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In his 1985 Proceedings paper “A Simulation Test of Prediction Errors of Loss Reserve 
Estimation Techniques”, J. Stanard [I] pointed out an apparent bias in forecasts of ultimate 
claims when commonly used reserving methods were applied to simulated data. The approach 
was to specify a stochastic model of claims emergence and use it to generate data to be used as 
input to various reserving methods. One of the methods selected was the familiar age-to-age 
factor method and it was found to produce overstated forecasts of ultimate claims in certain 
cases. 

Stanard’s simulation model assumes that the report lag of each claim is independent. This 
hypothesis has been put forth in other work, particularly that of E. Weissner [2], [3]. The work 
presented here will show analytically that when report lags are assumed to be independent, the 
age-to-age factor method is biased. 

This will be shown in two special cases of claim count development. First, it will be assumed 
that the ultimate number of claims for an accident period has a Poisson distribution. In this case, 
the assumption of independent report lags implies the independence of the total number of 
claims reported in any two periods. This is a special case of what will here be called the 
assumption of independent increments. A general argument may then be given to show that the 
age-to-age factor methodology gives biased results when the underlying process is known to 
have independent development increments. 

The situation where the ultimate number of claims has a negative binomial distribution is also 
addressed and is in fact the model specified by Stanard. In this case: assuming that report lags 
are independent does not imply that increments are independent and a somewhat different 
argument is required. 

The arguments presented here will make use of Jensen’s Inequality. Stanard notes in Appendix 
A of his paper that the observed bias is likely due to the fact that the expected value of the 
quotient of two random variables is not necessarily equal to the quotient of their expected values, 
i.e. 

E[Xl x +E- [ 1 WI Y 
Jensen’s Inequality may be used to show that, when the right conditions are specified, 
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These quotients will arise in what follows as the usual claims development or age-to-age factors. 
In addition, it will be demonstrated that weighted average forecasts exhibit a smaller bias than 
straight average estimates. 

zz. Preliminaries 

For simplicity, claims activity segmented into n consecutive, non-overlapping time periods of 
equal length will be considered. X, will denote the number of incidents occurring in period i 
which are reported as claims in period i+j-1 (or with lag j-1). The incremental development 
triangle at the end of the nth period is displayed as: 

Number of Accident Period i Claims Reported With Lagj-1 

Lap+l 
Accident Period 1 2 n-i+1 n-l n 

I x,, x,2 “. x,,,x-;+, ‘.’ x,.,2-, x,.x 

n-l X 11--1.1 X n-1.2 
n X”., 

This data is more commonly summarized as a cumulative development triangle 

Number of Accident Period i Claims Reported With Lag I j-l 

Gag 
Accident Period 1 2 n-i+1 .__ n-l 

I s,, St* “’ s,,,,-,+, ‘.’ S1.P1 i.. 
2 % s,, ... s,,,,-i+, “’ s,,,,-, 

where 
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The assumptions will he stated in terms of the X~J 

The basic problem for data given in this format is to deduce the number of incidents occurring in 
each accident period from the number reported through period n and from the pattern, consistent 
from period to period, in which they are reported. It is sufficient for what is intended here to 
consider only the problem of forecasting the next reporting increment. 

There are two assumptions which will be imposed on the claims process. First, one assumes that 
the increments at the same age of development for different accident periods are independent, 
identically distributed and nonnegative random variables: 

(4 For each j, the Xi,, are independent, identically distributed and nonnegative. 

One also assumes to begin with that, for a given accident period i, the development increments 
are independent of what has taken place up to that point in time: 

0% For each i, Xij is independent ofXr,k for k<j. 

These independence assumptions are sufficient to demonstrate bias in the age-to-age factor 
estimates. Later, it will be shown condition (B) is satisfied if the ultimate claim count 
distribution is Poisson. 

Jensen ‘s Inequality 

Proved here is a special case of a key analytical tool to be used in the demonstration. Readers 
familiar with the Acruariul Marhemarics text [4] will recall a version of this for functions of one 
real variable. References for the multivariate statement used here may be found in [5] and [6]. 

Jensen’s Inequality Letfbe a function defined on a set A c R” which takes only positive real 

values. Let p be a probability measure on A with 

E[f(X)] = &>...> X”) 4(x, >...> x.) 
finite and non-zero. Providedfis not constant on every set of non-zero probability, 

Proof. Let y = E[~(X)] Consider the tangent line to the curve s= l/t at t = y which has the 

equation 

1 2 
s=--yt+-. 

Y Y 
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This line is always below the graph of s = l/t and so 

1 1 2 
->-,I-+--. 
t Y Y 

The range offis such that, for each x in A, 

J->-1,(,)+2. m- Y2 Y 

Integrating each side with respect to fl gives 

J-;/f(x ,)..,) x,,)dp(x I,..., X”)d&(X I>...> x,)~~(x,,...,x.)+~=~. 

If equality held in this expression, then it would be the case that 

h=-+/(x)+: orf(x)=r 

for all x except in a set having probability zero. This situation was ruled out and the result is 
now clear. 

III. The Basic Argument 

Using the familiar weighted average forecast, the age-to-age methodology predicts the next 
cumulative value as 

provided that ~~~,s~,,,-,+, and s,,,,_,+, are non-zero. It is easier to work with the implied 

forecast of the change: 
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Theorem 1. Given the independence conditions (A) & (B) stated above, the expected value of 

the weighted average forecast X,.,, -,-z is always greater than the expected value of the actual 
change. That is, 

E X1_‘, Xktr-,+2 .s cll,,sk.,,m,+, I,/-/+, (~,‘,L+, ’ O.S,,,-a+, ’ 0 > E[X, .,,- ,+@:=‘,L.,+, > O,S, ,<-/+/ > O] 

Proof. To see this, one observes that 

= E L,+, 1 jc:~‘,L > OS, ,,,., t, > 0 1 

= E 
I 

Y.,,.$,.,,.,+, > 0 

due to the independence of accident periods. Because of the independence of increments, it is 
also true that 

E[S,,,~.,+,~S,.,~-,+, +[$j;“‘-‘+2 I&L+, >O] 1-I k.a-t+, 
= E[S,,,,,+,/S,,,-,+, > O]+ - 1). E[L,+,] 

Using Jensen’s Inequality, with f(x) = x,+. ..+x,-, , one deduces that 
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This may be strengthened slightly by noting that 

Combing these steps produces 

E g4,11--1+2 
i c:, sk,,l-r+l / .x,>-;+, c;,sk ,,,--I +I ’ O&,+, ’ 0 

I 
’ qS,,,,-,+,Isi,n-,+, >O]-E[X, .,!.I +*]/E[S,,-,+,/S,,,~.,+I >O] 

= E[ Xv-,+2 ] 

This completes the proof. 

Readers will observe at this point that the result is really only a statement of fact regarding ratios 
of independent variables and does not make much use of the underlying process. This should not 
be surprising since the age-to-agefactor methodology doesn’t either. Intuition provides a guide 
in the construction of forecasts in a natural way by relying on the identical distributions by “lag”. 
The conclusion to be drawn here is not that the age-to-age factor method is biased absolutely but 
rather that it is not compatible with a claims process assumed to have independent increments. 

I% Independevt Increments From Independent Claims Lags: The Poisson Case 

It will now be shown that condition (B) holds when the report lags are independent and when the 
distribution of ultimate accident period claims is Poisson with mean h. This in turn relies on the 
observation that, in this case, the number of claims reported with lag j-l is also Poisson with 
meanpj h, wherepj is the probability that a claim from accident period i is reported in period ifj- 

Proposition 1. When the distribution of ultimate claims is Poisson with mean h and the report 
lags are independent, the number of claims reported with lagj- 1 is also Poisson with mean 4 h. 

Proof. Let N be the ultimate number of claims and Nj be the number reported with lagj- I, then 
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Showing that Nj and Nk are independent is accomplished by a similar calculation. 

Proposition 2. When the distribution of ultimate claims is Poisson with mean h and the report 
lags are independent, the number of claims reported with lag j-l and with lag k-l are 
independent. 

Proof. It need only be shown that 

Pr(N, = J,N, = K] = Pr(N, = J}.Pr{N, = K]. 

To this end, one proceeds as before and sees that 

m I 
= zn=J+K J!K!(/ J-K)! 

J! K! 

= Pr{ N, = J} Pr{ N, = K} . 

One now knows that the Poisson case satisfies condition (B) and the hypothesis of Theorem 2. 
One obtains as an implication 

Theorem 2. When the distribution of ultimate claims is Poisson and the report lags of individual 
* 

claims are independent, the weighted average forecast Xl.,,-;+2 is biased. 
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K The Negative Binomial Case 

It will be shown presently that bias is present in Stanard’s “Claim Counts Only” scenario as well. 
In his paper, claim count triangles are generated by drawing a number of claims from (a normal 
approximation to) a negative binomial distribution and then drawing for each claim a report 
period. The latter is determined by drawing a value from the convolution of a uniform time-to- 
accident distribution and an exponential report lag distribution. The exact form of the report lag 
distribution is not important here. 

Proposition 1 has a counterpart when ultimate claims have a negative binomial distribution. The 
form of the negative binomial distribution that will be used for a random variable Mis given by 

Proposition 3. When the distribution of ultimate claims is negative binomial with parameters a 

and /3 and the report lags are independent, the number of claims reported with lag j-l is also 

negative binomial with parameters a and pi = p. 
p, 

Proof. Let N be the ultimate number of claims and Nj be the number reported with lagj-I, then 

Unfortunately, Proposition 2 has no analogue as the increments are not independent as 
demonstrated in the following 
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Proposition 4-d. When the distribution of ultimate claims is negative binomial variate A4 with 

parameters a and p, then 

Pr{N, = JIN, = K} = 

Proof. The following calculation suffices. 

Pr{N, = JIN, = K) = Pr(N, = J,N, = K}/Pr{Nx = K) 

Of this the following is direct consequence. 

Proposition 4b. When the distribution of ultimate claims is negative binomial variate A4 with 

parameters u and /?, then 

Two very similar expressions for the conditional probability and expectation are also required for 

the case where Nk is not given but is known to be non-zero. 

Proposition 5a. When the distribution of ultimate claims is negative binomial variate M with 

parameters CI and b, then 

r(a+J) , Pr{N, = JIN, > 0) = ~ qa), J! P, 
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Proof. Proceeding in a now familiar fashion, one sees that 

Pr{N,=~Nk>O]=~~=,Pr{N,=J,Nk=K}/Pr{Nk>O} 

rb+ J> J 

r(a). J! ” 

This leads immediately to 

Proposition 5b. When the distribution of ultimate claims is negative binomial variate A4 with 

parameters a and j?, then 

Proof. It is straightforward to sum the expression from Proposition 5a over J: 
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= ~ v(,fj+~k)“+’ c3=or(a+l)~(J-l)! p+p, +pk 
r(a+l+ J-1) ( P+R 

I 

il 11 

i 

The final task may now be addressed. 

Theorem 3. When the distribution of ultimate claims is negative binomial, the weighted average 

forecast 2,.,4-,+? is biased. That is, 

n = E 
[ 
C~=h-~+2 -s,.“~,+,/~~~,s~,..,+, > o,s,,“.;+, > 0 c:, Sk-,+, 1 > E[X ,,,, -,+21S,,n-l+, > o] 

Proof. First, due to independence between accident periods, one may write 

In the proof of Theorem 1, it was possible to separate the expectation operator containing the 
quotient. As has been shown, however, independence of increments does not hold here and 

some other mechanism must be employed. To this end, one fixes the Sk,,,_,+, and computes the 

expectation in successive steps. 
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Proposition 4b may now be applied to show that 

where p. = p,+“.+p ,,-, +, . It is at this stage when Jensen’s Inequality may again be utilized and 
one observes that as in the case of independent increments that 

One makes use of Proposition 3 to see that 

+..,,.,+,(S .,,,--I c, > o] = w* 

which may be substituted into the previous expression. Doing so produces 

a P,j-,+2 (P+P,)“+’ --PC+ =--. 
P P* P* ( (p+p,)” -p 1 

Proposition 5b identifies the final expression as being precisely E[X,,,~-,,,(S,,,,_,+, z 01, 

Therefore, 
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Q ’ E [ I Xv-$42 s,.,,-,+, > 0 1 
VI. Straight Average Factors 

In this section, it will be demonstrated that the “straight” average estimator 

cannot reduce or eliminate the bias seen in the weighted average estimator. For brevity, attention 
is restricted to the case of independent increments. 

Theorem 4. When both are defined, the expected value of the unweighted average prediction is 
greater than the expected value of the wjeighted average prediction. That is, 

Proof. Again making use of the independence and symmetry between the periods, showing this 
is equivalent to proving that 

or 

‘07k=L...,i-* 1 
After rewriting the left hand side and arranging terms to one side, this becomes 

Thus it is the goal to determine that the quantity inside the brackets is non-negative. After cross 
multiplication, the resulting numerator is 
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The inner sum may be broken into two steps first summing from nz=l to k-1 and then from k+l 
to i-l, For the latter, one interchanges the order of summation and interchange the roles of k and 
rrr to find that the numerator may be written as 

which is clearly non-negative 

VII. Conclusion 

It is not the purpose of this paper to advocate one set of assumptions regarding the independence 
of report lags over another. Indeed, if one believes that expected development increments are 
directly proportional to the accumulated total claims at a given point in time, then one might 
conclude that methods based on independent increment assumptions produce understated results. 

It is, however, apparent that Stanard’s simulation test of the development method produced the 
correct observation. If one believes that individual report lags are independent, then the loss 
development methods will produce overstated results. One thing that the analytical work 
presented here does not show is the magnitude of the bias. Stanard’s work produced measures of 
that in specific cases, The key point is that there is a fundamental incompatibility between loss 
development techniques and methods relying on independent report lags. 
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