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The Parameter Variance Adjustment 
in Lognormal Linear Models for Loss Reserves: 

Bayesian vs. Frequentist Analysis 

by Fred Klinker 

Abstract: In lognormal linear models for loss reserve 
estimation, losses are assumed to be lognormally 
distributed, where the expectations of the logarithms.of 
losses are assumed linear in explanatory variables. A 

parameter variance term appears in the exponent of the 

estimator for expected losses. There is disagreement 
regarding the sign of this term. It will be argued in this 

note that the sign depends on whether one adopts a Bayesian 
or Frequentist viewpoint. Each sign is correct within the 
appropriate paradigm. 

A number of actuarial papers have considered lognormal 
linear models for loss reserve estimation, among them 

Verrall [11], Verrall [12], Wright [14], and Zehnwirth [15]. 

This list is illustrative only and is far from exhaustive. 

In such models, losses (generally incremental, not 
cumulative) are assumed to be lognormally distributed, where 
the expectations of the logarithms of losses are assumed 
linear in explanatory variables. A parameter variance term 

appears in the exponent of the estimator for expected 
losses. There is disagreement regarding the sign of this 
term. The disagreement is implicit rather than explicit; 

none of the above referenced authors appears to acknowledge 
the different sign in other authors' works. However, Gary 

Venter, in his introduction to the papers on variability in 

reserves included in the Spring 1994 CAS Forum, specifically 
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in his comments on Verrall [12], notes that "...adjusting 
the maximum likelihood estimator of the lognormal mean for 
bias involves some controversy, with different authors 

advising upward or downward or no adjustment." (Venter 

[lo], paw 97.1 It will be argued in the rest of this note 
that the sign of the adjustment depends on whether one 

adopts a Bayesian or Frequentist point of view. Each sign 
is correct within the appropriate paradigm. 

Aside from its discussion of an admittedly technical fine 
point which may not interest many actuaries, this note may 
also serve to remind readers of the fundamental distinctions 

between Bayesian and Frequentist paradigms and the fact that 
the two do not always yield the same result. This last 

.-,. 
reminder is useful, since the statistical model most 

actuaries are most familiar with, the normal linear model, 

yields the same result whether from a Frequentist viewpoint 
or from a Bayesian (with uninformative prior), although the 
interpretation of the result differs somewhat according to 
viewpoint. (Regression and ANOVA are common examples of 

linear models. The normal linear model in a Frequentist 

setting assumes normally distributed errors. In a Bayesian 

setting, normal priors and normal errors are assumed, 
resulting in normal posteriors.) This happy coincidence of 
Bayesian and Frequentist results is not preserved in many 
other models, including lognormal linear models. 

In subsequent sections of this note, first the general 
Bayesian and Frequentist paradigms are discussed, then the 
estimators that follow from these paradigms. Lastly, the 
special case of lognormal linear models is introduced. 
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Paradioms: Bavesian vs. Freouentist 

The general problem is as follows. The state of nature is 
described by the parameter )A. There is a quantity of 
interest, y, whose expectation, conditional on p, is a 
function of fi, E[ylp)=f(b). If the state of nature were 

known to be 1, both Bayesians and Frequentists would 

probably agree that a good estimator for y is f(p). 
However, the state of nature is not known. Data, x, either 
a single observation or a collection of observations, is 
collected in an attempt to determine ).L and y. But Bayesians 
and Frequentists proceed differently. 

First, the Frequentist approach: The state of nature, ~1, is 
considered to be fixed, although unknown. The Frequentist 
refuses to quantify uncertainty surrounding p via a 
probability distribution on p. On the other hand, the 

Frequentist considers not only the actual outcome of the 

experiment, x, but also other outcomes that might have been, 
but weren't. The possible outcomes are described by a 
probability distribution on x, conditional on the fixed but 
unknown p. Expectations and variances of functions of x are 
calculated over x, conditional on p. The focus is on 

finding unbiased estimators (i and 2 such that E[P(x) Ipl=p 

and E[f(P(x) 1 Ipl=f(p) =E[Y[P] . 

Consider next the Bayesian point of view. Uncertainty 
surrounding the state of nature, p, is quantified via a 

prior probability distribution on b. This prior can be 
Objective Bayes (an uninformative prior), Subjective Bayes 
(based on personal estimates of probabilities), or Empirical 

Bayes (based on previous data from similar problems). Data, 
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x, is observed, and, based on this data and Bayes’ Rule, a 
posterior distribution for p follows. All inferences are 
conditioned on the observed data. There is no consideration 

'given to other outcomes that might have come to pass but 

didn't. The focus is no longer on unbiased estimators. 
Unbiasedness is a Frequentist notion which requires taking 

expectations over actual and possible observed data, whereas 
the Bayesian does not consider the randomness of the data 
after the data has been observed and instead conditions on 

that observed data. Instead, the Bayesian desires an 
estimator which minimizes Bayes Risk across all states of 
nature still considered possible after observing x. 
Expectations and variances are calculated over b via the 
posterior distribution for /J, conditioning on x. Adopting 
the standard loss function (quadratic), the minimum Bayes 

Risk estimator for y is its posterior expectation, 

E[ylxl =E(E[yl~.~l~x) =E[f(p) 1x1 . 

To summarize the key distinctions between Bayesian and 
Frequentist, the Frequentist considers the data, x, to be a 

random variable, but not p, which is considered fixed, 
although unknown. The Frequentist continues to worry, even 
after the data is observed, about observational outcomes 

that could have come to pass but didn't, and considers 

expectations and variances over x, conditional on )J. The 
Bayesian conditions all inferences on the observed data, x, 

and considers ~1 to be the random variable over which 
posterior expectations and variances are calculated. The 
Bayesian steadfastly refuses to be concerned about outcomes 
that could have come to pass but didn't. To clear up a 
common misconception, it is this conditioning on x which is 

the heart of the Bayesian paradigm, not the invocation of 

Bayes' Rule. Even some Frequentist methods invoke Bayes' 
Rule. 
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Before leaving this foundational section of this note, a few 
clarifying comments are in order. 

1) In the above Frequentist discussion, I have focused on 
unbiased estimators. It should at least be noted that 
Frequentists do occasionally invoke considerations 
other than unbiasedness. However, it is certainly true 

that unbiasedness is one of the first characteristics 

that a new statistics student learns and one that is 
invoked often. 

2) In the above Bayesian discussion, by mentioning Bayes 
Risk and loss functions, I have implicitly adopted a 

decision theoretic approach to Bayesian statistics. It 
should be noted that Bayesian theory and statistical 
decision theory are not synonymous. There are 
practicing Bayesians who are not decision theorists, at 
least not knowingly. And there are decision theorists 

who are not Bayesian, but rather quite decidedly 

Frequentist. On the other hand, of those discussions 
of Bayesian foundations with which I am familiar, all 

the best seem to adopt a decision theoretic viewpoint. 
Once one rejects the questionable Frequentist 
"objectivity", one seems driven naturally towards a 

decision theoretic viewpoint. Statistics appears to be 
less a method of discovering Vruth" and more an aid to 
rational decision making. Any Bayesian can calculate 
the posterior expectation, E[y;x]. Only the Bayesian 
with a decision theoretic bent knows why this might be 

the appropriate quantity to calculate, because it 

minimizes posterior Bayes Risk under the most popular 
loss function, expected squared error. 
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The above has only scratched the surface. For those 
interested in more, Silvey [9] is a good introduction to 

Frequentist inference. There is a rapidly expanding 
literature on Bayesian foundations. Two good discussions 

are Berger [2] and Efron [6]. I particularly recommend the 

first of the two as an excellent discussion of Bayesian 
philosophy. (This is the source which first pounded into me 
the central role played by conditioning arguments.) The 
second of the two compares Bayesian and Frequentist 
paradigms. Although more applied, Gelman and others [E] and 
West and Harrison (131 also have interesting insights on 

Bayesian foundations. 

Estimators: Bavesian vs. Freouentist 

Suppose, first, that the function f(p) of the previous 
section of this note is linear in p. Then the following two 
operations commute: 1) taking expectations and 2) evaluating 
the function. In the Frequentist paradigm, 

E[f(P(x))lr]=f(E[P(x)l~])=f(~) for p(x) an unbiased 

estimator of cc. In other words, 3=f and P((l(x)) =f(P(x)) is 

an unbiased estimator for E[ylp]=f(p). In the Bayesian 

paradigm, E[ylx]=E[f(p)Ix]=f(E[plx])=f(&), where p,=E[/~[x] 
is the posterior expectation of p conditional on the 
observed x. Comparing the Bayesian and Frequentist 

estimators for y, they are of the same functional form as 
long as we identify the Bayesian /b, with the Frequentist 

P(x). Why is the class of linear f so important? Because 

the normal linear model, already mentioned in the 
introduction, falls into this class. 
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Now assume that f is non-linear and take the Taylor series 
expansion to second order, about )J in the Frequentist case, 
and about c(" in the Bayesian. It is not suggested that this 

calculation produces good estimators in all situations, but 
second order is the lowest order in which interesting 
phenomena arise, which are at least suggestive of the form 
of adjustments required for non-linear f. Considering first 
the Frequentist case, 

E[f(P (xl 1 I ~1 = E[f(p) + f’(p) (0 bd -p) + $f”(p) (P(x) -p121pl 

= f(p) + +fQ) Var[P(x) I pl 

(1) 

where p(x) is an unbiased estimator for /A, and where the 

variance in the last line is the variance of the estimator 
p(x) conditional on p. This equation suggests that f(p(x) 1 

would not in general be an unbiased estimator for f(p) and, 
further, that the following might be aooroximatelv unbiased. 

(2) f(P(x)) = f(P(x)) -+ffl(p(X)) var[p(x) 1pl 

The unknown p in the second derivative of f has been 

replaced by its unbiased estimator. The variance would also 
have to be estimated somehow. The unbiasedness would 
presumably be only approximate for a couple of reasons. 
First, higher order terms in the Taylor series expansion 

have been ignored. Second, both the p (in the second 
derivative) and the variance in the variance adjustment term 

of equation (2) must be estimated, hence this variance 
adjustment term is itself a random variable, not a constant. 
There is no guarantee that the expectation of this random 

variable will be exactly numerically equal to the variance 
adjustment term of equation (l), barring a very judicious 
choice of variance estimator. 
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The Bayesian calculation is similar to the Frequentist- 

E[f(p) Ix] = E[f(p.J +f’(p,) (CI-Px) +jfU(CLx) (~-clx)2~xl 

(3) 
= f(rx) 

Equation (2) is the approximately unbiased estimator for y 
in the Frequentist case, equation (3) the approximate 

estimator for y in the Bayesian. Both have an adjustment 
for parameter variance. As before, upon identifying the 

Frequentist F(x) with the Bayesian c(~, the functional forms 

would be identical, exceot that the sisns of the oarameter 

The Losnormal Linear Model, 

Consider first the lognormal distribution. A random 

variable z is said to be lognormally distributed with 
parameters ).b and a if and only if the natural log of z is 
normally distributed with expectation p and standard 

deviation a. p and a2 are therefore the expectation and 
process variance in the log scale. Back in the original 
scale, the expectation of z, conditional on )J and a, is 

E[z~jb,o]=exp(~+.502). For the actuarial reader unfamiliar 

with the lognormal distribution, past actuarial papers, such 

as Bickerstaff [3] and Finger [7], have made use of this 

distribution and include either a brief description or 
technical appendix on the lognormal. Those who desire 
considerably more detail on the lognormal distribution may 
consult Aitchison and Brown [l] or Crow and Shimizu [5]. 
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Consider now the lognormal linear model. The data, x, and 
the quantity of interest, y, are assumed to be lognormally 
distributed, with expected logs that are linear in 
explanatory variables. The state of nature is characterized 
by the expectation of log(y), w, and the process standard 
deviation of log(y), u. fi will be linear in explanatory 
variables and their associated regression coefficients. The 
parameter variance of p will depend on variances and 
covariances of the estimated regression coefficients via 

standard regression formulas involving the process variance 
and the structure matrix. In what follows, the process 
variance and the parameter variance will be assumed known. 

The fact that process and parameter variances must generally 
be estimated from the data is a technical complication which 
must be considered when designing exact estimators but which 

contributes nothing to the discussion at the present 
elementary level. So we will treat u as a known rather than 
unknown descriptor of the state of nature and write 

E[yl~l=exp(~)exp(.5az)=f(~). (The additional problems 
introduced by unknown process and parameter variances, which 

must also be estimated, are treated in Verrall [ll] and 

Verrall [12]. These two papers further reference Bradu and 
Mundlak [4], a highly educational paper in itself.) 

The Frequentist now considers the problem to be one of 

estimating p an :[ylp]=f(p) from observed data x using 

unbiased estimaturs. Given the assumption that logs are 
normally distributed and linear in explanatory variables, 

standard regression analysis on the logs yields an unbiased 

linear estimator for W, call it p(x), and an expression for 
the parameter variance of this estimator, Var[@(x) IpI, in 

terms of the process variance, assumed known, and the 
structure matrix of the regression. Applying equation (2), 
an approximately unbiased estimator for f(p) is: 
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(4) 

f(p(x)) = fcpw) l- 
( 

$var rp (x) ‘PI) 

m f(fl(x))e 
q 

-+ [P (x) Id) 

= expF(x) -$Vdr[p(x) Ipl +-+a’) 
( 

The first approximation follows from equation (2), because, 

given the present definition of f(b)=exp(p)exp(.5u*), the 
second derivative of f with respect to p is equal to f(p) 
itself. The second approximation follows if the parameter 
variance is small (because l-x = eSX if x small), which is 
probably the regime in which equation (2) is valid anyway. 

(It should be noted that equation (4), derived under the 

above approximations, is an exact unbiased estimator for 
f(p) if the variance terms are known, rather than estimated 
and the distribution of the data, x, is such that the 
estimator, p(x), is not only unbiased but normally 

distributed.) The second term in the exponent is the 

adjustment for parameter variance and appears with a 
negative sign. 

Consider now the Bayesian estimator, E[ylx]. After 
observing the data x, ).L has a posterior distribution with 

expectation & and variance Var[plx]. Applying equation 

(31, 

45 



(5) 

E[Y:xl = lz[f(p) :x1 

ti f(p,) 
( 
l++var[plxl 

1 

= f(p,)e 
-4 

++p:x1 
1 

= ex 
4 

pr+ $Var[p!xl + $0’ 
1 

This holds to the same level of approximation as equation 

(4). (Actually, if the posterior distribution for fi is 
normal with expectation pLx and variance Var[plx], then 

equation (5) follows exactly, without approximation, because 
then exp(p) is itself lognormally distributed.) Again, the 
second term in the exponent is the adjustment for parameter 

variance, but in the Bayesian setting it appears with a 
positive sign. 

Note that equations (4) and (5) have the same functional 
form, except that the signs on the parameter variance term 
are reversed. Why? The Frequentist recognizes that his 
unbiased estimator for )L, p(x), has finite, non-zero 
variance. Because of the convex shape of the exponential 

function, excursions of F(x) above p result in excursions 

of exp(P(x)) above exp(b) of greater magnitude than 

excursions of exp(P(x)) below exp(p) due to excursions of 

(l(x) below u. As an estimator of exp(p), exp(p(x)) is 
therefore biased upward, and the bias is greater the greater 
the variance of the estimator p(x), the larger the 

excursions of p(x) from /.k. The exp(-. 5Var[P(x) 1~1) factor 

removes this bias (approximately). 

The Bayesian, on the other hand, estimates 
E[ylx]=E[f(u)lx]=E[exp(p+.5u2)Ix]. Again, because of the 
convex shape of the exponential function, excursions of p 
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above fi,,=E[pix] have a larger impact on exp(p) than 

excursions of fi below ~1,. Upward excursions of fi are more 
dangerous than downward excursions because of their greater 
impact on exp(fi), and the Bayes estimator, being a minimum 
risk estimator, augments the naive estimator exp(p,+.5u2) 
with the factor exp(+.War[plx]) to protect against the more 
dangerous upward excursions. 

In closing this section of this note, what relation do the 
above results bear to those of other authors? I don't see 
an explicit parameter variance adjustment in Zehnwirth 1151. 
However, I know from the manual for his ICRFS loss reserving 

system and from private conversations with him that 
Zehnwirth is solidly in the Bayesian camp and advocates, or 
at least at one time advocated, the positive sign on the 
parameter variance adjustment. Verrall [12] actually 
appears to advocate both signs, depending on whether he is 

describing an unbiased Frequentist estimator or a Bayesian 

estimator, but he doesn't draw attention to the change in 
sign. 

First, Verrall's equation (4.16) provides an unbiased 
Frequentist estimator. (Although he doesn't refer to this 

estimator as Frequentist, he notes its unbiasedness, which 

is a Frequentist notion. Furthermore, he invokes Bradu and 
Mundlak [4], which is a Frequentist paper.) To establish 

the connection between his notation and ours, note that Z 

is the vector of values of explanatory variables associated 
with our quantity of interest, y. fi is the vector of 

regression coefficients associated with these explanatory 
variables, or rather the true but unknown values of these 

coefficients. Q is the vector of estimates of these 

regression coefficients derived from the regression. ZB 
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and ZQ are therefore inner products representing, 

respectively, our p and our p. From Verrall's equation 

(4.16)s the unbiased estimator for E[ylb]=exp(p+.5u2) is 

(6) exp(P)g -AZ(X'X)-'Z'S' 
m 2 [ 

+1&G 
2 1 

where X is the regression structure matrix and s2 is an 
unbiased estimator for u2. g,,,(t) is defined via power 

series expansion in Verrall's equation (4.5). It is clear 
from this definition that, as m becomes large, g,,,(t) tends 

to exp(t). m becomes large when the data base on which the 
regression is performed becomes large, without a 
corresponding increase in the number of explanatory 
variables. In this limit, the unbiased estimator for E[yl~] 
of expression (6) above becomes 

(7) exp p 
( 

- $2(x/x) -1~‘~2 + $s2 
i 

From standard regression theory, the second term in the 

exponent is precisely -l/2 times the variance of the 
estimator 0. This estimator (7) therefore reproduces 

equation (4) above. 

Lastly, Verrall provides, the middle of page 409, Bayesian 
estimators for posterior expected losses for lognormally 
distributed losses with parameters 13 (our p) and u, where 
the posterior distribution of 0 is normal with expectation m 

(our p,) and variance r2 (our Var[fiix]). Verrall's 

estimator is 

(8) 

which reproduces equation (5) above. 
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Concludina RemarQ 

So, which is the correct estimator in a lognormal linear 
model setting, equation (4) or equation (5)? Do we add or 
subtract a parameter variance adjustment? Each is correct, 
m its own Dw I Bayesian or Frequentist. 
Unfortunately, for the lognormal linear model, unlike for 

the normal linear model, the result depends on the paradigm. 
It is up to the actuary to select the paradigm and, hence, 
the sign of the parameter variance adjustment. 
Unfortunately, there is no clear guidance as to which is 
appropriate for the loss reserving problem. Neither 
paradigm is without problems regarding its theoretical 

foundations, as Efron [6] is quick to point out. 

A number of observations may be appropriate in closing, 
first some statistical ones, then some actuarial ones. 

1) While calculating the Bayesian posterior mean, E[yix], 

it may be worthwhile to reflect on the fact that many 

Bayesians consider the greatest strength of the 
Bayesian paradigm to be its ability to produce readily 
interpretable posterior distributions and confidence 
intervals. (See, in particular, Gelman and others 

[8].) These Bayesians would consider someone who went 
to the trouble of constructing a Bayesian analysis only 

to extract posterior means and nothing else to have 
discarded most of the information revealed by their 
analysis. Yet, because of the very narrow focus of 

this note, I have ignored posterior variances, 

Var[ylx], posterior predictive distributions for y, and 
posterior intervals resulting from those distributions. 
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2) A hard core Bayesian who wished to remain a Bayesian 
and yet was troubled by the above Bayesian/Frequentist 
discrepancy might be able to construct a valid Bayesian 
decision analysis that would reproduce the Frequentist 
unbiased result by considering loss functions other 

than quadratic, resulting in minimum Bayes Risk 

estimators other than the Bayesian posterior 
expectation, E[ylx]. I have not investigated what loss 
function might bring Bayesian and Frequentist analyses 
into agreement, but I might guess that such a loss 
function would appear quite ad hoc. 

3) Both the unbiasedness of the Frequentist estimator and 
the minimum risk of the Bayesian estimator are 
predicated on the selected lognormal linear model being 
a reasonable approximation to reality. While we debate 
unbiasedness vs. minimum risk (tastes great vs. less 

filling), let us not forget that, if our model does not 
adequately approximate reality (incremental losses are 
not lognormally distributed, or expected logs are not 

linear in explanatory variables, or we have failed to 
include in the model important explanatory variables, 

etc) , then, relative to a more adequate model, our 

Frequentist estimator is quite likely to be biased, and 
our Bayesian estimator is unlikely to be minimum risk. 

NOW, a few actuarial comments. 

1) The Bayesian increases the indicated loss reserve for 

risk; the Frequentist reduces the indicated reserve to 
correct for presumed bias. The Bayesian indicated 

reserve is more conservative than the Frequentist. The 
Bayesian increase is, in effect, a kind of risk load. 
For those model parametrizations I have seen, the 
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2) 

3) 

greatest effect of parameter variance, percentagewise, 
tends to be out in the tail, at high development ages, 

because age tends to be selected as one of the 

explanatory variables and tends to be highly leveraged 

at high ages. Intuitively, out in the tail, at high 

development ages, is where an actuary would want the 
greatest risk load and conservativeness, because this 
is where the greatest uncertainty, percentagewise, 
lies. 

The Frequentist loss reserver might believe the 
Bayesian indicated reserve to be redundant on average, 
because it fails to adjust for bias. Have you, or 

anyone you know, ever seen a truly redundant loss 

reserve (or Nessie, or Bigfoot)? 

In the presence of controversy, with no clear 
indication as to how to resolve that controversy, 
perhaps we should employ the time-honored practice of 

practical actuaries everywhere: compromise. Ignore the 
parameter variance adjustment altogether. This 

produces indications intermediate between the bias 

adjusted Frequentist indication at the low end and the 
risk adjusted Bayesian indication at the high end. 

My first preference would be for the Bayesian estimator 
because of its conservativeness, and because it is most 
conservative in the tail, where conservativeness is most 
appropriate. Upon failing to get my first preference, my 

second preference would be to ignore the parameter variance 

adjustment altogether. Why make any adjustment when we 
can't even agree on the sign of the adjustment? I would be 
very loathe to quote the Frequentist indication, to reflect 

the downward adjustment for bias, which is probably being 

51 



mis-estimated anyway because our selected lognormal linear 
model, on which the indicated bias is based, is likely to be 
an oversimplification of reality. 
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An Introduction to Credibility 
by Curtis Gary Dean, FCAs 

This paper is derived from the presentation on basic credibility 
concepts that the author has given at the 

1995 and 1996 CAS Seminars on Ratemaking. 
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AN INTRODUCTION TO CREDIBILITY 

Credibility theory provides important tools to help the actuary deal with the randomness 
inherent in the data that he or she analyzes. Actuaries use past data to predict what 
can be expected in the future, but the data usually arises from a random process. In 
insurance, the loss process that generates claims is random. Both the number of claims 
and the size of individual claims can be expected to vary from one time period to 
another. If $1.500.000 in losses were paid by an insurer during the past year, one 
might estimate that $1.500,000 would likely be paid in the current year for the same 
group of policies. However, the expected accuracy of the estimate is a function of the 
variability in losses. Using credibility theory, the actuary estimates the randomness 
inherent in the data and then calculates a numeric weight to assign to the data. 

Here is a dictionary definition of credible: 

credible: Offering reasonable grounds for being believed 

The actuary wants to know how much to believe the data that's being analyzed. To use 
the data to predict the future, this "belief in the data" must be quantified so that 
calculations can be made. This leads us to actuarial credibility: 

actuarial credibility: the weight to be given to data 
relative to the weight to be given to 
other data 

If we cannot fully believe our data, we may call on other information or data to 
supplement the data at hand. The data at hand and the supplemental data are each given 
an appropriate numeric weight in calculating an estimate. 

The variability in insurance loss data can be seen in Table 1 which shows the loss 
experience for a group of policies covering contractor's pickup trucks. The last column 
shows that the average loss per truck varies widely from one year to the next. Any one 
year is a poor predictor of subsequent years. 

The variability in the average loss per pickup truck is depicted graphically in Figure 
1. The expected average loss (pure premlum) is $500 which we would observe if our body 
of data were infinite in size. But. for limited sample sizes, the observed average 
losses are randomly distributed. Note that as our sample size increases. the 
variability of the observed average loss decreases 
becomes more concentrated around the $500 value. 

- the probability density curve 

probability density curve flattens out. 
For a smaller sample size, the 

If our sample body of data consists of 50.000 
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trucks we can rely upon the observed average loss to estimate the true expected average 
loss to a much greater extent than if the data came from a smaller sample of only 3000 
trucks. 

FIGURE 1 
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Pure Premium 

The actual dlstribution of pure premiums is not symnetric as shown in the prior graph, 
but is instead skewed to the right as shown in Figure 2. More of the observations would 
actually fall below the mean of $500 and the mode of the distribution is less than $500. 
The smaller the body of data, the greater the asymnetry in the graph. In an extreme 
case we could consider only one truck. In most years the truck would have no losses 
for an observed average loss of SO in those loss-free years. But. every few years there 
would be a loss or, perhaps, several losses and the observed average loss would be 
substantial. 

FIGURE 2 
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This leads us to a comnon problem that may occur when a group of non-actuaries is 
reviewing average losses or loss ratios for a series of years. The data may show, for 
example, four years with excellent loss ratios but a fifth year with a very high loss 
ratio. The five-year average may be close to some target loss ratio. Unfortunately, 
what frequently happens is that one of the reviewers will say that the one bad year is 
an anomaly that was caused by several severe claims and that the bad year should be 
thrown out of the data. This is a big mistake1 For a small body of data, this pattern 
in the loss ratios is exactly what we expect to see. The majority of the loss ratios 
will look better than average, with a few being quite large. This doesn't mean that 
we should ignore the few high values; it usually means that our body of data is small. 

The basic formula for calculating credibility weighted estimates is: 

Estimate = 2 x [Observation] + (1-Z) x [Other Information], 

and 0 I 2 51. 

If our body of data is so large that we can give full weight to it in making our 
estimate, then we would set Z=l. If the data is not fully credible, then Z would be 
a number somewhere between 0 and 1. What is the "Other Information" that we might use 
in our formula? That depends on what we are trying to estimate. In Table 2. the left 
hand column shows our observed data and the right hand column may be the "Other 
Information" that we might use in the above formula. 

Observation 

TABLE 2 

Other Information 

Pure premium for a class 

Loss ratio for an individual 
risk 

c-8 Pure Premium for all classes 

++ Loss ratio for entire class 

Indicated rate change for a 
territory 

Indicated rate change for 
entire state 

++ Indicated rate change for 
entire state 

c-8 Trend in loss ratio 

Suppose you are trying to estimate the indicated rate change for a territory within a 
state, but your company has a limited volume of business in the territory. An option 
may be to weight the indicated change from territorial data alone with the indicated 
change for the entire state. This way you have reflected territorial experience in your 
rate change to the extent that it is credible. 

The loss ratios shown below in Table 3 were produced in a computer simulation that 
modeled the insurance random loss process. The expected loss ratio is 60 for both the 
small and big states, but the observed (simulated) loss ratios will randomly vary around 
this value. As we would expect, the variation is much larger for the small state. In 
the larger state the loss ratio hovers around 60 in each year. Five-year average loss 
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ratios were calculated and then state indicated rate changes were calculated using the 
expected loss ratio of 60 as the permissible loss ratio. 
state -28.3% = (43/60 - 1.000). 

For example, in the small 
Using one of the formulas that we will discuss in a 

moment, credibility values Z were calculated for each state. 

1990 
1991 
1992 
1993 
1994 

Total 

Permissible Loss 
Ratio 

State Indication 

Credibility 

TABLE 3 

Small State 

Earned Loss 
($000) Ratio 

FY 1:; 

72 62 
74 
74 

1; 

360 43 

60 

-28.3% 

10% 

Large State 

Earned Loss 
($000) Rat10 

7,100 58 
7.120 58 
7.180 
7,200 :a0 
7,400 61 

36.000 59 

60 

-1.7 

100% 

Perhaps this data comes from a line of insurance that has an aggressive insurance to 
value program such that the inflationary trend in losses is exactly offset by the annual 
increases in the amount of insurance. In this case the trend in our loss ratio would 
be 0%. (For our data, we know that the trend in the loss ratio is 0% because each year 
has an expected loss ratio of 60.) We will apply our complement of credibility factor 
(1-Z) to this information. So, we would get the following two indications: 

small state: .lO X [-28.351 + (1 - .lO) X [O.O%] = -2.8% 

large state: 1.00 x [-1.731 + (1 - 1.00) x [ O.O%] = -1.7% 

In both cases we know the right answer1 We should take a 0.0% rate change in each state 
because our expected loss ratios are what we used for the permissible loss ratios. But. 
because of the randomness inherent in our data, our indications are slightly off the 
mark. 

The important thing in the prior example is that we greatly improved the accuracy of 
our rate indication in the small state by incorporating credibility. We gave only a 
10% weight to the raw indication arising from the small state's loss ratio. This had 
the result of dampening the effect of the randomness. To the extent possible we would 
like to use our observed data to calculate our estimate rather than rely on 
supplementary data, but given the randomness present in our observations. we need to 
temper the data. Using credibility theory we weight an estimate based on limited data 
with data from other sources. We want to find a weight 2 that allows us to rely on our 
limited data to the extent reasonable, but which also recognizes that our limited data 
is variable. 
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There are two widely used formulas for the credibility Z as shown side by side in Table 
4. For the classical credibility formula, 
the case of Mhlmann credibility, 

if n > N then Z is set equal to 1.00. In 

infinity. 
Z asymptotically approaches 1.00 as n goes to 

Classical Credibility 

TABLE 4 

Bdhlmann credibility 

Also called: Also Called: 

(1) Limited Fluctuation Credibility (1) Least Squares Credibility 
(2) Empirical Bayesian Credibility 
(3) Bayesian Credibility 

In both formulas n is a measure of the size of the body of data and is an indicator of 
the variability of the loss ratio or pure premium calculated from the data. n can be 
any of the following: 

. number of claims 
* amount of incurred losses 
* number of policies 
. earned premium 
* number of insured unit-years. 

These are not the only possibilities for n. but n needs to be some measure that grows 
directly with the size of the body of data that we have collected. 

In practice both of the formulas can give about the same answer if N and K are chosen 
appropriately as displayed in Figure 3. Note that in the classical credibility case, 
when n is greater than or equal to 10,000. Z is identically 1.00. 

1.20 

T 
FIGURE 3 

0.80 
I 

Z 0.60 
n’(n+1600) 

0.40 

Number of Claims 
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Classical Credibility 

First we will discuss the classical credibility formula. Classical credibility attempts 
to restrict the fluctuation in the estimate to a certain range. N is calculated such 
that for fully credible data with n=N and Z-1.00. the observed pure premium or loss 
ratio will fall within a band about the expected value a specified percentage of the 
time. This is illustrated in Figure 4. 

FIGURE 4 

CLASSICAL CREDIBILITY 
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If N=5,200 claims, then the observed Pure Premium Is within 10% of 
the “true” value 90% of the time. 

In this example the measure of the size of the body of data is the expected number of 
claims. When our body of data is large enough so that we expect 5,200 claims in our 
observation period, the observed pure premium will fall within k=lO% of the true value 
P=90% of the time; that is, 90% of the time our pure premium calculated from our body 
of data will fall into the interval [450,550]. Both the 90% probability and the 10% 
width of the range must be selected by the ratemaker. If you wanted much less variance 
in your estimate you might select a P=99% probability and a k=2.5% error in your 
estimate. Of course! it would require a much larger body of data in the observation 
period to achieve this level of certainty. 

The full credibility standard N is a function of the selected P and k values. A larger 
P value results in a larger N and a smaller k also produces a larger N. In order to 
calculate the N that corresponds to the selected P and k. one needs to make certain 
assumptions and also know something about the loss process. In classical credibility 
one assumes that the frequency of claims can be modeled by a Poisson distribution. 
Also, one needs an estimate of the average claim size and the variance in claim sizes. 
Using these an estimate of the variance in total losses can be computed. The next 
assumption is that the distribution of the total losses is normal, i.e. bell-shaped. 
Then, the N value can be calculated. This is all covered in much detail in the syllabus 
material for the actuarial exam that tests credibility theory. 
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One does not have to use the number of claims in the classical credibility formula, but 
instead can use earned premium, number of policies, or some other basis. We could 
convert our formula developed above to an earned premium basis. Suppose that in 
reviewing our data we calculate that on average there is approximately $2,500 in earned 
premium for each claim; that is, the ratio of earned premium to the number of claims 
is 62,500. A full credibility standard of (2,500 dollars/claim) x (5.200 claims) = 
613.000.000 could be used in place of the 5.200 claims. Then, the credibility assigned 
to any data could be calculated from the earned premium of the data. 

To calculate the full credibility standard, the denominator in the formula, the amount 
of variability acceptable in fully-credible data must be defined by the selection of 
P and k values. For less than fully credible data the square-root formula determines 
the credibility 2. Figure 5 displays graphically the calculation of partial 
credibility. 

FIGURE 5 
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In the graph the width of the curve representing the variability of data which just 
meets the standard for full credibility is represented by D. D can be considered the 
standard deviation of the curve. (If you prefer, D can be two standard deviations.) 
Likewise, d is the width corresponding to a smaller body of data that is less credible. 
It turns out that the credibility that should be assigned to the smaller body of data 
in this model is 2 = D/d. the ratio of the standard deviation of the pure premium of 
the fully credible data to the standard deviation of the pure premium of the partially 
credible data. We will allow a standard deviation of size D. but if our body of data 
has a standard deviation of d. then we apply a weight of D/d to the data. If the pure 
premium (p.p.) calculated from the data is expected to have a standard deviation of d. 
then the quantity Z x (p.p) has a standard deviation of D, which is our target. 
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BOhlmann Credibilltv: 

The least-squares credibility model uses the credibility formula: 

Z = n/(n + K) 

K is defined by the following intimidating expression: 

K= Expected Value of the Process Vxiance 
Variance of the Hypothetical Means 

A good way to think about least-squares credibility is in the context of experience 
rating where the rate charged to an insured is a manual rate modified to reflect the 
experience of the individual insured. The losses incurred by an insured are random, 
so an insured's loss ratio will fluctuate. The term "process variance" is the variance 
in the loss ratio of the risk. The "expected value of the process variance" is the 
average value of the variance across the risks within the population. Since each risk 
is unique, the expected loss ratios of the individual risks at the manual rates will 
vary across the population because the manual rates are based on averages calculated 
for groups of risks who are classified alike in the rating plan. Each risk has it's 
own "hypothetical mean" loss ratio. The "variance of the hypothetical means" is the 
variance across the population of risks of their individual hypothetical mean loss 
ratios. 

In Figure 6 there are two risks, risk #I and risk 62. each with its own loss ratio 
distribution curve. The process variance Is a function of the width of the curve 
indicated by the [l] in the figure. As mentioned above the width of the curve can be 
thought of as some multiple of the standard deviation. The process variance is the 
square of the standard deviation. So the wider the curve, the larger the process 
variance. [2] marks the difference in the hypothetical means between the risks. The 
variance in the hypothetical means across the population is a function of the 
differences in the hypothetical means between the risks. 

When the process variance of the rlsks is large in relation to the difference in the 
means of the risks, K is large. A large K means that the credibility Z = n/(n +K) is 
small. Looking at the second graph in Figure 6, we see that there is a broad band where 
the two risks' loss ratios overlap. Since the loss ratio of each risk is so variable, 
it makes sense to give more weight to the manual rate calculated from the average 
experience of a large group of similar risks and less weight to the experience of the 
individual risk. 

Small process variances in relation to the differences in the means of the risks results 
in a small K value and a larger credibility Z. This scenario is represented by the 
bottom graph in Figure 6. The distributions of the two risks do not overlap. The 
larger credibility Z means more weight is assigned to the experience of the individual 
risk and less, (1-Z). to the experience of the population. 

Several Examoles 

Examples of credibility formulas developed by the Insurance Services Office are 
displayed in Table 5. The first set of formulas are used in Homeowners ratemaking and 
are based on the classical credibility model. The measure of the size of the body of 
data and its consequent variability is in the units of house-years; that is, one house 
insured for one year contributes one unit. In making a statewide change 240.000 house- 
years are required for full credibility, and with that large of a body of data, the 
observed experience should be withln 5% of the actual value 90% of the time. In 
computing territorial changes within the state, 60.000 house-years are assigned full 
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FIGURE 6 
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credibility and the observed territorial experience is expected to be within 10% of the 
expected value of 90% of the time. As stated previously, the actuary needs to decide 
on the units for n. the size of the P value, and the size of the k value. 

TABLE 5 

Credlblllty Formulas 
Insurance Services Office 

Homeowners: Owners Forms 

~ 

Manufacturers & Contractors 

Statewide Changes Relotivities 

z-&z ~=Gz 

n = number of occurrences in n = number of occurrences in 
three years five years 

90% confident within 7% 95% confident within 5% 
of actual value of actual values 

General Liability Experience Rating 

z- L 
L + $177,000 

L = expected loss costs (including ALAE) 
at $100.000 basic limits 

The next set of formulas in Table 5 are used by IS0 in Manufacturers & Contractors 
ratemaking. Statewide changes require 8,000 claims (occurrences) in a three-year 
period, and with this many expected claims, the experience of the body of data should 
be within 7% of the expected value 90% of the time. The full credibility standard for 
relativities within M&C, such as class relativities. is much tougher with 25.000 claims 
required for a P=95% and k=5%. 

The selection of P and k is probably more art than science. If the body of data that 
the actuary is working with is of limited size and there is no good surrogate for the 
data to which to assign the complement of credibility, then the actuary may select a 
smaller P and larger k to produce a smaller requirement for full credibility. If the 
actuary wants to make the rates more responsive to current experience he or she may also 
select a smaller P and a larger k. If rate stability is the most important goal then 
larger P and smaller k may be selected. 
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The last formula in Table 5 is the credibility to be assigned to an individual insured's 
data in General Liabllity experience rating and it is based on the BLlhlmann model. In 
a loss cost environment. L reoresents the exoected loss costs (exoected incurred losses 
and allocated loss adjustment expenses) for'the individual risk.' Before the advent of 
loss costs, premium designated by E was used instead of L. The expected loss costs 
included in L are $100.000 basic limits losses. IS0 has recently converted from $25.000 
basic limits to $100,000. At $100.000 basic limits it was necessary to increase the 
K value in the denominator to $177,000 from its previously smaller value that applied 
when $25.000 basic limits losses were used in computing the experience rating 
adjustment. If unlimited losses were used in the experience rating formula, then an 
even larger K value would be necessary because the expected value of the process 
variance would become even larger. 

Reducing Variabilitv of the Data 

The data used by ratemakers in the insurance business arises from a random process; in 
fact, it is this randomness that makes insurance necessary. The ratemaker is confronted 
with the task of finding the proper premiums to charge insureds without knowing for sure 
what the cost will be to the company to provide the insurance. The ratemaker estimates 
the cost of future payments in insurance claims by his or her company by analyzing past 
costs. The ratemaker wants to use the most relevant data to estimate future costs, but 
he or she must also deal with the variability inherent in the data. 

One way to decrease the variabflity in ratemaking data is to use a larger body of data. 
Here are several ways to do this: 

. include more years in the experience period 
- use Bureau data 
. combine data into fewer, but larger groups 

Each of these involves a tradeoff. If more years are included in the experience period 
then it becomes necessary to apply larger trend factors to the older data and trend can 
be tough to estimate. Also, the book of business to which new rates will apply may be 
different from the business that produced the experience years ago. The same goes for 
Bureau data. The insureds included in Bureau data may be very different from the 
average insured in the ratemaker's data. Combining the data into fewer, but larger 
groups, may limit a company's ability to effectively compete against competitors who 
can better identify the proper price to charge an insured. 

Another approach to decreasing the variability in losses used in ratemaking is to: 

* cap large losses 
- remove catastrophes 

Of course, if we do either of the above we must put something back to make up for the 
losses we removed. One method to cap large losses is to do basic limits ratemaking by 
state, territory, class, etc., and calculate basic limits rates. Then, rates for higher 
limits are comouted usina increased limits factors calculated based on the aaareaate 
data for many states and ilasses. Another approach is to limit all losses at ;ome-set 
amount, for example $150.000. and then to prorate the excess losses amount back by 
state, territory, class, etc. Catastrophe losses can be removed from the data and a 
catastrophe load substituted in its place. This load can be computed from a very long 
observation period, thirty years or more for weather losses. or a computer model that 
attempts to model the catastrophe loss process. 
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