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ABSTRACT

Mortgage insurance indemnifies a mortage lender against loss on default by the
borrower. The sequence of events leading to a claim under this type of
insurance is relatively complex, depending not only on the credit worthiness of
the borrower but also on a number of external economic factors.

Prominent among these external factors are the loan to valuation ratio of the
insured loan, the disposable income of the borrower, and movements in
property values. A broad theoretical model of the functional dependencies of
claim frequency and average claim size on these variables is established in
Sections 6 and 7. Section 8 fits these models, extended by other “internal”
variables such as the geographic location of the mortgaged property, to a real
data set.

Section 9 compares the fitted model with the data, and finds an acceptable fit
despite extreme fluctuations in the claims experience recorded in the data
set.

KEYWORDS

Mortgage insurance; housing price index; loan to valuation ratio; regres-
sion.

1. INTRODUCTION

Mortgage insurance indemnifies a mortgage lender against loss on default by
the borrower. The typical sequence of events leading to the invocation of the
indemnity is as follows.

The amount of the mortgage is repayable by a sequence of instalments,
perhaps monthly, over a period of some years, up to perhaps 25 or in a few
cases more. If a borrower fails to meet one or more of these instalments,
arrears collection procedures will be instigated. If it appears that the borrower
is experiencing financial difficulties which threaten his capacity to pay the
scheduled instalments, the lender’s initial response will usually be to attempt
rehabilitation of the borrower, possibly by some form of rescheduling of the
debt repayment.

In many cases this will render the borrower’s difficulties temporary. In other
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GREG TAYLOR

less fortunate cases it will become clear that the borrower is quite unable to
repay the debt. The lender will then force sale of the mortgaged property, and
retain that part of the sale proceeds required to discharge the remaining debt.
In the majority of sales, the proceeds will be sufficient for this purpose, but if
they are not the mortgage insurance indemnity is invoked to reimburse the
lender for the shortfall.

It is an elementary observation that inflation of property values reduces the
call on mortgage insurance; the proceeds of property sales cover a greater
proportion of the corresponding debts. It is also clear from the above
description that a loan needs to go through several stages (healthy — in arrear
— property under management — sale of property) before a mortgage
insurance claim arises, and each of these stages involves some delay. As will be
discussed in Section 3, each of them also depends on its own specific economic
factors.

For these reasons, the underlying process generating mortgage insurance
claims is complex and dependent on several variables which are exogenous to
the insurance portfolio. Consequently, mortgage insurance run-off arrays,
whether in terms of numbers or amounts of claims, exhibit very different
characteristics from those of other lines of business. A striking example of this
is given in Section 2.

These different characteristics necessitate rather different modelling tech-
niques. The purpose of the present paper is to illustrate these techniques by
means of a case study. Since this study is specific to a particular portfolio, it
cannot be claimed that the modelling techniques illustrated are generally
applicable. It is hoped, however, that they are fairly generally indicative of the
type of modelling which needs to be attempted:

2. NUMERICAL EXAMPLE: PRELIMINARY DISCUSSION

The following data are given as an indication of the difficulties likely to arise if
a mortgage insurance portfolio is subjected to conventional run-off analysis.
More detail of the data on which this paper is based appears in Appendices E and G.

Year of Number of claims, per 10,000 loan advances, emerging in development year (a)
loan
advance 0 1 2 3 4 5 6 7 8 9 10
1980 30 18 6 0 0 0 6
1981 116 42 31 5 0 0 0
1982 54 27 45 36 13 13 4
1983 25 20 20 23 9 0 3
1984 0 13 24 55 35 5 0
1985 1 21 134 68 15 6
1986 0 17 30 4 2
1987 3 1 0 2
1988 0 0 5
1989 0 0
1990 0

(a) Development year is defined as year of emergence of claim minus year of loan advance.

3
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Let the term relative claims frequency denote the number of claims per
10,000 loan advances. If C; denotes the relative claim frequency in develop-
ment year j of year of advance i, and 4; denotes the age-to-age factor:

j+1

J
Q.0 A=) c,.,(/ Ci
k=0 k=0

then the following table of age-to-age factors is obtained.

Year of Age-to-Age factor in development year j =
loan
advance i 1 2 3 4 5
1984 2.86 2.50 1.38 1.04 1.00
1985 7.12 1.44 1.07 1.03
1986 2.71 1.08 1.05
1987 1.00 L.

The great instability in these ago-to-age factors is evident in the sense of
variability within a development year. The basic reason for the instability is
clear from the first table. It is the apparent correlation between relative claim
frequency and year of emergence of claim, i.e. with the number of the diagonal
in the table. Such a data structure suggests application of the separation
method (TAYLOR, 1977, 1986), with the model structure:

2.2) E[Cjl=rdu;.

The separation method yields the following parameter estimates.

j 7 k Ay
0 0.00
1 0.06
2 0.20
3 0.22 .
4 0.14 1984 366
5 0.1 1985 167
6 0.03 1986 195
7 0.03 1987 350
8 0.02 1988 196
9 0.00 1989 43
10 0.20 1990 29

This produces the following comparison between observed and fitted relative
claim frequencies.
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Year of Observed and fitted (shown in bold type) relative claim frequency in development year
loan

advance | 0 1 2 3 4 5 6 7 8 9 10 | Total

1980 30 52{18 1816 6]/ 0 9/0 30 0i{6 6] 60 94
1981 116 79(42 2431 21| S5 11| 0 5|0 1(0 O 195 140
1982 54 72| 27 36|45 28136 38{13 613 1|4 0 193 181
1983 25 211 20 33| 20 4223 Sso( 9 2110 1|3 1 101 169
1984 0 1|13 9| 24 38| 55 76(35 28] 5 5[0 1 131 159
1985 1 112) 11}134 69) 68 42115 716 3 245 133
1986 0 117 20] 30 38| 4 10,2 4 53 713
1987 3111 11 0 91 2 6 6 28
1988 0 1]0 3] S 6 5 9
1989 0 0/0 2 0 2
1990 09 o 0

The table indicates that the separation method achieves a reasonable fit. No
formal goodness-of-fit statistics are examined, because this model is later
discarded. The difficulty is that, despite the reasonableness of the fit, the
sequence of escalation index numbers 4, is peculiar by normal standards. Until |
some explanation of this peculiarity is found, it is impossible to produce any
reliable projection of the sequence into future years.

One of the major objectives of subsequent sections of this paper will
therefore be to obtain such an explanation. The discussion of this aspect of the
modelling problem is taken up in Section 3.

3. THE PROCESS OF CLAIM OCCURRENCE

3.1. Major financial factors

As pointed out in Section 1, a loan must traverse several stages of financial
deterioration before producing a mortgage insurance claim. These stages are
subject to different financial influences. Of these separate influences, two are of
particular prominence:

(a) the onset of financial difficulties for the borrower; and
(b) in the event of forced sale, the extent to which the sale proceeds repay the
outstanding loan.

These two factors are discussed in the following two sub-sections.

3.2. Onset of borrower’s financial difficulties

Despite its importance in a borrower’s budget, the mortgage payment instal-
ment will nevertheless be to some extent a residual item in that budget. It will
rank after tax and consumer expenditure on necessities (food, clothing, etc.). In
addition, most past loans have been of a type whereby the amount of
instalment varies with variations in current day interest rates.
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It appears, therefore, that a reasonable measure of the degree of financial
pressure on mortgage borrowers would be provided by an estimate of the
average residual income after allowance for tax, consumer expenditure and
mortgage instalment. This residual income, called here the home affordability
index (HAI), was constructed in the following form:

Home affordability index = average weekly gross household income
minus

minus
mortgage instalment,
expressed as a percentage of gross income.

A baseline distribution of gross household income over these categories of
expenditure was derived from a 1988/89 household expenditure survey (HES)
conducted by the Australian Bureau of Statistics. The items of expenditure for
this base year were adjusted to other years in various ways, indicated by the
following table.

Item of income or expenditure Adjustment from year to year according to
Gross household income Average weekly earnings
Tax Average weekly earnings (a)
Consumer expenditure Consumer price index
Mortgage instalments Average weekly earnings (b)

Mortgage interest rates (b)

(a) Preliminary investigation indicated little variation in the effective average tax rate over the
period concerned.

(b) The average amount of a new loan was assumed to change in proportion with average weekly
earnings. These loans were assumed repayable over periods of 20 years, and the average
mortgage instalment calculated on the basis of the most common interest rate charged in the
year concerned in respect of the loan portfolio under analysis.

The component time series used in the construction of the HAI (at year end)
are set out as Appendix F.

The resulting HAI (at mid-year) is as set out in the following table.

The rather-irregular progression of this index is seen in Appendix F to derive
from quite reasonable component indexes. Each of these components may be
projected over future years, producing a rationally based projection of HAL
This situation may be contrasted with that which arises on application of
“black box” estimates of past claims escalation, as in Section 2, and in which
no guidance as to future escalation is available.
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Year Home affordability index
1979 100.0
1980 104.8
1981 111.9
1982 101.7
1983 104.1
1984 128.9
1985 128.3
1986 101.7
1987 87.4
1988 90.6
1989 81.5
1990 81.2

3.3. Recovery of outstanding loan on forced sale

The HAI of Section 3.2 provides an indication of the likelihood that an
individual borrower will experience financial difficulty in a particular year.
However, such difficulty, while a necessary condition, is not sufficient for the
emergence of a mortgage insurance claim. It is quite possible the borrower’s
difficulties are such as to force sale of the property, but that property values
will be sufficient for the entirety of the outstanding loan amount to be
recovered by the lender. .

Whether or not this is the case will depend mainly on movements in property
values between the date of advance of the loan and the date of the forced sale.
In Sydney these movements may be estimated by reference to the Housing Price
Index (HPI) computed and published by Residex Pty Limited. The following
table was derived from that index with slight modification.

Housing price index
(Sydney) at mid-year
(30/6/79 = 100)

Year ended
30 June

115.3
145.1
158.6
158.4
168.2
177.2
1824
191.5
2458
363.5
430.7
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Evidently, the greater the increase in value of properties generally, the less
the chance that forced sale of a particular property will lead to a loss to the
mortgage lender.

3.4. Lags in claims process

While movements in the HAI (Section 3.2) and HPI (Section 3.3) have been
identified as major variables in the frequency of mortgage insurance claims, it
is to be expected that there will be a lag between cause and effect in each
case.

Information from the company operating the mortgage insurance portfolio
discussed in this paper was that, broadly:

(a) the average period between mortgage instalments falling in arrears and the
property being taken under management (if indeed this latter occurred)
was about 6 months; and

(b) the average period between taking a property under management and
effecting its sale was also about 6 months.

On the basis of this information, it might be reasonable to expect lags of:

(a) 12 months between movements in the HAI and the consequent movement
in claim frequency; and

(b) 6 months between a movement in the HPI and its consequent movement
in claim frequency.

Thus, it has been assumed in subsequent modelling that a claim frequency
experienced during year ¢ is dependent upon:

(a) the value of the home affordability index at the middle of year r—1;
and
(b) the value of the HPI at the end of year ¢t—1.

Examination of alternatives suggested that this choice of lags provided about
the best fit of model to data. Further detail on the incorporation of the HAI
and HPI in the model is given in Section 6.2.

4. DATA

4.1, Variables affecting claims experience

Section 3 identified the HAI and HPI as likely to be major explanatory
variables of claim frequency. Other variables in this category include:

(a) the proportion of the original property value advanced by way of
mortgage, i.e. the loan to valuation ratio (LVR);

(b) the geographic area of the mortgaged property (described in more detail in
Section 4.2);

{c) the agreed term of the mortgage loan;

8



GREG TAYLOR

(d) the type of property mortgaged (e.g. new house, old unit, land only,
etc.);

(e) the financial type of the loan (e.g. reducible loan with variable interest,
interest only instalments with fixed interest rate, etc.).

In addition, it is likely that claims experience will vary with development year,
even in the absence of movements in the HAI and HPI. This would reflect a
process of natural selection operating on each year’s mortgage advances,
whereby the poorest risks succumb to financial pressures relatively early, and
the remainder survive the mortgage term.

It is clear that the major variable affecting claim size will be the size of the
original loan. In addition, the explanatory variables (a) to (e) of claim
frequency potentially affect claim size also.

4.2. Form of data

As the tables of Section 2 indicate, claims experience relates to the period 1984
to 1990. In fact, the 1984 experience covers only 7 months of that year.

Data supplied in respect of these claims consisted of a claim by claim
tabulation, recording in each case the relevant variables identified in Sec-
tion 4.1: o

(a) year of advance;

{b) amount of loan;

(c) value of property;

(d) geographic area of property;
(e) term of loan;

(f) type of property;

(g) financial type of loan;

(h) year of emergence of claim.

The tabulated geographic area was the postal code of the property. These
codes were grouped into 14 broad urban and rural regions within the states of
New South Wales and Australian Capital Territory, as follows:

Metropolitan regions 1 to 5; Canberra (6); Newcastle (7); Wollon-
gong (8); Central Coast (9); North Coast (10); South Coast (11); Blue
Mountains (12); Southern Highlands (13); Other (14).

The exposure base for the study consisted of all loans advanced over the
years 1980 to 1990 inclusive. These were recorded, loan by loan, according to
" the variables (a) to (g) listed above as potentially affecting claim frequency.
As the data described above constitute a unit record file, it is not practical to
present the full detail here. It is not even practical to tabulate cells of data since
there are 1499 exposure cells. However, Appendix G gives a tabulation of
exposures and claims according to year of advance and development year. It is
to be stressed that, while such a tabulation is interesting, it omits a great deal
of the raw data.
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5. EXPLORATORY DATA ANALYSIS

5.1. Claim frequency

Section 4.1 identified a number of characteristics of individual loans (such as
LVR, term of loan, etc.) which might have a bearing on the likelihood of those
loans leading to claims. These characteristics will be referred to here as risk
variables.

Initially, data concerning claim numbers were analysed according to the risk
variables listed in Section 4.1. This provided initial guidance concerning the
types of loans which were subject to high or low risk of default.

The results of this analysis are summarized in the following sequence of bar
charts.

According to LVR According to Development year
» Claim frequency 1000 advances 1 |2t frequency per 1000 alvances
: i
5| 5
g.| g
E E T
v.sa w0l E e
E| E
E Lt
’ ‘l“l‘a-ne of L;IR Development year

According o Term of loan Agegrding tg Area

g g
g g

gl i,
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o Ll b0 Toim >0
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These charts raise the following possibilities:

(a) claim frequency peaks in the second, third and fourth years after the year
of advance; .

(b) claim frequency increases dramatically with increasing loan to valuation
ratio (LVR);

(c) claim frequency increases significantly with increasing term of loan;

(d) certain geographic areas experience conspicuously higher or lower claim
frequencies than average;

(e) defaults appear to be confined totally to reducible loans carrying a
variable interest rate;

(f) claim frequency appears highest in relation to land, higher in relation to
new properties than old, and lowest in relation to improvement loans.

As stated, these are raised as possibilities only, rather than conclusions.
Without further analysis, it would be impossible to determine whether all of
these variables affect the default risk directly, or some of them are merely
correlated with the genuinely operative risk variables.

For example, it might be the case that term of loan has no bearing on default
risk, but appears to be relevant because LVR does have such a bearing and
long terms are associated with high LVRs,

The question of possible correlation between risk variables is remarked upon
further in Section 8.1.

5.2. Claim size

Initially, data concerning claim sizes were analysed according to the risk
varibles listed in Section 4.1. This provided initial guidance concerning the

Claim size 10 loan amount ratio

0.7

Ratio

) 1 2 3 4 s 6 7 8 9 10
Development year
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types of loans which led to larger or smaller losses when default occurred. The
detailed results of this analysis are set out in Appendix D. The results indicate
little variation in claim size with any of the risk variables except development
year. The variation of claim size with development year is graphed in the
preceding chart.

The chart suggests that the greater the time elapsed between advance of loan
and default, the greater the claim size to loan amount ratio, i.e. the greater the
loss on default expressed as a proportion of the original advance. This result is
confirmed by formal regression analysis, as described in Section 8.2.

Since growth in property value generally increases with development year,
this chart is consistent with the predicted form (7.2) of model.

6. FORM OF CLAIM FREQUENCY MODEL

6.1. General

In the following the basic units of tabulation of claims data will be referred to
as cells. A cell will consist of an item of data associated with a particular
combination of year of advance, development year, and any sub-set of the risk
variables identified in Section 4.1.

It is reasonable that the total effect of risk variables on claim frequency
should be multiplicative, i.e.

(6.1) expected relative claim frequency = function (development year, HAI,
HPI)

X

function (risk variables, e.g. LVR,
geographic area, etc.).

The form of the first of the two functions on the right will be discussed in
Section 6.2. As far as the second function is concerned, a reasonable first
approximation would consist of the product of a factor in respect of each of
the risk variables present. Equation (6.1) then becomes:

(6.2) expected relative claim frequency = function (development year, HAI,
HPI)

X

factor dependent on LVR
X

factor dependent on geographic area
p

etc.

Interactions between the factors making up this product could be added if
necessary.

12
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Expected relative claim frequency (per loan advanced) is adjusted by a factor
of 7/12 in all cells whose experience relates to 1984. This allows for the fact that
the data include only 7 months’ claims (Section 4.2).

Some of the risk variables identified in Section 4.1, e.g. financial type of
loan, are categorical by nature. Others, e.g. LVR, are continuous by nature. It
was convenient for exploratory analysis of the data to convert all variables (i.e.
risk variables, not HAI and HPI) to categorical form. Details appear in
Section 5.1. The categorical form of data was retained in the final modelling,
described in Section 8.1.

6.2. Dependence on development year and economic variables

Preliminary analysis (Section 5.1) indicated that relative claim frequency,
expressed as a function of development year, was generally consistent with the
shape of a Hoerl curve. Appendix B provides a theoretical underpinning of this
observation. Consequently, the model adopted for relative claim frequency in
the absence of any other effects took the form:

6.3) const. x (j+ %) exp (— ¢j),

where j represents development year.

The modification of (6.3) by HAI and HPI raises some questions. Consider
HAI first.

As noted in Section 3.2, the HAI may be regarded as a measure of the
average borrower’s residual income after payment of mortgage instalment. An
individual borrower will experience difficulties in payment of mortgage instal-
ment if this residual income turns negative. The frequency with which this
occurs in the event of movements of HAI will depend on the distribution of
individual residual incomes, rather than just the average of this distribution
represented by HAI. There is virtually no information available in respect of
this distribution. .

There is, however, some evidence that individual gross incomes are subject to
a Paretian distribution (MANDELBROT, 1960).

If a similar assumption is made about residual incomes after payment of
mortgage instalment (i.e. HAI), then Appendix A demonstrates that, to first
approximation, logged claim frequency will contain a term linear in R ({+j)/R (i),
where i denotes year of advance, j development year, and R(f) the HAI
experienced in year t. Allowance for the one year lag in the effect of HAI, as
discussed in Section 3.4, modifies this term to R(i+;—1)/R(¥) (1 in the case
j=0).

Because of the approximations leading to this result in Appendix A, an
alternative linear term involving

log [R(i+j—1)/RU)] for j=1;
or
(6.4) 0, for j=0,

13
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was tried. This latter form produced a slightly better fitting regression than the
unlogged ratio, and has been adopted henceforth. In fact, both alternatives
produced quite similar results.

Appendix B, particularly (B.10), demonstrates that, under seemingly reason-
able assumptions about the accumulation of the amount of mortgage debt on
default, and about property values on resale, claim frequency should also
contain the following factor involving LVR and HPI:

L'[H@+j)H@G)] ™", . vconst.>0,

where L denotes LVR and H(t) the HPI experienced in year . In order to
accommodate the lag in the effect of HPI discussed in Section 3.4, this last
expression should be modified to the following:

L'[H@i+j-"%)H@]™", j=1;
or
(6.5) L, j=o0,

where H(t— '2) is interpreted a the HPI experienced at the end of year 1—1.

Note that (6.5) indicates that claim frequency should include the same power
of both LVR and HP1. However, this result was derived in Appendix B on the
assumption that LVR affected the proportion of principal outstanding at
default, but not the risk of default itself. In practice, it is likely that LVR is
correlated with the ability of the borrower to meet financial commitments, in
which case it intrinsically affects the risk of default. For this reason, (6.5)
should be generalized to the following:

LHG+j-RHO™,  jz 1
or
(6.6) LY j=0.
Combination of (6.2) to (6.4) and (6.6) vields the following model:
(6.7) expected relative claim frequency in development year j of year advance i
= const. X (j+ ¥2)* exp (—¢j)
x L[RG+j=1/R@)? [H(+j— A)H@D]™
x factor dependent on geographic area
xetc. forj=>1,

and with the two square bracketed terms removed in the case j = 0.

Let u(i,j) denote the expected relative claim frequency (6.7), and E (i) the
number of loans advanced in year i. Let N(j, j) denote the number of claims
emerging in development year j of year of advance i. Then the claim frequency
model adopted was:

(6.8) N, j) ~ Poisson [E(i) zG, /)]

14
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It should be noted that the precise form of dependency of relative claim
frequency on LVR and HPI in (6.7) relies upon distributional assumptions
made in Appendix B. If these assumptions were varied, the form of (6.7) would
change. Consequently, an alternative to (6.7) is considered in Section 8.1, in
which the terms involving LVR and HAI are replaced by:

exp (AL) exp[—v H(i+j— L)/H({)].

This alternative model turns out to be inferior to (6.7).

7. FORM OF AVERAGE CLAIM SIZE MODEL

Appendix C shows that, on the same seemingly reasonable assumptions as in
Appendix B (referred to in relation to the development of (6.5)), the average
claim size in respect of loans advanced in year i should progress over
development years according to the following parametric form:

7.1 E[Q (/)] = const. x H(i+j)/H(i),
where

Q (i, j) = the claim ratio (i.e. ratio of claim size to original loan size) experi-
enced in development year j of year of advance i;

H(t) = HPI experienced during year ¢.

One may note the interesting effect whereby average claim size increases with
development year even though outstanding principal is decreasing. Clearly this
result derives from the assumptions made in Appendices B and C. Different
assumptions would lead to a different parametric form in (7.1). However, an
examination of the development of Appendix C indicates that the property of
increasing E[Q (i, j)] with H(i+j) derives only from an assumption that the
variable y has a decreasing failure rate, where y = «/f and

a = a random variable representing the factor by which outstanding principal
has been enlarged after default by arrears of principal and interest and any
other costs,

B = a random variable representing the factor by which the property value has
been reduced by the forced nature of the sale and the associated
expenses.

While there is no particular evidence concerning the failure rate of y, it is
interesting to note that the seemingly reasonable assumption of a Pareto
distribution leads to the result (7.1) which is found in Section 8.2 to accord
with experience, at least to the extent that the claim ratio trends upward with
increasing property factor. However, because the Pareto assumption may be a
little too specific, it is reasonable to widen the model (7.1) to the following:

(7.2) 0(, j) = a+b H(i+j)/H(@i)+error term,

where approximately

15
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7.3) error term ~ N(0, ¢2).

The appropriateness of this error term is discussed further in Section 8.2.

8. FITTING THE MODEL

8.1. Claim frequency
By (6.7) and (6.8),

8.1) log E[N(i,j)] = log E(i)+const.+a log (j+ Y2)—¢j

+ Alog L—plog [R(i+j—1)/R(i)]

—vlog [H(i+j— %)/H ()]

+ term dependent on geographic area

+etc,j=>1,
with the two square bracketed terms on the right omitted for the case j = 0.
This linear form, subject to the error structure (6.8), was fitted to the data
using GLIM (Generalised Linear Interactive Modelling) (Royal Statistical
Society, 1987). Various combinations of the potential explanatory variables

listed in Section 4.1 were tried, and the main results are reported in the next
table but one.

Geographic area

Original coding (a) First aggregation Second aggregation
1 AREA 1
4 } Area 1

3 Area 3

5 Area 4

6 Area 5

2 Area 2 AREA 2
7 AREA 3
10-12 Area 6

9

14 } Area 7

13 Area 9

8 Area 8 AREA 4

(a) As set out in Section 4.2.

16



GREG TAYLOR

The results of the trial regressions are displayed in the following table.

Coefficient in variable at left (a) in Regression No.

(b)
(©
@

®

Variable
1 2 3 4 5 6 7
Regression constant —-9.505 -12.18 -—10.50 —9.848 —1290 —5776 -—5.943
Development year ~-1.093 - 1143 — 1.218 —1.097 - 1.096 —1.119 -—0.8536
Log (development year + %) 4.908 5.066 4.558 4906 4903  5.076 4.505
LVR (d) 1.100 1.144 0994  1.100 1.099
Log (LVR) 8.93 8.413
Log (home affordability factor) (b) —2.158
Property growth factor (c) -3.039 - 3.070 — 2.036 -3.017 — 3.015
Log (property growth factor) -4,636 —5.658
Indicator variables (f):
AREA 2 0.52 0.52 0.53 0.5131
AREA 3 0.87 0.87 0.87 0.8772
AREA 4 —-524 — 524 -—525 -7254*
Area 2 0.60
Area 3 0.16*
Area 4 —-0.35%
Area 5 ~0.26*
Area 6 1.05
Area 7 1.15
Area 8 —5.33+*
Area 9 0.81
60 < Term < 120 months 3.74*
120 < Term < 180 months 2.95¢
180 < Term < 240 months 2,00*
240 < Term 2.74* 3.06*
Dwelling:
Improvements & increases 1.33*
All other than improvements,
increases & land only J.64*
Dwelling type missing 7.05*
Deviance (e) 854 549 632 611 610 593 527
(a) Dependent variable in regression log (claim frequency), as in (8.1).

An asterisk attached to a coefficient in the table indicates that this coefficient differs from zero
by less than 2 standard errors.

The home affordability factor is the ratio of values of HAI appearing in (8.1).

The property growth factor is the ratio of values of HPI appearing in (8.1).

The variable referred to here is in fact

10x LVR-3.5.

The variable log (LVR) uses the genuine LVR, though grouped in ranges of 10 percentage
points width. Each such range is represented by its mid-value.

Deviance is a measure of goodness of fit, related to the log likelihood ratio of the model. A
lower deviance implies a better fit.

The variables Area £ and AREA m have already been described as 0-1 indicator variables. The
variables listed subsequently in the table are also of the 0-1 indicator type, taking the value 1 if
the loan is subject to the risk variable displayed, 0 otherwise.
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By (6.8) and (8.1), the model is multivariate Poisson with multiplicative
structure of the mean. GLIM fits this by maximum likelihood. Note that the
logarithmic form of (8.1) is no more than a convenience of expression. It could
equally have been written in its unlogged (multiplicative) form. In particular,
(8.1) does not imply that the observations N (i, j) (many of which are zero) are
to logged.

For the interpretation of this table, special reference should be made to
geographic area of the mortgaged property. On the strength of the chart of
Section 5.1, a number of areas, seemingly similar in claim frequency and/or
physically contiguous, were aggregated. The areas at this initial level of
aggregation were denoted by “ Area k. These were 0-1 variables, taking the
value 1 if the property lay in the relevant area, 0 otherwise.

Regression | in the table indicated that further aggregation was possible. The
new variables resulting from this aggregation were denoted by “ AREA m”,
and were 0-1 variables, each of which consisted of the sum of the relevant
variables Area k. The key to the two aggregations is as shown in the previous
table but one.

It may be noted that the trial regressions included alternative versions of
(8.1) in which the terms dependent on LVR and HPT were replaced by their
respective unlogged forms, as discussed at the end of Section 6.2. These
alternatives were, however, inferior to (8.1) in terms of fit.

Regression 7 provided the best fit of model to data, and was adopted as the
final model. This final model, expressed in non-symbolic form, was as
follows:

CLAIM FREQUENCY = 2,624 (1+ Y4)*%5 exp (—0.8536 )
(per 1000 advances)

IN DEVELOPMENT YEAR 1 i
(LVR)*

[(HOME AFFORDABILITY FACTOR)*!%
X

8.2
(3.2) (PROPERTY GROWTH FACTOR)®* %%}
x
1if AREA |
1.670 if AREA 2
2.404 if AREA 3
0.0007 if AREA 4
where

HOME AFFORDABILITY FACTOR and PROPERTY GROWTH FAC-
TOR are the ratios involving H and R respectively in (8.1).
The formula in the box indicates that claim frequency:

(a) moves sharply upward with increasing LVR;
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(b) moves sharply downward as property values or disposable incomes after
mortgage instalments increase;

(c) varies significantly by geographic area, exhibiting a particularly low value
in the Wollongong district.

Because of correlations of the type discussed at the end of Section 5.1, not all
of the risk variables exhibited a significant effect on claim frequency.

8.2. Average claim size

The form of the model was suggested in Section 7 as the following:
(7.2) Q(i, ) = a+b H(i+j)/H(i)+error term,

where approximately .

(7.3) error term ~ N(0, ¢2).

This model appears unnatural to the extent that the normal error term would
permit claim sizes to be negative. This would be avoided by the inclusion of an
error term which was by nature positive. An example would be a lognormal
error term, as would be incorporated in an alternative model of the form:

(8.3) log Q(i,j) =loga+blog [H(i+))/H(i)]+error term,
where
(8.49) error term ~ N(0, o).
Equivalently,
(8.5) 0, j) = a[H(i+j)/H ()]’ % error term,
where
(8.6) error term = lognormal (0, ¢%).

Note that both forms (7.2) and (8.5) accommodate the theoretical form
..

Ordinary regression produced the following two alternative models.

Parameter Unlogged model (a) Logged model (b)
a 0.1622 0.1555
b 0.0494 0.3083
a? 0.0257 0.8676

(a) This is the model described by (7.2) and (7.3). Of the 425 observed claim ratios, 2 large values
have been excluded as outliers.
(b) This is the model described by (8.3) and (8.4).
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In fact, neither of the two models considered in the preceding table produced
an ideal fit to the data. Their respective residuals are tabulated in the following
table.

Values of standardized Relative frequency of standardized residual in

residuals

Unlogged model Logged model

% %

less than -3 1} i
-3 to -2 0 3
-2 to -1 12 8
-1 to 0 47 32
0 to | 24 44

1 to 2 10 12

2 to 3 S 0
more than 3 1 0
Total 100 100

These two tabulations of standardized residuals are very much reflections of
each other about the origin. While the unlogged model is somewhat skewed to
the right, the logged model is about equally skewed to the left. This suggests
that the correct model lies somewhere between normal and log normal. Such a
model might be of the form (7.2), but with the error term strictly positive and
skewed to the right but less so than log normal. .

Note that the fitted values of claim ratios, according to the two alternative
models, are:

®.7
EQ(i,j)=a+bH(i+j)/H(i) for unlogged model;

(8.8) = a[H (i+j)/H ()]’ exp (V2 0?) for logged model.

In the event, (8.8) produced a rather heavy upward bias, about 18 % in total,
in fitted values of claim amount relative to observed amounts. The form of this
comparison was exactly as reported in Section 9.2, but with the unlogged
model used there replaced by the logged.

This result appears to indicate that the exponential scaling factor in (8.8) is
not robust against the non-normality in the error term of (8.4), as was
demonstrated in the above table of standarized residuals.

On the other hand, Section 9.2 indicates that the unlogged model provides
an adequate fit, and accordingly it was adopted.

9. MODEL VERIFICATION

9.1. Claim frequency

The model adopted in Section 8.1 has been used to compute standardized
residuals according to several variables. The resulting residual plots appear
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below. Note that each residual relates to the aggregation of all experience at
the value of the independent variable displayed. For example, the first residual
in the first plot may be obtained from the second table of the present
sub-section as:

(8—6)//6 =0.8.

A 'plot of the residuals of all cells (taken over all explanatory variables)
would not be helpful since the great majority of cells contain very small
expectations.
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These plots appear generally satisfactory in terms of magnitude, with the
exception of year of default 1984. This one anomaly, in the relatively distant
past, involves relatively few claims (see first table below) and is insufficient to
invalidate the model.

The plot against year of advance contains a downward trend. If included in
the model, year of advance appears as a highly significant explanatory
variable; other things equal, claim frequency declines by 29 % as between each
year of advance and the next. Naturally, the effects of the other explanatory
variables, particularly those which are time dependent, change.

While this model provides a superior fit to the data, the abstract nature of
the year of advance effect is problematic. It might be interpreted as a factor
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representing improvement in underwriting. However, in this case, the total
improvement over the decade of underwriting would be almost 97 %, which
might strain credulity.

It seems more likely that year of advance is acting as a proxy for some other
unidentified explanatory variable(s). When this variable is omitted from the
model, its effect is largely captured by the other explanatory variables.

Moreover, an examination of the fitted numbers of claims (using the model
which omits year of advance effect) against the data suggests that the apparent
trend in the residuals may not be particularly meaningful (see second table
below).

The following table displays the actual and model numbers of claims
underlying the above plot of standardized residuals by experience year.

Number of claims emerging

Period
Actual Model
1984 (7 months) 28 13
1985 32 24
1986 .53 54
1987 168 174
1988 103 115
1989 21 22
1990 20 24
Total 425 425

The table illustrates the close agreement between actual and model numbers
of claims for all experience years except 1984, despite the extreme fluctuations
in numbers of claims.

More detailed information is given by the following table which tabulates
experience and model simultaneously by year of advance and development
year, and from which the above table may be derived.

Year of Observed and fitted (shown in bold type) number of claims in development year

loan

advance | 0 1 2 3 4 5 6 7 8 9 10 | Total
1980 3 1.8/3 15/1 1.2|0 1.2|10 03(0 00! 0.0 8 6
1981 13 45| 8 48/6 44|1 49|10 14|0 0.1|0 00 28 20
1982 7 496 7.6{10 87|18 11.4]{3 3573 03|1 0.1 3% 37
1983 5 16/ 7 5317 888 1473 52(0 05(1 0.2 31 36
1984 0 017 43|13 155[30 37.719 16.8/3 1.8/0 0.8 7 mn
1985 1 0.3f16 16.2]104 86.6|53 S56.7|/12 7.6|5 3.8 91 171
1986 0 02|14 17.1| 24 246/ 3 48] 2 3.1 43 50
1987 303|]1 62/ 0 2712 25 6 12
1988 004|/0 27 8 56 8 9
1989 002/0 71 0o 7
1990 003 0 0
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The following table presents these results in the same format as in Section 2,
enabling comparison of the present set of results with those from the
separation method.

Year of Observed and fitted (shown in bold type) relative claim frequency in development year
loan

advance | 0 1 2 3 4 5 6 7 8 9 10 Total
1980 30 18{18 9]6 7(07{02|00]|6 0|60 43
1981 116 41142 25(31 23|15 26| 0 7{0 1|0 O 195 122
1982 54 38| 27 34145 39|36 S1]13 16|13 1|4 0 193 179
1983 25 8| 20 16) 20 26023 43( 9 15(0 1| 3 1 101 109
1984 0013 8| 24 28| 55 69|35 31} S5 3|0 1 131 140
1985 1 0|21 21(134 111 68 73115 10} 6 5 245 220
1986 00|17 21|30 3| 4 6(2 4 53 62
1987 301 6/ O 3{ 2 3 6 12
1988 00,0 2| 5 3 5 5
1989 00|0 6 0 6
1990 00 0o 0

9.2. Average claim ratio

For each claim in the experience, a fitted value of its claim ratio was calculated
according to (8.7) using the values of a and b tabulated in Section 8.2. Each of
these claim ratios was multiplied by the associated amount of its loan, to
produce a fitted claim size.

Observed and fitted claim sizes were then summanzed in 2-way tabulations
by year of advance and development year. These tabulations are displayed in

Appendix E, and reduced to their corresponding 1-way tabulations below.

Amount of claims Amount of claims
Year of Ratio: Development Ratio:
advance Observed Fitted  Observed year Observed Fitted  Observed
fitted fitted
$ 000 $ 000 % $ 000 $ 000 %
1980 51 70 73 0 32 46 70
1981 294 312 94 1 425 471 90
1982 398 374 106 2 1750 1844 95
1983 354 323 110 3 1051 1133 93
1984 632 642 98 4 674 642 105
1985 1931 2063 94 5 321 301 107
1986 425 472 90 6 47 38 124
1987 46 69 67 7 31 35 88
1988 259 222 117 8 56 28 199
1989 0 0 : 9 0 0
1990 0 0 10 1 7 14
Total 4388 4545 97 4388 4545 97
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It should be particularly noted that the fitted amounts of claims, according
to the above description are conditional upon the observed numbers of claims.
This is a proper approach to examination of the fit-of the average claim size
model. Agreement between model and data appears satisfactory.

It is useful to carry out some check that the common dependence of the
claim frequency and claim size models on the HPI does not lead to unwanted
correlation between the two. That this does not in fact occur is indicated by the
following scatter plot of the observed fitted ratios of average claim size against
a similar ratio for number of claims.

Each point represents a particular combination of year of advance and
development year. To give a simple indication of the significance of the plotted
points, they are divided into “‘large cells” and “small cells”. The former are
those cells containing a fitted number of claims in excess of 5; otherwise the
cell is ““small”.

25
[

2 L
2 +
N
2]
|
2 15 |
o
3 = +*
g xR . [ ] +
'§ 1F . " + .
g +’. +
2 + & .F + +

05 | m " .t

+
0 ! L ¢
0 1 2 3 4

Ratio observed/fitted — numbers

m Largecells 4 Smallcells

9.3. Loan sizes associated with claims

While Section 9.2 models the claim size which will arise from a particular loan
size if a claim occurs, it provides no indication of which loan sizes are likely to
lead to claims.

There is no particular reason to believe that the sizes of loans associated with
claims will be representative of the entire portfolio of loans advanced. Indeed,
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the table below indicates that, on average, it is the larger loans that lead to
claims.

Care is needed here, however, as the model of claim frequency in Section 9.1
conditions on LVR and other risk factors, for which average loan sizes may
differ from the portfolio average, and so without further analysis it is not clear
to what extent the inclusion of these factors in the model will effectively select
average loan sizes above the portfolio average. This question is also examined
in the following table.

As a percentage of portfolio average loan size
Year of advance average loan size associated avc;r‘a:g; ;?12]" :&fzb‘::;gg ;ed
with past claims (a)  future claims (b)
% %
1980 135 8) 96
1981 144 (28) 102
1982 119 (38) 101
1983 116 a3n 102
1984 85 (72) 102
1985 95 191 102
1986 144 (43) 103
1987 97 ©) 100
1988 241 8 98
Average 109 (c) (425) 102 (d)

(a) The numbers of claims on which the ratios are based are shown in parenthesis. For each year of
advance, the average size of loans associated with recorded claims has been calculated and
related to the portfolio average (for that year of advance).

(b) For each combination of year of advance and risk variables, the average loan advanced and
model claim frequency (according to the model of Section 8.1) are calculated: The average loan
advanced, weighted by model claim frequency, is then calculated for each year of advance.

(c) Average of the entries in the column, weighted by numbers of claims shown in parenthesis.

(d) Unweighted average of the entries in the column.

The table suggests that the average loan size associated with claims of a
particular cell for a particular year of advance is about 7% higher than the
overall average loan size for the cell.

Thus, a forecast of future claim amount for a particular cell of development
year j of year of advance i/ would be computed as:

1.07 x average loan size in year of advance i

xN@,j) QG
where N(i,j), 0(,j).are estimates of N(i,j) and Q(i,j) from Sections 9.1
and 9.2,

An alternative approach to the above would be to include loan size as an
explanatory variable in the claim frequency model of Section 8.1. This might be

25




MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE

awkward in practice, however, because it would increase very considerably the
number of data cells entering into the regressions of Section 8.1.

10. CONCLUSION

Section 8 fits models to the claim frequency and claim ratio in the mortgage
insurance portfolio examined. Section 9 verifies that these models provide a
reasonable fit to the data.

The models therefore can be, and indeed have been, used to estimate the
liability for claims still to emerge in respect of past years of loan advance. In
order to carry out this estimation, one needs to project future values of the
HAI and HPI. This in turn requires projection of incomes, tax rates, mortgage
interest rates and growth in property values. Projections such as these are,
problems of substance in their own right, but are beyond the scope of the
present paper.
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APPENDIX A
DEPENDENCE OF CLAIM FREQUENCY
ON HOME AFFORDABILITY INDEX

Let X denote the random variable representing the proportion of an individ-
ual’s income required for tax, consumption and mortgage instalment. Assume
this variable to be Pareto distributed, i.e. with p.d.f.:

(A1) f(x)=kx"*"! k const.

The borrower will experience financial difficulties if X = 1, which bccurs
with probability:

(A.2) PIX > 1]=kx"%al,_,.

Now, suppose that X shifts by a factor of ¢ to X’ = cX. Then the probability
(A.2) shifts to

(A.3) PIX' 2 1]=P[X 2 1/c] = kx ™ */atlu -

Comparison of (A.2) and (A.3) shows that the probability (A.2) has shifted
by a factor of ¢*. Now note that the scale shift of X to cX must shift the mean
of X by a factor of ¢:

(A.4) E[X'] = ¢cE[X].
Let '
Y=1-x,
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and note that

(A.5) E[Y] a HAI.

Then the factor by which HAI changes when X changes to X' is:
(A.6) R={1-E[X'}/1-E[X]}

=(-e)/(1—-p),
where
u=E[X].

Inversion of (A.6) yields:

(A7) c=[I-R{i-wiu.

Thus, the shift in HAI by a factor of R causes the frequency with which
borrowers experience difficulties to shift by a factor of:

(A.8) c*={1-RA-pw)/u}".

Now, it is convenient to analyse log (claim frequency), which will depend on
log (frequency of borrower’s difficulties), and (A.8) shows that this latter will
depend on an additive term of:

log ¢® = alog {[1 = R(1—~ )/}
~ —oaR(l —u)+const.,

for small values of (1 -y R.

Thus, to first approximation, the model of expected log (claim frequency)
should include a linear term in R, the ratio by which HAI has changed since
advance of the loan(s) in question.

APPENDIX B

DEPENDENCE OF CLAIM FREQUENCY
ON HOUSING PRICE INDEX, LVR AND DEVELOPMENT YEAR

Consider a loan taken at time ¢ = 0. Let V' (r) be the value of the associated
property at time ¢, and P(¢) the amount of principal then outstanding. Then

(B.1) V{t)y=V(O)[H()/HO)],
(B.2) P(t) = P(0) f (1),
where

H(t) = HPI at time ¢;
f(t) = proportion of principal still to be repaid at time ¢.
By (B.1) and (B.2),

(B.3) P()V (1) = Lf (t) HOYH (1),
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where
(B.4) L= P(0)/V(0) = loan to valuation ratio.

Suppose that the borrower has encountered financial difficulties at some time
s < t. At time ¢ sale of the property is forced. At that point, the debt in respect
of the loan wili be P(t) «(¢), where

a(?) = a random variable representing the factor by which outstanding princi-
pal has been enlarged by arrears of principal and interest and any other
costs.

Similarly, the net proceeds of the sale of the property will be V(¢) (1),
where

B(1) = a random variable representing the factor by which the property value
has been reduced by the forced nature of the sale and the associated
expenses.

Then the ratio of outstanding debt to sale proceeds is:

(B.5) X(@)=y@) POV (1),

where

(B.6) y(0) = a(t)/B(1).
By (B.3) and (B.5),

(B.7) X(t)=LIH@OHOI] f()y().
A claim will occur if X(¢) > 1, i.e. if

(B.8) y(@) > [HO/HO)] L ()]
Now suppose that y(¢) is Pareto distributed with d.f.

(B.9) F=1-@G/a)™", y>a,

assumed independent of ¢. Then, by (B.8), the probability of occurrence of a
claim is:

(B.10) PIX(1)>11={af (1) LIH()/HO]™'}".

Thus, expected claim frequency varies as a power of L{H()]H(0)]"". Note
also that claim frequency for policies of a particular term »n varies over
development years ¢ by a factor of

(B.11) LSO o [a=al",

which has the shape illustrated by the solid line in the following diagram.

However, note the above assumption that the distribution of the factor y(¢)
is independent of 2. While perhaps largely true, it will break down as ¢t — 0 as the
screening procedures of the lender force claim frequency toward zero. Hence,
the curve (B.11) of frequency over development year will be modified for small
¢ in the manner indicated by the broken line in the diagram.
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Multiplicative contribution to claim frequency

o 1 2 3 4 5 6 7 8 5 10 4 12 I3 13 IS
Development year

When allowance is made for the variety of original terms »n, the dependence
of claim frequency on development year is seen to be represented by a weighted
average of curves of the type illustrated in the diagram.

APPENDIX C

DEPENDENCE OF AVERAGE CLAIM SIZE
ON HOUSING PRICE INDEX

As noted just prior to (B.8), the financial difficulties of a borrower will lead to
a claim if X (¢), as defined there, exceeds 1. In fact, by the same argument as
led to that result, the amount of the claim will be

(C.1) At)=a() P()-B(r) V(1)
=) V() [x(n)—1].

Note that () and y(t)\ (and hence X(r)) will not be independent, even if
a(t) and B(¢) are. For general random variables Y and Z, let 4y and u denote
their means, vy and v, their coefficients of variation, and p, their correlation.
It is straightforward to demonstrate that:

(C2) E[YZ] = ptypz(1+pyzuyvz).
By (C.1) and (C.2),
(C3) E[A0) =V (1) E[X ()= 1]+ pg(1+ppxvgoy),

where E[Y], denotes E{Y]Y > 0].
Now, by (B.5)

(C4) E[X()— 1]+ = E[y()=V(1)/P(1))+ P()/V ().
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By the Pareto assumption (B.9),

(C.5) Ely@)—vV@)/PO}. = V()P v/(v—1),
whence (C.3) and (C.4) yield:
(C.6) E[A0)] = V(1) ug(1 +pgxvgvy) v/(v—1)

a V() H()/H@O0) [by (B.1)]
if pg, vg, vy and pgy are the assumed independent of ¢.

Thus, the expected average claim size is directly proportional to property
values, all other things equal. This has the interesting effect of causing average
claim size in respect of a group of identical policies usually to increase with
development .year even though outstanding principal is decreasing.

APPENDIX D
EXPLORATORY ANALYSIS OF CLAIM SIZE

D1. Variation of claim ratio with loan to valuation ratio

Claim to loan ratio 95% confidence limits (a)
Loan to Number
valuation . Sample
- of claims Sample
ratio ean standard Lower Upper
m deviation
up to 50% 1 55.8%
50 to 60% 1 56.9%
60 to 70% 8 23.3% 13.7% 11.8% 34.8%
70 to 80% 36 23.9% 19.2% 17.4% 30.4%
80 to 90% 189 22.9% 18.4% 20.3% 25.6%
over 90% 191 23.5% 15.6% 21.3% 25.7%

(a) These are the symetric (-distribution confidence limits. Where the sample size is less than 2, the
confidence limits do not exist.

D2. Variation of claim ratio with term

Claim to loan ratio 95% confidence limits (a)
Term Numper Sample
of claims Sample .
standard Lower Upper
mean o
deviation
months .
60 to 119 3 36.4% 14.1% 13% 71.4%
120 to 179 16 34.8% 29.8% 18.9% 50.7%
180 to 239 55 28.4% 20.2% 229% 33.9%
240 & more 352 22.0% 15.6% 20.4% 237%

(a) See Appendix DI.
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D3. Variation

GREG TAYLOR

of claim ratio with area

Claim to loan ratio 95% confidence limits (a)
Area (;{ l::rlz'l):lg Sample Sample
mean standard Lower Upper
deviation
M1, M4 29 16.5% 11.7% 12.0% 209%
M2 63 21.2% 15.0% 17.5% 25.0%
M3 77 16.5% 12.6% 13.7% 19.4%
M5 5 25.8% 14.8% 1.5% 41%
Canberra 4 23.1% 13.0% 2.4% 43.8%
Coastal 100 24.6% 18.2% 21.0% 28.2%
Newcastle 32 31.7% 172% 25.6% 37.9%
Wollongong 0
Other 116 27.5% 19.4% 23.9% 31.1%

(a) See Appendix DI.

D4. Commentary

All pairs of confidence limits in Appendices D1 to D3 straddle the overall
mean of 23.4% except in four cases. All four of these cases relate to area of
residence, and are found in Appendix D3.

APPENDIX E

COMPARISON OF OBSERVED AND FITTED CLAIM AMOUNTS

The following are the amounts of claim observed in respect of each combina-
tion of year of advance and development year.

Y Amount of claims observed in development year

ear of

advance [, 1 2 3 4 5 6 7 g8 | 9 [0
3 $ 3 3 $ 3 $ ) $ $ )

1980 28522 | 13349| 7873 0 0y 0 |1t0o09

1981 115151 69711 (1051561 3724 0 0] 0

1982 71488 29799 | 102851 | 81026 | 35484 | 20827 | 56169

1983 60085 71469 61801 | 85959 | 64416 0110110

1984 0 | 453371 68811|325411 (1808201 11766 0

1985 9591 | 161743 (1060021 | 474840 [ 179612 | 44976

1986 0 [ 150351 | 219581} 28174 | 26638

1987 22882 7054 0] 15810

1988 0 0| 258976

1989 0 0
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MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE

The following are the amounts of claims fitted to each combination of year
of advance and development year by the procedure described in Section 9.2.

Amount of claims fitted in development year

Year of

advance | I 2 3 4 5 6 7 g |9 | 10
$ $ $ $ $ $ ) $ s |5 |s

1980 27287 | 25853 | 9332 0 ol o |7380

1981 125940 | 91833 | 84727 | 9687 0 o| o

1982 56280| 43406 | 120344 | 70032 | 19012 | 27658 | 28253

1983 s1324| 96763| 63585 74571 | 20094 0| 7572

1984 0| 68421 | 121228258339 | 167683 | 26301 0

1985 | 14819 | 185929 |1089849 | 576994 | 130423 | 64647

1986 0 151670 | 258058 41149 | 20740

1987 | 30697 | 13995 0| 23866

1988 0 0| 221693

1989 0 0

1990 0

Each cell in this table is of the form:
actual number of claims

variation of experience from model amounts of claim.

X

fitted average claim size.
Hence comparison of the table with the previous one examines only

An alternative version of the preceding table consists of celis of the form:
fitted number of claims

X

fitted average claim size.

This table is as follows.

Amount of claims fitted in development year

Year of

advance | I 2 3 4 s 6 7 g8 |9 |10
$ $ $ $ $ $ $ $ s |s|s

1980 16472 | 13202 | 11077 0 0] o|s

1081 44040 | 55444 | 61935 | 47805 0 0o

1982 39306 | 55278 | 111986 | 99883 | 22086 | 2637 | 2910

1983 15962 | 73512 | 80326 | 136558 | 50459 o | 1408

1984 0 | 41551 | 144634 | 324560 | 148532 | 15693 0

185 4668 | 188718 | 907194 | 617384 | 82395 | 49662

1986 0 | 185146 | 264079 | 66099 | 31805

1987 3131 | 86881 0| 29785

1988 0 0 | 153966

1989 0 0

1990 0

For cells in which where are no claims observed, the procedure of Section 9.2 does not produce a
fitted average claim size. These cells, indicated in bold, have been assigned a fitted amount of claims
equal to zero.
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GREG TAYLOR
APPENDIX F

HOME AFFORDABILITY INDEX

Economic indicators Household expenditure
Year Residual income
Aver- Gross Con- Mort-
(as at Con- Mort-
age house- sumer gage As per-
31 De- sumer gage Tax .
cember) weekly rice interest hold (b) expen- | instal- centage
ear- il:r,x dex rates (a) income diture ment | Amount of
nings (b) (b) (b) gross
income
3 ) p-a. $ per $ per $ per $ per $ per
week week week week week

1978 224.35 824 11.50% | 562.74 | 118.28 | 326.21 64.40 53.85 | 9.569%
1979 246.00 91.1 11.50% | 617.05 | 129.70 { 360.65 70.61 56.08 | 9.089%
1980 278.25 100.0 1200% | 697.94 | 146,70 | 395.89 82.26 73.10 110.473%
1981 315.90 110.2 14.50% | 792.38 | 166.55 | 436.27 | 107.18 8239 110.397%
1982 346.70 1234 15.50% | 869.64 | 182.79 | 488.52 | 123.78 74.54 | 8.572%
1983 37590 130.9 14.00% | 942.88 | 198.19 | 518.22 | 124.22 | 102.26 |10.846%
1984 405.40 136.0 13.50% | 1016.88 | 213.74 | 538.41 | 130.41 | 134.33 |13.210%
1985 428.20 147.5 15.00% | 1074.07 | 22576 | 583.93 | 149.07 | 11530 }10.735%
1986 450.85 161.4 15.50% | 1130.88'| 237.70 | 638.96 | 160.96 9325 | 8.246%
1987 471.70 173.7 14.50% | 1198.23 | 251.86 | 687.66 | 162.07 96.64 | 8.066%
1988 521.65 187.7 14.25% | 1308.47 | 275.03 | 743.08 | 174.68 | 115.68 | 8.841%
1989 560.75| 203.0 17.25% | 1406.55 | 295.64 | 803.65 | 217.77 89.48 | 6.362%
1990 600.68| 213.0 15.50% | 1506.69 | 316.69 | 843.24 | 214.46 | 13230 | 8.781%

{a) The most common interest rates applying to loans in the mortgage insurance portfolio under
analysis.

(b) These four columns were derived in a consistent manner from the HES, as described in
Section 3.2.
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APPENDIX G

DATA

The data described in Section 4.2 are summarized in the following table. This
should be considered in conjunction with the quahﬁcatlon set out in the final
paragraph of Section 4.2.

v Number Number of claims (a) recorded in development year
ear of
advance of loans
advanced | 0 1 2 3 4 5 6 7 8 10
1980 1700 3 3 1 0 0 1
1981 1917 13 8 6 | 0 0
1982 2231 7 6 10 8 3 3 1
1983 3426 5 7 7 8 3 0 1
1984 5496 0 7 13 30 19 3 0
1985 7787 1 16 104 53 12 5
1986 8077 0 14 24 3 2
1987 9910 3 1 0 2
1988 17646 0 0 8
1989 11878 0 0
1990 13614 0

(a) Development year is defined as year of emergence of claim minus year of loan advance. Claims

emerging in 1984 represent the experience of only 7 months,
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The Parameter Variance Adjustment
in Lognormal Linear Models for Loss Reserves:
Bayesian vs. Frequentist Analysis

by Fred Klinker

Abstract: 1In lognormal linear models for loss reserve
estimation, losses are assumed to be lognormally
distributed, where the expectations of the logarithms .of
losses are assumed linear in explanatory variables. A
parameter variance term appears in the exponent of the
estimator for expected losses. There is disagreement
regarding the sign of this term. It will be argued in this
note that the sign depends on whether one adopts a Bayesian
or Frequentist viewpoint. Each sign is correct within the
appropriate paradigm.

A number of actuarial papers have considered lognormal
linear models for loss reserve estimation, among them
Verrall (11]), Verrall (12], Wright [14], and Zehnwirth [15].
This list is illustrative only and is far from exhaustive.
In such models, losses (generally incremental, not
cumulative) are assumed to be lognormally distributed, where
the expectations of the logarithms of losses are assumed
linear in explanatory variables. A pérameter variance term
appears in the exponent of the estimator for expected
losses. There is disagreement regarding the sign of this
term. The disagreement is implicit rather than explicit;
none of the above referenced authors appears to acknowledge
the different sign in other authors’ works. However, Gary
Venter, in his introduction to the papers on variability in

reserves included in the Spring 1994 CAS Forum, specifically
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in his comments on Verrall [12]), notes that "...adjusting
the maximum likelihood estimator of the lognormal mean for
bias involves some controversy, with different authors
advising upward or downward or no adjustment." (Venter
{10], page 97.) It will be argued in the rest of this note
that the sign of the adjustment depends on whether one
adopts a Bayesian or Frequentist point of view. Each sign
is correct within the appropriate paradigm.

Aside from its discussion of an admittedly technical fine
point which may not interest many actuaries, this note may
also serve to remind readers of the fundamental distinctions
between Bayesian and Frequentist paradigms and the fact that
the two do not always yield the same result. This last
reminder is useful, since the statistical model mosﬁm
actuaries are most familiar with, the normal linear model,
yields the same result whether from a Frequentist viewpoint
or from a Bayesian (with uninformative prior), although the
interpretation of the result differs somewhat according to
viewpoint. (Regression and ANOVA are common examples of
linear models. The normal linear model in a Frequentist
setting assumes normally distributed errors. In a Bayesian
setting, normal priors and normal errors are assumed,
resulting in normal posteriors.) This happy coincidence of
Bayesian and Frequentist results is not preserved in many
other models, including lognormal linear models.

In subsequent sections of this note, first the general
Bayesian and Frequentist paradigms are discussed, then the
estimators that follow from these paradigms. Lastly, the
special case of lognormal linear models is introduced.
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P s: Baye n_vs. Frequentis

The general problem is as follows. The state of nature is
described by the parameter u. There is a quantity of
interest, y, whose expectation, conditional on u, is a
function of u, E(yju)}=f(u). If the state of nature were
known to be u, both Bayesians and Frequentists would
probably agree that a good estimator for y is f(u).

However, the state of nature is not known. Data, x, either
a single observation or a collection of observations, is
collected in an attempt to determine g and y. But Bayesians
and Frequentists proceed differently.

First, the Frequentist approach: The state of nature, u, is
considered to be fixed, although unknown. The Frequentist
refuses to quantify uncertainty surrounding u via a
probability distribution on x. On the other hand, the
Frequentist considers not only the actual outcome of the
experiment, x, but also other outcomes that might have been,
but weren’t. The possible outcomes are described by a
probability distribution on x, conditional on the fixed but
unknown g. Expectations and variances of functions of x are
calculated over x, conditional on pu. The focus is on

finding unbiased estimators fi and 7 such that E[fi(x)|p]=p
and E[F(f(x))|e] =f(p)=Ely|n].

Consider next the Bayesian point of view. Uncertainty
surrounding the state of nature, u, is quantified via a
prior probability distribution on u. This prior can be
Objective Bayes (an uninformative prior), Subjective Bayes
(based on personal estimates of probabilities), or Empirical
Bayes (based on previous data from similar problems). Data,
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%, is observed, and, based on this data and Bayes’ Rule, a
posterior distribution for u follows. All inferences are
conditioned on the observed data. There is no consideration
'given to other outcomes that might have come to pass but
didn’t. The focus is no longer on unbiased estimators.
Unbiasedness is a Frequentist notion which requires taking
expectations over actual and possible observed data, whereas
the Bayesian does not consider the randomness of the data
after the data has been observed and instead conditions on
that observed data. Instead, the Bayesian desires an
estimator which minimizes Bayes Risk across all states of
nature still considered possible after observing x.
Expectations and variances are calculated over p via the
posterior distribution for p, conditioning on x. Adopting
the standard loss function (quadratic), the minimum Bayes
Risk estimator for y is its posterior expectation,

Ely|x} =E[E(y|un] |x] =E[£ (p) |X] .

To summarize the key distinctions between Bayesian and
Frequentist, the Frequentist considers the data, x, to be a
random variable, but not u, which is considered fixed,
although unknown. The Frequentist continues to worry, even
after the data is observed, about observational outcomes
that could have come to pass but didn’t, and considers
expectations and variances over x, conditional on u. The
Bayesian conditions all inferences on the observed data, x,
and considers u to be the random variable over which
posterior expectations and variances are calculated. The
Bayesian steadfastly refuses to be concerned about outcomes
that could have come to pass but didn’t. To clear up a
common misconception, it is this conditioning on x which is
the heart of the Bayesian paradigm, not the invocation of
Bayes’ Rule. Even some Frequentist methods invoke Bayes’
Rule.
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Before leaving this foundational section of this note, a few
clarifying comments are in order.

1) In the above Frequentist discussion, I have focused on
unbiased estimators. It should at least be noted that
Frequentists do occasionally invoke considerations
other than unbiasedness. However, it is certainly true
that unbiasedness is one of the first characteristics
that a new statistics student learns and one that is
invoked often.

2) In the above Bayesian discussion, by mentioning Bayes
Risk and loss functions, I have implicitly adopted a
decision theoretic approach to Bayesian statistics. It
should be noted that Bayesian theory and statistical
decision theory are not synonymous. There are
practicing Bayesians who are not decision theorists, at
least not knowingly. And there are decision theorists
who are not Bayesian, but rather quite decidedly
Frequentist. On the other hand, of those discussions
of Bayesian foundations with which I am familiar, all
the best seem to adopt a decision theoretic viewpoint.
once one rejects the questionable Frequentist
"objectivity", one seems driven naturally towards a
decision theoretic viewpoint. Statistics appears to be
less a method of discovering "truth" and more an aid to
rational decision making. Any Bayesian can calculate
the posterior expectation, E[y|x]. Only the Bayesian
with a decision theoretic bent knows why this might be
the appropriate quantity to calculate, because it
minimizes posterior Bayes Risk under the most popular
loss function, expected squared error.
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The above has only scratched the surface. For those
interested in more, Silvey (9] is a good introduction to
Frequentist inference. There is a rapidly expanding
literature on Bayesian foundations. Two good discussions
are Berger (2] and Efron [6]. I particularly recommend the
first of the two as an excellent discussion of Bayesian
philosophy. (This is the source which first pounded into me
the central role played by conditioning arguments.} The
second of the two compares Bayesian and Frequentist
paradigms. Although more applied, Gelman and others (8] and
West and Harrison (13] also have interesting insights on
Bayesian foundations.

Estimators: Bayesian vs. Frequentist

Suppose, first, that the function f(u) of the previous
saction of this note is linear in u. Then the following two
operations commute: 1) taking expectations and 2) evaluating
the function. 1In the Frequentist paradigm,

E[f(f(x)) |p)=F£(E[Q(x)|p]) =f(p) for fi(x) an unbiased
estimator of u. In other words, f=f and f(f(x))=f(f(x)) is
an unbiased estimator for E[{ylp]=f(u). In the Bayesian
paradigm, E(y|x])=E[f(ns)|x])=f(E[ps|x))=£(s,)}, where pu=E{s|x]
is the posterior expectation of u conditional on the
observed x. Comparing the Bayesian and Frequentist
estimators for y, they are of the same functional form as
long as we identify the Bayesian u, with the Frequentist
fi{x) . Why is the class of linear f so important? Because
the normal linear model, already mentioned in the
introduction, falls into this class.
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Now assume that f is non-linear and take the Taylor series
expansion to second order, about u in the Frequentist case,
and about p, in the Bayesian. It is not suggested that this
calculation produces good estimators in all situations, but
second order is the lowest order in which interesting
phenomena arise, which are at least suggestive of the form
of adjustments required for non-linear f. Considering first
the Frequentist case,

E[£(Q(x))u) = EL£(u) + £/(p) (A (x)-p) +—;—f”(u) (B (x)-p)2ipl

= f(p) + %f”(p) var (g (x) ip)
(1)

where fi(x) is an unbiased estimator for p, and where the
variance in the last line is the variance of the estimator
fi(x) conditional on p. This equation suggests that f£(fi(x))
would not in general be an unbiased estimator for f(u) and,
further, that the following might be approximately unbiased.

(2) A(R(x)) = £(R(x)) -%f”(mx)) var [f (x) ! p]

The unknown p in the second derivative of f has been
replaced by its unbiased estimator. The variance would also
have to be estimated somehow. The unbiasedness would
presumably be only approximate for a couple of reasons.
First, higher order terms in the Taylor series expansion
have been ignored. Second, both the u (in the second
derivative) and the variance in the variance adjustment term
of equation (2) must be estimated, hence this variance
adjustment term is itself a random variable, not a constant.
There is no guarantee that the expectation of this random
variable will be exactly numerically equal to the variance
adjustment term of equation (1), barring a very judicious
choice of variance estimator.
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The Bayesian calculation is similar to the Frequentist.

E[f(p) ix] = E[f(p,) + £/ (p,) (p-p,) + %f”(ux) (p-p,) 2 x]

(3)
= £u,) + %f”(px) varlpix)

Equation (2) is the approximately unbiased estimator for y
in the Frequentist case, equation (3) the approximate
estimator for y in the Bayesian. Both have an adjustment
for parameter variance. As before, upon identifying the
Frequentist fi{x) with the Bayesian u,, the functional forms
would be identical, except that the signs of the parameter

are Q. e.

The Lognormal Linear Model

Consider first the lognormal distribution. A random
variable z is said to be lognormally distributed with
parameters g and o if and only if the natural log of z is
normally distributed with expectation ug and standard
deviation ¢. u and 0% are therefore the expectation and
process variance in the log scale. Back in the original
scale, the expectation of z, conditional on g4 and o, is
E[z}u,o]=exp(u+.502). For the actuarial reader unfamiliar
with the lognormal distribution, past actuarial papers, such
as Bickerstaff [3] and Finger [7], have made use of this
distribution and include either a brief description or
technical appendix on the lognormal. Those who desire
considerably more detail on the lognormal distribution may
consult Aitchison and Brown [1] or Crow and Shimizu ([5].
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Consider now the lognormal linear model. The data, x, and
the quantity of interest, y, are assumed to be lognormally
distributed, with expected logs that are linear in
explanatory variables. The state of nature is characterized
by the expectation of log(y), u, and the process standard
deviation of log(y), ¢. pu will be linear in explanatory
variables and their associated regression coefficients. The
parameter variance of u will depend on variances and
covariances of the estimated regression coefficients via
standard regression formulas involving the process variance
and the structure matrix. In what follows, the process
variance and the parameter variance will be assumed known.
The fact that process and parameter variances must generally
be estimated from the data is a technical complication which
must be considered when designing exact estimators but which
contributes nothing to the discussion at the present
elementary level. So we will treat o as a known rather than
unknown descriptor of the state of nature and write
E[y:u]=exp(u)exp(.502)=f(u). (The additional problems
introduced by unknown process and parameter variances, which
must also be estimated, are treated in Verrall [11] and
Verrall (12]). These two papers further reference Bradu and
Mundlak [4], a highly educational paper in itself.)

The Frequentist now considers the problem to be one of
estimating 4 an {y!pw]=f(u) from observed data x using
unbiased estimaturs. Given the assumption that logs are
normally distributed and linear in explanatory variables,
standard regression analysis on the logs yields an unbiased
linear estimator for u, call it fi(x), and an expression for
the parameter variance of this estimator, Var[fi(x)|p], in
terms of the process variance, assumed known, and the
structure matrix of the regression. Applying equation (2),
an approximately unbiased estimator for f(u) is:



£(p(x))

£(f(x) )(1 - %Var[ﬂ(x) m)

u

(4) f((l(x))exp(—%Var[ﬂ(x)lu])

exp(ﬁ (x) - %Var[ﬁ(x) (1] + %02)

The first approximation follows from equation (2), because,
given the present definition of f(u)=exp(u)exp(.502), the
second derivative of f with respect to pu is equal to f(u)
itself. The second approximation follows if the parameter
varjiance is small (because 1-x = e * if x small), which is
probably the regime in which equation (2) is valid anyway.
(It should be noted that equation (4), derived under the
above approximations, is an exact unbiased estimator for
f(u) if the variance terms are known, rather than estimated
and the distribution of the data, x, is such that the
estimator, fi(x), is not only unbiased but normally
distributed.) The second term in the exponent is the
adjustment for parameter variance and appears with a
negative sign.

Consider now the Bayesian estimator, E[y!x]. After
observing the data x, p has a posterior distribution with
expectation u, and variance Var(u|{x). Applying equation
(31,
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Elyix] = E[f(p)ix]

o

f(pg(1+-%var[u!x])
(5)

£(p,) exp(+-%Var[p!x])

exp(px+ %Var[u 1x] + 3102)

This holds to the same level of approximation as equation
(4). (Actually, if the posterior distribution for u is
normal with expectation u, and variance Var(p{x), then
equation (5) follows exactly, without approximation, because
then exp(p) is itself lognormally distributed.) Again, the
second term in the exponent is the adjustment for parameter
variance, but in the Bayesian setting it appears with a
positive sign.

Note that equations (4) and (5) have the same functional
form, except that the signs on the parameter variance term
are reversed. Why? The Frequentist recognizes that his
unbiased estimator for u, fi(x), has finite, non-zero
variance. Because of the convex shape of the exponential
function, excursions of fi(x) above u result in excursions
of exp(fi(x)) above exp(s) of greater magnitude than
excursions of exp(fi(x)) below exp(u) due to excursions of
fi(x) below y. As an estimator of exp(u), exp(fi{x)) is
therefore biased upward, and the bias is greater the greater
the variance of the estimator fi(x), the larger the
excursions of fi{x) from p. The exp(-.SVar[fi{x)ip}) factor
removes this bias (approximately).

The Bayesian, on the other hand, estimates

E[y:x]=E[f(u)lx]=E[exp(u+.562):x]. Again, because of the
convex shape of the exponential function, excursions of pu
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above u ~E(¢|x] have a larger impact on exp(u) than
excursions of u below u,. Upward excursions of u are more
dangerous than downward excursions because of their greater
impact on exp(ix), and the Bayes estimator, being a minimum
risk estimator, augments the naive estimator exp(u‘+.50ﬂ
with the factor exp(+.5Var[p|x]) to protect against the more
dangerous upward excursions.

In closing this section of this note, what relation do the
above results bear to those of other authors? I don’t see
an explicit parameter variance adjustment in Zehnwirth ([15].
However, I know from the manual for his ICRFS loss reserving
system and from private conversations with him that
Zehnwirth is solidly in the Bayesian camp and advocates, or
at least at one time advocated, the positive sign on the
parameter variance adjustment. Verrall [12) actually
appears to advocate both signs, depending on whether he is
describing an unbiased Frequentist estimator or a Bayesian
estimator, but he doesn’t draw attention to the change in

sign.

First, Verrall’s equation (4.16) provides an unbiased
Frequentist estimator. (Although he doesn’t refer to this
estimator as Frequentist, he notes its unbiasedness, which
is a Frequentist notion. Furthermore, he invokes Bradu and
Mundlak [4], which is a Frequentist paper.) To establish
the connection between his notation and ours, note that Z
is the vector of values of explanatory variables associated
with our quantity of interest, y. [ is the vector of
regression coefficients associated with thesé explanatory
variables, or rather the true but unknown values of these

coefficients. [ is the vector of estimates of these

regression coefficients derived from the regression. 2§
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and Zf are therefore inner products representing,

respectively, our u and our fi. From Verrall’s equation
(4.16), the unbiased estimator for E[y}u]=exp(u+.502) is

(6) exp(ﬂ)g,.[—%Z(X’X) '1z’s"+%s2

where X is the regression structure matrix and s? is an
unbiased estimator for o. gp(t) is defined via power
series expansion in Verrall’s equation (4.5). It is clear
from this definition that, as m becomes large, g,(t) tends
to exp(t). m becomes large when the data base on which the
regression is performed becomes large, without a
corresponding increase in the number of explanatory
variables. 1In this limit, the unbiased estimator for E(y|u)
of expression (6) above becomes

(7) explf - ZZ(X'x) Z's? + %sz)
From standard regression theory, the second term in the
exponent is precisely -1/2 times the variance of the
estimator fi. This estimator (7) therefore reproduces
equation (4) above.

Lastly, Verrall provides, the middle of page 409, Bayesian
estimators for posterior expected losses for lognormally
distributed losses with parameters # (our u) and o, where
the posterior distribution of 0§ is normal with expectation m
(our u,) and variance 7’ (our Var{u|x]). Verrall’s
estimator is

12,12
expim+ —t“+ —0
(8) p( > 5

which reproduces equation (5) above.
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So, which is the correct estimator in a lognormal linear
model setting, equation (4) or equation (5)? Do we add or
subtract a parameter variance adjustment? Each is correct,
within its own paradiagm, Bayesian or Frequentist.
Unfortunately, for the lognormal linear model, unlike for
the normal linear model, the result depends on the paradigm.
It is up to the actuary to select the paradigm and, hence,
the sign of the parameter variance adjustment.
Unfortunately, there is no clear guidance as to which is
appropriate for the loss reserving problem. Neither
paradigm is without problems regarding its theoretical

foundations, as Efron (6] is quick to point out.

A number of observations may be appropriate in closing,
first some statistical ones, then some actuarial ones.

1) While calculating the Bayesian posterior mean, E[y|x],
it may be worthwhile to reflect on the fact that many
Bayesians consider the greatest strength of the
Bayesian paradigm to be its ability to produce readily
interpretable posterior distributions and confidence
intervals. (See, in particular, Gelman and others
{8]).) These Bayesians would consider someone who went
to the trouble of constructing a Bayesian analysis only
to extract posterior means and nothing else to have
discarded most of the information revealed by their
analysis. Yet, because of the very narrow focus of
this note, I have ignored posterior variances,
Var([y|x]), posterior predictive distributions for y, and
posterior intervals resulting from those distributions.




2)

3)

Now,

1)

A hard core Bayesian who wished to remain a Bayesian
and yet was troubled by the above Bayesian/Frequentist
discrepancy might be able to construct a valid Bayesian
decision analysis that would reproduce the Frequentist
unbiased result by considering loss functions other
than quadratic, resulting in minimum Bayes Risk
estimators other than the Bayesian posterior
expectation, E(y|/x]. I have not investigated what loss
function might bring Bayesian and Frequentist analyses
into agreement, but I might guess that such a loss
function would appear quite ad hoc.

Both the unbiasedness of the Frequentist estimator and
the minimum risk of the Bayesian estimator are
predicated on the selected lognormal linear model being
a reasonable approximation to reality. While we debate
unbiasedness vs. minimum risk (tastes great vs. less
filling), let us not forget that, if our model does not
adequately approximate reality (incremental losses are
not lognormally distributed, or expected logs are not
linear in explanatory variables, or we have failed to
include in the model important explanatory variables,
etc), then, relative to a more adequate model, our
Frequentist estimator is quite likely to be biased, and
our Bayesian estimator is unlikely to be minimum risk.

a few actuarial comments.

The Bayesian increases the indicated loss reserve for
risk; the'Frequentist reduces the indicated reserve to
correct for presumed bias. The Bayesian indicated
reserve is more conservative than the Frequentist. The
Bayesian increase is, in effect, a kind of risk load.
For those model parametrizations I have seen, the
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greatest effect of parameter variance, percentagewise,
tends to be out in the tail, at high development ages,
because age tends to be selected as one of the
explanatory variables and tends to be highly leveraged
at high ages. Intuitively, out in the tail, at high
development ages, is where an actuary would want the
greatest risk load and conservativeness, because this
is where the greatest uncertainty, percentagewise,
lies.

2) The Frequentist loss reserver might believe the
Bayesian indicated reserve to be redundant on average,
because it fails to adjust for bias. Have you, or
anyone you know, ever seen a truly redundant loss
reserve (or Nessie, or Bigfoot)?

3) In the presence of controversy, with no clear
indication as to how to resolve that controversy,
perhaps we should employ the time-honored practice of
practical actuaries everywhere: compromise. Ignore the
parameter variance adjustment altogether. This
produces indications intermediate between the bias
adjusted Frequentist indication at the low end and the
risk adjusted Bayesian indication at the high end.

My first preference would be for the Bayesian estimator
because of its conservativeness, and because it is most
conservative in the tail, where conservativeness is most
appropriate. Upon failing to get my first preference, my
second preference would be to ignore the parameter variance
adjustment altogether. Why make any adjustment when we
can’t even agree on the sign of the adjustment? I would be
very loathe to quote the Frequentist indication, to reflect
the downward adjustment for bias, which is probably being
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mis-estimated anyway because our selected lognormal linear

model, on which the indicated bias is based,
an oversimplification of reality.
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An Introduction to Credibility
by Curtis Gary Dean, FCAS

This paper is derived from the presentation on basic credibility
concepts that the author has given at the
1995 and 1996 CAS Seminars on Ratemaking.
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AN INTRODUCTION TO CREDIBILITY

Credibility theory provides important tools to help the actuary deal with the randomness
inherent in the data that he or she analyzes. Actuaries use past data to predict what
can be expected in the future, but the data usually arises from a random process. In
insurance, the loss process that generates claims is random. Both the number of claims
and the size of individual claims can be expected to vary from one time period to
another, If $1,500,000 in losses were paid by an insurer during the past year, one
might estimate that $1,500,000 would likely be paid in the current year for the same
group of policies. -However, the expected accuracy of the estimate is a function of the
variability in losses. Using credibility theory, the actuary estimates the randomness
inherent in the data and then calculates a numeric weight to assign to the data.

Here is a dictionary definition of credible:

credible: Offering reasonable grounds for being believed
The actuary wants to know how much to believe the data that's being analyzed. To use
the data to predict the future, this "belief in the data" must be quantified so that
calculations can be made. This leads us to actuarial credibility:

actuarial credibjlity: the weight to be given to data

relative to the weight to be given to
other data

If we cannot fully believe our data, we may call on other information or data to
supplement the data at hand. The data at hand and the supplemental data are each given
an appropriate numeric weight in calculating an estimate.

The variabitity in insurance loss data can be seen in Table 1 which shows the loss
experience for a group of policies covering contractor's pickup trucks. The last column
shows that the average loss per truck varies widely from one year to the next. Any one
year is a poor predictor of subsequent years.

TABLE 1
Contractor's Pickup Trucks
(2)
# of Insured Incurred Pure Premium
Trucks Losses (2)/(1)
1990 2,900 $2,030,000 $700
1991 3,000 1,470,000 490
1992 3,050 1,830,000 600
1993 3,050 1,250,500 410
1994 3,200 864,000 270

The variability in the average loss per pickup truck is depicted graphically in Figure
1. The expected average loss (pure premium) is $500 which we would observe if our body
of data were infinite in size. But, for limited sample sizes, the observed average
losses are randomly distributed. Note that as our sample size increases, the
variability of the observed average loss decreases - the probability density curve
becomes more concentrated around the $500 value. For a smaller sample size, the
probability density curve flattens out. If our sample body of data consists of 50,000
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trucks we can rely upon the observed average loss to estimate the true expected average
loss to a much greater extent than if the data came from a smaller sample of only 3000
trucks.

FIGURE 1
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The actual distribution of pure premiums is not symmetric as shown in the prior graph,
but is instead skewed to the right as shown in Figure 2. More of the observations would
actually fall below the mean of $500 and the mode of the distribution is less than $500.
The smaller the body of data, the greater the asymmetry in the graph. In an extreme
case we could consider only one truck. In most years the truck would have no losses
for an observed average Toss of $0 in those loss-free years. But, every few years there
would be a] loss or, perhaps, several losses and the observed average loss weculd be
substantial.
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This leads us to a common problem that may occur when a group of non-actuaries is
reviewing average losses or loss ratios for a series of years. The data may show, for
example, four years with excellent loss ratios but a fifth year with a very high loss
ratio. The five-year average may be close to some target loss ratio. Unfortunately,
what frequently happens is that one of the reviewers will say that the one bad year is
an anomaly that was caused by several severe claims and that the bad year should be
thrown out of the data. This is a big mistake! For a small body of data, this pattern
in the loss ratios is exactly what we expect to see. The majority of the loss ratios
will look better than average, with a few being quite large. This doesn't mean that
we should ignore the few high values; it usually means that our body of data is small.

The basic formula for calculating credibility weighted estimates is:
Estimate = Z x [Observation] + (1-2Z) x [Other Information],
and 0 < Z <1.

[f our body of data is so large that we can give full weight to it in making our
estimate, then we would set Z=1. If the data is not fully credible, then Z would be
a number somewhere between 0 and 1. What is the "Other Information" that we might use
in our formula? That depends on what we are trying to estimate. In Table 2, the left
hand column shows our observed data and the right hand column may be the "Other
Information" that we might use in the above formula.

TABLE 2

Observation Other Information
Pure premium for a class «-—+  Pure Premium for all classes
Loss ratio for an individual - Loss ratio for entire class
risk
Indicated rate change for a s Indicated rate change for
territory entire state
Indicated rate change for - Trend in loss ratio
entire state

Suppose you are trying to estimate the indicated rate change for a territory within a
state, but your company has a limited volume of business in the territory. An option
may be to weight the indicated change from territorial data alone with the indicated
change for the entire state. This way you have reflected territorial experience in your
rate change to the extent that it is credible.

The loss ratios shown below in Table 3 were produced in a computer simulation that
modeled the insurance random loss process. The expected Toss ratio is 60 for both the
small and big states, but the observed (simulated) loss ratios will randomly vary around
this value. As we would expect, the variation is much larger for the small state. In
the larger state the loss ratio hovers around 60 in each year. Five-year average loss
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ratios were calculated and then state indicated rate changes were calculated using the
expected loss ratio of 60 as the permissible loss ratio. For example, in the small
state -28.3% = (43/60 - 1.000). Using one of the formulas that we will discuss in a
moment, credibility values Z were calculated for each state.

TABLE 3

Small State Large State
Earned Loss Earned Loss
($000) Ratio (3$000) Ratio

1990 69 17 7,100 58

1991 71 109 7,120 58

1992 72 62 7,180 60

1993 74 7 7,200 58

1994 74 19 7,400 61

Total 360 43 36,000 59

Permissible Loss

Ratio 60 60
State Indication -28.3% -1.7
Credibility 10% 100%

Perhaps this data comes from a line of insurance that has an aggressive insurance to
value program such that the inflationary trend in lTosses is exactly offset by the annual
increases in the amount of insurance. In this case the trend in our loss ratio would
be 0%. (For our data, we know that the trend in the Toss ratio is 0% because each year
has an expected loss ratio of 60.) We will apply our complement of credibility factor
(1-2) to this information. So, we would get the following two indications:

small state: .10 X [-28.3%] + (1 - .10) X [0.0%]) = -2.8%
large state: 1.00 X [-1.7%] + (1 - 1.00) X [ 0.0%] = -1.7%

In both cases we know the right answer! We should take a 0.0% rate change in each state
because our expected 10ss ratios are what we used for the permissible Toss ratios. But,
because of the randomness inherent in our data, our indications are slightly off the
mark.

The important thing in the prior example is that we greatly improved the accuracy of
our rate indication in the small state by incorporating credibility. We gave only a
10% weight to the raw indication arising from the smal) state's loss ratio. This had
the result of dampening the effect of the randomness. To the extent possible we would
like to use our observed data to calculate our estimate rather than rely on
supplementary data, but given the randomness present in our observations, we need to
temper the data. Using credibility theory we weight an estimate based on limited data
with data from other sources. We want to find a weight Z that allows us to rely on our
limited data to the extent reasonable, but which also recognizes that our limited data
is variable.




There are two widely used formulas for the credibility Z as shown side by side in Table
4. For the classical credibility formula, if n > N then Z is set equal to 1.00. In

the case of Bahlmann credibility, Z asymptotically approaches 1.00 as n goes to
infinity.

TABLE 4
Classical Credibility Btahimann credibility
= /n =
z= N z n+K
Also called: Also Called:

(1) Limited Fluctuation Credibility (1) Least Squares Credibility

(2) Empirical Bayesian Credibility
(3) Bayesian Credibility

In both formulas n is a measure of the size of the body of data and is an indicator of

the variability of the loss ratio or pure premium calculdted from the data. n can be
any of the following:

» number of claims

- amount of incurred losses

» number of policies

+ earned premium

+ number of insured unit-years.

These are not the only possibilities for n, but n needs to be some measure that grows
directly with the size of the body of data that we have collected.

In practice both of the formulas can give about the same answer if N and K are chosen
appropriately as displayed in Figure 3. Note that in the classical credibility case,
when n is greater than or equal to 10,000, Z is identically 1.00.

1.20 { FIGURE 3
1.00 +
0.80 +
Z 0.60 +
n/ m+1600
) ( )
0.40 - -/ n/10,000
0.20 +
0.00 } + + + t } t } t } } 1 t +——
o Q o (=] (=] [~ o [=] [=] [=] o o [=] (=] [=3 [=]
Number of Claims
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Classical Credibility

First we will discuss the classical credibility formuta. Classical credibility attempts
to restrict the fluctuation in the estimate to a certain range. N is calculated such
that for fully credible data with n=N and Z=1.00, the observed pure premium or loss
ratio will fall within a band about the expected value a specified percentage of the
time. This is illustrated in Figure 4.

FIGURE 4
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If N=5,200 claims, then the observed Pure Premium Is within 10% of
the “true” value 90% of the time.

In this example the measure of the size of the body of data is the expected number of
claims. When our body of data is large enough so that we expect 5,200 claims in our
observation period, the observed pure premium will fall within k=10% of the true value
P=90% of the time; that is, 90% of the time our pure premium calculated from our body
of data will fall into the interval {450,550]. Both the 90% probability and the 10%
width of the range must be selected by the ratemaker. I[f you wanted much less variance
in your estimate you might select a P=99% probability and a k=2.5% error in your
estimate. Of course, it would require a much larger body of data in the observation
period to achieve this level of certainty.

The full credibility standard N is a function of the selected P and k values. A larger
P value results in a larger N and a smaller k also produces a larger N. In order to
calculate the N that corresponds to the selected P and k, one needs to make certain
assumptions and also know something about the loss process. In classical credibility
one assumes that the frequency of claims can be modeled by a Poisson distribution.
Also, one needs an estimate of the average claim size and the variance in claim sizes.
Using these an estimate of the variance in total losses can be computed. The next
assumption is that the distribution of the total losses is normal, i.e. bell-shaped.
Then, the N value can be calculated. This is all covered in much detail in the syllabus
material for the actuarial exam that tests credibility theory.
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One does not have to use the number of claims in the classical credibility formula, but
instead can use earned premium, number of policies, or some other basis. We could
convert our formula developed above to an earned premium basis. Suppose that in
reviewing our data we calculate that on average there is approximately $2,500 in earned
premium for each claim; that is, the ratio of earned premium to the number of claims
is $2,500. A full credibility standard of (2,500 dollars/claim) x (5,200 claims) =
$13,000,000 could be used in place of the 5,200 claims. Then, the credibility assigned
to any data could be calculated from the earned premium of the data.

To calculate the full credibility standard, the denominator in the formula, the amount
of variability acceptable in fully.credible data must be defined by the selection of
P and k values. For less than fully credible data the square-root formula determines
the credibility Z. Figure 5 displays graphically the calculation of partial
credibility.

FIGURE 5
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In the graph the width of the curve representing the variability of data which just
meets the standard for full credibility is represented by D. D can be considered the
standard deviation of the curve. (If you prefer, D can be two standard deviations.)
Likewise, d is the width corresponding to a smaller body of data that is less credible.
It turns out that the credibility that should be assigned to the smaller body of data
in this model is Z = D/d, the ratio of the standard deviation of the pure premium of
the fully credible data to the standard deviation of the pure premium of the partially
credible data. We will allow a standard deviation of size D, but if our body of data
has a standard deviation of d, then we apply a weight of D/d to the data. If the pure
premium (p.p.) calculated from the data is expected to have a standard deviation of d,
then the quantity Z x (p.p) has a standard deviation of D, which is our target.
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Bahimann Credibility
The least-squares credibility model uses the credibility formula:
2 =n/(n +K)

K is defined by the following intimidating expression:

Expected Value of the Process Variance
Variance of the Hypothetical Means

K=

A good way to think about least-squares credibility is in the context of experience
rating where the rate charged to an insured is a manual rate modified to reflect the
experience of the individual insured. The losses incurred by an insured are random,
s0 an insured's loss ratio will fluctuate. The term "process variance" is the variance
in the loss ratio of the risk. The "expected value of the process variance" is the
average value of the variance across the risks within the population. Since each risk
is unique, the expected loss ratios of the individual risks at the manual rates will
vary across the population because the manual rates are based on averages calculated
for groups of risks who are classified alike in the rating plan. Each risk has it's
own "hypothetical mean" loss ratio. The "variance of the hypothetical means" is the
variance across the population of risks of their individual hypothetical mean loss
ratios.

In Figure 6 there are two risks, risk #1 and risk #2, each with its own loss ratio
distribution curve. The process variance 1s a function of the width of the curve
indicated by the [1] in the figure. As mentioned above the width of the curve can be
thought of as some multiple of the standard deviation. The process variance is the
square of the standard deviation. So the wider the curve, the larger the process
variance. [2] marks the difference in the hypothetical means between the risks. The
variance in the hypothetical means across the population is a function of the
differences in the hypothetical means between the risks.

When the process variance of the risks is large in relation to the difference in the
means of the risks, K is large. A large K means that the credibility Z = n/(n +K) is
small. Looking at the second graph in Figure 6, we see that there is a broad band where
the two risks' loss ratios overlap. Since the loss ratio of each risk is so variable,
it makes sense to give more weight to the manual rate calculated from the average
experience of a large group of similar risks and less weight to the experience of the
individual risk.

Small process variances in relation to the differences in the means of the risks results
in a small K value and a larger credibility Z. This scenario is represented by the
bottom graph in Figure 6. The distributions of the two risks do not overlap. The
larger credibility Z means more weight is assigned to the experience of the individual
risk and less, (1-Z), to the experience of the population.

Several Examples

Examples of credibility formulas developed by the Insurance Services Office are
displayed in Tablie 5. The first set of formulas are used in Homeowners ratemaking and
are based on the classical credibility model. The measure of the size of the body of
data and its consequent variability is in the units of house-years; that is, one house
insured for one year contributes one unit. In making a statewide change 240,000 house-
years are required for full credibility, and with that large of a body of data, the
observed experience should be within 5% of the actual value 90% of the time. In
computing territorial changes within the state, 60,000 house-years are assigned full
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credibility and the observed territorial experience is expected to be within 10% of the
expected value of 90% of the time. As stated previously, the actuary needs to decide
on the units for n, the size of the P value, and the size of the k value.

TABLE 5

Credibility Formulas
Insurance Services 0ffice

Homeowners: Owners Forms

Statewide Changes Territorial Changes
= T = /___1L__
z J240,000 z 60,000
n = house years n = house years
90% confident within 5% 90% confident within 10%
of actual value of actual values

Manufacturers & Contractors

Statewide Changes Relativities

. [ n - [_n
2= Y%, 000 z 25,000

n = number of occurrences in | n = number of occurrences in

three years five years
90% confident within 7% 95% confident within 5%
of actual value of actual values

General Liability Experience Rating

- L
L + 8177,000

L = expected loss costs (including ALAE)
at $100,000 basic limits

The next set of formulas in Table 5 are used by ISO in Manufacturers & Contractors
ratemaking. Statewide changes require 8,000 claims (occurrences) in a three-year
period, and with this many expected claims, the experience of the body of data should
be within 7% of the expected value 90% of the time. The full credibility standard for
relativities within M&C, such as class relativities, is much tougher with 25,000 claims
required for a P=95% and k=5%.

The selection of P and k is probably more art than science. If the body of data that
the actuary is working with is of limited size and there is no good surrogate for the
data to which to assign the complement of credibility, then the actuary may select a
smaller P and larger k to produce a smaller requirement for full credibility. If the
actuary wants to make the rates more responsive to current experience he or she may also
select a smaller P and a larger k. If rate stability is the most important goal then
larger P and smaller k may be selected.
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The last formula in Table 5 is the credibility to be assigned to an individual insured's
data in General Liability experience rating and it is based on the B@himann model. In
a loss cost environment, L represents the expected loss costs (expected incurred losses
and allocated loss adjustment expenses) for the individual risk. Before the advent of
loss costs, premium designated by E was used instead of L. The expected loss costs
included in L are $100,000 basic 1imits losses. ISO has recently converted from $25,000
basic limits to $100,000. At $100,000 basic limits it was necessary to increase the
K value in the denominator to $177,000 from its previously smaller value that applied
when $25,000 basic Timits losses were used in computing the experience rating
adjustment. If unlimited losses were used in the experience rating formula, then an
even larger K value would be necessary because the expected value of the process
variance would become even larger.

Reducing Variability of the Data

The data used by ratemakers in the insurance business arises from a random process; in
fact, it is this randomness that makes insurance necessary. The ratemaker is confronted
with the task of finding the proper premiums to charge insureds without knowing for sure
what the cost will be to the company to provide the insurance. The ratemaker estimates
the cost of future payments in insurance claims by his or her company by analyzing past
costs. The ratemaker wants to use the most relevant data to estimate future costs, but
he or she must also deal with the variability inherent in the data.

One way to decrease the variability in ratemaking data is to use a larger body of data.
Here are several ways to do this:

« include more years in the experience period
+ use Bureau data
« combine data into fewer, but larger groups

Each of these involves a tradeoff. If more years are included in the experience period
then it becomes necessary to apply larger trend factors to the older data and trend can
be tough to estimate. Also, the book of business to which new rates will apply may be
different from the business that produced the experience years agoe. The same goes for
Bureau data. The insureds included in Bureau data may be very different from the
average insured in the ratemaker's data. Combining the data into fewer, but larger
groups, may limit a company's ability to effectively compete against competitors who
can better identify the proper price to charge an insured.

Another approach to decreasing the variability in losses used in ratemaking is to:

+ cap large tosses
+ remove catastrophes

Of course, if we do either of the above we must put something back to make up for the
losses we removed. One method to cap large losses is to do basic 1imits ratemaking by
state, territory, class, etc., and calculate basic 1imits rates. Then, rates for higher
1imits are computed using increased limits factors calculated based on the aggregate
data for many states and classes. Another approach is to limit all Tosses at some set
amount, for example $150,000, and then to prorate the excess losses amount back by
state, territory, class, etc. Catastrophe losses can be removed from the data and a
catastrophe load substituted in its place. This load can be computed from a very long
observation period, thirty years or more for weather losses, or a computer model that
attempts to model the catastrophe loss process.
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AN INTRODUCTION TO BASIC CREDIBILITY

TALK BY HOWARD C. MAHLER
MARCH 1996
CAS RATEMAKING SEMINAR

In my talk, | will try to reinforce and expand on the ideas Gary Dean presented in
his tatk.

| will start off my talk by using the following set of graphs taken from my “Student’s
Guide to Buhimann Credibility and Bayesian Analysis” to illustrate some simple credibility
ideas in terms of experience rating or individual risk rating. The goal of experience rating
is to use an individual insured’'s experience to help predict the future. Assuming the
individual risk's experience were observed to be worse fhan average, we would predict
his future experience would also be likely to be somewhat worse than average.
Therefore, we would be likely to charge this insured somewhat more than average.

As mentioned by Gary Dean, credibility guantifies how much worse or better an
insured’s future experience is expected to be based on a particular deviation from
average observed in the past. These graphs should illustrate some of the ideas Gary
Dean mentioned, such as why more weight is given to an individual's experience in
certain situations. Also, those of you familiar with linear regression should see much that
is familiar. (With the widespread use of personal computers, anyone can do a linear

regression.)

2757
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CAS RATEMAKING SEMINAR

The first graph, Exhibit 1, shows simulated claim counts for 100 insureds divided
into two equal groups. In this graph, the “Good Risks” are labeled with crosses and the
*Bad Risks” with circles. In both the real world and many of the subsequent graphs, the
risks come without such labels attached. (If they did come with such labels, we would not
need to use credibility.) Assume we have 100 insureds all in the same risk classification,
territory, etc.

The 50 Bad Risks each have an expected Claim Frequency of 15 while the 50
Good Risks each have an expected Claim Frequency of 10. For each of the 100
insureds | have plotted a single prior year against a single subsequent year of claim
counts. (For example, one of the Good Risks had 4 claims in the prior year and 5 claims
in the subsequent year. This is indicated by a cross at the point (4, 5)). There is
considerable overlap between the groups. Nevertheless, the Good Risks are more likely
to be in the lower left while the Bad Risks are more likely to be in the upper right.

. The next graph, Exhibit 2, shows the same 100 insureds without labels. Here we
have fit a least squares regression line to the points. One could use this fitted line to
predict a future year's experience based on an observation. Since the line slopes
upwards, we see that a bad former year would lead one to predict a worse than average
subsequent year.

So if one observed 20 claims for an insured, one might predict about 15 claims for
that insured next year, compared to the overall average of 12.5. This least square's line
is approximately:

Y=.40X+76

This can be put in the form of the “Basic Formula” discussed by Gary Dean:

2757 69




CAS RATEMAKING SEMINAR

Estimate = Z (observation) + (1 - Z) (overall average)
with the credibility Z = 40%
With only 100 insureds, this result is subject to considerable random fluctuation.
The simulation with many more insureds would give a credibility of 1/3. (This can be

derived using methods faught on the CAS, Part 4B Exam, which were touched on by
Gary Dean.)

The credibility is just the slope of the straight line.. It is the weight given to the
observation.

Note the way that the fitted line passes through the point (12.5, 12.5), denoted by
a plus. Average experience in the prior year yields an estimate of average experience in
the subsequent year.

Note that the line Y = X, with a slope of unity, would correspond to 100%
credibility, while the line Y = 12.5 with a slope of zero, would correspond to zero
credibility. In general, the slope and the credibility will be between zero and one.

These general features displayed in Exhibit 2, will carry over to subsequent
exhibits. The least squares line will slope upwards and pass through the point denoting
average experience in the prior and subsequent period. The siope will be (approximately)
equal to the credibility.

The next graph, Exhibit 3, is similar to Exhibit 2 but shows three years of prior
experience rather than one. Note that the X-axis is now the anpual claim frequency
observed over three years. We expect three years of data to contain more useful
information and thus be given more weight than would one year. In fact, when we fit a

straight line we see a larger slope of about 60% (actually 58%) corresponding to a
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credibility of 60%. As Gary Dean noted, one way to increase the credibility of data is to
increase the volume of data.

In the case of Exhibits 2 and 3, the credibility is equal to N/ (N + K) where N = # of
years of data and K = 2. As mentioned by Gary Dean, this formula is used quite often,

with the “Buhimann Credibility Constant” K dependent on the statistical properties of the

particular situation. Note that for Exhibit 2, Z= 1—13 = % while in Exhibit 3,
Z= 332 = 60% . (In the next set of graphs, K will equal .22.)

The next graph, Exhibit 4, shows 100 risks divided this time into Excellent Risks
and Ugly Risks. The Excellent Risks are shown by asterisks and the Ugly Risks by
wedges. The mean frequencies are 5 and 20 rather than 10 and 15 as in the previous
Exhibits. Therefore, the two groups are much more spread apart. Since there is more
dispersion between risks, each risk’s data will be given more credibility than in the first
graph.

This can be seen in the next graph, Exhibit 5, where a straight line has been fit to
these points. The line has a much larger slope than the first line, corresponding to higher
credibility of about 82%. (Again the results of ann experiment with only 100 drivers differs
from the theoretical result due to random fluctuation.) So due to the larger variation in
hypothetical means (holding everything else equal) in Exhibit 5 versus Exhibit 2, the
credibility increased from 33% to 82%. The value of the individual risks information
increased relative to the information contained in the grand mean. Conversely, the

relative value of the information contained in the grand mean decreased.
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The next graph, Exhibit 6, combines the four different types of insureds. This
starts to approach the real world situations where risks’ expected claim frequencies are
along a continuous spectrum, rather than being of unique types. (One could approach a
continuous situation similar to the Gamma-Poisson frequenéy process.) We can see
plenty of overlap between the four types, although since we labeled the insureds, we can
discern the grouping of different types.

The next graph, Exhibit 7, shows a line fit to all four types. There the slope of 72%
is between the slopes of either 40% and 78% we got when dealing with just two groups.
This makes sense since the variation of the hypothetical means is in between those two
situations.

The following graphs will all involve 125 Excellent and 125 Ugly Risks, but rather
than dealing with just claim frequency will deal with claim severity as well. By looking at
dollars of loss rather than numbers of claims, as can be seen on the next graph, Exhibit 8,
we introduce more random fluctuation. Therefore, the refative value of the observation is
less compared to average; the credibility goes down. As mentioned by Gary Dean, one
way to decrease the credibility of data is to increase the variability of the data.

As can be seen on the next graph, Exhibit 9, the slope of the fitted line is 51.5%.
The theoretical credibility is 53% compared to 82% for the corresponding claim frequency
situation. The greater random fluctuation, which is quantified by the larger “process
variance” has decreased the credibility assigned to the observations.

In practical applications, one often limits the size of claims entering into Experience
rating. As Gary Dean mentioned, one way to decrease the variability of the data is to cap

losses. The final graph, Exhibit 10, shows the results of capping each claim at $25,000.
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(This capping can be either just for the purposes of experience rating or could involve an
actual policy limit.) The fitted line between prior limited losses and subsequent limited
losses is 71.4%. The theoretical credibility of 70% when using limited losses compares to
53% for total losses. Capping the losses has reduced the random fluctuations, i.e., has
reduced the process variance, thereby increasing the credibility assigned to the
experience. (Basic limit losses are less volatile than total limits losses.) (For more on
how to analyze Experience Rating Plans, see for example, “An Analysis of Experience
Rating” by Glenn Meyers in PCAS 1985 and my discussion in PCAS 1987.)

So far my talk has illustrated the concept of using credibility for individual risk
rating. As Gary Dean mentioned, credibility is also used in classification rating, reserving,
trending, and other areas. Whenever an actuary wishes to make an estimate, credibility
can be useful to overcome the problem of limited data.

Let X be the quantity we wish to estimate. For example, X might be the expected
losses for a Workers' Compensation class relative to the statewide, i.e., X is the class
relativity. In my previous example, X was a risk’s future expected experience relative to
average.

As shown in Exhibit 11, in the “Basic Formula” we weight together two estimates of
the quantity X. In that case we usually write:

X=2Y,+(1-2)Y,
where Z is called the credibility and 1 - Z is called the complement of credibility. In the
experience rating example, Y, was the risk's observed experience while Y, was the

overall average experience.
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As listed on Exhibit 12, the estimators Y, can have many sources. (This subject is
discussed in more detail in Joseph Boor's paper “The Complement of Credibility” in the

Fall 1995 CAS Forum.)

For example:

1. The recent observation(s) of X.

2. The recent observation(s) of the same quantity as X, but for a superset.

3. The recent observation(s) of a similar quantity to X; there may be an

adjustment necessary.

4. Past estimates(s) of X. There may be an adjustment for the intervening

period of time.

5. The result of a model.

6. The result of judgment.

Exhibit 13 shows those rules | think will aid you in using credibility for practical
applications.

Rule 1A;

Spend a lot of time and effort deciding on or choosing the Y;. Each Y;should be a
reasonable estimate of X.

So for example, if trying to estimate a medical claim cost trend it may not make
much sense to assign the complement of credibility to an estimate based on the general
overall rate of inflation. It might make sense to look at some other measure of medical
inflation rather than a measure of general inflation.

BRule 1B:

Spend a lot of time and effort computing, collecting data on, or estimating each ;.
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If you are going to include a value in your weighted average, it makes sense to try
to carefully quantify that value.
Rule 2A:

The procedure is generally forgiving of small “errors” in the weights. Therefore, do
not worry overly much about getting the weights exactly right.

In our experience rating example, you can confirm that for most risks, small
changes in the credibility do not result in major changes in the estimate of their future
experience.

This is discussed in my paper “An Actuarial Note on Credibility Parameters” in
PCAS 1986. Exhibit 14 illustrates the effect of changing K, the Buhlmann credibility
parameter, on the credibility. As can be seen, changes in K of less than a factor of 2
would result in relatively small changes in credibility. In turn, these small changes in
credibility usually result in small changes in estimates of the quantities of interest.

Rule 28:

The concept of credibility is a relative concept. A relative weight can only be
assigned to any single estimator, if you know what all the other estimators are.

For example, assume you have two estimators each of which has been assigned
“only” 50% credibility. This merely indicates that the two estimators are equally good or
equally bad, not whether they are good or bad in some absolute sense.

Rule 2C;
The less random variation in an estimate, the more weight it should be given. In

other words, the more useful information and the less noise, the more the weight. We
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saw that limited losses were given more weight than unlimited losses, since the limited
losses had less random variation.
Rule 2D:

The more closely related to the desired quantity, the more weight an estimator

e
SNouIa 1

ceive.

For example, observations more distant in time usually deserve less weight. A
given quantity of data from the same state would probably receive more weight than data
from outside the state.

Rule 3:

Cap the changes in relativities that result from the use of credibility.

A properly chosen cap may not only add stability, but may even make the
methodology more accurate by eliminating extremes.

An example of a practical use of credibility involves revising the definitions of
automobile insurance territories in Massachusetts. Each town's relative loss potential is
determined based on four years of data and a relatively complicated credibility
methodology. For frequency, the complement of credibility is given to a road density
model. For severity, the complement of credibility is given to a combination of the county
average severity and the state average severity. Then towns with similar estimated loss
potential are grouped together. Here we will ignore the details of the procedure which are
explained in Robert Conger's paper, “The Construction of Automobile Rating Temitories in

Massachusetts” in PCAS 1987, and discuss one aspect of the results of the reviews

conducted over the last decade.
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It has been demonstrated that use of this credibility technique produces “better”

predictions on average. However, credibility is a linear process, and thus the extreme

cases may not be dealt with as well as they might.

For example, Exhibit 15 shows the results of applying the same methodology

consistently over time to two small towns, each with somewhere around 5,000 exposures

per year.

| - Estimated Loss Potential Rélative to’Statewide Average |
1984 1986 1988 1989 1991 1993 1995
Review | Review | Review | Review | Review | Review | Review
Acushnet .84 .87 .88 .87 .93 1.00 .97
Brewster 74 .84 .70 .61 .69 .69 .58
: ¢+ “Indicated Territory (Prior to Capping)
1984 1986 1988 1989 1991 1993 1995
Review Review Review Review Review Review Review
Acushnet 5 6 6 6 7 8 8
Brewster 3 6 2 1 2 2 2

The resuits for the first town, Acushnet, are typical.

The relative loss potential

varies somewhat from review to review, with a change in indicated territory of plus or

minus one from time to time. In this particular case there is an upward drift over time

relative to the statewide average.

The resuits for the second town, Brewster, are not typical. In fact, Brewster was

chosen as the most extreme case of fluctuating experience over the period of time from
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the 1984 review to the 1989 review. As you can see in Exhibit 16, the estimated relative
loss potential swung up and then down. This in turn resulted in large changes in the
indicated territories. This occurred in spite of relying on four years of data, so that the
data periods used in the reviews overlap. This occurred in spite of the use of credibility,
which ameliorated the effect of the large fluctuations in the experience of this town.

Such large swings are unlikely. However, when dealing with 350 towns,
something that only has a .3% chance of happening per town, on average occurs for one
town.

This problem is dealt with by capping territory movements. The actual cap chosen
was to restrict movements in any one revision to at most one territory either up or down.
This is an example of the third rule | discussed earlier.

Another example of a practical use of credibility, is the Workers’ Compensation
Experience Rating Plan. This is an individual risk rating plan conceptually similar to my
first set of graphs involving Excellent, Good, Bad, and Ugly risks. Around 1989 or 1990,
the National Council on Compensation Insurance made a major revision to their Workers’
Compensation Experience Rating Plan. Among the changes was a major revision to the
credibilities assigned to an individual insured's loss experience relative to average. This
was based on an extensive and detailed study by the NCCI actuaries. (See for example,
William R. Gillam's paper “Parametrizing the Workers' Compensation Experience Rating
Plan” in PCAS 1992 and my discussion in PCAS 1993.) Without getting into any details,
Exhibit 17 shows you the overview.

Primary Losses are the first layer of losses while Excess Losses are those above

them. Z, is the credibility assigned to primary losses. For the prior plan, it is shown by
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dots; for the revised plan by circles. Similarly, Zy is the credibility assigned to excess
losses. For the prior plan, it is shown by solid squares; for the revised plan, it is shown by
open squares. In each case, the credibility assigned to the primary losses is greater than
that assigned to the excess losses, since excess layers are more volatile than basic limits
losses.

Note that the credibility varies by size of risk. The more expected losses, the more
credibility is assigned to the insured's own experience and the less that is assigned to the
manual rate. (Note that the maximum credibility for the revised plan is less than 100%.
The credibilities for the revised plan are based on a refinement of the Buhimann
Credibility formula discussed by Gary Dean.)

Exhibit 18 shows the changes in credibilities. For smaller risks, the revised plan
assigns higher credibilities than the prior plan. For larger risks, the revised plan assigns
lower credibilities than the prior plan. Thus, large insureds with good experience get
smaller credits under the revised plan, while large insureds with bad expen‘enoé get
smaller debits under the revised plan. The theoretical credibility work by the Actuaries at
the National Council that led to this revision, had a major impact on thousands of
businesses across the country. So “theoretical credibility” can have immense practical
impact.

A final example of a practical use of credibility, is the estimation of relative average
claim costs for workers compensation classes. Exhibit 19 shows the calculation of the
observed average claim costs for the classes in the Office and Clerical Industry Group for
one year. We divide losses by the number of claims. Then for each class we calculate

the relative average claim cost by dividing the classes' average claim cost by that for the
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industry group. Note that | have not limited the size of claims, but that | have excluded
the large lifetime claims which would produce the most random fluctuation.

So far we have not used credibility. However, since some classes have very few
claims in a single year, | would not want to rely on the resuits of one year of observations.
Exhibit 20 puts together the results of seven years of observations. We observe
considerable random fluctuation in the relative claim costs. ) take an average over the
seven years for each class and then use credibility.

For each class its observed relative claim cost is given credibility equal to the
square root of its number of claims divided by 2,500. A class with 2,500 or more claims
over 7 years is assigned full credibility. The Complement of credibility is assigned to
unity, an average claim cost equal to the overall average for the Industry Group. Applying
the Basic Formula on Exhibit 11 to this case the estimated relative average claim cost is:

Z (observed average claim cost) +(1-2Z)(1)
as shown in Column 12 of Exhibit 20.

Exhibit 21 graphs the Credibility in this case. Exhibit 22 compares the credibility
from the use of the square root formula to that using Z = N/ ( N + K ) with K = 350 claims.
The credibilities are similar.

| have tried to illustrate a few of the many applications of credibility. I've given a
number of general rules which you should find useful in your own work with credibility.

The theory behind the use of credibility can be complex. However, the use of
credibility itself is set up precisely so that it can be understood by a layman. While
ratemakers may differ in their knowledge of credibility theory, all ratemakers should be

completely familiar with credibility practice.

2757 80



18

Simulated Claims Experience
Number of Claims Subsequent Year

Exhibit 1

30 - [x Good Risks J
: o} i
25 — Bad Risks
- o)
- o) 8 0o 0
20 — © o X% 0
_ = O O
0O 0 0 O o) o)
o o e}
15 — X o) o) 0
- o) X X 0 0
X X o ® X o 0 o)
- X X B o)
- X X 0 X = 0O X O
10 — X X X O ® o)
% o X X X
: X X X X X
: X X X 0 X
Z X X X
5 — X X X X
- X
O ‘-‘-l T [ r 1 ! 1 ! 1 N i i 1 [} 1 ] 1 ‘ ] 1 ] 1 ] ( ] 1 ] ] 1 l i) t 1 1] 1 |
0 5 10 15 20 25 30
Number of Claims Prior Year
50 Good Risks (Poisson 10) and 50 Bad Risks (Poisson 15) HCM 12/28/95




4]

30

25

20

15

10

Simulated Claims Experience
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Number of Claims Subsequent Year
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Simulated Claims Experience, 3 Prior Years

Good & Bad Risks Exhibit 3
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Simulated Claims Experience Exhibit 5
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Simulated Claims Experience Exhibit 7

Excellent, Good, Bad, & Ugly Risks
Y=.72X+3.5

0 __Number of Claims Subsequent Year G _
20 — . . )
15 o : .
10 - M . * . .. .
s i '
ok S TS T |
0 5 10 15 20 25 30

HCM 12/28/95

Number of Claims Prior Year

50 Excellent Risks (Poisson 5), 50 Good Risks (Poisson 10), 50 Bad Risks (Poisson 15), and 50 Ugly Risks (Poisson 20)




88

Simulated Loss Experience

Exhibit 8
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Simulated Loss Experience

Thousands of Dollars of Loss Subsequent Year Exhibit 9

800 =
700 =

600 =

500 : : Y =.515 X + 59,076
400 z— . . {}

300 T )
200 =
100;
0 & KU T TR RO FUTOROPR I
0 100 200 300 400 500

- Thousands of Dollars of Loss Prior Year  HcM 1272865
125 Excellent Risks (Poisson 5) and 125 Ugly Risks (Poisson 20), Pareto Severity (3, $20000)



Simulated Loss Experience .
Each Claim Limited to $25,000 for entering into Experience Rating  EXhibit 10
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Exhibit 11

“BASIC FORMULA”

X= 2ZY+(1-2)Y,

where X is the quantity to be estimated
Y; and Y, are estimators of X

Z is credibility

2535-3
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Exhibit 12

The estimators Y; can have many sources. For

example:

1. The recent observation(s) of X.

2. The recent observation(s) of the same
quantity as X, but for a superset.

3. The recent observation(s) of a similar
quantity to X; there may be an adjustment
necessary.

4, Past estimate(s) of X. There may be an
adjustment for the intervening period of time.

5. The result of a model.

6. The result of judgement.
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Exhibit 13

Rule 1A.

Spend a lot of time and effort deciding on or choosing the Y;.

Spend a lot of time and effort computing, collecting data on, or
estimating each Y,.

Rule 2A.

The procedure is generally forgiving of small “errors” in the
weights. Therefore, do not worry overly much about getting the
weights exactly right.

Rule 2B:

The concept of credibility is a relative concept. A relative

weight can only be assigned to any single estimator, if you know what
all the other estimators are.
Rulé 2c:

The less random variation in an estimate, the more weight it

should be given. In other words, the more useful information and the

less noise, the more the weight.




Exhibit 13

Rule 20:

The more closely related to the desired quantity, the more
weight an estimator should receive.

Rule 3:

Cap the changes in relativities that result from the use of

credibility.
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Credibility = N / (N+K), Various Values of K Exhibit 14
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Massachusetts Private Passenger Automobile

Exhibit 15

1984 1986 1989 1991 1993 1995
Review Review Review Review Review Review
Acushnet .84 .87 .88 .87 .93 1.00 .97
Brewster .74 .84 .70 .61 .69 .69 .58

p"

1984 1986 1988 1989 1991 1993 1995
Review Review Review Review Review Review Review
Acushnet 5 6 6 6 7 8 8
Brewster 3 6 2 1 2 2 2
2555-6
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Estimated Loss Potential Relative to Statewide Average Exhibit 16
Masschusetts Private Passenger Automobile 1ol

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

Indicated 1997 Territory: Brewster 1, Acushnet 7 Terri tO['y Review HCM 10/2/96




_ Primary and Excess Credibilities Exhibit 17
NCCI Revised vs. Prior Workers' Compensation Experience Rating Plans
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- Primary and Excess Credibilities Exhibit 18
NCCI Revised vs. Prior Workers' Compensation Experience Rating Plan
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MASSACHUSETTS WORKERS' COMPENSATION

Relative Average Claim Costs
Industry Group: Office & Clerical

Composite Policy Year 85/86 @2nd Report

Exhibit 19

Q) ] 3 @ (5)
= ((3) = (4)TT(4)
Losses Number of Average Relative Average

Phraseology Class (Indemnity+Medical) Claims Claim Cost Claim Cost
Photographer-All Emp-Clerical,Sales-& Dr 4361 231,122 33 7,004 0.680
Radio or TV Broadcast-All Emp,Cler-& Dr 7610 702,919 42 16,738 1.625
Engineer or Architect-Consulting 8601 1,356,481 134 10,123 0.983
Salesperson,Collector,Messenger-Outside 8742 8,771,008 703 12,477 1.211
Auto Sales or Service Agcy-Salesperson 8748 1.552,608 73 21,269 2.065
Mailing or Addressing Co-& Clerical 8800 245229 38 6,453 0.626
Auditor, Accountant,Etc-Traveling 8803 184,289 43 4,286 0.416
Clerical Office Employees NOC 8810 24,323,122 2,404 10,118 0.982
Attomey-All Emp-Clerical,Messenger & Or 8820 741,565 40 18,539 1.800
Physician-& Clerical 8832 1,444,953 138 10,625 1.031
Hospital-Professional Employees 8833 11,760,162 1,199 9,808 0.952
School-Professional Emp & Clerical 8868 5,263,573 634 8,302 0.806
Telephone/Telegraph Co-Office Emp & Cl 8901 146,908 14 10,493 1.019
Theatre-Players,Entertainers,Musicians 9156 131,147 26 5,044 0.490

Total 56,855,084 5519 10,302

(2),(3): Losses and claims are as reported under the Unit Statistical Plan, but excluding any Fatal, Permanent Total,
or Medical Only Claims. (Losses are paid plus case reserves and are neither limited nor adjusted.)
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MASSACHUSETTS WORKERS' COMPENSATION
Estimated Relative Average Claim Cost
Industry Group: Office & Clerical

Exhibit 20

0! @ 3) ) ® ® @ @ © (10) an (12)
= 1+(11)x[(911]
85/86 86/87 87/88 88/89 89/90 90/91 91/92 Combined Number Estimated
Class Relative Relative Relative Relative Relative Relative Relative Relative of Relative
Code ACC ACC ACC ACC ACC ACC ACC ACC Claims Credibility ACC
4361 0.680 0.920 0.640 0.708 1.087 0.428 1.002 0.785 323 0359 0.923
7610 1.625 1.351 0.839 0.934 1.127 0.969 0.858 1.059 384 0.382 1.023
8601 0.983 1.440 1.169 1.069 1.026 0.919 0.915 1.100 939 0613 1.081
8742 1241 1.161 1.031 1.221 1.028 1.017 1.444 1.143 5829 1.000 1.143
8748  2.065 1.747 2.161 1.067 2.130 1.626 1.215 1.885 452 0.425 1.380
8800  0.628 0.725 1.025 0.830 0.883 1.365 0.721 0.889 325 0.381 0.960
8803  0.416 1.124 0.472 1.893 0.830 1.109 2.268 1.029 188 0.274 1.008
8810  0.982 1.021 1.044 1.040 1.066 1.113 1.005 1.040 17,195 1.000 1.040
8820 1.800 1.307 1.630 1.639 1.238 1.218 1.540 1.450 426 0413 1.186
8832 1.031 1.233 1.536 1.176 1.051 1.037 1.096 1.150 1478 0.769 1.115
8833  0.952 0773 0814 0.792 0.863 0.884 0.774 0.837 6,819 1.000 0.837
8868  0.806 0.905 0.828 0.675 0.798 0.724 0.711 0.774 5211 1.000 0.774
8901 1.019 0.556 1.128 1.068 0.788 0.567 0.386 0.817 173 0.263 0.952
9156  0.490 0.668 1.005 1.066 0.701 0.604 1.281 0.803 170 0.261 0.949
(2)-(8): Calculated as per Exhibit 19.
(9): Seven Years of relative average claim costs are combined by taking a weighted average using claim counts as weights.

(10): Totat of Seven Years of claim counts.

(11):  Credibility = square root of (7-yrs-claim-count by class / 2,500) limited to unity.

(12). Relative Average Claim Costs are credibility welghted with unity.

101



100%

90%

80%

70%

60%

50%

<01

40%

30%

20%

10%

0%

"Classical Credibility", with Full Credibility Assigned to 2500 Claims

Exhibit 21

Claims

HCM 12/28/95



€01

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Credibility, Comparing Two Different Formulas Exhibit 22

-
g - O == . g g
oo

o
A
<
-

-
o

At

o€ ©Z =N/ (N +350)

B ' +Z = SQRT(N / 2500), subject to a Maximum of 100%
ok — | !
Y t T 1 [l L ' 1 T T i LR L T 1 1 ] 1 T Ll 1 L T T—F T T T l-j LR L LI ' T i Tj
0 1 2 3 4 5

Claims (Thousands) HCM 12/28/95



104



Errata and Additional Material Related to
“Accounting for Risk Margins”
by Stephen W. Philbrick, FCAS

Originally published in the CAS Forum, Spring 1994 Edition,
Including Selected Papers from the
1994 Variability in Reserves Prize Program

105




TO CAS MEMBERS,

In the Spring 1994 edition of the CAS Forum, is the paper “Accounting for Risk Margins”.
That paper has been read by a number of people who have identified a few areas where
formulas or numbers are either in error or potentially misleading. While several people
brought this to my attention, and | am grateful to each for identifying these items, | would

particularly like to thank Andrew Rippert who brought most of these items to my attention.
The following four pages summarize the appropriate corrections. On the first three pages, |
have explained in narrative form most of the suggested changes. In particular this narrative
contains the intellectual justification for an alternative formula for NRM, that may be more

intuitive to some.

One the last page, | have provided a quick summary which can be used as a reference, or

used to make corrections to the original text.

My apologies to any who were misled by any of the errors, and my thanks again to those

that took the time to bring these issues to my attention.

Stephen W. Philbrick
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Errata and Additional Material related to Accounting for Risk Margins,
Stephen W. Philbrick, C Ity A ial Saciety F Spring 1994

On page 26 and in footnote 12 on page 27, there is a reference to the coefficient of
variation of the assumed aggregate distribution. The CV value used to create the example
is shown as .128, which represents the actual value rounded to three decimal places.
Anyone attempting to reproduce the calculations may prefer to use the value carried out
to more decimal places. The assumed value of the CV is .12848, to five decimal places.
(I created the portfolio from a number of individual risks, each of which had “round”
values for the mean and CV. However, the individual risk detail was not relevant to the
rest of the paper. so | omitted the details of the calculation of the portfolio parameters.)

Similarly, on page 36 (and subsequent calculations) the factor used to calculate
the total asset need is shown to three decimal places as 1.233. This factor, carried out to
six decimal places, is 1.233475. This factor is not shown explicitly on page 27, but is
used 1o calculate the value of $359.42.

On page 27. the footnote contains two formulas. The first is stated as:
j: (z- A)dF =.003

This formula is correct under the assumption that the distribution has been normalized
such that the expected losses are equal to 1.0. A more general formula is obtained by
multiplying the right side of the equation by the mean losses. Altenatively, the mean loss
amount could be placed in the denominator of the left side. Thus, we solve for A such

that: j: (z- A)JF =.003 f: zdF
[Tz Aaf
or: -I:——- =003
I: zdF

The second formula contains an alternative representation. Unfortunately, the limits of
integration were shown incorrectly. The limits of integration should be zero to A. In
addition. to make the formula general rather than normalized. multiply the right side by
the mean:

A o
Jj, 28F + A{1-F(A)] =997 [ * zaF

BRM:

On page 37, the tormula shownas:  NRM: = (ROR - l)z(]—'*RT)R_)‘
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Should be shown as: NRM: = (ROR - l)z —BLJH
i= (1+ROR)’

This formula is the easiest one to use in practice. However, an alternative formulation is
easier to understand conceptually. This formula is written as:

v SRM;
NRM: =(ROR - E _—
( ])J‘=| a+ i)_|+|

This formula can best be understood by thinking about the process of establishing an
insurance company to take on this specific risk. The insurance company will need an
amount over and above the mean(discounted) losses to account for the possibility that
actual losses exceed the expected. The amount in addition to the mean losses will be
contributed by both the investor and the insured, such that the investor can earn a fair rate
of return on the investment.

Assuming that the insured will pay the mean losses. we now examine how the amount
over and above the mean losses should be apportioned between the two parties. The
investor will contribute an initial amount of surplus, SRM,, into the company at
inception. However. our losses are not fully extinguished by the end of the first year. so
our investor is committed to leaving surplus in the company in subsequent years.

The surplus commitment is represented by the string of surplus values, SRM;. (Ignore the
denominator tor the present.) While the investors surplus commitment is in the future for
all years other than SRM,, the loss amounts used in the calculation of the SRM; have
been calculated by discounting future losses back to time zero, so the implied surplus
value is the present value of the future surplus commitment. The investor wishes to earn a
return of ROR on the investment, so we must pay the investor a totdl of ROR times the
present value of the surplus commitment. However. the surplus placed in the company’
will earn investment income at rate i. so we can reduce the amount required to be paid by
the policyholder by this amount, hence the (ROR-i) factor. Finally, the amount paid by
the policyholder (NRM,) will be paid into the company at time zero. and this amount will
earn investment income over its life. Some of the narrow risk margin will be retummed to
the investor at each vear end, so the calculation of the investment income earned over the
life of the policy is not straightforward. However, it works out that the adjustment for
invcs_upenl income earned by NRM, can be handled by dividing the SRM; values by
(1+y*

It is tempting to presume that this factor in the denominator is the factor to discount the
surplus requirements back to time zero. in which case the exponent seems wrong.
However, each SRM; value is ultimately derived from L;, which represents unpaid losses
discounted back to time zero. Instead, this factor accounts for the investment income
earned on the narrow risk margin over its lifetime.
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On page 38. the following four quantities are shown:

BRM, = 233
Lo=$131.00
NRM, = $16.14
SRM, = $114.87

The last two are correct, but the first two quantities should have been shown as:
L, = $561.09

BRM, = 233 x Lo = $131.00

On page 44, in the section labeled “Balance Sheet (Year X+1)", there are
references 10 BRM,, NRM,, and SRM,. These should be references to BRM,, NRM,, and
SRM,, respectively.

On page 79, the statement is made that P = E(z) + R. In the middle of the page it
says “On average (or over the long run), the company will pay E(z), leaving profits of R
on capital of C. Thus:

R .
E = return on capital

This statement is correct if we ignore investment income. The inclusion of
investment income does not affect E(z), because we have defined our loss variable to be
on a discounted basis. However, part of the return to the investor arises from investment
income earned on surplus, as well as investment income earned on the Narrow Risk
Margin. Denote these as iig and iig , respectively. Consequently, it would be more
accurate to state that “On average (or over the long run), the company will pay E(z),
leaving a profit consisting of R plus iig plus ii g . Thus:

R+iig +1ig
C

= return on capital”
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Summary of Changes and Additions
‘Location Shown As: I Should be

On page 26 and in |
footnote 12 on
page 27, reference | 128

12848

Expected Deficit ‘
A ti i
ssumption, | 20,

|
[
|
to CV : 5
|
page 27 |

3%

Factor used to

calculate the total 1.233 1.233475

asset need, page 36 !
(and other pages)

First !Expected . © 0 o
Deficit formula in jA (z- A)XIF =003 jA (z- AYdF =.003 jo zdF

Footnote 12 : i

i
{
Second Expected |
Deficit formula in :
1

j:zdF +A1-FA]=g07 | [ : 2dF + A[1-F(A)] =.997 [ * 2dF

Footnote 12 ;
Formula on : i BRM < BRYV
: : NRM: = (ROR -{)} ———— =(ROR - —L—
page 37 : ( )Z 1+ ROR)' NRM: =( )Z ROR)JH
|
Equivalent \ Not shown @, SRM;
formula to the one | i =(ROR - l)z JJ+|
shown on page 37 ! | +i)
Quaniieson  BRM, = 233 L, = $561.09
page 38 _ i
| : Lo = $131.00 i BRM, = .233 x Lo = $131.00
| . 5
| Variables on f BRM,; i BRM,
page 44 } NRM, : NRM,
: SRM, § SRM,
Formula on ; "R il R +iig +iig al
: — =ret ta ; ——= =ret L
page 79 i ¢ = retum on capi | C return on capita
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Loss Estimates Using S-Curves:
Environmental and Mass Tort Liabilities
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Loss Estimates Using S-Curves
Environmental and Mass Tort Liabilities

Abstract

This paper discusses the application of S-Curve modeling for estimating certain
environmental and mass tort liabilities. Emphasis is placed on pollution and asbestos
liabilities, which are a significant component of the total environmental and mass tort
liabilities for many insurance companies and manufacturers. The general concept of S-
Curve modeling is discussed, followed by a technical discussion explaining its
application to asbestos and pollution liabilities. Included are comments on the
advantages and disadvantages of the technique.
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Loss Estimates Using S-Curves

Environmental and Mass Tort Liabilities

Introduction

Manufacturers, their insurers and reinsurers, as well as many other commercial
enterprises have environmental and mass tort liabilities that must be estimated and
managed. Such liabilities arise from many sources including environmental pollution,
asbestos, medical implants, carcinogenic toxins, lead, radiation and other toxic
exposures. Typically, these liabilities can be characterized by a historical period of
exposure to a substance or process that produces latent health problems or property
conditions that result in legal liabilities for bodily injury and/ or property damage. The
latency period can be many years, adding to the difficulty of estimating the exposure.
For example, a chemical manufacturer legally dumped toxic wastes from 1940 to 1975
and then became legally liable for the property damage caused by these wastes as a
result of 1980 superfund legislation. Similarly, a medical device manufacturer made
artificial mandibular joints that were implanted in thousands of patients and later
stopped sale of the devices once it was discovered they produced serious side affects for
which the manufacturer was held liable.

Environmental and mass tort liabilities typically arise suddenly as a result of long term
exposure to a given agent or process (for example, asbestos or dumping industrial
waste). Problems with data, including lack of historical precedents, poorly defined
exposure periods, and improper data capture are common difficulties of estimating the
value of these liabilities. Often, only calendar year data is available. Pollution claims,
for example, have been attributed to multiple accident or policy periods by court
decisions. Estimating the ultimate liability for these claims is often not feasible using
traditional actuarial techniques, and highly sophisticated procedures involving a large
number of claim by claim reviews are expensive and so time consuming that once
performed, cannot be easily updated, but can quickly become outdated due to
legislative and judicial changes.
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Loss Estimates Using S-Curves
Environmental and Mass Tort Liabilities

The S-Curve approach, because it assumes a general pattern for loss emergence, can
overcome many of these problems, is easy to apply, and can be updated readily as new
information becomes available. As demonstrated in this paper, the S-Curve is a
projection technique that has many of the characteristics of traditional loss development
techniques.

S-Curves have been proposed by other actuaries as a method for evaluating pollution
liabilities. However, technical difficulties with the sensitivity of the underlying
assumptions halted most serious pursuits in this area. This paper provides techniques
for overcoming these problems and increasing the objectivity, flexibility, and usefulness

of the S-Curve approach for actuarial analysis.

Background

S-Curves can be used to analyze cumulative distributions for paid losses, reported
losses, and claim counts. For purposes of this discussion, S-Curves will represent
cumulative calendar year amounts for paid losses. The techniques and assumptions
used work equally well for other cumulative forms of data. S-Curves have the
following general shape:
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The x-axis represents time, while the y-axis represents the cumulative amount paid. As
a cumulative distribution, the first half of the curve indicates an accelerating rate of
payment up to the inflection point of the curve, then the incremental payments begin to
taper off and eventually stop. For a given S-Curve equation, the inflection point will be
the point at which the first derivative reaches its maximum value and the second
derivative changes sign. Depending on the type of exposures modeled, the
representative S-Curve can be very steep in the center or almost flat. The particular S-
Curve that best fits a company’s historical data will depend on several factors including
the length of exposure, the beginning period of exposure, the claim settlement practices
of the company, the time since claims were first reported, and the legal process that
affects policy coverage.

S-Curves can effectively represent the pattern of emergence for environmental and mass
tort claims. A typical scenario involves detection of a health problem and/ or a property
condition, discovery of the agent or process that caused the situation, a period of
statutory and legal developments that establish legal liability regarding the agent or
process, an exodus from the production of the agent or process, a period in which
policyholders and their insurers find themselves reacting to mounting claims activity
related to the agent or process, a change in insurer coverage (usually eliminating future
exposure to these claims), a period of increasing reserves and loss payments, then a
long period of run-off of these claims. In terms of cumulative calendar year paid loss

activity, it is easy to picture the resulting S shaped curve such scenarios produce.

S-Curve Functions

Previously, it has been suggested that the arc-tangent curve, because of its S shape and
finite tail, be used for modeling purposes. Our research has determined that the arc-
tangent is not flexible enough for environmental and mass tort liability modeling
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purposes. An alternative family of S-Curves based on power and gamma functions
works much better and provides much more flexibility in curve selection. In this paper
we deal primarily with the power functions, as they are easier to model. An example of
a gamma function application is included for reference.

The general form of the power function is:

y=5(x-b)P+c

The dependent variable y represents the cumulative paid losses, s is a scalar coefficient
greater than zero; x is the year of projection (or year corresponding to the historical
data), b represents the time at which the curve’s inflection point occurs, p is an odd
power between zero and one, and ¢ is a constant representing the projected cumulative

paid loss at time b.

The power p is typically chosen from among the family of fractional powers 1/3, 1/5,
3/5,1/7,3/7,5/7,1/9, etc. Testing of the various powers indicates that a few of them
can adequately represent most of the S-Curves required for analyzing environmental
and mass tort data. It is not necessary to fit ail possible values of p. In our models, we
fit approximately ten different values of p and select the best fits from among them.

When x is less than b, the odd power returns a negative value. When x equals b, the
value of y is equal to ¢, which occurs at the inflection point. When x is greater than b,
which occurs after the inflection point, the difference between x and b is positive. These
relationships give the curve its S shape.

The s parameter determines the change in height of the curve for each time increment,

and p determines the shape of the curve.

A positive ¢ parameter is a constant that brings the curve above the x-axis and is

selected such that y is equal to zero at the beginning period of claims emergence. For
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example, if ¢ equals zero, then b, the inflection point, would occur where y equals zero

(that is, the x-axis would cut the curve at b).

The power curve does not converge for large values of x. Therefore, a maximum
number of years of run-off must be selected. Otherwise, the model will produce an
infinite ultimate loss. We select our maximum number of run-off years at a point when
incremental changes in the S-Curve become small, typically after about 30 years for
pollution and 20 years for asbestos, a runoff period that we feel is reasonable based on

other factors.

Power curves are symmetrical around the inflection point, a property that is useful
when the inflection point is not observable in the data. A gamma function can be
derived that is asymmetrical around the inflection point providing added flexibility to

the curve fitting process.

Several actuaries have suggested fitting curves to the incremental paid data. The first
derivative of the power curve, dy/dx, is given by the following equation and represents

the shape of the curve corresponding to the calendar year incremental paid losses:

y'=ps(x-b)"*

This is a bell shaped curve that has an undefined value at its inflection point (where x
equals b) when p is less than one. This implies that curve fitting using the incremental
data cannot be achieved for the power curve for values of p less than one, as no value of
b will minimize the squared error for the fit in these cases. Curve fits using other types
of functions (gamma, lognormal) may work on incremental data.
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Fitting S-Curves

To fit an S-Curve, numerical methods are used in our model. By minimizing the sum of
the squared errors between the fitted curve and the historical data, a numerical
algorithm is used to determine the best fitting parameters s, b, and c. As noted above,
approximately ten values of p are selected and separate fits are made for each p value.
The fit is performed on the cumulative data. Depending on the relationship between
the data and the fitted S-Curve, this approach may give more weight to the squared
error in the most recent data points as these points will contain the cumulative errors
from all prior years. We believe this has a positive influence on the fit as it helps
minimize error in the most crucial part of the curve (the most recent points). That is,
precedence is given to minimizing the cumulative error over minimizing error for all

points on the curve.

The S-Curve, depending on the value of p, can be very sensitive to the selection of the b
parameter. To make the selection of b less subjective, we constrain the numerical
algorithm as follows:

1. The year in which y first becomes positive is fixed based on the earliest date that the
losses are first paid. This gives the curve a realistic starting point. This point can be
varied plus or minus a few years to improve the goodness of fit, but should be
within a reasonable range of the known starting date.

2. The value of b is constrained to be at least four years after the year in which
payments are first made. This constraint keeps the algorithm from selecting b
unreasonably close to the starting date, an outcome that may minimize squared
errors but is not reasonable for projection purposes. The four year period should be
used as a guide, as varying the parameter value may provide improved fit without
sacrificing reasonability.
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3. The parameters s and ¢ must be positive.

For a given val )
or a gi u ; er

r
constraints, such that the sum of the squared errors is minimized.

ven value of p, the other parameters ar

Once a series of S-Curves have been fitted to the historical data, the b;est fits must be
selected. Standard measures of goodness of fit do not work well with S-Curves because
of their non-linearity. We developed several relative goodness of fit tests. These tests,
along with graphical representations of the fit, help to determine which S-Curves
provide the best fit to the data. Two of these tests are as follows:

R=EZ(y7y)/Zy;

R,=1-L(bay duy )/ E(luy ;-Eluy ./ 1)

The variable y, indicates fitted values, y, indicates data values, and n is the number of
data values in the fit. R, compares the squared error of the fitted values to the squared
fitted values, with lower values indicating better relative fit. R, compares the squared

error of the natural logarithms of the fitted values from the data to the squared error of
the natural logarithms of the data from the average, with higher values indicating better
relative fit. A third alternative, based on the R1 statistic, is to use an absolute difference
in the numerator of R, instead of a squared difference and drop the square in the

denominator, with lower values indicating better relative fit.

In practice, we have experienced problems where two fits of the same data using the
same value of p both minimize the squared error. This may occur when the data does
not fita parﬁéular S-Curve well, is extremely volatile, or is too immature. In such cases,
there is enough “slack” in the shape of the curve to obtain more than one best fit. This
is caused by some interdependence between the b and ¢ parameters where, for certain
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data sets, several combinations of b and ¢ can result in minimized squared error. Our
numerical algorithm stops when it finds the first of these solutions. To address this
limitation, we run our numerical algorithm twice. The first run determines an initial set
of parameters. The second run uses the output of the first run for seed values. In
almost all cases, the second fit is either identical to the first fit or is improved and
subsequent fittings do not yield improved results. This approach essentially eliminates
the “slack” problem.

In the final selection process, actuarial judgment must be used to determine which fits
best represent the data and are reasonable for the purpose(s) intended. We typically
select the best two or three fits from our analysis to determine a range of ultimate
values. Consideration is also given to the quality of the underlying data and its
applicability for extrapolation into the future.

Examples Using Insurance Industry Data

Power Function

To show how the S-Curve model utilizing a power function performs using actual data,
we have prepared examples based on insurance industry pollution and asbestos claim
information. This data is based on information from a select group of companies and
does not represent an industry-wide composite. Exhibits 1 and 2 show these results for
asbestos and pollution claims, respectively. The input data, the results of the numerical
algorithm, best fit statistics, graphical representations of the fit, and resulting estimates
of ultimate loss are shown on the exhibits.
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Observations regarding these examples include:

1. The curve fits are still showing fairly large payouts at the end of our projection
period. The length of the projection period could be lengthened, the curve forced to
zero over a period near the end of the selected projection period, or the curve can be
truncated as in our example. In certain cases, the present value of loss payments
beyond our projection period will not be significant.

2. The asbestos and pollution paid logses through 1995 in the projection are
approximately 60 and 40 percent of the projected ultimates, respectively.

3. The fit statistics are based on 1981 to 1995 and 1984 to 1995 for asbestos and
pollution, respectively. This period was selected for practical reasons to reflect
differences in the emergence of asbestos and pollution and to emphasize goodness
of fit over a certain period of years. It may be more appropriate to test goodness of
fit over the entire data set or a different portion of the data set depending on the
application.

Gamma Function

There are cases where use of a gamma function may improve the fit or at least offer a
good alternative to the power function. In practice, we found the power function to be
reasonable in most cases. Cases that may be improved using a gamma function usually
involve Asymmetrical S-Curve shapes where the data is already fairly mature and an
inflection point is clearly visible in the data. One form of the gamma function used was

y(o,)=I(v,a,A)*+c= I AexTleMdx + ¢
0
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where A is a scalar, a is the shape parameter, ¢ is a constant, 1 is the initial year of
payment, o is the projection year, and t represents the number of years from the first
year of payment to the projection year plus one (e.g., if the initial year of payment is
1980 and you are estimating the 1995 value, then 1is 1980, cis 1995 and t=6-1+ 1is
16). Both A and & must be greater than zero. Parameters a and A have roles in the
gamma function that are comparable to the corresponding parameters p and s in the
power function. The ¢ parameter is included to improve the fit in certain cases and is
optional. The inflection point for this gamma function is given by (1-a)/A, as
determined by setting the second derivative equal to zero and solving for t.

On Exhibit 3, we show a gamma function S-Curve fit to the asbestos data used in
Exhibit 1. The parameter ¢ produces a disjointed looking change in the fit near the
beginning years but improves the overall fit for the latter years. The curve turns faster
in the projection years than the power curve used in Exhibit 1 and runs off fairly well
during the truncated projection period. The fit statistics are also comparable in quality

to the power curve.

Advantages and Disadvantages of the S-Curve Approach

The following lists are based on practical application of the model as well as feedback
we have received from other actuaries. The advantage or disadvantage of using this
approach is dependent on the type of application involved.

The advantages of the S-Curve approach include:
1. Uses readily available data

2. Is a pure actuarial approach in the sense that it does not have to depend on claim
department estimates
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3. Comparable to a loss development approach as it performs aggregate loss
projections rather than individual claim or policy projections

4. Can be used with paid and reported data for both dollars and counts

5. Is easy to update with more current information as the data matures
Provides a basis for testing the sensitivity of key assumptions including judgment
concerning future changes in judicial or legislative practices

7. Can be performed fairly quickly

8. Appears to produce reasonable results for many environmental and mass tort
liabilities )

9. Does not require analysis and testing of a large number of assumptions and
variables

The disadvantages of the S-Curve approach include:

1. May be impossible to select best fitting curves with a reasonable range of outcomes

2. Some data sets will be too immature for valid application of the model

3. Comparable to loss development methods applied to new lines of business - the
ultimate pattern of runoff for the tail remains uncertain until the data becomes fairly
mature
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Cumulative Paid Loss
Based on Selected Insurance Industry Data
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cy Paid Loss Puid Loss Paid Loas Psid Loss (4

1973 [} [} 1899
1974 0 [} 2000
1675 0 0 2001
1976 [} 0 2002
1977 [} [} 2003
1678 [} 382 [} 2004
1879 57,426 17,918 57,426 17,556 2005
1880 117,252 33,887 59,826 16,068 2008
1881 178,775 84,014 62523 50,028 2007
1882 245,358 163,596 65,584 109,583 2008
1983 314,454 258,094 €9,095 65,397 2009
1884 387,632 284,030 73,178 25,037 2010
1885 465,835 324,534 78,003 40,504 2011
1988 549,452 374,068 83,018 49,534 2012
1987 640,439 612,638 81,007 238,568 2013
1888 740,659 752,148 100,199 139,509 2014
1989 853,169 898,011 112,511 145,868 2015
1890 983,338 1,026,623 130,169 128,612 2016
1991 1,141,856 1,259,167 158,517 232,543 2017
1892 1,357,474 1,585,463 215,618 326,208 2018
1993 2,095,513 2,078,939 738,040 493,476 2019
1994 2,591,187 2,470,636 495,654 391,696 2020
1895 2,802,383 2,835,848 211,216 365.213 2021
19968 2,959,027 156,644 2022
1997 3,088,108 129,080 2023
1988 3,199,887 111,781 2024

2025

2026

2027
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Fittnd Actual Fitted Actuat
Calendar Yr Calendar Yr Calendar Yr Calendar Yr
et &
Puid Loss Puld Loas Paid Loss Paid Loss
3,280,556 $9,669
3,390,156 90,599
3,473,648 83,492
3,551,284 77,738
3,624,338 72,954
3,603,242 68,904
3,758,660 65,418
3,821,037 62,378
3,880,734 59,697
3,538,045 57,311
3,009,215 55,170
4,046,451 53,230
4,087,920 51,478
4,147,800 49,870
4,196,194 48,204
4,243,225 47,032
4,288,998 45,770
4,333,593 44598
4,377,097 43,504
4,419,578 42,481
4,461,100 41522
4,501,720 40,620
4,541,489 19,770
4,580,456 18,967
4,618,683 38,207
4,656,149 37,488
4,692,951 38,802
4,729,102 38,151
4,764 633 35,531
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and Exp
Cumulative Paid Loas

Based on Selected Insurance industry Data

Flrst Year of Loss Payments = 1979

Power Curve 7
[ Fulcrum Year* s 1993)
Fit Statistic 1
(L) @ &)
Observed Fitted Squared
cy Oata Outa Otfterence
1981 84,014 178,775 9,170,196,298
1982 193,596 245,358 2,679,308,189
1983 258,994 314,454 3,075,820.634
1884 284,030 387,632 10,733,322,893
1885 324,534 465,635 16,909,448,322
1986 374,088 549,452 30,759,505,110
1687 612,636 640,459 774,112,539
1988 752,148 740,659 131,948,576
1989 898,011 853,169 2,010,788,515
1990 1,026,623 983,338 1,873,600,205
1991 1,259,187 1,141,855 13,761,879,071
1992 1,585,463 1,357,474 51,978,969,483
1993 2,078,939 2,095513 274,716,290
1994 2,470,635 2,591,187 14,528,079,463
1985 2,835,848 2,802,383 1,119,904,087
Total 162,781,600,868
(4) Sum of value squared 25,619,226,658,823
S R,: 0.008
Fit Statistic 2
@ ] ® ®
Logof Log of Squared Squarsd
Obsened Fitted Difference Difterence
cY Data Oata From Fitted From Mean
1981 11.339 12.099 0579 4.2240
1982 12174 12.410 0.058 1.4895
1883 12.465 12.659 0.038 0.8638
1984 12.557 12.868 0.097 0.7008
1885 12.680 13.051 0.130 0.4954
1988 12.832 13.217 0.148 0.3158
1987 13.326 13.370 0.002 0.0047
1988 13.531 13.515 0.000 0.0187
1989 13.708 13.657 0.003 0.0988
1990 13.842 13.798 0.002 0.2005
1891 14.048 13.948 0.010 0.4251
1892 14.276 14.121 0.024 0.7787
1993 14.547 14.555 0.000 1.3303
1994 14.720 14.768 0.002 1.7583
1998 14.858 14,848 0.000 21430
Total 1.080 14.8468
Ave 13,394 13.520
(10} R, : 92.7%
(1) = Sheet 1, Column 2 (6) = Natural Log of (1)
(2) = Sheet 1, Column 3 {7) = Nturd Log of ()
@a((n-@r2 ®=(M-®r2
(4) = sum of square () @) = [(6) - Ave of (8) 12
() = Sum ot 3) / (§) (9) = 1-[ Sum of B)/ Sum of )]

* The fulcrum year s the poutt in the pOwer curve when the siops changes from
positive tD negative ~ the inflection point.
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Asbestos indemnity and Expense
Cumulative Paid Loss
Based on Salected Insurance industry Data

Power Curve 7

Cumulative Paid Losses (000's)

5,000,000

4,500,000

4,000,000

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1981

1588 1991 1596 2001 2008 2011

Calendar Year

2018

2021

126

Exhibt |
Sheet 3



P o b y and Exp Exhibit It
Cumulative Paid Loss Sheet 1
Basad on Selected Insurance Industry Data

Flrst Year of Loss Payments = 1984
Power Curve

@
Fitted
Calendsr Yr | CalendarYr | Calendar Yr

.
Puld Loss Paid Loss Puid Loss

cyY

1873 [} [] 225,984
1974 0 0 208,319
1873 [} -0 2001 5,081,439 164,724
1978 0 [} 2002 5,265244 183,803
1977 0 0 2003 5,440,014 174,770
1978 0 [ 2004 5,607,135 167,121
1979 0 0o 2003 5,767,665 160,530
1880 ] [} 2000 5,922,432 154,768
1681 1] [} 2007 6,072,103 149,670
1882 [} [} 2008 6,217,219 145,118
1883 [} 135,853 [} 2009 8,358,232 141,013
1884 160,048 172,948 160,048 38,894 2010 6,495,522 137,290
1888 326,618 222,134 168,567 49,189 2011 6,629,411 133,889
1988 500,739 407,273 174,123 183,139 2012 6,760,177 130,768
1887 683,772 578,370 183,034 172,097 2013 6,888,081 127,884
1888 877,553 914,273 183,780 334,903 2014 7,013,275 125,213
1989 1,084,678 1,150,537 207,128 236,263 ‘2015 7,138,002 122,728
1950 1,309,057 1,410,354 224,379 259,817 2016 7,256,409 120,407
1991 1,557,103 1,813,107 248,045 202,753 2017 7,374,642 118233
1892 1,840,889 1,951,047 283,788 337,940 2018 7,490,832 116,180
1983 2,189,868 2,334,475 348,979 383,428 2019 7,605,098 114,268
1694 2,791,813 2,779,048 601,844 444,574 2020 7,717,548 112,449
1995 3,557,863 3,373,188 768,050 594,139 2021 7,828,275 110,729
19968 3,814,670 356,807 2022 7837373 109,098
1997 4,202,122 287,453 2023 8,044,921 107,548
1988 4,452,431 250,308 2024 8,150,883 108,072

2025 8,255,658 104,688

2020 9,358,879 103,321

2027 8,481,013 102,038
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Cumulative P'lld Loss
Basad on Selected Insurancs Industry Data

First Yaar of Loss Payments = 1984

Power Curve §
Fulcrum Year* = 1905)
Fit Statistic 1
] @ ®
Cbserved Fitsa Squared
L_¢r Data Data Diftarsnce
1881
1982
1983
1884 172,948 160,048 168,353,410
1985 222,134 326,016 10,616,392.640
1988 407,273 500,739 8,735,788,395
1887 879,370 833,772 10,899,804,871
1688 914,273 877,553 1,348,408,992
1888 1,150,537 1,084,678 4,337,339,580
1890 1,410,354 1,309,057 10,261,027,087
1891 1,813,107 1,857,103 3,138,433,492
1682 1,851,047 1,840,889 12,134,763,722
1963 2,334,475 2,189,868 20,911,083,433
1994 2,775,049 2,791,813 162,916,517
1688 3,373,188 3,857,863 34,104,779,838
Total 117,115,0968,782
(4) Sum of value squared 35,572,402,910,470
(S)R: 0.003
Fit Statistic 2
[C] m ® ®
Loget togot Squared Squared
Observed Flttad Differsnce Oifference
cY Oata Data From Fitted From Mean
1881
1982
_ 19883
1584 12.081 11.883 0.0068 3.0589
1985 12311 12.897 0.149 2.2443
1988 12917 13.124 0.043 0.7958
1987 13.270 13.435 0.027 0.2810
1688 13.726 13.688 0.002 0.0089
1589 13.958 13.897 0.003 0.0218
1680 14.159 14.088 0.006 0.1227
1891 14.284 14.258 0.001 0.2348
1992 14.484 14.428 0.003 0.4553
1983 14.683 14.999 0.004 0.72098
1064 14.838 14.842 .0.000 1.0578
16888 18.091 15.088 0.003 1.4939
Total 0.247 10.5100
Ave 13.609 13.643
(IO R,: 97.86%
(1) = Sheet 1, Column 2 (%) = Natural Log of (1)
(2= Sheat 1, Column 3 (N ® Natural Log of @)
A=(m-@pre ®=((M-Gr2

{4) = sum of square (0
@) s 8umot () (4)

* The fulcrum yeat is the point In the power curve when the siope changss from
positive to negstive — the inflection point.
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Asbestos indemnity and Expense
Cumulative Paid Loss
Basad on Sel d

y Dsta

Firsi Year of Loss Payments = 1979

Exhidit 1))
Shest 1

[ 4

1973

1874

1978

1978

1977

1978

1979 208,151
1830 208,152
1981 208,193
19682 208,703
1883 211,683
1884 222,431
1533 250,870
1886 310,410
1807 414,968
1988 574,924
1889 764,069
1880 1,088,239
1891 1,388,218
1992 1,732,088
1983 2,088,059
1994 2,437,388
1898 2,768,118
1898 3,084,244
1997 3,328,877
1688 3,548,828

17918
33,887
84,014

163,598
250,994
284,030
324,534
374,068
612,636
752,148
698,011

1,026,623

1,259,167

1,585,463

2,078,939

2,470,635

2,805,848

10,788

159,068
219,145
274170
317,880
345,849
355,992
349,325

288,128
261,632
222,948

17,558
18,089

109,563
65,397
25,037
40,504
49,534

129,508
145,868
128,812
232,343

493,478
391,698
35213
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Asbastos Indemnity and Expense Exhibit 5l
Cumulative Paid Loss Sheet 2
Based on Sefected Insurance Industry Data

First Year of Loss Psymants = 1979
Gamma

[ Fucrum Year = — 1959
Fit Statistic 1
o @ ®
Observed Fittact Squared
(24 Data Data Differerce
1881 84,014 208,163 15,420,630,711
1862 183,596 208,703 228,217,129
1683 258,964 211,663 2,240,169,393
1684 284,030 222,431 3,754,433,148
1885 324,504 250,870 $,426,301,288
1988 374,068 310,410 4,052,397,32%
1887 812,636 414,858 39,077,484,111
1888 752,148 874,924 31,407,562,988
1889 868,011 794,089 10,804,079,880
1990 1,026,623 1,088,239 1,731,883,967
1991 1,259,167 1,388,219 18,142,223,892
1992 1,585,463 1,732,088 21,483,138,653
1993 2,078,939 2,088,059 83,191,157
1994 2,470,638 2,437,388 1,108,540,887
1865 2,835,848 2,766,110 4,6862,416,337
Total 157,869,610,729
{4) Sum of value squared 25,488,773,081,811
(8) R: 0.008
Fit Statlstic 2
L) o ® L]
Logot Logot Squared Squared
Observed Fittad Difference Differsnce
cY Data Duta From Fited From Mean
1881 11.339 12.2468 0.824 4.2240
1982 12.174 12.249 0.008 1.4885
1983 12.465 12.263 0.041 0.8838
1684 12,5897 © 12312 0.060 0.7008
1885 12.690 12.433 0.068 0.4954
1888 12.832 12.648 0.035 0.3158
1887 13.326 12.938 0.152 0.0047
1888 13.531 13.262 0.072 0.0187
1889 13.708 13.588 0.018 0.0988
1690 13.842 13.882 0.002 0.2005
1991 14,048 14,142 0.009 0.4251
1892 14.276 14368 0.008 0.7787
1993 14.547 14.852 0.000 1.3303
1994 14.720 14,708 0.000 1.7583
1808 14.858 14.833 0.001 2.1430
Total 1.289 14.8469
Ave 13354 13381
(10) Ry : 91.3%
(1) = Shest 1, Column 2 (6) = Natursd Log of (1)
(2 = Sheet 1, Column 3 7= Natursd Log of {3
e=1m-@re ®m=(M-@r2
(€)= sum of square () o[- Awol B P2
®=umd 370 @ =1-[Sum ol 8)/ 8um of @)

* The fulcrum yaas is the point in the curve when the slope changes from
positive t negative — the Inflection point.
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INTRODUCTION

The CAS Committee on Management Data and Information has developed a paper
entitled, “Guidance Regarding Management Data and Information”. The purpose of
this paper is to provide guidelines to be used in designing and managing data systems in
the following areas: collection of data, ensuring the quality of data, ratemaking reserving,
underwriting, marketing, claims, financial analysis and investments.

The Committee is looking for comments from the membership to improve the paper as to
its value as well as any suggestions to improve it.

Respectively,

CAS Committee on Management Data and Information

Arthur R. Cadorine  Chairperson
Mark S. Allaben

Randall E. Brubaker

Richard N. Gibson

Holmes M. Gwynn

Larry A. Haefner

Israel Krakowski

Richard W. Nichols
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GUIDANCE REGARDING MANAGEMENT DATA AND INFORMATION

The purpose of this paper is to provide guidelines to be used in designing and managing data
systems in the following areas: collection of data, ensuring the quality of data, ratemaking,
reserving, underwriting, marketing, claims, financial analysis and investments.

Data needs to be managed as a critical resource. Information needed to make business decisions
i best when it is timely, accurate, easily obtainable and consistent with the same information
produced in other reports. To control the costs of providing this information, data, as well as
systems, should not be redundant and it should be consistently defined and shareable.

Actuaries should be making significant contributions in the design and management of systems for
collecting data and reporting useful and accurate management information to serve as the basis for
sound decision making.

The statement consists of three parts:

1. Data Collection
II. Data Design
II. Management Information Considerations

I DAT LE

Data collection can be separated into two areas: Data Capture and Data Quality Control. Data
Capture is concerned with the what, when and how of data to capture. Data Quality Control
should ensure that the data being captured, processed and reported is accurate, complete, and
collected in a cost effective manner.

Before deciding what data elements should be captured, the internal (underwriters, actuaries,
accountants, etc.) and external (INAIC, regulators, legislators, statistical agents, etc.) information
needs must be determined, and data collection capabilities considered. Current data availability, its
quality and the data collection costs need also be considered. While each of the organizations have
different requirements for how the data are displayed, the system used to collect the data should be
designed with each of the users' needs in mind.
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DATA CAPTURE

Most data is captured in code. There should be an established code structure incorporating
the considerations listed below. The actual use of the data and the cost to collect and store
the data also need to be considered. Low redundancy of data, fast processing, flexible
access to data and low storage costs may be conflicting design considerations.

L

Data requirements should be compatible and consistent to the extent possible, i.e.:
monoline and multiline data.

Data elements should be defined to have only one meaning.

Common data elements should be defined similarly, regardless of line, business or
function supplied.

Flexibility should accommodate expansion of data elements to anticipate future needs.
Codes should be constructed to meaningfully represent information.

Consideration should be given to how often the data will be updated. Will the file be
on-line or changed daily, weekly, monthly, quarterly, etc.?

Where possible, codes which are established and understood in a wider context should
be used.

DATA QUALITY CONTROL

Data Quality Control should ensure that the data being captured, processed and reported is
accurate, complete and collected in a cost effective manner. Data Quality principles apply
to the workflows for getting data into the system, the internal system checks, and the
workflows for getting data out of the system.

1.

3

A data quality control function should be established and standards of data quality
should be developed and monitored within and across operational areas.

Critical processing points should be identified. Control procedures at these points
should be developed and documented to assure that data which is transferred, translated
or reproduced is complete and accurate, with appropriate backup and audit trails.

Edits should be installed to check accuracy, validity and reasonableness. These edits
should be performed as closely as possible to the data entry source, and any errors
detected should be corrected as closely as possible to the point of discovery of the
efror. .
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4. Balancing or reconciliation procedures and standards should be established in the initial
project description. Special reports and techniques should be developed to test data
accuracy on a selected basis.

5. The monitoring of data quality is an ongoing process. Reconciliation reports and edit
error reports should be produced and examined regularly.

6. Changes made to a data field or to processing, must be thoroughly tested in order to
assure data integrity is maintained. It is important adequate time is allowed to achieve
this objective.

H. MATA NECIIN DDTAIOTDYT BQ

Data should be managed as a critical resource. To truly control cost, data, as well as systems,
should not be redundant; it should be consistently derived, consistently defined and shareable.
Numerous data elements can be captured, but they are of limited value unless the data is efficiently
organized in a way to maximize the use and value of the information. Every information system
should be designed with flexibility to respond to different requests. The following concepts should
be considered in the design of the data base.

A.  CENTRAL DATA BASE

The ideal repository of data collected is a single central location. Here, all the detail collected could
be stored and accessible to all report systems. Thus updates, corrections, and controls could be
maintained at one location. Multiple locations of the same data elements require more stringent
controls to guarantee that all data bases are updated uniformly.

B.  DETAILED DATA BASE

The data base should contain all reported data elements to satisfy the needs of internal and external
users.

C.  DATADICTIONARY

The existence and wide availability of a data dictionary will help assure consistency by the various
users of a system. Definitions of data elements, as well as lists of codes, should be available to and
commonly understood by both the providers and end users of data.

137



D. DATA BASE DESIGN /
The design or organization of the data should address the following considerations:

1.  Low redundancy of data, fast processing, flexible access to data, and low storage
costs may be conflicting design considerations.

2. Run time, storage costs, volume restrictions or other processing constraints may
necessitate the creation of multiple summarized or segmented data bases to fulfill
different user needs. The smaller data base(s) enables report generation systems to
run faster, since there are many less records to be accessed. A summarized subset of
the central data base should incur lower storage cost. Summarized and/or segmented
data should be updated automatically from the central source to avoid the potential
control problems for updating multiple locations of the same data elements.

E. NON STANDARD REQUESTS

While many reports may be specified to extract information on a regular schedule, data bases
should be flexible and organized to facilitate ad hoc report requests as well as direct user access to
the central data base and/or segmented data bases.

F.  STORAGE

The retention period of data in the data base depends on the number of years of data needed for
meaningful analyses, legal and regulatory requirements. The form of storage depends on access
requirements, such as immediate access or overnight access.

III.  MANAGEMENT INFORMATION CONSIDERATIONS

How the data will be used has an effect on how the data files are managed. The basic use of the
data must be well understood when designing file structure and access. Detail appropriate to the
intended use of the data base should be stored.

The following examples serve to illustrate the need to capture different data in different levels of
detail for different purposes. It is not intended to be a complete list of all possible Management
Information System considerations. In evaluating these needs, be sure to consider any
requirements for evaluating reinsurance programs.
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A RATEMAKING

There are several acceptable methods of capturing data for ratemaking purposes including calendar
year, calendar/accident year, report year or policy year. The nature of the coverage being provided
and data availability will determine which is most appropriate. There are three general types of
data needed in any ratemaking process:

1. Premium and exposure information which could be on a written or earned basis.
Adjustments to premium, such as retro adjustments, experience, schedule or other
modifications, should be collected as needed. Information should be organized to
monitor changes in the mix of business, such as available by class, territory, policy limit
and state within each line or subline of business.

2. Loss and claim information should be collected the the same categories as premiums. In
addition, historical loss development patterns of paid and incurred loss amounts, claim
counts and loss adjustment expenses are needed to be available to properly estimate
their ultimate values and current frequency and severity trends. Changes in the
underlying loss distribution are analyzed by reviewing data segregated by size of claim
and against different policy limits or deductible levels.

3. Expense information should be available to determine the appropriate provisions for
various categories of expenses including unallocated loss adjustment expenses,
commissions, other acquisition expenses, taxes, licenses and fees, general administrative
expenses and dividends.

Insurance ratemaking takes place in the broad economic environment that affects every business.
The ratemaker may supplement internal information with external economic data or industry-wide
ratemaking data.

B. RESERVING

Reserves can be categorized as premium or loss reserves. Premium reserves include a variety of
subcategories such as unearned premium, earned but not reported, audit, dividend, retro premium
reserves, and contingent commission reserves. The techniques and data required to calculate
premium reserves vary depending on the subcategory. For example, the unearned premium reserve
calculation usually requires only the written premium amount, the appropriate policy effective and
expiration dates, and the booking date. For other subcategories, calculations may involve the need
for other premium exposure or loss information.
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Information needed for the loss reserving function should be sufficient to analyze the essential
characteristics of the claim reporting and settlement process. Information is usually organized in a
two dimensional matrix that reflects the historical claim process in some way. The correct
matching of the matrix to the reserving task is critical to the effectiveness of the reserving function.
Each loss reserving matrix is usually defined by: 1) the characteristics of its dimensions, which are
time related, 2) its data groupings, and 3) the statistics displayed.

1.

Dimensions
One dimension is usually accident periods, report periods, or policy periods. In other

words, losses are grouped according to the date of loss, the date of reporting or the policy
effective date.

The second dimension usually reflects development of maturity levels thereby showing a
particular accident or report period's history.

Data Groupings

Groupings can reflect line of business, class, limit, type of loss or geographical location.
Data can be configured on a gross, direct, assumed, ceded, or net basis. The degree of
-efinement should reflect a balancing of the possibly conflicting goals of homogeneity and
credibility.

Statistics

Typically, counts and dollar amounts are collected for reserve calculations. They may be
displayed either cumulatively or incrementally. Some examples are:

i. Counts - open/outstanding claims, closed claims with or without
payment, reported claims, reopened claims.

ii.  Amounts-paid, outstanding or incurred loss and/or allocated loss
adjustment expense.

In addition, when evaluating reinsurance reserves, other data items may be useful such as
policy retention, layer limit, and codes indicating occurrence or aggregate coverage.
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C. UNDERWRITING/MARKETING

Whether the underwriting and marketing functions are handled in one or many departments, their
management information needs are similar. Information is needed 1) to monitor and reevaluate
marketing objectives and underwriting policy, and 2) to monitor and appraise the performance of
individual producers and underwriters.

Areas that might be monitored include the following:

1. Distribution of the current book of business, and how it has changed over time. Trends
in premium and loss experience. .

2. Underwriting results (including expenses) by type of distribution system (agency vs.
brokerage vs. direct mail), if applicable.

3. Amounts of new business, non-renewed business, cancellations, endorsements, renewal
changes and hit ratios.

4. Use of experience modifications, dividends, schedule modifications, preferred rating
programs, and other individual risk rating modifications to test for conformance to
pricing guidelines.

5. Changes in average premium and growth of gross premium.

In each case, the reporting categories should include information on production source (agent,
underwriter, branch), line of business, territory, coverage, and class.

D. CLAIMS

Management information required by the claims function generally falls into three areas: 1) claim
count transactional data, 2) information on open claims, and 3) information on closed claims. The
level of detail required ranges from data by individual claim adjuster to data by unit, branch, region,
company, or national. Time periods covered can be weekly, monthly, quarterly, year-to-date, or
the latest twelve months. Data generally should be available by type of claim, i.e., line of business,
coverage, cause of loss, etc., with identification of catastrophe losses and applicable reinsurance.

1. Claim count information includes the number of claims opened, the number of claims closed
with payment, the number of claims closed without payment, the number of claims
reopened, and the number reclosed. Appropriate ratios between the various claim counts
should be calculated. The average lag between initial reporting, establishment of a reserve,
and final payment should be monitored.
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E.

Information on open claims can include the number of open claims, the number of pending
law suits, the amount of reserves and average reserve on open claims by age since opened,
the amount of reserves and average reserve on open claims by size of reserve, paid and

reserved amounts for allocated loss adjustment expenses, and partial payments on pending
claims.

Information on closed claims can include average paid claim cost (with comparisons by unit
within a branch or region or state), claims closed by size of loss, claims closed by length of
time to close, analysis of salvage and subrogation recoveries, and analysis of paid allocated

loss adjustment expenses (by type, by adjuster, by law firm, etc.).

FINANCIAL ANALYSIS/INVESTMENTS

Management information needed to support the financial analysis and investment function generally
breaks down into two areas: cash flow and operating results.

1.

In cash flow analysis, the concern is to be able to meet current period obligations. Reports
should be available to analyze current cash items such as net premiums collected, net
investment income received, cash on hand and on deposit and the maturing assets. Payout
of liabilities should be estimated, including expected loss and loss adjustment expenses,
commissions, salaries, other expenses, stockholders and policyholders dividends, and
interest payable. Besides displaying the above dollar amounts, management reports should
provide analysis of trends in the various items to help maximize cash flow in the future.

In order to develop and analyze operating results, management information is needed which

summarizes all the financial activities of the company. Data is needed which will help the

company maximize total return and grow surplus while maintaining an adequate cash flow

to meet expected liabilities. The types of information needed should include the following:

i. Mix of current investments and the related interest and dividend income, including
bonds (amortized and cash value), preferred stocks, common stocks, real estate,
capital gains, cash, etc.

ii.  Premium income by line of business.

iii.  Loss and loss adjustment expense payments, by line of business projected by calendar
year.

iv.  Stockholder and policyholder dividend requirements.
v.  Tax liabilities - Federal and State.

vi.  Expense requirements - commissions, salaries, overhead, etc.
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F. FINANCIAL REPORTING

Information is required to meet financial reporting obligations. The information normally includes
direct and net calendar period premium, losses, expenses and investment income. The major
obligations are:

1. Statutory reporting

2. Trade associations and bureaus
3. Shareholder reporting

4. Income tax reporting
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WHITE PAPER ON DATA QUALITY

The CAS Committee on Management Data and Information is
pleased to present this White Paper on Data Quality. This paper
presents a discussion of data quality standards applicable to
actuaries and insurance data managers; expands on data quality
issues faced by actuaries and insurance data managers; and,
elaborates on various data quality tools and practices used in

preparing actuarial analyses and work products.

This paper is the result of a joint team of insurance
professionals representing the Casualty Actuarial Society and the
Insurance Data Management Association. The members of the
project team are:

Arthur R. Cadorine, Chairperson
Mark S. Allaben

Holmes M. Gwynn

Richard W. Nichols

Dr. Richard A. Marr

Richard T. Schulz.

The Committee is indebted to these individuals for the production
of this paper, but especially to Richard T. Schulz, who authored
most of the material. The Committee thanks all the individuals
from both the Casualty Actuarial Society and the Insurance Data
Management Association that reviewed various drafts of the paper

and provided helpful suggestions and assistance.
The Committee's charge includes furthering the development

and dissemination of data management theory and principles;

identifying topics for research and discussion; monitoring
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prbfessional developments and regulatory activities; establishing
liaisons with other organizations working in this area; and
sponsoring panels, seminars, and other public forums on data

management issues.

CAS Committee on Management Data and Information
Arthur R, Cadorine, Chairperson
Jonathan D. Adkisson
Mark S. Allaben
Randall E. Brubaker
William E. Burns
Richard N. Gibson
Holmés M. Gwynn
Larry A. Haefner
Israel Krakowski
Richard W. Nichols
Robert F. Wolf
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WHITE PAPER ON DATA QUALITY

I. Introduction

A. Data as an Asset

Today, more than ever before, insurers have the ability to
tap into the detailed information which they collect as a result
of the insurance contract. Access to this information has
changed in the last decade due to the rapidly improving
capabilities of computer technology, the declining cost of
computer hardware & software products, and the expanding
knowledge of data systems designers and programmers. The
proliferation of the personal computer, compact disc (CD-ROM)
storage drives, hookups to local area network (LAN) computer
environments and the ever increasing pace of computer chip and
data storage technology has allowed access to not only an
organization's in-house detailed data but to broad based
insurance aggregate data (i.e., industrywide data) and external
non-insurance data useful to insurers (e.g., motor vehicle
reports, geographic information, construction information).

In addition, the declining role of rate bureaus in the
pricing of insurance risks has increased the need of the
individual company to rely more on their own internal information
in greater detail.

The concept that data is an asset means more detailed
management information leading to:

- improved business opportunities (e.g., for marketing
purposes) ;

- greater fraud detection;

- enhanced underwriting review (e.g., via motor vehicle

reports) ;
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- greater evaluation of loss control factors or risk
management procedures; and,
- greater ability to use the data in actuarial analyses

(e.g., for pricing, loss reserve analyses).

The need to protect and enhance the quality of data available

for use is self-evident.

B, Data Quality - Actuaries & Data Managers

In July of 1993, the Actuarial Standards Board (ASB) adopted
Actuarial Standard of Practice No. 23 - Data Quality. The
standard adopted was the result of over three years of discussion
by an Ad Hoc Data Quality Task Force of the Specialty Committee
of the Actuarial Standards Board. Exposure drafts were
circulated and comments solicited from members of the American
Academy of Actuaries. The resulting document established a
standard which provides greater consistency in actuarial practice
with respect to the responsibility of the actuary regarding the
quality of the data. The standard also recognizes the diversity
of actuarial work, the diyersity of data available in that work
and the need for judgment dependent upon the intended use of the
analysis.

In the summer of 1994, the Insurance Data Management
Association (IDMA) formed a working group to develop a data
quality opinion framework. The resulting framework and
guidelines, entitled "IDMA Data Quality Certification Model for
Insurance Data Manadgement" was released on March 9, 1995. This
framework is designed to give guidelines to an insurance data
manager in order to monitor, measure, and, potentially, certify
the quality of data in his/her organization.

Using these two documents, this White Paper attempts to

broaden and merge the collective thinking on this subject for
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insurance actuaries and data mahagers. Specifically, the paper
will discuss issues relating to:
1. the importance of data collection and processing;
2. reviewing the data for appropriateness, reasonableness and
comprehensiveness relevant to the analysis undertaken;
3. certifying the accuracy and validity of the data;
4. materiality considerations of imperfect data;
5. the standards and procedures used to determine the extent
of imperfect data; and,

6. the responsibility of certification and disclosure.
II. Data Quality Standards

A. Actuarial Standard of Practice No. 23
The stated purpose of Actuarial Standard of Practice No. 23
is to give guidance to the actuary in:
a. selecting the data which underlie the actuarial work
product;
b. reviewing these data for appropriateness, reasonableness,
and comprehensiveness; and

c. making appropriate disclosures.

The Standard discusses the current practices and historical
issues. It then reviews and analyzes alternative practices to
determine the recommended practice for an actuary in.undertaking
actuarial analyses. The Standard recognizes that completely
accurate, appropriate, and comprehensive data is not always
available. The actuary must understand the intended use of the
analysis being performed in order to thoroughly evaluate the
appropriateness of the data. In addition, the Standard discusses
the selection of the data relevant to the reasonableness and

consistency of the necessary data elements, any limitations of
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the data available, and the cost & feasibility of alternatives
(including timeliness considerations).

By comprehensiveness of the data, the Standard refers to the
availability of each data element and record needed for the
analysis; that doesn't mean that every record is necessary
(because a sample of records may suffice for the analysis
undertaken) or that every data element in the record needs to be
accessible, but it does mean that the necessary records and data
elements to do a proper analysis are available.

By appropriateness, the Standard means that the data is:

1) the information needed for the analysis;

2) homogeneous so as to allow evaluation; and,

3) consistent with the purpose of the study.
By reasonableness, the Standard means that it's consistent with
prior data or other information.

Taken together, the actuary must ask the following gquestions.

1) Is all the data necessary for the analysis, in fact,
available for use in the analysis?

2) Is the quality of the data appropriate to accomplish the
intended purpose of the analysis?

3) Is the data reasonable and consistent with prior data,
other homogeneous data sources, and other knowledge?

The Standard leaves open the door that imperfect data may
still be usable - but only after careful scrutiny. The key
question is: Will incomplete, inaccurate or inappropriate data
(i.e., imperfect data) result in material biases in the study's
conclusions? If "yes", the data is not usable unless the bias
can be quantified; if "no", the data is usable. If "maybe", then
further work needs to be done. Effort must be made to identify
the nature of the imperfection. Once identified, the imperfect
data can be corrected, excluded, or adjusted using an appropriate

mathematical or actuarial method (e.g. minimum bias techniques,
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confidence ranges, distributional adjustments), depending on the
extent and nature of the imperfection.

Data with a known imperfection-in a field not pertinent to
the study undertaken, is not considered imperfect data. If,
however, it affects the perception of the credibility of the data
in use, the user of the data should be prepared to address the
situation.

The Standard discusses the actuary's reliance on data
supplied by others and concludes that the data must be accurate
and complete for the analysis under study. The data must be
reviewed for reasonableness and consistency. This actuarial
review of the data will be based on the specific circumstances -
the intended use of the data, the data available, extent of known
data limitations, timeframes and other factors.

An actuary's review of the data should:

1. determine the extent of checking, verification and
auditing done by the data manager/supplier;

2. ldentify questionable or inconsistent relationships; and,

3. determine the materiality of imperfections on the study's
results.

Furthermore, the actuary should comment on the confidence,
reliability and the value of the data quality procedures done by
the data manager/supplier. Toward that purpose, the extent of
audits and control procedures should be reviewed and noted. For
instance, if the source data has been subjected to rigorous
internal audits or monitoring by a Statistical Data Monitoring
System (SDMS), as described later in this paper, then greater
confidence in the source data may be assumed. On the other handg,
if in the judgment of the actuary greater checking should be
performed, then it should be done if practicable.

Standard No. 23 provides a strict disclosure standard in the

actuary's report. The report should include disclosures
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regarding:

1.
2.
3.

the sources of data;

the materiality of any biases due to imperfect data;
adjustments or modifications made because of imperfect
data;

the extent of reliance on data supplied by others;

any resulting limitation on the use of the analysis;

any unresolved concerns regarding the quality of the data.

t Ce, c Q

The "Data Quality Certification Model for Insurance Data

Management" released by the Insurance Data Management Association

(IDMA)
1.

is intended to provide:

a framework for use in attesting to the data quality of an

organization; and,

. guidelines for the insurance data manager to use in

controlling, monitoring and measuring the validity,

accuracy, reasonableness and completeness of data.

The IDMA Certification Model makes the insurance data manager

responsible for developing a commentary on the quality of the

data.

a.

The commentary should include:

disclosure of the results of checks/tests for validity,
accuracy, reasonableness and completeness of data;

list of the reports and monitoring tools used in
ascertaining validity, accuracy, reasonableness and
completeness of data;

review and analysis of significant data problems using the
data monitoring tools;

action plan for correcting data problems; and,

certifying statement regarding the analysis and

commentary.
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The commentary should also include an assessment of the
materiality of the data elements, including the resulting impacts
and error ratios. The IDMA Cértification Model holds the
insurance data manager accountable for:

a. recognizing that the users are responsible for developing
standards (e.g., consistent and reasonable error
tolerances) ;

b. knowing that standards exist; and

c. prompting the establishment of standards when they do not

exist.

An actuary's reliance upon an insurance data manager who has
followed these practices certainly will provide him/her a degree

of confidence in the source of the data.
III. Data Quality Terms

scertaini D u

Most often, an assessment of data quality consists of an
assessment of the following four components listed by the IDMA
Certification Model:
Validity;

- Accuracy;

Reasonableness; and,

Completeness.

Validity means that value of a given data element is one of
all allowable ones. Data values that are valid are determined by
edit checks. The most basic check is known as a field edit. For
example, a State code is valid if it is one of the codes

allowable under the data element "State". If two digit postal
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code defines the allowable values for "State!" then NY would be a
valid value for this data element. Validity checks also include
relationship edits involving two or more fields. For example,
territory code "10" may be valid in one state but not in another.
Valid values are checked through the use of automated edit checks
via internal and external edit packages that access tables of
allowable values. Error performance reports are typically
generated for review. While necessary to the data quality
environment, validity checks, by themselves, can only guarantee
that the field has an allowable code, not necessarily the correct
one.

Accuracy means that each data transaction record or code is a
true and accurate representation of what it's intended to
represent. In other words, does it accurately reflect the
correct information for the policy or claim it represents? A
good example to illustrate accuracy is class code; the class code
for a florist is accurate if the risk is a florist; it would be
inaccurate if the risk were a pharmacy, however it may a valid
class code (namely, the code for a florist). How do you know
that you have accurate data? To ensure accurate data, a system
of effective controls, including periodic audits and sampling
checks at all stages of the data collection process must be
established. This system of checks can only be accomplished
through a thorough understanding of all data handling and
collection activity in the organization. Independent comparisons
with source documents, validity and other edit checks, as well as
periodic audits are essential elements for ascertaining the
accuracy of reported data. These essential elements are inherent
in rigorous and high quality self monitoring audit programs and
in the sStatistical Data Monitoring System (SDMS), which are
discussed later in this paper; as such, self monitoring audit

programs would be a valuable aide in confirming the accuracy of
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the data.

Another essential component of the assessment of the quality
of the data is the concept of reasonability. This component of
data quality requires some summarization or aggregation of
records in order to determine the data's reasonableness. For
example, a single large fire loss may not look unusual by itself,
but in the context of hundreds or thousands of large losses it
may be an indication of a coding problem. The key questions are:
Is the data reasonable compared to our prior and current
knowledge? Is it reflective of prior established patterns? For
‘example, does this quarter's territory premijum distribution look
similar to prior quarters? Does it jibe with our general
knowledge about the data? For example, if this year's territory
distribution doesn't match the profile, might it be because of a
change in the company's marketing or underwriting policies?
Distributional analyses and profiles, trend analyses, average
rate checks, and loss ratio comparisons are examples of tests to
determine the reasonableness of the data.

Completeness of data has three essential elements:

1. each transaction record contains all the necessary data
for the business needs for that record (i.e., no
information that's necessary or required is left blank);

2. each transaction record is consistently processed once
and only once; and,

3. each transaction record is processed properly through
every necessary portion of the system and only through
those necessary portions.

In other words, complete data can only be realized when every
area involved in the data collection and processing process
handles it correctly. This requires proper coding at the source
and effective controls at each step along the way. Reconciliation

of statistical data to financial data helps ensure the
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completeness of the data since it provides a valid basis for
comparison of the information. When material discrepancies arise
in reconciliation results, every effort must be made to reconcile

the discrepancy and take corrective action if necessary.

B, Accuracy of Data
Usable data can be classified in three levels or degrees of
accuracy:
1. Absolute Accuracy;
2. Effective Accuracy; and,
3. Relative Accuracy (i.e inaccurate but consistent over

time).

The definition of Absolute Accuracy is simply that the data
is 100% correct. There are no known defects in the data. Each
and every data element on each and every transaction record is
properly and accurately coded. It can be used down to
transaction level detail.

Most data are of the Effective Accuracy type where there are
some imperfections in the data but are generally usable in most
analyses. There are two categories or types of Effective
Accuracy. First, where the coding of a specific data element may
be incorrect, analyses not involving the incorrectly coded data
elemept (either, in any intermediate calculations, or in the
aggregate result) may be unaffected. For example, territory
coding may be inaccurate, buf for analyses of statewide (all
territories combined) data, the data may be suitably accurate for
use; however, if territory is used in calculating Premium at
Present Rates (PPR) where the rate differs by territory and the
analysis involves this calculated premium, then it would affect
the statewide analysis. Analyses requiring a high level of

detail (either, in the intermediate calculations, or in the
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aggregate result) need to be accurate enough to that level of
detail. A second type of Effective Accuracy is dependent upon
whether the imperfect data wili materially impact the result.
For example, returning to the territory PPR calculation above, if
a small amount of territory data (relative to the overall volunme
included in the analysis) appears to be incorrectly coded, there
may be no material effect as to the results of the analysis; on
the other hand, this may indicate that there may be substantial
unknown data problems. Whether it's an immaterial anomaly in the
quality of the data, or an indication of additional unknown data
quality problems is what the actuary needs to decide.

Defining Relative Accuracy is a bit trickier. Data coded
inaccurately as to its definition but reported consistently over
time are data that are relatively accurate. For example, the
definition of what's included as allocated loss adjustment
expenses (ALAE) may vary by company, and by statistical agent; a
company may not strictly adhere to the statistical agent's
definition of ALAE in reporting its statistical data, yet the
data may be reported consistently over time and with proper
recognition can be used in various analyses. An analogous
example can be made regarding loss reserving procedures (i.e.,
case vs. case with a loading). With proper recognition of
differences in data definition, relatively accurate data is
generally usable. The problem with relatively accurate data is
that when a procedural change is instituted the data will no

longer be consistent over time.
IV. Data Reliability Tools

A. Reliability of Data & Data Audits

One of the key tools to ascertain the accuracy of the data is

periodic auditing. The reliability of the data used in an
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actuarial work product will be higher if there are periodic and
comprehensive internal or external audits of the data quality

process.

Besides checking the accuracy and completeness of the data,
audits help to:

-~ ensure consistent handling;

- determine the quality of systems control procedures;

- measure and improve timeliness of data; and,

- increase the reliability of results.

Successful audits, both internal and external, include the
following elements:

1. are properly planned;

2. measure results according to established standards;

3. are statistically sound, regarding the sampling
technique;

4. perform data checks from source to end product and end
product back to source;

5. verify data according to their intended use and
definition, including assuring that all data elements
resulting from calculations, mappings and other
programming algorthyms are correct as intended;

6. audit the data preparation & data entry processes, and
reviews all program and output controls (assuring that
the input and output data balances, as well as reconciles
with prior data processed);

7. determine whether the company's entire process detects
errors adequately and corrects them properly; and,finally

8. provide adequate documentation of the results with
recommendations for improvement (if any) and follow-up

implementation review.
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B. Statistica ta Monito Syste S

In 1982, the New York Insurance Department, acting on a
commissioned analysis by an independent accounting firm, set up a
system of procedures designed to control the quality of data
submitted to and processed by statistical agents. The objective
of this system, known as the Statistical Data Monitoring System
(SDMS), is to assure the reliability of the data collection
process for statistical data used in statistical and ratemaking
filings. SDMS is a self-monitoring system which was adopted not
only by the New York Insurance Department but subsequently by the
insurance departments of Rhode Island and Connecticut. Currently,
the SDMS functions for the Personal Automobile line of insurance,
but the procedures inherent in the system can be applied to all
lines of insurance.

The System mandates a set of procedures that must be followed
by insurance companies and statistical agents. Each company is
responsible for various data quality tests and documentation,
with each company certifying their own data. Likewise, each
statistical agent must collect and summarize specified reports
from its reporting companies, carry out specified monitoring
system tests and compile documentation. The statistical agents
perform data guality checks on their own internal systems, as
well as certify their reporting companies' monitoring activities.
State regulators have overall responsibility for an effective
program.

The Statistical Data Monitoring System (SDMS) has 6 basic
components which jointly serve to increase the reliability of the
data for statistical, ratemaking and actuarial analyses:

1. process description and review of control procedures;

2. detailed data verification via sampling tests;

3. summary data verification via reasonability reviews;
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4. financial reconciliation;
5. annual review and certification;

6. review and evaluation by state examiners.

The first component, the process description and review of
control procedures is accomplished by requiring system flowcharts
and narratives, using standardized procedural control checklists
and reviewing specific checklist functions in detail.

To accomplish the detailed data verification, a random sample
representative of the data is taken for both premium and loss
claim transactions. For each transaction, every data element is
verified. When an error is found, the source and cause of the
error are identified and corrective action taken. Sample sizes
are determined such that data errors which affect more than 1% of
the transactions will be discovered with a 99% probability.

Summary data verification is accomplished through a review
for reasonableness of the essential data elements to be used in
the actuarial ratemaking review - premiums, losses, claims - by
the main components of the review - territory and coverage. The
most questionable (or inconsistent) experience is then researched
to determine any errors and their cause; if errors are uncovered,
corrective action is taken.

As respects data reconciliation, each company must reconcile
its statistical data (as reported to its statistical agent) to
the company's financial data (reported in the Annual Statement).

Finally, the annual review and certification requires
documentation of the monitoring activities conducted and the
error incidence statistics of the data. The certification
document must be signed by the company's Data Quality Officer.

Taken together, the system provides an effective self
monitoring tool which allows state examiners to independently

review the data quality of each company's data and the processing
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of it by the statistical agents. By providing a clear set of
procedures, the SDMS system provides a structure on which
actuaries and insurance data managers can rely on the quality of
data, thereby increasing the accuracy and credibility of

actuarial, ratemaking and other statistical data analyses.
V. Professional Responsibilities

. The sponsi ity of the Act on Reasopabilit

Almost all statistical data used in actuarial analyses
undergo various validity checks as a matter of routine company or
statistical agent procedures. Whether the data is sufficiently
accurate, reasonable and complete is generally the key
determiﬁant of the quality of the data. While this paper has
discussed various ways to monitor and improve the accuracy or .
completeness of the data, the actuary should be aware of and
prepared to perform various additional summary checks, edits and
tests designed to determine the reasonableness of the data. 1In
short, a good reasonability review provides the answer to the
question: Does the data make sense?

A good reasonability review starts with good judgment based
on experience and supplements it with objective measures. First
and foremost, does the data look right? For instance, if the
actuary is performing a Statewide Rate Level analysis, the
resulting current indication should make sense relative to last
year's indication after accounting for various differences and
factors in the ratemaking formula as well as any known experience
changes (such as the effect of a major hurricane on property
losses); if it doesn't make sense, then this raises further
questions that should be resolved satisfactorily.

Some key tests or checks that should be considered in a

review of the reasonableness of the data are:
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~ distributional edit review;

- consistency checks;

- statistical tests, such as, chi-square goodness of fit
tests or non-parametric rank tests;

- graphical tests; and,

- industry comparisons, including reasonable range of results

comparisons.

A bird's eye view of the data can be had by reviewing summary
data by key field relative to a profile of that data based on
prior experience. Known as a Distributional Edit Review (DER),
data is compared for consistency to a prior quarter's or year's
data. A DER helps detect data anomalies and inconsistencies. An
extreme example would be: if coverage is sold statewide (i.e., in
all territories) then a data problem resulting from data coded
all under territory "001" is easily found. Of course, most data
problems are more subtle than this example, so automated
statistical tests should be used. For example, chi-square tests
between current data and the profile can be used. These
automated statistical tests help to provide the best review of
the distribution of the data by providing an objective measure of
the data elements that seem to match or not match the
distributional profile; those with the highest chi-square values
fit the distributional profile the least. Although helpful,
oftentimes the actuary doesn't have the historical data to
perform this type of review on the data; on the other hand, if
the provider of the data does perform this type of data review
before providing the source data, then the actuary may have
improved confidence in the data.

An easier yet more limited check are comparison tests, done
by comparing the premium/exposure/loss/claim volumes by the

highest order data variables (e.g., state, coverage, year, etc.)
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either to each other or to prior reported volumes. If the
volumes appear inconsistent across years, or if there are
divergent exposure/premium or loss/claim relationships, further
review of the data may be necessary.

Range comparison tests, non-parametric rank tests or
graphical views of the data can be used to supplement the
reviewer's judgment. An example of a range comparison test is a
test of premium-to-exposure ratios; these ratios can be compared
to average rates in effect and values falling outside a
reasonable range (depending on the level of summarization) can be
flagged. Used far less often, non-parametric rank tests (like
Kendall's Tau or Spearman's Rho) similarly can detect
inconsistent or divergent patterns in the data and can provide an
objective measure of the quality of-the data. Graphs provide a
quick, visual aid to ascertaining unusual relationships; computer
software that allows pivot table calculations and graphical views
of various ratios can be invaluable in spotting data problems,
thereby enhancing the reasonability review of the data.

Finally, company data can be compared to industrywide data.
However, this is only useful if distributional differences
between the company's book of business and the industry average
are reasonably expected to be similar.

In the end, the actuary must be confident that he/she can
rely upon the data for the specific analysis and circumstances.
He/she should document all reasonability checks and tests
performed, highlighting any known or suspected deficiencies in

the data.

B. Responsibilities of the Data Manager on the Quality of Data

The ability to form decisions and conclusions based on an
actuarial analysis is dependent upon the quality of the data and

the specifics of the analysis. Oftentimes, the underlying data
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of the study is imperfect in some respect. Once imperfections in

the data are uncovered, the insurance data manager providing the

source data should take the following steps.

2.

Determine the reasons and cause(s) of the error.

Inform the actuary undertaking the current study and
incorporate needed adjustments, modifications or
corrections to the source data for use in the current
analysis.

Stop the error by fixing the system or revising the data
handling and collection process.

Quantify, if poésible, the impact and magnitude of the
error on the data underlying the current study.

Decide if the error may materially impact prior analyses
and whether these prior analyses may need to be
retroactively corrected.

Finally, if it is materially significant, make
disclosures regarding past analyses appropriately. On an
external basis, this may mean notification of insurance
regulators, or insurance statistical agents. On an
internal basis, company management may need to

rethink financial, policy or pricing decisions.

Regarding this last step, note that in almost every

situation, if the extent of imperfect data might change the
conclusions or the results of the analysis using this data then
there is an obligation to disclose the data imperfections to all
potentially affected parties. Further, there is a duty to raise
"red flags" in all situations where there are significant

imperfections in the data.
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VI. Concluding Remarks

A, What's Next?

There's been much discussion in various Casualty Actuarial
Society (CAS), IDMA and other data quality forums regarding the
use of a self monitoring audit system as a way of responding to
various regulatory concerns raised by state officials and the
National Association of Insurance Commissioners (NAIC). A
frequent suggestion is that an industry self monitoring systenm,
with a rigorous audit program that checks the statistical records
submitted to statistical agents back to company source documents,
would satisfy the various regulatory concerns. A starting point
(but perhaps not the ideal model) for such a system might be the
SDMS, described above. The appropriate forms and procedures
necessary would be available on demand by State Financial
Examiners. This approach may be advanced further in the upcoming
months, but much work needs to be done regarding the details of
such a self monitoring audit model, as there are divergent
opinions as to its scope and necessity.

Undoubtedly, future data quality efforts will be the result
of the impact of continually improving technology. The synthesis
of technology and knowledge allows improved concepts in data base
design and automation.

Current topics include:

1. Data Warehouse Concept ~ which allows broad use of data
in great detail by many areas of the company;

2. Greater use of complementary databases - ZIP Code, motor
vehicle reports, geographic mapping - in improving data
validation and accuracy; ang,

3. Pattern Recognition/Expert Systems/Fuzzy Logic Systems -

that enhance automation efforts and allow graphical views

of the data.
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What's next?’ The challenge for both actuaries and insurance
data managers is to keep up with the improved technology and to

use it as an aid to improving data gquality.

B. Conclusion

Data quality has long been a concern of the insurance
industry and the regulator. However, data quality must be
administered in a cost efficient manner. The more rigorous
statistical plans are subject to some degree of interpretation
versus financial data accounting. As technology has improveq,
better data quality (and better reconciliation of statistical &
financial data) can be realized more economically and efficiently
by both data managers and actuaries. Managements have recognized
that high quality data provide them accurate controls of their
businesses.

Two professional groups - data managers and actuaries - have
developed formal standards to better recognize the importance of
data quality. Both standards have been reviewed in this paper.
The data manager's responsibility is specifically stated to go
beyond the production of the data. Error detection, evaluation,
and disclosure are now part of that responsibility. The actuary
cannot simply accept data and rely on the work of others
regarding it's quality. Data must be reviewed for reasonableness
and consistency, and data imperfections must be addressed.

Formal professional education is available to both
professions, and it can be expected that data guality will
continue to be an issue addressed by each professional

organization.
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1996 CAS Geo-Coding Survey
by the CAS Committee on Management
Data and Information
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EXECUTIVE SUMMARY

The purpose of the 1996 Geo-Coding Survey was to assess the current usage of geo-
coded data in the casualty actuarial profession, and to foster development of new actuarial
techniques using such data. A total of 152 CAS members returned a completed survey. The
following are the key findings of the Geo-Coding Survey:

o Nearly four in ten (36.8%) respondents reported they were currently using geo-coded data for
the monitoring of catastrophe exposures, while nearly one-third (30.9%) reported current use
in the definition of rating territories.

e Over one in five (21.1%) respondents reported they were currently using geo-coded data for
the determination of unexpected insurance costs for specific locations, and the same number
reported use for marketing/underwriting.

e Close to half (48%) of all respondents reported they were not currently using geo-coded data
for any purpose.

e Zip code data was named most frequently by respondents when asked the type of geographic
data they were using for listed purposes. Zip code data was the most popular response for six
of the seven listed purposes, such as the monitoring of catastrophe exposures or the definition
of rating territories.

* Over nine in ten (90.8%) respondents report that they believe geo-coded data will become
useful in the monitoring of catastrophe exposures, while over three-fourths (77%) believe
geo-coded data will become useful in the definition of rating territories.

e A clear majority of respondents believe that geo-coded will become useful in the
determination of unexpected insurance costs for specific locations (63.8%) or in
marketing/underwriting (59.9%), while nearly one-half believe geo-coded data will become
useful in competitive analysis (48%) or policy rating (47.4%).

o Of those using geo-coded data, nearly two-thirds (62%) indicate the source of
latitude/longitude to be software that determines latitude/longitude from street address.

* When asked to describe successful applications of geo-coded data they believed would be of
interest to the CAS membership, respondents mentioned catastrophe related applications
most often. These applications included catastrophe modeling, catastrophe analysis, and
catastrophe management.

-

o When asked to describe any significant problems in development of geo-coded applications
they believe CAS members should be made aware of, respondents mentioned data quality

170



issues most often. These issues included inconsistency of data gathering, accuracy of geo-
coded data software, and accuracy of street addresses and zip codes.

When asked to provide references that they knew of that may be helpful in the development
of geo-coded applications, Mapinfo software and Business Geographic magazine were
mentioned most often by respondents.

Nearly half (48%) of all respondents reported interest in participating as an attendee of a
panel discussion focused on development of applications for geo-coding, while close to one-

fourth (23.7%) reported interest in participating as a Limited Attendance Seminar attendee.

A clear majority (57.9%) of respondents reported a designation of FCAS, while over one-
fourth (26.9%) reported having over 21 years of actuarial experience.

Close to six in ten (59.2%) respondents reported a property/casualty primary insurance
company as their type of employer.
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RESULTS

Applications

Item 1:

Indicate the areas of actuarial practice for which you are currently using geo-coded data:

Area of Actuarial Practice

Please write in the type of geographic data that you are using for the listed purposes.

Monitoring of catastrophe exposures
Determination of unexpected insurance costs
for specific locations

Reserving

Definition of rating territories

Policy rating

Competitive analysis
Marketing/Underwriting

Other

Not currently using for any purpose

Area of Actuarial Practice

Monitoring of catastrophe exposures

Determination of unexpected insurance costs
for specific locations
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Percentage of Respondents

Using Geo-Coded Data
36.8
21.1

4.6
30.9
15.8
16.4
21.1
39
48.0

Type of data in use (number of responses)

zip code (37)

street address (12)
county (10)
latitude/longitude (6)
postal code (3)

exposure information (2)
various (2)

location (1)

geo-coded (1)

zip code (22)

street address (7)

county (5)

latitude/longitude (4)

rating territory (4)

postal code (2)

state and county (2)

exposure information (1)
location (1)

census tract, block, and group (1)



Applications
(continued)

Please write in the type of geographic data that you are using for the listed purposes
(continued).

Area of Actuarial Practice Type of data in use (number of responses)
o Reserving state (4)

street address (1)

county (1)
¢ Definition of rating territories zip code (37)

county (14)

postal code (4)

state and county (1)

city (1)

state (1)

street (1)

rating territory (1)

river (1)

bureau definitions (1)

latitude/longitude (1)

census tract, block, and group (1)

creation of catastrophe zones to
monitor exposure (1)

e Policy rating zip code (16)
county (4)
postal code (2)
rating territory (2)
bureau territory (1)
street address (1)
town code (1)
latitude/longitude (1)
distance to work (1)
distance to coastline (1)
Rand McNally database (1)
various (1)
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Applications
(continued)

Please write in the type of geographic data that you are using for the listed purposes
. (continued).

Area of Actuarial Practice Type of data in use (number of responses)
o Competitive analysis zip code (15)

postal code (4)

rating territory (3)

bureau territory (1)

state (1)

county (1)

exposure information (1)

latitude/longitude (1)

o Marketing/Underwriting zip code (14)
street address (4)
county (4)
latitude/longitude (3)
postal code (3)
census block group (2)
census traét (1)
overlay of census data (1)
town code (1)
bureau territory (1)
exposure information (1)
target marketing (1)
risk selection (1)
wind (1)
drive distance (1)
local tax (1)
fire protection (1)

e Other
Ratemaking - homeowner (2) exposure information, zip code
Reinsurance zip code
Agency management street address, block group

Identifying policy holder in catastrophe areas  latitude/longitude
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Applications
(continued)

Please provide any explanatory comments on the above applications that you believe will
be helpful to the CAS in assessing the current state-of-the-art for applications of geo-
coding,

I plan to use data for expected losses by location, definition of rating territories, allocation of
capital, but these studies aren’t underway yet.

Using IRAS (from RMS) to assist with catastrophe capacity management; considering
additional uses, much interest in this area at this time.

Street address used to match waste sites to publicly available listings.

Systems development and statistical plans have a long way to go - at this point were getting
started on a system to access zip code data. More detailed geo-coding would require
substantial changes to statistical plans.

As a regulator, I had to review the use of geo-coded data, or the proposed use of such data.
Recently participated in the NAIC study of insurance availability in urban areas. The survey
data included policy counts and premiums by homeowners policy form for zip code.

As a reinsurer, we get limited data, particularly operating in the broker market. We may get
for catastrophe exposures, total insured value by county.

We expect to use expected profit by location to predict profits for given group property and
casualty accounts. .

I don’t believe our current practice should necessarily be considered “state-of-the-art.” We
are a small regional insurer, just beginning a major overhaul of our data reporting systems,
partly to improve our access to more detailed location data (among many other issues).

The ratemaking process performed by EQECAT for the California Earthquake Authority is a
fine example of the issues I’ve checked above. (monitoring of catastrophe exposures,
determination of expected insurance costs, competitive analysis, marketing/underwriting,
other - ratemaking HO).

A couple of areas that might deserve mention: Use of geo-coding in Business Planning and
Strategy; Use of geo-coding in Dynamic Financial Analysis.

We are moving toward policy-specific geo-coding due to the increasing need to asses risk at
the policy level.

Do not use lat/long for anything explicitly although our mapping software uses it internally.
We are a reinsurance company, so detailed data is sometimes difficult to obtain and
sometimes too time consuming to evaluate. We don’t use detailed data for reserving and
don’t have territory rating,

(Not currently using, but) Please note that with my previous employer, I was using 3 digits
postal code for monitoring of catastrophe exposures and definition of rating territories.

In all the above areas, zip code level data is used, but no geo-coded data.

We are finding that zip code is too broad for many of the above applications.

Data is easily available for US. Very expensive or not available for rest of world.

I think the CAS should check with major personal lines companies to determine the more
sophisticated programs that may be used to define rating territories. Also, check on use of
geo-coding in Neural Network Analysis (Peter Wu?).

175



There is a lack of geo-coded historical data that is available to set rates, etc.

Item 2:

Indicate the areas of actuarial practice for which you believe geo-coded data will
become useful:

Percentage Who Believe Geo-

Area of Actuarial Practice Coded Data Will Become Useful
® Monitoring of catastrophe exposures 90.8
¢ Determination of unexpected insurance costs 63.8
for specific locations
e Reserving 14.5
o Definition of rating territories 77.0
¢ Policy rating 474
e Competitive analysis 48.0
e Marketing/Underwriting 59.9
e Other 72

(reinsurance pricing (3), research, claims, business planning, international catastrophes,
agency management, more innovative design of rating plans, risk management, allocation of
capitol)

Please provide any explanatory comments on the above applications that you believe will
be helpful to the CAS in fostering the future state-of-the-art for applications of geo-coding.

Extent of future possibilities for geo-coding will depend on how precise the
locatior/information provided is! For example, will geo-coding allow me to differentiate
between two apartment buildings on the same block; one at 55 Main St, the other 60 Main
St?

Uniform (throughout the industry) use of geo-coding territories would simplify many things,
starting with statistical reporting. Many things would flow from this, including simplified
competitive analysis. Imagine...no more zip, city, county, town, convoluted territories.
Anything is possible - it is a wonderful rating variable if the data is available.

Most consumers/customers don’t know their address in geo-coding form so wide spread use
without an inexpensive translation mechanism will slow the use of location information in
this format for insurance purposes.

The categories above are redundant (rating territories = policy rating).

Claims - Would be helpful to have an idea of how many and where to deploy claims adjusters
post-event.

I am especially intrigued with territorial ratemaking that uses continuous surfaces and using
data at a street address level.

Eventually, territory rating may be replaced by the detailed information associated with a
given location: home values, crime statistics, etc. For hurricanes and tornadoes, we should
consider looking at elevation.

Ultimately, it will be the way to do business and will be useful for all of the above.
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Applications
(continued)

Please provide any explanatory comments on the above applications that you believe will
be helpful to the CAS in fostering the future state-of-the-art for applications of geo-coding
(continued).

» Given the complexity of working with such data, I envision only those specializing in
monitoring catastrophe exposures to be using such data on a regular basis.
o Presentation at the CAS Ratemaking Seminar in Las Vegas provided the state-of-the-art ideas

which were excellent

.........................

» Knowing the location and mapping the neighboring exposures to the geo-coded risk you are
writing is an invaluable resource.

o Location of insured and of losses could change rating concepts. For instance, automobile
rating could depend on where you drive (to work, to grandma'’s house) besides just where
your garage is.

« Location is an important determinant of the concentration and exposure to many perils. It
will be more common to use location analysis as data and GIS software becomes widely
available.

» Policy holders will not/do not know their geo-code; rate structures need to be simple enough
to file and explain. Zip code is simple enough, while latitude/longitude is not.

» Geo-coded data could be particularly helpful in monitoring earthquake exposure.

« For personal auto, could be used for rating purposes to refine traditional zip code rated
territories.

o Catastrophe exposures vary over short distances that are not captured any other way.




Sources
Item 3: .
If you are using geo-coded data, indicate the sources of latitude/longitude that you are

using:

Percentage of Respondents

Source Using Source
o Software that determines latitude/longitude 62.0
from street address
o Designation of map location on 15.2
computer screen '
e Oun-site radio signals to satellites 6.3
e Other 6.3

(post office publication of zip codes, all business assigned to geographic center for each zip
code, zip codes from location of insured property)

Please provide comments on the above alternatives that you believe will be helpful to the
CAS membership in assessing practical alternatives for development of geo-coded data.

* Weuse RMS’s IRAS model.

» Satellites should be used in the future; e.g. a satellite photo in a hurricane aftermath could be
overlaid with a map of company policyholders. Claim services could be routed and estimates
could be made prior to claims being filed.

¢ Relationships of site to known landmarks can be of great value to underwriters, actuaries, and
claims. Information such as known pollution sites, or distance to coastline or fault line.

« For determining territorial definition, we use a Rand/McNally database which is keyed by
FIPS - place code, state, zip.

o IRAS earthquake model by RMS uses lat/long,
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Success and Problems

Item 4:
Please describe successful applications of geo-coded data that you believe will be of interest
to the CAS membership:

Catastrophe modeling.

Catastrophe exposure.

Catastrophe analysis.

Catastrophe management.

Catastrophe modeling software by EQECAT and RMS.

Determining catastrophe rates.

Pricing alternate contract terms.

Auto theft analysis from trackers.

NY, NJ hurricane deductible zones.

FL (FWUA) voluntary credits.

Territory redefinition using census data and geo-coding.

Earthquake modelmg and predictive modeling.

I think all the areas in #2 above, except reserving, will provide successful applications.

Not quite finished, but we’re putting together a system to group various postal codes together
to analyze appropriate territories and changes in territories.

Risk location/concentration and exposure determination.

We examine loss data by postal code in order to define territories and rate policies for
homeowners insurance; we review every year and move postal codes from one territory to
another as dictated by either loss experience or our competitive position in the marketplace.
We once examined loss data by postal code to refine our territory definitions for auto
insurance; we will periodically review to make sure out territory definitions still make sense.
Result is only as good as the initial address entry. Misspellings, etc., can have a large impact.
Using 3-digits postal code to refine large urban territories (both property and automobile).
IRAS earthquake loss model. '

Marketing, underwriting, rating.

Entire book of biz geo-coded in US. GPS units in use in Asia and Latin America.

Assessing hazard exposure is very successful using geo-coded data.

Obviously, the area of greatest payback would be in monitoring catastrophe exposures. This
has helped our company tremendously in negotiations with our catastrophe reinsurers. Also,
extremely useful internally for business planning.

Currently assigning rating territories from keyed in address; agents/customer service reps no
longer need to learn territory definitions.

I feel that zip code rating is superior.

Coastal exposures can be problematic when trying to view exposures. Some geo-coding
software are not consistent so data that may be geo-coded by one software but later used in
another may appear to be out in the “water”.

Software to display physical locations of zip codes to check for contiguousness of territories.
Also to view patterns in loss costs.

Density of exposures related to hurricane or earthquake risk.
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Success and Problems
(continued)

Item 4 (continued):
Please describe successful applications of geo-coded data that you believe will be of interest
to the CAS membership:

As a reinsurer, we have used it only to monitor our catastrophe exposures. We rely on the
reinsurance intermediaries and/or clients to collect data and run models.

Hurricane modeling, reinsurance exposure analysis, rating territories.

Map of geological fault lines and location of exposure by geo-coded location with reference
to fault lines.

I use geo-coded data to monitor earthquake exposure in a region.

Geo-coding makes it much easier for a direct writer phone operation to properly determine
the rating territory since the insurer representative may not know the geographic area where
the risk is located. '

Item 5:
Please describe any significant problems in development of geo-coding applications you
believe CAS members should be made aware of:

Blanket rated covers enough information; may not currently be captured.

Constant updating of new addresses.

Addressing the large variability around the expected results.

Risks with hundreds/thousands of locations - difficult to charge enough to cover costs of
capturing all the specific location data..

Consistency in measuring devices (accuracy).

Several, separate policies for the same coverage written on risks at the same geo-code,
e.g. earthquake coverage for renters in a high-rise.

Major problem would be credibility associated with finely divided data.

Data quality problems have surfaced frequently.

Multi-location policies are especially difficult to handle.

Distribution of geo-coded applications to agents.

Data quality, model parameter estimating, regulatory concerns.

Capturing accurate raw data.

The major problems I see are dealing with what are sure to be large quantity of the data,
(i.e. cut so fine that many observations are required before anything useful can be gained) and
relating the data to other, known, data for verification.

Computer software still (at least what we use) can not interpret similar spellings.
Accuracy of TIGER, census, street information in the software.

Quality of internal data - for example capturing billing address vs. site address.
Inconsistency of data gathering, e.g. bad zip code in valid city.

Difference between loss location and premium location.

Zip codes change constantly, keeping up with them is costly.

Lack of data quality of street address leading to low hit rates for geo software.
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Success and Problems
(continued)

Item 5 (continued):
Please describe any significant problems in development of geo-coding applications you
believe CAS members should be made aware of:

s  We have challenges with “split zips” - a zip code which has more than one rate. Our rating
system can’t use the person’s address to properly place them in the section of the zip; we rely
on a person to look up information on amap or a descriptive table - sometimes the person
_]lel dSSlgﬂS ll’lC llrbl Une Oftﬂt'- iwo or more CnOl(.Cb

« Unavailability of latitude/longitude coordinates for most locations. Do you know the
coordinate for your home??

o Data quality - We have problems where zip codes sometimes don’t map on the correct state.
We find mailing address coded on all risks on one policy, rather than the actual location.

+ Because of the ever changing numbers of zip codes, it is important to utilize software that is
regularly updated. Data quality of the addresses being utilized is also a watch out.

» Accuracy concerns on street segments.

e Accuracy of geo-coding/underlying data.

e To match the longitude/latitude, you need exact address. Many addresses are not exactly
correct, i.e. street instead of drive, north or south not included with street, etc.

¢ Coding of varying limits, classification information, etc. by location on a single policy.

o It is difficult to determine whether county data is “good enough” or if we need zip code or
street address data.

» Credibility issue as the volume of data decreases rapidly.

o Redlining issue.

« Software needs to be continually updated for new zip code definitions.

« Regulatory acceptance; it shouldn’t be a problem, but I fear that it will; change is difficult.

« Need to be careful of over-refinement of territories.

« Need to be careful when using for auto insurance because cars are mobile (unlike houses).

o Level of data needed to make geo-coded location data valuable, i.e. coverage, limits, type of
construction, contents, etc.

e Credibility procedures! / Lack of credibility. / Credibility issues and techniques.

o The actual coding by street address is complicated by numerous factors. The software’s
street index is incomplete. Finding the location as opposed to billing address can be difficult
and multiple location policies are present.

o Blanket risk coding on commercial accounts.

o Annual or more frequent shifts in zip code boundaries.

« A Canada conversion of rural addresses or postal codes to geo-code may not be accurate
enough for certain applications (i.e. catastrophe analysis).

e Perils that are not discrete enough for high resolution analysis: hail, brush fires, mud slide.

« Willingness to believe model output without appreciation for inherent uncertainty.

« Errors in geo-coding and address changes.

« What is the source of this information for a property? If the.insured, it can be falsified.
Systems development costs, cost of capturing data, lack of interest by senior management.
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References

Item 6:

Please provide any references that you know of that may be helpful in the development of
geo-coding applications. Such references may be printed materials, vendor organizations,
professional organizations, or any other source of information:

Multiple responses are indicated by the number in parentheses

« RMS(2)

o Strategic Mapping Inc. (2)

« ETAK(2)

« Advance Technology Corporation, Atlanta, GA, Mark Fouraker, 770-399-4343
Toprate, Insurquote (rating services)

Maplinx (software)

Mike Miller (actuarial consulting)

American Demographic magazine (2)

Business Geographic magazine (4)

ESRI (3)

Mapinfo software (4)

EQECAT

Workers Compensation Insurance Rating Bureau (California) - data by zip code
GIS World Magazine

Geographic Data Technology (GDT) (2)

ISO

Vista Information Services

The software we use is called IRAS from the vendor Risk Management Solutions.
Tactician Corporation (software)

USGS

» Compu search organization operating in Toronto
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Future CAS Programs

Item 7:
Please indicate below the type of future activity focused on development of applications for
geo-coding in which you would be interested in participating:

Type of Activity Percentage of Respondents with Interest
Panel Discussion - attendee 48.0
Panel Discussion - panel member 3.9
Discussion Paper Program - author 0.0
Discussion Paper Program - reviewer 5.3
Limited Attendance Seminar - attendee 23.7
Limited Attendance Seminar - discussion leader 1.3
Other 7
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Other Comments

Item 8:
Please provide any additional comments that you believe would be helpful to the CAS in
facilitating development of geo-coding applications among CAS members:

As a regulator, I see future concerns about territorial definitions. How will they look? Will
they exist? How will the laws of various states need modification to adapt to the changing
technology?

Must recognize difference in personal lines vs. commercial lines risks with hundreds of
locations. :

Workshops, data source description, model building papers, etc.

Coin the term “geode” to mean the smallest geographical unit under consideration. Geodes
would be defined by regulators with industry assistance. Geodes should be along easily
identifiable physical or political boundaries. Territories would be aggregations of geodes.
Most Importantly: In order for computerized hurricane models to become accepted, they
must utilize real exposure and loss data to calibrate the model. Exposure and loss data
should be reported by geode and each geode should be small enough that we would expect
that wind damage would be uniform throughout the geode.

I’m not confident that expending resources in this direction would be fruitful for the CAS.
ISO geog w/w system.

Geo-coding in ratemaking will require a great deal of information, so only the largest
companies will have sufficient data. To make geo-coding of interest (of practical interest to
many actuaries’ employers), a large database would need to be available. Perhaps the CAS
would work with statistical agencies to gather this information so that it is reliable and
available. This might expand the interest level among actuaries and help the small
companies from being the victims of large companies that can use this information to exploit
the current rating territory definitions.

There must be other more important issues to be spending time on.

How about an article in the Actuarial Review?

What about the impact on companies’ systems departments?

Geo-coding has not been used by me because my job function does not.

Not much to offer!

Everyone benefits from a universal adoption of risk location identification. Reinsurers,
regulators, statistic reporters, primary companies, etc. all seeing risk the same way would be
ideal. Geo-coding (at least on the surface) would seem to offer this.

Not to get too carried away, but will the CAS be seeking the NAIC’s input on the potential
for geo-coding to become mandatory?

Wouldn't it be nice to have a regulation promulgated that actually helped an entire industry?
Any discussion should consider practical applications.
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Member Profile

Item 9:
Please include some information about yourself:

Actuarial Designation Frequency
FCAS 88
ACAS 57
No response 7

Percent
57.9
37.5

4.6

Total 152

Years of Actuarial Experience Frequency
0-5 10
6-10 36
11-15 31
16-20 29
21+ 41
No response 5

100.0

Percent
6.6
23.7
204
19.1
26.9
33

Total 152

100.0

College Degree Frequency Percent

None 1 7
BA or equivalent 109 71.7
MA or equivalent 34 22.3
Ph.D. 3 2.0

No response 5 33
Total 152 100.0

Type of Employer

Property/Casualty Primary Insurance Company
Reinsurance Company

Consulting Firm

Insurance Broker

State Insurance Department

Other Government Entity

Organization serving the insurance business
University or college

Other

No response

Frequency
90
11

[

Percent

59.2

17.1
5.3
33
0.0
2.6

i
1.3
33

Total
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Compilation of Variables Necessary for
Performing Dynamic Financial Analysis
of Insurance Companies
by James R. Garven, Ph.D,,
under the direction of the
CAS Task Force on DFA Variables
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Final Stage One Report Submitted to
the DFA Liaison Team

Michael Barth (NAIC)
Stephen P. D'Arcy (University of Illinois)
Richard A. Derrig (Automobile Insurers Bureau of Massachusetts)
Charles C. Emma (Deloitte & Touche)
Louise Francis (CIGNA Property & Casualty)
Phil Heckman (Ernst & Young)
Glenn Meyers (Insurance Services Office)
Richard Roth (California Department of Insurance)
Gary Venter (Sedgwick Payne Company)

by

James R. Garven, Ph.D.
Vice President, Economic Analysis & Product Research
Strategic Concepts Corporation
3914 Edgerock Drive
Austin, TX 78731
e-mail: jgarven@insweb.com

March 7, 1996

Abstract. In recent years, a virtual consensus has emerged within the casualty actuarial science
community that actuaries must broaden their role in insurance organizations by developing a set
of tools that will enable them to render expert opinions regarding not only loss reserves but the
overall value and solvency of the firm as a whole. In order to support this effort to broaden the
roles of casualty actuaries, the Casualty Actuarial Society has embarked upon a many-year,
multi-stage project entitled Dynamic Financial Analysis. This aim of the project is to set up a
general actuarial framework for the modeling and financial evaluation of insurance companies as
risk-assuming, ongoing entities. The outcome of the project will likely be general specifications
for insurance company financial models, a database of important variables to support these kinds
of models for the purposes of research and model design, and suggested procedures and
considerations for those who would design, use and interpret these models. This is the final
report for stage 1 of the Dynamic Financial Analysis project.
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1. INTRODUCTION AND OVERVIEW

The Casualty Actuarial Society has embarked upon a many-year, multi-stage project known
as Dynamic Financial Analysis. This aim of the project is to set up a general actuarial framework
for the modeling and financial evaluation of insurance companies as risk-assuming, ongoing
entities. The outcome of the project will likely be general specifications for insurance company
financial models, a database of important variables to support these kinds of models for the
purposes of research and model design, and suggested procedures and considerations for those
who would design, use and interpret these models.. Some of the specifications expected for a
Dynamic Financial Analysis Model are as follows:

1. It should be able to account for and evaluate the things that are most likely to affect the

value of the company.
2. It should produce probability distributions of financial outcomes.

3. It should provide enough detail to allow evaluations of outcomes on a variety of
accounting bases, such as on-going, run-off, etc.

4. 1t should produce risk/return consequences of changes in major management decision
variables.

5. It should recognize the interplay among various segments of the company and also with
various external variables.

6. It should be devised as a strategic management tool, with regulatory compliances
features regarded as byproducts, albeit mandatory ones.

As originally conceived, the Dynamic Financial Analysis project is expected to consist of

four stages occurring over the next few years:

1. Stage 1: Identification of variables and data sources
2. Stage 2: Creation of a research database
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3. Stage 3: Analysis
4. Stage 4: Specifications and feasibility plan for a permanent widely accessible database

This is the final report for Stage 1 of the CAS Dynamic Financial Analysis project. The

outline of presentation will be as follows. The next section sets forth a set of general

considerations that ought to be considered in dynamic financial analysis.! The third section of

the report provides a discussion of variables and data sources. The fourth section of the report
provides some recommendations for setting up the database for further research, and the fifth
section discusses some possible future directions for research to complete the further stages of

the project.

2. GENERAL CONSIDERATIONS

In recent years, a virtual consensus has emerged within the casualty actuarial science
community regarding the future role of the profession. It is now widely believed that actuaries
must “re-engineer” themselves by becoming “actuaries of the third kind” (see Bithimann (1987)
and D’Arcy (1990)). This will require developing a set of tools that will enable actuaries to .
render expert opinions regarding not only the value of loss reserves, but the overall value and
solvency of the firm as a whole.

The need for dynamic financial analysis has been anticipated in the actuarial literature, well
before terms such as the “appointed actuary” and “dynamic financial analysis” became popular.

For example, D’Arcy (1990) presents the very compelling argument that factors such as the

IThe report is generally agnostic insofar as model selection is concerned, focusing primarily upon the identification
of variables and data sources. It is the primary responsibility of the CAS Conunittee on Valuation and Financial
Analysis (VFAC) and its subcommittees to decide and advise the CAS conceming model selection and
parameterization (see CAS Subcommittee on Dynamic Financial Models (1995) and Szkoda, et al. (1995)). The
next section of the report does, however, set forth the argument that dynamic financial analysis can and should
incorporate a rigorous integration of financial economics with actuarial science.
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growing importance of investment performance in insurance operations, increasing volatility in
financial markets and the emergence of investment-linked insurance contracts are creating the
need for actuaries to develop new skills and a greater awareness of investment performance.
Bithlmann (1987) refers to actuaries who understand both the asset and liability structures of
insurance companies as actuaries of the “third kind”.2

The importance of integrating actuarial science and finance has been recognized by actuaries
and financial economists alike, and has resulted in the development of a literature on. the
convergence of the two fields. Borch (1985), Boyle and Butterworth (1982) and D’ Arcy (1990)
present lucid analyses from the actuarial perspective, whereas Garven (1987) and Smith (1986)
approach this topic from a financial economics perspective. The reference section of this report
provides a research bibliography that addresses financial theory and its applications to insurance
and actuarial problems.

Besides the parallels between finance and actuarial science that have been noted to exist in
published literature, common approaches in practice are also observed. For example,
deterministic and stochastic techniques described in a number of CAS reports (e.g., see CAS
Subcommittee on Dynamic Financial Models (1995) and Szkoda, er al. (1995)) bear a close
resemblance to capital budgeting techniques that are presented in some of the more popular

corporate finance textbooks (e.g., see Brealey and Myers (1991)).3

2According to Bithlmann, actuaries of the first kind are life actuaries whose methods primarily involve
deterministic calculations. Casualty actuaries are actuaries of the second kind, in the sense that they develop
probabilistic methods for dealing with risky situations (for example, using methods such as scenario testing and
Monte Carlo simulations). Actuaries of the third kind address investment and underwriting aspects of insurance
companies and apply principles from financial theory to create more fully integrated models of the insurer.

3In the finance literature, the seminal work on the use of simulation in the evaluation of
corporate capital projects was done by David Hertz (1964, 1968). In the tenth chapter of
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Historically, financial research has tended to oversimplify insurance markets and
institutions, whereas robustly specified actuarial models of insurance markets and institutions
often lack the analytic rigor and economic foundations that have become the hallmark of
financial research.4 However, in recent years, there have been extensive applications of financial
theory and empirical methods to the analysis of property-liability insurance markets and
institutions. For example, there is now an extensive finance literature applying the capital asset,
arbitrage pricing and option pricing models to the problem of the “fair” rate of return in property-
liability insurance markets.5¢ Option pricing models have particularly important implications for
dynamic financial analysis, as they allow for a stochastic modeling framework in which asset and
liability management impacts the value of the firm and its solvency level.

Furthermore, an extensive finance literature has developed that analyzes, both theoretically

and empirically, the economics of organizational structure. In view of the significant degree of

Brealey and Myers, the cases for and against both simulation and scenario testing are
summarized. Although the finance literature champions risk analysis, it is generally very
critical of simulation analysis in particular (see Lewellen and Long (1972)).

“4Indeed, although finance is essentially a field of applied economics, it has experienced remarkable success as a
scientific disciptine. This has culminated in the awarding of the Nobe! Prize in Economic Science five years ago
to three financial economists: Merton Miller, William Sharpe, and Harry Markowitz for their seminal research on
corporate capital structure, asset pricing and portfolio theory.

5For applications of the capital asset pricing model (CAPM) to insurance pricing, see Biger
and Kahane (1978), Fairley (1979), Hill (1979), Hill and Modigliani (1987) and Myers and
Cohn (1987). Kraus and Ross (1982) provide a more general framework based upon arbitrage
pricing theory, and Doherty and Garven (1986), Cummins (1988b), Derrig (1989), and
Phillips (1995) provide solutions to the_ fair return problem in a contingent claims, or option
pricing framework.

6A particularly important paper in this literature is by Phillips (1995), who derives an option pricing model that
allows for the determination of premium levels by line of business for a multi-line insurance company. He also
finds empirically that insurance prices are inversely related to the riskiness of the firm, as predicted by the option
model. This inverse relationship is stronger for long-tail lines of business than for short-tail lines, suggesting that
the default premium increases the longer the payout tail.

192



cross sectional variation in ownership structures and distribution systems that exists in the
property-casualty insurance industry, this is a particularly relevant literature. Of particular interest
is the question concerning whether incentives exist for firms adopting different organizational
features to optimally employ different risk management strategies. To date, the empirical

evidence is generally consistent with testable hypotheses contributed by financial models of

insurance companies. Specifically, it appears that mutual in
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more conservative investment and underwriting strategies than do stock insurers. Mutuals have
been found to concentrate a larger proportion of their investments in financial assets and smaller
proportions in non-financial assets than stock insurers (see Fama and Jensen (1983)). After
controlling for size, stock companies write relatively more business in riskier lines of insurance
(see Lamm-Tennant and Starks (1993)) and reinsure less (see Mayers and Smith (1990)) than
mutuals.” Stock insurers also tend to be more highly leveraged and bear more interest rate risk
than mutuals (see Doherty and Garven (1995)). Finally, Babbel and Staking (1989, 1990) show
that the market rewards (in the form of a higher stock price) firms that match asset and liability
durations. Clearly, some consideration ought to be given to the incorporation of the perspectives
offered by the theoretical and empirical studies cited above in the further development of the

underlying theory that supports dynamic financial analysis.

3. IMPORTANT VARIABLES

TMayers and Smith (1990) find that widely held stock insurance companies cede
proportionately less reinsurance than any other ownership class, including mutuals. Although
they also find weak evidence that single-owner stock insurers reinsure more than mutuals, this
is to be expected since risk aversion is more likely to be an important motivating factor for
closely held than for widely held firms.
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Appendix 1 provides an initial partial list of some of the factors relevant to insurer solvency
and management planning, and was included with the original Stage 1 DFA request for proposals
as an attachment. Furthermore, in the CAS Subcommittee on Dynamic Financial Models report
entitled “Dynamic Financial Models of Property/Casualty Insurers” (see CAS Subcommittee on
Dynamic Financial Models (1995)), attention is focused on the following classification of
property-liability insurance risks:

e C-1 risk - Uncertainty surrounding cash flows from invested assets other than from
uncertainty regarding interest rate risk.

o C-2 risk - Uncertainty surrounding cash flows from the obligation or underwriting aspects of
an insurance company.

e (-3 risk - Uncertainty surrounding cash flows from interest rate fluctuations in the presence
of a mismatch of assets and liabilities and the risk of disintermediation caused by embedded
options that are sensitive to changes in interest rates.
There obviously exists a high degree of correspondence between this particular classification
scheme and the list of factors provided in Appendix 1. Furthermore, the factors listed above are
generally incorporated in the financial literature cited earlier.

The approach taken in Stage 1 has been to orient the research primarily around variables and
data sources for which information can be obtained via the Internet. In many cases, data vendors
are either moving toward Internet-based distribution or allowing licensees to create Internet-

based delivery mechanisms for these data® Given the “distributed” nature of the Casualty

8The Social Sciences Data Collection at the University of California, San Diego (UCSD) (see
http://ssdc.ucsd.edu/ssdc/econ.html) and the Yale University Social Science Statistical Laboratory
(see http://statlab.stat.yale.edu) provide interesting “proofs of concept” for the CAS. Although
access to most of the data available from these collections is restricted to on-campus users, it would certainly be
technically possible to engineer similarly secured Internet-based database systems for the Society.
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Actuarial Society, the Internet constitutes the best long-run solution for creating and maintaining
a permanent widely accessible database for CAS members. The costs of such a system can be
allocated in such a way that the CAS and its members can acquire a very efficient and cost-
effective delivery system for data that can also be virtually managed and updated as needed. In
fact, because the World Wide Web makes it is possible to link sites together via the so-calléd
hypertext transport protocol (http), effective site management could in principle be
accomplished on either a completely centralized or decentralized basis. In the last two sections
of the report, recommendations are made concerning setting up the database and possible
future directions for research that presume the Internet to be the computing platform of choice.

Consistent with this “net-centric” philosophy, this report and its appendices can be accessed
directly from the DFA World Wide Web home page, the address for which is
http://www.risknet.com/dfa/dfa.html. Appendix 2 lists the information that is
provided there.® Hypertext links to Appendices 3-9 of this report are provided in the Data Access
section of the home page. These appendices provide detailed listings of variable definitions,
length of time series available, cost and feasibility of data acquisition, licensing issues, and
information concering levels of aggregation.

Issues such as variable interactions are more specific to model selection than to the
identification of variables and data sources, which is the focus here. Nevertheless, some
observations regarding variable interactions can and should be made. The general approach to
modeling variable interaction is to estimate variance-covariance matrices for variables. Since the

insurer may be viewed as a portfolio of assets and liabilities, a portfolio based analysis of insurer

91In this and later appendices, all underlined text represents hypertext links to other documents. Unfortunately this
is a feature not easily replicated in the context of a hard copy, or analog document such as this.
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risk and return can provide important insights into performance measurement and solvency.
Halliwell (1995) presents the mathematical theory behind portfolio analysis, while Almagro and
Sonlin (1995) and Lamm-Tennant (1995) apply this method to evaluating asset allocation
strategies. The Lamm-Tennant paper is an especially important paper in this regard, as it
provides a very rigorous yet elegant approach to estimating variable interactions on an after-tax
basis. Furthermore, it is highly recommended that readers of this report look further into the JP
Morgan RISKMetrics database (listed in Appendix 4 and available for free on the World Wide
Web). This database provides information on volatilities and correlations among over 300
different types of financial assets.

As one would expect, most of the data that are useful for dynamic financial a;na.lysis are
available on a commercial basis, and a number of vendors are already beginning to experiment
with different forms of World Wide Web-based distribution. Appendix 3 lists commercial
vendors who provide comprehensive financial and economics database products. For financial
analysis, the CRSP and COMPUSTAT databases are particularly useful; indeed, most of the best
academic research on firm valuation uses these databases. The CITIBASE database is
unparalleled in its breadth and depth of coverage of interest rate and macroeconomic data.

Unlike insurance data, there is an abundance of economic and financial market time series
data already available on the Internet. Furthermore, access to many of these databases is free,
although this is not universally the case. Appendix 4 lists a number of free data sources. These

data sources that are the most “professionally” presented and supported are demarcated with

. special “NICE!” icons. These include the Federal Reserve Bank of St. Louis' FRED Database,

Financial Markets Data from the Federal Reserve Bank of Chicago, volatility, correlation, and

196



price index data from JP Morgan, and the EDGAR Database. All of these resources, with the
exception of JP Morgan, are funded by government or quasi-government agencies, and they are
intended to provide reliable access to some very high quality data sources. Indeed, much of the
data listed under the General Economic Time Series and Performance Measures for Investment
Instruments headings in Appendix 1 can be accessed from these resources.

Appendices 5-9 provide information about insurance data that are available from a number
of commercial vendors. In addition to providing insurance data through traditional means such

as diskette, tape, and CD-ROM, a number of these vendors feature proprietary online services.

4. RECOMMENDATIONS FOR SETTING UP THE DATABASE FOR FURTHER RESEARCH

Currently, a number of commercial database vendors distribute data using proprietary CD-
ROM products or proprietary network interfaces. Good examples of CD-ROM products for
insurance data include the A.M. Best and OneSource products, whereas proprietary (i.e., non-
Internet) online insurance database products include A. M. Best’s BestLink, the NAIC’s
InsureNet, and the NCCI’s InsNet. However, World Wide Web-based access is fast becoming a
preferred method of distributi.on for a number of reasons. Although there are important reasons to
be concerned about security on the Internet, it is now widely believed that the Internet, rather
than proprietary wide area networks, will increasingly become the network solution of choice for
commercial organizations. Indeed, information technology has become one of the most dynamic
sectors of the U.S. economy, and tremendous amounts of capital are being invested to find ways
to secure the Internet. |

Secondly, along with innovations in security, the speed of Internet access is increasing

dramatically at a time when access costs are plummeting. This is causing the economics of a net-
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centric as opposed to a CD-ROM based or proprietary network-based distribution system to
become very compelling. By locating the data on a central World Wide Web server, mistakes
are easily and cheaply corrected, and updates to the database can be made at minimal cost.
Furthermore, it matters not whether the consumer uses a computer running the DOS, Windows,
Macintosh, or Unix operating system, because the World Wide Web provides a “platform-
independent” system of distribution. This lowers costs even further, since all program coding
can be done according to open rather than closed and proprietary standards. The World Wide
Web will therefore make it possible for data vendors (and/or possibly their licensees) to create
much less expensive and easier to use methods for data access and analysis. The NAIC and
NCCI are already giving serious consideration to the possibility of developing net-centric
approaches to distributing insurance data, and I expect that other vendors such as A. M. Best and
OneSource will eventually be compelled by market forces to seriously consider the development
of similar distribution systems.

Net-centric data distribution will also enhance the ability of the Society to more effectively
develop and implement standards for dynamic financial analysis. CAS members can expect to
interact increasingly via email and the Web for the purpose of not only accessing data, but also
critically discussing and debating modeling issues. Indeed, many of the functions now performed

by meetings and publications of the CAS are likely to migrate toward this environment.
5. POSSIBLE FUTURE DIRECTIONS FOR RESEARCH

Stages 2 through 4 envision the actual creation of a research database, analysis, and the

development of specifications and a feasibility plan for a permanent widely accessible database
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system. Assuming that the Society is willing to embrace the Internet as its computing platform
of choice, I think that the future course of the project can be modified somewhat. The next
logical step would be to launch a pilot test of a distributed database system. The Society needs to-
identify a cadre of important and influential members who are willing to serve as “beta testers”
for the pilot test. The pilot test needs to be coordinated by a Stage 2 researcher who has strong
financial modeling and information technology skills. This individual will need to work closely
with the beta testers for the purpose of creating proper specifications for the research database.

Besides funding a Stage 2 researcher, the budget will also require funding for the
development of a World Wide Web site from which the database cah be distributed. Essentially,
the Stage 2 researcher will need to be an “Internet integrator” who can take a leadership role in
persuading data vendors to “buy into” the pilot test by either creating their own secure and
metered data feeds into the system or providing the CAS with the licensing necessary in order to
administer such a system for its members.

In order for the second stage to be a success, it will require active participation from some
very committed members of the Society. It will be important to include a mix of consulting,
company and academic actuaries if at all possible, as this will facilitate the development of very
broad and objective feedback to the Stage 2 researcher.

Finally, the CAS neec_is to foster and support a cultural environment that enthusiastically
embraces emerging and important information technologies such as electronic mail and the
World Wide Web. Not only will this facilitate the eventual development and implementation of

a permanent and widely accessible database, but it will also enhance the ability of the Society and

its members to compete even more effectively.
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Appendix 1

An Initial Partial List of Some of the Factors Relevant to Insurer Solvency and
Management Planning

General Economic Time Series

Inflation measures, such as CPI components, GNP/GDP deflators
Output measures

Employment measures

Interest rates, by term

Exchange rates

Performance Measures for Investment Instruments

Stock market, by segment, large vs. small, by 5?, various exchanges

Bonds - corporate, muni, federal, by term, in various economic environments
Precious metals

Other commodities _

CMO’s and derivative products

Derivative products

Real estate, including rental value:

Insurance Industry Data

Premiums, losses, expenses, investment income, taxes, etc. by line. Accident year too.
Annual statement aggregates at least in detail of NAIC profitability report by line
Payout patterns by line and changes over time

Development patterns by line and changes over tune

Frequency and severity distributions by line and changes over time

Insolvencies and retirements with 5 years of data prior to

Matching group of solvent companies

Natural and Unnatural Disasters

Frequency and severity by location by type and changes over time

Impacts on insurance industry

Effectiveness of various mitigation programs for business interruption, including that
of insurers
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Appendix 2: DFA Home Page
(http://www.risknet.com/dfa/dfa.html)

CASUALTY ACTUARIAL SOCIETY

Dynamic Financial Analysis

Introduction

Welcome to the Casualty Actuarial Society (CAS) Dynamic Financial Analysis (DFA) Home
Page. The CAS has embarked upon a many-year project entitled Dynamic Financial Analysis. It
is anticipated that this prototype World Wide Web site will eventually evolve into a full scale
distribution mechanism for a permanent and widely accessible research database.

The original Request for Proposals for the DFA project can be accessed by clicking here. The
winning proposal for Stage 1 of the DFA project can be accessed by clicking here.

Data Access

¢ Financial and Economics Databases -- Click here to access information concerning
commercial financial and economics databases. Click here to access information
concerning free financial and economics databases.

» Insurance Industry Data -- From A. M. Best, 1SO, OneSource, NAIC, and NCCI.

DFA Stage 1 Liaison Team Corner*

s DFA Discussion Archive
¢ DFA Stage | Preliminary Report

o Addendum to the DFA Stage 1 Prelimipary Report
e DFA Stage 1 Final Report

*Participation limited to the principal investigator and the DFA Liaison Committee

Other CAS Web Sites

e CAS Committee on Theory of Risk*
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*Participation limited to members of COTOR

Other Sites of Interest

Important Variables Survey Form -- Friends and members of the Casualty Actuarial
Society are welcome to make further suggestions about variables and data sources by
filling out this survey form. Click here to view an archive of all such submissions.

Financial Theory and its Applications to Insurance/Aciuarial Problems -- a Research
Bibliography.

Agenda for the Limited Attendance Workshop on Financial Risk Theory, held October 1,
1995 at the Boston Marriott, Copley Place.

Economics Data catalogued in Bill Goffe's Summer 1994 Journal of Economic
Perspectives article entitled Resources for Economists on the Internet (Current version:
Vol. 1, No. 12, January, 1996).

Actuarial Resources on the Internet

Jacobson Associates' listing of job openings for actuaries

This page has been visited XX imes since October 24, 1995.
Last Updated 3/7/96.

206



Appendix 3: Financial And Economics Database Products

(http://www.risknet.com/dfa/finance/commerce.htm)

CASUALTY ACTUARIAL SOCIETY
Financial and Economics Databases

This page provides information concerning commercially available financial and economics database products.

© Berkeley Options Database

Tha Rarlalay Ontiane Nata Race ic a hictarical recard af trades and
1€ GETKCITY UPUOCHS Lata Sasd 1S a aisidrica: reCOrd o1 rades and

to the nearest second, for all standardized contracts traded on the Chicago Board Options.
Exchange. The data base, which is derived from the CBOE's Market Data Retrieval tapes,
begins in August, 1976 and is updated annually. Data are currently available through
December, 1994.

MBoston International Advisors
Boston International Advisors maintains a family of international stock market indices
with historic retums and values beginning in 1975. The indices cover the performance of
sectors of country stock markets based on growth and market capitalization.
Approximately 5,000 stocks are included from over forty countries.

BCitibase
The CITIBASE database contains approximately 7,000 monthly, quarterly, and annual
economic and financial time series that date back to 1946 when available and end with
the latest available observations. These data are collected from various government and
private sources and distributed by FAME Information Services - a subsidiary of
CITICORP. Monthly and Quarterly variable definitions and periods of time series are
available on-line, as is a spec sheet that summarizes FAME's Financial, Index,
Fundamentals, and Estimates Data Groups.

@CRSP (Center for Research in Security Prices)
The Center for Research in Security Prices (CRSP) at the University of Chicago produces .
a number of data files on U.S stocks and government securities. The CRSP databases are
very comprehensive and reliable, constituting one of the most important sources of
security market data for researchers in the field of financial economics.

. The CRSP Stock Files contain stock price and return data for companies listed on the
New York (NYSE), American (AMEX), and NASDAQ Stock Exchanges. Daily data
are available from as early as 1962 for NYSE/AMEX securities, and 1972 for
NASDAQ securities.
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The CRSP Bond Files contain term structure, bond price and return data. End-of-day
price data on virtually all negotiable direct obligations of the United States Treasury
are available during the period December 31, 1925, to the present.

More detailed information about these databases can be obtained by downloading and
printing the 205 page manual for the CRSP Stock Files and the 75 page manual for the
CRSP Bond Files. (Important Note: You will need to download and install a free
program called Adobe Acrobat in order to view and print either of these documents.)

QHoover's MasterList Plus Database

The Hoover's MasterList database was created and is maintained by The Reference Press,
Inc. of Austin, Texas. This searchable database contains information on 6,700 publicly
traded companies in the United States. Each company profile provides basic information
needed for locating, communicating with, and evaluating the companies listed in the
database.

EIntex Solutions - Collateralized Mortgage Obligation data

Intex CMO Database lists over 30,000 bonds, modeled and updated every month.

@Standard and Poors

Includes Comstock, J. J. Kenny Drake, Ratings Services, Platt's, MMS International,
DRI/McGraw Hill, and the CUSIP Service Bureau.

@Standard & Poors Compustat

au.s.

COMPUSTAT provides superior accounting statement information on companies from
around the world.

Commerce Department STAT-USA /Internet

The Department of Commerce gathers business and economic information from over 50
Federal Agencies and redistributes this information for a nominal subscription fee from
its world wide web site. STAT-USA/Internet provides access to the

National Trade Data Bank (NTDB), the

National Economic, Social, and Envitonmental Data Bank (NESE-DB), the

Economic Bulletin Board, the Global Business Opportunities Service, and the

Bureau of Economic Analysis databases.

This page has been visited CEXERk; mes since March 5, 1996.

Last Updated 3/7/96.
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Appendix 4: Free Financial And Economics Data Sources

(http://www.risknet.com/dfa/finance/free.htm)

CASUALTY ACTUARIAL SOCIETY

Free Data Sources
This page provides information concerning freely available financial and economics data sources

General Economic Data
ElFederal Reserve Bank of St. Louis' FRED Database

FRED stands for "Federal Reserve Economic Data". This free data source provides
historical U.S. economic and financial data, including daily U.S. interest rates, monetary
and business indicators, exchange rates, and regional economic data.

@iBusiness Cycle Data
Gordon's Business Cycle book a lengthy appendix which contains finance and
macroeconomic data. It is provided in a text file (300K) in a SAS program format (not a
SAS dataset) here.

8Consumer Price Index. Monthly, 1913-1995

Financial Market Data

SFinancial Markets Data from the Federal Reserve Bank of Chicago
The Federal Reserve Bank of Chicago provides free and comprehensive financial markets
datasets, including Foreign Exchange Rates, Selected Interest Rates, and Money Markets.
Many datasets include daily data going all the back to 1971.

EJP Morgan
JP Morgan is using the Internet to offer information needed to implement their
RiskMetrics methodology and to provide data which can help managers control risk of
their positions by using information on volatilities and correlations among over 300
financial assets. J.P. Morgan offers the following data for free: Commodity Index,
Currency Indices, Emerging Markets Bond Index Plus, and a Government Bond Index.

EMonthly Treasury Bill Rates, 1934-1995
This series provides averages of the daily closing T-Bill rate.

&Treasury Bond Futures Data, 1994-95

This is an ASCII data file that contains high and low prices over 20 minute intervals on
Treasury Bond futures from Jan 7 1994 to Feb 3 1995, for a total of 5347 observations.
Variables reported include date, time, high price and low price. An hourly series is also
available.
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#HTerm Structure Data Excel spreadsheet - 1.1 megabytes

@McCulloch/Kwen US Term Structure Database
This data set offers U.S. Treasury term structure data for the period 1947-1991.

& Aggregate Stock Market Information
Most of the following data are current as of year end 1995:

. All 4,417 Tickers, Company Names and SIC Codes for NYSE

. All 10.616 Tickers, Company Names and SIC Codes for OTC

. All 1,445 Tickers, Company Names and SIC Codes for AMEX

. The 500 Companies in S & P 500 Ranked by 1995 Stock Price Appreciation
. Dow Jones Industrials Performance Since 1929

. Monthly Stock Price Performance of S&P 500 since 1984 (Last 2/29/96)

. The 500 Companies in S & P 500 -- Stock Price Performance P/E Yields, etc.

(@ New York Stock Exchange Daily Returns & Volume
1962-1992

E]Weekly Dow Jones Industrial Average 1900-1989
This dataset lists an important aggregate stock price index beginning in 1900. The data is
in date, high, low, close, volume format. A daily version of this dataset is also available,
but it nearly 2 megabytes in size and starts in 1915.

Corporate Data

BEEDGAR Database
EDGAR is the Electronic Data Gathering, Analysis, and Retrieval system. It is a free
service provided by the Securities and Exchange Commission (SEC). EDGAR is an
important source of corporate financial report data, providing online access to the
complete 10Ks, 14Ds, S3s, 8Ks etc. of most public companies in the US over the last few
years. Nearly three-quarters of the publicly traded domestic (U.S.) companies use
EDGAR to make the majority of their filings, and all registrants will be required to do so
starting May 1996.

&Corporate Debt Issues, 1983-93
This Excel file (2.7MB) lists over 10,000 bonds, convertibles, Euronotes, MTNs, Warrant
bonds and other issues by company and CUSIP number (where available). Click here to
download the same file in comma separated value format (1MB). For more information
about the data click here.

This page has been visited XXXk imes since March 5, 1996.
Last Updated 3/7/96.
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Appendix 5: InsuranceData Sources - A.M. Best

(http://www.risknet.com/dfa/insurance/ambest/ambest.htm)

A. M. Best

Insurance Data

This page points to insurance data available from A. M. Best Company.

More detailed information about A. M. Best Property and Casualty Insurance database products

can be obtained from their world wide web site. The address for A. M. Best's home page on the
Warld Wide Weh ic httn://uuany amhect com

ywOIIG wWiIGC WCOU IS TP/ Wi ey, ailioC 5L U,

Details on the A.M. Best Database

Like OneSource, A.M. Best is a valued added reseller of NAIC annual statement data. A.M. Best
runs each company's statement data through a rigorous process of intra and inter-page cross
checks to ensure accuracy. Furthermore, A.M. Best also provides other useful information that
extends well beyond the data on a company's annual statement.

The two key file types of interest to researchers include the A.M. Best Statement and Product
Files. Statement Files retain the basic organization structure of the NAIC annual statement. All
key data items found on a given page or schedule are presented in an individual file. Product
Files present selections of data provided in several of A.M. Best's print publications, such as
Best's Insurance Reports, Best's Insurance News, Best's Key Rating Guide, Best's Market Guide,
and Best's Experience By State (By Line). Furthermore, A.M. Best also provides a Custom Files
service that supports the creation of custom data selections. Furthermore, Best's has developed its
own proprietary network for online access to data called BestLink, allowing access via local
access telephone numbers as well as with IBM's advantis network. The pricing of these
services (valid as of March 1996) are as follows):

STATEMENT FILES retain the basic organization structure of the NAIC annual P statement.
All key data items found on a given page or schedule are presented in an individual file.

Statement Standard Any Each Additional Five Years of
Pages Products Single Year of Data Data
Includedon  Available Year of
File Data
PC-BF-01 Balance Sheet 2.3 Tape/Disk $525 $175 $1,050
PC-BF-02 Income Statement 4 Tape/Disk $375 $125 $750
PC-BF-03 Cash Flow 5 Tape/Disk $375 $125 $750
PC-BF-04 Investment Income & 6 Tape/Disk $525 $175 $1,050
Capital Gains/Losses
PC-BF-06 Premiums Written (By 8 Tape/Disk $525 $175 $1,050
Line)
PC-BF-09 General Expenses 1 Tape/Disk $525 $175 $1.050
PC-BF-11 Stocks&Bonds-Summary 29 Tape/Disk $555 $185 $1.110
PC-BF-12 Bonds-Quality& Maturity 30-33 Tape $975 $325 $1,950
Distribution
PC-BF-14 Loss Reserves 72-126 Tape/CD $8,500 N/A N/A
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PC-BF-14-Z  Loss Reserves-Summary 72,73 Tape $850 N/A N/A

PC-BF-15 Direct Business (By State) 131 Tape/Disk $525 $175 $1,050
PC-SF-16 Underwriting Analysis IEE Tape/CD $1,200 $400 $2,400
with Ratios (By Line) -
IEE
PC-SF-52* P/C Best's Statement File N/A CD N/A N/A $10,000

{with Best's Ratings)

PRODUCT FILES present selections of data provided in several of A.M. Best's Statement
printed publications, such as Best's Insurance Reports, Best's Key Rating Guide, Best's Market
Guide, and Best's Experience By State (By Line).

Statement  Standard Any Single Each Five Years
Pages Products Year of Data  Additional of Data
Included  Available Year of Data
on File
PC-PF-01 Name & Address N/A Tape/Disk $450 N/A N/A
PC-PF-02* P/C Exp. by State (By Linc) 14:All Tape/CD $4,500 $1,500 $9,000
All Sts.-Standard Lines Sts.
PC-PF-02A*  P/C Exp. by State (By Line) 14:Ea, St.  Tape $373 $125 $750
Standard Lines
PC-PF-03* P/C Exp. by State (By Line) 14:All Tape $4,500 $1,500 $9,000
All Sts.-Combined Lines Sts.
PC-PF-03A*  P/C Exp. by State (By Line) 14:Ea. St. Tape $375 $125 $750
Per St.-Combined Lines
PC-PF-05* P/C Key Rating Guide (with N/A Disk N/A N/A $175
Best's Ratings)-Regular
Service
PC-PF-05* P/C Key Rating Guide (with N/A Disk N/A N/A $535
Best's Ratings)-Full Service
PC-PF-05S P/C Key Rating Guide- N/A Disk N/A N/A S75
Supplement (2nd & 3rd Qtrs.)
PC-PF-50 P/C Best's Ins. Reports (with N/A CcD $2,500 N/A N/A
Best's Ratings)-Regular
Service ..
PC-PF-50 P/C Best's Ins. Reports (with ~ N/A CD $2,860 N/A N/A
Best's Ratings)-Full Service
PC-PF-01 Name & Address N/A Tape/Disk $450 N/A N/A

BESTLINK SERVICES is A. M. Best's proprietary online database that provides
continually updated financial data on more than 3,800 insurers, as well as daily insurance-related
news.

Unlimited Access Options

Users requiring frequent and extensive access to one or more BestLink databases can purchase
the right to unlimited access to the file(s) by prepaying the equivalent of the basic file cost
(magnetic tape or CD-ROM file) plus 30%. If you have already purchased a current data year file
on tape or CD-ROM, you can be credited the tape or CD-ROM price toward the unlimited access
price and charged the additional 30%. (Example: If you purchased the Statement File at $10,000,
you can receive unlimited BestLink access for an additional $3,000.)* Note: The $15 per hour
Connect Time charge will still apply.
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Tape/CD Price Unlimited Online Access Total Price

Charge (30%)

Loss Reserves/Schedule P (P/C) $8,500 $2,550 $11,050
Schedule D (P/C) $3,060 $918 $3,978
Underwriting Anafysis with Ratios (IEE)~(P/C) $2,400 $720 $3,i20
Experience By State (By Line)-Std. Lines (P/C) $9.000 $2,700 $11,700
Experience By State (By Line)-Cmb. Lines (P/C) $9,000 $2,700 $11,700
Insurance News $500 $150 $650
Statement File* (P/C) $10,000 $3,000 $13,000
Best's Company Reports $2,500 $750 $3,250

*Best's Statement File on CD-ROM includes unlimited access to the corresponding databases on BestLink: Profile Annual,
Profile Quarterly, Financial, Schedule D, and Rei -Si y (P/C only).

CUSTOM FILES

To order custom data products, call A. M. Best Custom Products & Services at (908) 439-2200,
extension 5383.
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Appendix 6: InsuranceData Sources - Insurance Services Olffice (ISO)

(http://www.risknet.com/dfa/insurance/iso/iso.htm)

Insurance Services Office
Insurance Data

This page points to insurance data available from Insurance Services Office (ISO).

_
_

The Insurance Services Office section of DFA Web is under "heavy construction”. Please come
back later for a more complete site.
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Appendix 7: InsuranceData Sources - OneSource

(http://www.risknet.com/dfa/insurance/onesource/onesource.htm)

OneSource US Insurance: Property and
Casualty

Insurance Data

This page provides details concerning insurance database services available from OneSource.

More detailed information about the OneSource US Insurance: Property and Casualty products,
including software demos, can be obtained from their world wide web site. The address for
OneSource's home page on the World Wide Web is http://www.onesource.com.

Details on the OneSource Database

1. Definition

OneSource Information Services (OIS) offers more than 50 electronic business information titles
that respond to market demands for products that combine high quality information with state-of-
the-art access and manipulation software.

In the case of the OneSource US Insurance: Property and Casualty products, OIS delivers 5
annual statement information titles that include the company financials, (including the IEEs), the
page 14 State and LOB information, and the full details of Schedules P, F and D. The source of
the information is the National Association of Insurance Commissioners (NAIC) with whom OIS
has a long term redistribution agreement.

2. How long a time series is available?

Most of the financial information is presented in an integrated 5 year historical series. The
Schedule P, F and D products are current year only.

3. Cost and feasibility of obtaining

OneSource does not publish a price list to the public, but their products are delivered on a flat
price annual subscription basis that varies with number of databases accessed and number of user
groups. While the data are delivered on CD/ROM, OneSource "products” include customer-
specific training and intensive support services. The products are Windows-based and can be run
on i486 or higher PCs with configurations for stand alone computers or local area networks
(LANS).

The first delivery of the annual financial information, including Schedule P, occurs at the end of
March for the previous year's data. OIS refreshes the database around April 15th and around the
15th of each month there after. New information continues to flow in during the spring and early
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summer in consonance with the deadlines for the various filings, i.e. Combined Filings for
groups, quarterly filings, etc. Schedules D and F are initially released around the 20th of April
and updated two additional times in the summer and fall.

4. Legal considerations: who owns and confidentiality

Subscribers must sign and adhere to the provisions of OneSource's product license agreement.
Like other software license agreements, this document requires the subscriber to acknowledge
that the product is a copyrighted work, and that the data is the property of the data vendor. The
agreement spells out how the product can be installed & used, what the subscriber's redistribution
rights and restrictions are, and addresses the issue of indemnity.

5. Available by company or by larger groupings?

The financials and Schedule P are available for both individual companies and for the
"combined" NAIC filing groups. Users can manipulate the datadase using 10,000+ different
criteria to form additional groupings for peer group analysis or benchmarking.

6. Other relevant information

The products can be directly accessed from either Lotus 1-2-3 or Microsoft Excel by using the
OneSource Add-in. This feature empowers the spreadsheet user who wants to develop
proprietary analytical and graphical models. The needed information is tagged using controls in
the add-in software and it then flows automatically into the spreadsheet from the CD/ROM.

OneSource's Schedule D holdings database includes the complete securities portfolio of every
holding of every company. The holdings data can be manipulated to develop groupings based
types, classes and quality, as well as many other criteria.
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Appendix 8: InsuranceData Sources - NAIC

(http://www.risknet.com/dfa/insurance/naic/naic.htm)

National Association of Insurance

Commissioners
Insurance Data

This page provides details concerning insurance database services available from National
Association of Insurance Commissioners (NAIC).

The NAIC Database Products Catalog provides further descriptive information. The address for
the NAIC's home page on the World Wide Web is http://www.naic.org

Details on the NAIC Database

Definition: The NAIC maintains the largest insurance industry database in the world, with over
4700 Life/Health and Property Casualty companies. This accounts for 98% of all U.S. domiciled
insurance companies. The information on the NAIC database captures nearly all of the
information from the statutory filings that the insurance companies are required to submit. The
database also contains information filed by Title, Fratemal, and HMDI companies.

The number of insurance companies reporting to the NAIC and the availability of their data to
the commercial market is as follows:

Company Type Number of Filing Date Data Availability
"~ Companies

Life 1,692 3/1 41

Property 2,685 in 4/1

Fraternal 139 in 4N

HMDI 119 3N 4/1

Title 91 n ' 4/1

Combined Filings P/C 325 5/1 5/15

L/H 234

The information on the database dates back to 1984. Any or all years of data can be extracted
from the database.

Timeliness: Preliminary data for the current filing year is available as early as the first week in
April, as indicated in the table above. The database is finalized and complete in the second week
of June. :
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Formats Available: Requests for nearly any media or format are easily accommodated by the
NAIC. Available media types include CD-ROM, 3.5 inch diskette, cartridge tape, or reel tape.
Data can be produced in mainframe formats, comma delimited formats for use with PC's, as well
as many other formats,

Legal Considerations : The NAIC requires customers to sign a Database License Agreement.
This agreement is a standard contract that describes payment, shipping, and order processing
terms. The contract also describes how the data may be used. The standard License Agreement
specifies that the data is for internal use only and redistribution is not allowed. When necessary, a
customized License Agreement can be written to accommodate certain uses not permitted in the
standard contract.

Availability by individual company or company groupings: The customer has total flexibility
in the selection of the type and number of companies selected. Data can be extracted for all
companies in the database, or for customized lists of companies. The NAIC Database Products
technical team can also extract data for companies chosen by custom selection criteria as
specified by the customer.

Pricing: There are standard prices for many parts of the database. Pricing for some of the most
commonly requested information is as follows:

Life/Health Property Casualty

Standard "A" List $24,000 $34,500
(see attached list of schedules)
Schedule D Detail (All Parts) $ 5,000 $ 8,000

Schedule F (All Parts) $ 8,000
Schedule S (All Parts) $4,500

State Page Data $2,300 $3,300
State Page CD-ROM/Reports $ 3,000 $ 4,000

Balance Sheet/Income Statement  §$ 1,100 $ 1,300

Pricing for custom orders is determined by individual estimate.

218



Appendix 9: InsuranceData Sources - NCCI

(http://www.risknet.com/dfa/insurance/ncci/ncci.htm)

National Council on Compensation Insurance
Insurance Data

This page PIUVIUCD details concer '115 insurance
Council on Compensation Insurance (NCCI).

More detailed information conceming the NCCI's InsNet Online Service and
Research and Reference Products can be found on NCCI's home page on the World Wide Web,
located at http://bocaraton.com/ncci/.

Details on the NCCI Databases

The National Council on Compensation Insurance, Inc. (NCCI) headquartered in Boca Raton,
Florida, is the nation's largest information company serving the voluntary and involuntary
Workers Compensation marketplace. The corporation provides database products, software,
publications and consultation services to state funds, self insureds, independent bureaus, agents,
regulatory authorities, legislatures and more than 700 insurance companies.

A description of four of NCCI's major databases follows:

Policy Issue Capture System (PICS)

The Policy Issue Capture System serves as the database of workers compensation and employers
liability policies. PICS data is the information from the actual policy information page issued by
the insurer to the insured. Policy data is used for controlling the submission of WCSP data, the
distribution of experience ratings to insurers and for NCCI's Proof of Coverage service provided
to Industrial Accident Boards and Commissions. Information on policies for the latest three years
is readily available.

Financial Data Calls

NCCI collects aggregate financial data calls which are used to determine the aggregate rate or
loss cost level in a state. The primary ratemaking calls are the Policy Year and Accident Year
Calls for Compensation Experience by State. These calls gather collected premiums, premiums at
a common level, and losses for over 15 years of aggregate financial data by state.

A major product produced from the Financial Data Calls is Loss Development Exhibits (Product
Code 2911) This package of exhibits provides a history of loss development factors by state for
both policy year and accident year experience. Factors are provided for four development
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methodologies for indemnity, medical and total losses. The development methodologies are paid,
paid plus case, incurred excluding IBNR, and incurred including IBNR. Additional exhibits in
the package include paid to incurred ratios and premium development factors as well as
summarized financial data. This product is available in hard copy or on diskette. The price is
$1,000 per state for hard copy ($350 per state for affiliates) and $2,000 per state for diskette
(85700 per state for affiliates).

Workers Compensation Statistical Plan (WCSP)

Workers Compensation Plan data is the audited exposure, premium, and loss experience
summarized by policy and state on a unit report for each Workers Compensation policy. The
WCSP requires losses on the unit report to be valued as of the 18 months after policy effective
date. Subsequent unit reports through a fifth report are required at 12 month intervals thereafter
for any policies which contain open claims as of the previous submission.

A major product produced from this database is Class Experience (Schedule Z Summary Data)
(Product Code 2838) Schedule Z summarizes by class the combined experience for all affiliates
in a state as reported on the Workers Compensation Statistical Plan. The report provides the class
experience including exposures, premiums, indemnity losses and medical losses and claim
counts by injury type. Experience is furnished for the latest five policy periods available. This
product is available on hard copy, diskette, or magnetic tape. Beginning approximately second
quarter 1996 Class Experience will be available through InsNet, NCCI's on-line network.

Detailed Claim Information

Detailed Claim Information (DCI) collects 85 detailed data elements describing the insured, the
claimant, the claim characteristics, the benefits and payment made, and the claim administration
details of individual claims. The purpose of DCI is to provide insight into the underlying
elements inherent in the aggregate costs of workers compensation insurance. Claims are selected
based on a sampling methodology which concentrates on collecting information for major
injuries. Claims are valued at six months after accident date with subsequent reports required at
annual intervals up to ten reports for any claims that remain open.

New summary publications from this database will be produced in 1996. Custom data extracts
are available on diskette or magnetic tape.

Other Products of Special Interest to Actuaries

The Annual Statistical Bulletin (Product Code 2845) $225 ($145 affiliates) contains a summary
of the latest and most significant statistics on Workers Compensation available. Reference tables
provide histories of premium and benefit level changes by state, expense data, tax provisions,
benefit provision summaries, loss development factors, and claim frequency and severity
exhibits. The Bulletin in published annually in hard copy format.
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Economic Conditions Report (Product Code 3043) This compendium of data and forecasts from
government agencies, private companies, and universities contains comprehensive statistics that
cannot be found anywhere else in one source. It provides indications of the changes that are
occurring in a state's economy and how those changes impact the Workers Compensation system.
Available in hard copy for $250 per state per year. ($125 per state per year for affiliates).

Legal Considerations
NCCI owns the data contained in its databases and licenses it to interested persons.

Available By Company

Specific carrier and specific risk data is not available. Custom requests may be produced for
specific groups of carriers as long as the individual carrier data is protected.

Other Relevant Information

NCCI affiliates receive significant discounts on most NCCI products and services. NCCI
affiliation programs are available for private carriers, state funds, self insurance groups and
reinsurers.

For a complete catalogue of NCCI products and services or for more information on any NCCI
product call Customer Service at 800-NCCI-123 (800-622-4123) from 8 AM to 8 PM EST.
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Reflecting Reinsurance Costs in Rate
Indications for Homeowners Insurance
by Mark J. Homan, FCAS

223



Reflecting Reinsurance Costs in Rate Indications
for Homeowners Insurance
by
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Mr. Homan is the Director of Personal Lines Catastrophe Management with ITT
Hartford. Prior to this position, he was the Director of State Management for
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Personal Property Pricing with ITT Hartford. He received a B.A. degree, summa
cum laude, with majors in Mathematics and Quantitative Methods from the
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of the American Academy of Actuaries and a Chartered Property Casualty
Underwriter (1995). He has authored two other papers on property ratemaking,
Homeowners Insurance Pricing and Homeowners Excess Wind Loads:
Augmenting the ISO Wind Procedure.

Abstract

This paper presents the rationale for reflecting reinsurance costs explicitly in
Homeowners indications. Catastrophe reinsurance has become relatively
expensive and it should be reflected in rates to ensure rate adequacy. The basic
concepts to adjust historical losses for the benefits of reinsurance and to reflect the
reinsurance premium will be addressed. One approach for dealing with the
concepts will be illustrated with some discussion of possible variations.
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Reflecting Reinsurance Costs in Rate Indications
for Homeowners Insurance

Overview

Reinsurance costs are widely recognized as a legitimate cost of doing business. In the

past, these costs were not explicitly reflected in Homeowners rate level indications but

extent that the loss portion of reinsurance costs was assumed to be in the direct losses.
The additional transaction costs were not always getting into the indications, and then,

only indirectly.

Most often reinsurance costs were simply ignored, since most of the ratemaking
procedures used are based on the ISO procedures. Since ISO is a bureau, not an
insurance company, they do not purchase reinsurance so they do not recognize it in their
techniques. Also, now that ISO produces only loss costs rather than rates, and since
reinsurance is an expense item, reinsurance costs should not be part of the ISO loss cost

procedure.
In the past, companies relied on the excess wind procedure to give them an adequate

loading for catastrophe events. If it were sufficient, then the companies were only

overlooking the transaction costs of reinsurance. When the reinsurance costs were
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relatively low, the transaction costs were low, so the omission of reinsurance costs had

only a small impact on the rate indications.

Now catastrophe reinsurance costs are much higher and we know that the excess wind
procedure does not generate an adequate catastrophe loading. It is no longer prudent to
omit reinsurance costs from explicit treatment and still expect to produce an adequate
rate. Thus, the indication procedure should be changed to allow for direct reflection of
reinsurance costs. In many states there is not sufficient room to fully reflect these costs

implicitly, if they ever were reflected.

This paper will outline a basic approach that could be taken to reflect reinsurance costs in
ratemaking. The paper discusses reflecting the cost of a property catastrophe treaty
(referred throughout as catastrophe reinsurance) but the techniques could be applied to

any reinsurance treaty.

Underlying Justification
In reviewing the CAS Statement of Principles Regarding Property and Casualty
Insurance Ratemaking, one can find several items that touch on the validity of reflecting

reinsurance costs in rates. Two items are of particular interest.
Principle 2 states that “a rate provides for all costs associated with the transfer of risk.”

Under the Considerations section, the Principles state that “Consideration should be given

to the effect of reinsurance arrangements.”
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There are two primary impacts from a reinsurance arrangement. First is the cost for the
risk transfer, the reinsurance premium, and second is the reduction in incurred losses, the
loss recoveries. Part of the process of risk transfer that an insurance company uses is the
transfer of a portion of their risk to other parties via reinsurance transactions. Such risk
transfer is necessary to preserve the financial solvency of the insurer and protect their
assets so that claims may be paid. This makes the reinsurance cost a component in the
overall cost associated with the transfer of risk. Thus, the Statement of Principles does
not merely allow for the reflection of reinsurance costs but compels us to consider such

costs.

Some may also question whether catastrophe reinsurance is a legitimate cost of doing
business. It seems that its primary function is to protect the insurance company’s assets
after a significant event. The arguments against catastrophe reinsurance as a legitimate
cost are getting much quieter in recent years. It is clear that catastrophe reinsurance is
important for a company to maintain it’s ability to pay claims. Several companies
become insolvent after Hurricane Andrew and the Northridge earthquake. Additional
catastrophe reinsurance may have protected many of these companies. In addition, A.M.
Best now reviews the catastrophe exposure and catastrophe reinsurance programs of a
company as part of their rating procedure. Inadequate management of catastrophes, such
as not managing exposure levels with appropriate reinsurance, will lead to a lower rating
which may impact a company’s marketing. Clearly catastrophe reinsurance has become a

necessity for any company with significant property writings. Several states now have

227




specific regulations allowing the reflection of reinsurance costs in ratemaking,

recognizing their validity.

As stated earlier, some companies may have been implicitly reflecting reinsurance costs
in their rates through the selection of a rate change based on the indications. More likely,

) N [ ok Al e b s ol
I believe that these costs were basi

cally ignored in the past.
implicitly, there must be sufficient room between the indications filed and the actual
change that the company feels is necessary. This gap stems primarily from the allowable
profit and contingency load and that the company truly feels it needs. However, as more
states are becoming tighter on how profit loads are aetemined, the gap is getting smaller.
At the same time, catastrophe reinsurance costs have increased to historically high levels.
This leaves insufficient room in the more cat prone states to reflect these costs implicitly,
leading to the need to reflect these costs explicitly, at least for catastrophe reinsurance.
The smaller costs from other reinsurance programs are still ignored by most companies,

or treated implicitly. In many cases, their costs may be too small to justify the effort to

reflect them explicitly.

Basic Outline

At my company, we are only reflecting our catastrophe reinsurance treaty in indications
at this time. This paper will only address this one treaty and not the other types of
reinsurance that a company may purchase. While other forms of reinsurance could also
be reflected using a similar approach to that taken for the catastrophe treaty, I will not

develop all the comparable allocations of premium and loss benefit that would be needed.
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These other reinsurance treaties do not represent nearly as significant a cost to
Homeowners as does a catastrophe treaty. So, at this time, I have chosen to limit my

discussion to reflecting catastrophe treaty costs.

A reinsurance premium contains two primary components. The first is the loss benefit

term for the coverage purchased. The second component is the reinsurer's expenses and
profit, the transaction costs. In theory, the expected loss recoveries should already be
reflected in the direct loss estimates in traditional indication procedures, so it is only the

transaction costs for reinsurance that need to be added.

There are some catastrophe treaties that include a payback provision. In essence, this
reduces the loss recovery benefit of the treaty, since the reinsurer is basically loaning the

funds that will be paid back. Thus, the loss benefit should be reduced by the funds that

will be paid back.

There are two possible approaches to loading in the reinsurance transaction costs.
Theoretically, they both will yield the same answer, with perfect information. But the
practicalities of applying the methods will drive the choice of which method to use. The
first approach would be to break down the reinsurance premium into the loss and
transaction cost components and then reflect only the transaction cost portion as an
additional expense. However, it is extremely difficult, if not impossible, to determine this

breakdown. Reinsurers do not file rates nor do they typically release such breakdowns.
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In fact, catastrophe reinsurance costs are as much a function of supply and demand as
they are the underlying economics. So this first approach is theoretical only and is not

practically feasible.

The second approach eliminates the need to determine the breakdown. This approach
reduces the projected losses used in the rate level indications to reflect the expected
benefits of reinsurance and then loads the entire reinsurance premium as an expense. It

is this second approach that I advocate and will present here.

Net Loss plus Reinsurance Approach

The approach that we have recently developed is referred to as the Net Loss plus
Reinsurance Approach. The basic procedure is to determine the reinsurance premium by
state, adjust the losses to a net basis (after reinsurance) and load the reinsurance cost as an
expense item. The following sections will outline each step in more detail. As used
herein, the term “net” refers only to net of the reinsurance treaties which costs are being
explicitly loaded, not final net of all reinsurance, pools, etc. Also, the premiums are on a
direct basis, not net.

Allocating Reinsurance Premiuin to State

The first step in reflecting the reinsurance costs in the rate indications is to determine
what these costs are for each state. Most catastrophe treaties are countrywide, corporate
level treaties. Therefore, we must break down the total reinsurance premium to state and

line. While this allocation will vary depending on individual company circumstances, a
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general approach will be discussed here. An illustration of this allocation is shown in
Exhibit 1. The example shown is just for one line. If multiple lines were involved, they

could be treated as if they were additional states.

231




Exhibit 1
Reinsurance Premium Allocation to State
Estimated Allocated Residual

Annual Premium Allocation Total
Subject  Lossto Based on Based on Reinsurance

State Premium Treaty Losses* Premium Allocation
A 18,975,000 2,345,000 3,165,750 10,071 3,175,821
B 7,650,000 0 0 4,060 4,060
C 17,325,000 1,350,000 1,822,500 9,195 1,831,695
D 11,038,000 0 0 5,858 5,858
E 650,000 0 0 345 345
F 4,650,000 980,000 1,323,000 2,468 1,325,468
G 22,950,000 1,765,000 2,382,750 12,180 2,394,930
H 4,850,000 0 0 2,574 2,574
I 4,425,000 375,000 506,250 2,349 508,599
J 1,225,000 0 0 650 650

Total 93,738,000 6,815,000 9,200,250 49,750 9,250,000

Total Reinsurance Premium 9,250,000
Residual Premium 49,750

* . Estimated Premium is Expected loss loaded by 35% for
Expenses, Profit and Risk Load
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The allocation is done in two stages. First, the expected losses for major events are
determined for each state that has a significant exposure to large catastrophes such as
hurricanes or earthquakes. We estimate these losses through the use of models. We use
both an in-house single event model for hurricane and earthquake and a simulation model
from an outside vendor to develop estimates. These outside vendor models are becoming
widely used within the industry and all can provide loss estimates for extreme events on a
state basis. Earthquake must be split separate from hurricane since not all of these losses
are covered by Homeowners. In fact, the majority are covered under a separate line.
Some earthquake losses are covered in certain Homeowners endorsements, such as an “al}
risks” contents endorsement like the ISO HO-15. This portion of the earthquake losses
should be allocated to Homeowners along with the hurricane estimates. These major
events represent a significant portion of the catastrophe treaty costs, since these are the

events that the treaty is expected to cover.

The expected losses are then loaded by a factor to represent the reinsurer’s expenses, risk
load and profit. For illustration, the exhibit shows a 35% load. This converts the
expected losses to an estimated premium. To the extent possible, the loading should
represent that actually used by the reinsurer in the treaty. Often, this is- not directly
available from the reinsurer, so it must be estimated. The loading, actual or estimated,
will vary based on the reinsurance market and the amount of capacity in the market
relative to demand. The procedure described is somewhat sensitive to the loading

selected. A higher loading will allocate more of the treaty costs based on the expected
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losses from major events. Some analysis has estimated this load to run as high as 50% to

100% of the expected losses for some catastrophe treaties.

There is typically some additional cost beyond the major events. This explains why there
is some residual reinsurance premium to allocate beyond the major events. The residual
ased on subject premium (the premium for lines sul
treaty). Every state receives some allocation, even if a small one, since there can be
multi-state events that will entail a reinsurance recovery. The amount of premium
allocated based on subject premium should be fairly small and will depend on the
expected losses and loading chosen. Using the subject premium is not completely
accurate since states with similar premium volumes may have significantly different

exposures to catastrophic events. Further research into the use of loss estimates from

certain perils or events rather than subject premium will improve this allocation.

Coastal states will have a greater allocation than the inland states, such as the Midwest,
since they have more significant catastrophe potential. In addition, the Homeowners line
has more catastrophe potential than Inland Marine or Automobile Physical Damage
which are also subject to the catastrophe treaty. So coastal Homeowners states will

receive a catastrophe treaty allocation that is greater than the corporate average.

Adjusting Losses to a Net Basis
Since the selected procedure reflects the full reinsurance premium as an expense, we can

not reflect the full loss loading. Otherwise, we would be double counting some losses; in
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both the reinsurance costs and in the direct losses. Therefore, we adjust the direct losses
to a net basis (i.e. after catastrophe reinsurance), to eliminate any double counting.
Since most large events are capped to their net basis, it is less important that they are
initially estimated accurately. The amount of loss that is removed is not important.
These losses are loaded through the reinsurance premium. Thus, the reinsurance

premium can serve to provide the necessary. loading for larger events.

The actuary should also determine whether certain events are capable of exceeding the
upper limit of the treaty. If an event blows through the treaty, the company will be
responsible to pay these losses with no recovery. Clearly, these additional losses beyond

the treaty limit should continue to be reflected in the rates at a 100% basis.

The method discussed here is based on using an excess wind procedure to develop the
underlying loss estimates. Further discussion on variations to the approach based on the
method used to determine the underlying loss loading is included in Appendix A. We
adjust the losses to a net basis in two ways. First, the excess wind procedure is modified
so that any wind event reflected in the long term load is adjusted to a net basis. Second,
any event in the 5 year indication experience period that is other than wind or hail, and
thus not in the excess wind procedure, and which exceeds the treaty threshold is also

capped. The catastrophe treaty threshold is determined by state.

Assuming that the treaty is corporate in nature, Homeowners losses do not need to reach

the corporate attachment point to generate recoveries. Recoveries on the Homeowners
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line will begin once the total corporate losses exceed the attachment point. To determine
the level of losses at which the catastrophe treaty will start to cover Homeowners losses,
the ratio of the Homeowners reinsurance premium to the total reinsurance premium for
the state is multiplied by the corporate treaty attachment point. For example, if
Homeowners represents 39% of a state’s reinsurance premium and the corporate treaty
attachment point is $50 million; then, the threshold for Homeowners is $19.5 million.
This means that that if Homeowners losses exceed $19.5 million, we expect that the
corporate losses will exceed $50 million and we will then recover losses above that point
from our reinsurer. However, each actual event will have a different mix of damage for
each line covered. So while this may be the expected values for line by line retention, it
will vary by event. Alternative approaches, such as modeling of each event, may not

need to rely on this assumption.

In addition, most catastrophe treaties do not pay 100% of the losses subject to the treaty.
There is some copayment by the insurer to make sure that the company is still vigilant in
their loss settlement practices. For example, if a catastrophe treaty will pay 95% of the
losses subject to the treaty, we should retain 5% of the losses above the threshold. The

example shown in Exhibit 2 reflects a 5% copayment.

As mentioned earlier, the basic approach here is based on a variation of the ISO Excess
Wind Procedure. The variation on the previous ISO methodology augments the excess
wind procedure by reflecting a longer historical period through the application of

modeling. A 50 year plus event is reflected to extend the historical period from the
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current 35 years or so. In many states, the limited history is inadequate to produce a
proper loading (for catastrophes, 35 years is still inadequate). By augmenting the actual
history with a projection for more extreme events, a more accurate loading can be
developed. Thus, we are no longer at the mercy of what may have happened in the
historical period. This event is determined from the models by taking the top two

percentile of potential events and deriving an annual expected loss from such events.

We remove any actual year from the historical period any loss that exceeds the modeled
50 year plus level to avoid any overstatement or double counting of extreme events. By
weighting the modeled 50 year plus loss event at 2% (once in 50 years) and the remaining
history at 98%, we derive an excess wind factor that reflects extreme events. As shown
in Exhibit 2, for this example, we weight the 1.030 factor from the historical period with
a 1.474 factor from the modeled event to yield a final excess wind factor of 1.039.
(:98*1.030 +.02*1.474 = 1.039) However, we are still not reflecting the full spectrum of
events since there may be a gap between the historical events and the 50 year plus event.
Yet, we are making a more accurate projection of the loading needed to cover excess

wind events than is possible using the historical period only.

A sample calculation of adjusting the ISO excess wind procedure is shown in Exhibit 2.
The modified excess wind procedure starts with the historical wind and total losses as

before. The wind and non-wind losses are then restated to current cost levels in order to
apply the current reinsurance treaty coverage. To adjust the losses to current levels, we

multiply the historical wind/non-wind ratio by an average of the non-wind losses for the
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past three years trended to the projected cost level. This brings the wind losses from their
historical level to the projected level using the non-wind losses as a cost index. The
resulting wind losses are then capped for the effect of the catastrophe treaty. The
wind/non-wind ratio is then recalculated and the calculation proceeds as before from this
point. For a discussion of the remaining steps in the calculation, please refer to Appendix

B included or to my earlier paper.’

The historical losses used can be either industry or company losses. The non-wind
projected losses used must be a company basis to allow the reinsurance capping to be
applied. The historical years are used to determine a wind/non-wind ratio to multiply the
projected non-wind loss average by, on an individual year basis. Because of this, you can
even mix industry experience with company experience. This may be advisable since the
industry experience typically lags the experience available on a company basis. The
example shown is based on company experience for all our Homeowners operations
combined. The other exhibits are only for one operation so they will not balance
precisely. This is similar to what one would see if we had used industry experience for
the excess wind load calculation and company experience for the calculations shown on

the other exhibits.

! Homan, Mark, Homeowners Insurance Pricing, CAS Discussion Paper Program, Pricing-May 1990, pg.
719
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State: Example Homeowners Insurance - Forms 1,2,3,& 5 Exhibit 2
Derivation of Excess Wind Factor
2% 12} (3) (L)) Sy 16) t 8) 19} {10) 1) 12
HO Wignd Non-Wind Wind-to- Wind Wind Loss  Adj Wind/ Excess Exceas Exceas Non-Exceas Non-Wind/
Year Losses Loases Non-Wind Loases Ad} Relzs Non-Wind Yeara* Ratio Loases Loases Non-Exceas
1961 333,914 1,317,614 0,253 8,111,6%@ 8,111,698 0.253 0.253 0.140 4494736 35625485 0.898
1962 165,136 1,381,151 0.120 3,827,073 3,821,013 0.120 . 0.000 0 35835595 0.893
1963 314,163 1,945,021 0.162 5,170,060 5,170,060 0.162 . 0.000 [} 37179582 0.861
1964 300,898 2,651,451 0.113 3,632,458 3,632,458 0.113 . 0.000 1] 35640979 0.898
1965 279,773 3,661,664 0.076 2,445,638 2,445,639 0.076 . 0.000 ] 34454160 0.929%
1966 406,928 3,907,424 0.104 3,332,608 3,332,609 0.104 . ¢.000 o 35341130 0.906
1967 647,379 5,424,603 0.119 3,819,880 23,819,090 D0.119 . o8.000 ] 35820402 0.9%3
1968 719,958 6,118,069 0.118 3,761,443 3,761,443 0.118 . 0.000 0 35769965 0.895
1969 769,906 6,948,936 0.111 3,546,379 3,546,379 0.111 . 0.000 0 35554900 0.900
1970 709,614 8,203,773 0.086 2,741,950 2,741,950 0.086 . 0.000 o 34750471 0.921
1971 951,449 8,053,825 0.118 3,781,367 3,701,367 0.118 . 0.000 [ 35789889 0.994
1972 1,232,540 9,173,544 0.134 4,302,000 4,302,000 0.134 . 0.000 ] 36310522 0.902
1973 963,160 12,247,440 0.078 2,496,819 2,496,019 0.078 . 0.000 0 34505341 0.928
1974 2,124,450 14,700, 504 0.145 4,625,726 4,625,726 0.145 . 0.000 [ 36634248 0.874
1975 2,368,211 16,620,161 0.142 4,560,903 4,560,903 0.142 . 0.000 L] 36569424 0.875
1976 2,117,819 12,914,435 0.164 5,245,029 5,249,029 0.164 . 0.000 0 37257551 0.859
1917 1,249,659 14,735,064 0.085 2,714,598 2,714,595 0.085 . 0.000 o 34723116 0.922
1978 1,457,036 12,075, 961 0.121 3,860,733 3,060,733 0.121 . 0.000 0 35869254 0.892
1979 1,550,489 13,988, 540 0.121 3,547,022 3,547,822 0.112 . 0.000 ° 35556344 0.800
1980 1,357,404 18,499,926 0.072 2,349,576 2,349,576 0.073 . 0.000 ] 34357098 0.932
1981 8,501,300 12,407,363 0.€685 21,931,659 19,669,081 0.614 0.614 0.501 16052120 35625405 0.898
1982 1,233,589 19,004,394 0.066 2,099,794 2,099,794 0.066 . 0.000 0 34108316 0.938
1983 1,300,579 14,345,616 0.096 3,080,403 3,080,403 0.0%6 . 0.000 ] 35080925 0.912
19984 1,046,638 17,438,451 0.106 3,369,529 3,389,529 0.106 . 0.000 o 35338051 0.904
1985 7,489,385 18,063,499 0.415 13,271,190 13,272,181 0.415 0.415 0.2302 $654228 35625485 0.898
1986 1,194,155 17,772,939 0.067 2,150,649 2,150,649 0.067 . 0.000 L] 34139170 0.937
1987 1,299,821 19,453,024 0.067 2,138,760 2,138,760 0.067 . 0.000 [} 34147282 0.937
1988 1,592,56% 25,124,761 0.063 2,028,906 2,020,906 0.063 . 0.000 ] 34037427 0.940
1969 3,146,335 24,600,570 0.127 4,079,131 4,079,133 0.127 . 0.000 o 36087652 0.887
1990 1,663,199 24,380,796 0.066 2,182,827 2,182,027 o.068 - 0.000 o 34191349 0.936
1991 4,696,796 25,965, 580 0.192 5,777,54% 5,777,549 0.181 . 0.000 0 37786071 0.047
1992 6,000,910 20,607,290 0.291 9,320, 996 9,320,906 0.291 0.291 0.178 5704023 35625485 0.9%3
1993 3,912,613 23,522,674 0.166 5,324,095 5,324,095 0.166 - 0.000 o 37332616 0.857
1954 2,265,676 40,016,913 0.057 1,012,257 1,812,257 0.057 . 0.000 0 33820779 0.946
Total 66,232,746 477,353,304 0.139 1.122 35905106 1206586546 30.692
recage
Projected Non-Wind Loss 32,008,522
Median Wind/Non-Wind Ratlo 0.113
EXxcesa Wind Factor 1.030 (1 4+ (0.031 *0.%23))
50-Yeaar 38,563,750 32,008, 522 1.205 3e, 563,750 20,500,698 0.640 0.640 1688372% 35625485
1.474 [ 1+ (0.527 *~0.8958 ) )
Excess Wind Factor 1.039

*The ratlo for a year must be > 1.5M and at least .250 for that year to qualify as an excess year.
Treaty Threshold: 19,550,000
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The adjustment of historical losses to current costs is very important to determine the
impact of the catastrophe treaty. Early events would appear to be too small for the treaty
but there has been significant inflation over the past 30 years. In addition, the non-wind
losses reflect the growth in exposures that the company has experienced over time. So, a
similar event to one in the historical period may now cost much more since we have more
values exposed.
account and adjusts the wind losses to the level that we would expect if the same event
occurred today in terms of both current costs and current exposures. In Exhibit 2, the year

1981 would not be capped by reinsurance if it were not adjusted to current cost and

exposure levels.

I would like to make some points on the reinsurance capping. Our company uses a high
layer catastrophe reinsurance program. In most years, we do not expect to trigger our
reinsurance coverage. Some companies purchase coverage at a working layer that is
triggered more frequently. This is a company choice that is driven by their size, desire
for stability, etc. With a higher layer program, there will be fewer years that must be
capped in this approach. Second, the method as outlined treats the losses in a year as a
single event for capping. This is not completely accurate. In the years that must be
capped, with a high layer program, we expect that there will have been a large event that
would trigger coverage. However, some portion of the losses are likely from other
events. If the historical data is available, one should split the losses into the large event,
or events, and all other. If they are not available, which is most likely for the older years,

this method may overstate the capping and thus understate the load. With a high layer
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program, this understatement is small and is then spread over the number of years used in
the excess load calculation. We accept this understatement as slightly conservative and
not truly significant. Depending on a company’s catastrophe reinsurance program, the

extent of this understatement should be reviewed and adjustments made if it is considered

significant.

There will still be excess wind losses that fall in the range between the normal wind
threshold, which is based on the median of the wind/non-wind ratio, and the catastrophe
treaty threshold. Most companies purchase catastrophe reinsurance only for protection
from extreme events. They should have sufficient financial resources to handle the
smaller catastrophes that occur with respectively greater frequency. However, some of
these smaller catastrophe events are still treated as excess wind by the excess wind
procedure. So there will still be an excess wind factor. The excess wind factor after
adjusting for reinsurance is always less than or equal to the excess wind factor before the
reinsurance adjustment. [t is equal when there are no years in the procedure that would

exceed the reinsurance treaty threshold.

For catastrophe events other than wind or hail, the capping is much simpler. Any
catastrophe is trended to current costs using the loss trend factors in the indication. If the
event would exceed the catastrophe threshold, the loss is capped for the effect of

reinsurance.
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Splitting Reinsurance Premium by Form Group

Now that we have the losses adjusted to the appropriate level, we move on to the
reflection of the reinsurance premium. The reinsurance premium allocated to the state
must be split into the two .form groups used to develop rate indications. These are the
building forms; 1,2,3 and 5; and the content forms; 4 and 6. The contents forms do not
represent the same exposure to the treaty as the building forms due to the type of property
being covered. The reinsurance premium is split into two parts based on the values
exposed. See Exhibit 3 for a sample calculation which also shows State C for

comparison purposes.
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Exhibit 3
Split of Reinsurance Premium to Forms

Input Items

State A State C
Reinsurance Allocation 3,175,821 1,831,695
Total State Premium 18,975,000 17,325,000
Average Amount of Insurance
Forms 2,3 Average AOI 115,375 106,750
Contents Exposure Factor 63.0% 65.0%
Forms 2,3 Adj Avg AOI 188,061 176,138
Forms 4,6 Average AOI 30,466 30,185
Total Values Exposed
Forms 2,3 Total Values 98.5% 97.3%
Forms 4,6 Total Values 1.5% 2.7%
Written Premium Split .
Forms 2,3 Premium 95.9% 94.8% : -
Forms 4,6 Premium 4.1% 52%

Calculated Items

Reinsurance Written Reinsurance

State A Premium Premium Load
Forms 2,3 3,128,183 18,197,025 17.2%
Forms 4,6 47,637 771,975 6.1%
Total 3,175,821 18,975,000 16.7%
State C

Forms 2,3 1,782,239 16,424,100 10.9%
Forms 4,6 49,456 900,900 5.5%
Total 1,831,695 17,325,000 10.6%
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For building forms, the exposed value is the building amount in Coverage A and the
contents in Coverage C. A basic Form 3 provides Coverage C at 50% of Coverage A.
Many companies have replacement cost on contents endorsements that increase this
percentage. In the example, we are using 70% of Coverage A for the increase from the
endorsement with 65% of the policies having the endorsement. This yields a contents
exposure increase of 63% (.65 * 70% + .35 * 50%). For the tenants forms, there is only
Coverage C exposure. For condominium policies (Form 6), there is some structural
coverage, Coverage A. Historically, the amount of Coverage A on these policies has
been small. However, we are starting to see this increase and we will have to reflect the
total amount of exposed values from Coverage A on these policies in future calculations.
After allocating the premium by exposure, the reinsurance premium for _the form group is
then divided by the direct premium for the'form group to determine the reinsurance cost
as a percentage of premium. This leads to a S;r;alleh:harge for the contents forms than

for the building forms.

Loading the Reinsurance Cost into the Indications

The premium charged for the catastrophe treaty is determined as a percentage of the
subject premium. Since most treaties are corporate in nature, the percentage applied to
the subject premium represents an average rate for all states and all property lines. Any
increase in premium subject to the treaty, beyond our current levels, will increase the

reinsurance cost by this corporate rate.
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In the example for State A in Exhibit 4, let’s assume a catastrophe program that costs
9.9% ;Jf the subject premium. Therefore, in the rate indication, the first 9.9% in any state
is treated as variable and any portion above 9.9% is considered fixed cost. Any increases
in subject written premiﬁm will lead to additional reinsurance charges only at the 9.9%
rate. So for a sample state, the reinsurance cost for Forms 1,2,3&S5 is 16.1%, of which
9.9% is variable and 6.2% fixed. For Forms 4,6, the reinsurance cost is 5.8% which is all
considered variable. The variable reinsurance cost is subtracted from the PLR while the
fixed portion is added to the adjusted loss ratio. A similar calculation is shdwn for State

C as well.

There may be some shortfall in completely covering the projected reinsurance costs in
using this approach, assuming that the reinsurance treaty is priced based on a percentage.
of the subject premium. A shortfall could occur if there was significant growth in states
with lower than average reinsurance charges. The increased premium would increase the
reinsurance charge at the higher corporate rate, yet the rates in the state developed by the
approach presented here would be based on a lower reinsurance cost. One should be
sensitive to this. However, capping the variable p;mion in states with higher than average
reinsurance charges will not necessarily lead to shortfalls. Iﬁ fact, if they were not
capped, the company could collect more premium than is needed to cover the reinsurance
costs. This could cause a poor competitive position in the market or possibly negative

reactions from the regulators in a state.
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Instead, if the reinsurance premium is based on exposure, then the-only variable portion is
that which adjusts for the increases in value. The remaining cost should be considered
fixed. Again, before applying these techniques, an actuary should review the exact

framework of the company’s reinsurance treaty.

Exhibit 4
Expense Breakdown for Indications

State A Forms2,3 Forms4.6
Current Expenses 28.3% 34.7%
Current PLR 71.7% 65.3%
Reinsurance Expense 17.2% 6.1%
Variable 9.9% 6.1%
Fixed * 7.3% 0.0%
Proposed PLR 61.8% 59.2%
State C Forms2,3 Forms4,6
Current Expenses 28.3% 34.7%
Current PLR 71.7% 65.3%
Reinsurance Expense 10.9% 5.5%
Variable 9.9% 5.5%
Fixed * 1.0% 0.0%
Proposed PLR 61.8% 59.8%

* - Fixed portion is amount over the corporate rate on line.
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Summary
Although reinsurance costs have long béen recognized as a legitimate cost of doing

business, they have not been explicitly reflected in rates until recently. These costs are
too significant to be ignored and they must be addressed. Reinsurance costs need to be

cnngidered t5 enar A + ta Ti'a s
CONSIACea 1o Chsure an astquaie rate. i sin th
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Appendix A
Variations in Underlying Loss Loading

The method described herein is dependent on the approach used to reflect the excess
losses. There are several methods being used to reflect excess wind losses. Regardless of
the method used, the basic concepts remain the same. The initial loss loading must be
modified for the expected reinsurance recoveries and then the reinsurance premium can
be reflected. The approach to modify the losses for anticipated recoveries will depend on

how the losses are reflected.

In the paper, I have been using an excess wind procedure based on the ISO procedure.
Historically, such excess wind procedures based their loss estimation only on historical
data. During periods when there is a lack of hurricanes or excess wind losses, an excess
wind procedure is a limited tool for developing rates since it will understate the expected
losses. On the other hand, when there are more events or the presence of extreme events,
the excess wind procedure can overstate the expected losses. The variation shown was
designed to augment the history used in the ISO procedure with additional losses as
needed to avoid understatement and to eliminate the more extreme events from the
historical period to avoid overstatement. A more detailed discussion of this augmentation

can be found in an earlier paper’.

2 Bradshaw, John and Homan, Mark, Homeowners Excess Wind Loads: Augmenting the ISO Wind
Procedure, CAS Forum, Summer 1993, pg. 339
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However, ISO is no longer using an excess wind procedure, so they no longer are
updating the industry experience in that format. It may become difficult to obtain the
history to use this method. Thus an altemative method has been developed which will tie

into the loss distribution from a wind model.

The use of models for estimating hurricane losses has become increasingly widespread.
Not all companies have access to such models and many still are uncertain whether the
estimates from the models are correct. The approach discussed in this paper can alleviate
much of the reliance on the accuracy of such model. Wind models provide estimated
losses for the events reflected in the model. A wind model that estimates losses for each
individual event is the easiest to use. Such a model allows for the estimated loss to be
adjusted for reinsurance on an event by event basis. Thus, one can get the loss projection
and the reinsurance adj us.tment at the same time. Also, since many catastrophe treaties
are corporate in nature as are the models, the reinsurance adjustment can be more
accurate, assuming the model is run on a corporate level. This makes the line adjustment
to the treaty threshold unnecessary eliminating a potential source of error. Some wind
models provide loss estimates in terms of average annual costs rather than event by event.
To make the necessary adjustments for reinsurance to such models, you must work with

the model designers to make the necessary changes within their formulas.
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Other companies use all catastrophes in their loadings rather than just wind. Some use
hurricanes only. In either case, the historical events should be adjusted to current cost
levels and then adjusted for reinsurance using the current program. After adjusting the

history to be net to anticipated recoveries, the reinsurance premium can be reflected.
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Appendix B
Excess Wind Procedure

This appendix will provide a more detailed explanation of the modified Excess Wind

procedure shown in Exhibit 2.

Columns 2 and 3 are the raw data inputs of the wind and non-wind losses. Each ye;a: is
treated as a sample observation and is treated independent of the other years. The
procedure relies on averages of the observed ratios rather than aggregates. This allows
for a mixture of industry and company data, which will be at different loss levels. Since
industry data is often not as up to date as company data, the company data can be used

until industry data is available for the latest year or two.

Column 4 is the ratio of the Wind to Non-wind losses, or column 2 divided by column 3.
Column 5 is the ratio from column 4 multiplied by the projected non-wind loss. The
projected non-wind loss is the average of the latest three years, trended by the average
cost factor used in the indication. In this case, the trend factor is 4.5% for a three year
period to go from an average of 1993 to 1996. The wind losses determined by this
calculation represent wind losses at current cost and exposure levels as explained in the
paper. These losses are needed to determine the impact of the current catastrophe

reinsurance treaty to historical losses.
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Column 6 are the wind losses adjusted for the impact of reinsurance. If the recalculated
wind loss for the year is greater than the treaty threshold (noted on the exhibit), than the
wind loss is capped at the treaty amount plus 5% of the loss above the treaty threshold.

The 5% is the copayment under the treaty.

Column 7 is the adjusted wind/non-wind ratio calculated by dividing column 6 by the
non-wind projected loss. It is important to note that for most years, column 7 is the same
as column 4, It is only for years that would trigger the catastrophe reinsurance coverage
that the ratio will change. Also, column 7 is always equal to or less than column 4.
Column 8 is the wind/non-wind ratio from column 7 for the years that are considered
excess years. For a year to be considered excess, the wind/non-wind ratio must excess
1.5 times the median wind ratio and be greater than .250. The second threshold of .250 is
important for states with fairly low wind activity. It keeps the excess wind adjustment
small for such states so that the adjustment is truly for excess wind. In this example, the
.250 is the key value not 1.5 times the median. Only four years in the historical period

are considered excess.

Column 9 is the excess ratio. This is the portion of the excess wind/non-wind ratio from
column 8 that is greater than the median. While it may at first seem odd that the trigger

for an excess year is 1.5 times the median and that the excess portion is the amount over
the median, this was intended. The same approach is taken to adjust the five years in the

experience period of the indication, so it produces the proper answer.
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Column 10 is the amount of the excess losses. This is column 9 times the projected non-

wind losses.

Column 11 is the non-excess losses which is the sum of the projected non-wind losses
and the wind losses in column 5 minus the excess losses in column 10.
Column 12 is the non-wind losses divided by the non-excess, or the projected non-wind

losses divided by column 11.

This provides all the numbers needed to calculate the excess wind factor. The excess
wind factor is unity plus the product of the average excess ratio from column 9 and the
average non-wind/non-excess ratio from column 12. Since the excess ratio is the ratio of
the excess losses to the non-wind losses, the product is the ratio of excess losses to non-
excess losses. It is applied to the non-excess losses in the indication procedure, so the
result is the excess losses. The unity is to retain the non-excess losses in the final figure.
There is one final set of calculations that must be done for the 50-Year event situation.
The wind losses used here are for any events in excess of 50 year return periods. It is
derived from modeling and represents the expected wind losses from the top two
percentile. The non-wind projected losses remain the same as used above. The
calculation of all ratios and figures is the same for any individual year as outlined above.
The one year is then used to calculate an excess wind factor for these larger events. The

two excess factors are then weighted together using 98% weight on the historical period
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and 2% for the 50 year plus event. To eliminate any duplication, we drop any year that is

in excess of the 50 year event from the historical period.
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PRICING THE EARTHQUAKE EXPOSURE USING MODELING
Debra L. Werland and Joseph W. Pitts

ABSTRACT

Catastrophe hazard modeling has become an important tool for ratemaking in lines of
business subject to low frequency, high severity type losses. Natural hazard events such as
hurricanes, tornadoes, and earthquakes rarely occur, but their devastation can be
ing when they do. Few insurance companies have enough hisiorical loss data to
sufficiently price for these events. In our paper, we plan to demonstrate a methodology
which details the use of a model's output in determining a statewide rate level indication for
the earthquake line of business, as well as a methodology for determining more equitable

territorial relativities within a state.

Our paper will outline a practical and understandable methodology for dealing with some
complex issues involved in pricing the earthquake insurance exposure. The emphasis of the
methodology within our paper will be on practicality and potential regulatory acceptance.
Another feature of our paper will be the inclusion of a section dealing with the reflection
of the net cost of reinsurance in the proposed direct rates. A final consideration is the
treatment of a model's output when it is believed the modeled results are less than fully
credible.

The CAS ratemaking principles address data considerations used in making rates.
Catastrophe hazard modeling output is an important component of "other relevant data” that
is referred to in the principles [1]. A company’s history of earthquake premiun;s and losses
does not have sufficient predictive power for establishing adequate rates. Our paper will
rely on the power of catastrophe hazard simulation of multiple possible events and the

associated loss costs generated from these models.
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PRICING THE EARTHQUAKE EXPOSURE USING MODELING
INTRODUCTION

Pricing for an insurer’s risk to hurricanes and earthquakes has never begn an easy task.
No insurer's loss history is adequate enough to cover the expectation of all possible type
and size of events. Any ratemaking formula based on actual loss experience alone for
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insurer's financial results. Catastrophe hazard modeling represents a way of developing
the scope of possible catastrophic events that can impact an insurer's book of business.
The financial impact of these events is based on scientific evidence of the characteristics
of the underlying peril and its interaction with the insured properties.

In this paper we will concentrate on the earthquake peril and its pricing. After an
overview of earthquake modeling, we will discuss target underwriting profit provisions,
reinsurance costs, and other components of developing an adequate rate per $1,000 of
dwelling coverage for a typical book of Homeowners business. The credibility of the
results will be addressed in the derivation of the indicated rates, along with partitioning
of the state into geographic zones based on the relative difference in loss costs determined
from the modeled results.

We will then discuss possible shortcomings inherent in modeling and suggest several
solutions on how to handle these deficiencies in the derivation of an adequate rate. We
will conclude the paper with a list of additional considerations that need further research,

given the great uncertainty associated with any modeling process.
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OVERVIEW OF EARTHQUAKE MODELING

Actuaries are relying more than ever on the use of modeling in accurately pricing
catastrophic risks such as hurricanes and earthquakes. While we may not completely
understand the intricacies of all functions and assumptions used in modeling, it is
important nonetheless to present an overview of an earthquake computer simulation
model. Appendix A describes the earthquake model developed by Applied Insurance
Research (AIR) of Boston, Massachusetts.

The US earthquake model developed by AIR uses sophisticated mathematical techniques
to estimate the probability distribution of losses resulting from earthquakes anywhere in
the 48 contiguous states. The earthquake model is composed of three separate elements:
an earthquake occurrence model, a shake damage model, and a fire-following model.

For ratemaking purposes, the output from the model will include loss costs applicable to
a specific location, type of construction and policy form. Our interest is in a single-
family dwelling as covered under a typical Homeowners policy. The loss costs generated
by the AIR model are the basic building blocks in the development of an appropriate rate

for this coverage. The next section will begin with those basic building blocks.
PROPOSED METHODOLOGY

The goal of this paper is to present a methodology for developing a rate per $1,000 of

Earthquake coverage. We will assume that the indicated rate is based on Coverage A of

a typical Homeowners single-family dwelling. That is, the modeled results include all

coverages (including time element expenses), and the figures have been ratioed to

Coverage A, in 1000's.

We begin with the statewide indicated rate as developed from the loss costs resulting
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from the model. Sections on the net cost of reinsurance and the target rate of return and
proper underwriting profit provision follow. Territorial partitioning and the derivation

of zone relativities conclude this section.

Statewide Indicated Rate

The statewide indicated rate is determined using the pure premium method. The first
input into the methodology is the statewide modeled incurred losses stated at a base
deductible level. In this example, the base deductible is 10% applicable to the dwelling
limit. The annual expected losses represent the average annual amount of incurred losses
an insurer could expect from writing the Earthquake line of business in State X if each
insured had a 10% deductible. The modeled results are generally available on an
individual state basis as well as on a zip code or county basis within the state. The
annual expected losses are trended (severity only) and adjusted for LAE, then ratioed to
the total trended value of insured dwellings to develop a projected pure premium which
is used to determine the indicated rate as shown on Exhibit 1. (A viable alternative
would be to trend the insured values first and use these trended values as input to the
catastrophe model, thus yielding an estimate of trended severity within the model
results). In this example, the current rate is assumed to be $2.50 per $1,000 of dwelling
coverage. The indicated rate is calculated by taking the projected pure premium and
grossing it up to include reinsurance costs, trended fixed expenses, and variable
expenses. After completing these calculations, the indicated rate is $3.77 per $1,000 of
coverage.
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Exhibit 1

Sheet 1

STATEWIDE INDICATED RATE
Modeled Incurred Losses at a 10% $19,500,000
Deductible as of 12/31/95:
Total Dwelling Coverage as of 12/31/95: 10,965,281,000
Proposed Effective Date: 7/1/96
LAE Factor: 1.150
Loss Trend Factor Trended to 7/1/97: 1.250
Exposure Trend Factor Trended to 7/1/97: 1.190
State X Earthquake Share of Expected Net Cost of $7,592,703
Reinsurance:
Trended Fixed Expense Provision Per $1000 of Coverage: 0.265
Pure Premium Per $1000 of Coverage: $2.99
{{{[(1) x (4) x (5)1+(N} x 1000} / [(2) x (6)]} + (8)
Variable Permissible Loss and LAE Ratio: 0.794
Indicated Rate: $3.77
(9)/(10)
Current Statewide Rate Per $1000 of $2.50
Dwelling Coverage:
Indicated Percentage Change: 50.8%
ansa-1
Proposed Change: 50.8%
Proposed Statewide Rate: $3.77

(12) x [1 + (14)]
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Exhibit 1
Sheet 2

STATEWIDE INDICATED RATE
EXPLANATORY NOTES

(1) This is the main output received from the modeling firm. It is an estimate of the annual
expected losses at a base deductible for an insurer, given the current book of business within the
state for the Earthquake line of business.

(2) The total value of insured dwellings is provided to the modeling firm by the insurer and is
used to determine the average annual expected losses per $1,000 of coverage in the pure premium
method.

(3) The proposed effective date as selected by the insurer.

(4) The LAE factor is calculated based on a comparison of estimated ultimate loss adjustment
expenses to estimated ultimate losses from the most recent earthquake events faced by the insurer.

(5) The modeled losses are trended using historical Homeowners severity data. Earthquake loss
trend data is not used because of its instability. Losses should not be trended for frequency, uniess
the insurer is confident there exists an increased period of seismicity in the future.

(6) The exposure trend is based on historical changes in the average amount of insurance for the
Earthquake line of business.

(7) The State X Earthquake share of the expected net cost of reinsurance is calculated as
described on Exhibit 2.

(8) The trended fixed expense provision per $1,000 of coverage is calculated by trending fixed
expenses to a point in time appropriate for the proposed effective date and ratioing it to trended
insured value using an annualized fixed expense trend of 5%.

(9) The formula combines the modeled incurred losses with the net cost of reinsurance for the
state and line of business with the trended fixed expense provision to provide an estimate of the
projected pure premium to be expected during the time the proposed rates are to be in effect.

(10) The variable permissible loss and LAE ratio is calculated based on historical variable
expenses and a consideration of the relative riskiness of the Earthquake line of business compared
to other lines being written and the overall required return on surplus. An 18.2% underwriting
profit provision was used along with 2.4% provision for variable expenses.
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Net Cost of Reinsurance

An important component which we reflected in the rate indication is the net cost of
reinsurance. An insurer should decide whether to include this component based on the
costs and anticipated recoveries associated with its reinsurance program. This component
should be included as a cost if the expected reinsurance recovery is less than the amount
of premium paid to the reinsurer for reinsurance protection. This relationship will
generally be the case due to the presence of transaction costs which include a margin for
reinsurance risk load and profit. The expected reinsurance recovery represents the
average annual amount an insurer could expect to recover from the reinsurer(s) due to
insured events and can be determined using catastrophe modeling. The expected
reinsurance recovery needs to be calculated considering the attachment points or quota
share percentages associated with an insurer's reinsurance program. Most often, an
insurer's reinsurance program is structured to provide protection against many types of
hazards; however, some reinsurance contracts are designed to provide protection against
only one hazard. To accurately measure the net cost of reinsurance for a particular
hazard, the reinsurance premium from all programs which provide protection for the
hazard should be included. If other catastrophic hazards such as hurricanes are a large
proportion of an insurer's exposure to catastrophe loss, the reinsurance premium for
multi-hazard contracts could be segregated for each hazard. The reinsurance premium
for each hazard could then be included with each net cost of reinsurance calculation for
every line of business. In the example, however, the net cost of reinsurance is allocated
to the Earthquake line of business and then the appropriate state. The allocation to line
of business in our example as shown on Exhibit 2 was based on model results by
comparing expected Earthquake reinsurance recovery to the total expected reinsurance
recovery. This ratio was applied to the net cost of reinsurance to obtain the earthquake-
only net cost of reinsurance. The allocation to a state level was done using written
premium. It is important to note that this allocation may introduce a distortion if the
state in question has a different level of premium adequacy than the countrywide

premium adequacy.
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ESTIMATED NET COST OF REINSURANCE

1995 Countrywide Reinsurance Premium for Contracts
covering the Earthquake peril:

Expected Reinsurance Recovery:

Net Cost of Reinsurance:

-2
Expected Earthquake Reinsurance Recovery:

Proportion of Earthquake Recovery to Total Recovery:
@1

Earthquake Share of Net Cost of Reinsurance:
3)x ()

1995 State X Earthquake Written Premium:
1995 Countrywide Earthquake Written Premium:

State X Earthquake Share of Net Cost of Reinsurance:
[(7) /(8] x (6)
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Sheet 1

$37,890,000

$17,481,970

$20,408,030

$ 9,154,600

52.4%

$10,693,808

$27,271,677
$38,551,154

$ 7,592,703



Exhibit 2
Sheet 2

NET COST OF REINSURANCE
EXPLANATORY NOTES

(1) This is the total of all reinsurance premium paid for reinsurance contracts which
provide protection for earthquake losses.

(2) This is a model output number. It is determined based on the attachment point
or quota share arrangement an insurer has with its reinsurer(s).

(3) The net cost of reinsurance is the difference between the reinsurance premium
paid for contracts providing earthquake protection and the expected total reinsurance
recovery.

(4) Model results are used to determine what portion of the expected recovery is due
to earthquake.

(5) The Earthquake proportion of the total expected reinsurance recovery is expressed
as a factor to be applied to the total net cost of reinsurance.

(6) The Earthquake share of the net cost of reinsurance is the proportion of the
earthquake recovery to the total recovery multiplied by the total net cost of
reinsurance.

(7) The latest year State X Earthquake written premium is used to allocate the
Earthquake share of the net cost of reinsurance to a state level.

(8) The latest year countrywide Earthquake written premium is used to determine

what proportion of the countrywide Earthquake written premium is represented by
State X.
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The concept of including the net cost of reinsurance in a rate indication is relatively new
and will likely be challenged or subjected to additional scrutiny by regulatory agencies.
However, it does represent a cost of doing business, and therefore, we have chosen to
include its net costs. Reinsurance costs could also be considered in conjunction with the

selected rate of return and that discussion follows.

Target Rate of Return

For purposes of developing an underwriting profit provision, we have chosen a total rate of
return methodology. We are not proposing one method over another, but we have selected
this particular one for the development of a reasonable profit target for the Earthquake line
of business. The target rate of return on GAAP equity is developed using a Discounted Cash
Flow (Dividend Yield) Method and the Capital Asset Pricing Model (CAPM). The selected
rate of return, averaged from the results of these two methods, is 13.0%. From this selected
rate of retum we have subtracted 8.0%, which represents the post-tax investment rate of
return from all investable funds. Exhibit 3 converts this difference to a pre-tax basis, using
a corporate tax rate of 35%. For an insurer's total book of business this percentage is then
divided by the company's premium-to-surplus ratio in order to convert the target underwriting
profit provision to a percentage of premium. Although we do not endorse the divisibility of
surplus or leverage ratios, we are proposing this method for calculating a reasonable

Earthquake underwriting profit provision.

We have selected a company whose underwriting results resemble the years 1985-1994 for
all Property and Casualty insurers writing Personal Lines Automobile, Homeowners Multi-
Peril, and Earthquake coverages. (It would be appropriate for more years to be used;
however, the Earthquake line of business was not segregated prior to 1985). The data can
be found in Best's Aggregate and Averages, 1995 edition {2]. A company's own data can be
used for this purpose as well.
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Exhibit 3

TARGET UNDERWRITING PROFIT PROVISION

A. Target Rate of Return
(% of GAAP Surplus)

1. Dividend Yield Model 12.0%
2. Capital Asset Pricing Model 14.0%
3. Selected Target Rate of Return 13.0%

B. Target Underwriting Rate of Return
(% of GAAP Surplus)

1. Investment Rate of Return After Tax 8.0%

2, Target U/W Return After Tax 5.0%
(A3) - BD)

3. Target U/W Return Before Tax 1.7%

(B2)/(1 - 0.35)

C. Target Underwriting Profit Provision
(% of Direct Earned Premium)

1. Net Written Premium/GAAP Surplus Ratio 1.30

2. Indicated U/W Profit Provision 5.9%
B3) / (C1)
3. Selected U/W Profit Provision 5.9%

Note: A select group of insurers were chosen that resemble the mix of business written by
the filing insurer. Company betas and projected dividend yields were taken from
Value Line. Both the Dividend Yield Method and the Capital Asset Pricing Model
were used in determining an appropriate rate of return. The selected target rate of
return is a straight average of the two methods.
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Basically, a company's underwriting profit provision should vary based on the riskiness of
the line of business. A measure of risk we have chosen is the coefficient of variation
(measured as standard deviation/mean, o/u) of a series of underwriting results for each
line. Since the selected period includes the effects of Hurricane Andrew and the
Northridge Earthquake, we adjusted the losses so that Andrew reflects a 1-in-30 year
event and Northridge a 1-in-50 year event. We did not adjust for Hurricane Hugo,
although one could argue for that adjustment as well. Table 1 shows the yearly (1985-

1994) underwriting gains/iosses as a percent of net earned premium.

Table 1
Underwriting Results as a Percentage of Premium
Private Passenger Homeowners
Year Automobile Multi-Peril Earthquake
1985 -11.0% -11.7% 60.0%
1986 -83% -3.5% 58.0%
1987 -6.0% 3.3% 44.2%
1988 -6.8% 0.0% 57.5%
1989 -8.9% -13.9% 42.1%
1990 9.1% -12.9% 43.8%
1991 -4.6% -17.7% 55.3%
1992 -1.9% -58.4% 61.4%
1993 -1.8% -13.5% 68.0%
1994 -1.3% -18.4% -222.2%

Table 2 shows the coefficient of vartation of each line, the weighted average of the CVs using
the latest ten years of premium, and what we are labeling as a risk index, which is the ratio
of each line's CV to the weighted CV.
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Table 2

Line of Premium Coefficient of Risk
Business Distribution Variation* Index
Private Passenger 80.1% 0.550 0.92
Automobile
Earthquake 0.5% 1.854 3.09
Homeowners
Multi-peril 19.4% 0.780 1.30
Total 100.0% 0.600 1.00
* Absolute Value

Assume the company's premium-to-surplus t;atio corresponds to the industry's at 1.30, so that
its inverse is .77, The risk indices are used to adjust each line's surplus ratio (surplus-to-
premium) in the total rate of return methodology, resulting in target underwriting profit
provisions which reflect the risk of each line of business. The resulting Earthquake profit

provision will be used in the derivation of the variable permissible loss and loss adjustment

expense provision to follow later. Table 3 summarizes this information.

Table 3
Target
Line of Risk Implied Surplus Underwriting
Business Index Ratio (S/P) Profit Provision
Private Passenger 0.92 0.71 5.4%
Automobile
Earthquake 3.09 2.38 18.2%
Homeowners
Multi-peril 1.30 1.00 7.7%
Total 1.00 0.77 5.9%
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In this example, industry net underwriting results were used to determine an appropriate
underwriting profit provision for the Earthquake line of business. A larger Earthquake
underwriting profit provision would probably be obtained if direct results were used instead.
This is due to net underwriting results having variability stripped off by the stabilization of
reinsurance. Using our methodology, it is reasonable to conclude that part of the difference
between underwriting profit provisions calculated using net or direct underwriting results
would be due to reinsurance costs. An insurer should expect a lower net cost of reinsurance
if part of the reinsurance cost is reflected in the Earthquake underwriting profit provision
calculated using direct underwriting results. Efforts could be made to quantify what portion
of the net cost of reinsurance is contained in an Earthquake underwriting profit provision
based on direct underwriting results. One possible approach would be to compare the
difference in Earthquake underwriting profit provisions calculated using net and direct

underwriting results to a net cost of reinsurance as calculated in this example.
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Zone Relativities

Model results can also be used to determine revised Earthquake zone definitions and
Earthquake zone relativities. The data used to establish Earthquake zone definitions are
model results at a five-digit zip code level. The sum of all the five-digit zip code modeled
losses and dwelling insured values should balance to the statewide totals used to determine
the statewide indicated rate. In the example, we are assuming the state is comprised of
twenty distinct five-digit zip codes. The data on Exhibit 4 shows the data segregated by five-
digit zip code. We used a SAS clustering program to determine the new Earthquake zone
definitions and zone relativities. The following is a description of the SAS procedure we used
as described in the SAS user's manual [2].

PROCFASTCLUS performs a joint cluster analysis on the basis of Euclidean distances
computed from one or more quantitative variables. The observations are divided into clusters
such that every observation belongs to one and only one cluster. The procedure is intended
for use with large data sets, from approximately 100 to 100,000 observations. With small
data sets, the results may be highly sensitive to the order of the observations in the data set.

PROCFASTCLUS uses a method referred to as nearest centroid sorting. A set of points
called cluster seeds is selected as a first guess of the means of the clusters. Each observation
is assigned to the nearest seed to form temporary clusters. The seeds are then replaced by the
means of the temporary cluster, and the process is repeated until no further changes occur in

the cluster.

After specifying the desired number of Earthquake zones, and using the SAS procedure, we
obtained the results in Exhibit 5. The number of zones to be used in a real application will
depend on the size of the insurer's Earthquake book of business, geographic spread, and the
level of seismic variation that exists within the state. It is important to note that the proposed
Earthquake zones will probably not be contiguous because five-digit zip codes from different
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parts of the state will very often fall into the same cluster in the SAS procedure. We only
used twenty zip codes in our example; however, the SAS procedure has the capability to
handle a much larger number of zip codes. The relativities shown in Exhibit 5 are applied
to the statewide indicated rate previously calculated to determine each zone's Earthquake rate.

The resultant earthquake zone rates should probably display a wider variance, since it could
be argued that risk margins should vary by geographic location for the earthquake peril. We
view this as another area deserving further consideration and an important aspect of
determining adequate earthquake rates.
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Exhibit 4

STATEX
EARTHQUAKE MODEL RESULTS
ZIP CODE LEVEL
Five-digit Dwelling Insured | Expected Annual

Zip Code Value Loss ata 10% Loss
Area (in $000) Deductible Cost
1 $ 921,339 $ 2,303,348 $2.50

2 1,096,528 1,644,792 1.50

3 258,481 387,722 1.50

4 548,264 603,090 1.10

5 922,272 830,045 0.90

6 79,839 98,897 1.24

7 722,114 902,643 1.25

8 103,211 232,225 2.25

9 803,112 3,011,670 3.75
10 801,247 721,122 0.90
11 552,322 359,009 0.65
12 402,178 623.376 1.55
13 700,659 1,156,087 1.65
14 1,102,321 2,369,990 2.15
15 200,321 490,786 2.45
16 402,111 1,105,805 2.75
17 727,727 1,928,477 2.65
18 202,001 490,786 1.03
19 112,007 123,768 1.11
20 307,227 399,088 1.30
Total $ 10,965,281 $ 19,500,000 $1.78
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EARTHQUAKE ZONE RELATIVITIES

STATEX

Exhibit §

Total Expected
Dwelling Annual Indicated Indicated
Earthquake Insured Loss at 10% Loss Relativity | Earthquake
Zone Value Deductible Cost to Zone Rate
(in $000) Statewide
(1) (2) 3) “ (&)
1 $ 552,322 $ 359,009| $ 0.65 0.37 $ 1.38
2 3,694,971 3,886,713 1.05 0.59 2.23
3 3,560,167 6,181,967 1.74 0.98 3.68
4 2,354,709 6,060,641 2.57 1.45 5.46
5 803,112 3,011,670 3.75 2.11 7.95
Statewide $ 10,965,281 | $ 19,500,000 | $ 1.78 1.00 $ 3.77

Note: (3) = (2)/(1)
@) = 3)/1.78
) = @) x3.77
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SHORTCOMINGS INHERENT IN MODELING

Modeled results fall short of expected values for many reasons, most of which can be
attributed to company issues or to adjustments not made within the models themselves. First,
we will discuss company shortcomings, then follow-up with model shortcomings.

Where appropriate, we will make suggestions on how to handle quantifiable and supportable
adjustments to the modeled input or output. The following list is not meant to be exhaustive,

et fema fnalinda
but is typical of compan MINGS inciuac:

is typical of company issues.
1. Underinsurance (homes not insured to value) or overinsurance.
2. Demand surge for labor and materials after a large catastrophic event.
3. The need for extra claims adjusters following large events,
4. No data collecting or coding for retrofitting safety features.
5. Invalid or incomplete data.

The major company shortcoming may well rest on the problem of underinsurance. Expected
loss to a particular structure in a particular area is based on applying an average damage ratio
(defined as the ratio of the repair cost of a building to its total replacement value) to the total
insured value of the structure. It is assumed then that the insured value of a building
represents its true replacement cost. A company would do well to estimate its underinsurance
(or overinsurance) problem before providing data to a modeling firm. If, on average, it is
determined that a book of business is underinsured by 10%, then all limits should be adjusted

before the model is run.

The effects of demand surge can be quite significant and should be factored into all modeled
results. (It is not clear to us whether this adjustment should be made by the insurer or by the
modeler.) Obviously, the demand for labor and materials will vary depending on the location
and magnitude of each earthquake. The additional cost probably varies between 0% and
30%, but the highest demand is associated with events that have the lowest expected
probability; therefore, the effect on average annual aggregate losses should be minimal. We
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believe this adjustment to the modeled loss costs is important, yet is an uncertain aspect of
the process. Studies should be conducted to determine the impact of demand surge factors,
perhaps by studying the payout of events such as Loma Prieta and Northridge, if the data is
available. Either overall average demand surge factors should be applied to the resultant loss
costs, or variable demand surge factors should be determined and applied by location and

event.

The need for independent claims adjusters is a very real cost of settling claims following large
catastrophic events. It is not clear which loss adjustment expense (LAE) factors should be
applied to the modeled expected loss costs. There has simply not been enough loss
experience to determine appropriate factors. We suggest using either the ratio of LAE to
losses of past events (which may understate the true ratio) or simply use the underlying policy
average LAE factor, given Earthquake coverages are normally endorsed to a Homeowners
or Dwelling Fire program.

Modeled results should account for retrofitting safety features of an insured structure.
Average damage ratios should be adjusted for these features. It is not clear to us how their
effects can be measured, but research should be conducted and insurers should encourage
their installation. A strongly built and reinforced home should surely withstand the initial
impact and aftershocks of an earthquake, as opposed to a home whose frame is not bolted to
the foundation, for example. Most insurance companies probably do not request information
on retrofitting mechanisms, nor do they store the data. We would encourage the Insurance
Institute for Property Loss Reduction to study the effects of such safety features and simulate
an earthquake under monitored laboratory conditions to determine the extent of damage on
the structure and its contents.

Finally, there is always the possibility of invalid data, incomplete data, or no data at all.
Invalid data is most prominent if zip code, county, or street address is not validated before
being stored on the insurer's database. Either the data should be cleaned up before the input
files are created, or the data should be eliminated from analysis. Most companies do not
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have enough insureds located in all areas of the state. Therefore, there will be many locations
with no modeled loss costs. In these situations, modeling firms have access to an inventory
of typical building structures by location: average dwelling limit, type of construction,
average year of construction, building height, etc. Modeled loss costs from this "generic”

inventory can supplement an insurer's results where few or no insureds reside.

There will also be locations with insufficient data. Assume for a moment that an insurer's
book of business is mapped to the geographic zip code centroid of each zip code within the
state. Although modeled results are assumed to be 100% credible by location, the reader
could obviously question whether one, ten, or even one hundred exposures are enough to
deem the results credible. An insurer's database could be complemented with the results of
the generic inventory. The authors have chosen to consider data 100% credible by zip code
with more than 100 exposures; otherwise, the generic inventory is given full credibility.

We now turn to shortcomings in the models themselves. These brief remarks are not intended
to criticize any model or modeler, but to highlight the importance of their impact on modeled
results. The following list is also not meant to be exhaustive, but does represent typical

shortcomings.

Factor for unknown faults.

Inclusion of debris removal expenses.
. Effects of aftershocks.

Parameter risk within the model.

e e

The 1994 Northridge earthquake is a perfect example of an unknown fault, a blind thrust fault
which does not break the earth's surface. Not even seismologists know the extent of
undiscovered fault lines beneath the earth's surface. How understated could the modeled
results be? No one knows for sure, and we propose no solution to handle this uncertainty.
Although the models account for possible earthquakes in all historical seismic source zones,
it is highly questionable if distributions in the model account for all potential seismicity. With
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the passage of time and advanced technology, perhaps some day these models will account
for all possible faults. For now we will have to assume that a model's results may understate
expected average annual losses, and hence, expected loss costs per $1,000 of coverage.

Debris removal expenses, although small, should be added to the model’s expected loss costs.
More prominent would be the effects of aftershocks which follow moderate to large
earthquakes. Oftentimes, claims are reopened months later due to weakened structures
repeatedly damaged from aftershocks. Future modifications to catastrophe models should
account for this possibility.

Since catastrophe modeling is based on incomplete distributions developed from historical
information, there will always exist parameter risk. This risk may lead to gross
understatement (or overstatement) of potential insured losses, and as such, represents a

potential shortcoming of modeling.
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ADDITIONAL CONSIDERATIONS

There will always exist areas that deserve further consideration. While we have presented
a practical procedure for developing adequate earthquake rates, some areas deserve additional
research and attention. We will divide these topics into four categories: (1) shortcomings of
models, (2) credibility of data, (3) necessary target rate of return, and (4) net reinsurance

costs.

We devoted an entire section of this paper to model shortcomings and company data issues.
We only repeat them here to emphasize their importance and need for further study. The
cooperation of the insurance industry, modeling firms, and the IIPLR is necessary in order
to quantify the impact of outstanding issues on expected loss costs. Perhaps special data calls
or cooperative studies can be conducted and the results shared with all interested parties.

Computer modeling simulates thousands of possible events, and as such, its results are
generally considered fully credible. The earthquake peril is so unique by location, especially
in California, so there really does not exist a feasible complement of credibility to augment
a local result. Perhaps a regional complement could be used, but its applicability is
questionable, given local soil conditions and proximity to fault lines. We choose to believe

that an industry inventory database represents the best alternative for a complement.

Insuring the Earthquake peril is much riskier than insuring Auto physical damage coverages.
Due to the relationship between risk and return, a higher rate of return, and therefore, a
higher underwriting profit and contingency provision, should be allowed to cover a
company's earthquake exposure. As mentioned earlier, this provision should probably vary
by location as well. We have presented a simplified method for deriving a reasonable profit

provisioh, but we encourage more research in this important area.
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Debate exists as to whether rates should include the costs of reinsurance on an insurer’'s book
of business. After all, their inclusion could be viewed as a pass-through to the consumer.
Also, in the long-run, neither the insurer nor the reinsurer(s) should be worse off for
engaging in a reinsurance program; otherwise, neither party would enter into the contract.
However, in the short-run, reinsurance costs are a legitimate expense of doing business, and
we believe that all parties should share in that expense, including policyholders. Indeed,
policyholders benefit from financially strong companies.
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SUMMARY

Catastrophe hazard modeling has become an integral part of the ratemaking process.
Actuarial ratemaking principles [1] state that "other relevant data may supplement historical
experience. These other data may be external to the company or to the insurance industry
...". We have entered the realm of that other relevant data. Actuarial Standard of Practice
(SOP) No. 9 [4] states that "an actuary should take reasonable steps to ensure that an actuarial
work product is presented fairly ... if it describes the data, material assumptions, methods,
and material changes in these with sufficient clarity that another actuary practicing in the same
field could make an appraisal of the reasonableness and the validity of the report.” However,
with the advent of modeling the actuary must rely on the work of another person. SOP No.
9 continues by stating that "reliance on another person means using that person's work
without assuming responsibility therefore.” These other persons now include experts in the
fields of geology, seismology, and structural engineering, just to name a few. Actuaries,
however, can play a key role in contributing to the development of the models, and more

importantly, the interpretation and communication of their valuable results.

Catastrophe hazard modeling has become a necessary tool for the adequate pricing of large
catastrophic events such as hurricanes and earthquakes. Their frequency is so low and their
severity so potentially high that not even all of the property and casualty companies in a state
could have enough loss history upon which to base rates. Despite any shortcomings models
may have, they hold the key to the future and the pricing of nature's perilous attacks.

281




m

2

3]

(4]

REFERENCES

Casualty Actuarial Society, "Statement of Principles Regarding Property and
Casualty Insurance Ratemaking,” as adopted May, 1988.

Best's Aggregates & Averages, Property-Casualty United States, 1995 Edition,
A.M. Best Company, Inc., pp. 174,176.

SAS/STAT' User's Guide, Version 6, Fourth Edition, Volume 1, Cary, NC: 1989,
Copyright” SAS Institute Inc. pp. 823-824.

Actuarial Standards Board, "Documentation and Disclosure in Property and

Casualty Insurance Ratemaking, Loss Reserving, and Valuations,” as adopted
January, 1991.

282



APPENDIX A

The model developed by Applied Insurance Research uses sophisticated mathematical
techniques to estimate the probability distribution of losses resulting from earthquakes
anywhere in the 48 contiguous states. The earthquake model is composed of three separate
elements: an earthquake occurrence model, a shake damage model, and a fire-following
model. The earthquake occurrence portion of the model uses a probabilistic simulation to
generate a synthetic catalog of earthquake events that is consistent with the historical record.
The shake damage estimation portion of the model uses analytical numerical techniques to
calculate the distribution of losses for individual buildings given the characteristics of the
event. The fire-following portion of the model uses simulation to estimate fire losses
following an earthquake. Together these techniques allow the estimation of a wide range of
information about potential earthquake losses in the United States. The earthquake simulation
model incorporates statistical descriptions of a large number of variables which define both
the originating event (the earthquake) and its effect on structures. Some of these variables
are defined probabilistically, and some deterministically. This section will describe the key
components of the model, the main variables affecting the outcomes, and the relationships

between the primary variables.

The model is described in the following sections:

« Earthquake occurrence

* Attenuation

» Exposure characterization

« Shake damage estimation

« Fire-following loss estimation

Earthquake Occurrence

For earthquakes there are three key types of variables that describe the physical phenomenon.
In broad terms, these variables describe (1) where earthquakes can occur, (2) the size of the
earthquake, and (3) the likelihood of seeing an earthquake of a particular size. In other
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’

words, the variables describe where, how big, and how often earthquakes occur.

The issue of where earthquakes occur is handled by identifying faults or seismic zones where
historical earthquakes have been observed. On the west coast earthquakes tend to occur along
well defined geological features called faults, which are places where the surface of the earth
has been ruptured by past earthquakes, and which are observable at the ground surface or by
subsurface sounding techniques. Not all faults are active, which is to say that not all faults
are believed capable of rupturing in the present, although they have ruptured in the distant
past. Where faults are observed, and where the historical catalog of earthquakes indicate that
the faults are still capable of rupturing, the surface trace of the fault defines a possible
location for future earthquakes.

Not all earthquakes occur on identifiable faults, however. Many earthquakes, especially those
east of the Rocky Mountains, occur on faults that are not visible at the surface. Such faults
are inferred from the occurrence of earthquakes in the historical record. For these areas, a
source zone is created, which is an area with fuzzy boundaries within which future
earthquakes are possible.

The AIR model contains approximately 250 seismic source zones covering the 48 contiguous
states. Each source zone is defined by a line on the surface of the earth with probability
distributions describing the variability of potential epicenters both along and perpendicular
to that line. Hence a potential earthquake is not limited to occur along a known fault line,
but can with some probability occur anywhere in the vicinity of a fault, or anywhere within
a seismic source zone, depending on the degree of uncertainty associated with the historical
record of earthquakes in that area. The central line of the source zone does define the
dominant direction of faults in the area and characterizes the orientation of the rupture
surface.
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The size of an earthquake is usually measured by one of several magnitude scales. In the AIR
model, the surface wave magnitude M, scale is used to characterize the earthquake
magnitude. For every fault and source zone, the frequency of earthquakes of different

magnitudes must be described. Seismologists generally agree that, over a considerable
. magnitude range, the logarithm of the number of historic earthquakes that exceed a given
magnitude scales linearly with magnitude. This indicates that the frequency-magnitude
relationship is approximately exponential. Additionally, paleo-seismologic data have been
interpreted by some researchers to indicate that the frequency-magnitude relationship for large
earthquakes differs from exponential scaling, leading to the notion of characteristic
earthquakes in certain geographic areas. The AIR Model incorporates a truncated exponential
distribution, or truncated "Gutenberg-Richter" relationship, to represent potential seismicity
in each source zone. Where appropriate we additionally incorporate a characteristic
earthquake model.

The AIR earthquake model is calibrated to a catalog of historical earthquakes which is as
complete as possible, and which covers the historical record from the mid-1600's to the
present. Because the completeness of the catalog varies both in time and as a function of
magnitude (larger earthqilakes are more likely to be included in the historical record), the
fitting of the frequency-magnitude distribution is adjusted to account for the variation in
historical completeness.

Earthquake Attenuation
After earthquakes are simulated using the probability distributions of the different earthquake
parameters, the shaking intensity of the earthquake at every location affected by the

earthquake is calculated using a relationship called an attenuation function. The local
intensity is then corrected to reflect local soil conditions, as some types of soil amplify the
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shaking intensity relative to other soil types. This section discusses the variable
interrelationships required to calculate the local shaking intensity.

From the characteristics of the earthquake, the local shaking intensity is calculated using an
attenuation relationship. The attenuation relationship depends on the location of the source
zone, as earthquake shaking attenuates more quickly in the western U.S. than in the eastern
part of the country. That is to say that the same magnitude earthquake will affect a smaller

area in California than in the northeast.

The attenuation calculation starts by spreading the energy released by the earthquake over the
rupture surface, and integrating over the entire rupture surface to calculate the total effect of
the earthquake. In effect, energy is assumed to be released uniformly over the rupture, and
each incremental piece of energy is separately attenuated to obtain the effect at some distant
point. This results in contours of equal intensity that are elongated along the orientation of
the rupture.

The calculation of local shaking intensity itself consists of two parts. First, a basic intensity
is calculated that assumes uniform soil conditions at every location. This intensity (called a
Rossi-Forel intensity) depends on the distance of the site from the earthquake rupture, the
orientation of the rupture, and the earthquake magnitude and focal depth. The rupture length
is calculated from the basic earthquake parameters. Second, the Rossi-Forel intensity is
modified to reflect the soil conditions at the site. Soil conditions for the entire country are
digitized on grids varying from 0.1 degree latitude/longitude squares to 0.5 minute
latitude/longitude squares. The local soil condition can significantly affect shaking intensity.
The final intensity is identified as a Modified Mercalli Intensity (MMI).

The MMI is a generally accepted unit of shaking intensity that has had wide adoption for
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many years. It describes, in general terms, the type of damage that might be expected to
buildings of usual design, and other effects of earthquakes that would be expected at that
location. As such, the MMI is a good metric for estimating damages to structures.

Exposure Characterization

In order to calculate damages from an earthquake, the ATR model incorporates an extensive
description both of the structural characteristics of an exposure and of the policy conditions
describing the treatment of deductibles and other factors.

The seismic performance of a building depends primarily on the structural system resisting
the lateral loads, but is also affected by other factors, including, in the AIR model, the age
of the building and the height of the building. The age of the building is used to determine
the likely code provisions under which the building was designed and constructed. Newer
buildings, which may have been built to more exacting code provisions for seismic
performance, are usually expected to perform better than older buildings.

The AIR model incorporates damageability relationships for many different classes of
exposures, with up to three height categories in each class. In all, there are 42 different
damage relationships for each coverage type, plus several different age categories. The
categories of structural types are based in part on the structural types defined in ATC-13
(Applied Technology Council, 13-member advisory project engineering panel established in
1982 to develop earthquake damage/loss estimates for facilities in California), although the
actual damage relationships are modified and extended well beyond those covered in that

reference.

The exposures are characterized by policy limits for four different coverages: A, building
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applied to the total loss or to the loss from Coverages A, B, and C. Most commonly,
Coverage B is combined with Coverage A for calculation purposes, and is assumed to apply
to the same structural type as coverage A. The policy limit for each coverage may be defined
by both a replacement value and a policy limit. This is because the replacement value may
rise in time without the policy limit being adjusted to reflect inflation. Damage is always
calculated with respect to replacement value, and then is capped at the policy limit if
appropriate.

The location of the risk can be defined by a latitude and longitude point or by the five digit
zip code in which the risk is located. The risk can also be associated with a line of business
(homeowners, renters, commercial multi-peril, etc.) in order to report losses separately in
categories meaningful to the insurer.

Damage Estimation

Given the local shaking intensity in MMI units, damages to structures at that location can be
calculated if sufficient information is available about the structure. Two types of damage are
calculated by AIR: shake damage due to the lateral and vertical motions of the ground, and
fire damage due to earthquake-induced fires.

In order to calculate shake damage, the exposure information is combined with the level of
shaking intensity at the building. Information on the structural characteristics of the
properties at risk are used to select an appropriate damageability relationship (also sometimes
called a damage function or a fragility curve) relating the probability of different levels of
damage to the local shaking intensity (MMI). The damageability relationship is a complete
probability distribution of damage, ranging from no damage to complete destruction (0 to 100
percent damage), with a probability corresponding to each level of damage in between. The
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probability distribution is a continuous function of the local MMI level.

The earthquake damageability relationships have been derived and refined over a period of
several years. They incorporate well documented engineering studies by earthquake engineers
and other experts both within and outside of AIR. These damageability relationships also

incarnnrata the reoulte of nactearthanalka fiald curveve narfarmed hy ATR ancinasrs and
INCOTPONAKC WIS ITSUILS OF POSi=Caruiquaxe IICiG SurvCys pPCricrmes oy A Engiiclls and

others as well as detailed analyses of actual loss data provided to AIR by its client companies.
These relationships are continually refined and validated.

Fire-Following Loss Estimation

Once the shake damages have been caiculated for a particular earthquake, fire-following
losses are estimated. This part of the model. uses a separate simulation to estimate fire losses

for each event.

First, the number of fires spawned by the earthquake is generated. The fire ignition rate is
based on the local MMI intensity and the total population in the area. A number of fires is
simulated for each affected zip code. The mean ignition rate increases as the MMI increases.
The probability distribution of ignition rates is assumed to be uniform in some interval around
the mean rate. Once the number of fires is simulated, each fire is randomly placed within a
zip code and is assigned to affect either residential properties, commercial properties, and/or

mobile homes.

The fire simulation then simulates the spread of the fires as well as the actions taken by local
fire departments to control the fires. The fire spread rate is affected by a randomly selected
wind speed appropriate for the location of the earthquake, Higher wind speeds increase the
rate of spread of the fire.
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Some of the factors included in the fire simulation are the time to report the fire, the time for
one or more fire engines to reach the fire, and the availability of water to fight the fire. All
of these factors are affected by the local MMI, as areas experiencing high shaking intensity
are more likely to have obstructed roads and broken water mains. Also, the influence of fire
breaks - wide roads or other natural impediments to fire spread - is included in the simulation.

Fire engines can move from fire to fire as fires are controlled.

Since the fire losses are determined by simulation, different levels of fire loss can be
calculated for a given earthquake. Typically, the variability of fire losses is large, at least for
the larger earthquakes, such that fire losses can vary by at least a factor of two if the same
earthquake is simulated several times. This reflects the true uncertainty in fire losses for
larger earthquakes.

Note: Reprinted with express written permission from Applied Insurance Research of
Boston, Massachusetts.
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IMPLEMENTATION OF PH-TRANSFORMS IN
RATEMAKING

SHAUN WANG, Ph.D.

ABSTRACT

In this article we introduce a relatively new method for deciding con-
tingency provisions in insurance ratemaking by the use of proportional
hazard(PH) transforms. This method is easy to understand, simple to
use, and supported by theoretical properties as well as economic justifica-
tion. After an introduction of the PH-transform method, we show through
examples how it can be used in pricing ambiguous risks, excess-of-loss cov-
erages, increased limits, and risk portfolios with dependency risk. We also
show how a minimum rate-on-line can be achieved. As well, we propose
a right-tail index for insurance risks.
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1 INTRODUCTION

Recently, there has been considerable interest in and extensive discussion on risk loads
by Fellows of the Casualty Actuarial Society. These discussions have focused on what
measures a risk and methods to arrive at a ‘reasonable’ risk load. Although there are
diverse opinions on the appropriate measurement of risk, there is general agreement
on the distinction between process risks and parameter risks, and on the importance
of parameter risks in ratemaking; see Finger (1976), Miccolis (1977), McClenahan
(1990), Feldblum (1990), Philbrick (1991), Meyers (1991) and Robbin (1992).

Following Venter’s (1991) advocacy of adjusted distribution methods, Wang (1995)
proposes using proportional hazard (PH) transforms in the calculation of risk-adjusted
premiums. Although extensive discussion on the economic justifications is valuable,
this paper focuses on the practical aspects of implementation of PH-transforms in
ratemaking. More specifically, we will show how it can be used to quantify process
risks, parameter risks and dependency risks. .

Consistent with previous papers, this paper will consider only pure premiums,
excluding all expenses and commissions. To utilize the PH-transform in ratemaking,
a probability distribution for the insurance claims is needed. With the advent of com-
puterized technology, a probability distribution can often be estimated from industry
claim data or by computer simulations. Even though a probability distribution can
be obtained from past claim data, sound and knowledgeable judgements are always
required to ensure that the estimated loss distribution is valid for ratemaking.

It is safe to say that no theoretical risk-load formula can claim to be the right
one, since subjective elements always exist in any practical exercise of ratemaking.
However, a good theoretical risk-load formula can assist actuaries and help maintain
logical consistency in the ratemaking process. In this respect, it is hoped that the PH-
transform method offers a useful tool to practicing actuaries in insurance ratemaking.

The remainder of this paper is divided into three sections. Section 2 introduces
the PH-transform method and applies it to pricing of ambiguous risks, excess-of-loss
layers, increased limits and risk portfolios. Section 3 discusses two simple mixtures
of PH-transforms. The first mixture can yield a minimal rate-on-line, and the second
mixture suggests a new index for the right tail risk. Section 4 briefly reviews the
leading economic theories of risk and uncertainty, and their relations with insurance
ratemaking.
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2 PROPORTIONAL HAZARD TRANSFORM

An insurance risk X refers to a non-negative loss random variable, which can be
described by the decumulative distribution function (ddf): Sx(t) = Pr{X > t}.
An advantage of using the ddf is the unifying treatment of discrete, continuous and
mixed-type distributions. In general, for a risk X, the expected loss can be evaluated
directly from its ddf:

(O = [ % Sx(t)dt.

Definition 1 Given a best-estimate loss distribution Sx(t) = Pr{X > t}, for some
exogenous index r (0 < r < 1), the proportional hazard (PH) transform refers
to @ mapping Sy(t) := [Sx(t)]", and the PH-mean refers to the ezpected value
under the transformed distribution:

Hy(X) = /om[Sx(t)]’dt, ©0<r<1)

The PH-mean was introduced by Wang (1995) to represent risk-adjusted premi-
ums.

Example 1: The following three loss distributions

Sy(t) = 1—-&t, 0<t<2b (uniform)
Sy(t) = et (exponential)
Sw(t) = (b_.bﬁ) (Pareto),

have the same expected loss, b. One can easily verify that

2% b b 05
HBU) =1 BM)=L  HW)= { o <08

Table 1: Some values of PH-mean H,(.)

v lvi]iw
ro=%[1.00b]1.2b]15b
ro=2] 126 [156]3.0b

The PH-mean, interpreted as risk-adjusted premium, preserves the
ordering of relative riskiness among those three distributions (see Table 1).

294



Example 2: When X has a Pareto distribution with parameters (e, A):

A

Sx(t) = (m

)0
the PH-transform Sy (t) also has a Pareto distribution with parameters
(ra, A).

When X has a Burr distribution with parameters (a, A, 7):

A

Sx(t) = (,\ e

%

the PH transform Sy(t) also has a Burr distribution with parameters
(ra, A, 7).

When X has a gamma (or log-normal) distribution, the PH transform
Sy(t) is no longer a gamma (or log-normal). In such cases, numerical
integration may be required to evaluate the PH-mean.

2.1 Pricing of Ambiguous Risks

In practice, the underlying loss distribution is seldom known with precision. There
are always uncertainties regarding the best-estimate loss distribution. Insufficient
data or poor-quality data often results in sampling errors. Even if a large amount
of high-quality data is available, due to changes in the claim generating mechanisms,
past data may not fully predict the the future claim distribution.

Figure 1: Margins for parameter uncertainty by PH-transforms

S1)

PH-transform as an upper conlidcace limit

540
S0

As illustrated in Figure 1, the PH-transform, Sy(t) = [Sx(t)]", can be viewed as
an upper confidence limit for the best-estimate loss distribution Sx(¢). A smaller
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index 7 yields a wider range between the curves Sy and Sx. This upper confidence
limit interpretation has support in a statistical estimation theory (see Appendix).
The index r can be assigned accordingly with respect to the level of confidence in the
estimated loss distribution. The more ambiguous the situation is, the lower the value
of r should be used.

Example 3: Consider the following experiment conducted by Hogarth
and Kunreuther (1992). An actuary is asked to price warranties on the
performance of 10,000 units of a new line of microcomputers. Suppose that
the cost of repair is $100 per unit, and there can be at most one break-
down per period. Also, suppose that the risks of breakdown associated
with any two units are independent. The best-estimate of the probability
of breakdown has three scenarios:

#=0.001, 6=001, @#=0.1

The level of confidence regarding the best estimate has two scenarios:

Non-ambiguous:  There is little ambiguity regarding the best-estimate
loss distribution. Experts all agree with confidence on the chances
of a breakdown.

Ambiguous: There is considerable ambiguity regarding the best-estimate
loss distribution. Experts disagree and have little confidence in the
estimate of the probabilities of a breakdown.

Note that the loss associated with a computer component can only
assume two possible values, either zero or $100. For any fixed ¢ < 100,
the probability that the loss exceeds t is the same as the probability of
being exactly $100, 8. For a fixed t > 100, it is impossible that the loss

exceeds t. Thus, the best-estimate ddf of the insurance loss cost is

g, 0<t<100;

Sx(t) =
x {o, 100 < ¢.

A PH-transform with index r yields a risk-adjusted premium at 1006".

I we choose r = 0.97 for the non-ambiguous case, and r = 0.87 for the
ambiguous case, we get the following premium structures as in Table 2:
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Table 2: The ratio of the risk-adjusted premium to the expected loss

6=0001 =001 #=01
Non-ambiguous (r = 0.97) 1.23 1.15 1.07
Ambiguous (r = 0.87) 2.45 1.82 1.35

In summary, the PH-transform can be used as a means of provision for estimation
errors. The actuary can subsequently set up a table for the index r according to
different levels of ambiguity, such as the following:

Ambiguity Level Index r
Non-ambiguous 0.96-1.00
Slightly ambiguous | 0.90-0.95
Moderately ambiguous | 0.80-0.89
Highly ambiguous 0.50-0.79
Extremely ambiguous | 0.00-0.49

2.2  Pricing of Excess-of-Loss Layers

Since most practical contracts contain clauses such as a deductible and a maximum
limit, it is convenient to use the general language of excess-of-loss layers. A layer
(a,a + h] of a risk X is defined by the loss function:

0, 0< X <a;
Taarny=4§ (X —a), a< X <a+h
k, a+h<X,

where a is the attachment point (retention), and h is the limit.
One can verify that the loss variable [(4 044 has a ddf:

Sx(tl-f-i), 0<t<h
0, h<t,

Sl(.,,..+h)(t) = {
and that the average loss cost for the layer (a,a + h] is

7] a+h
Ellgain] = /0 Sx(a +t)dt = / Sx(t)dt.

Note that Sx(t)dt represents the net premium for an infinitesimal layer at (i, ¢ + dt|.
Thus, the ddf Sx(t) plays an important role of layer net premium density.
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Under the PH-transform Sy (t) = [Sx(¢)]", the PH-mean for the layer (a,a + A] is

He(laar) = [ [Siquun(®Vdt = [ I5x(+ 001t = [ [sx(ores

In other words, the net premium and the risk-adjusted prémium for the layer
(a,a + h) are represented by the areas over the interval (a,a + h] under the curves
Sx(t) and Sy (t), respectively (see Figure 2).

Figure 2: Risk load by layers: an illustration

Stt)

S
S0

4 a a+h b beh

In Wang (1995), it is shown that, for 0 < r < 1, the PH-mean has the following
properties:

e Positive loading:
Hr(I(n.a+h]) > E(I(a.a+h])-

e Decreasing risk-adjusted premiums:

Fora < b, H; (La,a+k)) > He(Jp020])

s Increasing relative loading:

H,(I(a.an)) < H, (Zps4n)

For a < b, .
E(Joasn)) — E(Jpoen)

These properties are consistent with market premium structures (Patrick, 1990;
Venter, 1991).
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Example 4 : A risk has a 10% chance of incurring a claim. and if a
claim occurs the claim size has a Pareto distribution (A = 2,000, o = 1.2).

Putting frequency and severity together, we have

Sx(t) = Pr{X >t}
= Probability of occurrence x Pr{Loss Size > 1}

01 x (g

Suppose that, the actuary infers an index, say r = 0.833, from individual
risk analysis and market conditions. The actuary may need to compare
with the risk loads for other contracts with similar characteristics in the
market. The PH-transform with r = 0.833 yields a ddf:

"

2000
(1) = 0.19833 5 ()1 2x0.833
S =01 % (o000 + ¢

which produces risk-adjusted layer premiums as shown in Table 3.

Table 3: Layer premiums using PH-transforms

Net Risk-adjusted | Percentage
Layer Premium Premium Loading

{0, 1000 77.892 119.129 53%
(5000, 6000] 20.512 39.250 91%
(10000, 11000} 11.098 23.533 112%
(50000, 51000) 1.982 5.603 183%
(100000, 101000] 0.888 2.870 223%
(500000, 501000] 0.132 0.587 345%
(1000000, 1001000} | 0.058 0.294 412%

2.3 Increased Limits Ratemaking

In commercial liability insurance, a policy generally covers a loss up to a specified
maximum dollar amount that will be paid to any individual loss.

It is general practice to publish rates for some standard limit called the basic limit
(used to be $25,000 and nowadays $100,000). Increased limit rates are calculated
using a multiple factor, called the increased limit factors (ILFs). Without risk load,
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the increased limit factor is the expected loss at the increased limit divided by the
expected loss at the basic limit. The increased limit factor with risk load is the sum
of the expected loss and the risk load at the increased limit divided by the sum of
the expected loss and the risk load at the basic limit:

E[X;w] + RL(o.)
ILF(w) = : .
LF() E[X; 100,000] -+ RLg,100,000]

It is widely felt that ILFs should satisfy the following conditions (Rosenberg, 1977;
Meyers, 1991; Robbin, 1992):

1. The relative loading with respect to the expected loss is higher for increased

limits.
2. ILFs should produce the same price under any arbitrary division of layers.

3. The ILFs should exhibit a pattern of declining marginal increases as the limit
of coverages is raised. In other words, when z < y,

ILF(z + h) — ILF(z) > ILF(y + k) — ILF(y),

In the U.S., most companies use the Insurance Service Office (ISO) published
ILFs. Traditionally, only the severity distribution is used (ISO assumes a Pareto
loss severity distribution) when producing ILFs. Until the mid-1980's, ISO used the
variance of the loss distribution to calculate risk loads, a method proposed by Robert
S. Miccolis (1977). From mid-1980’s to early 1990’s, ISO used the standard deviation
of the loss distribution to calculate risk loads (e.g. Feldblum, 1990). Meyers (1991)
presents a Competitive Market Equilibrium approach, which yields a variance-based
risk load method; however, some authors have questioned the appropriateness of the
variance-based risk load method for the calculation of ILFs (e.g. Robbin, 1992).

The following is an illustrative example to show how the PH-transform method

can be used in increased limits ratemaking.

Example 5: Assume that the claim severity distribution has a Pareto
distribution with ddf:

Sx(t) = (/\—+t) )
with A = 5,000 and a = 1.1. This is the same distribution used by Meyers
(1991), although he also considered parameter uncertainty.
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Assume that. based on the market premium structure, the actuary
feels that (for illustration only) an index r = 0.8 provides an appropri-
ate provision for parameter uncertainty. When using a Pareto severity
distribution, there is a simple analytical formula for the ILFs:

2 -
1- (m)ra 1

X —1"
1= (,\+ 100,000 ye

ILF(w) =

One can then easily calculate the increased limit factors at any limit (see

Table 4).
Table 4: Increased limit Factors using PH-transforms
Policy | Expected ILF Risk ILF
Limit w | Loss E[X;w] | Without RL | Load | With RL
100000 13124. 1.00 5251. 1.00
250000 16255. 1.24 8866. 1.37
500000 18484. 141 12344, 1.68
750000 19726. 1.50 14687. 1.87
1000000 20579. 1.57 16490. 2.02
2000000 22543. 1.71 21330. 2.39

2.4 Pricing of Risk Portfolios and Dependency Risk

For ratemaking based on the aggregate claims from a risk portfolio, the actuary often
considers claim frequency and claim severity separately, due to the type of information
available.
Let N denote the claim frequency with probability function fy(k) = Pr{N = &}
and ddf: Sy(k) = flk+ 1)+ f(k+2)+---, (k=0,1,2,--).
Let X denote the claim severity and let
N
Z=Xi+Xo+ - Xn=DX:
i=1
represent the aggregate claims from the risk portfolio.

Depending on the available information, the actuary may have different levels of
confidence in the estimates for the frequency and severity distributions. According
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to the level of confidence in the estimated frequency and severity distributions, the
actuary can choose an index r; for the frequency and an index r; for the severity. As
a result, the actuary can calculate the risk-adjusted premium for the risk portfolio
as:

H(Z) = H,,(N) x H,,(X).

Example 6: Consider a group coverage of liability insurance. The actu-
ary has estimated the following loss distributions: (i) the claim frequency
has a Poisson distribution with A = 2.0, and (ii) the claim severity is
modeled by a log-normal distribution with a mean of $50,000 and coeffi-
cient of variation of 3, which was used by Finger (1976) for liability claim
severity distribution. Suppose that the actuary has low confidence in the
estimate of claim frequency, but higher confidence in the estimate of the
claim severity distribution, thus chooses 7, = 0.7 for the claim frequency
and 2 = 0.8 for the claim severity. The premium can be calculated using
numerical integrations:

Hp7(N) = 2.527, and Ho.s(X) = 82,960.
Thus, the required total premium is
H0,7(1\’) X Hg,s(/\’) = 209, 640.

Kunreuther et al (1993) discussed the ambiguities associated with the estimates
for claim frequencies and severities. They mention that for some risks such as play-
ground accidents, there are considerable data on the chances of occurrence but much
uncertainty about the potential size of the loss due to arbitrary court awards. On the
other hand, for some risks such as satellite losses or new product defects. the chance
of a loss occurring is highly ambiguous due to limited past claim data, however, the
magnitude of such a loss is reasonably predictable.

For some risk events such as earthquake insurance, it is more plausible to consider
the dependency between claim frequency and claim severity. For instance, the Richter
scale value of an earthquake may affect both the frequency and severity simultane-
ously; and for hurricane losses the wind velocity would affect both the frequency and
severity simultaneously.

Regardless of the dependency structure, computerized simulation methods can
always be used to model the total claims ¢ sed on given geographic concentration.
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For instance, in simulating earthquake losses, one can use the following procedures: (i)
simulate some numerical values of the Richter scale; (ii) conditional on the simulated
Richter scale values, run a secondary generator for the claim frequency and the claim
severity (of course both the frequency and the severity depend on the Richter scale
values). Once the actuary has obtained sample distributions for the claim frequencies
and severities, or a sample distribution for the total claims, he or she can apply a
PH-transform directly to the simulated sample distributions.

2.5 Some Properties of the PH-Mean
In general, for 0 € r < 1, the PH-mean has the following properties:

e E(X) < H,(X) < max(X). When r declines from one to zero, H,(X) increases

from the expected loss, E(X), to the maximum possible loss, max(X).
e Scale and translation invariant: H,(aX + b) = aH,(X) + b, for ¢, b > 0.
e Sub-additivity: H,(X; + X2) < H, (X)) + H,.(X3).

e Layer additivity: when a risk X is split into a number of layers

{(IOIIIL (IhI?]v o '}y

the layer premiums are additive (the whole is the summation of the parts):
Hr(/\’) = Hr(l(zo.xl]) + Hr(-[(.tl.z;]) T

Pricing often assumes that a certain degree of diversification will be reached
through the market efforts. In real life examples, risk-pooling is a common phe-
nomena. It is assumed that, in a competitive market, the benefit of risk-pooling is
transferred back to the policy-holders (in the form of premium reduction). In the
PH-model, the layer-additivity property has already taken into account of the cffect
of risk-pooling.

Theoretically, in an efficient market (no transaction expenses in risk-sharing schemes)
with complete information, the optimal cooperation among insurers is to form a mar-
ket insurance portfolio (like the Dow Jones index), and each insurer takes a layer or
quota-share of the market insurance portfolio.
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In real life, however. the insurance market is not efficient. This is mainly because
of incomplete information (ambiguity) and extra expenses associated with the risk-
sharing transactions. There exist distinctly different local market climates in different
geographic areas and in different lines of insurance. For instance, one can compare
the automobile insurance market with the market for earthquake damage coverages
in both California and Ontario. As a result, the value of the index r may vary with
respect to the local market climate, which is characterized by the levels of ambiguity,
risk concentration, and competition.

3 MIXTURE OF PH-TRANSFORMS

While a single index PH-transform has one parameter 7 to control the relative pre-
mium structure, one can obtain more flexible premium structures by using a mixture
of PH-transforms:

n
piHe, + poHey + -+ paHe,  Yops=1, 0<r;<1(j=1,---,n)
j=1

Let 7= 37, p;r; be the weighted average index. It can be verified that
e For any risk X, pH,,(X)+pH,(X)+ -+ p,H, (X) > Hx(X).
e For a layer I, = (z,z + h), the ratio

nHe () + poHr, (1) + - - + paH,, (I2)
HF(I:)

is an increasing function of z.

The PH-measure mixture can be interpreted as a collective decision-making pro-
cess. Each member of the decision-making ‘committee’ chooses a value of r, and the
index mixture represents different 7's chosen by different members. It also has inter-
pretations as (i) an index mixture chosen by a rating agency according to the indices
for all insurance companies in the market; (ii) an index mixture which combines an
individual company’s index with the rating agency’s index mixture.

For ratemaking purposes, mixtures of PH-transforms add more flexibility than a
single index. In the remaining sections of this article, we shall discuss some special
two-point mixtures of PH-transforms:

(1-~a)H, (X)+eH (X), 0<a<gl, 7,m<1
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3.1 Minimum Rate-on-Line

In most practical circumstances, very limited information is available for claims at
extremely high layers. In such highly ambiguous circumstances, most (re)insurers
adopt a survival rule of minimum rate-on-line. The rate-on-line is the premium
divided by the coverage limit, and most (re)insurers establish a minimum they will
accept for this ratio (see Venter, 1991).

By using a two-point mixture of PH-transforms with r, < 1 and r, = 0, the
premium functional

(1 — &)H,, (X) + aHo(X) = (1 — a)H,,(X) + a max(X)
can yield a minimum rate-on-line at a.

Example 7: Reconsider Example 4, the best-estimate loss distribution
(ddf) is '

2000 )2
20004+t
By choosing a two-point mixture with 7, = 0.85, 7o = 0, and o = 0.02,

Sx(t)=0.1x(

we get an adjusted distribution:

2000 .12x08s
=0. . e .02.
Sy(t) 098x01x(2000+t) +0.0

As shown in the table below, this two-point mixture guarantees a
minimum-rate-on-line at 0.02 (1 full payment out of 50 years). By com-
paring Table 5 with Table 3 one can see that, at higher layers, this method
yield distinctly different premiums from those in Example 4.

3.2 The Right-Tail Deviation

Congsider a two-point mixture of PH-transforms with r, =1 and r, = %:
(l—a)Hl(X)+aH§(X), O<axl,
which can be tewrit-:ten as (noting that H{(X) = E(X)):
E(X) + o [Hy(X) - E(X),

which is analogous to the standard deviation method: E(X) + ao(X).
Now we introduce a new risk-measure analogous to the standard deviation.
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Table 5: Layer premiums under an index mixture

Net Risk-adjusted

Layer Premium Premium

(0, 1000] 77.892 131.802
(5000, 6000) 20.512 56.006
(10000, 11000 11.098 41.363
(50000, 51000] 1.982 24.940
(100000, 101000} 0.888 22.497
(500000, 501000] 0.132 20.493
{1000000, 1001000} 0.058 20.244

Definition 2 The right-tail deviation is defined as

D(X) = Hy (X) /,/ £)dt — / 1)dt.

and the right-tail index is defined as

H(X)
E(X)

d(xX) =

Analogous to the standard deviation, the right-tail deviation D(.\X') satisfies:

o If Pr{X =b} =1, then D(X) =

¢ Scale-invariant: D(cX) = ¢D(X) for ¢ > 0.

¢ Sub-additivity: D(X +Y) < D(X) + D(Y).

e If X and Y are perfectly correlated, then D(X + V) = D(X) + D(Y).

At very high layers, the standard deviation and the right-tail deviation converge

to each other, as demonstrated in the following example.

Example 8 : Re-consider the claim distribution in Example 4 with a

ddf:
2000

2000 + ¢
For different layers with fixed limit at 1000, we compare the standard
deviation and the right-tail deviation in the following table.

Sx(t) =0.1x (

)1.2
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Expected | Std-deviation | Right-tail | Percentage
Layer loss of the loss | deviation | difference
I E(I) - a(l) DU) | fi-!
(0, 1000} 77.89 256.0 200.5 27.7%
(1000, 2000} 51.56 214.3 175.2 22.3%
(10000, 11000) 11.10 103.9 94.24 10.3%
(100000, 101000] .8879 29.76 28.91 2.93%
(1000000, 1001000] 05754 7.584 7.528 .15%
(10000000, 10001000) .003640 1.908 1.904 19%
(100000000, 100001000] | .0002297 4793 4791 05%
(1000000000, 1000001000] | .00001450 .1204 1204 01%

It can be shown that, for any small layer [a,a + h), D(J@aasn)) € 0((aasn))s
D(I(a.+n)) converges to o(faq4n) at upper layers (i.e. the relative error goes to zero
when a becomes large). As a result, for any non-negative randomn variable X, the
right-tail deviation D(.Y') is finite, if and only if, the standard deviation o(.X') is finite.

Having stated a number of similaritics, here we point out some crucial differences
between the right-tail deviation D(.\') and the standard deviation o(X):

o D(X) is layer-additive, but ¢(.X) is not additive.

e D(.Y) preserves some natural ordering of risks such as first stochastic dominance!,

but (X} does not.

3.3 Links to the Gini Index in Welfare Studies

Historically, some long-tailed distributions have an origin in income distributions
(e.g. Pareto, log-normal distributions, see Arnold, 1983). In social welfare studies, a
celebrated measure for income inequality? is the Gini index. Assume that individual’s
wealth level in a country (community) can be summarized by a distribution: Sy(u) =
Proportion{X > u}. As a measure of income inequality of a society, the Gini index is

'Risk X is small than risk ¥ in first stochastic dominance if Sx(t) < Sy(t) for all t > 0;
or equivalently, ¥ has the same distribution as X + Z where Z is another non-negative random

variable.
2Here ‘income inequality" refers to the polarization of the wealth distribution.
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defined as
2E(JX - YY)

E(X)
where X and Y are independent and identically distributed.

G(X) =

An equivalent definition of the Gini index is

. Jo° [Sx (w)]*du
GX)=1- "7
fo Sx(u)du
The higher the Gini index is, the more polarized a society is. As a measure of welfare
[N HY alan Y ) oo thv Collacelc o e e nmdan
meqguality, e \alll 1InUex ldd> LOe 10HOWILE PpIopelules

- o Each dollar transferred from the rich to the poor will lower the Gini index.

e Adding an equal amount to all persons’ wealth will decrease the Gini index.

It is noted that d(X) and G(X) are similar in their definition formulae. This
similarity may suggest that the role of the right-tail index d(X') in measuring the
right-tail risk is parallel to the role of the Gini index G(X) in measuring income
inequalities.

Consider the following loss distributions each with the same mean(=1) and vari-
ance(=3). Without referring to higher moments, we can order them by the right-tail
index d(X).

Risk X; Distribution E(X) | o(X3) | d(X;) | Gini index
Pareto S(t) = (Z)° 1 V3 | 3.00 0.600
Log-normal | p = —log(2), o = log(4) | 1 V3 | 2.46 0.595
Inverse-Gaussian flz)= %é 1 V3 | 2.17 0.632
Gamma a=p=1% 1 V3 | 1.96 0.713
Bernoulli f0)y=3, f(4)y=1 1 V3 | 1.00 0.750

As its name may suggest, the right-tail deviation measures the right-tail risk, as
opposed to the standard deviation which measures the deviation about the mean,
and as opposed to the Gini index which measures the polarization of the wealth
distribution.
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4 ECONOMIC THEORIES

4.1 Expected Utility Theory

Traditionally, expected utility (EU) theory has played a dominant role in modeling
decisions under risk and uncertainty. To a large extent, the popularity of EU was
attributed to the axiomatization of von Neumann and Morgenstern (1947). They
proposed five axioms (somewhat self-evident) and showed that any decision-making
which is consistent with these axioms can be modeled by using a utility function of
wealth. However, due to difficulties associated with implementation, EU remains as
an academic pursuit and has had little direct impact in practice.

When EU is applied to produce an insurance premium for a risk X, the minimum
premium P that an insurance company will accept for full insurance is defined by
u(w) = E[u{w + P — X)), in which « and w refer to the insurer’s utility and wealth
(see Bowers et al, 1986). As pointed out by Meyers (1995), EU gives lower and upper
bounds of an insurance premium, without due consideration of the market setting.

The EU does have an indirect application in actuarial work via the mean-variance
analysis, which is viewed by some authors as a rough approximation of utility theory
(Meyers, 1995). A commonly used actuarial method for deciding risk loads is based
on the first two moments. Since loss distributions are often highly skewed, the first
two moments cannot accurately reflect the level of insurance risk. In fact, actuaries
often find that long tailed claim distributions, such as Pareto distributions, are more
appropriate to describe the potential losses for some insurance contracts (e.g. liability
insurance). Even for a large risk portfolio, the total claim distribution can be highly
non-normal due to correlations or ambiguities in the initial estimates of individual
risks.

The inconsistency of moment-based methods in calculating layer premiums are
discussed by a number of authors (e.g. Venter, 1991; Robbin, 1992).

4.2 The Dual Theory of Yaari

A new theory of decision under uncertainty has been developed in the last decade by a
group of economists (e.g. Quiggin, 1982; Yaari 1987). Analogous to the development
of non-Euclidean geometry, Yaari (1987) formalized an alternative set of axioms and
developed a dual theory of decision under uncertainty. In Yaari’s dual theory, risk-
aversion is described by a distortion function (increasing and convex) ¢ : [0,1] — [0, 1]
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which is applied to probability distributions. The certainty equivalent to a bounded
random economic prospect V (0 <V < m) is

/Omg[sv(z)]dt, where Sy(t) = Pr{V > t}.

In other words, the certainty equivalent to a random economic prospect, V, is just
the expected value under the distorted probability distribution, g[Sv(t)].

4.3 Schemeidler’s Ambiguity-Aversion

As early as 1921, John Keynes identified a distinction between the implication of
evidence (the implied likelihood) and weight of evidence (confidence in the implied
likelihood). Frank Knight (1921) also drew a distinction between risk (with known
probabilities) and uncertainty (ambiguity about the probabilities). A famous example
on ambiguity-aversion is Ellsberg’s (1961) paradox which can be briefly described as
follows: There are two urns each containing 100 balls. One is a non-ambiguous urn
which has 50 red and 50 black balls; the other is an ambiguous urn which also contains
red and black balls but with unknown proportions. When subjects are offered $100
for betting on a red draw, most subjects choose the non-ambiguous urn (and the
same for the black draw). Such a pattern of preference cannot be explained by EU
(Quiggin, 1993, p.42).

Ellsberg's work has spurred much interest in dealing with ambiguity factors in risk
analysis. Schmeidler (1989) brought to economists non-additive probabilities in his
axiomization of preferences under uncertainty. For instance, in Ellsberg’s experiment,
the non-ambiguous urn, with 50 red and 50 black balls, is preferred to the ambigu-
ous urn with unknown proportions of red or black balls. This phenomenon can be
explained if we assume that one assigns a subjective probability % to the chance of

getting a red draw (or black draw). Since 2 + 2 = £ which is less than one, the

difference 1 — £ = ! may represent the magnitude of ambiguity aversion.
Built on its own axiomatic system, Schmeidler’s theory leads to the same math-
ematical formulation as that of Yaari; that is, a certainty equivalent to a random

economic prospect V' (0 £ V < m) can be evaluated as

H(V) = /Om g[Sy (D]t

where g : (0,1} — [0,1] is a distortion function and g{Sx(t)] represents the subjective
probabilities.
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The method of using adjusted distributions is widely known by actuaries. How-
ever, actuaries often use a transformed random variable, Y = g(X), which yields
Sy(t) = Sx(97'(t)), a different formulation from Yaari’s and Schmeidler’s. A key
point in the theories of Yaari and Schmeidler is that one needs to transform directly
the distribution function Sx(t).

Using a market argument, Venter (1991) discussed the no-arbitrage implications
of insurance pricing. He observed that in order to ensure additivity when layering a
risk, it is necessary to adjust the loss distribution so that layer premiums are expected
losses under the adjusted loss distribution. Inspired by Venter’s insightful observation,
Wang (1995, 1996a) proposed the PH-transform method, which is in agreement with

the formulation in Yaari and Schmeidler, thus is supported by their economic theories.

5 SUMMARY

In this paper we have introduced the basic methodologies of the PH-transform method
and have shown by example how it can be used in insurance ratemaking. We did not
discuss how to decide the overall level of contingency margin, which depends greatly
on market conditions. An important avenue for future research is to link the overall
level of risk load with the required surplus for supporting the written contract. Some
pioneer work in this direction can be found in Ireps (1990) and Philbrick (1994).

The use of adjusted/conservative life tables has long been practiced by life actuar-
ies (see Venter, 1991). To casualty actuaries, the PH-transform method contributes a
theoretically sound and practically plausible way to adjust the loss distributions. For
economic interpretations and empirical tests of the PH-transform method, see Wang
(1996b). For updating risk-adjusted premiums in the light of new information, see
Wang and Young (1996).

Acknowledgments: The author thanks the CAS Ratemaking Committee, es-
pecially Israel Krakowski, for numerous comments and suggestions.
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APPENDIX: Ambiguity and Parameter Risk

Most insurance risks are characterized by the uncertainty about the estimate of
the tail probabilitics. This is often due to data sparsity for rare events (small tail
probabilitics), whicli in turn causes the cstimates for tail probabilitics to be unreliable.

To illustrate, assume that we have a finite sample of n observations from a class
of identical insurance policies. The empirical estimate for the loss distribution is

S(t.) _ # of observations > f.‘ £30.
n
Let S(t) represent the frue underlying loss distribution, which is generally unknown

and different from the cmpirical estimation S(!) From statistical estimation theory
(c.g.. Lawless, 1982, pp. 402; Hogg and Klugman, 1984), for some specified value of

t, we can treat the quantity

S(t)y - S(t)
a(5(t)

as having a standard normal distribution for large values of ., where

\ VS - S(t)
a(S(h) = _—[\/:——]
n
The 1% upper confidence limit (UCL) for the true underlying distribution S{t)

can be approximated by

N W [ &
UCL(1) = $(1)+ L0t - S

where g, is a quantile of the standard normal distribution: Pr{N(0,1) < ¢,} = 7.
Keeping # fixed and letting f — oo, the ratio of the UCL to the best-cstimate S(t) is

UCL{t) @ [1=5()

—_— 00,

Sy v\ so

which grows without hounds as 7 increases.

As ameans of dealing with ambignity regarding the best-estimate, the PH-transform:
Sy(t) =[Sx()]", r<1,
can be viewed as an upper confidence limit (UCL) for the best-estimate 5\(!) It

antomatically gives higher relative safety margins for the tail probabilitics. and the

ratio R
{S?\\% =[x =00, ast— oo,

increases without bound to infinity.
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Personal Automobile:
Cost Drivers, Pricing, and Public Policy

Abstract

Traditional actuarial pricing procedures have focused on pre-accident driver
attributes, vehicle characteristics, and garaging location in an effort to explain
personal automobile loss cost “drivers.” Although these traditional factors are
important for statewide ratemaking in a static environment, they account for only
part of the influences on auto insurance loss costs.

This paper draws on the industry research of the past 15 years to present a more
comprehensive four dimensional framework for understanding auto insurance loss
costs, comprising factors grouped into the following categories:

w Pre-accident drivers attributes and vehicle characteristics

=& Post-accident factors: claimant characteristics, medical providers, and
© attorney representation

= External environment, such as road conditions and traffic density

» Compensation system, such a tort liability versus no-fault

As an illustration, the paper shows how territory, which is often considered a
reflection of external conditions (such as road safety and traffic density), is more
properly analyzed as a proxy for post-accident factors — specifically, the “treatment
triangle” among claimants, medical providers, and attorneys in certain locations. The
paper concludes with two proposed public policy reforms, demonstrating how the
expanded four-dimensional framework for personal auto loss cost drivers facilitates
the development of more efficacious methods for holding down auto insurance loss
costs.
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Cost Drivers, Pricing, and Public Policy

Introduction

Actuarial ratemaking sets policy premiums to cover anticipated loss and expenses. To estimate
the needed premiums, the pricing actuary examines the “cost drivers”: that is, the factors that
influence the expected future losses and expenses.

In the past, actuaries have concentrated on variables related to driver, vehicle, and geographic
characteristics. Indeed, these are the factors most susceptible to policy rating, the traditionat
role of the casualty actuary.

Although this traditional perspective produces accurate rates, it does not provide a full
understanding of the underlying factors that influence automobile insurance loss costs. The
recent studies of the Insurance Research Council (“IRC"; formerly, AtRAC), the RAND
Institute, and the Automobile Insurance Bureau of Massachusetts (AIB) illuminate a host of
other factors that play significant roles in determining these costs.

This paper integrates the results of these studies into a comprehensive framework for analyzing
personal automobile insurance foss costs. The framework looks at four "dimensions” that affect
loss costs: (a) driver and vehicle attributes, (b) claim and claimant characteristics, (c)
compensation systems, and (d) environmental characteristics. The foliowing section shows how
these four dimensions combine to influence territorial rates.

The implications for policy pricing are highlighted by comparison with the traditional “claim
severity / ctaim frequency” paradigm, using national statistics compiled by the [RC and
Massachusetis experience analyzed by the AIB. The importance of the expanded framework is
further revealed by three other uses, besides policy pricing:

= Several traditional classification dimensions are reinterpreted, underscoring their true
effects on insurance loss costs. The IRC studies, for instance, show how territory is shifted
from a factor related to the “physical environment” to a factor related to “claimant
characteristics.”

= Changes in compensation systems can be more accurately priced. The AIB studies show how a
simplistic prognosis of the 1989 Massachusetts no-fault reform vastly mis-estimated the
true effects on loss frequency and loss severity. This is comparable to the shift in the
pricing of workers’' compensation statutory amendments from “direct eftects” to “direct
plus incentive effects.”

= Public policy recommendations for lowering the cost and improving the efficiency of
personal auto insurance are made more realistic and more effective.

Pearsonal Auto: Cost Drivers, Pricing, and Public Policy
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These uses of the expanded framework for personal automobile insurance cost drivers reflect
the widening role of the casualty actuary in today’s insurance environment.

Framework
Let us begin with the fundamental question faced by the pricing actuary:

An insurer issues a personal automobile insurance policy. What factors influence the
expected claim costs from this policy?

The traditional actuarial focus on ratemaking and classification systems, as well as a
pradilaction for quantifiable data, has led to an emphasis on pre-accident factors ~ particularly
driver, vehicle, and geographic characteristics — to the virtual exclusion of other factors that
affect the insurer's payments. The likelihood and severity of an accident are considered to
depend on driver attributes, vehicle characteristics, and garaging location. The amount of the

claim and its monetary resolution stem directly from the physical aspects of the auto accident.

This perspective suffices for the novice actuary working in a static world with an automobile
classification plan that is already optimal. It is inadequate for an actuary working with
changing external conditions and compensation systems, or for an actuary refining classification
plans, revising pricing procedures, or formulating public policy recommendations.

The expanded perspective in this paper groups loss cost drivers into four dimensions:

External environment:
physical qualities; economic
qualities; human qualities

Interactions Interactions

Post-accident factors: type
of injury;, claimant
attitudes; medical provider;
attorney representation

Pre-accident driver and Physical accident /
vehicle characteristics: Insurance compensation
age, sex, use of car

Compensation system: tort vs.

no-fault; verbal vs monetary Interactions

threshold; PIP limits; U.M. ang
U.L.M statutes

Interactions

O Pre-accident driver and vehicle characteristics
Pre-accident characteristics refer to the elements shown on the policy application:

= Driver attributes, such as age, sex, marital status, driving record, driving experience,
and driver education.

Personal Auto: Cost Drivers, Pricing, and Public Policy
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w  Vehicle and vehicle use characteristics, such as make and mode! of the car, horsepower,
mileage driven, multi-car discounts, and vehicle use (e.g., drive to work vs. pleasure).

w  Policy age, such as new versus renewal policy.

These factors are used for setting rate relativities in existing classification schemes, since they
are known to the insurer at policy inception, and they can therefore be used to rate the policy.
These factors are most important for predicting the occurrence of a physical event (e.g., an
accident). Once that event occurs, the insurance payments (if any) depend on a number of post-
accident factors and on the compensation system.

® Post-Accident Factors

Studies of “classification efficiency” often fault traditional risk classification plans for failing
to adequately explain the variance in insurance loss costs (see Spetzler, Casey, and Pezier
[1976], Giffin, Travis, and Owen [1978], and Woll [1979]). Indeed, the factors discussed
above relate primarily to the occurrence of the physical event - i.e., of cars colliding with one
another. Other factors, such as the type of injury, the honesty of the claimant, attorney
representation, and the type of medical treatment sought, are strong predictors of insurance
claim costs.1

Post-accident factors relate to (i) whether an injury claim will be brought for the physical
accident and (ii) the amount of the claim. These factors may be grouped into the following
categories:

= Type of injury, such as soft-tissue injuries (back and neck sprains and strains) vs.
fractures vs. more serious injuries. The topology of injury types should distinguish
between injuries that are more or less susceptible to “build-up” and potential fraud. For
instance, a fracture is readily discernable, and the length of needed treatment is objectively
determinable. Soft-tissue injuries are harder to validate, and there is less consensus on
their appropriate treatment. If claim frequency depends (in part) on “claim-filing”
behavior, and if claim severity depends (in part) on “build-up,” then a topology of injury

1 See, for instance, Weisberg and Derrig [1993], particularly Tables 2 and 3 on page
133, Table 4 on page 135, and Table 6 on page 138. Weisberg and Derrig note (page 132) that

For claims that involved strains or sprains, variables that reflected the seriousness of the
injury explained little of the variation in medical expenses. For pure strains/sprains our
model R2 was only .04 and for mixed claims with strains/sprains and “hard” injuries, the
R2 was .21. . . . However, when variables related to treatment utilization and claimant
behavior were added In, the value of A2 for strain/sprain claims jumped to .78 and that for
mixed claims to .79.

In general, claimants are more likely to engage attomeys in more serious cases. However, even
when the degree of injury is comparable, attorney represented cases are more likely to settle

for higher amounts, though the benefit to the accident victim is often questionable (AIRAC
[1989], IRC [1994])).
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types that differentiates claims by the criteria mentioned above is most useful for
forecasting loss costs.

= Type of medical practitioner, such as physician vs chiropractor vs physical therapist, as
well as type of treatment, such as hospital admission vs. outpatient treatment in a
practitioner’s office.2 The “type of injury” and “type of medical practitioner” variables
have two or more values for most claims. In other words, many auto liability claims allege
both a sprain/strain and another type of injury. Similarly, many claimants see two or
more types of medical practitioner, such as a physician in an emergency room setting and
then a chiropractor for extended visits.3

= Whether the insurance claim is being represented by an attorney. In tort liability claims,
plaintiffs’ attorneys are generally compensated on a contingent fee basis. That is, the
attorney receives a percentage of the court award or of the insurance compensation, such as
33%.

For Bl claims, the insurance company's settlement offer is often a multiple of the economic
damages (generally medical bills and wage loss) suffered by the accident victim. The

2 The distributions of auto insurance claims by type of injury and type of medical
practitioner differs from the distributions for standard health insurance. The distributions
noted by Marter, Weisberg, and Derrig for claims reported in Lawrence, Massachusetts (an
area suspected of widespread insurance fraud) are particularly revealing. Among the 1985-86
Lawrence claims studied by Marter and Weisberg [1991], 44 out of 48 were for sprains or
strains (page 404). For these claims, moreover, 89% of the medical charges went to chiro-
practors, and only 10% went to physicians (page 407); see also Weisberg and Derrig [1991}.

The predisposition of some actuaries is to view the tower back sprain treated by a chiropractor
as a minor influence on auto insurance loss costs. On the contrary. In certain areas, such
claims are the preponderant loss cost drivers. Even in the rest of the country, strains and
sprains are the predominant type of auto injury in bodily injury claims, and treatment by
chiropractors and physical therapists is becoming increasingly common.

3 The Insurance Research Council has documented both the multiplicity of injury and of
medical practitioners as well as the trends in these statistics in recent years. In 1992, the
average Bl claimant reported about 2 different types of injury and was treated by about 2
different types of medical practitioners, as reported in the IRC's September 1994 volume, Auto
Injuries: Claiming Behavior and Its Impact on Insurance Costs: “The growing share of claimants
reporting multiple types of injuries also is reflected In the growth of the average number of
different types of injuries reported by Bl claimants. BI claimants reported an average of 1.92
types of injuries per person in 1992, up from 1.79 types of injuries per person in 1987."
and “On average, Bl claimants were treated by 1.95 different types of medical practitioners per
person in 1992, up from 1.59 in 1987."
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plaintiff's attorney has a financial incentive to encourage the “build-up” of the claim.4 The
IRC studies have consistently shown higher average costs for attorney represented claims,
even when the type of injury is held constant.5

Perspectives regarding post-accident factors vary widely; we illustrate by two extremes. The
difference in viewpoint is essential for estimating the costs of the auto insurance system and for
developing reforms to reduce this cost.

Suppose an accident victim in a no-fault state with a monetary tort threshold suffers a lower
back sprain, sees a chiropractor 30 times, recovers the out-of-pocket expenses trom PIP
coverage, and files a Bl claim, which is handled by an attorney.

» The innocent (sometimes termed “naive”) perspective sees the physical injury as the “loss

4 An illustration should clarify this. Suppose that an insurance company settles most Bl
cases for three times the economic damages: that is, the compensation for “pain and suffering”
is about twice the medical bills. Suppose also that attorneys require 33% of the award for most
Bl claims.

If an accident victim without an attorney incurs $1,000 in medical bills, the total BI
compensation would be $3,000, for a “net gain” of $2,000. If the claimant is represented by
an attorney, who takes 33% of the award, or $1,000, the “net gain" to the claimant is only
$1,000. However, if the attorney “encourages” the claimant to incur greater medical bills
(perhaps by recommending a medical practitioner who sets a longer course of treatment), so
that the economic damages rise to $2,000 and the insurance compensation rises to $6,000, the
attorney’s fee becomes $2,000 and the claimant’s “net gain” remains $2,000. Many
insurance company personnel and industry researchers believe that this accurately depicts the
role played by many (though not all) attorneys. In other words, attorneys often drive up the
cost of the system, with little benefit to claimants (assuming there are no other collateral
sources of compensation, such as private medical insurance).

In no-fault states, there is a second incentive to build up claims. Many states have monetary
tort thresholds, which allow accident victims to press bodily injury claims only if medical bills
exceed a stated amount. [Most of these states also have verbal thresholds, which allow Bl claims
for “serious” injuries even if medical bills are low.] Attorneys can provide little aid in PIP
recoveries. However, if by encouraging their clients 1o “build up” the medical bills to exceed
the tort threshold they can file Bi claims for “pain and suffering,” both they and their clients
can “profit.”

5 See AIRAC [1988) and IRC [1994]. The IRC study notes that “Attorney involvement in
auto insurance injury claims has more than doubled in the last 15 years, moving from 19% in
1977 to 42% in 1992. . . . The use of attorneys results in a big cost to the auto insurance
reimbursement system. Attorney-represented claimants incurred medical expenses and other
economic losses averaging $14,718, compared with an average of $4,123 for claimants
without attorneys.” Figure 4-7 and the accompanying discussion on pages 29-33 of the IRC
study show that this same pattern holds true even when claims are stratified by type of injury.
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cost driver.” The lower back sprain incurred in the auto accident motivates the victim to
seek out a medical practitioner competent to handle such injuries. The length of the needed
treatment, and the lack of reimbursement for non-economic damages under PIP coverage
(such as “pain and suffering”), motivates the victim to file a Bl claim. The complexity of
the insurance claim process, and the uncertainties of Bl compensation, motivate the victim
to seek an attorney's aid. No one “profits” from the claim.

= The cynical perspective sees the “entitlement philosophy,” or “claims-consciousness,” or
the “insurance lottery” as the “loss cost driver.”6 Whether the accident victim files an
insurance claim, seeks treatment from a particular medical practitioner, or even “suffers”
a lower back sprain is not dependent solely upon the physical events in the auto accident.
Rather, the accident victim, seeking to profit trom the event, sees an attorney, who
encourages him or her to be examined by a certain medical practitioner. The medical
practitioner diagnoses the lower back sprain and recommends the course of treatment.
Either the chiropractor or the attorney notes that the medical expenses will be covered by
PIP (as well as by other health insurance), and that the Bl claim will pay for additional
“pain and suffering” costs. The accident victim, the attorney, and the medical practitioner
all “profit” from the claim.

The difference in perspectives leads to differing public policy recommendations. The *innocent
perspective” sees injury prevention as the key to reducing insurance costs. Injury prevention
‘efforts include mandatory seat belt laws, air bags, lower speed limits, and better policing of
“driving while intoxicated” statutes. The “cynical perspective” sees the removal of the “claim
lottery” incentives as the key to reducing insurance costs. Policy actions include anti-fraud
units, peer review of medical practitioners, and verbal tort thresholds in no-fault states.

® Compensation systems

Compensation systems may be grouped into tort liability, no-fauilt, and add-on systems. Tort
liability systems may be subdivided by the financial responsibility limits and by the type of
comparative negligence rule. No-fault compensation systems may be subdivided by the type of
tort threshold: pure, verbal, and monetary. Verbal thresholds may be further classified by
their definitions. Monetary thresholds may be further classified by their magnitude. No-fault
systems may also be classified by the PIP limits, by the type of benefits provided, and by the
compensation rate (e.g., “75% of wage loss").

The compensation system has a direct effect on claim frequency and claim severity, since a
claim may be compensable under one system but not under another system. The compensation
system has an ‘incentive” effect on claim filing (the “insurance lottery” perspective) and on

6 Casualty actuaries speak of “claims consciousness,” which the IRC studies refer to as
“claim filing behavior.” “Claim consciousness” is frequently measured by BVPD ratios; see
the discussion of territory in the text. The “entitlement philosophy” is broader. Many accident
victims, having paid thousands of dollars over the years for their own auto insurance, now feel
that they are entitled to recover their money from the “insurance industry.” The fact that
their past auto premiums are unrelated to the insurance clalm at issue rarely deters people
from linking the two.
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claim severity (e.g., the “build-up" of claims either to pass a monetary tort-threshold in a
no-fault compensation system or to legitimize claims for pain and suffering awards in a tort
liability system).?

Compensation system are most important in explaining state-by-state differences in insurance
costs. Not only the insurance compensation but also the occurrence of claims and the amount of
economic damages depend on the state compensation system.

©® The external environment

The external environment relates to non-insurance characteristics that affect claim frequency
or claim severity. We group these factors into three categories:

= Physical qualities, such as traffic density, road hazards and maintenance, and safety
regulations (such as speed limits and seat-belt statutes). The garaging location, or the
rating territory, is often thought of as reflecting physical road qualities. In truth,
territory affects auto claim costs primarily by its relationship to several post-accident
factors, such as attorney representation, the nature of the medical providers, and
claimant characteristics. As the discussion below indicates, territory is not simply a
reflection of road characteristics and traffic density.8

= Economic qualities, such as the “underwriting beta” argument that in prosperous years
people drive more, purchase new vehicles, and take more vacations, leading to higher
bodily injury accident frequencies.

w» Human qualities: e.g., a higher proportion of poor residents in certain geographic areas
may lead to more uninsured motorists and higher UM costs.
The Frequency-Severity Paradigm
The explanatory power of the expanded framework can be seen most clearly in contrast with the

old “loss frequency — loss severity” paradigm. Previously, personal automobile loss cost
drivers were viewed simply as inflation-induced changes in loss severity and as slow, long-

7 The “insurance lottery” perspective says the incentive effect on claim filing depends on
the ease of pressing an insurance claim. States with strong anti-fraud statutes may greatly
reduce claim frequency. The “build-up” of claims is useful.only if it provides a greater “net
gain” to the claimant and his or her associates. The incurral of additional medical expenses in a
no-fault state with a strong verbal tort threshold is sometimes pointless, if the type of injury
does not allow a tort claim to be pursued.

8  Physical factors may be important in particular instances, such as to explain a high
accident frequency at a four way intersection with stop signs but no traffic light. They are less
important in the aggregate. Two cities may have similar physical characteristics but different
claim frequencies.
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term trends in loss frequency. The frequency trends were often modeled by econometric
equations based on changes in gasoline prices, car density, and similar factors.

This paradigm is still useful tor centain isolated analyses in static environments. But it
provides no clue regarding why claim frequency or claim severity may be changing, or what the
insurer should expect in the future. The expanded framework provides a different framework
for viewing personal auto loss frequency and loss severity.

@ Frequency: The Insurance Research Council studies of the mid-1990s show that the
countrywide property damage claim frequency has decreased by 12% from 1987 to 1992.
This is a measure of accident frequency, and it is consistent with fewer youthful drivers,
greater public awareness of drunk drivers, and better quality cars.

Over the same time period, the frequency of bodily injury claims increased by 16%. Given
the 12% decline in accident frequency, this is a 32% increase in bodily injury claims per
physical accident.®

For bodily injury, the changes in “claim filing” behavior among the public overwhelms the
changes in physical accident frequency. The “loss frequency drivers” are not economic and
environmental attributes like gasoline prices and car density. Rather, the drivers lie in the
“claim and claimant characteristics” dimension of the expanded framework:

o Type of injury: the greatest increase over this period was in “soft-tissue” injuries
(sprains and strains).” Moreover, sprains and strains are particularly dominant in urban
areas, which also have the highest ratio of Bl to PD claims. In fact, the May 1994 IRC
study, Paying for Auto Injuries, concludes that “Almost all of these additional injury claims
are for difficult-to-verify injuries such as sprains and strains.”

= Type of medical practitioner. the greatest increase over this period was in chiropractic
treatment, especially for sprains and strains. Conversely, injuries requiring hospital stays
have declined.

w Attorney involvement: between 1977 and 1992, the percentage of claims represented by
lawyers rose from 31% to 46% for all injury coverages combined and from 47% to 57%

9 Formally, 32% = [(1 + 16%) + {1 — 12%)} — 1. The full IRC studies, see Insurance
Research Council, Auto Injuries: Claiming Behavior and Its Impact on Insurance Costs (Oak
Brook, lllinois, September 1994), and Insurance Research Council, Trends in Auto Injury
Claims, Second Edition, Part One: Analysis of Claim Frequency (Wheaton, lllinois, February
1995). See also Insurance Research Council, Paying for Auto Injuries: A Consumer Panel
Survey of Auto Accident Victims (Oak Brook, lllincis, May 1894): “More people involved in
auto accidents are making claims for injuries, even though accident rates have been declining. . .
. Many states enacted seat belt laws during these years, resulting in substantial increases in
seat belt use. Seat belts reduce the number and severity of injuries in auto crashes. Around the
same time, states passed tougher drunk driving laws in response to growing public awareness of
this problem. In addition, the federal government now requires additional safety standards for
vehicles that make cars safer for passengers.”
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for bodily injury claims.10

= Law changes In 1988, the threshold in Massachusetts for pursuing a Bl liability claim was
increased from $500 to $2,000. The traditional actuarial analysis would predict that the
frequency of Bl claims would decrease substantially, because injury claims with medical
expenses between $500 and $2,000 would no longer be eligible for Bl liability payments.
In fact, the frequency reductions were minimal, because of incentive effects. The higher
tort threshold encouraged accident victims (and their attorneys) to “build up” the medical
expenses so that a bodily injury claim could be filed.

In sum, changes in claim and claimant characteristics are the key drivers for bodily injury
claim frequency trends. Moreover, the claim frequency trends for Bl coverage may be entirely
different from the corresponding claim frequency trends for property damage liability and for
collision coverage, even though all of these trends ostensibly relate to the occurrence of auto
accidents.

® Loss severity: Actuaries have traditionally used two methods to project trends in loss
sevaerity.

A. Trend projections based on internal data fit observed average costs per claim to an
exponential curve and assume that the same trend will continue in the future.

B. Trend projections based on external data correlate the historical average costs per claim
with an economic index, such as the medical cost component of the CPl, and then estimate
future claim severity based on the expected future values of the economic index.

Both methods work well in static environments. The first method works well when inflation is
stable, so that past changes in loss severity are deemed to be unbiased predictors of future

10 These statistics are from the IRC closed claim studies. Compare also the IRC consumer
panel surveys, which show a similar ending point for 1992, but a lower starting point in
1977: “Attorney involvement in auto insurance injury claims has more than doubled in the last
15 years, moving from 19% in 1977 to 42% in 1992" (IRC, Paying for Auto Injuries [May
1994]).

Of pérticular importance to pricing actuaries are the relative differences by state, which are
relevant for loss severity and loss frequency trends. Credibility weighting statewide loss
severity and loss frequency trends with the corresponding countrywide figures is inappropriate
it the statewide trends are affected by changes in (a) claim and claimant characteristics and (b}
the compensation system in ways that the countrywide figures are not affected.

The same phenomenon may be seen in workers' compensation. In the past, statewide medical
benefit trends were credibility weighted with countrywide trends. However, trends were lower
in states with medical fee schedules, the counterpart to the “medical practitioner” dimension of
the personal automobile framework here. Now, the figures assigned the “complement of
credibility” in workers' compensation medical benefit trends depends on whether the state has a
medical fee schedule.
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changes. The second method works well when loss cost trends are considered to be clossely linked
to recognized inflation indices.

In personai automobile bodily injury insurance, loss severity trends are composed of three
influences.

1. Trends in cost of treatment. This includes both (a) medical cost inflation and (b) trends in
utilization rates that are independent of the personal auto compensation system.11

2. Trends in loss frequency. Severe automobile accidents lead to insurance claims regardiess of
the claim filing proclivity of the accident victim. The growing influence of attorneys and the
changing “claim filing” behavior of the public iead to greater ciaim frequency for “minor”
injuries, such as sprains and strains with no visible signs of impairment. These are often
low cost claims. In other words, the factors that increase loss frequency often lead to
decreases in average loss severity.12 A change in expected claim frequency stemming from
changes in claim or claimant characteristics should be partially offset by changes in
expected claim severity.

3. Changes in compensation systems and in claim handling procedures. Compare the discussion
above on the tort threshold change in Massachusetts in 1989. The new low severity
projections changed dramatically because a whole cohort of cases which formerly had
medical costs between $500 and $2,000 moved up to over $2,00 with higher pain and
suffering awards.

Proxies

Many of the traditional classification variables used today are proxies for the true
(“causative”) factors affecting insurance loss costs. To clarify the difference between a
causative factor and a proxy, let us contrast life insurance with automobile insurance.

= Sex and age are physiological attributes that affect expected montality rates, so they are used
as rating variables for life insurance underwriting and life annuity underwriting.

= Sex and age have equally strong correlations with auto accident frequencies, so they are used
to set auto insurance rate relativities. Indeed, a 17 year old unmarried male may have about
the same mortality rate as a 30 year old married female, but he may have several times the
auto bodily injury claim frequency rate that she has. Yet sex and age (except at advanced

11 For instance, the development of new medical procedures may engender greater
utilization of services even when the personal auto compensation system remains unchanged.

12 The IRC studies demonstrate this phenomenon. Among the BI, PD, and PIP coverages
over the 1980 to 1993 period, Bl had the greatest increase in claim frequency and the smallest
increase in claim severity; see especially Insurance Research Council, Trends in Auto Injury
Claims, Second Edition, Part One: Analysis of Claim Frequency (Wheaton, lllinois, February
1995), chapters 1 and 2.
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ages when bodily functions deteriorate) have little intrinsic relationship with accident
propensity. Rather, they are proxies for other driver characteristics, such as maturity.

The use of territory as a proxy for external conditions, driver attributes, and claimant
characteristics are discussed below.

Interactions

The factors in one dimension may interact with the factors in another dimension to determine

expected loss costs. Wae illustrate with two examples.

w  Underwriting aftributes and compensation systems: Age, sex, and marital status may be
more important as rating variables In tort liability systems, which focus on the tortfeaser's
“fault,” than in no-fault compensation systems, in which all accident victims are
compensated. Conversely, the applicant's income and employment status may be important
in no-fault compensation systems with high PIP wage-loss limits.13

= Claim characteristics and compensation system: The “padding” of claims, or “build-up,”
can be stimulated by a no-fault compensation system with a low or moderate monetary tort
threshold. The AIB studies by Marter, Weisberg, and Derrig referenced above show how the
1989 increase in the Massachusetts tort threshold lengthened the average number of
outpatient visits to chiropractors, who handled the majority of neck and back sprains and
strains incurred in auto accidents.

The interactions of the four components of the expanded framework is essential for proper
pricing and public policy recommendations, as discussed in the final section of this paper. )

Territory as a Rating Varlable

Territory Is one of the chief variables used by U.S. insurers for automobile rate setting.
Territory provides an excellent example for seeing how pre-accident driver characteristics,
the pre-accident physical environment, post-accident characteristics, and the compensation
system all affect automobile insurance loss costs.

O Pre-Accident Driver Characteristics: Pre-accident driver characteristics, such as age,
sex, and marital status, do not generally have a direct effect on territorial relativities.
Since the distributions by age and sex are relatively constant by territory, territorial
relativities are not normally affected by the demographic characteristics of the drivers in

13 The comments in the text relate to relative importance only. Thus, age, sex, and marital
status are important for no-fault compensation systems as well, since young, unmarried, male
drivers are not only more likely to cause accidents, they are also more likely to be injured in
accidents. Similarly, income and employment status are important for tort ilability systems as
well, since unemployed persons with little assets are often “judgment proof’ and therefore
carry low liability limits of coverage.
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that territory.14

@ External Environment: The physical environment in an area can raise or lower the expected
number of accidents. For instance, population density and vehicle density are often cited as
explanatory variables for accident frequency, on the assumption that with more cars per
square mile, there will be more accidents per car. While this is true, a combination of road
design, traffic controls, and taw enforcement can reduce the variation caused by traffic
density.

In a 1988 study, the Insurance Services Office and the National Associate of Independent
Insurers compared the variation in traffic density with the variation in property damage (PD)
claim frequencies.!S Although the major cities in each state had traffic densities over ten times
the statewide average, these cities had PD claim frequencies that were often only 10% higher
than the statewide average.16

In sum, there is a tendency to overestimate the effects of traffic density on automobile claim
frequencies. In theory, accident frequencies might be expected to increase proportionately with
traffic densities. In practice, traffic safety devices in urban areas, such as traffic lights, stop
signs, and well-designed roads, by causing traffic to move at a somewhat lower speed, keep the
increase in the accident frequency to a relatively small percentage over the statewide average
frequency.

Table 1 shows 1993 property damage claim frequencies by state.17 With only 2 exceptions, the
states lie in a narrow range from 20% above the countrywide average of 4 claims per 100

14 An exception would be communities, such as retirement communities, where a
disproportionate number of senior citizens reside. This lowers the average pure premium of
the territory, but the class rating system should produce the correct overall territorial rate.

15 Traffic density, or “vehicle density,” is defined in the study as car registrations per
square mile.

16 For example, the 1988 study shows a traffic density for Chicago of 5,423 cars per
square mile, versus the statewide average of 152 car registrations per square mile.
Nevertheless, the PD claim frequency in Chicago was only 11.7% higher than the statewide
average claim frequency. More recent data (Insurance Research Council, Trends in Auto Injury
Claims, 1995) shows a similar relativity, with the Chicago PD claim frequency being about
13% higher than the statewide average claim frequency.

17 The data are taken from Figure 2-6 in the IRC study, Trends in Auto Injury Claims.
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insured vehicles to 25% below the countrywide average.18

Table 1: Number of PD Claims per 100 Insured Vehicles (1993)

Massachusetts 7.13 Indiana  3.98 Calitornia 3.65 S Carolina 3.38
Dist of Colum 5.38 Nebraska 3.98 Oklahoma 3.64 Hawaii 3.38
Texas 4.76 Georgia 3.89 Kentucky 3.63 Vermont 3.36
Mlssouri 4.72 Alaska 3.89 Wisconsin 3.62 South Dakota 3.32
New York 4.67 lowa 3.89 Arkansas 3.60 N Carolina 3.31
Illinois 4.35 Michigan 3.81 W Virginia  3.59 New Mexico 3.29
Rhode Island 4.23 Ohio 3.77 Virginia 3.54 Mississippi 3.26
Maryland 4.18 Nevada 3.76 Tennessee 3.54 Alabama 3.26
Connecticut  4.11 Minnesota 3.73 Colorado 3.52 North Dakota 3.26
Utah 4.09 Pennsyl 3.70 New Jersey 3.50 Maine 3.23
Louisiana 4.05 Florida 3.69 Washington  3.45 Montana 3.19
Kansas 4.03 Arizona 3.68 Oregon 3.45 Wyoming 3.02
N. Hampshire 4.02 Delaware 3.67 Idaho 3.39 Countrywide 4.00

Several other attributes of the physical environment also affect automobile insurance rates.
Automobile theft rates vary by geographic location. Higher theft rates in urban areas cause
higher comprehensive losses and therefore higher premiums for comprehensive coverage.
Similarly, the 1988 ISO/NAII study shows substantially higher uninsured motorist costs in
many urban areas, presumably resulting, at least in part, from higher levels of uninsured
motorists. Finally, the cost of services provided by insurers, such as auto body shop repair
costs and medical costs, vary by region, and they therefore affect territorial relativities.

® Post-Accident Characteristics: The occurrence of an automobile accident is a physicai event.
The decision to press a bodily injury claim once an accident has occurred, however, varies
dramatically by state and even within a state.

The two dimensions of the expanded framework discussed directly above — pre-accident driver
characteristics and pre-accident physical characteristics — relate to the occurrence of the
accident itself. Post-accident characteristics relate to the probability of a claim being filed
given that an accident has occurred.

We want to measure this probability for bodily injury (Bl) claims. Note carefully: we are not
concerned with Bl claim frequency or with automobile accident frequency. Rather, we are
concerned with the probability of a Bl claim being file given that an accident has occurred where
another driver could potentially be liable for damages.

We presume that the filing of a property damage (PD) liability claim is influenced primarily
by the nature of the physical accident, so relative PD claim frequency is a proxy for relative

18 The two exceptions are the District of Columbia, which is an entirely urban area, and
the Commonwealth of Massachusetts, which seems to have a statewide penchant for aggressive
driving.
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accident frequency where another driver could potentially be liable for damages. The ratio of
bodily injury (Bl) claims per 100 PD claims serves as a measure of the propensity to press
personal injury claims. Table 2 shows the countrywide trend in this ratio over the past 15
years, from 18 Bl claims per 100 PD claims in 1980 to over 29 BI claims in 1993.19

Table 2: Bl Claims per 100 PD Claim
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Our concern here is the relationship of this ratio to geographic location: that is, the variation in
this ratio by state and by territory within state. Indeed, the BI/PD ratios vary greatly by state,
as Table 3 shows. California, for instance, produces 61 Bl claims for every 100 PD claims,
whereas Wyoming, which is also a tort state, produces only 18 Bl claims. [The effects of the
compensation system are also evident from Table 3: the eight states with the lowest BI/PD
ratios are all no-fault states.]

Table 3: Number of Bl Claims per 100 PD Claims (1993)

Calitornia 60.7 Massachusetts 34.8 W Virginia 26.9 Nebraska 19.5

Louisiana 49.4 Oregon 34.3 Indiana 26.0 Florida 19.1
S Carolina 46.8 N Carolina 34.1 Maine 26.0 SDakota 18.5
Nevada 45.4 Arkansas 33.9 {daho 25.6 Wyoming 17.6
Arizona 45.3 Georgia 33.6 Alabama 25.1 New York 16.3
Rhode istand 39.7 Virginia 31.3 Connecticut 24.9 Kentucky 15.9
Oklahoma 38.9 linois 30.4 Montana 24.3 Hawaii 13.9
Dist of Colum 38.8 N Hampshire 29.8 Utah 22.2 Colorado 12.8
New Mexico 37.6 Delaware 29.1 Alaska 21.3 Minnesota 11.7
Washington 37.4 Ohio 28.1 New Jersey 21.2 Kansas 9.2
Texas 36.7 Tennessee 28.1 Vermont 20.9 Michigan 8.2
Maryland 35.5 Missouri 27.8 Pennsylvania 20.4 N Dakota 5.6
Mississippi 35.3 Wisconsin 27.4 lowa 19.9 Countrywide 29.3

19 The data for the exhibits in this section derive from Insurance Research Council studies.
They are from both full tort states and no-fault states. These are Bl liability claims; they do not
include no-fault claims.
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The trends in BI/PD ratios over time and the variations by territory highlight the strong effects
of post-accident characteristics on auto Insurance loss costs. In California, for instance, the
61% BI/PD ratio for 1993 marks a steady climb from a 31% BI/PD ratio in 1980.

A common perception is that the accident frequencies themselves vary greatly by territory,
being far higher in urban areas than in rural areas. = Although such differences in accident
frequencies do exist, the preceding statement confuses two issues, and it misinterprets the
reasons for the territorial differences. Often, the frequency of physical accidents and of PD
liability claims is only marginally greater in metropolitan areas than in the surrounding
region. Once the accident occurs, however, the Bl claiming pattern is substantially different in
the metropolitan area than in other parts of the state.

iRC data from 1989 through 1991 illustrates this phenomenon. For instance, the PD ciaim
frequency during these years was about 10% higher in Los Angeles than in the rest of the state,
but the BI/PD ratio was 98.8% in Los Angeles, versus 45.2% in the rest of the state. In other
words, it was not accident frequency differences that were driving up Bl liability costs in Los
Angeles, but Bl claim filing patterns that were causing the difference.

Although BI/PD ratios are generally higher in large metropolitan areas, a simple urban/rural
dichotomy is not always a good proxy for the actual claim filing patterns. For instance, during
the 1989 through 1991 period, the state of Pennsylvania as a whole had a BI/PD ratio of 23%,
the city of Pittsburgh had a ratio of 18%, and the city of Philadelphia had a ratio of 78%.

The attributes of territorial differences implicit in the discussion above have major
implications for understanding auto bodily injury liability loss cost drivers:

= Loss cost differences by region are great, with some areas, whether urban centers or entire
states, having high insurance costs and “affordability” concerns.

= Traffic congestion is pot the primary determinant of these differences. In fact, the
variations in PD claim frequencies are generally minor between urban areas and the
statewide average.

= Differences in the BI/PD ratios account for most of the variation in Bl loss costs by region,
with higher cost areas having higher BI/PD ratios.

Thus, once an accident occurs, the decision of whether to over-treat the injury, or even to seek
medical treatment when no Injury exists, drives the major costs differences between states for
bodily injury coverage.

The Treatment Triangle

The over-treatment of automobile injuries in certain locations, as well as the treatment of non-
existent injuries, results from the interaction between claimants, medical providers, and
attorneys, and it depends upon the type of injury and the structure of the compensation system.

Our emphasis in this paper Is on the lost cost drivers affecting territorial relativities. In
particular, the major factors affecting territorial relativities are pnot pre-accident driver
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characteristics or pre-accident physical characteristics. Rather, they are the post-accident
characteristics and compensation system attributes which determine how automobile accidents
affect insurance payments.

Television reports on the human toll of highway accidents leave us with grisly pictures of torn
metal and mangled bodies, as if most automobile accidents resulted in severe injuries. In fact,
the opposite is true. About 60% of Bl claimants report their only injury to be a strain or a
sprain, and another 23% claim to have suffered a strain or a sprain plus another injury (IRC
1994: 19). Most strain and sprain injuries are difficult to verify, their severity is hard to
measure, and radically different treatment patterns may be recommended by medical providers.

For over-treatment of injuries to occur, it is necessary that all parties deciding on the course
of treatment gain from the over-treatment. For injuries and illnesses not covered by
automobile liability insurance or workers’ compensation insurance, the patient generally
derives no financial gain from the medical treatment. Even it the patient has health insurance
coverage (whether individual health insurance or employer provided group health insurance),
the coverage simply reimburses the hospital costs or physicians’ charges, and it often requires
a co-payment from the patient.

Automobile bodily injury claims are different. Bl liability awards consist of two parts:
economic damages, such as medical costs or wage loss, and general damages, or “pain and
suffering.” Medical expenses comprise about three-fourths of economic damages. "Pain and
suffering” damages are not objectively determinable on their own. Rather, the general damages
are generally pegged as a multiple of the economic damages.

In sum, the medical expenses incurred by the claimant drive not only the insurance
reimbursement for economic damages but also the insurance award for general damages. Each
dollar of medical expenses incurred may translate into two dollars of insurance compensation.20
In fact, many potential Bl claims in the United States are not even pursued unless there is a
sufficient amount of medical expense to support a “pain and suffering” claim.

In automobile accident cases, excessive treatment of “soft-tissue” injuries inure to the
financial benefit of the claimant, the medical provider, and the attorney, and to the detriment of
the driving public who pay the premiums that fund these loss payments. This phenomenon
raises the BI/PD ratios and is a major driver of auto insurance loss costs.

Three parties are needed for excessive treatment to exist on a large scale, and the interactions of
these parties is a major influence on territorial relativities:

1. Medical providers who aggressively treat even routine strain and sprain injuries in order
to increase the medical expenses paid. The vast majority of medical providers, of course, do
not engage in such over-treatment of minor injuries. Rather, a small coterie of medical
providers who specialize in injuries covered by automobile liability and workers’
compensation insurance serve this function well.

20 The actual ratio, of course, varies by state and by year, since it is greatly influenced by
the type of compensation system.
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2. Accident victims willing to complaln of soft-tissue injuries, even when objective medical
impairment is non-existent or slight.

3. A third party who can direct a willing accident victim to the proper medical provider. Most
auto accident victims are not sufficiently aware of the auto liability compensation system to
take full financial advantage of the system. In the United States, a relatively small number
of attorneys who specialize in strain and sprain injuries in automobile liability and
workers' compensation insurance claims fulfill this function by directing potential Bl
claimants to medical providers willing to over-treat soft tissue claims.

This “treatment triangle” is shown schematically below.

Medical Claimants:
roviders: - allege
p Compensation system: g
over-treat soft-tissue
iniuries general damages as iniuries
) multiple of economic ]

damages

Accidents dominated by
soft-tissue injuries

Attorneys: direct
claimants to
medical providers

This phenomenon is exceedingly difficult to police, even when insurers are aware of its
existence in a given location. As long as the accident victim claims to be injured, the medical
provider can continue the aggressive treatment pattern. To justify the recommendation of a
particular medical provider, the attorney need only ‘state that the medical provider is licensed
by the state and has produced “good results.” Sting operations are difficult to run, since a
claimant who claims not to be injured will simply not be treated.

Evidence for over-treatment of automobile injuries is necessarily indirect, though in some
locations it is compelling. We illustrate with data from Massachusetts, where a detailed claim
database has been in existence for two years.

Were there no incentive to over-treat injuries, one would expect a wide dispersion of treatment
costs for each provider, with some patients requiring substantial treatment while others
require minimal treatment, depending on the severity of the injury. Moreover, one would
expect that the number of Bl claimants treated by a medical provider would be about half the
number of PIP ("personal injury protection”) claimants, since all injuries need treatment
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(PIP) whereas a Bl claim may be filed only if another driver was at fault.21

The automobile compensation system in Massachusetts has a $2,000 tort threshold. That is, a
Bl claim may be filed only if the PIP medical expenses exceed $2,000.22 A small number of
medical providers in Massachusetts have a large percentage of their patients suffering from
automoebile accident injuries who routinely require above $2,000 in treatment. The implication
is that the course of treatment Is being determined not by the type of injury but by the desire to
reach the tort threshold in order to file a Bl claim.

Similarly, among automobile accident victims being treated by these same medical providers,
the number of Bl plus uninsured motorist claimants is almost equal to the total number of PIP
claimants. The implication is that patients are being referred to these medical providers for the
primary purpose of building up the PIP expenses so that a liability suit can be pursued.

© Compensation Systems and Benefit Levels: The type of compensation system and the level of
benefits are reflected in the statewide rates and the territorial relativities. Changes in state
laws require an analysis of the “effectiveness” of the current law and of the proposed law.
For example, in an urban area, the current tort system or monetary tort threshold in a
given state may lead to substantial medical overtreatment, with resultant high rates, in
comparison to a suburban or rural area, with little overtreatment. A law change that
curtalls this overtreatment would have a larger percentage decrease in the urban territory
than in the suburban or rural territories.

Summary: Territory and the Four-Dimension Framework

Geographic location, or rating territory, has often been a difficult classification variable for the
actuary to explain. Why should auto Insurance policies cost more in California than in other
states? Why does auto coverage cost so much more in certain urban areas?

Driver characteristics do not differ significantly from place to place. Physical conditions, such
as road hazards and traffic density, have a minor effect on accident frequencies. They contribute
only marginally to the observed loss cost differences by territory.

Rather, geographic location and rating territory serve as proxies for powerful but often
overlooked factors that drive auto insurance loss costs. Between states, the incentive effects of
compensation systems account for much of the wide variation in claim frequencies and loss
costs. Within states, the “treatment triangle” phenomenon accounts for much of the variation
in territorial relativities.

21 In fact, we would expect the number of Bl claimants treated by a medical provider to be
less than half the number of PIP claimants, since only those cases exceeding the tort threshold
can lead to a Bl claim (see below in the text).

22 For certain types of severe injuries, a Bl claim may be filed even if medical expenses do
not exceed $2,000. However, these types of severe injuries are relatively rare in auto
accidents. When they do occur, the $2,000 tort threshold Is quickly reached.
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Pricing and Public Pollcy

The framework for analyzing personal automobile loss cost drivers presented in this paper has
numerous ratemaking and public pollcy implications, ranging- from territorial relativity
analysis to pricing statutory amendments. In workers’ compensation, for instance, the pricing
of statutory amendments is a finely honed actuarial tradition, well described in Fratello's 1955
PCAS paper.23 |t is also half wrong, as shown by the consistent actuarial misestimates
throughout the 1980s, since it covers only the direct effects of law changes, not the incentive
effects.24

Compensation system reforms in personal auto insurance are often accompanied by mandatory
rate rollbacks. f no changes are assumed in claim filing behavior, then the cost effects of the
reform may be grossiy over- or under-esiimated, as shown by the 1989 Massachusetis
changes. It is vital for casualty actuaries to understand the complete system of personal auto

loss cost drivers to order to accurately price system changes.

The availability and affordability of auto insurance are of public concern in many jurisdictions,
and casualty actuaries are often called to testify on these issues. The actuary who knows only
what the existing rating plan Indicates, but who does not understand why rates are higher in
some territories than in others, or how the compensation system affects loss costs, makes a
poor prognosticator. Rather, the actuary must explain how claimant behavior and the
compensation system interact with the traditional driver attributes, vehicle characteristics,
and the external environment to determine the expected loss costs.

We provide two possibilities for public policy reforms to reduce automobile insurance loss
costs that stem from the expanded framework in this paper. These are not the only possible
reforms, but they are efficacious and practical proposals.25

O Peer review of medical treatment: The discussion above of claim characteristics and of
medical treatment indicate that one of the major factors contributing to the increases in

23 See B. Fratello, "The Workmen's Compensation Injury Table and Standard Wage
Distribution Table - Their Development and Use in Workmen's Compensation Ratemaking,”
Proceedings of the Casually Actuarial Society, Volume 42 (1955), pages 171-202.

24 See John Gardner, Return to Work Incentives: Lessons for Policymakers from Economic
Studies (Cambridge, Massachusetts: Workers' Compensation Research Institute, 1989), as well
as the numerous state specific studies form the Workers' Compensation Research institute.

25 Other reforms would be equally effective. For instance, most auto actuaries agree that
movement from a tort liability compensation system to a no-fault system with a strong verbal
tort threshold, as in Michigan, would reduce overall costs. However, there are strong interest
groups opposing such a move, and who support instead such changes as epitomized by
California’s Proposition 103: rate rollbacks, classification restrictions, and prior approval,
but no attack on the real problem of overtreatment.
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bodily injury loss costs over the past decade has been the “build-up™ of hard-to-verify soft
tissue injuries, generally with extended courses of treatment by a small number of
chiropractors, physical therapists, and physicians, often orchestrated by attorneys
experienced in such claims. Insurance claims adjusters are aware of the “padding” in these
claims. Yet it is nearly impossible for claims adjusters to find “objective” evidence of
unnecessary or inappropriateness treatment, especially on any specific case.

Peer review of medical treatment in auto insurance claims, by state panels of physicians and
other medical practitioners, could succeed in eliminating the worst abuse and stemming or
reversing the upward trend in bodily injury loss costs. The state insurance department
would appoint a panel of medical experts to review treatment patterns by individual medical
providers. A substantial database of auto injury losses would be needed to properly identity
such patterns. It is generally impossible to determine over-treatment by reviewing any one
specific case since the severity of any soft-tissue strain or sprain is a subjective estimate.
However, by reviewing all treatment by particular medical providers, patterns of
overtreatment can be recognized. Medical practitioners would be more hesitant to provide
excessive treatment on a consistent basis if they knew that their actions would be subject to
professional review.

® Consumer representation. A second factor contributing to the increase in bodily injury loss
costs over the past decade has been the rapid increase in attorney representation of
insurance claims. If the attorney helps build up the economic damages, there is genaerally no
“net loss™ to the claimant despite the hefty contingency fee, and sometimes even a “net
gain.” In addition, the attorney handles all the claim filing paperwork and negotiates with
insurance loss adjusters. Both of these activities can be frightening to the average citizen,
particularly in third party cases.

State insurance departments could provide “claims representatives” to handle claim filing
and negotiation on behalf of auto accident victims who need aid in insurance matters. The
claims representatives would be compensated by salary, so they would have no interest in
building up claims. The insurance industry would defray the costs of these claims
representatives.

All parties could gain. Claimants would have representation by state insurance officials,
who could guide them through the claims process — at minimal cost to the claimant.
insurance companies would gain because the cost of such claims representatives is far less
than the costs of claim “build-up.” The general public would gain by lower insurance
premiums and increased satistaction with the insurance claim process. State insurance
departments would gain because they would be offering additional and highly valued services.

Conclusion
The days of simple claim severity and frequency trends in automobile rate making are gone. The
ultimate cost of automobile insurance is a complex and changing mosaic of many diverse factors.

Actuaries who understand these factors will be of great value to their companies, and they may
eventually help design systems. to control the cost of automobile insurance.
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