. Data Quality Standards 

A. Actuarial Standard of Practice No. 23 

The stated purpose of Actuarial Standard of Practice No. 23 

is to give guidance to the actuary in: 

a. selecting the data which underlie the actuarial work 

product; 

b. reviewing these data for appropriateness, reasonableness, 

and comprehensiveness; and 

c. making appropriate disclosures. 

The Standard discusses the current practices and historical 

issues. It then reviews and analyzes alternative practices to 
. 

determine the recommended practice for an actuary in undertaking 

actuarial analyses. The Standard recognizes that completely 

accurate, appropriate, and comprehensive data is not always 

available. The actuary must understand the intended use of the 

analysis being performed in order to thoroughly evaluate the 

appropriateness of the data. In addition, the Standard discusses 

the selection of the data relevant to the reasonableness and 

consistency of the necessary data elements, any limitations of 
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the data available, and the cost & feasibility of alternatives 

(including timeliness considerations). 

By comprehensiveness of the data, the Standard refers to the 

availability of each data element and record needed for the 

analysis; that doesn't mean that every record is necessary 

(because a sample of records may suffice for the analysis 

undertaken) or that every data element in the record needs to be 

accessible, but it does mean that the necessary records and data 

elements to do a proper analysis are available. 

By appropriateness, the Standard means that the data is: 

1) the information needed for the analysis; 

2) homogeneous so as to allow evaluation; and, 

3) consistent with the purpose of the study. 

By reasonableness, the Standard means that it's consistent with 

prior data or other information. 

Taken together, the actuary must ask the following questions. 

1) Is all the data necessary for the analysis, in fact, 

available for use in the analysis? 

2) Is the quality of the data appropriate to accomplish the 

intended purpose of the analysis? 

3) Is the data reasonable and consistent with prior data, 

other homogeneous data sources, and other knowledge? 

The Standard leaves open the door that imperfect data may 

still be usable - but only after careful scrutiny. The key 

question is: Will incomplete, inaccurate or inappropriate data 

(i.e., imperfect data) result in material biases in the study's 

conclusions? If 8tyes89, the data is not usable unless the bias 

can be quantified; if %o*', the data is usable. If llmaybeOO, then 

further work needs to be done. Effort must be made to identify 

the nature of the imperfection. Once identified, the imperfect 

data can be corrected, excluded, or adjusted using an appropriate 

mathematical or actuarial method (e.g. minimum bias techniques, 
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confidence ranges, distributional adjustments), depending on the 

extent and nature of the imperfection. 

Data with a known imperfection in a field not pertinent to 

the study undertaken, is not considered imperfect data. If, 

however, it affects the perception of the credibility of the data 

in use, the user of the data should be prepared to address the 

situation. 

The Standard discusses the actuary's reliance on data 

supplied by others and concludes that the data must be accurate 

and complete for the analysis under study. The data must be 

reviewed for reasonableness and consistency. This actuarial 

review of the data will be based on the specific circumstances - 

the intended use of the data, the data available, extent of known 

data limitations, timeframes and other factors. 

An actuary's review of the data should: 

1. determine the extent of checking, verification and 

auditing done by the data manager/supplier; 

2. identify questionable or inconsistent relationships; and, 

3. determine the materiality of imperfections on the study's 

results. 

Furthermore, the actuary should comment on the confidence, 

reliability and the value of the data quality procedures done by 

the data manager/supplier. Toward that purpose, the extent of 

audits and control procedures should be reviewed and noted. For 

instance, if the source data has been subjected to rigorous 

internal audits or monitoring by a Statistical Data Monitoring 

System (SDMS), as described later in this paper, then greater 

confidence in the source data may be assumed. On the other hand, 

if in the judgment of the actuary greater checking should be 

performed, then it should be done if practicable. 

Standard No. 23 provides a strict disclosure standard in the 

actuary's report. The report should include disclosures 
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regarding: 

1. the sources of data; 

2. the materiality of any biases due to imperfect data; 

3. adjustments or modifications made because of imperfect 

data; 

4. the extent of reliance on data supplied by others; 

5. any resulting limitation on the use of the analysis; 

6. any unresolved concerns regarding the quality of the data. 

B. 1 DHA Data o&itv Certification Model 

The “Data Quality Certification Model for Insurance Data 

Management" released by the Insurance Data Management Association 

(IDMA) is intended to provide: 

1. a framework for use in attesting to the data quality of an 

organization; and, 

2. guidelines for the insurance data manager to use in 

controlling, monitoring and measuring the validity, 

accuracy, reasonableness and completeness of data. 

The IDMA Certification Model makes the insurance data manager 

responsible for developing a commentary on the quality of the 

data. The commentary should include: 

a. disclosure of the results of checks/tests for validity, 

accuracy, reasonableness and completeness of data; 

b. list of the reports and monitoring tools used in 

ascertaining validity, accuracy, reasonableness and 

completeness of data; 

c. review and analysis of significant data problems using the 

data monitoring tools; 

d. action plan for correcting data problems; and, 

e. certifying statement regarding the analysis and 

commentary. 
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The commentary should also include an assessment of the 

materiality of the data elements, including the resulting impacts 

and error ratios. The IDMA Certification Model holds the 

insurance data manager accountable for: 

a. recognizing that the users are responsible for developing 

standards (e.g., consistent and reasonable error 

tolerances); 

b. knowing that standards exist; and 

c. prompting the establishment of standards when they do not 

exist. 

An actuary's reliance upon an insurance data manager who has 

followed these practices certainly will provide him/her a degree 

of confidence in the source of the data. 

III. Data Quality Terms 

A. Ascertainina Data 0 ality U 

Most often, an assessment of data quality consists of an 

assessment of the following four components listed by the IDMA 

Certification Model: 

- Validity; 

- Accuracy; 

- Reasonableness; and, 

- Completeness. 

Validity means that value of a given data element is one of 

all allowable ones. Data values that are valid are determined by 

edit checks. The most basic check is known as a field edit. For 

example, a State code is valid if it is one of the codes 

allowable under the data element "State". If two digit postal 
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code defines the allowable values for @'State@@ then NY would be a 

valid value for this data element. Validity checks also include 

relationship edits involving two or more fields. For example, 

territory code 081010 may be valid in one state but not in another. 

Valid values are checked through the use of automated edit checks 

via internal and external edit packages that access tables of 

allowable values. Error performance reports are typically 

generated for review. While necessary to the data quality 

environment, validity checks, by themselves, can only guarantee 

that the field has an allowable code, not necessarily the correct 

one. 

Accuracy means that each data transaction record or code is a 

true and accurate representation of what it's intended to 

represent. In other words, does it accurately reflect the 

correct information for the policy or claim it represents? A 

good example to illustrate accuracy is class code; the class code 

for a florist is accurate if the risk is a florist; it would be 

inaccurate if the risk were a pharmacy, however it may a valid 

class code (namely, the code for a florist). How do you know 

that you have accurate data? To ensure accurate data, a system 

of effective controls, including periodic audits and sampling 

checks at all stages of the data collection process must be 

established. This system of checks can only be accomplished 

through a thorough understanding of all data handling and 

collection activity in the organization. Independent comparisons 

with source documents, validity and other edit checks, as well as 

periodic audits are essential elements for ascertaining the 

accuracy of reported data. These essential elements are inherent 

in rigorous and high quality self monitoring audit programs and 

in the Statistical Data Monitoring System (SDMS), which are 

discussed later in this paper; as such, self monitoring audit 

programs would be a valuable aide in confirming the accuracy of 
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the data. 

Another essential component of the assessment of the quality 

of the data is the concept of reasonability. This component of 

data quality requires some summarization or aggregation of 

records in order to determine the data's reasonableness. For 

example, a single large fire loss may not look unusual by itself, 

but in the context of hundreds or thousands of large losses it 

may be an indication of a coding problem. The key questions are: 

Is the data reasonable compared to our prior and current 

knowledge? Is it reflective of prior established patterns? For 

example, does this quarter's territory premium distribution look 

similar to prior quarters? Does it jibe with our general 

knowledge about the data? For example, if this year's territory 

distribution doesn't match the profile, might it be because of a 

change in the company's marketing or underwriting policies? 

Distributional analyses and profiles, trend analyses, average 

rate checks, and loss ratio comparisons are examples of tests to 

determine the reasonableness of the data. 

Completeness of data has three essential elements: 

1. each transaction record contains all the necessary data 

for the business needs for that record (i.e., no 

information that's necessary or required is left blank); 

2. each transaction record is consistently processed once 

and only once; and, 

3. each transaction record is processed properly through 

every necessary portion of the system and only through 

those necessary portions. 

In other words, complete data can only be realized when every 

area involved in the data collection and processing process 

handles it correctly. This requires proper coding at the source 

and effective controls at each step along the way. Reconciliation 

of statistical data to financial data helps ensure the 
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completeness of the data since it provides a valid basis for 

comparison of the information. When material discrepancies arise 

in reconciliation results, every effort must be made to reconcile 

the discrepancy and take corrective action if necessary. 

B. Accuracy of Data 

Usable data can be classified in three levels or degrees of 

accuracy: 

1. Absolute Accuracy; 

2. Effective Accuracy; and, 

3. Relative Accuracy (i.e inaccurate but consistent over 

time). 

The definition of Absolute Accuracy is simply that the data 

is 100% correct. There are no known defects in the data. Each 

and every data element on each and every transaction record is 

properly and accurately coded. It can be used down to 

transaction level detail. 

Most data are of the Effective Accuracy type where there are 

some imperfections in the data but are generally usable in most 

analyses. There are two categories or types of Effective 

Accuracy. First, where the coding of a specific data element may 

be incorrect, analyses not involving the incorrectly coded data 

element (either, in any intermediate calculations, or in the 

aggregate result) may be unaffected. For example, territory 

coding may be inaccurate, but for analyses of statewide (all 

territor~ies combined) data, the data may be suitably accurate for 

use; however, if territory is used in calculating Premium at 

Present Rates (PPR) where the rate differs by territory and the 

analysis involves this calculated premium, then it would affect 

the statewide analysis. Analyses requiring a high level of 

detail (either, in the intermediate calculations, or in the 
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aggregate result) need to be accurate enough to that level of 

detail. A second type of Effective Accuracy is dependent upon 

whether the imperfect data will materially impact the result. 

For example, returning to the territory PPR calculation above, if 

a small amount of territory data (relative to the overall volume 

included in the analysis) appears to be incorrectly coded, there 

may be no material effect as to the results of the analysis; on 

the other hand, this may indicate that there may be substantial 

unknown data problems. Whether it's an immaterial anomaly in the 

quality of the data, or an indication of additional unknown data 

quality problems is what the actuary needs to decide. 

Defining Relative Accuracy is a bit trickier. Data coded 

inaccurately as to its definition but reported consistently over 

time are data that are relatively accurate. For example, the 

definition of what's included as allocated loss adjustment 

expenses (ALAE) may vary by company, and by statistical agent; a 

company may not strictly adhere to the statistical agent's 

definition of ALAE in reporting its statistical data, yet the 

data may be reported consistently over time and with proper 

recognition can be used in various analyses. An analogous 

example can be made regarding 1055 reserving procedures (i.e., 

case vs. case with a loading). With proper recognition of 

differences in data definition, relatively accurate data is 

generally usable. The problem with relatively accurate data is 

that when a procedural change is instituted the data will no 

longer be consistent over time. 

IV. Data Reliability Tool5 

A, Reliabilitv of Data & Data Audits 

One of the key tools to ascertain the accuracy of the data is 

periodic auditing. The reliability of the data used in an 
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actuarial work product will be higher if there are periodic and 

comprehensive internal or external audits of the data quality 

process. 

Besides checking the accuracy and completeness of the data, 

audits help to: 

- ensure consistent handling; 

- determine the quality of systems control procedures; 

- measure and improve timeliness of data; and, 

- increase the reliability of results. 

Successful audits, both internal and external, include the 

following elements: 

1. are properly planned; 

2. measure results according to established standards; 

3. are statistically sound, regarding the sampling 

technique; 

4. perform data checks from source to end product and end 

product back to source; 

5. verify data according to their intended use and 

definition, including assuring that all data elements 

resulting from calculations, mappings and other 

programming algorthyms are correct as intended; 

6. audit the data preparation & data entry processes, and 

reviews all program and output controls (assuring that 

the input and output data balances, as well as reconciles 

with prior data processed); 

7. determine whether the company's entire process detects 

errors adequately and corrects them properly; and,finally 

6. provide adequate documentation of the results with 

recommendations for improvement (if any) and follow-up 

implementation review. 
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B. Statistical Data Monitorina Svstem (SDMS~ 

In 1982, the New York Insurance Department, acting on a 

commissioned analysis by an independent accounting firm, set up a 

system of procedures designed to control the quality of data 

submitted to and processed by statistical agents. The objective 

of this system, known as the Statistical Data Monitoring System 

(SDMS), is to assure the reliability of the data collection 

process for statistical data used in statistical and ratemaking 

filings. SDMS is a self-monitoring system which was adopted not 

only by the New York Insurance Department but subsequently by the 

insurance departments of Rhode Island and Connecticut. Currently, 

the SDMS functions for the Personal Automobile line of insurance, 

but the procedures inherent in the system can be applied to all 

line5 of insurance. 

The System mandates a set of procedures that must be followed 

by insurance companies and statistical agents. Each company is 

responsible for various data quality tests and documentation, 

with each company certifying their own data. Likewise, each 

statistical agent must collect and summarize specified report5 

from its reporting companies, carry out specified monitoring 

system tests and compile documentation. The statistical agents 

perform data quality checks on their own internal systems, as 

well as certify their reporting companies' monitoring activities. 

State regulators have overall responsibility for an effective 

program. 

The Statistical Data Monitoring System (SDMS) has 6 basic 

components which jointly serve to increase the reliability of the 

data for statistical, ratemaking and actuarial analyses: 

1. process description and review of control procedures; 

2. detailed data verification via sampling tests; 

3. summary data verification via reasonability reviews; 
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4. financial reconciliation; 

5. annual review and certification; 

6. review and evaluation by state examiners. 

The first component, the process description and review of 

control procedures is accomplished by requiring system flowcharts 

and narratives, using standardized procedural control checklists 

and reviewing specific checklist functions in detail. 

To accomplish the detailed data verification, a random sample 

representative of the data is taken for both premium and loss 

claim transactions. For each transaction, every data element is 

verified. When an error is found, the source and cause of the 

error are identified and corrective action taken. Sample sizes 

are determined such that data errors which affect more than 1% of 

the transactions will be discovered with a 99% probability. 

Summary data verification is accomplished through a review 

for reasonableness of the essential data elements to be used in 

the actuarial ratemaking review - premiums, losses, claims - by 

the main components of the review - territory and coverage. The 

most questionable (or inconsistent) experience is then researched 

to determine any errors and their cause; if errors are uncovered, 

corrective action is taken. 

As respects data reconciliation, each company must reconcile 

its statistical data (as reported to its statistical agent) to 

the company's financial data (reported in the Annual Statement). 

Finally, the annual review and certification requires 

I 'documentation of the monitoring activities conducted and the 

error incidence statistics of the data. The certification 

i . document must be signed by the company's Data Quality Officer. 

Taken together, the system provides an effective self 

monitoring tool which allows state examiners to independently 

review the data quality of each company's data and the processing 

1 

I 
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of it by the statistical agents. By providing a clear set of 

procedures, the SDMS system provides a structure on which 

actuaries and insurance data managers can rely on the quality of 

data, thereby increasing the accuracy and credibility of 

actuairial, ratemaking and other statistical data analyses. 

V. Professional Responsibilities 

A . The ReSDOJlSibilitV of the Actuary on Reasonability 

Almost all statistical data used in actuarial analyses 

undergo various validity checks as a matter of routine company or 

statistical agent procedures. Whether the data is sufficiently 

accurate, reasonable and complete is generally the key 

determinant of the quality of the data. While this paper has 

discussed various ways to monitor and improve the accuracy or . 

completeness of the data, the actuary should be aware of and 

prepared to perform various additional summary checks, edits and 

tests designed to determine the reasonableness of the data. In 

short, a good reasonability review provides the answer to the 

question: Does the data make sense? 

A good reasonability review starts with good judgment based 

on experience and supplements it with objective measures. First 

and foremost, does the data look right? For instance, if the 

actuary is performing a Statewide Rate Level analysis, the 

resulting current indication should make sense relative to last 

y.ear's indication after accounting for various differences and 

factors in the ratemaking formula as well as any known experience 

changes (such as the effect of a major hurricane on property 

losses); if it doesn't make sense, then this raises further 

questions that should be resolved satisfactorily. 

Some key tests or checks that should be considered in a 

review of the reasonableness of the data are: 
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- distributional edit review; 

- consistency checks; 

- statistical tests, such as, chi-square goodness of fit 

tests or non-parametric rank tests; 

- graphical tests; and, 

- industry comparisons, including reasonable range of resu 

comparisons. 

.ts 

A bird's eye view of the data can be had by reviewing summary 

data by key field relative to a profile of that data based on 

prior experience. Known as a Distributional Edit Review (DER), 

data is compared for consistency to a prior quarter's or year's 

data. A DER helps detect data anomalies and inconsistencies. An 

extreme example would be: if coverage is sold statewide (i.e., in 

all territories) then a data problem resulting from data coded 

all under territory "OO1lV is easily found. Of course, most data 

problems are more subtle than this example, so automated 

statistical tests should be used. For example, chi-square tests 

between current data and the profile can be used. These 

automated statistical tests help to provide the best review of 

the distribution of the data by providing an objective measure of 

the data elements that seem to match or not match the 

distributional profile; those with the highest chi-square values 

fit the distributional profile the least. Although helpful, 

oftentimes the actuary doesn't have the historical data to 

perform this type of review on the data; on the other hand, if 

the provider of the data does perform this type of data review 

before providing the source data, then the actuary may have 

improved confidence in the data. 

An easier yet more limited check are comparison tests, done 

by comparing the premium/exposure/loss/claim volumes by the 

highest order data variables (e.g., state, coverage, year, etc.) 
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either to each other or to prior reported volumes. If the 

volumes appear inconsistent across years, or if there are 

divergent exposure/premium or loss/claim relationships, further 

review of the data may be necessary. 

Range comparison tests, non-parametric rank tests or 

graphical views of the data can be used to supplement the 

reviewer's judgment. An example of a range comparison test is a 

test of premium-to-exposure ratios; these ratios can be compared 

to average rates in effect and values falling outside a 

reasonable range (depending on the level of summarization) can be 

flagged. Used far less often, non-parametric rank tests (like 

Kendall's Tau or Spearman's Rho) similarly can detect 

inconsistent or divergent patterns in the data and can provide an 

objective measure of the quality of the data. Graphs provide a 

quick, visual aid to ascertaining unusual relationships; computer 

software that allows pivot table calculations and graphical views 

of various ratios can be invaluable in spotting data problems, 

thereby enhancing the reasonability review of the data. 

Finally, company data can be compared to industrywide data. 

However, this is only useful if distributional differences 

between the company's book of business and the industry average 

are reasonably expected to be similar. 

In the end, the actuary must be confident that he/she can 

rely upon the data for the specific analysis and circumstances. 

He/she should document all reasonability checks and tests 

performed, highlighting any known or suspected deficiencies in 

the data. 

B. ual tv 0 Data 

The ability to form decisions and conclusions based on an 

actuarial analysis is dependent upon the quality of the data and 

the specifics of the analysis. Oftentimes, the underlying data 
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of the study is imperfect in some respect. Once imperfections in 

the data are uncovered, the insurance data manager providing the 

source data should take the following steps. 

1. Determine the reasons and cause(s) of the error. 

2. Inform the actuary undertaking the current study and 

incorporate needed adjustments, modifications or 

corrections to the source data for use in the current 

analysis. 

3. Stop the error by fixing the system or revising the data 

handling and collection process. 

4. Quantify, if possible, the impact and magnitude of the 

error on the data underlying the current study. 

5. Decide if the error may materially impact prior analyses 

and whether these prior analyses may need to be 

retroactively corrected. 

6. Finally, if it is materially significant, make 

disclosures regarding past analyses appropriately. On an 

external basis, this may mean notification of insurance 

regulators, or insurance statistical agents. On an 

internal basis, company management may need to 

rethink financial, policy or pricing decisions. 

Regarding this last step, note that in almost every 

situation, if the extent of imperfect data might change the 

conclusions or the results of the analysis using this data then 

there is an obligation to disclose the data imperfections to all 

potentially affected parties. Further, there is a duty to raise 

"red flags" in all situations where there are significant 

imperfections in the data. 
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VI. Concluding Remarks 

A. What's Next? 

There's been much discussion in various Casualty Actuarial 

Society (CAS) , IDMA and other data quality forums regarding the 

use of a self monitoring audit system as a way of responding to 

various regulatory concerns raised by state officials and the 

National Association of Insurance Commissioners (NAIC). A 

frequent suggestion is that an industry self monitoring system, 

with a rigorous audit program that checks the statistical records 

submitted to statistical agents back to company source documents, 

would satisfy the various regulatory concerns. A starting point 

(but perhaps not the ideal model) for such a system might be the 

SDMS, described above. The appropriate forms and procedures 

necessary would be available on demand by State Financial 

Examiners. This approach may be advanced further in the upcoming 

months, but much work needs to be done regarding the details of 

such a self monitoring audit model, as there are divergent 

opinions as to its scope and necessity. 

Undoubtedly, future data quality efforts will be the result 

of the impact of continually improving technology. The synthesis 

of technology and knowledge allows improved concepts in data base 

design and automation. 

Current topics include: 

1. Data Warehouse Concept - which allows broad use of data 

in great detail by many areas of the company; 

2. Greater use of complementary databases - ZIP Code, motor 

vehicle reports, geographic mapping - in improving data 

validation and accuracy; and, 

3. Pattern Recognition/Expert Systems/Fuzzy Logic Systems - 

that enhance automation efforts and allow graphical views 

of the data. 
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What's next?' The challenge for both actuaries and insurance 

data managers is to keep up with the improved technology and to 

use it as an aid to improving data quality. 

B. Conclusion 

Data quality has long been a concern of the insurance 

industry and the regulator. However, data quality must be 

administered in a cost efficient manner. The more rigorous 

statistical plans are subject to some degree of interpretation 

versus financial data accounting. As technology has improved, 

better data quality (and better reconciliation of statistical & 

financial data) can be realized more economically and efficiently 

by both data managers and actuaries. Managements have recognized 

that high quality data provide them accurate controls of their 

businesses. 

Two professional groups - data managers and actuaries - have 

developed formal standards to better recognize the importance of 

data quality. Both standards have been reviewed in this paper. 

The data manager's responsibility is specifically stated to go 

beyond the production of the data. Error detection, evaluation, 

and disclosure are now part of that responsibility. The actuary 

cannot simply accept data and rely on the work of others 

regarding it's quality. Data must be reviewed for reasonableness 

and consistency, and data imperfections must be addressed. 

Formal professional education is available to both 

professions, and it can be expected that data quality will 

continue to be an issue addressed by each professional 

organization. 
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1996 CAS Geo-Coding Survey 
by the CAS Committee on Management 

Data and Information 
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EXECUTIVE SUMMARY 

The purpose of the I996 Geo-Coding Survey was to assess the current usage of geo- 
coded data in the casualty actuarial profession, and to foster development of new actuarial 
techniques using such data. A total of 152 CAS members returned a completed survey. The 
following are the key findings of the Geo-Coding Survey: 

I 

. Nearly four in ten (36.8%) respondents reported they were currently using geo-coded data for 
the monitoring of catastrophe exposures, while nearly one-third (30.9%) reported current use 
in the definition of rating territories. 

. 

. 

I . 

. 

Over one in five (2 I . 1%) respondents reported they were currently using geo-coded data for 
the determination of unexpected insurance costs for specific locations, and the same number 
reported use for marketing/underwriting. 

Close to half (48%) of all respondents reported they were not currently using geo-coded data 
for any purpose. 

Zip code data was named most frequently by respondents when asked the type of geographic 
data they were using for listed purposes. Zip code data was the most popular response for six 
of the seven listed purposes, such as the monitoring of catastrophe exposures or the definition 
of rating territories. 

Over nine in ten (90.8%) respondents report that they believe geo-coded data will become 
useful in the monitoring of catastrophe exposures, while over three-fourths (77%) believe 
geo-coded data will become useful in the definition of rating territories. 

A clear majority of respondents believe that geo-coded will become useful in the 
determination of unexpected insurance costs for specific locations (63.8%) or in 
marketing/underwriting (59.9%), while nearly one-half believe geo-coded data will become 
useful in competitive analysis (48%) or policy rating (47.4%). 

Of those using geo-coded data, nearly two-thirds (62%) indicate the source of 
latitude/longitude to be software that determines latitude/longitude from street address. 

When asked to describe successful applications of geo-coded data they believed would be of 
interest to the CAS membership, respondents mentioned catastrophe related applications 
most often. These applications included catastrophe modeling, catastrophe analysis, and 
catastrophe management. 

When asked to describe any significant problems in development of geo-coded applications 
they believe CAS members should be made aware of, respondents mentioned data quality 
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issues most often. These issues included inconsistency of data gathering, accuracy of geo- 
coded data software, and accuracy of street addresses and zip codes. 

l When asked to provide references that they knew of that may be helpful in the development 
of geo-coded applications, Mapinfo software and Business Geographic magazine were 
mentioned most often by respondents. 

. Nearly half (48%) of all respondents reported interest in participating as an attendee of a 
panel discussion focused on development of applications for geo-coding, while close to one- 
fourth (23.7%) reported interest in participating as a Limited Attendance Seminar attendee. 

l A clear majority (57.9%) of respondents reported a designation of FCAS, while over one- 
fourth (26.9%) reported having over 21 years of actuarial experience. 

l Close to six in ten (59.2%) respondents reported a property/casualty primary insurance 
company as their type of employer. 
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RESULTS 

Applications 

Item 1: 
Indicate the areas of actuarial practice for which you are currently using geo-coded data: 

Area of Actuarial Practice 
l Monitoring of catastrophe exposures 
l Determination of unexpected insurance costs 

for specific locations 
l Reserving 
l Definition of rating territories 
l Policy rating 
l Competitive analysis 
l Marketing/Underwriting 
l Other 
l Not currently using for any purpose 

Percentage of Respondents 
Using Geo-Coded Data 
36.8 
21.1 

4.6 
30.9 
15.8 
16.4 
21.1 
3.9 
48.0 

Please write in the type of geographic data that you are using for the listed purposes. 

Area of Actuarial Practice 
9 Monitoring of catastrophe exposures 

Type of data in use (number of responses) 
zip code (37) 
street address (I 2) 
county ( IO) 
latitude/longitude (6) 
postal code (3) 
exposure information (2) 
various (2) 
location (I) 
geo-coded (I) 

l Determination of unexpected insurance costs zip code (22) 
for specific locations street address (7) 

county (5) 
latitude/longitude (4) 
rating territory (4) 
postal code (2) 
state and county (2) 
exposure information (I) 
location (I) 
census tract, block, and group (I) 
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Applications 
(continued) 

Please write in the type of geographic data that you are using for the listed purposes 
(continued). 

Area of Actuarial Practice 
l Reserving 

Type of data in use (number of responses) 
state (4) 
street address (I) 
county (I) 

l Definition of rating territories zip code (37) 
c0un1y (I 4) 
postal code (4) 
state and county (I) 
city (1) 
state (I) 
street (I) 
rating territory (I) 
river (I ) 
bureau definitions (I) 
latitude/longitude (I) 
census tract, block, and group (I) 
creation of catastrophe zones to 
monitor exposure (I) 

l Policy rating zip code (I 6) 
county (4) 
postal code (2) 
rating territory (2) 
bureau territory (I) 
street address (I) 
town code (I) 
latitude/longitude (I) 
distance to work (I) 
distance to coastline (I) 
Rand McNally database (I) 
various (I) 
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Applications 
(continued) 

Please write in the type of geographic data that you are using for the listed purposes 
(continued). 

Area of Actuarial Practice 
l Competitive analysis 

Type of data in use (number of responses) 
zip code (I 5) 
postal code (4) 
rating territory (3) 
bureau territory (I) 
state (1) 
county (1) 
exposure information (1) 
latitude/longitude (I) 

. Marketing/Underwriting zip code (14) 
street address (4) 
county (4) 
latitude/longitude (3) 
postal code (3) 
census block group (2) 
census tract (I) 
overlay of census data (I) 
town code (1) 
bureau territory (I ) 
exposure information (1) 
target marketing (I) 
risk selection (1) 
wind (1) 
drive distance (I) 
local tax (I) 
tire protection (I) 

l Other 
Ratemaking -homeowner (2) exposure information, zip code 
Reinsurance zip code 
Agency management street address, block group 
Identifying policy holder in catastrophe areas latitude/longitude 
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Applications 
(continued) 

Please provide any explanatory comments on the above applications that you believe will 
be helpful to the CAS in assessing the current state-of-the-art for applications of geo- 
coding. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

I plan to use data for expected losses by location, definition of rating territories, allocation of 
capital, but these studies aren’t underway yet. 
Using IRAS (from RMS) to assist with catastrophe capacity management; considering 
additional uses, much interest in this area at this time. 
Street address used to match waste sites to publicly available listings. 
Systems development and statistical plans have a long way to go - at this point were getting 
started on a system to access zip code data. More detailed geo-coding would require 
substantial changes to statistical plans. 
As a regulator, I had to review the use of geo-coded data, or the proposed use of such data. 
Recently participated in the NAIC study of insurance availability in urban areas. The survey 
data included policy counts and premiums by homeowners policy form for zip code. 
As a reinsurer, we get limited data, particularly operating in the broker market. We may get 
for catastrophe exposures, total insured value by county. 
We expect to use expected profit by location to predict profits for given group property and 
casualty accounts. 
I don’t believe our current practice should necessarily be considered “state-of-the-art.” We 
are a small regional insurer, just beginning a major overhaul of our data reporting systems, 
partly to improve our access to more detailed location data (among many other issues). 
The ratemaking process performed by EQECAT for the California Earthquake Authority is a 
fine example of the issues I’ve checked above. (monitoring of catastrophe exposures, 
determination of expected insurance costs, competitive analysis, marketing/underwriting, 
other - ratemaking HO). 
A couple of areas that might deserve mention: Use of geo-coding in Business Planning and, 
Strategy; Use of gee-coding in Dynamic Financial Analysis. 
We are moving toward policy-specific geo-coding due to the increasing need to asses risk at 
the policy level. 
Do not use lat/long for anything explicitly although our mapping software uses it internally. 
We are a reinsurance company, so detailed data is sometimes difficult to obtain and 
sometimes too time consuming to evaluate. We don’t use detailed data for reserving and 
don’t have territory rating. 
(Not currently using, but) Please note that with my previous employer, I was using 3 digits 
postal code for monitoring of catastrophe exposures and definition of rating territories. 
In all the above areas, zip code level data is used, but no geo-coded data. 
We are finding that zip code is too broad for many of the above applications. 
Data is easily available for US. Very expensive or not available for rest of world. 
I think the CAS should check with major personal lines companies to determine the more 
sophisticated programs that may be used to define rating territories. Also, check on use of 
geo-coding in Neural Network Analysis (Peter Wu?). 
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l There is a lack of geo-coded historical data that is available to set rates, etc. 

Item 2: 
Indicate the areas of actuarial practice for which you believe geo-coded data will 
become useful: 

Percentage Who Believe Geo- 
Area of Actuarial Practice Coded Data Will Become Useful 
l Monitoring of catastrophe exposures 90.8 
l Determination of unexpected insurance costs 63.8 

for specific locations 
l Reserving 14.5 
l Definition of rating territories 77.0 
l Policy rating 47.4 
l Competitive analysis 48.0 
l Marketing/Underwriting 59.9 
l Other 7.2 

(reinsurance pricing (3), research, claims, business planning, international catastrophes, 
agency management, more innovative design of rating plans, risk management, allocation of 
capitol) 

Please provide any explanatory comments on the above applications that you believe will 
be helpful to the CAS in fostering the future state-of-the-art for applications of geo-coding. 

Extent of future possibilities for geo-coding will depend on how precise the 
location/information provided is! For example, will geo-coding allow me to differentiate 
between two apartment buildings on the same block; one at 55 Main St, the other 60 Main 
St? 
Uniform (throughout the industry) use of geo-coding territories would simplify many things, 
starting with statistical reporting. Many things would flow from this, including simplified 
competitive analysis. Imagine...no more zip, city, county, town, convoluted territories. 
Anything is possible - it is a wonderful rating variable if the data is available. 
Most consumers/customers don’t know their address in geo-coding form so wide spread use 
without an inexpensive translation mechanism will slow the use of location information in 
this format for insurance purposes. 
The categories above are redundant (rating territories = policy rating). 
Claims - Would be helpful to have an idea of how many and where to deploy claims adjusters 
post-event. 
I am especially intrigued with territorial ratemaking that uses continuous surfaces and using 
data at a street address level. 
Eventually, territory rating may be replaced by the detailed information associated with a 
given location: home values, crime statistics, etc. For hurricanes and tornadoes, we should 
consider looking at elevation. 
Ultimately, it will be the way to do business and will be useful for all of the above. 
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Applications 
(continued) 

Please provide any explanatory comments on the above applications that you believe will 
he helpful to the CAS in fostering the future state-of-the-art for applications of geo-coding 
(continued). 

Given the complexity of working with such data, I envision only those specializing in 
monitoring catastrophe exposures to be using such data on a regular basis. 
Presentation at the CAS Ratemaking Seminar in Las Vegas provided the state-of-the-art ideas 
which were excellent. 
Knowing the location and mapping the neighboring exposures to the geo-coded risk you are 
writing is an invaluable resource. 
Location of insured and of losses could change rating concepts. For instance, automobile 
rating could depend on where you drive (to work, to grandma’s house) besides just where 
your garage is. 
Location is an important determinant of the concentration and exposure to many perils. It 
will be more common to use location analysis as data and GIS software becomes widely 
available. 
Policy holders will not/do not know their geo-code; rate structures need to be simple enough 
to file and explain. Zip code is simple enough, while latitude/longitude is not. 
Geo-coded data could be particularly helpful in monitoring earthquake exposure. 
For personal auto, could be used for rating purposes to refine traditional zip code rated 
territories. 
Catastrophe exposures vary over short distances that are not captured any other way. 
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Sources 

Item 3: 
If you are using geo-coded data, indicate the sources of latitude/longitude that you are 
using: 

Pereentage of Respondents 
Source Using Source 
l Software that determines latitude/longitude 62.0 

from street address 
l Designation of map location on 15.2 

computer screen 
l On-site radio signals to satellites 6.3 
l Other 6.3 

(post office publication of zip codes, all business assigned to geographic center for each zip 
code, zip codes from location of insured property) 

Please provide eomments on the above alternatives that you believe will be helpful to the 
CAS membership in assessing practical alternatives for development of geo-coded data. 

l We use RlvlS’s IR4S model. 
l Satellites should be used in the future; e.g. a satellite photo in a hurricane aftermath could be 

overlaid with a map of company policyholders. Claim services could be routed and estimates 
could be made prior to claims being filed. 

l Relationships of site to known landmarks can be of great value to underwriters, actuaries, and 
claims. Information such as known pollution sites, or distance to coastline or fault line. 

l For determining territorial definition, we use a Rand/McNally database which is keyed by 
FIPS - place code, state, zip. 

l IRAS earthquake model by EMS uses lat/long. 
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Success and Problems 

Item 4: 
Please describe successful applications of geo-coded data that you believe will be of interest 
to the CAS membership: 

. 

. 

. 

. 
l 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

l 

. 

. 

. 

. 

. 

. 

. 

. 

Catastrophe modeling. 
Catastrophe exposure. 
Catastrophe analysis. 
Catastrophe management. 
Catastrophe modeling software by EQECAT and RMS. 
Determining catastrophe rates. 
Pricing alternate contract terms. 
Auto theft analysis from trackers. 
NY, NJ hurricane deductible zones. 
FL (FWI-JA) voluntary credits. 
Territory redefinition using census data and geo-coding. 
Earthquake modeling and predictive modeling. 
I think all the areas in #2 above, except reserving, will provide successful applications. 
Not quite finished, but we’re putting together a system to group various postal codes together 
to analyze appropriate territories and changes in,territories. 
Risk location/concentration and exposure determination. 
We examine loss data by postal code in order to define territories and rate policies for 
homeowners insurance; we review every year and move postal codes from one territory to 
another as dictated by either loss experience or our competitive position in the marketplace. 
We once examined loss data by postal code to refine our territory definitions for auto 
insurance; we will periodically review to make sure out territory definitions still make sense. 
Result is only as good as the initial address entry. Misspellings, etc., can have a large impact. 
Using 3-digits postal code to refine large urban territories (both property and automobile). 
IR4S earthquake loss model. 
Marketing, underwriting, rating. 
Entire book of biz geo-coded in US. GPS units in use in Asia and Latin America. 
Assessing hazard exposure is very successful using geo-coded data. 
Obviously, the area of greatest payback would be in monitoring catastrophe exposures. This 
has helped our company tremendously in negotiations with our catastrophe reinsurers. Also, 
extremely useful internally for business planning. 
Currently assigning rating territories from keyed in address; agents/customer service reps no 
longer need to learn territory definitions. 
I feel that zip code rating is superior. 
Coastal exposures can be problematic when trying to view exposures. Some geo-coding 
software are not consistent so data that may be geo-coded by one software but later used in 
another may appear to be out in the “water”. 
Software to display physical locations of zip codes to check for contiguousness of territories. 
Also to view patterns in loss costs. 
Density of exposures related to hurricane or earthquake risk. 
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Success and Problems 
(continued) 

Item 4 (continued): 
Please describe successful applications of geo-coded data that you believe will be of interest 
to the CAS membership: 

l As a reinsurer, we have used it only to monitor our catastrophe exposures. We rely on the 
reinsurance intermediaries and/or clients to collect data and run models. 

l Hurricane modeling, reinsurance exposure analysis, rating territories. 
. Map of geological fault lines and location of exposure by geo-coded location with reference 

to fault lines. 
l I use geo-coded data to monitor earthquake exposure in a region. 
l Geo-coding makes it much easier for a direct writer phone operation to properly determine 

the rating territory since the insurer representative may not know the geographic area where 
the risk is located. 

Item 5: 
Please describe any significant problems in development of geo-coding applications you 
believe CAS members should be made aware of: 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Blanket rated covers enough information; may not currently be captured. 
Constant updating of new addresses. 
Addressing the large variability around the expected results. 
Risks with hundreds/thousands of locations - difftcult to charge enough to cover costs of 
capturing all the specific location data. 
Consistency in measuring devices (accuracy). 
Several, separate policies for the same coverage written on risks at the same geo-code, 
e.g. earthquake coverage for renters in a high-rise. 
Major problem would be credibility associated with finely divided data. 
Data quality problems have surfaced frequently. 
Multi-location policies are especially difficult to handle. 
Distribution of geo-coded applications to agents. 
Data quality, model parameter estimating, regulatory concerns. 
Capturing accurate raw data. 
The major problems I see are dealing with what are sure to be large quantity of the data, 
(i.e. cut so fine that many observations are required before anything useful can be gained) and 
relating the data to other, known, data for verification. 
Computer software still (at least what we use) can not interpret similar spellings. 
Accuracy of TIGER, census, street information in the software. 
Quality of internal data - for example capturing billing address vs. site address. 
Inconsistency of data gathering, e.g. bad zip code in valid city. 
Difference between loss location and premium location. 
Zip codes change constantly, keeping up with them is costly. 
Lack of data quality of street address leading to low hit rates for geo software. 
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Success and Problems 
(continued) 

Item 5 (continued): 
Please describe any significant problems in development of geo-coding applications you 
believe CAS members should be made aware ok 
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We have challenges with “split zips” - a zip code which has more than one rate. Our rating 
system can’t use the person’s address to properly place them in the section of the zip; we rely 
on a person to look up information on a map or a descriptive table - sometimes the person 
just assigns “the first one” of the two or more choices. 
Unavailability of latitude/longitude coordinates for most locations. Do you know the 
coordinate for your home?? 
Data quality - We have problems where zip codes sometimes don’t map on the correct state. 
We find mailing address coded on all risks on one policy, rather than the actual location. 
Because of the ever changing numbers of zip codes, it is important to utilize software that is 
regularly updated. Data quality of the addresses being utilized is also a watch out. 
Accuracy concerns on street segments. 
Accuracy of geo-coding/underlying data. 
To match the longitude/latitude, you need exact address. Many addresses are not exactly 
correct, i.e. street instead of drive, north or south not included with street, etc. 
Coding of varying limits, classification information, etc. by location on a single policy. 
It is difficult to determine whether county data is “good enough” or if we need zip code or 
street address data. 
Credibility issue as the volume of data decreases rapidly. 
Redlining issue. 
Software needs to be continually updated for new zip code definitions. 
Regulatory acceptance; it shouldn’t be a problem, but I fear that it will; change is difficult. 
Need to be careful of over-refinement of territories. 
Need to be careful when using for auto insurance because cars are mobile (unlike houses). 
Level of data needed to make geo-coded location data valuable, i.e. coverage, limits, type of 
construction, contents, etc. 
Credibility procedures! / Lack of credibility. /Credibility issues and techniques. 
The actual coding by street address is complicated by numerous factors. The software’s 
street index is incomplete. Finding the location as opposed to billing address can be difficult 
and multiple location policies are present. 
Blanket risk coding on commercial accounts. 
Annual or more frequent shifts in zip code boundaries. 
A Canada conversion of rural addresses or postal codes to geo-code may not be accurate 
enough for certain applications (i.e. catastrophe analysis). 
Perils that are not discrete enough for high resolution analysis: hail, brush tires, mud slide. 
Willingness to believe model output without appreciation for inherent uncertainty. 
Errors in geo-coding and address changes. 
What is the source of this information for a property? If the.insured, it can be falsified. 
Systems development costs, cost of capturing data, lack of interest by senior management. 
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References 

Item 6: 
Please provide any references that you know of that may be helpful in the development of 
geo-coding applications, Such references may be printed materials, vendor organizations, 
professional organizations, or any other source of information: 

Multiple responses are indicated by the number in parentheses 

’ : 
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RMs (2) 
Strategic Mapping Inc. (2) 
ETAK (2) 
Advance Technology Cot$oration, Atlanta, GA, Mark Fouraker, 770-399-4343 
Toprate, Insurquote (rating services) 
Maplinx (software) 
Mike Miller (actuarial consulting) 
American Demographic magazine (2) 
Business Geographic magazine (4) 
ESRl(3) 
Mapinfo software (4) 
EQECAT 
Workers Compensation Insurance Rating Bureau (California) - data by zip code 
GIS World Magazine 
Geographic Data Technology (GDT) (2) 
IS0 
Vista Information Services 
The software we use is called IRAS from the vendor Risk Management Solutions. 
Tactician Corporation (software) 
USGS 
Compu search organization operating in Toronto 
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Future CAS Programs 

Item 7: 
Please indicate below the type of future activity focused on development of applications for 
geo-coding in which you would be interested in participating: 

Type of Activity 
Panel Discussion - attendee 
Panel Discussion - panel member 
Discussion Paper Program - author 
Discussion Paper Program - reviewer 
Limited Attendance Seminar - attendee 
Limited Attendance Seminar - discussion leader 
Other 

Percentage of Respondents with Interest 
48.0 

3.9 
0.0 
5.3 

23.7 
1.3 
.7 
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Other Comments 

Item 8: 
Please provide any additional comments that you believe would be helpful to the CAS in 
facilitating development of geo-coding applications among CAS members: 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

As a regulator, I see future concerns about territorial definitions. How will they look? Will 
they exist? How will the laws of various states need modification to adapt to the changing 
technology? 
Must recognize difference in personal lines vs. commercial lines risks with hundreds of 
locations. 
Workshops, data source description, model building papers, etc. 
Coin the term “geode” to mean the smallest geographical unit under consideration. Geodes 
would be defined by regulators with industry assistance. Geodes should be along easily 
identifiable physical or political boundaries. Territories would be aggregations of geodes. 
Most Importantly: In order for computerized hurricane models to become accepted, they 
must utilize real exposure and loss data to calibrate the model. Exposure and loss data 
should be reported by geode and each geode should be small enough that we would expect 
that wind damage would be uniform throughout the geode. 
I’m not confident that expending resources in this direction would be fruitful for the CAS. 
IS0 geog u/w system. 
Geo-coding in ratemaking will require a great deal of information, so only the largest 
companies will have sufficient data. To make geo-coding of interest (of practical interest to 
many actuaries’ employers), a large database would need to be available. Perhaps the CAS 
would work with statistical agencies to gather this information so that it is reliable and 
available. This might expand the interest level among actuaries and help the small 
companies from being the victims of large companies that can use this information to exploit 
the current rating territory definitions. 
There must be other more important issues to be spending time on. 
How about an article in the Actuarial Review? 
What about the impact on companies’ systems departments? 
Geo-coding has not been used by me because my job function does not. 
Not much to offer! 
Everyone benefits from a universal adoption of risk location identification. Reinsurers, 
regulators, statistic reporters, primary companies, etc. all seeing risk the same way would be 
ideal. Geo-coding (at least on the surface) would seem to offer this. 
Not to get too carried away, but will the CAS be seeking the NAIC’s input on the potential 
for geo-coding to become mandatory? 
Wouldn’t it be nice to have a regulation promulgated that actually helped an entire industry? 
Any discussion should consider practical applications. 
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Member Profile 

Item 9: 
Please include some information about yourself: 

Actuarial Designation Frequency Percent 
FCAS 88 57.9 
ACAS 57 37.5 
No rewonse 7 4.6 
Total 152 100.0 

Years of Actuarial Experience Frequency Percent 
o-5 IO 6.6 
6-10 36 23.7 
I l-15 31 20.4 
16-20 29 19.1 
21+ 41 26.9 
No response 5 3.3 
Total I52 100.0 

College Degree 
None 
BA or equivalent 
MA or equivalent 
Ph.D. 
No resnonse 
Total 

Frequency Percent 
I .7 

109 71.7 
34 22.3 
3 2.0 
5 3.3 

I52 100.0 

Type of Employer 
Property/Casualty Primary Insurance Company 
Reinsurance Company 
Consulting Firm 
Insurance Broker 
State Insurance Department 
Other Government Entity 
Organization serving the insurance business 
University or college 
Other 
No resnonse 
Total 

Frequency Percent 
90 59.2 

II 7.2 
26 17.1 

8 5.3 
5 3.3 
0 0.0 
4 2.6 
I .7 
2 I.3 
5 . 3.3 

152 100.0 
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Compilation of Variables Necessa y for 
Performing Dynamic Financial Analysis 

of Insurance Companies 
by James R. Garven, Ph.D., 
under the direction of the 

CAS Task Force on DFA Variables 
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COMPILATION OF VARIABLES NECESSARY FOR PERFORMING 
DYNAMICFINANC~ALANALYSISOFINSURANCECOMPANIES 

Final Stage One Report Submitted to 
the DFA Liaison Team 

Michael Barth (NAIC) 
Stephen P. D’Arcy (University of Illinois) 

Richard A. Derrig (Automobile Insurers Bureau of Massachusetts) 
Charles C. Emma (Deloitte & Touche) 

Louise Francis (CIGNA Property & Casualty) 
Phil Heckman (Ernst & Young) 

Glenn Meyers (Insurance Services Office) 
Richard Roth (California Department of Insurance) 

Gary Venter (Sedgwick Payne Company) 

James R. Garven, Ph.D. 
Vice President, Economic Analysis & Product Research 

Strategic Concepts Corporation 
3914 Edgerock Drive 

Austin, TX 7873 1 
e-mail: jgarven@insweb.com 

March 7, 1996 

Abstract. In recent years, a virtual consensus has emerged within the casualty actuarial science 
community that actuaries must broaden their role in insurance organizations by developing a set 
of tools that will enable them to render expert opinions regarding not only loss reserves but the 
overall value and solvency of the firm as a whole. In order to support this effort to broaden the 
roles of casualty actuaries, the Casualty Actuarial Society has embarked upon a many-year, 
multi-stage project entitled Dynamic Financial Analysis. This aim of the project is to set up a 
general actuarial framework for the modeling and financial evaluation of insurance companies as 
risk-assuming, ongoing entities. The outcome of the project will likely be general specifications 
for insurance company financial models, a database of important variables to support these kinds 
of models for the purposes of research and model design, and suggested procedures and 
considerations for those who would design, use and interpret these models. This is the final 
report for stage I of the Dynamic Financial Analysis project. 
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1. INTRODUCTION AND OVERVIEW 

The Casualty Actuarial Society has embarked upon a many-year, multi-stage project known 

as Dynamic Financial Analysis. This aim of the project is to set up a general actuarial framework 

for the modeling and financial evaluation of insurance companies as risk-assuming, ongoing 

entities. The outcome of the project will likely be general specifications for insurance company 

financial models, a database of important variables to support these kinds of models for the 

purposes of research and model design, and suggested procedures and considerations for those 

who would design, use and interpret these models. Some of the specifications expected for a 

Dynamic Financial Analysis Model are as follows: 

I. It should be able to account for and evaluate the things that are most likely to affect the 
value of the company. 

2. It should produce probability distributions of financial outcomes. 

3. It should provide enough detail to allow evaluations of outcomes on a variety of 
accounting bases, such as on-going, run-off, etc. 

4. It should produce risk/return consequences of changes in major management decision 
variables. 

5. It should recognize the interplay among various segments of the company and also with 
various external variables. 

6. It should be devised as a strategic management tool, with regulatory compliances 
features regarded as byproducts, albeit mandatory ones. 

As originally conceived, the Dynamic Financial Analysis project is expected to consist of 

four stages occurring over the next few years: 

1. Stage I : Identification of variables and data sources 
2. Stage 2: Creation of a research database 
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3. Stage 3: Analysis 
4. Stage 4: Specifications and feasibility plan for a permanent widely accessible database 

This i&the final report for Stage I of the CAS Dynamic Financial Analysis project. The 

outline of presentation will be as follows. The next section sets forth a set of general 

considerations that ought to be considered in dynamic financial analysis.’ The third section of 

the report provides a discussion of variables and data sources. The fourth section of the report 

provides some recommendations for setting up the database for further research, and the fifth 

section discusses some possible future directions for research to complete the further stages of 

the project. 

2. GENERAL CONSIDERATIONS 

In recent years, a virtual consensus has emerged within the casualty actuarial science 

community regarding the future role of the profession. It is now widely believed that actuaries 

must “re-engineer” themselves by becoming “actuaries of the third kind” (see Biihlmann (1987) 

and D’Arcy (1990)). This will require developing a set of tools that will enable actuaries 10 

render expert opinions regarding not only the value of loss reserves, but the overall value and 

solvency of the firm as a whole. 

The need for dynamic financial analysis has been anticipated in the actuarial literature, well 

before terms such as the “appointed actuary” and “dynamic financial analysis” became popular. 

For example, D’Arcy (I 990) presents the very compelling argument that factors such as the 

‘The report is generally agnostic insofar as model selection is concerned. focusing primarily upon tbe identilication 
of variables and data sources. II is the primary responsibiliry of the CAS Committee on Valuation and Financial 
Analysis (VFAC) and its subcommittees IO decide and advise Ihe CAS concerning model selection and 
parameterization (see CAS Subcommi~lee on Dynamic Fiicial Models (1995) and Szkoda. er 01. (1995)). The 
next section of the report does, however. set forth the argument that dynamic financial analysis can and should 
incorporate a rigomus integration of financial economics with actuarial science. 
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growing importance of investment performance in insurance operations, increasing volatility in 

financial markets and the emergence of investment-linked insurance contracts are creating the 

need for actuaries to develop new skills and a greater awareness of investment performance. 

Bilhlmann (1987) refers to actuaries who understand both the asset and liability structures of 

insurance companies as actuaries of the “third kind”.2 

The importance of integrating actuarial science and finance has been recognized by actuaries 

and financial economists alike, and has resulted in the development of a literature on the 

convergence of the two fields. Borch (I 985), Boyle and Buttetworth (I 982) and D’ Arty (I 990) 

present lucid analyses from the actuarial perspective, whereas Garven (1987) and Smith (1986) 

approach this topic from a financial economics perspective. The reference section of this report 

provides a research bibliography that addresses financial theory and its applications to insurance 

and actuarial problems. 

Besides the parallels between finance and actuarial science that have been noted to exist in 

published literature, common approaches in practice are also observed. For example, 

deterministic and stochastic techniques described in a number of CAS reports (e.g., see CAS 

Subcommittee on Dynamic Financial Models (1995) and Szkoda, er al. (1995)) bear a close 

resemblance to capital budgeting techniques that are presented in some of the more popular 

corporate finance textbooks (e.g., see Brealey and Myers (1991)).3 

2According 10 Biihlmann. actuaries of me first kind are life actuaries whose melhods primarily involve 
deterministic calculations. Casualty actuaries are actuaries of me second kind, in the sense that they develop 
probabilistic methods for dealing whh risky situations (for example, using methods such as scenario testing and 
Mome Carlo simulations). Actuaries of the mird kind address investment and underwiling aspects of insurance 
companies and apply principles from financial theory to create more fully inlegrated models of the insurer. 

3In the finance literature, the seminal work on the use of simulation in the evaluation of 
corporate capital projects was done by David Hertz (1964. 1968). In the tenth chapter of 
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Historically, financial research has tended to oversimplify insurance markets and 

institutions, whereas robustly specified actuarial models of insurance markets and institutions 

often lack the analytic rigor and economic foundations that have become the hallmark of 

financial research.4 However, in recent years, there have been extensive applications of financial 

theory and empirical methods to the analysis of property-liability insurance markets and 

institutions. For example, there is now an extensive finance literature applying the capital asset, 

arbitrage pricing and option pricing models to the problem of the “fair” rate of return in propetty- 

liability insurance markets.5.6 Option pricing models have particularly important implications for 

dynamic financial analysis, as they allow for a stochastic modeling framework in which asset and 

liability management impacts the value of the firm and its solvency level. 

Furthermore, an extensive finance literature has developed that analyzes, both theoretically 

and empirically, the economics of organizational structure. In view of the significant degree of 

Brealey and Myers, the cases for and against both simulation and scenario testing are 
summarized. Although the finance literature champions risk analysis, it is generally very 
critical of simulation analysis in particular (see Lewellen and Long (1972)). 

41ndeed. although face is essentially a field of applied economics, it has experienced remarkable sttccess as a 
scientific discipline. ‘Ihis has culminated io the awarding of the Nobel Prize io Economic Science five years ago 
to three ftoancial economists: Met-ton Miller, William Sbarpe. and Harry Markowitz for their seminal research on 
corporate capital structure, asset pricing and Portfolio theory. 

5For applications of the capital asset pricing model (CAPM) to insurance pricing, see Biger 
and Kahane (1978). Fairley (1979). Hill (1979). Hill and Modigliani (1987) and Myers and 
Cohn (1987). Kraus and Ross (1982) provide a more general framework based upon arbitrage 
pricing theory, and Doherty and Garven (1986), Cummins (1988b), Derrig (1989), and 
Phillips (1995) provide solutions to the. fair return problem in a contingent claims, or option 
pricing framework. 

6A particularly important paper in this literature is by Phillips (1995). who derives an option pricing model that 
allows for the determination of premium levels by line of business for a multi-line insurance company. He also 
fmds empirically that insurance prices are inversely related to the riskiness of the fm. as predicted by the option 
model. This inverse relationship is stronger for long-tail lines of business than for short-tail lines. suggesting that 
the default premium increases the longer the payout tail. 
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cross sectional variation in ownership structures and distribution systems that exists in the 

property-casualty insurance industry, this is a particularly relevant literature. Of particular interest 

is the question concerning whether incentives exist for firms adopting different organizational 

features to optimally employ different risk management strategies. To date, the empirical 

evidence is generally consistent with testable hypotheses contributed by financial models of 

insurance companies. Specifically, it appears that mutual insurance companies tend to adopt 

more conservative investment and underwriting strategies than do stock insurers. Mutt& have 

been found to concentrate a larger proportion of their investments in financial assets and smaller 

proportions in non-financial assets than stock insurers (see Fama and Jensen (1983)). After 

controlling for size, stock companies write relatively more business in riskier lines of insurance 

(see Lamm-Tennant and Starks (1993)) and reinsure less (see Mayers and Smith (1990)) than 

mutuals.7 Stock insurers also tend to be more highly leveraged and bear more interest rate risk 

than mutuals (see Doherty and Garven (1995)). Finally, Babbel and Staking (1989, 1990) show 

that the market rewards (in the form of a higher stock price) firms that match asset and liability 

durations. Clearly, some consideration ought to be given to the incorporation of the perspectives 

offered by the theoretical and empirical studies cited above in the further development of the 

underlying theory that supports dynamic financial analysis. 

‘Mayers and Smith (1990) find that widely held stock insurance companies cede 
proportionately less reinsurance than any other ownership class, including mutuals. Although 
they also find weak evidence that single-owner stock insurers reinsure more than mutuals. this 
is to be expected since risk aversion is more likely to be an important motivating factor for 
closely held than for widely held firms. 
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Appendix I provides an initial partial list of some of the factors relevant to insurer solvency 

and management planning, and was included with the original Stage I DFA request for proposals 

as an attachment. Furthermore, in the CAS Subcommittee on Dynamic Financial Models report 

entitled “Dynamic Financial Models of Property/Casualty Insurers” (see CAS Subcommittee on 

Dynamic Financial Models (1995)), attention is focused on the following classification of 

property-liability insurance risks: 

C-l risk - Uncertainty surrounding cash flows from invested assets other than from 
uncertainty regarding interest rate risk. 

C-2 risk - Uncertainty surrounding cash flows from the obligation or underwriting aspects of 
an insurance company. 

C-3 risk - Uncertainty surrounding cash flows from interest rate fluctuations in the presence 
of a mismatch of assets and liabilities and the risk of disintermediation caused by embedded 
options that are sensitive to changes in interest rates. 

There obviously exists a high degree of correspondence between this particular classification 

scheme and the list of factors provided in Appendix I. Furthermore, the factors listed above are 

generally incorporated in the financial literature cited earlier. 

The approach taken in Stage I has been to orient the research primarily around variables and 

data sources for which information can be obtained via the Internet. In many cases, data vendors 

are either moving toward Internet-based distribution or allowing licensees to create Intemet- 

based delivery mechanisms for these data.* Given th e “distributed” nature of the Casualty 

*The Social Sciences Dam Collection at the University of California. San Diego (UCSD) (see 
http: //ssdc .ucsd. edu/ssdc/econ. html) and Ihe We University Social Science Slalistical Laboratory 
(see http://statlab.stat.yale.edu) provide inreresting “proofs of concept” for the CAS. Although 
access to most of fhe data available from these collections is restricted to on-campus users. it would cenainly be 
technically possible to engineer similarly secured Internet-based database systems for the Society. 
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Actuarial Society, the Internet constitutes the best long-run solution for creating and maintaining 

a permanent widely accessible database for CAS members. The costs of such a system can be 

allocated in such a way that the CAS and its members can acquire a very efficient and cost- 

effective delivery system for data that can also be virtually managed and updated as needed. In 

fact, because the World Wide Web makes it is possible to link sites together via the so-called 

hypertext transport protocol (http), effective site management could in principle be 

accomplished on either a completely centralized or decentralized basis. In the last two sections 

of the report, recommendations are made concerning setting up the database and possible 

future directions for research that presume the Jnternet to be the computing platform of choice. 

Consistent with this “net-centric” philosophy, this report and its appendices can be accessed 

directly from the DFA World Wide Web home page, the address for which is 

http: //www. risknet. com/dfa/dfa. html. Appendix 2 lists the information that is 

provided there.9 Hypertext links to Appendices 3-9 of this report are provided in the Data Access 

section of the home page. These appendices provide detailed listings of variable definitions, 

length of time series available, cost and feasibility of data acquisition, licensing issues, and 

information concerning levels of aggregation. 

Issues such as variable interactions are more specific to model selection than to the 

identification of variables and data sources, which is the focus here. Nevertheless, some 

observations regarding variable interactions can and should be made. The general approach to 

modeling variable interaction is to estimate variance-covariance matrices for variables. Since the 

insurer may be viewed as a portfolio of assets and liabilities, a portfolio based analysis of insurer 

91n lhis and later appendices, all underlined text iepresenrs hypertext links 10 other documents. Unfommakly this 
is a feature not easily replicated in Ihe conrex of a hard copy, or analog document such as this. 
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risk and return can provide important insights into performance measurement and solvency. 

Halliwell (1995) presents the mathematical theory behind portfolio analysis, while Almagro and 

Sonlin (1995) and Lamm-Tennant (1995) apply this method to evaluating asset allocation 

strategies. The Lamm-Tennant paper is an especially important paper in this regard, as it 

provides a very rigorous yet elegant approach to estimating variable interactions on an after-tax 

basis. Furthermore, it is highly recommended that readers of this report look further into the JP 

Morgan RJSKMetrics database (listed in Appendix 4 and available for free on the World Wide 

Web). This database provides information on volatilities and correlations among over 300 

different types of financial assets. 

As one would expect, most of the data that are useful for dynamic financial analysis are 

available on a commercial basis, and a number of vendors are already beginning to experiment 

with different forms of World Wide Web-based distribution, Appendix 3 lists commercial 

vendors who provide comprehensive financial and economics database products. For financial 

analysis, the CRSP and COMPUSTAT databases are particularly useful; indeed, most of the best 

academic research on firm valuation uses these databases. The CJTJBASE database is 

unparalleled in its breadth and depth of coverage of interest rate and macroeconomic data. 

Unlike insurance data, there is an abundance of economic and financial market time series 

data already available on the Internet. Furthermore, access to many of these databases is free, 

although this is not universally the case. Appendix 4 lists a number of free data sources. These 

data sources that are the most “professionally” presented and supported are demarcated with 

special “NICE!” icons. These include the Federal Reserve Bank of St. Louis FRED Database, 

Financial Markets Data from the Federal Reserve Bank of Chicago, volatility, correlation, and 
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price index data from JP Morgan, and the EDGAR Database. All of these resources, wJth the 

exception of JP Morgan, are funded by government or quasi-government agencies, and they are 

intended to provide reliable access to some very high quality data sources. Indeed, much of the 

data’ listed under the General Economic Time Series and Performance Measures for investment 

Instruments headings in Appendix I can be accessed from these resources. 

Appendices 5-9 provide information about insurance data that are avajlable from a number 

of commercial vendors. In addition to providing insurance data through traditional means such 

as diskette, tape, and CD-ROM, a number of these vendors feature proprietary online services. 

4. REC~MMENDATI~NSF~RSETTING up THEDATABASEFORFURTHERRESEARCH 

Currently, a number of commercial database vendors distribute data using proprietary CD- 

ROM products or proprietary network interfaces. Good examples of CD-ROM products for 

insurance data include the A.M. Best and OneSource products, whereas proprietary (i.e., non- 

Internet) online insurance database products include A. M. Best’s BestLink, the NAJC’s 

InsureNet, and the NCCJ’s JnsNet. However, World Wide Web-based access is fast becoming a 

preferred method of distribution for a number of reasons. Although there are important reasons to 

be concerned about security on the Internet, it is now widely believed that the Internet, rather 

than proprietary wide area networks, will increasingly become the network solution of choice for 

commercial organizations. Indeed, information technology has become one of the most dynamic 

sectors of the U.S. economy, and tremendous amounts of capital are being invested to find ways 

to secure the Internet. 

Secondly, along with innovations in security, the speed of Internet access is increasing 

dramatically at a time when access costs are plummeting. This is causing the economics of a net- 
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centric as opposed to a CD-ROM based or proprietary network-based distribution system to 

become very compelling. By locating the data on a central World Wide Web server, mistakes 

are easily and cheaply corrected, and updates to the database can be made at minimal cost. 

Furthermore, it matters not whether the consumer uses a computer running the DOS, Windows, 

Macintosh, or Unix operating system, because the World Wide Web provides a “platform- 

independent” system of distribution. This lowers costs even further, since all program coding 

can be done according to open rather than closed and proprietary standards. The World Wide 

Web will therefore make it possible for data vendors (and/or possibly their licensees) to create 

much less expensive and easier to use methods for data access and analysis. The NAIC and 

NCCI are already giving serious consideration to the possibility of developing net-centric 

approaches to distributing insurance data, and I expect that other vendors such as A. M. Best and 

OneSource will eventually be compelled by market forces to seriously consider the development 

of similar distribution systems. 

Net-centric data distribution will also enhance the ability of the Society to more effectively 

develop and implement standards for dynamic financial analysis. CAS members can expect to 

interact increasingly via email and the Web for the purpose of not only accessing data, but also 

critically discussing and debating modeling issues. Indeed, many of the functions now performed 

by meetings and publications of the CAS are likely to migrate toward this environment. 

5. POSSIBLEFUTUREDLRECTIONSFORRESEARCH 

Stages 2 through 4 envision the actual creation of a research database, analysis, and the 

development of specifications and a feasibility plan for a permanent widely accessible database 
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system. Assuming that the Society is willing to embrace the Internet as its computing platform 

of choice, I think that the future course of the project can be modified somewhat. The next 

logical step would be to launch a pilot test of a distributed database system. The Society needs to. 

identify a cadre of important and influential members who are willing to serve as “beta testers” 

for the pilot test. The pilot test needs to be coordinated by a Stage 2 researcher who has strong 

financial modeling and information technology skills. This individual will need to work closely 

with the beta testers for the purpose of creating proper specifications for the research database. 

Besides funding a Stage 2 researcher, the budget will also require funding for the 

development of a World Wide Web site from which the database cab be distributed. Essentially, 

the Stage 2 researcher will need to be an “Internet integrator” who can take a leadership role in 

persuading data vendors to “buy into” the pilot test by either creating their own secure and 

metered data feeds into the system or providing the CAS with the licensing necessary in order to 

administer such a system for its members. 

In order for the second stage to be a success, it will require active participation from some 

very committed members of the Society. It will be important to include a mix of consulting, 

company and academic actuaries if at all possible, as this will facilitate the development of very 

broad and objective feedback to the Stage 2 researcher. 

Finally, the CAS needs to foster and support a cultural environment that enthusiastically 

embraces emerging and important information technologies such as electronic mail and the 

World Wide Web. Not only will this facilitate the eventual development and implementation of 

a permanent and widely accessible database, but it will also enhance the ability of the Society and 

its members to compete even more effectively. 
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Appendix 1 

An Initial Partial List of Some of the Factors Relevant to Insurer Solvency and 
Manageinent Planning 

General Economic Time Series 
Inflation measures, such as CPI components, GNP/GDP deflators 
Output measures 
Employment measures 
Interest rates, by term 
Exchange rates 

Performance Measures for Investment Instruments 
Stock market, by segment, large vs. small, by b?, various exchanges 
Bonds - corporate, mum, federal, by term, in various economic environments 
Precious metals 
Other commodities 
CMO’s and derivative products 
Derivative products 
Real estate, including rental value: 

Insurance Industry Data 
Premiums, losses, expenses, investment income, taxes, etc. by line. Accident year too. 
Annual statement aggregates at least in detail of NAIC profitability report by line 
Payout patterns by line and changes over time 
Development patterns by line and changes over tune 
Frequency and severity distributions by line and changes over time 
Insolvencies and retirements with 5 years of data prior to 
Matching group of solvent companies 

Natural and Unnatural Disasters 
Frequency and severity by location by type and changes over time 
Impacts on insurance industry 
Effectiveness of various mitigation programs for business interruption, including that 
of insurers 
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Aupendix 2: DFA Home Pane 

(httD://www.ris~net.co~/~~a/~~a.html) 

CASUALTY ACTUARIAL SOCIETY 

Dynamic Financial Analysis 

Introduction 
Welcome to the Casualtv Actuarial Societv (CAS) Dynamic Financial Analysis (DFA) Home 
Page. The CAS has embarked upon a many-year project entitled Dynamic Financial Analysis. It 
is anticipated that this prototype World Wide Web site will eventually evolve into a full scale 
distribution mechanism for a permanent and widely accessible research database. 

The original Request for Proposals for the DFA project can be accessed by clicking here. The 
winnintz nrouosal for Stage 1 of the DFA project can be accessed by clicking &. 

Data Access 
l Financial and Economics Databases -- Click here to access information concerning 

commercial financial and economics databases. Click & to access information 
concerning free financial and economics databases. 

l Insurance Industry Data -- From A. M. Best, m, OneSource, w, and m. 

DFA Stage 1 Liaison Team Corner* 
l DFA Discussion Archive 

l DFA Stage I Preliminary Report 

l Addendum to the DFA Staae I Preliminarv Report 

l DFA Stage I Final Report 
l Panicipation limited to the principal investigalor and the DFA Liaison Committee 

Other CAS Web Sites 
. CAS Committee on Theorv of Risk* 
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‘Participation limited to members of COTOR 

Other Sites of Interest 

. 

I . 

Important Variables Survey Form -- Friends and members of the Casualty Actuarial 
Society are welcome to make further suggestions about variables and data sources by 
tilling out this survey form. Click b to view an archive of all such submissions. 

Financial Theorv and ifs Au&cations IO Inslrrance/Aciltarirrl Problems -- a Research 
Bibliography. 

Agenda for the Limited Attendance Workshop on Financial Risk Theorv, held October I, 
1995 at the Boston Marriott, Copley Place. 

Economics Data catalogued in Bill Goffe’s Summer 1994 Journal of Economic 
Perspectives article entitled Resources for Economisfs on rhe Internet (Current version: 
Vol. 1, No. 12, January, 1996). 

Actuarial Resources on the Internet 

Jacobson Associates’ listing of iob openings for actuaries 

This page has been visited mimes since October 24, 1995. 
Last Updated 3/7/96. 
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Appendix 3: Financial And Economics Database Products 

~httD://www.risknet.com/dfa/finance/conunerce.htm) 

CASUALTY ACTUARIAL SOCIETY 
Financial and Economics Databases 

This page provides information concerning commercially available financial and economics database products. 

El Berkeley Options Database 
The Berkeley Options Data Base is a historical record of trades and quotes, time-stamped 
to the nearest second, for all standardized contracts traded on the Chicago Board Options 
Exchange. The data base, which is derived from the CBOE’s Market Data Retrieval tapes, 
begins in August, 1976 and is updated annually. Data are currently available through 
December, 1994. 

moston International Advisors 
Boston International Advisors maintains a family of international stock market indices 
with historic returns and values beginning in 1975. The indices cover the performance of 
sectors of country stock markets based on growth and market capitalization. 
Approximately 5,000 stocks are included from over forty countries. 

Witibase 
The CITIBASE database contains approximately 7,000 monthly, quarterly, and annual 
economic and financial time series that date back to 1946 when available and end with 
the latest available observations. These data are collected from various government and 
private sources and distributed by FAME Information Services - a subsidiary of 
CITICORP. Monthlv and Guarterly variable definitions and periods of time series are 
available on-line, as is a spec sheet that summarizes FAME’s Financial, Index, 
Fundamentals, and Estimates Data Grottos. 

EICRSP (Center for Research in Security Prices) 
The Center for Research in Security Prices (CRSP) at the University of Chicago produces 
a number of data tiles on US stocks and government securities. The CRSP databases are 
very comprehensive and reliable, constituting one of the most important sources of 
security market data for researchers in the field of financial economics. 

. The CRSP Stock Files contain stock price and return data for companies listed on the 
New York (NYSE), American (AMEX), and NASDAQ Stock Exchanges. Daily data 
are available from as early as 1962 for NYSElAMEX securities, and 1972 for 
NASDAQ securities. 
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. The CRSP Bond Files contain term structure, bond price and return data. End-of-day 
price data on virtually all negotiable direct obligations of the United States Treasury 
are available during the period December 3 I, 1925, to the present. 

More detailed information about these databases can be obtained by downloading and 
printing the 205 page manual for the CRSP Stock Files and the 75 page manual for the 
CRSP Bond Files. (Important Note: You will need IO download and insfall aj;ee 
program called Adobe Acrobat in order to view andprint either ofthese documents.) 

KlHoover’s MasterList Plus Database 
The Hoover’s MasterList database was created and is maintained by The Reference Press, 
Inc. of Austin, Texas. This searchable database contains information on 6,700 publicly 
traded companies in the United States. Each company profile provides basic information 
needed for locating, communicating with, and evaluating the companies listed in the 
database. 

mntex Solutions - Collateralized Mortgage Obligation data 
Intex CM0 Database lists over 30,000 bonds, modeled and updated every month. 

astandard and Poors 
Includes Comstock. J. J. Kennv Drake. Ratings Services, Platt’s, MMS International, 
DRVMcGraw Hill, and the CUSIP Service Bureau. 

IElStandard & Poors Compustat 
COMPUSTAT provides superior accounting statement information on companies from 
around the world. 

8U.S. Commerce Department STAT-USA /Internet 
The Department of Commerce gathers business and economic information from over 50 
Federal Agencies and redistributes this information for a nominal subscription fee from 
its world wide web site. STAT-USA/Internet provides access to the 
National Trade Data Bank (NTDB), the 
National Economic, Social, and Environmental Data Bank @ESE-DB), the 
Economic Bulletin Board, the Global Business Opportunities Service, and the 
Bureau of Economic Analvsis databases. 

This page has been visited mimes since March 5, 1996. 
Last Updated 3/7/96. 
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Appench 4: Free Financial And Economics Data Sources 

(http://www.risknet.com/dfa/finance/free.htm) 

CASUALTY ACTUARIAL SOCIETY 
Free Data Sources 

This page provides information concerning freely available financial and economics data sources 

General Economic Data 
ElFederal Reserve Bank of St. Louis’ FRED Database m 

m stands for “Federal Reserve Economic Data”. This free data source provides 
historical U.S. economic and financial data, including daily U.S. interest rates, monetary 
and business indicators, exchange rates, and regional economic data. 

business Cycle Data 
Gordon’s Business Cycle book a lengthy appendix which contains finance and 
macroeconomic data. It is provided in a text file (300K) in a SAS program format (not a 
SAS dataset) &. 

GilConsumer Price Index. Monthly, 1913-1995 

Financial Market Data 
minancial Markets Data from the Federal Reserve Bank of Chicago m 

The Federal Reserve Bank of Chicago provides free and comprehensive financial markets 
datasets, including Foreign Exchanee Rates, Selected Interest Rates, and Monev Markets. 
Many datasets include daily data going all the back to 1971. 

ELJP Morgan m 
JP Morgan is using the Internet to offer information needed to implement their 
RiskMetrics methodology and to provide data which can help managers control risk of 
their positions by using information on volatilities and correlations among over 300 
financial assets. J.P. Morgan offers the following data for free: Commoditv Index, 
Currencv Indices, Emeraina Markets Bond Index Plus, and a Government Bond Index. 

ElMonthlv Treasuti Bill Rates, 1934-1995 
This series provides averages of the daily closing T-Bill rate. 

ElTreasury Bond Futures Data, 1994-95 
This is an ASCII data file that contains high and low prices over 20 minute intervals on 
Treasury Bond futures from Jan 7 1994 to Feb 3 1995, for a total of 5347 observations. 
Variables reported include date, time, high price and low price. An hourlv series is also 
available. 
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IFtTerm Structure Data Excel spreadsheet - I. I megabytes 

mcCulloch/Kwon US Term Structure Database 
This data set offers U.S. Treasury term structure data for the period 1947- I99 I, 

H Aggregate Stock Market Information 
Most of the following data are current as of year end 1995: 

. All 4,417 Tickers. Companv Names and SIC Codes for NYSE 

. All 10.6 16 Tickers. Company Names and SIC Codes for OTC 

. Ail I.445 Tickers, Company Names and SIC Codes for AMEX 

. The 500 Companies in S & P 500 Ranked bv 1995 Stock Price Appreciation 

. Dow Jones Industrials Performance Since 1929 

. Monthlv Stock Price Performance of S&P 500 since 1984 (Last 2/29/96) 

. The 500 Companies in S & P 500 -- Stock Price Performance P/E Yields. etc. 

LZI New York Stock Exchange Daily Returns & Volume 
1962-1992 

Weeklv Dow Jones Industrial Average 1900-1989 
This dataset lists an important aggregate stock price index beginning in 1900. The data is 
in date, high, low, close, volume format. A daily version of this dataset is also available, 
but it nearly 2 megabytes in size and starts in I91 5. 

Corporate Data 
EDGAR Database m 

EDGAR is the Electronic Data Gathering, Analysis, and Retrieval system. It is a free 
service provided by the Securities and Exchange Commission (SEC). EDGAR is an 
important source of corporate financial report data, providing online access to the 
complete lOKs, 14Ds, S3s, 8Ks etc. of most public companies in the US over the last few 
years. Nearly three-quarters of the publicly traded domestic (U.S.) companies use 
EDGAR to make the majority of their tilings, and all registrants will be required to do so 
starting May 1996. 

Worporate Debt Issues, 1983-93 
This Excel file (2.7MB) lists over 10,000 bonds, convertibles, Euronotes, MTNs, Warrant 
bonds and other issues by company and CUSIP number (where available). Click & to 
download the same file in comma separated value format (1 MB). For more information 
about the data click here. 

This page has been visited mimes since March 5, 1996. 
Last Updated 317196. 
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Appendix 5: Insurm~ceData Sources - A.M. Best 

(http://www.risknet.com/dfa/insurance/amest/ambest.htm) 

A. M. Best 
Insurance Data 

This page points to insurance data available from A. M. Best Company 

More detailed information about A. M. Best Property and Casualty Insurance database,products 
can be obtained from their world wide web site. The address for A. M. Best’s home page on the 
World Wide Web is http://www.ambest.com. 

Details on the A.M. Best Database 

Like OneSource, A.M. Best is a valued added reseller of NAIC annual statement data. A.M. Best 
runs each company’s statement data through a rigorous process of intra and inter-page cross 
checks to ensure accuracy. Furthermore, A.M. Best alsb provides other useful information that 
extends well beyond the data on a company’s annual statement. 

The two key file types of interest to researchers include the A.M. Best Statement and Product 
Files. Statement Files retain the basic organization structure of the NAV.2 annual statement. All 
key data items found on a given page or schedule are presented in an individual file. Product 
Files present selections of data provided in several of A.M. Best’s print publications, such as 
Best’s Insurance Reports, Best’s Insurance News, Best’s Key Rating Guide, Best’s Market Guide, 
and Best’s Experience By State (By Line). Furthermore, A.M. Best also provides a Custom Files 
service that supports the creation of custom data selections. Furthermore, Best’s has developed its 
own proprietary network for online access to data called BestLink, allowing access via local 
access telephone numbers as well as with IBM’s advantis network. The pricing of these 
services (valid as of March 1996) are as follows): 

STATEMENT FILES retain the basic organization structure of the NAIC annual P statement. 
All key data items found on a given page or schedule are presented in an individual file. 

Statement Standard hY Each Additional Five Years of 
Pages Products Single Year of Data Data 
Included on Available Year of 
File Data 

PC-BF-01 Balance Sheet 2.3 Tape/Disk s525 5175 61.050 
PC-BF-02 Income Smlemenl 4 Tape/Disk 5375 6125 5750 
PC-BF-03 Cash Flow 5 Tape/Disk $375 $125 5750 
PC-BFM Investment Income & 6 Tape/Disk 5525 $175 Sl.050 

Capifal GainsiLosscs 
PC-BF-06 Premiums Written (By 8 TapeIDisk $525 $175 s I.050 

Line) 
PC-BF-09 Gcncrnl Expenses II TapcIDisk S525 $175 $1.050 
PC-BF-I I Stocks&Bonds-Summary 29 Tape/Disk $555 $185 51.110 
PC-BF-I 2 Bonds-Quality&Maurity 30-33 Tape $975 5325 51.950 

Distribution 
PC-BF-I4 Loss Rcscrvcs 72-126 Tape/CD $8.500 N/A N/A 
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PC-BF-14-Z Loss Reserves-Summary 72.73 Tape SE50 NIA N/A 
PC-BF-I 5 Direct Business (By SIUIC) 131 Tape/Disk 6525 $175 61.050 
PC-SF-16 Underwriting Analysis IEE Tape/CD 51.200 s400 62.400 

with Ratios (By Line) - 
IEE 

PC-SF-52’ P/C Best’s Statement File NIA CD N/A N/A $10.000 
(with Best’s Ratings) 

PRODUCT FILES present selections of data provided in several of A.M. Best’s Statement 
printed publications, such as Best’s Insurance Reports, Best’s Key Rating Guide, Best’s Market 
Guide, and Best’s Experience By State (By Line). 

PC-PF-0 I 
PC-PF-02’ 

PC-PF-02A* 

PC-PF-03. 

PC-PF-03A* 

PC-PF-05’ 

PC-PF-05’ 

PC-PF-05s 

PC-PF-50 

PC-PF-50 

PC-PF-01 

Name & Address 
P/C Exp. by Sate (By Line) 
All Sts-Standard Lines 
P/C Exp. by State (By Line) 
Standard Lines 
P/C Exp. by State (By Line) 
All Sa.-Combined Lines 
P/C Exp. by State (By Line) 
Per St.-Combined Lines 
P/C Key Rating Guide (with 
Ben’s Ratings)-Regular 
Service 
P/C Key Rating Guide (with 
Best’s Ratings)-Full Service 
P/C Key Rating Guide- 
Supplcmcnr (2nd & 3rd Qtrs.) 
P/C Best’s Ins. Reports (with 
Best’s RntingsbRegular 
Service. 
P/C Best’s Ins. Repons (with 
Best’s Ratings)-Full Service 
Name & Address 

Slatcmcnt 
Pages 
Included 
on File 
N/A 
14:All 
Sts. 
14:Ea. St. 

14:All 
SU. 
14:Ea. St. 

NIA 

N/A 

NIA 

N/A 

N/A 

N/A 

Standard 
Products 
Available 

Tape/Disk 
Tape/CD 

TW 

Tape 

Tape 

Disk 

Disk 

Disk 

CD 

CD 

Tape/Disk 

Any Single 
Ym of Data 

s450 
w,500 

5375 

$4.500 

f375 

N/A 

N/A 

N/A 

52.500 

52.860 

$450 

Each 
Additional 
Year of Data 

NIA 
51,500 

El25 

51,500 

$125 

N/A 

N/A 

NIA 

N/A 

NIA 

NIA 

Five Years 
of Data 

NIA 
$9,000 

f750 

59,000 

5750 

$175 

5535 

s75 

NIA 

N/A 

N/A 

BESTLINK SERVICES is A. M. Best’s proprietary online database that provides 
continually updated financial data on more than 3,800 insurers, as well as daily insurance-related 
news. 

Unlimited Access Options 

Users requiring frequent and extensive access to one or more BestLink databases can purchase 
the right to unlimited access to the file(s) by prepaying the equivalent of the basic tile cost 
(magnetic tape or CD-ROM file) plus 30%. If you have already purchased a current data year file 
on tape or CD-ROM, you can be credited the tape or CD-ROM price toward the unlimited access 
price and charged the additional 30%. (Example: If you purchased the Statement File at $10,000, 
you can receive unlimited BestLink access for an additional $3,000.)’ Note: The $15 per hour 
Connect Time charge will still apply. 

212 



Loss Reserves/Schedule P (P/C) 
Schedule D (P/C) 
Underwiling Analysis wilh Ratios (IEE)-(P/C) 
Experience By Stne (By Line)-Std. Lines (P/C) 
Experience By Stale (By Line)-Cmb. Lines (P/C) 
lnsumnce News 
Stakment File* (P/C) 
Best’s Company Reports 

Tap&D Price 

S8.500 
53.060 
s2.400 
s9.000 
s9.000 
ssoo 
s I0,000 
s2.500 

Unlimited Online Access 
Charge (30%) 
s2.550 
S918 
5720 
52,700 
52,700 
$1.50 
s3.000 
5750 

Total Price 

511.050 
53,978 
53.120 
SIl.700 
Sll.700 
$650 
513.000 
S3,250 

l Besl’s Statement File on CD-ROM includes unlimited xcess to the corresponding databases on BestLink: Pmfilc Annual. 
Protilc Quarlerly, Financial, Schedule D, and Rcinsunmcc-Summary (P/C only). 

CUSTOM FILES 

To order custom data products, call A. M. Best Custom Products & Services at (908) 439-2200, 
extension 5383. 

. 
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Aupendi.r 6: /nsuronceData Sources - Insurance Services Office f/SO) 

(httD://www.risknet.com/dfa/insurance/iso/iso.htm) 

Insurance Services Office 
Insurance Data 

This page points to insurance data available from Insurance Services Office (ISO). 

The Insurance Services Office section of DFAWeb is under “heavy construction”. Please come 
back later for a more complete site. 
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.+lppettdi.v 7: It~.vutwweData Sources - OneSource 

(http://www.risknet.com/dfa/insurance/onesource/onesource.htm) 

OneSource US Insurance: Property and 
Casualty 

Insurance Data 
This page provides details concerning insurance database services available from OneSource. 

More detailed information about the OneSource US Insurance: Property and Casualty oroducts, 
including software demos, can be obtained from their world wide web site. The address for 
OneSource’s home pace on the World Wide Web is http://www.onesource.com. 

Details on the OneSource Database 

1. Delinition 

OneSource Information Services (OK) offers more than 50 electronic business information titles 
that respond to market demands for products that combine high quality information with state-of- 
the-art access and manipulation software. 

In the case of the OneSource US Insurance: Property and Casualty products, OIS delivers 5 
annual statement information titles that include the company tinancials, (including the IEEs), the 
page I4 State and LOB information. and the full details of Schedules P, F and D. The source of 
the information is the National Association of Insurance Commissioners (NAIC) with whom OIS 
has a long term redistribution agreement. 

2. How long a time series is available? 

Most of the financial information is presented in an integrated 5 year historical series. The 
Schedule P, F and D products are current year only. 

3. Cost and feasibility of obtaining 

OneSource does not publish a price list to the public, but their products are delivered on a flat 
price annual subscription basis that varies with number of databases accessed and number of user 
groups. While the data are delivered on CD/ROM, OneSource “products” include customer- 
specific training and intensive support services. The products are Windows-based and can be run 
on i486 or higher PCs with configurations for stand alone computers or local area networks 
(LANs). 

The first delivery of the annual financial information, including Schedule P, occurs at the end of 
March for the previous year’s data. OlS refreshes the database around April 15th and around the 
15th of each month there after. New information continues to flow in during the spring and early 
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summer in consonance with the deadlines for the various tilings, i.e. Combined Filings for 
groups, quarterly tilings, etc. Schedules D and F are initially released around the 20th of April 
and updated two additional times in the summer and fall. 

4. Legal considerations: who owns and confidentiality 

Subscribers must sign and adhere to the provisions of OneSource’s product license agreement. 
Like other software license agreements, this document requires the subscriber to acknowledge 
that the product is a copyrighted work, and that the data is the property of the data vendor. The 
agreement spells out how the product can be installed & used, what the subscriber’s redistribution 
rights and restrictions are, and addresses the issue of indemnity. 

5. Available by company or by larger groupings? 

The financials and Schedule P are available for both individual companies and for the 
“combined” NAIC tiling groups. Users can manipulate the datadase using lO,OOO+ different 
criteria to form additional groupings for peer group analysis or benchmarking. 

6. Other relevant information 

The products can be directly accessed from either Lotus l-2-3 or Microsoft Excel by using the 
OneSource Add-in. This feature empowers the spreadsheet user who wants to develop 
proprietary analytical and graphical models. The needed information is tagged using controls in 
the add-in software and it then flows automatically into the spreadsheet from the CD/ROM. 

OneSource’s Schedule D holdings database includes the complete securities portfolio of every 
holding of every company. The holdings data can be manipulated to develop groupings based 
types, classes and quality, as well as many other criteria. 
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Appendix 8: InsurnnceData Sources - NAIC 

(http://www.risknet.com/dfa/insurance/naic/naic.htm) 

National Association of Insurance 
Commissioners 

Insurance Data 
This page provides details concerning insurance database services available from National 
Association of Insurance Commissioners (NAIC). 

The NAIC Database Products Catalog provides further descriptive information. The address for 
the NAIC’S home uaae on the World Wide Web is htto://www.naic.ore, 

Details on the NAIC Database 

Definition: The NAK maintains the largest insurance industry database in the world, with over 
4700 Life/Health and Property Casualty companies. This accounts for 98% of all U.S. domiciled 
insurance companies. The information on the NAIC database captures nearly all of the 
information from the statutory filings that the insurance companies are required to submit. The 
database also contains information filed by Title, Fraternal, and HMDI companies. 

The number of insurance companies reporting to the NAIC and the availability of their data to 
the commercial market is as follows: 

Company Type 

Life 
Property 
Fraternal 
HMDI 
Title 
Combined Filings 

Number of 
Companies 
I.692 
2,685 
139 
II9 
91 
P/C 325 
M-I 234 

Filing Date Data Availability 

3/l 4/l 
3/l 4/l 
3/l 4/l 
3/l 4/l 
3/l 4/l 
5/l 5115 

The information on the database dates back to 1984. Any or all years of data can be extracted 
from the database. 

Timeliness: Preliminary data for the current tiling year is available as early as the first week in 
April, as indicated in the table above. The database is finalized and complete in the second week 
of June. 
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Formats Available: Requests for nearly any media or format are easily accommodated by the 
NAIC. Available media types include CD-ROM, 3.5 inch diskette, cartridge tape, or reel tape. 
Data can be produced in mainframe formats, comma delimited formats for use with PC’s, as well 
as many other formats. 

Legal Considerations : The NAIC requires customers to sign a Database License Agreement. 
This agreement is a standard contract that describes payment, shipping, and order processing 
terms. The contract also describes how the data may be used. The standard License Agreement 
specifies that the data is for internal use only and redistribution is not allowed. When necessary, a 
customized License Agreement can be written to accommodate certain uses not permitted in the 
standard contract. 

Availability by individual company or company groupings: The customer has total flexibility 
in the selection of the type and number of companies selected. Data can be extracted for all 
companies in the database, or for customized lists of companies. The NAIC Database Products 
technical team can also extract data for companies chosen by custom selection criteria as 
specified by the customer. 

Pricing: There are standard prices for many parts of the database. Pricing for some of the most 
commonly requested information is as follows: 

Life/Health Property Casualty 

Standard “A” List $24,000 $34,500 
(see attached list of schedules) 
Schedule D Detail (All Parts) $5,000 $ 8,000 
Schedule F (All Parts) $ 8,000 _ 
Schedule S (All Parts) % 4,500 
State Page Data $2,300 $3,300 
State Page CD-ROM/Reports % 3,000 $4,000 
Balance Sheet/Income Statement S 1 ,I 00 $ 1,300 

Pricing for custom orders is determined by individual estimate. 
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Aplxwc Ji.y 9: /mwunceData Sources - NCCI 

(http://www.risknet.com/dfa/insurance/ncci/ncci.htm) 

National Council on Compensation Insurance 
Insurance Data 

This page provides details concerning insurance database services available from National 
Council on Compensation Insurance (NCCI). 

More detailed information concerning the NCCl’s InsNet Online Service and 
Research and Reference Products can be found on NCCI’s home oaae on the World Wide Web, 
located at http://bocaraton.com/ncci/. 

Details on the NCCI Databases 

The National Council on Compensation Insurance, Inc. (NCCI) headquartered in Boca Raton, 
Florida, is the nation’s largest information company serving the voluntary and involuntary 
Workers Compensation marketplace. The corporation provides database products, software, 
publications and consultation services to state funds, self insureds, independent bureaus, agents, 
regulatory authorities, legislatures and more than 700 insurance companies. 

A description of four of NCCl’s major databases follows: 

Policv Issue Capture Svstem (PIGS) 
The Policy Issue Capture System serves as the database of workers compensation and employers 
liability policies. PICS data is the information from the actual policy information page issued by 
the insurer to the insured. Policy data is used for controlling the submission of WCSP data, the 
distribution of experience ratings to insurers and for NCCl’s Proof of Coverage service provided 
to Industrial Accident Boards and Commissions. Information on policies for the latest three years 
is readily available. 

Financial Data Calls 
NCCI collects aggregate financial data calls which are used to determine the aggregate rate or 
loss cost level in a state. The primary ratemaking calls are the Policy Year and Accident Year 
Calls for Compensation Experience by State. These calls gather collected premiums, premiums at 
a common level, and losses for over I5 years of aggregate financial data by state. 

A major product produced from the Financial Data Calls is Loss Development Exhibits (Product 
Code 291 I) This package of exhibits provides a history of loss development factors by state for 
both policy year and accident year experience. Factors are provided for four development 
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methodologies for indemnity, medical and total losses. The development methodologies are paid, 
paid plus case, incurred excluding IBNR, and incurred including IBNR. Additional exhibits in 
the package include paid to incurred ratios and premium development factors as well as 
summarized linancial data. This product is available in hard copy or on diskette. The price is 
$1,000 per state for hard copy ($350 per state for affiliates) and $2,000 per state for diskette 
($700 per state for afliliates). 

Workers Compensation Statistical Plan (WCSP) 
Workers Compensation Plan data is the audited exposure, premium, and loss experience 
summarized by policy and state on a unit report for each Workers Compensation policy. The 
WCSP requires losses on the unit report to be valued as of the 18 months after policy effective 
date. Subsequent unit reports through a fifth report are required at I2 month intervals thereafter 
for any policies which contain open claims as of the previous submission. 

A major product produced from this database is Class Experience (Schedule Z Summary Data) 
(Product Code 2838) Schedule Z summarizes by class the combined experience for all affiliates 
in a state as reported on the Workers Compensation Statistical Plan. The report provides the class 
experience including exposures, premiums, indemnity losses and medical losses and claim 
counts by injury type. Experience is furnished for the latest live policy periods available. This 
product is available on hard copy, diskette, or magnetic tape. Beginning approximately second 
quarter 1996 Class Experience will be available through InsNet, NCCI’s on-line network. 

Detailed Claim Information 
Detailed Claim Information (DCI) collects 85 detailed data elements describing the insured, the 
claimant, the claim characteristics, the benefits and payment made, and the claim administration 
details of individual claims. The purpose of DC1 is to provide insight into the underlying 
elements inherent in the aggregate costs of workers compensation insurance. Claims are selected 
based on a sampling methodology which concentrates on collecting information for major 
injuries. Claims are valued at six months after accident date with subsequent reports required at 
annual intervals up to ten reports for any claims that remain open. 

New’summary publications from this database will be produced in 1996. Custom data extracts 
are available on diskette or magnetic tape. 

Other Products of Special Interest to Actuaries 
The Annual Statistical Bulletin (Product Code 2845) $225 ($145 affrliates) contains a summary 
of the latest and most significant statistics on Workers Compensation available. Reference tables 
provide histories of premium and benefit level changes by state, expense data, tax provisions, 
benefit provision summaries, loss development factors, and claim frequency and severity 
exhibits. The Bulletin in published annually in hard copy format. 
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Economic Conditions Report (Product Code 3043) This compendium of data and forecasts from 
government agencies, private companies, and universities contains comprehensive statistics that 
cannot be found anywhere else in one source. It provides indications of the changes that are 
occurring in a state’s economy and how those changes impact the Workers Compensation system. 
Available in hard copy for $250 per state per year. ($125 per state per year for affiliates). 

Legal Considerations 
NCCI owns the data contained in its databases and licenses it to interested persons. 

Available By Company 
Specific carrier and specific risk data is not available. Custom requests may be produced for 
specific groups of carriers as long as the individual carrier data is protected. 

Other Relevant Information 
NCCI affiliates receive significant discounts on most NCCI products and services. NCCI 
affiliation programs are available for private carriers, state funds, self insurance groups and 
reinsurers. 

For a complete catalogue of NCCI products and services or for more information on any NCCI 
product call Customer Service at 800-NCCI-123 (800-622-4123) from 8 AM to 8 PM EST. 
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Reflecting Reinsurance Costs in Rate Indications 
for Homeowners Insurance 

by 
Mark J. Homan 

Biograuhv 
Mr. Homan is the Director of Personal Lines Catastrophe Management with ITT 
Hartford. Prior to this position, he was the Director of State Management for 
Agency Personal Lines and spent seven years as the Actuary and Director of 
Personal Property Pricing with ITT Hartford. He received a B.A. degree, summa 
cum laude, with majors in Mathematics and Quantitative Methods from the 
University of St. Thomas, St. Paul, MN. He is a Fellow of the Casualty Actuarial 
Society (1987), a Fellow of the Canadian Institute of Actuaries (1990), a Member 
of the American Academy of Actuaries and a Chartered Property Casualty 
Underwriter (1995). He has authored two other papers on property ratemaking, 
Homeowners insurance Pricing and Homeowners Excess Wind Loads: 
Augmenting the IS0 Wind Procedure. 

Abstract 
This paper presents the rationale for reflecting reinsurance costs explicitly in 
Homeowners indications. Catastrophe reinsurance has become relatively 
expensive and it should be reflected in rates to ensure rate adequacy. The basic 
concepts to adjust historical losses for the benefits of reinsurance and to reflect the 
reinsurance premium will be addressed. One approach for dealing with the 
concepts will be illustrated with some discussion of possible variations. 
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Reflecting Reinsurance Costs in Rate Indications 
for Homeowners Insurance 

Overview 

Reinsurance costs are widely recognized as a legitimate cost of doing business. In the 

past, these costs were not explicitly reflected in Homeowners rate level indications but 

were either ignored or only implicitly reflected. They were implicitly reflected to the 

extent that the loss portion of reinsurance costs was assumed to be in the direct losses. 

The additional transaction costs were not always getting into the indications, and then, 

only indirectly. 

Most often reinsurance costs were simply ignored, since most of the ratemaking 

procedures used are based on the IS0 procedures. Since IS0 is a bureau, not an 

insurance company, they do not purchase reinsurance so they do not recognize it in their 

techniques. Also, now that IS0 produces only loss costs rather than rates, and since 

reinsurance is an expense item, reinsurance costs should not be part of the IS0 loss cost 

procedure. 

In the past, companies relied on the excess wind procedure to give them an adequate 

loading for catastrophe events. If it were sufficient, then the companies were only 

overlooking the transaction costs of reinsurance. When the reinsurance costs were 
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relatively low, the transaction costs were low, so the omission of reinsurance costs had 

only a small impact on the rate indications. 

Now catastrophe reinsurance costs are much higher and we know that the excess wind 

procedure does not generate an adequate catastrophe loading. It is no longer prudent to 

omit reinsurance costs from explicit treatment and still expect to produce an adequate 

rate. Thus, the indication procedure should be changed to allow for direct reflection of 

reinsurance costs. In many states there is not sufficient room to fully reflect these costs 

implicitly, if they ever were reflected. 

This paper will outline a basic approach that could be taken to reflect reinsurance costs in 

ratemaking. The paper discusses reflecting the cost of a property catastrophe treaty 

(referred throughout as catastrophe reinsurance) but the techniques could be applied to 

any reinsurance treaty. 

Underlving Justification 

In reviewing the CAS Statement of Principles Regarding Property and Casuaiv 

Insurunce Ratemaking, one can find several items that touch on the validity of reflecting 

reinsurance costs in rates. Two items are of particular interest. 

Principle 2 states that “a rate provides for all costs associated with the transfer of risk.” 

Under the Considerations section, the Principles state that “Consideration should be given 

to the effect of reinsurance arrangements.” 
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There are two primary impacts from a reinsurance arrangement. First is the cost for the 

risk transfer, the reinsurance premium, and second is the reduction in incurred losses, the 

loss recoveries. Part of the process of risk transfer that an insurance company uses is the 

transfer of a portion of their risk to other parties via minsurance transactions. Such risk 

transfer is necessary to preserve the financial solvency of the insurer and protect their 

assets so that claims may be paid. This makes the reinsurance cost a component in the 

overall cost associated with the transfer of risk. Thus, the Statement of Principles does 

not merely allow for the reflection of reinsurance costs but compels us to consider such 

costs. 

Some may also question whether catastrophe reinsurance is a legitimate cost of doing 

business. It seems that its primary function is to protect the insurance company’s assets 

after a significant event. The arguments against catastrophe reinsurance as a legitimate 

cost are getting much quieter in recent years. It is clear that catastrophe reinsurance is 

important for a company to maintain it’s ability to pay claims. Several companies 

become insolvent after Hurricane Andrew and the Northridge earthquake. Additional 

catastrophe reinsurance may have protected many of these companies. In addition, A.M. 

Best now reviews the catastrophe exposure and catastrophe reinsurance programs of a 

company as part of their rating procedure. Inadequate management of catastrophes, such 

as not managing exposure levels with appropriate reinsurance, will lead to a lower rating 

which may impact a company’s marketing. Clearly.catastrophe reinsurance has become a 

necessity for any company with significant property writings. Several states now have 
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specific regulations allowing the reflection of reinsurance costs in ratemaking, 

recognizing their validity. 

AS stated earlier, some companies may have been implicitly reflecting reinsurance costs 

in their rates through the selection of a rate change based on the indications. More likely, 

I believe that these costs were basically ignored in the past. To reflect the costs 

implicitly, there must be sufftcient room between the indications filed and the actual 

change that the company feels is necessary. This gap stems primarily from the allowable 

profit and contingency load and that the company truly feels it needs. However, as more 

states are becoming tighter on how profit loads are determined, the gap is getting smaller. 

At the same time, catastrophe reinsurance costs have increased to historically high levels. 

This leaves insufficient room in the more cat prone states to reflect these costs implicitly, 

leading to the need to reflect these costs explicitly, at least for catastrophe reinsurance. 

The smaller costs IFom other reinsurance programs are still ignored by most companies, 

or treated implicitly. In many cases, their costs may be too small to justify the effort to 

reflect them explicitly. 

Basic Outline 

At my company, we are only reflecting our catastrophe reinsurance treaty in indications 

at this time. This paper will only address this one treaty and not the other types of 

reinsurance that a company may purchase. While other forms of reinsurance could also 

be reflected using a similar approach to that taken for the catastrophe treaty, I will not 

develop all the comparable allocations of premium and loss benefit that would be needed. 
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These other reinsurance treaties do not represent nearly as significant a cost to 

Homeowners as does a catastrophe treaty. So, at this time, I have chosen to limit my 

discussion to reflecting catastrophe treaty costs. 

A reinsurance premium contains two primary components. The first is the loss benefit 

which represents the recoveries from the reinsurer that should be expected over the long 

term for the coverage purchased. The second component is the reinsurer’s expenses and 

profit, the transaction costs. In theory, the expected loss recoveries should already be 

reflected in the direct loss estimates in traditional indication procedures, so it is only the 

transaction costs for reinsurance that need to be added. 

There are some catastrophe treaties that include a payback provision. In essence, this 

reduces the loss recovery benefit of the treaty, since the reinsurer is basically loaning the 

funds that will be paid back. Thus, the loss benefit should be reduced by the fLnds that 

will be paid back. 

There are two possible approaches to loading in the reinsurance transaction costs. 

Theoretically, they both will yield the same answer, with perfect information. But the 

practicalities of applying the methods will drive the choice of which method to use. The 

first approach would be to break down the reinsurance premium into the loss and 

transaction cost components and then reflect only the transaction cost portion as an 

additional expense. However, it is extremely difficult, if not impossible, to determine this 

breakdown. Reinsurers do not file rates nor do they typically release such breakdowns. 
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In fact, catastrophe reinsurance costs are as much a function of supply and demand as 

they are the underlying economics. So this first approach is theoretical only and is not 

practically feasible. 

The second approach eliminates the need to determine the breakdown. This approach 

reduces the projected losses used in the rate level indications to reflect the expected 

benefits of reinsurance and then loads the entire reinsurance premium as an expense. It 

is this second approach that I advocate and will present here. 

Net Loss DAIS Reinsurance ADDroach 

The approach that we have recently developed is referred to as the Nef Lossplus 

Reinsurunce Approach. The basic procedure is to determine the reinsurance premium by 

state, adjust the losses to a net basis (after reinsurance) and load the reinsurance cost as an 

expense item. The following sections will outline each step in more detail. As used 

herein, the term “net” refers only to net of the reinsurance treaties which costs are being 

explicitly loaded, not final net of all reinsurance, pools, etc. Also, the premiums are on a 

direct basis, not net. 

Allocatiw Reinsurance Premium to State 
The first step in reflecting the reinsurance costs in the rate indications is to determine 

what these costs are for each state. Most catastrophe treaties are countrywide, corporate 

level treaties. Therefore, we must break down the total reinsurance premium to state and 

line. While this allocation will vary depending on individual company circumstances, a 
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general approach will be discussed here. An illmation of this allocation is shown in 

Exhibit 1. The example shown is just for one line. If multiple lines were involved, they 

could be treated as if they were additional states. 
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Exhibit 1 

Reinsurance Premium Allocation to State 

State 

A 
B 
C 
D 

E 
F 
G 
H 

Estimated Allocated Residual 

Annual Premium Allocation Total 

Subject Loss to Based on Based on Reinsurance 

Premium Treatv Losses l Premium Allocation 

18,975,OOO 2,345,OOO 3,165,750 10,071 3,175,821 
7,650,OOO 0 0 4,060 4,060 

17,325,OOO 1,350,OOO 1,822,500 9,195 I,83 1,695 
11,038,OOO 0 0 5,858 5,858 

650,000 0 0 345 345 

4,650,OOO 980,000 I ,323,OOO 2,468 1,325,468 
22,950,OOO 1,765,OOO 2,382,750 12,180 2,394,930 
4,850,OOO 0 0 2,574 2,574 
4,425,OOO 375,000 506,250 2,349 508,599 
1,225,OOO 0 0 650 650 

Total 93,738,OOO 6,815,OOO 9,200,250 49,750 9,250,OOO 

Total Reinsurance Premium 9,250,ooo 
Residual Premium 49,750 

* - Estimated Premium is Expected loss loaded by 35% for 
Expenses, Profit and Risk Load 
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The allocation is done in two stages. ‘First, the expected losses for major events are 

determined for each state that has a significant exposure to large catastrophes such as 

hurricanes or earthquakes. We estimate these losses through the use of models. We use 

both an in-house single event model for hurricane and earthquake and a simulation model 

from an outside vendor to develop estimates. These outside vendor models are becoming 

widely used within the industry and all can provide loss estimates for extreme events on a 

state basis. Earthquake must be split separate from hurricane since not all of these losses 

are covered by Homeowners. In fact, the majority are covered under a separate line. 

Some earthquake losses are covered in certain Homeowners endorsements, such as an “all 

risks” contents endorsement like the IS0 HO-1 5. This portion of the earthquake losses 

should be allocated to Homeowners along with the hurricane estimates. These major 

events represent a significant portion of the catastrophe treaty costs, since these are the 

events that the treaty is expected to cover. 

The expected losses are then loaded by a factor to represent the reinsurer’s expenses, risk 

load and profit. For illustration, the exhibit shows a 35% load. This converts the 

expected losses to an estimated premium. To the extent possible, the loading should 

represent that actually used by the reinsurer in the treaty. OAen, this is not directly 

available from the reinsurer, so it must be estimated. The loading, actual or estimated, 

will vary based on the reinsurance market and the amount of capacity in the market 

relative to demand. The procedure described is somewhat sensitive to the loading 

selected. A higher loading will allocate more of the treaty costs based on the expected 
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losses from major events. Some analysis has estimated this load to run as high as 50% to 

100% of the expected losses for some catastrophe treaties. 

There is typically some additional cost beyond the major events. This explains why there 

is some residual reinsurance premium to allocate beyond the major events. The residual 

premium is then allocated based on subject premium (the premium for lines subject to the 

treaty). Every state receives some allocation, even if a small one, since there can be 

multi-state events that will entail a reinsurance recovery. The amount of premium 

allocated based on subject premium should be fairly small and will depend on the 

expected losses and loading chosen. Using the subject premium is not completely 

accurate since states with similar premium volumes may have significantly different 

exposures to catastrophic events. Further research into the use of loss estimates from 

certain perils or events rather than subject premium will improve this allocation. 

Coastal states will have a greater allocation than the inland states, such as the Midwest, 

since they have more significant catastrophe potential. In addition, the Homeowners line 

has more catastrophe potential than Inland Marine or Automobile Physical Damage 

which are also subject to the catastrophe treaty. So coastal Homeowners states will 

receive a catastrophe treaty allocation that is greater than the corporate average. 

Adiusting Losses to a Net Basis 
Since the selected procedure reflects the full reinsurance premium as an expense, we can 

not reflect the full loss loading. Otherwise, we would be double counting some losses, in 
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both the reinsurance costs and in the direct losses. Therefore, we adjust the direct losses 

to a net basis (i.e. after catastrophe reinsurance), to eliminate any double counting. 

Since most large events are capped to their net basis, it is less important that they are 

initially estimated accurately. The amount of loss that is removed is not important. 

These losses are loaded through the reinsurance premium. Thus, the reinsurance 

premium can serve to provide the necessary loading for larger events. 

The actuary should also determine whether certain events are capable of exceeding the 

upper limit of the treaty. If an event blows through the treaty, the company will be 

responsible to pay these losses with no recovery. Clearly, these additional losses beyond 

the treaty limit should continue to be reflected in the rates at a 100% basis. 

The method discussed here is based on using an excess wind procedure to develop the 

underlying loss estimates. Further discussion on variations to the approach based on the 

method used to determine the underlying loss loading is included in Appendix A. We 

adjust the losses to a net basis in two ways. First, the excess wind procedure is modified 

so that any wind event reflected in the long term load is adjusted to a net basis. Second, 

any event in the 5 year indication experience period that is other than wind or hail, and 

thus not in the excess wind procedure, and which exceeds the treaty threshold is also 

capped. The catastrophe treaty threshold is determined by state. 

Assuming that the treaty is corporate in nature, Homeowners losses do not need to reach 

the corporate attachment point to generate recoveries. Recoveries on the Homeowners 
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line will begin once the total corporate losses exceed the attachment point. To determine 

the level of losses at which the catastrophe treaty will start to cover Homeowners losses, 

the ratio of the Homeowners reinsurance premium to the total reinsurance premium for 

the state is multiplied by the corporate treaty attachment point. For example, if 

Homeowners represents 39% of a state’s reinsurance premium and the corporate treaty 

attachment point is S50 million; then, the threshold for Homeowners is $19.5 million. 

This means that that if Homeowners losses exceed $19.5 million, we expect that the 

corporate losses will exceed $50 million and we will then recover losses above that point 

from our reinsurer. However, each actual event will have a different mix of damage for 

each line covered. So while this may be the expected values for line by line retention, it 

will vary by event. Alternative approaches, such as modeling of each event, may not 

need to rely on this assumption. 

In addition, most catastrophe treaties do not pay 100% of the losses subject to the treaty. 

There is some copayment by the insurer to make sure that the company is still vigilant in 

their loss settlement practices. For example, if a catastrophe treaty will pay 95% of the 

losses subject to the treaty, we should retain 5% of the losses above the threshold. The 

example shown in Exhibit 2 reflects a 5% copayment. 

As mentioned earlier, the basic approach here is based on a variation of the IS0 Excess 

Wind Procedure. The variation on the previous IS0 methodology augments the excess 

wind procedure by reflecting a longer historical period through the application of 

modeling. A 50 year plus event is reflected to extend the historical period from the 
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current 35 years or so. In many states, the limited history is inadequate to produce a 

proper loading (for catastrophes, 35 years is still inadequate). By augmenting the actual 

history with a projection for more extreme events, a more accurate loading can be 

developed. Thus, we are no longer at the mercy of what may have happened in the 

historical period. This event is determined from the models by taking the top two 

percentile of potential events and deriving an annual expected loss from such events. 

We remove any actual year from the historical period any loss that exceeds the modeled 

50 year plus level to avoid any overstatement or double counting of extreme events. By 

weighting the modeled 50 year plus loss event at 2% (once in 50 years) and the remaining 

history at 98%, we derive an excess wind factor that reflects extreme events. As shown 

in Exhibit 2, for this example, we weight the I .030 factor from the historical period with 

a I .474 factor from the modeled event to yield a final excess wind factor of 1.039. 

(.98* I .030 + .02* I .474 = 1.039) However, we are still not reflecting the Ml spectrum of 

events since there may be a gap between the historical events and the 50 year plus event. 

Yet, we are malting a more accurate projection of the loading needed to cover excess 

wind events than is possible using the historical period only. 

A sample calculation of adjusting the IS0 excess wind procedure is shown in Exhibit 2. 

The modified excess wind procedure starts with the historical wind and total losses as 

before. The wind and non-wind losses are then restated to current cost levels in order to 

apply the current reinsurance treaty coverage. To adjust the losses to current levels, we 

multiply the historical wind/non-wind ratio by an average of the non-wind losses for the 
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past three years trended to the projected cost level. This brings the wind losses from their 

historical level to the projected level using the non-wind losses as a cost index. The 

resulting wind losses are then capped for the effect of the catastrophe treaty. The 

wind/non-wind ratio is then recalculated and the calculation proceeds as before from this 

point. For a discussion of the remaining steps in the calculation, please refer to Appendix 

B included or to my earlier paper.’ 

The historical losses used can be either industry or company losses. The non-wind 

projected losses used must be a company basis to allow the reinsurance capping to be 

applied. The historical years are used to determine a wind/non-wind ratio to multiply the 

projected non-wind loss average by, on an individual year basis. Because of this, you can 

even mix industry experience with company experience. This may be advisable since the 

industry experience typically lags the experience available on a company basis. The 

example shown is based on company experience for all our Homeowners operations 

combined. The other exhibits are only for one operation so they will not balance 

precisely. This is similar to what one would see if we had used industry experience for 

the excess wind load calculation and company experience for the calculations shown on 

the other exhibits. 

’ Homan. Mark, Homeowners Insurance Pricing, CAS Discussion Paper Program, Pricing-May 1990. pg. 
719 
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The adjustment of historical losses to current costs is very important to determine the 

impact of the catastrophe treaty. Early events would appear to be too small for the treaty 

but there has been significant inflation over the past 30 years. In addition, the non-wind 

losses reflect the growth in exposures that the company has experienced over time. So, a 

similar event to one in the historical period may now cost much more since we have more 

values exposed. Using the non-wind losses as our cost index takes both elements into 

account and adjusts the wind losses to the level that we would expect if the same event 

occurred today in terms of both current costs and current exposures. In Exhibit 2, the year 

1981 would not be capped by reinsurance if it were not adjusted to current cost and 

exposure levels. 

I would like to make some points on the reinsurance capping. Our company uses a high 

layer catastrophe reinsurance program. In most years, we do not expect to trigger our 

rein&trance coverage. Some companies purchase coverage at a working layer that is 

triggered more frequently. This is a company choice that is driven by their size, desire 

for stability, etc. With a higher layer program, there will be fewer years that must be 

capped in this approach. Second, the method as outlined treats the losses in a year as a 

single event for capping. This is not completely accurate. In the years that must be 

capped, with a high layer program, we expect that there will have been a large event that 

would trigger coverage. However, some portion of the losses are likely from other 

events. If the historical data is available, one should split the losses into the large event, 

or events, and all other. If they are not available, which is most likely for the older years, 

this method may overstate the capping and thus understate the load. With a high layer 
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program, this understatement is small and is then spread over the number of years used in 

the excess load calculation. We accept this understatement as slightly conservative and 

not truly significant. Depending on a company’s catastrophe reinsurance program, the 

extent of this understatement should be reviewed and adjustments made if it is considered 

significant. 

There will still be excess wind losses that fall in the range between the normal wind 

threshold, which is based on the median of the wind/non-wind ratio, and the catastrophe 

treaty threshold. Most companies purchase catastrophe reinsurance only for protection 

from extreme events. They should have sufficient financial resources to handle the 

smaller catastrophes that occur with respectively greater frequency. However, some of 

these smaller catastrophe events are still treated as excess wind by the excess wind 

procedure. So there will still be an excess wind factor. The excess wind factor after 

adjusting for reinsurance is always less than or equal to the excess wind factor before the 

reinsurance adjustment. It is equal when there are no years in the procedure that would 

exceed the reinsurance treaty threshold. 

For catastrophe events other than wind or hail, the capping is much simpler. Any 

catastrophe is trended to current costs using the loss trend factors in the indication. If the 

event would exceed the catastrophe threshold, the loss is capped for the effect of 

reinsurance. 
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Sdittin+- Reinsurance Premium bv Form Group 
Now that we have the losses adjusted to the appropriate level, we move on to the 

reflection of the reinsurance premium. The reinsurance premium allocated to the state 

must be split into the two form groups used to develop rate indications. These are the 

building forms; 1,2,3 and 5; and the content forms; 4 and 6. The contents forms do not 

represent the same exposure to the treaty as the building forms due to the type of property 

being covered. The reinsurance premium is split into two parts based on the values 

exposed. See Exhibit 3 for a sample calculation which also shows State C for 

comparison purposes. 
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Exhibit 3 

Split of Reinsurance Premium to Forms 

Reinsurance Allocation 
Total State Premium 

InDut Items 

State A 

3,175,821 
18,975,OOO 

State C 

1,831,695 
17,325,bOO 

Averaee Amount of Insurance 

Forms 2,3 Average A01 

Contents Exposure Factor 
Forms 2,3 Adj Avg A01 
Forms 4,6 Average A01 

115,375 106,750 
63.0% 65.0% 

188,06 I 176,138 
30,466 30,185 

Total Values Exuosed 

Forms 2,3 Total Values 
Forms 4.6 Total Values 

98.5% 97.3% 
1.5% 2.7% 

Written Premium Solit 

Forms 2,3 Premium 
Forms 4.6 Premium 

95.9% 94.8% 
4.1% 5.2% 

Calculated Items 

A State 

Forms 2,3 
Forms 4,6 
Total 

Reinsurance Written Reinsurance 

Premium Premium Load 

3,128,183 18,197,025 17.2% 
41,631 777,975 6.1% 

3,175,821 18,975,OOO 16.7% 

State C 

Forms 2,3 
Forms 4,6 
Total 

1,782,239 16,424,lOO 10.9% 
49,456 900,900 5.5% 

1,83 1,695 17,325,OOO 10.6% 
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For building forms, the exposed value is the building amount in Coverage A and the 

contents in Coverage C. A basic Form 3 provides Coverage C at 50% of Coverage A. 

Many companies have replacement cost on contents endorsements that increase this 

percentage. In the example, we are using 70% of Coverage A for the increase from the 

endorsement with 65% of the policies having the endorsement. This yields a contents 

exposure increase of 63% (.65 * 70% + .35 * 50%). For the tenants forms, there is only 

Coverage C exposure. For condominium policies (Form 6), there is some structural 

coverage, Coverage A. Historically, the amount of Coverage A on these policies has 

been small. However, we are starting to see this increase and we will have to reflect the 

total amount of exposed values from Coverage A on these policies in future calculations. 

After allocating the premium by exposure, the reinsurance premium for the form group is 

then divided by the direct premium for the form group to determine the reinsurance cost 

as a percentage of premium. This leads to a smalle&targe for the contents forms than 

for the building forms. 

Loading the Reinsurance Cost into the Indications 
The premium charged for the catastrophe treaty is determined as a percentage of the 

subject premium. Since most treaties are corporate in nature, the percentage applied to 

the subject premium represents an average rate for all states and all property lines. Any 

increase in premium subject to the treaty, beyond our current levels, will increase the 

reinsurance cost by this corporate rate. 
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In the example for State A in Exhibit 4, let’s assume a catastrophe program that costs 

9.9% of the subject premium. Therefore, in the rate indication, the first 9.9% in any state 

is treated as variable and any portion above 9.9% is considered fixed cost. Any increases 

in subject written premium will lead to additional reinsurance charges only at the 9.9% 

rate. So for a sample state, the reinsurance cost for Forms 1,2,3&5 is 16.1%, of which 

9.9% is variable and 6.2% fixed. For Forms 4,6, the reinsurance cost is 5.8% which is all 

considered variable. The variable reinsurance cost is subtracted from the PLR while the 

fixed portion is added to the adjusted loss ratio. A similar calculation is shown for State 

C as well. 

There may be some shortfall in completely covering the projected reinsurance costs in 

using this approach, assuming that the reinsurance treaty is priced based on a percentage. 

of the subject premium. A shortfall could occur if there was significant growth in states 

with lower than average reinsurance charges. The increased premium would increase the 

reinsurance charge at the higher corporate rate, yet the rates in the state developed by the 

approach presented here would be based on a lower reinsurance cost. One should be 

sensitive to this. However, capping the variable portion in states with higher than average 

reinsurance charges will not necessarily lead to shortfalls. In fact, if they were not 

capped, the company could collect more premium than is needed to cover the reinsurance 

costs. This could cause a poor competitive position in the market or possibly negative 

reactions from the regulators in a state. 
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Instead, if the reinsurance premium is based on exposure, then the-only variable portion is 

that which adjusts for the increases in value. The remaining cost should be considered 

fixed. Again, before applying these techniques, an actuary should review the exact 

framework of the company’s reinsurance treaty. 

Expense Breakdown for Indications 
Exhibit 4 

State A Forms 4.6 Forms 2.3 

Current Expenses 28.3% 34.7% 
Current PLR 71.7% 65.3% 

Reinsurance Expense 
Variable 
Fixed l 

17.2% 6.1% 
9.9% 6.1% 
7.3% 0.0% 

Proposed PLR 61.8% 59.2% 

C State 

Current Expenses 
Current PLR 

Forms 4.6 Forms 23 

28.3% 34.7% 
71.7% 65.3% 

Reinsurance Expense 
Variable 
Fixed l 

10.9% 5.5% 
9.9% 5.5% 
1.0% 0.0% 

Proposed PLR 61.8% 59.8% 

* - Fixed portion is amount over the corporate rate on line. 
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Summarv 
Although reinsurance costs have long been recognized as a legitimate cost of doing 

business, they have not been explicitly reflected in rates until recently. These costs are 

too significant to be ignored and they most be addressed. Reinsurance costs need to be 

considered to ensure an adequate rate. It’s in the Principles. 
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Appendix A 

Variations in Underlying Loss Loading 

The method described herein is dependent on the approach used to reflect the excess 

losses. There are several methods being used to reflect excess wind losses. Regardless of 

the method used, the basic concepts remain the same. The initial loss loading must be 

modified for the expected reinsurance recoveries and then the reinsurance premium can 

be reflected. The approach to modify the losses for anticipated recoveries will depend on 

how the losses are reflected. 

In the paper, I have been using an excess wind procedure based on the IS0 procedure. 

Historically, such excess wind procedures based their loss estimation only on historical 

data. During periods when there is a lack of hurricanes or excess wind losses, an excess 

wind procedure is a limited tool for developing rates since it will understate the expected 

losses. On the other hand, when there are more events or the presence of extreme events, 

the excess wind procedure can overstate the expected losses. The variation shown was 

designed to augment the history used in the IS0 procedure with additional losses as 

needed to avoid understatement and to eliminate the more extreme events from the 

historical period to avoid overstatement. A more detailed discussion of this augmentation 

can be found in an earlier pape+. 

’ Bmdshaw, John and Homan, Mark, Homeowners ficess Wind LoadsAugmenring the I.90 Wind 
Procedure. CAS Forum, Summer 1993. pg. 339 
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However, IS0 is no longer using an excess wind procedure, so they no longer are 

updating the industry experience in that format. It may become difftcult to obtain the 

history to use this method. Thus an alternative method has been developed which will tie 

into the loss distribution from a wind model. 

The use of models for estimating hurricane losses has become increasingly widespread. 

Not all companies have access to such models and many still are uncertain whether the 

estimates from the models are correct. The approach discussed in this paper can alleviate 

much of the reliance on the accuracy of such model. Wind models provide estimated 

losses for the events reflected in the model. A wind model that estimates losses for each 

individual event is the easiest to use. Such a model allows for the estimated loss to be 

adjusted for reinsurance on an event by event basis. Thus, one can get the loss projection 

and the reinsurance adjustment at the same time. Also, since many catastrophe treaties 

are corporate in nature as are the models, the reinsurance adjustment can be more 

accurate, assuming the model is run on a corporate level. This makes the line adjustment 

to the treaty threshold unnecessary eliminating a potential source of error. Some wind 

models provide loss estimates in terms of average annual costs rather than event by event. 

To make the necessary adjustments for reinsurance to such models, you must work with 

the model designers to make the necessary changes within their fotmulas. 
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Other companies tise all catastrophes in their loadings rather than just wind. Some use 

hurricanes only. In either case, the historical events should be adjusted to current cost 

levels and then adjusted for reinsurance using the current program. After adjusting the 

history to be net to anticipated recoveries, the reinsurance premium can be reflected. 
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Appendix B 

Excess Wind Procedure 

This appendix will provide a more detailed explanation of the modified Excess Wind 

procedure shown in Exhibit 2. 

Columns 2 and 3 ate the raw data inputs of the wind and non-wind losses. Each year is 

treated as a sample observation and is treated independent of the other years. The 

procedure relies on averages of the observed ratios rather than aggregates. This allows 

for a mixture of industry and company data, which will be at different loss levels. Since 

industry data is often not as up to date as company data, the company data can be used 

until industry data is available for the latest year or two. 

Column 4 is the ratio of the Wind to Non-wind losses, or column 2 divided by column 3. 

Column 5 is the ratio from column 4 multiplied by the projected non-wind loss. The 

projected non-wind loss is the average of the latest three years, trended by the average 

cost factor used in the indication. In this case, the trend factor is 4.5% for a three year 

period to go from an average of 1993 to 1996. The wind losses determined by this . 

calculation represent wind losses at current cost and exposure levels as explained in the 

paper. These losses are needed to determine the impact of the current catastrophe 

reinsurance treaty to historical losses. 
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Column 6 are the wind losses adjusted for the impact of reinsurance. If the recalculated 

wind loss for the year is greater than the treaty threshold (noted on the exhibit), than the 

wind loss is capped at the treaty amount plus 5% of the loss above the treaty threshold. 

The 5% is the copayment under the treaty. 

Column 7 is the adjusted wind/non-wind ratio calculated by dividing column 6 by the 

non-wind projected loss. It is important to note that for most years, column 7 is the same 

as column 4. It is only for years that would trigger the catastrophe reinsurance coverage 

that the ratio will change. Also, column 7 is always equal to or less than column 4. 

Column 8 is the wind/non-wind ratio from column 7 for the years that are considered 

excess years. For a year to be considered excess, the wind/non-wind ratio must excess 

I.5 times the median wind ratio and be greater than ,250. The second threshold of .250 is 

important for states with fairly low wind activity. It keeps the excess wind adjustment 

small for such states so that the adjustment is truly for excess wind. In this example, the 

,250 is the key value not I .5 times the median. Only four years in the historical period 

are considered excess. 

Column 9 is the excess ratio. This is the portion of the excess wind/non-wind ratio from 

column 8 that is greater than the median. While it may at first seem odd that the trigger 

for an excess year is I .5 times the median and that the excess portion is the amount over 

the median, this was intended. The same approach is taken to adjust the five years in the 

experience period of the indication, so it produces the proper answer. 
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Column IO is the amount of the excess losses. This is column 9 times the projected non- 

wind losses. 

Column I I is the non-excess losses which is the sum of the projected non-wind losses 

and the wind losses in column 5 minus the excess losses in column 10. 

Column 12 is the non-wind losses divided by the non-excess, or the projected non-wind 

losses divided by column 1 I. 

This provides all the numbers needed to calculate the excess wind factor. The excess 

wind factor is unity plus the product of the average excess ratio from column 9 and the 

average non-wind/non-excess ratio from column 12. Since the excess ratio is the ratio of 

the excess losses to the non-wind losses, the product is the ratio of excess losses to non- 

excess losses. It is applied to the non-excess losses in the indication procedure, so the 

result is the excess losses. The unity is to retain the non-excess losses in the final figure. 

There is one final set of calculations that must be done for the 50.Year event situation. 

The wind losses used here are for any events in excess of 50 year return periods. It is 

derived from modeling and represents the expected wind losses From the top two 

percentile. The non-wind projected losses remain the same as used above. The 

calculation of all ratios and figures is the same for any individual year as outlined above. 

The one year is then used to calculate an excess wind factor for these larger events. The 

two excess factors are then weighted together using 98% weight on the historical period 

253 



and 2% for the 50 year plus event. To eliminate any duplication, we drop any year that is 

in excess of the 50 year event from the historical period. 
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PRICING TEE EARTHQUAKE EXPOSURE USING MODELING 

Debra L. Werland and Joseph W. Pitts 

Catastrophe hazard modeling has become an important tool for ratemaking in lines of 

buaina subject to low frequency, high severity type losses. Natural hazard events such as 

hurricanes, tornadoes. and earthquakes rarely occur, but their devastation can be 

overwhelming when they do. Few insurance companies have enough historical loss data to 

sufficiently price for these events. In our paper, we plan to demonstrate a methodology 

which details the use of a model’s output in dekrmining a statewide rate level indication for 

the earthquake line of business, as well as a methodology for determining more equitable 

territorial relativities within a state. 

Our paper will outline a ptacticsl and understandable methodology for dealing with some 

complex issues involved in pricing the earthquake insurance exposure. The emphasis of the 

methodology within our paper will be on practicality and potential regulatory acceptance. 

Another feature of our paper will be the inclusion of a section dealing with the reflection 

of the net cost of reinsurance in the proposed direct rates. A final consideration is the 

treatment of a mode-l’s output when it is believed the modeled results are less than fully 

credible. 

The CAS ratemaking principles address data considerations used in making rates. 

Catastrophe harard mode&g output is an important component of “other relevant data” that 

is referred to in the principles [l]. A company’s history of earthquake premiums and losses 

does not have sufficient predictive power for establishing adequate rates. Our paper will 

rely on the power of catastrophe hazard simulation of multiple possible events and the 

associated loss costs generated from these models. 
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PRICING THE EARTHQUAKE EXPOSURE USING MODELING 

INTRODUCTION 

pricing for an insurer’s risk to hurricanes and earthquakes has never been an easy task. 

No insurer’s loss history is adequate enough to cover the expectation of all possible type 

and size of events. Any ratemaking formula based on actual loss experience alone for 

such rare events will fail to capture the scope of possible events that could impact an 

insurer’s financial results. Catastrophe hazard modeling represents a way of developing 

the scope of possible catastrophic events that can impact an insurer’s book of business. 

The financial impact of these events is based on scientific evidence of the characteristics 

of the underlying peril and its interaction with the insured properties. 

In this paper we will concentrate on the earthquake peril and its pricing. After an 

overview of earthquake modeling, we will discuss target underwriting profit provisions, 

reinsurance costs, and other components of developing an adequate rate per $1,000 of 

dwelling coverage for a typical book of Homeowners business. The credibility of the 

results will be addressed in the derivation of the indicated rates, along with partitioning 

of the state into geographic zones based on the relative difference in loss costs determined 

from the modeled results. 

We will then discuss possible shortcomings inherent in modeling and suggest several 

solutions on how to handle these deficiencies in the derivation of an adequate rate. We 

will conclude the paper with a list of additional considerations that need further research, 

given the great uncertainty associated with any modeling process. 
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OVERVIEW OF EARTHQUAKE MODELING 

Actuaries are relying more than ever on the use of modeling in accurately pricing 

catastrophic risks such as hurricanes and earthquakes. While we may not completely 

understand the intricacies of all functions and assumptions used in modeling, it is 

important nonetheless to present an overview of an earthquake computer simulation 

model. Appendix A describes the earthquake model developed by Applied Insurance 

Research (AIR) of Boston, Massachusetts. 

‘Ihe US earthquake model developed by AIR uses sophisticated mathematical techniques 

to estimate the probability distribution of losses resulting from earthquakes anywhere in 

the 48 contiguous states. The earthquake model is composed of three separate elements: 

an earthquake occurrence model, a shake damage model, and a fire-following model. 

For n&making purposes, the output from the model will include loss costs applicable to 

a specific location, type of construction and policy form. Our interest is in a single- 

family dwelling as covered under a typical Homeowners policy. The loss costs generated 

by the AIR model are the basic building blocks in the development of an appropriate rate 

for this coverage. The next section will begin with those basic building blocks. 

PROPOSED METHODOLOGY 

The goal of this paper is to present a methodology for developing a rate per $1,000 of 

Earthquake coverage. We will assume that the indicated rate is based on Coverage A of 

a typical Homeowners single-family dwelling. That is, the modeled results include all 

coverages (including time element expenses), and the figures have been ratioed to 

Coverage A, in 1000’s. 

We begin with the statewide indicated rate as developed from the loss costs resulting 
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from the mod.& Sections on the net cost of reinsurance and the target rate of return and 

proper underwriting profit provision follow. Territorial partitioning and the derivation 

of zone relativities conclude this section. 

Statewde Indicated’ Rate 

The statewide indicated rate is determined using the pure premium method. The fist 

input into the methodology is the statewide modeled incurred losses stated at a base 

deductible level. In this example, the base deductible is 10% applicable to the dwelling 

limit. The annual txpectd losses represent the average annual amount of incurred losses 

an insurer could expect from writing the Earthquake line of business in State X if each 

insured had a 10% deductible. The modeled results are generally available on an 

individual state basis as well as on a zip code or county basis within the state. The 

annual expected losses am trended (severity only) and adjusted for LAE, then ratioed to 

the total trended value of insured dwellings to develop a projected pure premium which 

is used to determine the indicated rate as shown on Exhibit 1. (A viable alternative 

would be to trend the insured values first and use these trended values as input to the 

catastrophe model, thus yielding an estimate of trended severity within the model 

re.sults). In this example, the cutrent rate is assumed to be $2.50 per $1,000 of dwelling 

coverage. The indicated rate is calculated by taking the projected pure premium and 

grossing it up to include reinsurance costs, trended fmed expenses, and variable 

expenses. After completing these calculations, the indicated rate is $3.77 per $1,000 of 

coverage. 
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Exhibit 1 
Sheet 1 

STATEWIDE INDICATED RATE 

( 1) Modeled Incurred Losses at a 10% %19,500,000 
Deductible as of 12131195: 

( 2) Total Dwelling Coverage as of 12131195: 10,965,281,000 

( 3) Proposed Effective Date: 

( 4) LAE Factor: 

( 5) Loss Trend Factor Trended to 7/l/97: 

( 6) Exposure Trend Factor Trended to 7/l/97: 

( 7) State X Earthquake Share of Expected Net Cost of 
Reinsurance: 

711196 

1.150 

1.250 

1.190 

$7,592,703 

( 8) Trended Fixed Expense Provision Per $1000 of Coverage: 0.265 

( 9) Pure Premium Per $1000 of Coverage: % 2.99 

{{W) x (4) x (5)1+(7)1 x 1OW 1 i(2) x (6)l) + (8) 

(10) Variable Permissible Loss and LAE Ratio: 

(11) Indicated Rate: 
(9)410) 

0.794 

$3.77 

(12) Current Statewide Rate Per $1000 of 
Dwelling Coverage: 

$2.50 

(13) Indicated Percentage Change: 
(11) / (12) - 1 

50.8% 

(14) Proposed Change: 

(15) Proposed Statewide Rate: 
(12) x 11 + (14)l 

50.8% 

$3.77 
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Exhibit 1 
Sheet 2 

STATEWIDE INDICATED RATE 
EXPLANATORY NOTES 

(1) This is the main output received from the modeling firm. It is an estimate of the annual 
expected losses at a base deductible for an insurer, given the current book of business within the 
state for the Earthquake line of business. 

(2) The total value of insured dwellings is provided to the modeling firm by the insurer and is 
used to determine the average annual expected losses per $1,000 of coverage in the pure premium 
method. 

(3) The proposed effective date as selected by the insurer. 

(4) The LAE factor is calculated based on a comparison of estimated ultimate loss adjustment 
expenses to estimated ultimate losses from the most recent earthquake events faced by the insurer. 

(5) The modeled losses am trended using historical Homeowners severity data. Earthquake loss 
trend data is not used because of its instability. Losses should not be trended for frequency, unless 
the insurer is confident there exists an increased period of seismicity in the future. 

(6) The exposure trend is based on historical changes in the average amount of insurance for the 
Earthquake line of business. 

(7) The State X Earthquake share of the expected net cost of reinsurance is calculated as 
described on Exhibit 2. 

(8) The trended fixed expense provision per $1,000 of coverage is calculated by trending fured 
expenses to a point in time appropriate for the proposed effective date and ratioing it to trended 
insured value using an annualixed fixed expense trend of 5 % . 

(9) The formula combines the modeled incurred losses with the net cost of reinsurance for the 
state and line of business with the trended fixed expense provision to provide an estimate of the 
projected pure premium to be expected during the time the proposed rates are to be in effect. 

(10) The variable permissible loss and LAE ratio is calculated based on historical variable 
expenses and a consideration of the relative riskiness of the Earthquake line of business compared 
to other lines being written and the overall required return on surplus. An 18.2% underwriting 
profit provision was used along with 2.4% provision for variable expenses. 
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Net Cost of Reinsurance 

An important component which we reflected in the rate indication is the net cost of 

r&nsurance. An insurer should decide whether to include this component based on the 

costs and anticipated recoveries associated with its reinsumnce program. This component 

should be included as a cost if the expected reinsurance recovery is less than the amount 

of premium paid to the reinsurer for reinsurance protection. This relationship will 

generally be the case due to the presence of transaction costs which include a margin for 

reinsurance risk load and profit. The expected reinsurance recovery represents the 

average annual amount an insurer could expect to recover from the reinsurer(s) due to 

insured events and can be determined using catastrophe modeling. The expected 

reinsurance recovery needs to be calculated considering the attachment points or quota 

share percentages associated with an insurer’s reinsurance program. Most often, an 

insurer’s reinsurance program is structured to provide protection against many types of 

hazards; however, some reinsurance contracts are designed to provide protection against 

only one hazard. To accurately measure the net cost of reinsurance for a particular 

hazard, the reinsurance premium from all programs which provide protection for the 

harard should be included. If other catastrophic hazards such as hurricanes am a large 

proportion of an insurer’s exposure to catastrophe loss, the reinsurance premium for 

multi-hazard contracts could be segregated for each hazard. The reinsumnce premium 

for each hazard could then be included with each net cxxt of reinsurance calculation for 

every line of business. In the example, however, the net cost of reinsurance is allocated 

to the Earthquake line of business and then the appropriate state. The allocation to line 

of business in our example as shown on Exhibit 2 was based on model results by 

comparing expected Earthquake. reinsumnce recovery to the total expected reinsurance 

recovery. This ratio was applied to the net cost of reinsurance to obtain the earthquake 

only net cost of reinsurance. The allocation to a state level was done using written 

premium. It is important to note that this allocation may introduce a distortion if the 

state in question has a different level of premium adequacy than the countrywide 

premium adequacy. 
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Exhibit 2 
Sheet 1 

ESTIMATED NET COST OF REINSURANCE 

(1) 1995 Countrywide Reinsurance Premium for Contracts $37,890,000 
cmxing the Earthquake peril: 

(2) Expected Reinsurance Recovery: 

(3) Net Cost of Reinsurance: 
(1) - (2) 

$17,481,970 

$20,408,030 

(4) Expected Earthquake Reinsurance Recovery: $9,154,600 

(5) Proportion of Earthquake Recovery to Total Recovery: 52.4% 
(4) i(2) 

(6) Earthquake Sham of Net Cost of Reinsmance: %10,693,808 
(3) x (5) 

(7) 1995 State X Earthquake Written Premium: $27,271,677 

(8) 1995 Countrywide Earthquake Written Premium: %38,551,154 

(9) State X Earthquake Share of Net Cost of Reinsurance: $7,592,703 
10 /WI x (6) 
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Exhibit 2 
Sheet 2 

NET COST OF RElNSUFUNCE 
EXPLANATORY NOTES 

(1) This is the total of all reinsurance premium paid for reinsurance contracts which 
provide protection for earthquake losses. 

(2) This is a model output number. It is determined based on the attachment point 
or quota share arrangement an insurer has with its reinsurer(s). 

(3) The net cost of reinsumnce is the difference between the reinsurance premium 
paid for contracts providing earthquake protection and the expected total reinsurance 
recovery. 

(4) Model results rue used to determine what portion of the expected recovery is due 
toearthquake. 

(5) The Earthqualm proportion of the total expected minsurance recovery is expressed 
as a factor to be applied to the total net cost of reinsurance. 

(6) The Earthquake share of the net cost of reinsurance is the proportion of the 
earthquake recovery to the total recovery multiplied by the total net cost of 
reinsurance. 

(7) The latest year State X Earthquake written premium is used to allocate the 
Earthquake share of the net cost of reinsutance to a state level. 

(8) The latest year countrywide Earthquake written premium is used to determine 
what proportion of the countrywide Earthquake written premium is represented by 
state x. 
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The concept of including the net cost of reinsurance in a rate indication is relatively new 

and will likely be challenged or subjected to additional scrutiny by regulatory agencies. 

However, it does represent a cost of doing business, and therefore, we have chosen to 

include its net costs. Reinsurance costs could also be considered in conjunction with the 

selected rate of return and that discussion follows. 

Target Rate of Return 

For purposes of developing an underwriting profit provision, we have chosen a total rate. of 

return methodology. We are not proposing one method over another, but we have selected 

this particular one for the development of a reasonable profit target for the Earthquake line 

of business. The target rate of return on GAAP equity is developed using a Discounted Cash 

Flow (Dividend Yield) Method and the Capital Asset Pricing Model (CAPM). The selected 

rate of return, averaged from the results of these two methods, is 13.0%. From this selected 

rate. of return we have subtracted 8.02, which represents the post-tax investment rate of 

return from all investable funds. Exhibit 3 converts this difference to a pre-tax basis, using 

a corporate tax rate of 35%. For an insurer’s total book of business this percentage is then 

divided by the company’s premium-bsutplus ratio in order to convert the target underwriting 

profit provision to a percentage of premium. Although we do not endorse the divisibility of 

surplus or leverage ratios, we are proposing this method for calculating a reasonable 

Earthquake underwriting profit provision. 

We have selected a company whose underwriting results resemble the years 1985-1994 for 

all Pmperty and Casualty insurers writing Personal Lines Automobile, Homeowners Multi- 

Peril, and Earthquake coverages. (It would be appropriate for more years to be used; 

however, the Earthquake line of business was not segregated prior to 1985). The data can 

be found in Rest’s Aggregate and Averages, 1995 edition [2]. A company’s own data can be 

used for this purpose as well. 
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Exhibit 3 

TARGET UNDERWRlTIN G PROFIT PROVISION 

A. Target Rate of Return 
(96 of GAAP Surplus) 

1. Dividend Yield Model 

2. Capital Asset Pricing Model 

3. Selected Target Rate of Return 

B. Target Underwriting Rate of Return 
(46 of GAAP Surplus) 

1. Investment Rate of Return After Tax 

2. Target U/W Return After Tax 
(A3) - W) 

3. Target U/W Return Before Tax 
(l32)/( 1 - 0.35) 

12.0% 

14.0% 

13.0% 

8.0% 

5.0% 

7.7% 

C. Target Underwriting Profit Provision 
(96 of Direct Earned Premium) 

1. Net Written Premium/GAAP Surplus Ratio 1.30 

2. Indicated U/W Profit Provision 5.996 
(B3) 1 (Cl) 

3. Selected U/W Profit Provision 5.9% 

Note: A select group of insurers were chosen that resemble the mix of business written by 
the filing insurer. Company betas and projected dividend yields were taken from 
Value Line. Both the Dividend Yield Method and the Capital Asset Pricing Model 
were used in determining an appropriate rate of return. The selected target mte of 
return is a straight average of the two methods. 
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Basically, a company’s underwriting profit provision should vary based on the riskiness of 

the line of business. A measure of risk we have chosen is the coefficient of variation 

(measured as standard deviation/mean, a/a) of a series of underwriting results for each 

line. Since the selected period includes the effects of Hurricane Andrew and the 

Northridge Earthquake, we adjusted the losses so that Andrew reflects a l-in-30 year 

event and Northridge a l-in-50 year event. We did not adjust for Hurricane Hugo, 

although one could argue for that adjustment as well. Table 1 shows the yearly (1985- 

1994) underwriting gains/losses as a percent of net earned premium. 

Table 1 
Underwriting Results as a Percentage of Premium 

YfXU 
Private Passenger Homeowners 

Automobile Multi-Peril Earthquake 

1985 -11.0% -11.7% 60.0% 

1986 - 8.3% -3.5% 58.0% 

1987 -6.0% 3.3% 44.2% 

1988 -6.8% 0.0% 57.5% 

1989 -8.9% -13.9% -42.1% 

1990 -9.1% -12.9% 43.8% 

1991 -4.6% -17.7% 55.3% 

1992 -1.9% -58.4% 61.4% 

1993 -1.8% -13.5% 68.0% 

1994 -1.3% -18.4% -222.2% 

Table 2 shows the coefficient of variation of each line, the weighted average of the CVs using 

the latest ten years of premium, and what we are labeling as a risk index, which is the ratio 

of each lime’s CV to the weighted CV. 
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Table 2 

Lime of 
Business 

Private Passenger 
Automobile 

-quake 

Homeowners 
Multi-peril 

Total 

l Absolute Value 

Premium Coefficient of Risk 
Distribution Variation* Index 

80.1% 0.550 0.92 

0.5% 1.854 3.09 

19.4% 0.780 1.30 

100.0% 0.600 1.00 

Assume the company’s premium-tosurplus ratio corresponds to the industry’s at 1.30, so that 

its inverse is .77. The risk indices are used to adjust each line’s surplus ratio (surplus-to 

premium) in the total rate. of return methodology, resulting in target underwriting profit 

provisions which reflect the risk of each lime of business. The resulting Earthquake profit 

provision will be used in the derivation of the variable permissible loss and loss adjustment 

expense provision to follow later. Table 3 summarizes this information. 

Table 3 

Line of 
Business 

Private Passenger 
Automobile 

-cm= 

Homeowners 
Multi-peril 

Total 

Risk 
Index 

0.92 

Implied Surplus 
Ratio (S/P) 

0.71 

Target 
Underwriting 

Profit Provision 

5.4% 

3.09 2.38 18.2% 

1.30 1.00 7.7% 

1.00 0.77 5.9% 
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In this example, industry net underwriting results were used to determine an appropriate 

underwriting profit provision for the Earthquake line of business. A larger Earthquake 

underwriting profit provision would probably be obtained if direct results were used instead, 

This is due to net underwriting results having variability stripped off by the stabilization of 

reinsurance. Using our methodology, it is reasonable to conclude that part of the difference 

between underwriting profit provisions calculated using net or direct underwriting results 

would be due to reinsumnce costs. An insurer should expect a lower net cost of reinsurance 

if part of the reinsurance cost is reflected in the Earthquake underwriting profit provision 

calculated using direct underwriting results. Efforts could be made to quantify what portion 

of the net cost of reinsurance is contained in an Earthquake underwriting profit provision 

based on direct underwriting results. One possible approach would be to compare the 

difference in Earthquake underwriting profit provisions calculated using net and direct 

underwriting results to a net cost of reinsurance as calculated in this example. 
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Model results can also be used to determine revised Earthquake zone definitions and 

Earthquake xone relativities. The data used to establish Earthquake xone definitions are 

model results at a five-digit zip code level. The sum of all the five-digit zip code modeled 

losses and dwelling insured values should balance to the statewide totals used to determine 

the statewide indicated rate. In the example, we are assuming the state is comprised of 

twenty distinct five-digit zip codes. The data on Exhibit 4 shows the data segregated by five 

digit zip code. We used a SAS clustering program to determine the new Earthquake zone 

definitions and xone relativities. The following is a description of the SAS procedure we used 

as described in the SAS user’s manual [2]. 

PROCFASTCLUS performs a joint cluster analysis on the basis of Euclidean distances 

computed from one or more quantitative variables. The observations are divided into clusters 

such that every observation belongs to one and only one cluster. The procedure is intended 

for use with large data sets, from approximately 100 to loO,O!Xl observations. With small 

data sets, the results may be highly sensitive to the order of the ohervations in the data set. 

PROCFASTCLUS uses a method referred to as nearest centroid sorting. A set of points 

called cluster seeds is selected as a first guess of the means of the clusters. Each observation 

is assigned to the nearest seed to form temporary clustess. The seeds are then replaced by the 

means of the temporary cluster, and the process is repeated until no further changes occur in 

the cluster. 

After specifying the desired number of Farthquake zones, and using the SAS procedure, we 

obtained the results in Exhibit 5. The number of zones to be used in a real application will 

depend on the size of the insurer’s Earthquake book of business, geographic spread, and the 

level of seismic variation that exists within the state. It is important to note that the proposed 

Earthquake xones will probably not be contiguous because five-digit zip codes from different 
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parts of the state will very often fall into the same cluster in the SAS procedure. We only 

used twenty zip codes in our example; however, the SAS procedure has the capability to 

handle a much larger number of zip codes. The re.lativit& shown in Exhibit 5 are applied 

to the statewide indicated rate previously calculated to determine each zone’s Earthquake rate. 

The resultant earthquake zone rates should probably display a wider variance, since it could 

be argued that risk margins should vary by geographic location for the earthquake peril. We 
view this as another area deserving further consideration and an important aspect of 

dekrmining adequate earthquake rates. 
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Exhibit 4 

STATEX 
JZARTHQUAKE MODEL RESULTS 

ZIP CODE LEVEL 

273 



5 
L 

Exhibit 5 

STATE X 
EARTHQUAKE ZONE RELATIVITIES 

itatewide % 10,965,281 % 19,500,OOO S 1.78 1.00 $ 3.77 

Note: (3) = (2)/(l) 
(4) = (3)11.78 
(5) = (4) x 3.77 
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SHORTCOMINGS INHERENT IN MODELING 

Modeled results fall short of expected values for many reasons, most of which can be 

attributed to company issues or to adjustments not made within the models themselves. Fit, 

we will discuss company shortcomings, then follow-up with model shortcomings. 

Where appropriate, we will make suggestions on how to handle quantifiable and supportable 

adjustments to the modeled input or output. The following list is not meant to be exhaustive, 

but is typical of company issues. Company shortcomings include: 

1. Underinsurance (homes not insured to value) or overinsurance. 

2. Demand surge for labor and materials after a large catastrophic event. 

3. The need for extra claims adjusters following large events. 

4. No data collecting or coding for retrofitting safety features. 

5. Invalid or incomplete data. 

The major company shortcoming may well rest on the problem of underinsurance. Expected 

loss to a particular structure in a particular area is based on applying an average damage ratio 

(defined as the ratio of the repair cost of a building to its total replacement value) to the total 

insured value of the structure. It is assumed then that the insured value of a building 

represents its true replacement wst. A company would do well to estimate its underinsurance 

(or overinsurance) problem before providing data to a modeling firm. If, on average, it is 

determined that a book of business is underinsured by 101, then all limits should be adjusted 

before the model is run. 

The effects of demand surge can be quite significant and should be factored into all modeled 

results. (It is not clear to us whether this adjustment should be made by the insurer or by the 

modeler.) Obviously, the demand for labor and tnaterlals will vary depending on the location 

and magnitude of each earthquake. The additional wst probably varies between 0% and 

3096, but the highest demand is associated with events that have the lowest expected 

probability; therefore, the effect on average annual aggregate losses should be minimal. We 
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believe this adjustment to the modeled loss costs is important, yet is an uncertain aspect of 

the process. Studies should be conducted to determine the impact of demand surge factors, 

perhaps by studying the payout of events such as Loma Prieta and Northridge, if the data is 

available. Either overall average demand surge factors should be applied to the resultant loss 

costs, or variable demand surge factors should be determined and applied by location and 

event. 

The need for independent claims adjusters is a very real cost of settling claims following large 

catastrophic events. It is not clear which loss adjustment expense (LAE) factors should be 

applied to the modeled expected loss costs. There has simply not been enough loss 

experience to determine appropriate factors. We suggest using either the ratio of LAE to 

losses of past events (which’may understate. the ttue ratio) or simply use the underlying policy 

average LAE factor, given Earthquake. cover-ages are normally endorsed to a Homeowners 

or Dwelling Fire. program. 

Modeled results should account for retrofitting safety features of an insured structure. 

Average damage ratios should be adjusted for these features. It is not clear to us how their 

effects can be measured, but research should be conducted and insurers should encourage 

their installation. A strongly built and reinforced home should surely withstand the initial 

impact and aftershoclcs of an earthquake, as opposed to a home whose frame is not bolted to 

the foundation, for example. Most insurance companies probably do not request information 

on retrofitting mechanisms, nor do they store the data. We would encourage the Insurance 

Institute for property Loss Reduction to study the effects of such safety features and simulate 

an earthquake under monitored laboratory conditions to determine the extent of damage on 

the struc,~~~ and its contents. 

Finally, there is always the possibility of invalid data, incomplete data, or no data at all. 

Invalid data is most prominent if zip code, county, or street address is not validated before 

being stored on the insurer’s database. Either the data should be cleaned up before the input 

files are created, or the data should be eliminated from analysis. Most companies do not 

276 



have enough insureds located in all areas of the state. Therefore, there will be many locations 

with no modeled loss costs. In these situations, modeling firms have access to an inventory 

of typical building structures by location: average dwelling limit, type of construction, 

average year of construction, building height, etc. Modeled loss costs from this “generic’ 

inventory can supplement an insurer’s results where few or no insureds reside. 

There will also be locations with insufficient data. Assume for a moment that an insurer’s 

book of business is mapped to the geographic rip code centroid of each zip code within the 

state. Although modeled results are assumed to be 100% credible by location, the reader 

could obviously question whether one, ten, or even one hundred exposures are enough to 

deem the results credible. An insurer’s database could be complemented with the results of 

the generic inventory. The authors have chosen to consider data 100% credible by zip code 

with more than 100 exposures; otherwise, the generic inventory is given full credibility. 

We now turn to shortcomings in the models themselves. These brief remarks are not intended 

to criticize any model or modeler, but to highlight the importance of their impact on modeled 

results. The following List is also not meant to be exhaustive, but does represent typical 

shortwmings. 

1. Factor for unknown faults. 

2. Inclusion of debris removal expenses. 

3. Effects of aftershocks. 

4. Parameter risk within the model. 

The 1994 Northridge earthquake is a perfect example of an unknown fault, a blind thrust fault 

which does not break the earth’s surface. Not even seismologists know the extent of 

undiscovered fault lines beneath the earth’s surface. How understated could the modeled 

results be? No one knows for sure, and we propose no solution to handle this uncertainty. 

Although the models account for possible earthquakes in all historical seismic source zones, 

it is highly questionable if distributions in the model account for all potential seismicity. With 

277 



the passage of time and advanced technology, perhaps some day these models will account 

for all possible faults. For now we will have to assume that a model’s results may understate 

expected average annual losses, and hence, expected loss costs per $1 ,C00 of coverage. 

Debris removal expenses, although small, should be added to the model’s expected loss wsts. 

More prominent would be the effects of aftershocks which follow moderate to large 

earthquakes. Oftentimes, claims are reopened months later due to weakened structures 

repeatedly damaged from aftershocks. Future modifications to catastrophe models should 

account for this possibility. 

Since catastrophe modeling is based on incomplete distributions developed from historical 

information, there will always exist parameter risk. This risk may lead to gross 

understatement (or overstatement) of potential insured losses, and as such, represents a 

potential shortcoming of modeling. 
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ADDITIONAL CONSIDERATIONS 

There will always exist areas that deserve further consideration. While we have presented 

a practical procedure for developing adequate earthquake rates, some areas deserve additional 

research and attention. We will divide these topics into four categories: (1) shortcomings of 

models, (2) credibility of data, (3) necessary target rate of return, and (4) net reinsurance 

wsts. 

We devoted an entire section of this paper to model shortcomings and company data issues. 

We only repeat them here to emphasize their importance and need for further study. The 

cooperation of the insurance industry, modeling firms, and the IIPLR is necessary in order 

to quantify the impact of outstanding issues on expected loss costs. Perhaps special data calls 

or cooperative studies can be conducted and the results shared with ail interested parties. 

Computer modeling simulates thousands of possible events, and as such, its results are 

generally wnsidered fully credible. The earthquake peril is so unique by location, especially 

in California, so there really does not exist a feasible complement of credibility to augment 

a local result. Perhaps a regional complement could be used, but its applicability is 

questionable, given local soil conditions and proximity to fault lines. We choose to believe 

that an industry inventory database represents the best alternative for a complement. 

Insuring the Earthquake peril is much riskier than insuring Auto physical damage wverages. 

Due to the relationship between risk and return, a higher rate of return, and therefore, a 

higher underwriting profit and contingency provision, should be allowed to cover a 

company’s earthquake exposure. As mentioned earlier, this provision should probably vary 

by location as well. We have presented a simplified method for deriving a reasonable profit 

provision, but we encourage more research in this important area. 
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Debate exists as to whether rates should include the costs of reinsurance on an insurer’s book 

of business. After all, their inclusion could be viewed as a pass-through to the consumer. 

Also, in the long-run, neither the insurer nor the reinsurer(s) should be worse off for 

engaging in a reinsurance program; otheMse, neither party would enter into the contract. 

However, in the short-run, reinsurance costs are a legitimate expense of doing business, and 

we believe that all parties should share in that expense, including policyholders. Indeed, 

policyholders benefit from financially strong companies. 
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SUMMARY 

Catastrophe hazard modeling has become an integral part of the ratemaking process. 

ActuaM ratemaking principles [l] state. that “other relevant data may supplement historical 

experience. These other data may be external to the company or to the insurance industry 

..:. We have entered the realm of that other relevant data. Actuarial Standard of Practice 

(SOP) No. 9 [4] states that “an actuary should take reasonable steps to ensure that an actuarial 

work product is presented fairly . . . if it describes the data, material assumptions, methods, 

and mate&l changes in these with sufficient clarity that another actuary practicing in the same 

field could make an appraisal of the reasonableness and the validity of the report.’ However, 

with the advent of modeling the actuary must rely on the work of another person. SOP No. 

9 continues by stating that “reliance on another person means using that person’s work 

without assuming responsibility therefore. ’ These other persons now include experts in the 

fields of geology, seismology, and structural engineering, just to name a few. Actuaries, 

however, can play a key role in contributing to the development of the models, and more 

importantly, the interpretation and communication of their valuable results. 

Catastrophe haxard modeling has become a necessary tcol for the adequate pricing of large 

catastrophic events such as hurricanes and earthquakes. Their frequency is so low and their 

severity so pottdally high that not even all of the property and casualty companies in a state 

could have enough loss history upon which to base rates. Despite any shortcomings models 

may have, they hold the key to the future and the pricing of nature’s perilous attacks. 
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APPENDIX A 

The model developed by Applied Insurance Research uses sophisticated mathematical 

techniques to estimate the probability distribution of losses resulting from earthquakes 

anywhere in the 48 contiguous states. The earthquake model is composed of three separate 

elements: an earthquake Occurrence model, a shake damage model, and a tire-following 

model. The earthquake occurrence portion of the model uses a probabilistic simulation to 

generate a synthetic catalog of earthquake events that is consistent with the historical record. 

The shake damage estimation portion of the model uses analytical numerical techniques to 

calculate the distribution of losses for individual buildings given the characteristics of the 

event. The fire-following portion of the model uses simulation to estimate fire losses 

following an earthquake. Together these techniques allow the estimation of a wide range of 

information about potential earthquake losses in the United States. The earthquake simulation 

model inwrporates statistical descriptions of a large number of variables which define both 

the originating event (the earthquake) and its effect on structures. Some of these variables 

are defined probabilistically, and some deterministically. This section will describe the key 

components of the model, the main variables affecting the outcomes, and the relationships 

between the primary variables. 

The model is described in the following sections: 

l Earthquake occurrence 
l Attenuation 
l Exposure characterization 
l Shake damage estimation 
l Fire-following loss estimation 

Eonhquke Occurrence 

For earthquakes them are three key types of variables that describe the physical phenomenon. 

In broad terms, these variables describe (1) where earthquakes can occur, (2) the size of the 

earthquake, and (3) the likelihood of seeing an earthquake of a particular size. In other 
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words, the variables describe where, how big, and how often earthquakes occur. 

The issue of where earthquakes occur is handled by identifyingfaults or seismic zones where 

historical earthquakes have been observed. On the west coast earthquakes tend to occur along 

wed defined geological features caged faults, which are places where the surface of the earth 

has been ruptumd by past earthquakes, and which are. observable at the ground surface or by 

subsurface sounding techniques. Not all faults are active, which is to say that not all faults 

arc believed capable of rupturing in the present, although they have ruptured in the distant 

past. Where faults are observed, and where the historical catalog of earthquakes indicate that 

the faults are still capable of rupturing, the surface trace of the fault defines a possible 

location for future earthquakes. 

Not all earthqti occur on identifiable faults, however. Many earthquakes, especially those 

east of the Rocky Mountains, occur on faults that are not visible at the surface. Such faults 

are. inferred from the occurrence of earthquakes in the historical record. For these areas, a 

source zone is created, which is an area with fuzzy boundaries within which future 

earthquakes are possible. 

The AIR model contains approximateJy 250 seismic source zones covering the 48 contiguous 

states. Each source zone is defined by a line on the surface of the earth with probability 

distributions describing the variability of potential epicenters both along and perpendicular 

to that line. Hence a potential earthquake is not limited to occur along a known fault line, 

but can with some probability occur anywhere in the vicinity of a fault, or anywhere within 

a seismic source zone, depending on the degree of uncertainty associated with the historical 

record of earthquakes in that area. The central line of the source zone does detine the 

dominant direction of faults in the area and characterizes the orientation of the rupture 

Surface. 
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APPENDIX A 

The size of an earthquake is usually measured by one of several mugniti scales. In the AIR 

model, the surface wave magnitude M, scale is used to characterize the earthquake 

magnitude. For every fault and source zone, the frequency of earthquakes of different 

magnitudes must be described. Seismologists generally agree that, over a considerable 

magnitude range, the logarithm of the number of historic earthquakes that exceed a given 

magnitude scales linearly with magnitude. This indicates that the frequency-magnitude 

relationship is approximately exponential. Additionally, paleo-seismologic data have been 

inmrpmted by some researchers to indicate that the frequency-magnitude relationship for large 

earthquakes differs from exponential scaling, leading to the notion of characteristic 

earthquakes in certain geographic areas. The AIR Model incorporates a truncated exponential 

distribution, or truncated “Gutenberg-Richter” relationship, to represent potential seismicity 

in each source zone. Where appropriate we additionally incorporate a characteristic 

earthquake model. 

The AIR earthquake model is calibrated to a catalog of historical earthquakes which is as 

complete as possible, and which covers the historical record from the mid-1600’s to the 

present. Because the completeness of the catalog varies both in time and as a function of 

magnitude (larger earthquakes are more likely to be included in the historical record), the 

fitting of the frequency-magnitude distribution is adjusted to account for the variation in 

historical completeness. 

EarthqMe Attenuation 

After earthquakes ate simulated using the probability distributions of the different earthquake 

parameters, the shaking intensity of the earthquake at every location affected by the 

earthquake is calculated using a relationship called an attenuation function. The local 

intensity is then corrected to reflect local soil conditions, as some types of soil amplify the 
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shaking intensity relative to other soil types. This section discusses the variable 

interrelationships required to calculate the local shaking intensity. 

From thecharacteristics of the earthquake, the local shaking intensity is calculated using an 

attenuation relationship. The attenuation relationship depends on the location of the source 

zone, as earthquake shaking attenuates more quickly in the western U.S. than in the eastern 

part of the country. That is to say that the same magnitude earthquake will affect a smaller 

area in California than in the northeast. 

The attenuation calculation starts by spreading the energy teleased by the earthquake over the 

rupture surface, and integrating over the entire rupture surface to calculate the total effect of 

the earthqualm. In effect, energy is assumed to be released uniformly over the rupture, and 

each incremental piece of energy is separately attenuated to obtain the effect at some distant 

point. This results in contours of equal intensity that are elongated along the orientation of 

the rupture. 

The calculation of local shaking intensity itself consists of two parts. First, a basic intensity 

is calculated that assumes uniform soil conditions at every location. This intensity (called a 

Rossi-Fore1 intensity) depends on the distance of the site from the earthquake rupture, the 

orientation of the rupture, and the earthquake magnitude and focal depth. The rupture length 

is calculated from the basic earthquake parameters. Second, the Rossi-Fore1 intensity is 

modified to reflect the soil conditions at the site. Soil conditions for the entire country are 

digitized on grids varying from 0.1 degree latitude/longitude squares to 0.5 minute 

latitude/longitude squares. The local soil condition can significantly affect shaking intensity. 

The final intensity is identified as a Modified Mercalli Intensity (MMI). 

The MMI is a generally accepted unit of shaking intensity that has had wide adoption for 
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many years. It describes, in general terms, the type of damage that might be expected to 

buildings of usual design, and other effects of earthquakes that would be expected at that 

location. As such, the MhfI is a good metric for estimating damages to structures. 

Exposure Characterization 

In order to calculate damages from an earthquake, the AIR model incorporates an extensive 

description both of the structural characteristics of an exposure and of the policy conditions 

describing the treatment of deductibles and other factors. 

The seismic performance of a building depends primarily on the structural system resisting 

the lateral loads, but is also affected by other factors, including, in the AIR model, the age 

of the building and the height of the building. The age of the building is used to determine 

the likely code provisions under which the buildiig was designed and constructed. Newer 

buildings, which may have been built to more exacting code provisions for seismic 

performance, are usually expected to perform better than older buildings. 

The AIR model incorporates damageability relationships for many different classes of 

exposures, with up to three height categories in each class. In all, there are 42 different 

damage relationships for each coverage type, plus several different age categories. The 

categories of structural types are based in part on the structural types defined in ATC-13 

(Applied Technology Council, 13-member advisory project engineering panel established in 

1982 to develop earthquake damage/loss estimates for facilities in California), although the 

actual damage relationships are modified and extended well beyond those covered in that 

reference. 

The exposures are characterized by policy limits for four different covetages: A, building 
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applied to the total loss or to the loss from Coverages A, B, and C. Most commonly, 

Coverage B is combined with Coverage A for calculation purposes, and is assumed to apply 

tp the same struchval type as coverage A. The policy limit for each coverage may be defined 

by both a replacement value and a policy limit. This is because the replacement value may 

rise in time without the policy limit beiig adjusted to reflect inflation. Damage is always 

calculated with respect to replacement value, and then is capped at the policy limit if 

appropriate. 

The location of the risk can be defined by a latitude and longitude point or by the five digit 

zip code in which the risk is lccated. The risk can also be associated with a line of business 

(homeowners, renters, commercial multi-peril, etc.) in order to report losses separately in 

categories meaningful to the insurer. 

Damage EMmadon 

Given the local shaking intensity in MMI units, damages to structures at that location can be 

calculated if sufticimt information is available about the structure. Two types of damage are 

calculated by AIR: shake damage due to the lateral and vertical motions of the ground, and 

fire damage due to earthquake-induced fires. 

In order to eahlate shake damage, the exposure information is combined with the level of 

shaking intensity at the building. Information on the structural characteristics of the 

pmperda at risk are used to sdect an appropriate damageability relationship (also sometimes 

called a damage function or a fragility curve) relating the probability of different levels of 

damage to the local shaking intensity (MMI). The damageability relationship is a complete 

probability distribution of damage, ranging from no damage to complete destruction (0 to 100 

percent damage), with a probability corresponding to each level of damage in between. The 
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APPENDIX A 

probability distribution is a continuous function of the local MIvfI level. 

The earthquake damageability relationships have been derived and refmed over a period of 

several years. ‘ky incorporate well documented engineering studies by earthquake engineers 

and other experts both within and outside of AIR. These damageability relationships also 

incorporate the results of post-earthquake field surveys performed by AIR engineers and 

others a0 well as detaikd analyses of actual loss data provided to AIR by its client companies. 

These relationships are continually refined and validated. 

Fire-Following Loss Estimation 

Once the shake damages have been calculated for a particular earthquake, fire-following 

losses are estimated. This part of the model uses a separate simulation to estimate tire losses 

for each event. 

First, the number of fires spawned by the earthquake is generated. The fire ignition rate is 

based on the local MhII intensity and the total population in the area. A number of fires is 

simulated for each affected zip code. The mean ignition rate increases as the MINI increases. 

The probability distribution of ignition rates is assumed to be uniform in some interval around 

the mean t-&e. Once the number of fires is simulated, each fire is randomly placed within a 

zip code and is assigned to affect either residential properties, commercial properties, and/or 

mobile homes. 

‘lb fire aimulalion then simula~ the spread of the fires as well as the actions taken by local 

tire depatnmts to control the fires. The fire spread rate is affected by a randomly selected 

wind speed appropriate for the location of the earthquake. Higher wind speeds increase the 

rate of spread of the fire. 
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Some of the factors included in the fire simulation are the time to report the fire, the time for 

one or more tire engines to reach the fire, and the availability of water to tight the fire. All 

of these factors are affected by the local MMI, as areas experiencing high shaking intensity 

am more likely to have obstructed roads and broken water mains. Also, the influence of fire 

breaks - wide roads or other natural impediments to fire spread - is included in the simulation. 

Fire engines can move from fire to fire as fires are controlled. 

Since the fire losses are determined by simulation, different levels of fire loss can be 

calculated for a given earthquake. Typically, the variability of fire losses is large, at least for 

the larger earthquakes, such that fire losses can vary by at least a factor of two if the same 

earthqualuz is simulated several times. This reflects the true uncertainty in fire losses for 

larger earthqualms. 

Note: Reprinted with express written permission from Applied Insurance Research of 
Boston, Massachusetts. 
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IMPLEMENTATION OF PH-TRANSFORMS IN 
RATEMAKING 

SHAVN WANG, Ph.D. 

ABSTRACT 

In this article we introduce a relatively new method for deciding con- 
tingency provisions in insurance ratemaking by the use of proportional 
hazard(PH) transforms. This method is easy to understand, simple to 

use, and supported by theoretical properties as well as economic jnstifica- 
tion. After an introduction of the PH-transform method, we show through 
examples how it can be used in pricing ambiguous risks, excess-of-loss cov- 
erages, increased limits, and risk portfolios with dependency risk. We also 
show how a minimum rate-on-line can be achieved. As well, we propose 
a right-tail index for insurance risks. 
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1 INTRODUCTION 

Recently, there has been considerable interest in and extensive discussion on risk loads 
by Fellows of the Casualty Actuarial Society. These discussions have focused on what 
measures a risk and methods to arrive at a ‘reasonable risk load. Although there are 
diverse opinions on the appropriate measurement of risk, there is general agreement 

on the distinction between process risks and parameter risks, and on the importance 
of parameter risks in ratemaking; see Finger (1976), Miccolis (1977), McClenahan 

(1990), Feldblum (1990), Philbrick (1991), Meyers (1991) and Robbin (1992). 
Following Venter’s (1991) advocacy of adjusted distribution methods, Wang (1995) 

proposes using proportional hazard (PH) transforms in the calculation of risk-adjusted 

premiums. Although extensive discussion on the economic justifications is valuable, 
this paper focuses on the practical aspects of implementation of PH-transforms in 
ratemaking. More specifically, we will show how it can be used to quantify process 

risks, parameter risks and dependency risks. 
Consistent with previous papers, this paper will consider only pure premiums, 

excluding all expenses and commissions. To utilize the PH-transform in ratemaking, 

a probability distribution for the insurance claims is needed. With the advent of com- 
puterized technology, a probability distribution can often be estimated from industry 
claim data or by computer simulations. Even though a probability distribution can 
be obtained from past claim data, sound and knowledgeable judgements are always 
required to ensure that the estimated loss distribution is valid for ratemaking. 

It is safe to say that no theoretical risk-load formula can claim to be the r@t 

one, since subjective elements always exist iu any practical exercise of ratcmaking. 
However, a good theoretical risk-load formula can assist actuaries and help maintain 
logical consistency in the ratemaking process. In this respect, it is hoped that the PH- 
transform method offers a useful tool to practicing actuaries in insurance ratemaking. 

The remainder of this paper is divided into three sectious. Section 2 introduces 

the PH-transform method and applies it to pricing of ambiguous risks, excess-of-loss 
layers, increased limits and risk portfolios. Section 3 discusses two simple mixtures 
of PH-transforms. The first mixture can yield a minimal rate-on-line and the second 
mixture suggests a new index for the right tail risk. Section 4 briefly reviews the 
leading economic theories of risk and uncertainty, and their relations with insurance 
ratemaking. 
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2 PROPORTIONAL HAZARD TRANSFORM 

An insurance risk X refers to a non-negative loss random variable, which can be 
described by the decumulative distribution function (ddf): S,(t) = Pr{X > t}. 

An advantage of using the ddf is the unifying treatment of discrete, continuous and 
mixed-type distributions. In general, for a risk X, the expected loss can be evaluated 

directly from its ddf: 
E(X) = Lrn Sx(t)dt. 

Definition 1 Given a best-estimate loss distribution Sx(t) = Pr(X > t}, for some 

ezogenovs index T (0 5 r 5 l), Ihe proportional hazard (PH) lransform refers 

to a mapping Sy(t) := [5-x(1)]‘, and the PH-mean refers to the expected value 

under the transformed distributton: 

H,(X) = ~m[Sx(t)lrdt, (0 5 f 5 1). 

The PH-mean was introduced by Wang (1995) to represent risk-adjusted premi- 

ums. 

Example 1: The following three loss distributions 

&J(t) = 1 - &t, 0 5 t 5 2 b (uniform) 

S”(t) = e-b (exponential) 

SW(t) = (&$ (Pareto), 

have the same expected loss, b. One can easily verify that 

H,(U) = 2, H,(V) = ;, 

Table 1: Some values of PH-mean H,(.) 

The PH-mean, interpreted as risk-adjusted premium, preserves the 
ordering of relative riskiness among those three distributions (see Table 1). 
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Example 2: When X has a Pareto distribution with parameters (0, X): 

Sx(Q = (&Y> 

the PH-transform Sy(t) also has a Pareto distribution with parameters 
(ra, A). 

\Vhen X has a Burr distribution with parameters (o, X, 7): 

s,(t) = (&y> 

the PH transform S,,(t) also has a Burr distribution with parameters 
(T-0, A, T). 

\Vhen X has a gamma (or log-normal) distribution, the PH transform 
S,,(t) is no longer a gamma (or log-normal). In such cases, numerical 
integration may be required to evaluate the PH-mean. 

2.1 Pricing of Ambiguous Risks 

In practice, the underlying loss distribution is seldom known with precision. There 
are always uncertainties regarding the best-estimate loss distribution. Insufficient 
data or poor-quality data often results in sampling errors. Even if a large amount 

of high-quality data is available, due to changes in the claim generating mechanisms, 
past data may not fully predict the the future claim distribution. 

Figure 1: Margins for parameter uncertainty by PH-transforms 

As illustrated in Figure 1, the PH-transform, S,(t) = [Sx(t)]‘, can be viewed as 

an upper confidence limit for the best-estimate loss distribution S,v(t). A smaller 
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index r yields a wider range between the curves Sv and SX. This upper confidence 
limit interpretation has support in a statistical estimation theory (see Appendix). 
The index r can be assigned accordingly with respect to the level of confidence in the 
estimated loss distribution. The more ambiguous the situation is, the lower the value 

of T should be used. 

Example 3: Consider the following experiment conducted by Hogarth 
and Kunreuther (1992). An actuary is asked to price warranties on the 
performance of 10,000 units of a new line of microcomputers. Suppose that 
the cost of repair is $100 per unit, and there can be at most one break- 

down per period. Also, suppose that the risks of breakdown associated 
with any two units are independent. The best-estimate of the probability 
of brealtdown has three scenarios: 

9 = 0.001, e = 0.01, e = 0.1. 

The level of confidence regarding the best estimate has two scenarios: 

Non-ambiguous: There is little ambiguity regarding the best-estimate 
loss distribution. Experts all agree with confidence on the chances 
of a breakdown. 

Ambiguous: There is considerable ambiguity regarding the best-estimate 

loss distribution. Experts disagree and have little confidence in the 
estimate of the probabilities of a breakdown. 

Note that the loss associated with a computer component can only 
assume two possible values, either zero or $100. For any fixed t < 100, 
the probability that the loss exceeds t is the same as the probability of 

being exactly $100, 6’. For a fixed t 2 100, it is impossible that the loss 

exceeds t. Thus, the best-estimate ddf of the insurance loss cost is 

s,(t) = 
{ 

e, 0 < t < 100; 

0, 100 5 1. 

A PH-transform with index T yields a risk-adjusted premium at 1008’. 

If we choose T = 0.97 for the non-ambiguous case, and T = 0.87 for the 
ambiguous case, we get the following premium structures as in Table 2: 
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Table 2: The ratio of the risk-adjusted premium to the expected loss 

e = 0.001 0 = 0.01 9 = 0.1 

Non-ambiguous (r = 0.97) 1.23 1.15 1.07 

Ambiguous (r = 0.87) 2.45 1.82 1.35 

In summary, the PH-transform can be used as a means of provision for estimation 

errors. The actuary can subsequently set up a table for the index r according to 
different levels of ambiguity, such as the following: 

Ambiguity Level Index r 

Non-ambiguous 0.96-1.00 
Slightly ambiguous 0.90-0.95 

Moderately ambiguous 0.80-0.89 
Highly ambiguous 0.50-0.79 

Extremely ambiguous 0.00-0.49 

2.2 Pricing of Excess-of-Loss Layers 

Since most practical contracts contain clauses such as a deductible and a maximum 

limit, it is convenient to use the general language of excess-of-loss layers. A layer 
(a, a + h] of a risk X is defined by the loss function: 

I 

0, O<X<a; 
I~~,~+hj = (X - a), a 5 X < a + 11; 

h, a+h<X, 

where a is the attachment point (retention), and h is the limit. 

One can verify that the loss variable I(++,,) has a ddf: 

s&.+,,(t) = Sx(a+t), O<t<h 

0, h 5 t, 

and that the average loss cost for the layer (a, a + /I] is 

E[l~,,.,+h]] = I” Sx(a + t)dt = [+‘S,(t)dt. 

Note that Sx(t)dt represents the net premium for an infinitesimal layer at (t, t + dt]. 
Thus, the ddf Sx(t) plays an important role of layer net premium density. 
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Under the PH-transform Sy(t) = (S,(t)]‘, the PH-mean for the layer (a, a -t-h] is 

(t)]‘dt = i”[Sx(a + t)]‘dt = l(ICh[S,y(t)]‘dt. 
a 

In other words, the net premium and the risk-adjusted premium for the layer 
(a, a + h) are represented by the aress over the interval (a, a + h] under the curves 

S,(t) and S,(t), respectively (see Figure 2). 

Figure 2: Risk load by layers: an illustration 

:“p’:p -, 
0 L1 a+h b b+h 

In Wang (1995), it is shown that, for 0 < 7 < 1, the PH-mean has the following 

properties: 

. Positive loading: 

%(&,a+h]) > E(I(a,a+h]). 

. Decreasing risk-adjusted premiums: 

For a < b, Hr(I(a.o+h] ) > H#(b.b+/,]). 

. Increasing relative loading: 

For a < b, H&.o+h] ) < H&b+h]) 

E(I( ) o..+h] E(l(b.b+h]) 

These properties are consistent with market premium structures (Patrick, 1990; 
Venter, 1991). 
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Example 4 : .A risk has a 10% chance of incurring a claim. and if a 
claim occurs the claim size has a Pareto distribution (A = 2.000, C-I = 1.2). 

Putting frequency aud severity together, we have 

S,(t) = Pr{S > t} 
= Probability of occurrence x Pr{Loss Size > !} 
= 0.1 x (s$&)‘.*. 

Suppose that,, the actuary infers an index, say I’ = 0.833. from individual 

risk a~~alysis and market conditions. The actuary may need t,o compare 
\vit,h the risk loads for other contracts with similar characteristics in the 
market. The PH-transform with r = 0.833 yields a ddf: 

s,,(t) = 0.10.833 x ( 2;;;t J 2~0.833~ 

which produces risk-adjusted layer premiums as shown in Table 3. 

Table 3: Layer premiums using PH-transforms 

Layer 

(0, lOOO] 

(5000, GOOO] 
(10000. llOOO] 
(50000, 51000) 

(100000. 101000] 
(500000, 501000) 

:1000000: 1001000] 

Net 
Premium 

ii.892 

20.512 
11.098 
1.9sa 
o.sss 
0.132 

0.058 

Risk-adjusted 
Premium 

119.129 

39.250 
23.533 

5603 
2.STO 
0.587 

0.294 

Pcrccnt.agc 
Loading 

53% 

112% 

183% 
223% 
345% 

412% 

2.3 Increased Limits Ratemaking 

In commercial liability insurance, a policy generally covers a loss up to a specified 

maximum dollar amount that will be paid to any individual loss. 
It is general practice to publish rates for some standard limit called the basic limit 

(used to be $25,000 and nowadays $100,000). Increased limit rates are calculated 
using a multiple factor, called the increased limit factors (ILFs). Without risk load. 
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the increased limit factor is the expected loss at the increased limit divided by the 
expected loss at the basic limit. The increased limit factor with risk load is the sum 
of the expected loss and the risk load at the increased limit divided by the sum of 
the expected loss and the risk load at the basic limit: 

ILF(w) = E(X’; w] + RL(o.ul 
E[X’; 100,0001 + RL,o, IOO.OOOI 

It is widely felt that ILFs should satisfy the following conditions (Rosenberg, 1977; 
h4cyers, 1991; Robbin, 1992): 

1. The relative loadiug with respect to the expected loss is higher for increased 
limits. 

2. ILFs should produce the same price under any arbitrary division of layers. 

3. The ILFs should exhibit a pattern of declining marginal increases as the limit 
of coverages is raised. In other words, when 5 < y, 

ILF(r + h) - ILF(s) 2 ILF(y + h) - ILF(y), 

In the U.S., most companies use the Insurance Service Office (ISO) published 
ILFs. Traditionally, only the severity distribution is used (IS0 aSsumes a Pareto 
loss severity distribution) when producing ILFs. Until the mid-1980’s, IS0 used the 
variance of the loss distribution to calculate risk loads, a method proposed by Robert 
S. Miccolis (1977). From mid-1980’s to early 1990’s, IS0 used the standard deviation 

of the loss distribution to calculate risk loads (e.g. Feldblum, 1990). A4eyers (1991) 
presents a Competitive Market Equilibrium approach, which yields a variance-based 

risk load method; however, some authors have questioned the appropriateness of the 
variance-based risk load method for the calculation of ILFs (e.g. Robbin, 1992). 

The following is an illustrative example to show how the PH-transform method 

can be used in increased limits ratemaking. 

Example 5: Assume that the claim severity distribution has a Pareto 
distribution with ddf: 

with X = 5,000 aud Q = 1.1. This is the same distribution used by Meyers 

(1991), although he also considered parameter uncertainty. 
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Assume that. based on the market premium structure, the actuary 

feels that [for illustration only) an index r = 0.8 provides an appropri- 
ate provision for parameter uncertainty. When using a Pareto severity 
distribution, there is a simple analytical formula for the ILFs: 

ILF(w) = 
1 - (&)r,-’ 

l-(--x- A+ 100.000 Y 

One can then easily calculate the increased limit factors at any limit (see 
Table 4). 

Table 4: Increased limit Factors using PH-transforms 

Policy 
Limit w 

100000 
250000 

500000 
750000 

1000000 

2000000 

16255. 

18484. 
19726. 
20579. 

22543. 1 

1.24 

1.41 
1.50 
1.57 

1.71 

Risk ILF 
Load With RL 
5251. 1.00 
8866. 1.37 

12344. 168 
14687. 1.87 
16490. 2.02 

21330. 2.39 

2.4 Pricing of Risk Portfolios and Dependency Risk 

For ratemaking based on the aggregate claims from a risk portfolio, the actuary often 
considers claim frequency and claim severity separately, due to the type of iuformatiou 
available. 

Let N denote the claim frequeucy with probability function f,(k) = Pr{ N = I;} 
and ddf: .SN(k) = f(l; + 1) + f(k + 2) + ., (I; = 0, 1,2,. .). 

Let ?.’ denote the claim severity and let 

.z=x, +x*+...x,&yi 
i=l 

represent the aggregate claims from the risk portfolio. 

Depending on the available information, the actuary may have different levels of 
confidence in the estimates for the frequency and severity distributious. Accordiug 

301 



to the level of confidence in the estimated frequency and severity distributions, the 
actuary can choose an index ~1 for the frequency and an index r2 for the severity. As 

a result, the actuary can calculate the risk-adjusted premium for the risk portfolio 
as: 

H(Z) = H,,(N) x Hr,(X’). 

Example 6: Consider a group coverage of liability insurance. The actu- 
ary has estimated the following loss distributions: (i) the claim frequency 

has a Poisson distribution with X = 2.0, and (ii) the claim severity is 

modeled by a log-normal distribution with a mean of $50,000 and coeffi- 
cient of variation of 3, which was used by Finger (1976) for liability claim 

severity distribution. Suppose that the actuary has low confidence in the 
estimate of claim frequency, but higher confidence in the estimate of the 
claim severity distribution, thus chooses rl = 0.7 for the claim frequency 

and r2 = 0.8 for the claim severity. The premium can be calculated using 
numerical integrations: 

Ho.,(N) = 2.527, and I Has(X) = 82,960. 

Thus, the required total premium is 

H,,,7(N) x H&S’) = 209, G40. 

Iiunreuther et al (1993) discussed the ambiguities associated \vith the estimates 
for claim frequencies and severities. They mention that for some risks such as play- 
ground accidents, there are considerable data on the chances of occurrence but much 
uncertainty about the potential size of the loss due to arbitrary court awards. On the 

other hand, for some risks such as satellite losses or new product defects. the chance 
of a loss occurring is highly ambiguous due to limited past claim data, however, the 
magnitude of such a loss is reasonably predictable. 

For some risk events such as earthquake insurance, it is more plausible to consider 
the dependency between claim frequency and claim severity. For instance, the Richter 

scale value of an earthquake may affect both the frequency and severity simultane- 
ously; and for hurricane losses the wind velocity would affect both the frequency and 
severity simultaneously. 

Regardless of the dependency structure, computerized simulation methods can 
always be used to model the total claims ! red on given geographic concentration. 
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For instance, in simulating earthquake losses, one can use the following procedures: (i) 
simulate some numerical values of the Richter scale; (ii) conditional on the simulated 
Richter scale values, run a secondary generator for the claim frequency and the claim 
severity (of course both the frequency and the severity depend ou the Richter scale 
values). Once the actuary has obtained sample distributions for the claim frequencies 

and severities, or a sample distribution for the total claims, he or she can apply a 

PH-transform directly to the simulated sample distributions. 

2.5 Some Properties of the PH-Mean 

In general, for 0 5 r 5 1, the PH-mean has the following properties: 

l E(S) 5 H,(X) 5 max(X). When r declines from one to zero, H,(S) increases 
from the expected loss, E(X), to the maximum possible loss, max(S). 

l Scale and translation invariant: H,(nS + b) = aH,(X) + b, for n, 6 2 0. 

l Sub-additivity: H,(Xi + ?12) 5 HT(Xi) + H,(Sr). 

. Layer additivity: when a risk A’ is split into a number of layers 

the layer premiums are additive (the whole is the summation of the parts): 

Hr(X’) = Hr(4,,,,,1) + H&,,,,]) + . . . 

Pricing often assumes that a certain degree of diversification will be reached 
through the market efforts. In real life examples, risk-pooling is a common phe- 
nomena. It is assumed that, in a competitive market, the benefit of risk-pooling is 
transferred back to the policy-holders (in the form of premium reduction). In the 

PH-model, the layer-additivity property has already taken into account of the effect 
of risk-pooling. 

Theoretically, in an efficient market (no transaction expenses in risk-sharing schemes) 
with complete information, the optimal cooperation among insurers is to form a mar- 
ket insurance portfolio (like the Dow Jones index), and each insurer takes a layer or 
quota-share of the market insurance portfolio. 
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In real life, however. the insurance market is not efficient. This is mainly because 
of incomplete information (ambiguity) and extra expenses associated with the risk- 
sharing transactions. There exist distinctly different local market climates in different 

geographic areas and in different lines of insurance. For instance, one can compare 

the automobile insurance market with the market for earthquake damage coverages 
in both California and Ontario. As a result, the value of the index T may vary with 
respect to the local market climate, which is characterized by the levels of ambiguity, 
risk concentration, and competition. 

3 MIXTURE OF PH-TRANSFORMS 

While a single index PH-transform has one parameter T to control the relative pre- 
mium structure, one can obtain more flexible premium structures by using a mixture 
of PH-transforms: 

PI%, + PzH,, + ’ . . + PA-L, kPj=l, O<Tj<l(j=1,“‘,7?3). 
j=l 

Let P = xv- ]-, PjT, be the weighted average index. It can be verified that 

l Foranyrisk X, plH,,(X)+p2H,,(X)+~~.+p,H,~(X) 1 Hi-(X) 

l For a layer ZZ = (5, z -t h), the ratio 

p,%,(L) + PzH,(L) +. . . +~nHrn(L) 
h(L) 

is an increasing function of 2. 

The PH-measure mixture can be interpreted as a collective decision-making pro- 

cess. Each member of the decision-making ‘committee’ chooses a value of T: and the 

index mixture represents different r’s chosen by different members. It also has inter- 
pretations as (i) an index mixture chosen by a rating agency according to the indices 
for all insurance companies in the market; (ii) an index mixture which combines an 
individual company’s index with the rating agency’s index mixture. 

For ratemaking purposes, mixtures of PH-transforms add more flexibility than a 

single index. In the remaining sections of this article, we shall discuss some special 
two-point mixtures of PH-transforms: 

(1 - cr)H,,(X) + oH,,(X), 0 < o 5 1, TI, 72 5 1 
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3.1 Minimum Rate-on-Line 

In most practical circumstances, very limited information is available for claims at 
extremely high layers. In such highly ambiguous circumstances, most (re)insurers 
adopt a survival rule of minimum rate-on-line. The rate-on-line is the premium 
divided by the coverage limit, and most (re)insurers establish a minimum they will 
accept for this ratio (see Venter, 1991). 

By using a two-point mixture of PH-transforms with r1 5 1 and r2 = 0, the 
premium functional 

(1 - cy)H,,(X) + aHs(X) = (1 - cr)H,,(X) + amax 

can yield a minimum rate-on-line at a. 

Example 7: Reconsider Example 4, the best-estimate loss distribution 
(ddf) is 

Sx(t) = 0.1 x (=)I.? 

By choosing a two-point mixture with rr = 0.85, Q = 0, and Q’ = 0.02, 
we get an adjusted distribution: 

Sy(t) = 0.98 x 0.1 x (&)1.2xo.85 + 0.02. 

As shown in the table below, this two-point mixture guarantees a 
minimum-rate-on-line at 0.02 (1 full payment out of 50 years). By com- 
paring Table 5 with Table 3 one can see that, at higher layers, this method 
yield distinctly different premiums from those in Example 4. 

3.2 The Right-Tail Deviation 

Consider a two-point mixture of PH-transforms with rr = 1 and r2 = f: 

Cl- aM(X) + d-Q(X), O<a<l, 

which can be rewritten as (noting that HI(X) = E(X)): 

E(X) + 0 [H+(X) - E(WI, 

which is analogous to the standard deviation method: E(X) + o a(X). 
Now we introduce a new risk-measure analogous to the standard deviation. 
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Table 5: Layer premiums under an index mixture 

Net Risk-adjusted 
Premium Premium 

77.892 131.802 

20.512 56.006 

11.098 41.363 

1.982 24.940 

0.888 22.497 

0.132 20.493 

0.058 20.244 

Definition 2 The right-tail deviation is defined as 

D(X) = H:(X) - E(X) = jgm JSx-odt - lrn S,,(t)&. 

and the right-tail index is defined as 

d(X) = H(X’) 
E(X) 

Analogous to the standard deviation, the right-tail deviation D(S) satisfies: 

l If Pr{X = b} = 1, then D(X) = 0. 

l Scale-invariant: D(cX) = CD(X) for c > 0. 

l Sub-additivity: D(X + Y) 5 D(X) + D(Y). 

. If X and Y are perfectly correlated, then D(X + 1’) = D(X) i- D(Y) 

At very high layers, the standard deviation and the right-tail deviation converge 

to each other, as demonstrated in the following example. 

Example 8 : Re-consider the claim distribution in Example 4 with a 

ddf: 
S,y(t) = 0.1 x (G,r.r 

For different layers with fixed limit at 1000, we compare the standard 
deviation and the right-tail deviation in the following table. 
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Layer 

(0, 10001 77.89 

(1000, ZOOO] 51.5G 
(10000, 1 lOOO] 11.10 

(100000, 101000] .8879 

(1000000, 1001000~ .05X4 

(10000000, 10001000] .003640 
(100000000, 100001000] .0002297 

(1000000000, 1000001000] .00001450 

Expected 
loss 

E(I) 

Std-deviation Right-tail 
of the loss deviation 

40 

256.0 
214.3 
103.9 
29.76 

7.584 

1.908 
.4793 
.1204 

D(I) 
200.5 
17’5.2 
94.24 
28.91 

7.528 

1.904 
.4791 

.1204 

Percentage 
difference 

z-1 

27.7% 

22.3% 
10.3% 
2.93% 

.75% 

.19% 

.05% 

.Ol% 

It can be shown that, for any small layer [cz,~ + If.), D(lt,,,+,,l) < g(l~~,~+,,l), 
D(Ic,,,+,,l) converges to g(lta,a+hl) at upper layers (i.e. the relative error goes to zero 

when o becomes large). As a result, for any ndn-negative random \:ariable S, the 
right-tail clcviat.ion D(S) is finite, if anti only if, the standard deviation u(S) is finite. 

Having st.ated a number of similaritirs, hcrc WC point out some clucial differences 
betlveen the right-tail deviation D(S) and the standard deviation o(S): 

l D(S) is layer-additive, but o(S) is not. additive. 

. D(S) preserves sonic natural ordering of risks such as first stochast,ic dominance’, 
but n(S) cloes not. 

3.3 Links to the Gini Index in Welfare Studies 

Historically, some long-tailed distribut.ions have an origin in income distributions 
(e.g. Pareto, log-normal distribut.ions, see Arnold, 1983). 1n social welfare studies, a 
celebrated measure for income iuequality’ is the Gini index. .4ssumc that individual’s 
wealth level in a country (community) can be summarized by a distribution: S,Y(U) = 
Proportion{S > 11.). .4s a measure of income inequality of a society, the Gini index is 

‘Risk S is stall than risk 1’ ill first stochastic dominance if Sx(t) 5 S\,(t) for all 1 1 0; 
or eqllivalently. Y has the same distribution as X + Z where Z is another non-negative rrtndom 
variable. 

*Here ‘income inequality’ refers to t.he polarization of the wealth distribution. 
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defined as 
G(x) = 2E(IX - Yl) 

E(X) ’ 
where X and Y are independent and identically distributed. 

.4n equivalent definition of the Gini index is 

The higher the Gini index is, the more polarized a society is. As a measure of welfare 
inequality, the Gini index has the following properties: 

l Each dollar transferred from the rich to the poor will lower the Gini index. 

l Adding an equal amount to all persons’ wealth will decrease the Gini index. 

It is noted that d(X) and G(X) are similar in their definition formulae. This 
similarity may suggest that the role of the right-tail index d(X) in measuring the 
right-tail risk is parallel to the role of the Gini index G(X) in measuring income 
inequalities. 

Consider the following loss distributions each with the same mean and vari- 
ance(=3). Without referring to higher moments, we can order them by the right-tail 
index d(X). 

Risk Xi Distribution E(X,) u(Xi) d(Xi) Gini index 

Pareto w = (&I” 1 J3 3.00 0.600 

Log-normal p = -lag(2), c7 = log(4) 1 fi 2.46 0.595 

Inverse-Gaussian ,(+~$3 1 d3 2.17 0.632 

Gamma o=p=; 1 fi 1.96 0.713 
Bernoulli f(O)= f, f(4)= f 1 L/3 1.00 0.750 

As its name may suggest, the right-tail deviation measures the right-tail risk, as 
opposed to the standard deviation which measures the deviation about the mean, 
and as opposed to the Gini index which measures the polarization of the wealth 
distribution. 
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4 ECONOMIC THEORIES 

4.1 Expected Utility Theory 

Traditionally, expected utility (EU) theory has played a dominant role in modeling 
decisions under risk and uncertainty. To a large extent, the popularity of EU was 
attributed to the axiomatization of van Neumann and Morgenstern (1947). They 
proposed five axioms (somewhat self-evident) and showed that any decision-making 
which is consistent with these axioms can be modeled by using a utility function of 

wealth. However, due to difficulties associated with implementation, EU remains as 

an academic pursuit and has had little direct impact in practice. 
When EU is applied to produce an insurance premium for a risk X, the minimum 

premium P that an insurance company will accept for full insurance is defined by 
u(w) = E(74w + P - X)], in which u and w refer to the insurer’s utility and wealth 
(see Bowers et al, 1986). As pointed out by Meyers (1995), EU gives lower and upper 

bounds of an insurance premium, without due consideration of the market setting. 

The EU does have an indirect application in actuarial work via the mean-variance 
analysis, which is viewed by some authors as a rough approximation of utility theory 

(Meyers, 1995). A commonly used actuarial method for deciding risk loads is based 
on the first two moments. Since loss distributions are often highly skewed, the first 
two moments cannot accurately reflect the level of insurance risk. In fact, actuaries 

often find that Iong tailed claim distributions, such as Pareto distributions, are more 
appropriate to describe the potential losses for some insurance contracts (e.g. liability 
insurance). Even for a large risk portfolio, the total claim distributiou can be highly 
non-normal due to correlations or ambiguities in the initial estimates of individual 
risks. 

The inconsistency of moment-based methods in calculating layer premiums are 

discussed by a number of authors (e.g. Venter, 1991; Robbin, 1992). 

4.2 The Dual Theory of Yaari 

A new theory of decision under uncertainty has been developed in the last decade by a 

gr.oup of economists (e.g. Quiggin, 1982; Yaari 1987). Analogous to the development 
of non-Euclidean geometry, Yaari (1987) formalized an alternative set of axioms and 
developed a dual theory of decision under uncertainty. In Yaari’s dual theory, risk- 
aversion is described by a distortion function (increasing and convex) g : (0, I] I-+ 10, l] 
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which is applied to probability distributions. The certainty equivalent to a bounded 

random economic prospect V (0 5 V < m) is 

I 0 m dSv(t)ldt, where S,(t) = Pr{V > t}. 

In other words, the certainty equivalent to a random economic prospect, V, is just 
the expected value under the distorted probability distribution, g[&(t)]. 

4.3 Schemeidler’s Ambiguity-Aversion 

As early as 1921, John Keynes identified a distinction between the implicalion of 
evidence (the implied likelihood) and weight of evidence (confidence in the implied 
likelihood). Frank Knight (1921) also drew a distinction between tisk (with known 

probabilities) and vncerlainly (ambiguity about the probabilities). A famous example 

on ambiguity-aversion is Ellsberg’s (1961) paradox which can be briefly described as 
follows: There are two urns each containing 100 balls. One is a non-ambiguous urn 
which has 50 red and 50 black balls; the other is an ambiguous urn which also contains 
red and black balls but with unknown proportions. When subjects are offered $100 
for betting on a red draw, most subjects choose the non-ambiguous urn (and the 

same for the black draw). Such a pattern of preference cannot be explained by EU 

(Quiggin, 1993, p.42). 
Ellsberg’s work has spurred much interest in dealing with ambiguity factors in risk 

analysis. Schmeidler (1989) brought to economists non-additive probabililies in his 
aviomization of preferences under uncertainty. For instance, in Ellsberg‘s experiment, 
the non-ambiguous urn, with 50 red and 50 black balls, is preferred to the ambigu- 

ous urn with unknowu proportions of red or black balls. This phenomenon can be 
explained if we assume that one assigns a subjective probability $ to the chance of 
getting a red draw (or black draw). Since 3 + 3 = f which is less than one, the 
difference 1 - ! = f may represent the magnitude of ambiguity aversion. 

Built on its own ,axiomatic system, Schmcidler’s theory leads to the same math- 

ematical formulation as that of Yaari; that is, a certainty equivalent to a random 

economic prospect \I (0 5 V 5 m) can be evaluated as 

where g : (0, l] H [O, l] is a distortion function and g[Sx(t)] represents the subjective 
probabilities. 
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The method of using adjusted distributions is widely known by actuaries. How- 

ever, actuaries often use a transformed random variable, Y = g(X), which yields 
Sv(t) = Sx(g-l(t)), a different formulation from Yaari’s and Schmeidler’s. A key 
point in the theories of Yaari and Schmeidler is that one needs to transform directly 

the distribution function S,(t). 
Using a market argument, Venter (1991) discussed the no-arbitrage implications 

of insurance pricing. He observed that in order to ensure additivity when layering a 
risk, it is necessary to adjust the loss distribution so that layer premiums are expected 
losses under the adjusted loss distribution. Inspired by Venter’s insightful observation, 

Wang (1995, 1996a) proposed the PH-transform method, which is in agreement with 

the formulation in Yaari and Schmeidler, thus is supported by their economic theories. 

5 SUMMARY 

In this paper we have introduced the basic methodologies of the PH-transform method 

and have shown by example how it can be used in insurance ratemaking. We did not 
discuss how to decide the overall level of contingency margin, which depends greatly 
on market conditions. .4n important avenue for future research is to link the overall 
level of risk load with the required surplus for supporting the written contract. Some 
pioneer work in this direction can be found in Iireps (1990) and Philbrick (1994). 

The use of adjusted/conservative life tables has long been practiced by life actuar- 

ies (see Venter, 1991). To casualty actuaries, the PH-transform method contributes a 
theoretically sound and practically plausible way to adjust the loss distributions. For 
economic interpretations and empirical tests of the PH-transform method, see Wang 
(1996b). For updating risk-adjusted premiums in the light of new information, see 
Wang and Young (1996). 

Acknowledgments: The author thanks the CAS Ratemaking Committee, es- 

pecially Israel Krakowski, for numerous comments and suggestions. 
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APPENDIX: Ambiguity and Parameter Risk 

Most. iwxrance risks arc cllarackrized by t,ltc uxcrt,aint.y about. t.hr cstimak of 
t.lw hi1 prohabilitirs. This is often drlc to data sparsity for rare rvcwt.s (small tail 
probabilities), which in ~,IIIII causes t,llc cstimatcs for tail prohbilitics t.o Iw unreliable. 

To illwtratc, assume t,ht WC have n finite sample of 11 obsrrwtiolls from a class 
of identical insrlrancc politics. The empirical rst,imat,c for the loss dist.rih~t~ion is 

S(t) = # of obwrvatioiis > f. 
, t>o. 

R 
Let. S(t) rcprcscnt thr he rlnderlying loss distriblltion, which is generally ~II~IIO~II 
AIKI different from t.hc empirical cst~imat,ion S(t). From st,at.ist.ical est~imation tlwory 

(r.g.. Lawlrss, 1982. pp. 402; Hogg and Iilugman, 1%4), for SOIIW spccifietl va111c of 
t, {VP CRII t.rcat. the quantit.) 

S(t) - s(t) 
dS(f)) ’ 

RI; having a stxiidartl 110rmal tlistrihltioll for hrgc valnrs of 11. \vllcrc 

Thr r/‘%’ upper confidence limit (UCL) for tllr trw unclcrlying dist.ribution S(t) 

cali Iw ;iI)l,rL-,siiiiRt,c~l 11) 

UCL(f) = S(/) + $=\/(m. 

~vlirrr q,, is il quwihlc of t.lie staiidard normal dist.rihit.ioti: Pr(N(0, 1) 5 q,,} = 11. 
liwpiiig 11 fisetl and Ming f - 03, tlic ratio of t,lic UCL t.0 t,llc best.-cst.inmte S(t) is 

L’CL(1) ‘I,, 1 - S(t) 
----=I+7 =+cQ, 

S(i) J 
\vhic:Ii grows \vit.holit. I~olliitls a.5 I iiicrwscs. 

.As a means of tlralillg nit,11 ambiguit.y regarding t.hc best,-cst.imat,c. t.llcx PH-transform: 

S,.(t) = [S,y(t.)]‘, 1’ 5 1, 

C~II bc vicwtl as a11 nppcr confidcncc limit (UCL) for t.hc best-cst,imatc 3,\(t). It 
Rllt.onlnt.icRlly givca higher rc‘lat.ivc safety margills for the t;lil probabilities. and the 
Glt.iO 

E$ = [s,(t)]‘-’ -) co, as t + 00, 

incrrascs wit.liout. bollncl t,o iilfinity. 
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Abstract 

Traditional actuarial pricing procedures have focused on pre-accident driver 
attributes, vehicle characteristics, and garaging location in an effort to explain 
personal automobile loss cost “drivers.” Although these traditional factors are 
important for statewide ratemaking in a static environment, they account for only 
part of the influences on auto insurance loss costs. 

This paper draws on the industry research of the past 15 years to present a more 
comprehensive four dimensional framework for understanding auto insurance loss 
costs, comprising factors grouped into the following categories: 

* Pre-accident drivers attributes and vehicle characteristics 
* Post-accident factors: claimant characteristics, medical providers, and 

attorney representation 
* External environment, such as road conditions and traffic density 
* Compensation system, such a tort liability versus no-fault 

As an illustration, the paper shows how territory, which is often considered a 
reflection of external conditions (such as road safety and traffic density), is more 
properly analyzed as a proxy for post-accident factors - specifically, the “treatment 
triangle” among claimants, medical providers, and attorneys in certain locations. The 
paper concludes with two proposed public policy reforms, demonstrating how the 
expanded four-dimensional framework for personal auto loss cost drivers facilitates 
the development of more efficacious methods for holding down auto insurance loss 
costs. 
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Cost Drivers, Pricing, and Public Policy 

Introduction 

Actuarial ratemaking sets policy premiums to cover anticipated loss and expenses. To estimate 
the needed premiums, the pricing actuary examines the “cost drivers”: that is, the factors that 
influence the expected future losses and expenses. 

In the past, actuaries have concentrated on variables related to driver, vehicle, and geographic 
characteristics. Indeed, these are the factors most susceptible to policy rating, the traditional 
role of the casualty actuary. 

Although this traditional perspective produces accurate rates, it does not provide a full 
understanding of the underlying factors that influence automobile insurance loss costs. The 
recent studies of the Insurance Research Council (“IRC”; formerly, AIRAC), the RAND 
Institute. and the Automobile Insurance Bureau of Massachusetts (AIB) illuminate a host of 
other factors that play significant roles in determining these costs. 

This paper integrates the results of these studies into a comprehensive lramework for analyzing 
personal automobile insurance loss costs. The framework looks at four “dimensions” that affect 
loss costs: (a) driver and vehicle attributes, (b) claim and claimant characteristics, (c) 
compensation systems, and (d) environmental characteristics. The following section shows how 
these four dimensions combine to influence territorial rates. 

The implications for policy pricing are highlighted by comparison with the traditional “claim 
severity I claim frequency” paradigm, using national statistics compiled by the IRC and 
Massachusetts experience analyzed by the AIB. The importance of the expanded framework is 
further revealed by three other uses, besides policy pricing: 

* Several traditional classification dimensions are reinterpreted, underscoring their true 
effects on insurance loss costs. The IRC studies, lor instance, show how territory is shifted 
from a factor related to the “physical environment” to a factor related to “claimant 
characteristics.” 

* Changes in compensation systems can be more accurately priced. The AIB studies show how a 
simplistic prognosis of the 1999 Massachusetts no-fault reform vastly misestimated the 
true effects on loss trequency and loss severity. This is comparable to the shift in the 
pricing of workers’ compensation statutory amendments from “direct ellects” to “direct 
plus incentive effects.” 

* Public policy recommendations for lowering the cost and improving the efficiency of 
personal auto insurance are made more realistic and more effective. 
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These uses of the expanded framework for personal automobile insurance cost drivers reflect 
the widening role of the casualty actuary in today’s insurance environment. 

Framework 

Let us begin with the fundamental question faced by the pricing actuary: 

An insurer issues a personal automobile insurance policy. What /actors influence the 
expected claim costs from this policy? 

The traditional actuarial focus on ratemaking and classification systems, as well as a 
predilection for quantifiable data, has led to an emphasis on pre-accident factors - particularly 
driver, vehicle, and geographic characteristics - to the virtual exclusion of other factors that 
affect the insurer’s payments. The likelihood and severity of an accident are considered to 
depend on driver attributes, vehicle characteristics, and garaging location. The amount of the 
claim and its monetary resolution stem directly from the physical aspects of the auto accident. 

This perspective suffices for the novice actuary working in a static world with an automobile 
classification plan that is already optimal. It is inadequate for an actuary working with 
changing external conditions and compensation systems, or for an actuary refining classification 
plans, revising pricing procedures, or formulating public policy recommendations. 

The expanded perspective in this paper groups loss cost drivers into four dimensions: 

External environment: 
physical qualities; economic 
qualities; human qualities 

I 
Pre-accident driver and Physical accident I 

Post-accident factors: type 

vehicle characteristics: 
of injury; claimant 

age, sex, use of car 
- Insurance compensation - attitudes; medical provider; 

attorney representation 

I 
Compensation system: tort vs. 
no-fault; verbal vs monetary 

threshold; PIP limits; U.M. ant 
U.I.M statutes 

0 Pre-accident driver and vehicle characteristics 

Pre-accident characteristics refer to the elements shown on the policy application: 

* Driver attributes, such as age, sex, marital status, driving record, driving experience, 
and driver education. 
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- Vehicle and vehicle use characteristics, such as make and model of the car, horsepower, 
mileage driven, multi-car discounts, and vehicle use (e.g., drive lo work vs. pleasure), 

= Policy age, such as new versus renewal policy. 

These factors are used for setting rate relativities in existing classification schemes, since they 
are known to the insurer at policy inception. and they can therefore be used to rate the policy. 
These factors are most important for predicting the occurrence of a physical event (e.g., an 
accident). Once that event occurs, the insurance payments (if any) depend on a number of post- 
accident factors and on the compensation system. 

@ Post-Accident Factors 

Studies of “classification efficiency” often fault traditional risk classification plans for failing 
lo adequately explain the variance in insurance loss costs (see Spetzler. Casey, and Pezier 
[1976], Giffin, Travis, and Owen [1976], and Woll [1979]). Indeed, the factors discussed 
above relate primarily to the occurrence of the physical event - i.e., of cars colliding with one 
another. Other factors, such as the type of injury, the honesty of the claimant, attorney 
representation, and the type of medical treatment sought, are strong predictors of insurance 
claim costs.1 

Post-accident factors relate to (i) whether an injury claim will be brought for the physical 
accident and (ii) the amount of the claim. These factors may be grouped into the following 
categories: 

* Type of injury, such as soft-tissue injuries (back and neck sprains and strains) vs. 
fractures vs. more serious injuries. The topology of injury types should distinguish 
between injuries that are more or less susceptible to “build-up” and potential fraud. For 
instance, a fracture is readily discernable, and the length of needed treatment is objectively 
determinable. Soft-tissue injuries are harder to validate, and there is less consensus on 
their appropriate treatment. If claim frequency depends (in part) on ‘claim-filing” 
behavlor, and II claim severity depends (in part) on “build-up,” then a topology of injury 

1 See, for instance, Welsberg and Derrig (19931, particularly Tables 2 and 3 on page 
133, Table 4 on page 135, and Table 6 on page 136. Weisberg and Derrig note (page 132) that 

for c/alms that involved strains or sprains, variables that rellected the seriousness of the 
injury explained little of the variation in medical expenses. For pure strains/sprains our 
model R* was only .04 and for mixed claims with strains/sprains and “hard” injuries, the 
R2 was .21. . . . However, when variables related to treatment utilization and claimant 
behavior were added in, the value of R2 for strain/spmin claims jumped to .78 and that for 
mixed claims to .79. 

In general, claimants are more likely to engage attorneys in more serious cases. However, even 
when the degree of injury is comparable, attorney represented cases are more likely to settle 
for higher amounts, though the benefit to the accident victim is often questionable (AIRAC 
(19691, IRC [1994]). 
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types that differentiates claims by the criteria mentioned above is most useful for 
forecasting loss costs. 

* Type of medical practitioner, such as physician vs chiropractor vs physical therapist, as 
well as type of treatment, such as hospital admission vs. outpatient treatment in a 
practitioner’s office.2 The “type of injury” and “type of medical practitioner” variables 
have two or more values for most claims. In other words, many auto liability claims allege 
both a sprain/strain and another type of injury. Similarly, many claimants see two or 
more types of medical practitioner, such as a physician in an emergency room setting and 
then a chiropractor for extended visits.3 

* Whether the insurance claim is being represented by an atlomey. In tort liability claims, 
plaintiffs’ attorneys are generally compensated on a contingent fee basis. That is: the 
attorney receives a percentage of the court award or of the insurance compensation, such as 
33%. 

For BI claims, the insurance company’s settlement offer is often a multiple of the economic 
damages (generally medical bills and wage loss) suffered by the accident victim. The 

2 The distributions of auto insurance claims by type of injury and type of medical 
practitioner differs from the distributions for standard health insurance. The distributions 
noted by Marter, Weisberg, and Derrig for claims reported in Lawrence, Massachusetts (an 
area suspected of widespread insurance fraud) are particularly revealing. Among the 1985-86 
Lawrence claims studied by Matter and Weisberg [1991], 44 out of 48 were for sprains or 
strains (page 404). For these claims, moreover, 89% of the medical charges went to chiro- 
practors, and only 10% went to physicians (page 407); see also Weisberg and Derrig [1991]. 

The predisposition of some actuaries is to view the lower back sprain treated by a chiropractor 
as a minor influence on auto insurance loss costs. On the contrary. In certain areas, such 
claims are the preponderant loss cost drivers. Even in the rest of the country, strains and 
sprains are the predominant type of auto injury in bodily injury claims, and treatment by 
chiropractors and physical therapists is becoming increasingly common. 

3 The Insurance Research Council has documented both the multiplicity of injury and of 
medical practitioners as well as the trends in these statistics in recent years. In 1992. the 
average BI claimant reported about 2 different types of injury and was treated by about 2 
different types of medical practitioners, as reported in the IRC’s September 1994 volume, Auto 
Injuries: Miming Behavior and I& Impact on Insurance Costs: “The growing share of claimants 
reporting multiple types of injuries also is reflected In the growth of the average number of 
different types of injuries reported by BI claimants. BI claimants reported an average of 1.92 
types of injuries per person in 1992, up from 1.79 types of injuries per person in 1987.” 
and “On average, BI claimants were treated by 1.95 different types of medical practitioners per 
person in 1992. up from 1.59 in 1987.” 
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plaintiff’s attorney has a financial incentive to encourage the “build-up” of the claim.4 The 
IRC studies have consistently shown higher average costs for attorney represented claims, 
even when the type of injury is held constant.5 

Perspectives regarding post-accident factors vary widely; we illustrate by two extremes. The 
difference in viewpoint is essential for estimating the costs of the auto insurance system and for 
developing reforms to reduce this cost. 

Suppose an accident victim in a no-fault state with a monetary tort threshold suflers a lower 
back sprain, sees a chiropractor 30 times, recovers the out-of-pocket expenses from PIP 
coverage, and files a BI claim, which is handled by an attorney. 

* The innocent (sometimes termed “naive”) perspective sees the physical injury as the “loss 

4 An illustration should clarify this. Suppose that an insurance company settles most BI 
cases for three times the economic damages: that is, the compensation for “pain and suffering” 
is about twice the medical bills. Suppose also that attorneys require 33% of the award for most 
BI claims. 

If an accident victim without an attorney incurs $1.000 in medical bills, the total BI 
compensation would be $3,000, for a “net gain” of $2,000. If the claimant is represented by 
an attorney, who takes 33% of the award, or $1,000, the “net gain” to the claimant is only 
$1.000. However, if the attorney “encourages” the claimant to incur greater medical bills 
(perhaps by recommending a medical practitioner who sets a longer course of treatment), so 
that the economic damages rise to $2,000 and the insurance compensation rises to $6,000, the 
attorney’s fee becomes $2,000 and the claimant’s “net gain” remains $2,000. Many 
insurance company personnel and industry researchers believe that this accurately depicts the 
role played by many (though not all) attorneys. In other words, attorneys often drive up the 
cost of the system, with little benefit to claimants (assuming there are no other collateral 
sources of compensation, such as private medical insurance). 

In no-fault states, there is a second incentive to build up claims. Many states have monetary 
tort thresholds, which allow accident victims to press bodily injury claims only if medical bills 
exceed a stated amount. [Most of these states also have verbal thresholds, which allow BI claims 
for “serious” injuries even if medical bills are low.] Attorneys can provide little aid in PIP 
recoveries. However, if by encouraging their clients to “build up” the medical bills to exceed 
the tort threshold they can file 81 claims for “pain and suffering,” both they and their clients 
can “profit.” 

5 See AIRAC [1988] and IRC 119941. The IRC study notes that “Attorney involvement in 
auto insurance injury claims has more than doubled in the last 15 years, moving from 19% in 
1977 to 42% in 1992. . . . The use of attorneys results in a big cost to the auto insurance 
reimbursement system. Attorney-represented claimants incurred medical expenses and other 
economic losses averaging $14,718, compared with an average of $4,123 for claimants 
without attorneys.” Figure 4-7 and the accompanying discussion on pages 29-33 of the IRC 
study show that this same pattern holds true even when claims are stratified by type of injury. 
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cost driver.” The lower back sprain incurred in the auto accident motivates the victim to 
seek out a medical practitioner competent to handle such injuries. The length of the needed 
treatment, and the lack of reimbursement for non-economic damages under PIP coverage 
(such as “pain and suffering”), motivates the victim to file a 81 claim. The complexity of 
the insurance claim process, and the uncertainties of BI compensation, motivate the victim 
to seek an attorney’s aid. No one “profits” from the claim. 

The cynical perspective sees the “entitlement philosophy,” or “claims-consciousness,” or 
the “insurance lottery” as the “loss cost driver.“6 Whether the accident victim files an 
insurance claim, seeks treatment from a particular medical practitioner, or even “suffers” 
a lower back sprain is not dependent solely upon the physical events in the auto accident. 
Rather, the accident victim, seeking to profit from the event, sees an attorney, who 
encourages him or her to be examined by a certain medical practitioner. The medical 
practitioner diagnoses the lower back sprain and recommends the course of treatment. 
Either the chiropractor or the attorney notes that the medical expenses will be covered by 
PIP (as well as by other health insurance), and that the BI claim will pay for additional 
“pain and suffering” costs. The accident victim, the attorney, and the medical practitioner 
all “prolit” lrom the claim. 

The difference in perspectives leads to differing public policy recommendations. The “innocent 
perspective” sees injury prevention as the key to reducing insurance costs. Injury prevention 
efforts include mandatoj seat belt laws, air bags, lower speed limits, and better policing of 
“driving while intoxicated” statutes. The “cynical perspective” sees the removal of the “claim 
lottery” incentives as the key to reducing insurance costs. Policy actions include anti-fraud 
units, peer review of medical practitioners, and verbal tort thresholds in no-fault states. 

B, Compensation systems 

Compensation systems may be grouped into tort liability, no-fault, and add-on systems. Tort 
liability systems may be subdivided by the financial responsibility limits and by the type of 
comparative negligence rule. No-fault compensation systems may be subdivided by the type of 
tort threshold: pure, verbal, and monetary. Verbal thresholds may be further classified by 
their definitions. Monetary thresholds may be further classified by their magnitude. No-fault 
systems may also be classified by the PIP limits, by the type of benefits provided, and by the 
compensation rate (e.g., “75% of wage loss”). 

The compensation system has a direct effect on claim frequency and claim severity, since a 
claim may be compensable under one system but not under another system. The compensation 
system has an “incentive” effect on claim filing (the “insurance lottery” perspective) and on 

e Casualty actuaries speak of “claims consciousness,” which the IRC studies refer to as 
“claim filing behavior.” “Claim consciousness” is frequently measured by BllPO ratios; see 
the discussion of territory in the text. The “entitlement philosophy” is broader. Many accident 
victims, having paid thousands of dollars over the years for thelr own auto insurance, now feel 
that they are entitled to recover their money from the “insurance industry.” The fact that 
their past auto premiums are unrelated to the insurance claim at issue rarely deters people 
from linking the two. 
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claim severity (e.g., the “build-up” of claims either to pass a monetary tort-threshold in a 
no-fault compensation system or to legitimize claims for pain and suffering awards in a tort 
liability system).’ 

Compensation system are most important in explaining state-by-state differences in insurance 
costs. Not only the insurance compensation but also the occurrence of claims and the amount of 
economic damages depend on the stale compensation system. 

0 The external environment 

The external environment relates to non-insurance characteristics that affect claim frequency 
or claim severity. We group these factors into three categories: 

- Physical qualities, such as traffic density, road hazards and maintenance, and safety 
regulations (such as speed limits and seat-belt statutes). The garaging locafion, or the 
rating ferritor)(, is often thought of as reflecting physical road qualities. In truth, 
territory affects auto claim costs primarily by its relationship to several post-accident 
factors, such as attorney representation, the nature of the medical providers, and 
claimant characteristics. As the discussion below indicates, territory is not simply a 
reflection of road characteristics and traffic density.6 

c Economic qualities, such as the “underwriting beta” argument that in prosperous years 
people drive more, purchase new vehicles, and take more vacations, leading to higher 
bodily injury accident frequencies. 

* Human qualifies: e.g., a higher proportion of poor residents in certain geographic areas 
may lead to more uninsured motorists and higher UM costs. 

The Frequency-Severity Paradlgm 

The explanatory power of the expanded framework can be seen most clearly in contrast with the 
old “loss frequency - loss severity” paradlgm. Previously, personal automobile loss cost 
drivers were vlewed simply as inflation-induced changes in loss severity and as slow, long- 

7 The “insurance lottery” perspective says the incentive effect on claim filing depends on 
the ease of pressing an insurance claim. States with strong anti-fraud statutes may greatly 
reduce claim frequency. The “build-up” of claims is useful.only if it provides a greater “net 
gain” to the claimant and his or her associates. The incurral of additional medical expenses in a 
no-fault state with a strong verbal tori threshold is sometimes pointless, if the type of injury 
does not allow a tort claim to be pursued. 

s Physical factors may be important in particular instances, such as to explain a high 
accident frequency at a four way intersection with stop signs but no traffic light. They are less 
important in the aggregate. Two cities may have similar physical characteristics but different 
claim frequencies. 
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term trends in loss frequency. The frequency trends were often modeled by econometric 
equations based on changes in gasoline prices, car density, and similar factors. 

This paradigm is still useful for certain isolated analyses in static environments. But it 
provides no clue regarding why claim frequency or claim severity may be changing, or what the 
insurer should expect in the future. The expanded framework provides a different framework 
for viewing personal auto loss frequency and loss severity. 

0 Frequency: The Insurance Research Council studies of the mid-1990s show that the 
countrywide property damage claim frequency has decreased by 12% from 1987 to 1992. 
This is a measure of accidenf frequency, and it is consistent with fewer youthful drivers, 
greater public awareness of drunk drivers, and better quality cars. 

Over the same time period, the frequency of bodily injury claims increased by 16%. Given 
the 12% decline in accident frequency, this is a 32% increase in bodily injury claims per 
physical accident.9 

For bodily injury, the changes in “claim filing” behavior among the public overwhelms the 
changes in physical accident frequency. The “loss frequency drivers” are not economic and 
environmental attributes like gasoline prices and car density. Rather, the drivers lie in the 
“claim and claimant characteristics” dimension of the expanded framework: 

* Type of injury the greatest increase over this period was in “soft-tissue” injuries 
(sprains and strains).’ Moreover, sprains and strains are particularly dominant in urban 
areas, which also have the highest ratio of BI to PD claims. In fact, the May 1994 IRC 
study, Paying for Auto Injuries, concludes that “Almost all of these additional injury claims 
are for difficult-to-verify injuries such as sprains and strains.” 

- Type of medical practitioner: the greatest increase over this period was in chiropractic 
treatment, especially for sprains and strains. Conversely, injuries requiring hospital stays 
have declined. 

* Attorney involvement: between 1977 and 1992. the percentage of claims represented by 
lawyers rose from 31% to 46% for all injury coverages combined and from 47% to 57% 

9 Formally, 32% = [(l + 16%) + (1 - 12%)] - 1. The full IRC studies, see Insurance 
Research Council, Auto Injuries: C/aiming Behavior and Its Impact on insurance Costs (Oak 
Brook, Illinois. September 1994), and Insurance Research Council, Trends in Auto hjury 
C/aims, Second Edition, Part One: Analysis of Claim Frequency (Wheaton, Illinois, February 
1995). See also Insurance Research Council, Paying for Auto Injuries: A Consumer Pane/ 
Survey of Auto Accident Victims (Oak Brook, Illinois, May 1994): “More people involved in 
auto accidents are making claims for injuries, even though accident rates have been declining. . . 
. Many states enacted seat belt laws during these years, resulting in substantial increases In 
seat heft use. Seat belts reduce the number and sever.9 of injuries in auto crashes. Around the 
same time, states passed tougher drunk driving laws In response to growing public awareness of 
this problem. In addition, the federal government now requires additional safety standards for 
vehicles that make cars safer for passengers.” 
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for bodily injury claimslo 

* Law changes In 1989. the threshold in Massachusetts for pursuing a BI liability claim was 
increased from $500 to $2.000. The traditional actuarial analysis would predict that the 
frequency of BI claims would decrease substantially, because injury claims with medical 
expenses between $500 and $2.000 would no longer be eligible for BI liability payments. 
In fact, the frequency reductions were minimal, because of incentive effects. The higher 
tort threshold encouraged accident victims (and their attorneys) to “build up” the medical 
expenses so that a bodily injury claim could be filed. 

In sum, changes in claim and claimant characteristics are the key drivers for bodily injury 
claim frequency trends. Moreover, the claim frequency trends for BI coverage may be entirely 
different from the corresponding claim frequency trends for property damage liability and for 
collision coverage, even though all of these trends ostensibly relate to the occurrence of auto 
accidents. 

@ Loss severity: Actuaries have traditionally used two methods to project trends in loss 
severity. 

A Trend projections based on internal data fit observed average costs per claim to an 
exponential curve and assume that the same trend will continue in the future. 

8. Trend projections based on external data correlate the historical average costs per claim 
with an economic index, such as the medical cost component of the CPI, and then estimate 
future claim severity based on the expected future values of the economic index. 

Both methods work well in static environments, The first method works well when inflation is 
stable, so that past, changes in loss severity are deemed to be unbiased predictors of future 

lo These statistics are from the IRC closed claim studies. Compare also the IRC consumer 
panel surveys, which show a similar ending point for 1992, but a lower starting point in 
1977: “Attorney involvement in auto insurance injury claims has more than doubled in the last 
15 years, moving from 19% in 1977 to 42% in 1992” (IRC, Paying for Auto injuries [May 
19941). 

Of particular importance to pricing actuaries are the relative differences by state, which are 
relevant for loss severity and loss frequency trends. Credibility weighting statewide loss 
severity and loss frequency trends with the corresponding countrywide figures is inappropriate 
if the statewide trends are affected by changes in (a) claim and claimant characteristics and (b) 
the compensation system in ways that the countrywide figures are not affected. 

The same phenomenon may be seen in workers’ compensation. In the past, statewide medical 
benefit trends were credibility weighted with countrywide trends. However, trends were lower 
in stales with medical fee schedules, the counterpart to the “medical practitioner dimension of 
the personal automobile framework here. Now, the figures assigned the “complement of 
credibility” in workers’ compensation medical benefit trends depends on whether the state has a 
medical fee schedule. 
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changes. The second method works well when loss cost trends are considered to be closely linked 
to recognized inflation indices. 

In personal automobile bodily injury insurance, loss severity trends are composed of three 
influences. 

1. Trends in cost of treatment. This includes both (a) medical cost inflation and (b) trends In 
utilization rates that are independent of the personal auto compensation system.1 t 

2. Trends in loss frequency. Severe automobile accidents lead to insurance claims regardless of 
the claim filing proclivity of the accident victim. The growing influence of attorneys and the 
changing “claim filing” behavior of the public lead to greater claim frequency for “minor” 
injuries, such as sprains and strains with no visible signs of impairment. These are often 
low cost claims. In other words, the factors that increase loss frequency often lead to 
decreases in average loss severity.12 A change in expected claim frequency stemming from 
changes in claim or claimant characteristics should be partially offset by changes in 
expected claim severity. 

3. Changes in compensation systems and in claim handling procedures. Compare the discussion 
above on the tort threshold change in Massachusetts in 1999. The new low severity 
projections changed dramatically because a whole cohort of cases which formerly had 
medical costs between $500 and $2,000 moved up to over $2,00 with higher pain and 
suffering awards. 

Proxies 

Many of the traditional classification variables used today are proxies for the true 
(“causative”) factors affecting insurance loss costs. To clarify the difference between a 
causative factor and a proxy, let us contrast life insurance with automobile insurance. 

* Sex and age are physiological attributes that affect expected mortality rates, so they are used 
as rating variables for life insurance underwriting and life annuity underwriting. 

* Sex and age have equally strong correlations with auto accident frequencies, so they are used 
to set auto insurance rate relativities. Indeed, a 17 year old unmarried male may have about 
the same mortality rate as a 30 year old married female, but he may have several times the 
auto bodily injury claim frequency rate that she has. Yet sex and age (except at advanced 

11 For instance, the development of new medical procedures may engender greater 
utilization of services even when the personal auto compensation system remains unchanged. 

12 The IRC studies demonstrate this phenomenon. Among the BI, PD, and PIP coverages 
over the 1980 to 1993 period, BI had the greatest increase in claim frequency and the smallest 
increase in claim severity; see especially Insurance Research Council, Trends in Auto injury 
Claims, Second Edition, Part One: Analysis of Claim Frequency (Wheaton, Illinois, February 
1995). chapters 1 and 2. 
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ages when bodily functions deteriorate) have little intrinsic relationship with accident 
propensity. Rather, they are proxies for other driver characteristics, such as maturity. 

The use of territory as a proxy for external conditions, driver attributes, and claimant 
characteristics are discussed below. 

Interactlone 

The factors in one dimension may interact with the factors In another dlmension to determine 
expected loss costs. We illustrate with two examples. 

c Underwriting attributes and compensation systems: Age, sex, and marital status may be 
more important as rating variables In tort liability systems, which focus on the tortfeaser’s 
“fault,” than in no-fault compensation systems, in which all accident victims are 
compensated. Conversely, the applicant’s income and employment status may be important 
in no-fault compensation systems with high PIP wage-loss limits.ls 

c C/aim characteristics and compensation system: The “padding” of claims, or “build-up,” 
can be stimulated by a no-fault compensation system with a low or moderate monetary tort 
threshold. The AIB studies by Marter, Welsberg. and Derrig referenced above show how the 
1989 increase in the Massachusetts tort threshold lengthened the average number of 
outpatient visits to chiropractors, who handled the majority of neck and back sprains and 
strains incurred in auto accidents. 

The interactions of the four components of the expanded framework Is essential for proper 
pricing and public policy recommendations, as discussed in the final section of this paper. 

Territory as a Rating Varfable 

Territory Is one of the chief variables used by U.S. insurers for automobile rate setting. 
Territory provides an excellent example for seeing how pre-accident driver characteristics, 
the pre-accident physical environment, post-accident characteristics, and the compensation 
system all affect automobile insurance loss costs. 

0 Pre-Accident Driver Characterlsfics: Pre-accident driver characteristics, such as age, 
sex, and marltal status, do not generally have a direct effect on territorial relallvfties. 
Since the distributions by age and sex are relatively constant by territory, territorial 
relativitles are not normally affected by the demographlc characteristics of the drivers in 

13 The comments in the text relate to relative importance only. Thus, age, sex, and marital 
status are Important for no-fault compensation systems as well, since young, unmarrled, male 
drivers are not only more likely to cause accidents. they are also more likely to be injured In 
a&dents. Similarly, income and employment status are Important for tort liability systems as 
well, since unemployed persons with little assets are often “judgment proof” and therefore 
carry low liabillty limlts of coverage. 
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that territory.1 4 

@ External Environment: The physical environment in an area can raise or lower the expected 
number of accidents. For instance, population density and vehicle density are often cited as 
explanatory variables for accident frequency, on the assumption that with more cars per 
square mile, there will be more accidents per car. While this is true, a combination of road 
design, traffic controls, and law enforcement can reduce the variation caused by traffic 
density. 

In a 1989 study, the Insurance Services Office and the National Associate of Independent 
Insurers compared the variation in traffic density with the variation in property damage (PD) 
claim frequenciesfs Although the major cities in each state had traffic densities over ten times 
the statewide average, these cities had PD claim frequencies that were often only 10% higher 
than the statewide average.16 

In sum, there is a tendency to overestimate the effects of traffic density on automobile claim 
frequencies. In theory, accident frequencies might be expected to increase proportionately with 
traffic densities. In practice, traffic safety devices in urban areas, such as traffic lights, stop 
signs, and well-designed roads, by causing traffic to move at a somewhat lower speed, keep the 
increase in the accident frequency to a relatively small percentage over the statewide average 
frequency. 

Table 1 shows 1993 property damage claim frequencies by state.17 With only 2 exceptions, the 
states lie in a narrow range from 20% above the countrywide average of 4 claims per 100 

14 An exception would be communities, such as retirement communities, where a 
disproportionate number of senior citizens reside. This lowers the average pure premium of 
the territory, but the class rating system should produce the correct overall territorial rate. 

15 Traffic density, or “vehicle density,” is defined in the study as car registrations per 
square mile. 

1s For example, the 1999 study shows a traffic density for Chicago of 5,423 cars per 
square mile, versus the statewide average of 152 car registrations per square mile. 
Nevertheless, the PD claim frequency in Chicago was only 11.7% higher than the statewide 
average claim frequency. More recent data (Insurance Research Council, Trends in Auto lnjuty 
Claims. 1995) shows a similar relativity, with the Chicago PD claim frequency being about 
13% higher than the statewide average claim frequency. 

17 The data are taken from Figure 2-6 in the IRC study, Trends in Auto injury Claims. 
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insured vehicles to 25% below the countrywide average.rs 

Table 1: Number of PD Claims per 100 Insured Vehicles (1993) 

Massachusetts 7.13 
Dist of Colum 5.38 
Texas 4.76 
Missouri 4.72 
New York 4.67 
Illinois 4.35 
Rhode Island 4.23 
Maryland 4.16 
Connecticut 4.11 
Utah 4.09 
Louisiana 4.05 
Kansas 4.03 
N. Hampshire 4.02 

Nebraska 
Georgia 
Alaska 
Iowa 
Michigan 
Ohio 
NWXb 
Minnesota 
Pennsyl 
Florida 
Arizona 
Delaware 

3.98 California 3.65 
3.98 Oklahoma 3.64 
3.89 Kentucky 3.63 
3.89 Wisconsin 3.62 
3.89 Arkansas 3.60 
3.81 W Virginia 3.59 
3.77 Virginia 3.54 
3.76 Tennessee 3.54 
3.73 Colorado 3.52 
3.70 New Jersey 3.50 
3.69 Washington 3.45 
3.68 Oregon 3.45 
3.67 Idaho 3.39 

S Carolina 
Hawaii 
Vermont 
South Dakota 
N Carolina 
New Mexico 
Mississippi 
Alabama 
North Dakota 
Maine 
Montana 
Wyoming 

3.38 
3.38 
3.36 
3.32 
3.31 
3.29 
3.26 
3.26 
3.26 
3.23 
3.19 
3.02 
4.00 

Several other attributes of the physical environment also affect automobile insurance rates. 
Automobile theft rates vary by geographic location. Higher theft rates in urban areas cause 
higher comprehensive losses and therefore higher premiums for comprehensive coverage. 
Similarly, the 1988 ISO/NAII study shows substantially higher uninsured motorist costs in 
many urban areas, presumably resulting, at least in part, from higher levels of uninsured 
motorists. Finally, the cost of services provided by insurers, such as auto body shop repair 
costs and medical costs, vary by region, and they therefore affect territorial relativities. 

B) Post-Accident Characferisfics: The occurrence of an automobile accident is a physical event. 
The decision to press a bodily injury claim once an accident has occurred, however, varies 
dramatically by state and even within a state. 

The two dimensions of the expanded framework discussed directly above - pre-accident driver 
characteristics and pre-accident physical characteristics - relate to the occurrence of the 
accident itself. Post-accident characteristics relate to the probability of a claim being filed 
given that an accident has occurred. 

We want to measure this probability for bodily injury (Bl) claims. Note carefully: we are not 
concerned with BI claim frequency or with automobile accident frequency. Rather, we are 
concerned with the probability of a Et c/aim being file given that an accident has occurred where 
another driver could pofentially be liable for damages. 

We presume that the filing of a property damage (PD) liability claim is influenced primarily 
by the nature of the physical accident, so relative PD claim frequency is a proxy for relative 

18 The two exceptions are the District of Columbia, which is an entirely urban area, and 
the Commonwealth of Massachusetts, which seems to have a statewide penchant for aggressive 
driving. 
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accident frequency where another driver could potentially be liable for damages. The ratio of 
bodily injury (BI) claims per 100 PD claims serves as a measure of the propensity to press 
personal injury claims. Table 2 shows the countrywide trend in this ratio over the past 15 
years, from 18 BI claims per 100 PD claims in 1980 to over 29 BI claims in 1993.19 

Table 2: El Claims per 100 PD Claim 

Our concern here is the relationship of this ratio to geographic location: that is, the variation in 
this ratio by state and by territory within state. Indeed. the BllPD ratios vary greatly by state, 
as Table 3 shows. California, for instance, produces 61 BI claims for every 100 PD claims, 
whereas Wyoming, which Is also a tort state, produces only 18 BI claims. [The effects of the 
compensation system are also evident from Table 3: the eight states with the lowest BllPD 
ratios are all no-fault states.] 

II Table 3: Number of 61 Claims per 100 PD Claims (1993) 

California 60.7 
Louisiana 49.4 
S Carolina 46.8 
Nevada 45.4 
Arizona 45.3 
Rhode Island 39.7 
Okfahoma 38.9 
Dist of Colum 38.8 
New Mexico 37.6 
Washington 37.4 
Texas 36.7 
Maryland 35.5 
Mississiooi 35.3 

Massachusetts 
Oregon 
N Carolina 
Arkansas 
Georgia 
Virginia 
Illinois 
N Hampshire 
Delaware 
Ohio 
TerlnesSee 
Missouri 

34.8 
34.3 
34.1 
33.9 
33.6 
31.3 
30.4 
29.8 
29.1 
28.1 
28.1 
27.8 
27.4 

W Virginia 26.9 Nebraska 19.5 
Indiana 26.0 Florida 19.1 
Maine 26.0 S Dakota 18.5 
Idaho 25.6 Wyoming 17.6 
Alabama 25.1 New York 16.3 
Connecticut 24.9 Kentucky 15.9 
Montana 24.3 Hawaii 13.9 
Utah 22.2 Colorado 12.8 
Alaska 21.3 Minnesota 11.7 
New Jersey 21.2 Kensas 9.2 
Vermont 20.9 Michigan 8.2 
Pennsylvania 20.4 N Dakota 5.6 
Iowa 19.9 Countrvwide 29.3 

19 The data for the exhibfts in this section derive from Insurance Research Council studies. 
They are from both full tort states and no-fault states. These are BI liability claims: they do not 
include no-fault claims. 
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The trends In BVPD ratios over time and the variations by territory highlight the strong effects 
of post-accident characteristics on auto Insurance loss costs. In California, for instance, the 
61% BllPD ratio for 1993 marks a steady climb from a 31% BI/PD ratio in 1980. 

A common perception is that the accident frequencies themselves vary greatly by territory, 
being far higher in urban areas than in rural ereas. Although such differences in accident 
frequencies do exist, the preceding statement confuses two Issues, and it misinterprets the 
reasons for the territorial differences. Often, the frequency of physlcal accidents and of PD 
liability claims is only marginally greater in metropolitan areas than in the surrounding 
region. Once the accident occurs, however, the BI claiming pattern is substantially different in 
the metropolitan area than in other parts of the state. 

IRC data from 1989 through 1991 illustrates this phenomenon. For instance, the PD claim 
frequency during these years was about 10% higher in Los Angeles than in the rest of the state, 
but the BI/PD ratio was 98.8% in Los Angeles, versus .45.2% in the rest of the state. In other 
words, it was not accident frequency differences that were driving up BI liability costs in Los 
Angeles, but BI claim filing patterns that were causing the difference. 

Although BI/PD ratios are generally higher in large metropolitan areas, a simple urban/rural 
dichotomy is not always a good proxy for the actual claim filing patterns. For instance, during 
the 1989 through 1991 period, the state of Pennsylvania as a whole had a BVPD ratio of 23%, 
the city of Pittsburgh had a ratio of 18%. and the city of Philadelphia had a ratio of 78%. 

The attributes of territorial differences implicit in the discussion above have major 
implications for understanding auto bodily injury liability loss cost drivers: 

* Loss cost differences by region are great, with some areas, whether urban centers or entire 
states, having high Insurance costs and “affordability” concerns. 

* Traffic congestion is m the primary determinant of these differences. In fact, the 
variations in PD claim frequencies are generally minor between urban areas and the 
statewide average. 

* Differences in the BVPD ratios account for most of the variation in El loss costs by region, 
with higher cost areas having higher BVPD ratios. 

Thus, once an accident occurs, the decision of whether to over-treat the injury, or even to seek 
medical treatment when no injury exists, drlves the major costs differences between states for 
bodily injury coverage. 

The Treatment Triangle 

The over-treatment of automobile injuries in certain locations, as well as the treatment of non- 
existent injuries, results from the interaction between clalmants, medical providers, and 
attorneys, and it depends upon the type of injury and the structure of the compensation system. 
Our emphasis in this paper Is on the lost cost drivers affecting territorial relativities. In 
particular. the major factors affecting territorial relativfties are m pre-accident driver 
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characteristics or pm-accident physical characteristics. Rather, they are the post-accident 
characteristics and compensation system attributes which determine how automobile accidents 
affect insurance payments. 

Television reports on the human toll of highway accidents leave us with grisly pictures of torn 
metal and mangled bodies, as if most automobile accidents resulted in severe injuries. In fact, 
the opposite is true. About 60% of BI claimants report their only injury to be a strain or a 
sprain, and another 23% claim to have suffered a strainor a sprain plus another injury (IRC 
1994: 19). Most strain and sprain injuries are difficult to verify, their severity is hard to 
measure, and radically different treatment patterns may be recommended by medical providers. 

For over-treatment of injuries to occur, it is necessary that all parties deciding on the course 
of treatment gain from the over-treatment. For injuries and illnesses net covered by 
automobile liability insurance or workers’ compensation insurance, the patient generally 
derives no financial gain from the medical treatment. Even if the patient has health insurance 
coverage (whether individual health insurance or employer provided group health insurance), 
the coverage simply reimburses the hospital costs or physicians’ charges, and it often requires 
a co-payment from the patient. 

Automobile bodily injury claims are different. BI liability awards consist of two parts: 
economic damages, such as medical costs or wage loss, and general damages, or “pain and 
suffering.” Medical expenses comprise about three-fourths of economic damages. “Pain and 
suffering” damages are not objectively determinable on their own. Rather, the general damages 
are generally pegged as a multiple of the economic damages. 

In sum, the medical expenses incurred by the claimant drive not only the .insurance 
reimbursement for economic damages but also the insurance award for general damages. Each 
dollar of medical expenses incurred may translate into two dollars of insurance compensation.zo 
In fact, many potential BI claims in the United States are not even pursued unless there is a 
sufficient amount of medical expense to support a “pain and suffering” claim. 

In automobile accident cases, excessive treatment of “soft-tissue” injuries inure to the 
financial benefit of the claimant, the medical provider, and the attorney, and to the detriment of 
the driving public who pay the premiums that fund these loss payments. This phenomenon 
raises the BVPD ratios and is a major driver of auto insurance loss costs. 

Three parties are needed for excessive treatment to exist on a large scale, and the interactions of 
these parties is a major influence on territorial relativities: 

1. Medical providers who aggressively treat even routine strain and sprain injuries in order 
to increase the medical expenses paid. The vast majority of medical providers, of course, do 
not engage in such over-treatment of minor injuries. Rather, a small coterie of medical 
providers who specialize in injuries covered by automobile liability and workers’ 
compensation insurance serve this function well. 

20 The actual ratio, of course, varies by state and by year, since it is greatly influenced by 
the type of compensation system. 
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2. Accident victims willing to complain of soft-tissue injuries, even when objective medical 
impairment is non-existent or slight. 

3. A third party who can direct a willing accident victim to the proper medical provider. Most 
auto accident victims are not sufficiently aware of the auto liability compensation system to 
take full financial advantage of the system. In the United States, a relatively small number 
of attorneys who specialize in strain and sprain injuries in automobile liability and 
workers’ compensation insurance claims fulfill this function by directing potential BI 
claimants to medical providers willing to over-treat soft tissue claims. 

This “treatment triangle” is shown schematically below. 

Medical I ’ providers: 
ove 

-. 

I Comoensation svstem:l I 

Claimants: 
allege 
” ‘issue 

.î  ̂

medical prDVidSrS 

This phenomenon is exceedingly difficult to police, even when insurers are aware of its 
existence in a given location. As long as the accident victim claims to be injured, the medical 
provider can continue the aggressive treatment pattern. To justify the recommendation of a 
particular medical provider, the attorney need only ‘state that the medical provider is licensed 
by the state and has produced “good results.” Sting operations are difficult to run, since a 
claimant who claims not to be injured will simply not be treated. 

Evidence for over-treatment of automobile injuries is necessarily indirect, though in some 
locations it is compelling. We illustrate with data from Massachusetts, where a detailed claim 
database has been in existence for two years. 

Were there no incentive to over-treat injuries, one would expect a wide dispersion of treatment 
costs for each provider, with some patients requiring substantial treatment while others 
require minimal treatment, depending on the severity of the injury. Moreover, one would 
expect that the number of BI claimants treated by a medical provider would be about half the 
number of PIP (“personal injury protection”) claimants, since all injuries need treatment 
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(PIP) whereas a 81 claim may be filed only if another driver was at fault.21 

The automobile compensation system in Massachusetts has a $2,000 tort threshold. That is, a 
81 claim may be filed only if the PIP medical expenses exceed 82,OOO.ss A small number of 
medical providers in Massachusetts have a large percentage of their patients suffering from 
automobile accident injuries who routinely require above $2,000 In treatment. The implication 
is that the course of treatment Is being determined not by the type of injury but by the desire to 
reach the tort threshold in order to file a BI claim. 

Similarly, among automobile accident victims being treated by these same medical providers, 
the number of BI plus uninsured motorist claimants is almost equal to the total number of PIP 
claimants. The implication is that patients are being referred to these medical providers for the 
primary purpose of bullding up the PIP expenses so that a liability suit can be pursued. 

0 Compensation Systems and Benefit Levels: The type of compensation system and the level of 
benefits are reflected in the statewide rates and the territorial relativities. Changes in state 
laws require an analysis of the “effectiveness” of the current law and of the proposed law. 
For example, in an urban area, the current tort system or monetary tort threshold in a 
given state may lead to substantial medical overtreatment, with resultant high rates, in 
comparison to a suburban or rural area, with little overtreatment. A law change that 
curtalls this overtreatment would have a larger percentage decrease in the urban territory 
than In the suburban or rural territorles. 

Summary: Territory and the Four-Dimension Framework 

Geographic location, or rating territory, has often been a difficult classification variable for the 
actuary to explain. Why should auto Insurance pollcles cost more in California than in other 
states? Why does auto coverage cost so much more in certain urban areas? 

Driver characteristics do not differ significantly from place to place. Physical conditions, such 
as road hazards and traffic denslty, have a minor effect on accident frequencies. They contribute 
only margfnally to the observed loss cost differences by territory. 

Rather, geographic location and rating territory serve as proxies for powerful but often 
overlooked factors that drive auto insurance loss costs. Between states, the incentive effects of 
compensation systems account for much of the wide variation in claim frequencies and loss 
costs. Within states, the “treatment triangle” phenomenon accounts for much of the variation 
In terrltorfal relatlvltles. 

21 In fact, we would expect the number of BI claimants treated by a medical provider to be 
less than half the number of PIP claimants, since only those cases exceeding the tort threshold 
can lead to a BI claim (see below in the text). 

22 For certain types of severe injuries, a Bf claim may be filed even if medical expenses do 
not exceed $2.000. However, these types of severe injuries are relatively rare in auto 
accidents. When they do occur, the $2,000 tori threshold Is quickly reached. 

I Personal Auto: Cost Drivers, Pricing, and Public Policy 

338 



Prlclng and Public Policy 

The framework for analyzing personal automobile loss cost drivers presented in this paper has 
numerous ratemaklng and public policy implications, ranging from territorial relativity 
analysis to pricing statutory amendments. In workers’ compensation, for instance, the pricing 
of statutory amendments is a finely honed actuarial tradition, well described in Fratello’s 1955 
PCAS paper.23 It is also half wrong, as shown by the consistent actuarial misestimates 
throughout the 1980s since it covers only the direct effects of law changes, not the incentive 
effects.24 

Compensation system reforms in personal auto insurance are often accompanied by mandatory 
rate rollbacks. If no changes are assumed in claim filing behavior, then the cost effects of the 
reform may be grossly over- or under-estimated, as shown by the 1989 Massachusetts 
changes. It is vital for casualty actuaries to understand the complete system of personal auto 
loss cost drivers to order to accurately price system changes. 

The availability and affordability of auto insurance are of public concern in many jurisdictions, 
and casualty actuaries are often called to testify on these issues. The actuary who knows only 
what the existing rating plan Indicates, but who does not understand why rates are higher in 
some territories than in others, or how the compensation system affects loss costs, makes a 
poor prognosticator. Rather, the actuary must explain how claimant behavior and the 
compensation system interact with the traditlonal driver attributes, vehicle characteristics, 
and the external environment to determine the expected loss costs. 

We provide two possibilities for public policy reforms to reduce automobile insurance loss 
costs that stem from the expanded framework in this paper. These are not the only possible 
reforms, but they are efficacious and practical proposals.25 

0 Peer review of medical treatment: The discusslon above of claim characteristics and of 
medical treatment indicate that one of the major factors contributing to the increases in 

3 3 See B. Fratello, “The Workmen’s Compensation Injury Table and Standard Wage 
Distribution Table - Their Development and Use in Workmen’s Compensation Ratemaking,” 
PrOC88dingS of the Casualty Actuarial Society, Volume 42 (1955) pages 171-202. 

34 See John Gardner, Return to Work Incentives: Lessons for Policymakers from Economic 
studies (Cambridge, MaSSaChUs8t’ts: Workers’ Compensation Research Institute, 1989). as well 
as the numerous state specific studies form the Workers’ Compensation Research Institute. 

25 Other reforms would be equally effective. For instance, most auto actuaries agree that 
movement from a tort liability compensation system to a no-fault system with a strong verbal 
tort threshold, as In Michigan, would reduce overall costs. However, there are strong interest 
groups opposing such a move, and who support instead such changes as epitomized by 
California’s Proposition 103: rate rollbacks, classification restrictions, and prior approval, 
but no attack on the real problem of overtreatment. 
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bodily injury loss costs over the past decade has been the “build-up” of hard-to-verify soft 
tissue injuries, generally with extended courses of treatment by a small number of 
chiropractors, physical therapists, and physicians, often orchestrated by attorneys 
experienced in such claims. Insurance claims adjusters are aware of the “padding” in these 
claims. Yet it is nearly impossible for claims adjusters to find “objective” evidence of 
unnecessary or inappropriateness treatment, especially on any specific case. 

Peer review of medical treatment in auto insurance claims, by state panels of physicians and 
other medical practitioners, could succeed in eliminating the worst abuse and stemming or 
reversing the upward trend in bodily injury loss costs. The state insurance department 
would appoint a panel of medical experts to review treatment patterns by individual medical 
providers. A substantial database of auto injury losses would be needed to properly identify 
such patterns. It is generally impossible to determine over-treatment by reviewing any one 
specific case since the severity of any soft-tissue strain or sprain is a subjective estimate. 
However, by reviewing all treatment by particular medical providers, patterns of 
overtreatment can be recognized. Medical practitioners would be more hesitant to provide 
excessive treatment on a consistent basis if they knew that their actions would be subject to 
professional review. 

@ Consumer representafion: A second factor contributing to the increase in bodily injury loss 
costs over the past decade has been the rapid increase in attorney representation of 
insurance claims. If the attorney helps build up the economic damages, there is generally no 
“net loss” to the claimant despite the hefty contingency fee, and sometimes even a “net 
gain.” In addition, the attorney handles all the claim filing paperwork and negotiates with 
insurance loss adjusters. Both of these activities can be frightening to the average citizen, 
particularly in third party cases. 

State insurance departments could provide “claims representatives” to handle claim filing 
and negotiation on behalf of auto accident victims who need aid in insurance matters. The 
claims representatives would be compensated by salary, so they would have no interest in 
building up claims. The insurance industry would defray the costs of these claims 
representatives. 

All parties could gain. Claimants would have representation by state insurance officials, 
who could guide them through the claims process - at minima/ cost to the claimant. 
Insurance companies would gain because the cost of such claims representatives is far less 
than the costs of claim “build-up.” The general public would gain by lower insurance 
premiums and increased satisfaction with the insurance claim process. State insurance 
departments would gain because they would be offering additional and highly valued services. 

Conclusion 

The days of simple claim severity and frequency trends in automobile rate making are gone. The 
ultimate cost of automobile insurance is a complex and changing mosaic of many diverse factors. 
Actuaries who understand these factors will be of great value to their companies, and they may 
eventually help design systems. to control the cost of automobile insurance. 
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