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AN INTRODUCTION TO CREDIBILITY 

Credibility theory provides important tools to help the actuary deal with the randomness 
inherent in the data that he or she analyzes. Actuaries use past data to predict what 
can be expected in the future, but the data usually arises from a random process. In 
insurance, the loss process that generates claims is random. Both the number of claims 
and the size of individual claims can be expected to vary from one time period to 
another. If $1.500.000 in losses were paid by an insurer during the past year, one 
might estimate that $1.500,000 would likely be paid in the current year for the same 
group of policies. However, the expected accuracy of the estimate is a function of the 
variability in losses. Using credibility theory, the actuary estimates the randomness 
inherent in the data and then calculates a numeric weight to assign to the data. 

Here is a dictionary definition of credible: 

credible: Offering reasonable grounds for being believed 

The actuary wants to know how much to believe the data that's being analyzed. To use 
the data to predict the future, this "belief in the data" must be quantified so that 
calculations can be made. This leads us to actuarial credibility: 

actuarial credibility: the weight to be given to data 
relative to the weight to be given to 
other data 

If we cannot fully believe our data, we may call on other information or data to 
supplement the data at hand. The data at hand and the supplemental data are each given 
an appropriate numeric weight in calculating an estimate. 

The variability in insurance loss data can be seen in Table 1 which shows the loss 
experience for a group of policies covering contractor's pickup trucks. The last column 
shows that the average loss per truck varies widely from one year to the next. Any one 
year is a poor predictor of subsequent years. 

The variability in the average loss per pickup truck is depicted graphically in Figure 
1. The expected average loss (pure premlum) is $500 which we would observe if our body 
of data were infinite in size. But. for limited sample sizes, the observed average 
losses are randomly distributed. Note that as our sample size increases. the 
variability of the observed average loss decreases 
becomes more concentrated around the $500 value. 

- the probability density curve 

probability density curve flattens out. 
For a smaller sample size, the 

If our sample body of data consists of 50.000 
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trucks we can rely upon the observed average loss to estimate the true expected average 
loss to a much greater extent than if the data came from a smaller sample of only 3000 
trucks. 

FIGURE 1 
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Pure Premium 

The actual dlstribution of pure premiums is not symnetric as shown in the prior graph, 
but is instead skewed to the right as shown in Figure 2. More of the observations would 
actually fall below the mean of $500 and the mode of the distribution is less than $500. 
The smaller the body of data, the greater the asymnetry in the graph. In an extreme 
case we could consider only one truck. In most years the truck would have no losses 
for an observed average loss of SO in those loss-free years. But. every few years there 
would be a loss or, perhaps, several losses and the observed average loss would be 
substantial. 

FIGURE 2 
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This leads us to a comnon problem that may occur when a group of non-actuaries is 
reviewing average losses or loss ratios for a series of years. The data may show, for 
example, four years with excellent loss ratios but a fifth year with a very high loss 
ratio. The five-year average may be close to some target loss ratio. Unfortunately, 
what frequently happens is that one of the reviewers will say that the one bad year is 
an anomaly that was caused by several severe claims and that the bad year should be 
thrown out of the data. This is a big mistake1 For a small body of data, this pattern 
in the loss ratios is exactly what we expect to see. The majority of the loss ratios 
will look better than average, with a few being quite large. This doesn't mean that 
we should ignore the few high values; it usually means that our body of data is small. 

The basic formula for calculating credibility weighted estimates is: 

Estimate = 2 x [Observation] + (1-Z) x [Other Information], 

and 0 I 2 51. 

If our body of data is so large that we can give full weight to it in making our 
estimate, then we would set Z=l. If the data is not fully credible, then Z would be 
a number somewhere between 0 and 1. What is the "Other Information" that we might use 
in our formula? That depends on what we are trying to estimate. In Table 2. the left 
hand column shows our observed data and the right hand column may be the "Other 
Information" that we might use in the above formula. 

Observation 

TABLE 2 

Other Information 

Pure premium for a class 

Loss ratio for an individual 
risk 

c-8 Pure Premium for all classes 

++ Loss ratio for entire class 

Indicated rate change for a 
territory 

Indicated rate change for 
entire state 

++ Indicated rate change for 
entire state 

c-8 Trend in loss ratio 

Suppose you are trying to estimate the indicated rate change for a territory within a 
state, but your company has a limited volume of business in the territory. An option 
may be to weight the indicated change from territorial data alone with the indicated 
change for the entire state. This way you have reflected territorial experience in your 
rate change to the extent that it is credible. 

The loss ratios shown below in Table 3 were produced in a computer simulation that 
modeled the insurance random loss process. The expected loss ratio is 60 for both the 
small and big states, but the observed (simulated) loss ratios will randomly vary around 
this value. As we would expect, the variation is much larger for the small state. In 
the larger state the loss ratio hovers around 60 in each year. Five-year average loss 
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ratios were calculated and then state indicated rate changes were calculated using the 
expected loss ratio of 60 as the permissible loss ratio. 
state -28.3% = (43/60 - 1.000). 

For example, in the small 
Using one of the formulas that we will discuss in a 

moment, credibility values Z were calculated for each state. 

1990 
1991 
1992 
1993 
1994 

Total 

Permissible Loss 
Ratio 

State Indication 

Credibility 

TABLE 3 

Small State 

Earned Loss 
($000) Ratio 

FY 1:; 

72 62 
74 
74 

1; 

360 43 

60 

-28.3% 

10% 

Large State 

Earned Loss 
($000) Rat10 

7,100 58 
7.120 58 
7.180 
7,200 :a0 
7,400 61 

36.000 59 

60 

-1.7 

100% 

Perhaps this data comes from a line of insurance that has an aggressive insurance to 
value program such that the inflationary trend in losses is exactly offset by the annual 
increases in the amount of insurance. In this case the trend in our loss ratio would 
be 0%. (For our data, we know that the trend in the loss ratio is 0% because each year 
has an expected loss ratio of 60.) We will apply our complement of credibility factor 
(1-Z) to this information. So, we would get the following two indications: 

small state: .lO X [-28.351 + (1 - .lO) X [O.O%] = -2.8% 

large state: 1.00 x [-1.731 + (1 - 1.00) x [ O.O%] = -1.7% 

In both cases we know the right answer1 We should take a 0.0% rate change in each state 
because our expected loss ratios are what we used for the permissible loss ratios. But. 
because of the randomness inherent in our data, our indications are slightly off the 
mark. 

The important thing in the prior example is that we greatly improved the accuracy of 
our rate indication in the small state by incorporating credibility. We gave only a 
10% weight to the raw indication arising from the small state's loss ratio. This had 
the result of dampening the effect of the randomness. To the extent possible we would 
like to use our observed data to calculate our estimate rather than rely on 
supplementary data, but given the randomness present in our observations. we need to 
temper the data. Using credibility theory we weight an estimate based on limited data 
with data from other sources. We want to find a weight 2 that allows us to rely on our 
limited data to the extent reasonable, but which also recognizes that our limited data 
is variable. 
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There are two widely used formulas for the credibility Z as shown side by side in Table 
4. For the classical credibility formula, 
the case of Mhlmann credibility, 

if n > N then Z is set equal to 1.00. In 

infinity. 
Z asymptotically approaches 1.00 as n goes to 

Classical Credibility 

TABLE 4 

Bdhlmann credibility 

Also called: Also Called: 

(1) Limited Fluctuation Credibility (1) Least Squares Credibility 
(2) Empirical Bayesian Credibility 
(3) Bayesian Credibility 

In both formulas n is a measure of the size of the body of data and is an indicator of 
the variability of the loss ratio or pure premium calculated from the data. n can be 
any of the following: 

. number of claims 
* amount of incurred losses 
* number of policies 
. earned premium 
* number of insured unit-years. 

These are not the only possibilities for n. but n needs to be some measure that grows 
directly with the size of the body of data that we have collected. 

In practice both of the formulas can give about the same answer if N and K are chosen 
appropriately as displayed in Figure 3. Note that in the classical credibility case, 
when n is greater than or equal to 10,000. Z is identically 1.00. 

1.20 

T 
FIGURE 3 

0.80 
I 

Z 0.60 
n’(n+1600) 

0.40 

Number of Claims 
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Classical Credibility 

First we will discuss the classical credibility formula. Classical credibility attempts 
to restrict the fluctuation in the estimate to a certain range. N is calculated such 
that for fully credible data with n=N and Z-1.00. the observed pure premium or loss 
ratio will fall within a band about the expected value a specified percentage of the 
time. This is illustrated in Figure 4. 

FIGURE 4 

CLASSICAL CREDIBILITY 
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If N=5,200 claims, then the observed Pure Premium Is within 10% of 
the “true” value 90% of the time. 

In this example the measure of the size of the body of data is the expected number of 
claims. When our body of data is large enough so that we expect 5,200 claims in our 
observation period, the observed pure premium will fall within k=lO% of the true value 
P=90% of the time; that is, 90% of the time our pure premium calculated from our body 
of data will fall into the interval [450,550]. Both the 90% probability and the 10% 
width of the range must be selected by the ratemaker. If you wanted much less variance 
in your estimate you might select a P=99% probability and a k=2.5% error in your 
estimate. Of course! it would require a much larger body of data in the observation 
period to achieve this level of certainty. 

The full credibility standard N is a function of the selected P and k values. A larger 
P value results in a larger N and a smaller k also produces a larger N. In order to 
calculate the N that corresponds to the selected P and k. one needs to make certain 
assumptions and also know something about the loss process. In classical credibility 
one assumes that the frequency of claims can be modeled by a Poisson distribution. 
Also, one needs an estimate of the average claim size and the variance in claim sizes. 
Using these an estimate of the variance in total losses can be computed. The next 
assumption is that the distribution of the total losses is normal, i.e. bell-shaped. 
Then, the N value can be calculated. This is all covered in much detail in the syllabus 
material for the actuarial exam that tests credibility theory. 
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One does not have to use the number of claims in the classical credibility formula, but 
instead can use earned premium, number of policies, or some other basis. We could 
convert our formula developed above to an earned premium basis. Suppose that in 
reviewing our data we calculate that on average there is approximately $2,500 in earned 
premium for each claim; that is, the ratio of earned premium to the number of claims 
is 62,500. A full credibility standard of (2,500 dollars/claim) x (5.200 claims) = 
613.000.000 could be used in place of the 5.200 claims. Then, the credibility assigned 
to any data could be calculated from the earned premium of the data. 

To calculate the full credibility standard, the denominator in the formula, the amount 
of variability acceptable in fully-credible data must be defined by the selection of 
P and k values. For less than fully credible data the square-root formula determines 
the credibility 2. Figure 5 displays graphically the calculation of partial 
credibility. 

FIGURE 5 
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In the graph the width of the curve representing the variability of data which just 
meets the standard for full credibility is represented by D. D can be considered the 
standard deviation of the curve. (If you prefer, D can be two standard deviations.) 
Likewise, d is the width corresponding to a smaller body of data that is less credible. 
It turns out that the credibility that should be assigned to the smaller body of data 
in this model is 2 = D/d. the ratio of the standard deviation of the pure premium of 
the fully credible data to the standard deviation of the pure premium of the partially 
credible data. We will allow a standard deviation of size D. but if our body of data 
has a standard deviation of d. then we apply a weight of D/d to the data. If the pure 
premium (p.p.) calculated from the data is expected to have a standard deviation of d. 
then the quantity Z x (p.p) has a standard deviation of D, which is our target. 
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BOhlmann Credibilltv: 

The least-squares credibility model uses the credibility formula: 

Z = n/(n + K) 

K is defined by the following intimidating expression: 

K= Expected Value of the Process Vxiance 
Variance of the Hypothetical Means 

A good way to think about least-squares credibility is in the context of experience 
rating where the rate charged to an insured is a manual rate modified to reflect the 
experience of the individual insured. The losses incurred by an insured are random, 
so an insured's loss ratio will fluctuate. The term "process variance" is the variance 
in the loss ratio of the risk. The "expected value of the process variance" is the 
average value of the variance across the risks within the population. Since each risk 
is unique, the expected loss ratios of the individual risks at the manual rates will 
vary across the population because the manual rates are based on averages calculated 
for groups of risks who are classified alike in the rating plan. Each risk has it's 
own "hypothetical mean" loss ratio. The "variance of the hypothetical means" is the 
variance across the population of risks of their individual hypothetical mean loss 
ratios. 

In Figure 6 there are two risks, risk #I and risk 62. each with its own loss ratio 
distribution curve. The process variance Is a function of the width of the curve 
indicated by the [l] in the figure. As mentioned above the width of the curve can be 
thought of as some multiple of the standard deviation. The process variance is the 
square of the standard deviation. So the wider the curve, the larger the process 
variance. [2] marks the difference in the hypothetical means between the risks. The 
variance in the hypothetical means across the population is a function of the 
differences in the hypothetical means between the risks. 

When the process variance of the rlsks is large in relation to the difference in the 
means of the risks, K is large. A large K means that the credibility Z = n/(n +K) is 
small. Looking at the second graph in Figure 6, we see that there is a broad band where 
the two risks' loss ratios overlap. Since the loss ratio of each risk is so variable, 
it makes sense to give more weight to the manual rate calculated from the average 
experience of a large group of similar risks and less weight to the experience of the 
individual risk. 

Small process variances in relation to the differences in the means of the risks results 
in a small K value and a larger credibility Z. This scenario is represented by the 
bottom graph in Figure 6. The distributions of the two risks do not overlap. The 
larger credibility Z means more weight is assigned to the experience of the individual 
risk and less, (1-Z). to the experience of the population. 

Several Examoles 

Examples of credibility formulas developed by the Insurance Services Office are 
displayed in Table 5. The first set of formulas are used in Homeowners ratemaking and 
are based on the classical credibility model. The measure of the size of the body of 
data and its consequent variability is in the units of house-years; that is, one house 
insured for one year contributes one unit. In making a statewide change 240.000 house- 
years are required for full credibility, and with that large of a body of data, the 
observed experience should be withln 5% of the actual value 90% of the time. In 
computing territorial changes within the state, 60.000 house-years are assigned full 
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FIGURE 6 

CALCULATION OF K 
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credibility and the observed territorial experience is expected to be within 10% of the 
expected value of 90% of the time. As stated previously, the actuary needs to decide 
on the units for n. the size of the P value, and the size of the k value. 

TABLE 5 

Credlblllty Formulas 
Insurance Services Office 

Homeowners: Owners Forms 

~ 

Manufacturers & Contractors 

Statewide Changes Relotivities 

z-&z ~=Gz 

n = number of occurrences in n = number of occurrences in 
three years five years 

90% confident within 7% 95% confident within 5% 
of actual value of actual values 

General Liability Experience Rating 

z- L 
L + $177,000 

L = expected loss costs (including ALAE) 
at $100.000 basic limits 

The next set of formulas in Table 5 are used by IS0 in Manufacturers & Contractors 
ratemaking. Statewide changes require 8,000 claims (occurrences) in a three-year 
period, and with this many expected claims, the experience of the body of data should 
be within 7% of the expected value 90% of the time. The full credibility standard for 
relativities within M&C, such as class relativities. is much tougher with 25.000 claims 
required for a P=95% and k=5%. 

The selection of P and k is probably more art than science. If the body of data that 
the actuary is working with is of limited size and there is no good surrogate for the 
data to which to assign the complement of credibility, then the actuary may select a 
smaller P and larger k to produce a smaller requirement for full credibility. If the 
actuary wants to make the rates more responsive to current experience he or she may also 
select a smaller P and a larger k. If rate stability is the most important goal then 
larger P and smaller k may be selected. 
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The last formula in Table 5 is the credibility to be assigned to an individual insured's 
data in General Liabllity experience rating and it is based on the BLlhlmann model. In 
a loss cost environment. L reoresents the exoected loss costs (exoected incurred losses 
and allocated loss adjustment expenses) for'the individual risk.' Before the advent of 
loss costs, premium designated by E was used instead of L. The expected loss costs 
included in L are $100.000 basic limits losses. IS0 has recently converted from $25.000 
basic limits to $100,000. At $100.000 basic limits it was necessary to increase the 
K value in the denominator to $177,000 from its previously smaller value that applied 
when $25.000 basic limits losses were used in computing the experience rating 
adjustment. If unlimited losses were used in the experience rating formula, then an 
even larger K value would be necessary because the expected value of the process 
variance would become even larger. 

Reducing Variabilitv of the Data 

The data used by ratemakers in the insurance business arises from a random process; in 
fact, it is this randomness that makes insurance necessary. The ratemaker is confronted 
with the task of finding the proper premiums to charge insureds without knowing for sure 
what the cost will be to the company to provide the insurance. The ratemaker estimates 
the cost of future payments in insurance claims by his or her company by analyzing past 
costs. The ratemaker wants to use the most relevant data to estimate future costs, but 
he or she must also deal with the variability inherent in the data. 

One way to decrease the variabflity in ratemaking data is to use a larger body of data. 
Here are several ways to do this: 

. include more years in the experience period 
- use Bureau data 
. combine data into fewer, but larger groups 

Each of these involves a tradeoff. If more years are included in the experience period 
then it becomes necessary to apply larger trend factors to the older data and trend can 
be tough to estimate. Also, the book of business to which new rates will apply may be 
different from the business that produced the experience years ago. The same goes for 
Bureau data. The insureds included in Bureau data may be very different from the 
average insured in the ratemaker's data. Combining the data into fewer, but larger 
groups, may limit a company's ability to effectively compete against competitors who 
can better identify the proper price to charge an insured. 

Another approach to decreasing the variability in losses used in ratemaking is to: 

* cap large losses 
- remove catastrophes 

Of course, if we do either of the above we must put something back to make up for the 
losses we removed. One method to cap large losses is to do basic limits ratemaking by 
state, territory, class, etc., and calculate basic limits rates. Then, rates for higher 
limits are comouted usina increased limits factors calculated based on the aaareaate 
data for many states and ilasses. Another approach is to limit all losses at ;ome-set 
amount, for example $150.000. and then to prorate the excess losses amount back by 
state, territory, class, etc. Catastrophe losses can be removed from the data and a 
catastrophe load substituted in its place. This load can be computed from a very long 
observation period, thirty years or more for weather losses. or a computer model that 
attempts to model the catastrophe loss process. 
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