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Conjoint Prediction of Paid and Incurred Losses 

Abstract 

Actuaries use paid and incurred methods to predict losses. Then one method is selected, 
and usually the information contained in the other(s) is jettisoned. Sometimes methods are 
weighted together, but without statistical justification. And even when an incurred method 
is deemed sufficient, present valuing will require predictions of loss payments. This paper 
will present a statistical model whereby paid and incurred losses are predicted together, or 
interdependently. As a result, the predictions of both paid and incurred losses will attain to 
the same ultimate amounts. 

The model will be developed from statistical theory, using a simple example. Then a 
realistic example will be treated, and results therefrom will be present valued. One of the 
appendices will treat the financial theory of valuing stochastic cash flows, in which 
accepted theory regarding risk-adjusted rates of return will be challenged. 
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1. Introduction 

When forecasting insured losses. whether for ratemaking or for reserving, actuaries will 

often make use of several data sources and methods. The idea of arriving at an opinion by 

several different approaches makes practical sense and is philosophically attractive.’ When 

different approaches yield essentially the same forecast, i.e., when there is a consensus, the 

actuary is truly happy (and relieved). But even then a fear lingers in the back of his mind 

that something important might have been left out. However, all too often. different 

approaches yield different forecasts; and the actuary must blend them into a compromise, or 

reject at least one approach. 

Frequently ratemaking and reserving involve the development of paid and incurred losses. 

Incurred losses are like an onion with several layers; from innermost to outermost they are 

paid losses, case reserves, IBNR reserves, and sometimes bulk and/or contingency reserves. 

It is possible to combine these forms of losses with several projection methods to arrive at 

dozens of forecasts. But usually there are less than ten substantially different approaches. 

If the actuary favors some and not others, he must explain why the case at hand should 

warrant the selection. But this is just a special instance of weighting the approaches. 

because rejecting an approach is equivalent to giving it zero weight. The actuary often uses 

the term ‘credibility’ when weighting alternative approaches, but in truth credibility theory 

is more of an art than a science when it comes to blending discordant forecasts. 

243 



This paper offers something different. Instead of forecasting paid and incurred losses 

separately and seeking a blend, why not forecast them simultaneously? Why not let the left 

hand know what the right hand is doing ? Conjoint prediction of paid and incurred losses 

can be achieved within a statistical model. The data is allowed to speak for itself, which 

should obviate the charge of special pleading on the part of the actuary. Moreover, in 

addition to the conjoint feature, statistical models offer two possible advantages over 

traditional actuarial methods. First, a properly constructed statistical model yields unbiased 

predictions, unlike many actuarial methods. And second, a statistical model yields variance 

measures of the prediction errors. Suppose that an actuary says something like “Method A 

predicts $100,000 of losses with a standard deviation of $10,000, and Method B predicts 

$150,000 with a standard deviation of $20,000.” Suppose also that a SO/50 credibility is 

reasonable to all. Then a weighted estimate of $125,000 would follow. However, the 

standard deviation is lost without gratuitous assumptions as to how independent the 

methods are. But a statistical model can handle the varieties of losses and methods 

simultaneously, all the while preserving the first and second moments. 

2. A Simple Example of Conjoint Prediction 

Exhibit 1 contains paid and incurred losses for a simple example: three accident years with 

all losses paid within three years. We will assume that the accident years have the same 

exposure (by definition, one unit); and that the expected incremental loss at each cell, or at 

each combination of AY and age. is the product of exposure and one of six factors. The 

factors, to be estimated in the model, depend on whether the loss is paid or incurred and on 
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the age (I, 2, or 3). For simplicity we will also assume that the cells are homoskedastic. 

which means that the losses are all of the same variance and do not covary. 

Exhibit 2 shows a first attempt to model the incremental losses. In order to avoid clutter, 

the zeroes in the matrices X, and X, are not printed. The first three columns of X 

correspond to incurred losses, the Iast three to paid losses. Appendix C derives the 

formulas which are shown in the exhibits. According to that appendix, in the linear 

statistical model: 

yI = X,P+e, 

Y, = x,p+e, 
, whereVar[~:]=Z=[~~: :I] 

the best linear unbiased estimate of y2 is: 

Var[y, -y,] = ‘c,, - X,,C;:C,, +(X, - C,,&‘X,)Var[fi](X, - Z,,X;:X,)‘, where 

b = (X;C;,‘X,)-‘X;Z;,‘y, and 

Var[fi] = (x;c;;x,)-’ 

The model of Exhibit 2 has the simplest variance matrix: Z, , is d times an (18x 18) identity 

matrix, & is o* times a (6x6) identity matrix, and Zu and %, are zero. Therefore, the 

formulas of Exhibit 3 simplify. y2 having been estimated, Exhibit 4 shows the completed 

loss rectangles, 

In Model 1 the paid and the incurred losses are estimated separately? One could complete 

the incurred rectangle without knowing the paid losses, and vice versa. As a result of this 

separation, the ultimate paid losses for AY2 and AY3 differ from the ultimate incurred 
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losses. Moreover, if one were to make a rate for some future period, AY4, according to the 

incurred betas the rate would be 66.667 + 20 + 10 = 94.667; whereas according to the paid 

betas it would be 51.667 + 27.5 + 20 = 99.167 (Exhibit 3). The paid rate is 2.6 percent 

higher than the incurred rate. 

This suggests a more sophisticated model. Why don’t we constrain p such that the sum of 

the first three elements equals the sum of the last three? Hence, Model 2 of Exhibit 5 is 

Model 1 with the constraint that [ 1 1 1 -1 -1 -1 ]p = [O]. Appendices B and C show how 

one can determine that p satisfies this constraint if and only if there is a (5x I) y such that: 

P= 

0.88808 0. 0. 0.19954 0.06949 
- 0.26202 0.80783 - 0.1 1865 0.30139 0.08472 
- 0.26202 - 0.301 16 0.75893 0.30139 0.08472 

0.26202 0.50667 0.64028 - 0.30 139 - 0.08472 

0.05958 0. 0. 0.75008 - 0.51688 
0.04244 0. 0. 0.35363 0.84052 

The problem is thus reduced from a p in 6-space with a l-space constraint to an 

unconstrained y in 5-space. In Exhibit 6 y is estimated. then by transforming back to 6- 

space 0 is estimated, and finally we estimate y2. Exhibit 7 shows the completed loss 

rectangles. 

One can see the effect of the constraint by comparing the completed loss rectangles of 

Exhibit 7 with those of Exhibit 4. The incurred losses of Exhibit 7 are a little higher than 

those of Exhibit 4, and the paid losses of Exhibit 7 are offsettingly lower. If one were to 

make a rate for future period AY4. according to the incurred betas the rate would be 66.894 
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+ 20.341 f 10.682 = 97 I l/12; according to the paid betas it would be 51.439 + 27.159 + 

19.3 I8 = 97 1 I/12. The constraint of Model 2 has caused the paid and the incurred losses 

to work together enough to produce the same rate. But the ultimate paid losses for AY2 

and AY3 still differ from the ultimate incurred losses. 

What we need is a model which will make the ultimate paid losses equal to the ultimate 

incurred losses. Therefore. WC must have a constraint for each accident year. AYi: 

AY, Incremental: lncd ‘$I+ lncd ($2 + Incd 9,3 - Paid ‘41 - Paid @2 - Paid @3 = 0 

If YM,, = 
YI i?.! 

[ I 
. 

Y? ‘,, 
i.e., if y is ordered as in Exhibit 2, then the constraint would be Ay = 0, 

where: 

i 

I I 1 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 

A = 

,.I” 

0 0 0 1 

I 

0 0 0 0 -1 -1 0 IO O-I 0 0 0 0 0 0 IO 0 0 0 0-I 0 I I 0 -I 0 I -1 

Up until now. and in Appendix C. we treated constraints on p (i.e., A!3 = b). Conjoint- 

prediction of paid and incurred losses demands a new type of constraint, a constraint on y. 

Before returning to this particular constraint, consider what the general constraint Ay = b 

means. Since y = Xg + e, the constraint is also AXP + Ae = b. b is non-stochastic; 

therefore, Var[Ae] must be zero. And since E[Ae] = 0, AXP = b. Therefore, the constraint 

Ay = b is really two constraints: a constraint on p (viz. AX0 = b) and a constraint on e 

(viz., Var[Ae] = 0, which implies that Ae = E[Ae] = 0). In the linear statistical model 

Var[e] was assumed to be L; and in general it is not true that Var[Ae] = ACA’ = 0. 
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Therefore, if we want to constrain y, then we must modify Z as X* = AX, A) such that 

AC*A’ = 0. Obviously, if C* = 0, then AC*A’ = 0. But this is a radical modification of C; 

we seek the least intrusive modification. 

The answer is provided by the notion of quasi-observations, which is discussed in 

Appendix E. Think of Ae as e,, and of e as e2. When we constrain that Ae = 0, it is as if we 

had observed y, = 0 + e, and found it to be 0. We want to estimate y2 = 0 + ez, so the model 

is: 

0= e, 
Var 

y1 =e2 1 
The model can be considered either as having a (0x1) p or as having a @xl) p which is 

constrained to be 0. Either way, best linear unbiased estimation yields: 

i, =o 
Var[y,] = Var[y2 - 0] 

= WY, -i*l 

= 122 -q,q:cp 
= Z - CA’(AZA’)-’ AZ 

But Var[yJ = Var[e,] = Var[e]. If ACA’ happens to be singular, then use the MP inverse 

(Appendix B); so C* =f(C, A) = C - ZA’(AZA’)‘AZ. As a confirmation of the aptness of 

this modification, it can be proved that if A is (mxn) of rank m and Z is (nxn) positive 

definite (Appendix A), then the rank of Z* will be n - m.3 The modification is achieved 

with the least possible reduction of rank 
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Therefore, Model 3 will be Model 2 with the additional constraint that Ay = 0, where A is 

the (3x18) matrix specified above. We keep the constraint of Model 2, viz., that [ I I 1 -1 

-1 -1 J/3 = [0], since this constrains the expected values of the losses, which is not the same , 

as constraining the ultimate values. However, as can he seen in Exhibit 8, the additional 

constraint on !3, viz., AXP = O? happens to be a threefold repetition of the constraint of 

Model 2. Therefore, Model 3 differs from Model 2 only in that its variance matrix is Z* = 

o’@, shown in Exhibit 8, whereas that of Model 2 is &I,,. It should be noticed that 0 is 

symmetric idempotent, so its rank is equal to its trace, which is 18*(5/6) = IS 

Model 3 is expressed in Exhibit 9, and in Exhibit 10 it is demonstrated that the (12x 12) 

matrix a,,, is non-singular, having a zero eigenvalue. As explained in Appendix C, the 

observed portion of the model can be transformed into a model with fewer observations, but 

with additional constraints (Exhibits I I and 12). After transformation. observation 12 (Paid 

AY3@1) has no variance (and hence no covariance, as shown by the shaded region of 

Exhibit 12). It becomes a constraint, viz., [ 0.408 0.408 0.408 -0.408 -0.408 -0.408 ]p = 

[O], which happens not to add to the previous constraint [ I 1 I -1 -1 -l]p = [O]. 

Exhibit 13 is similar to Exhibit 5; however, the observed portion of the model has only 

eleven rows (since Paid AY3@1 became a constraint). Exhibit 14 is similar to Exhibit 6, 

but with a non-identity @ matrix. 0,,*, Q,*, 0,r* of Exhibit 14 are the 0 matrices of 

Exhibit 12 minus the shaded region. y2 and its prediction error are derived in accordance 

with Appendix C, and the results are carried over to Exhibit 15. Finally we have a model 

whose ultimate paid losses and ultimate incurred losses are equal. 
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3. Efficiency Gains 

Exhibit 16 compares some important variances among the three exemplary models. Each 

model has its own 6x6 prediction error variance matrix, Var[yz -i?] (Exhibits 3, 6, and 

14). For now, let us call these matrices V,, V,, and V,. Each row of the exhibit contains a 

(1 x6) row vector A which determines a linear combination of the prediction errors, and the 

last three columns of the exhibit compare AViA’. So. for example, the row described as 

“Overall Balance” represents the variance of the difference of the total ultimate paid from 

the total ultimate incurred. Because the incurred design matrix is like the paid design 

matrix and cr’ is the same for both paid and incurred losses. it is no surprise that for each Vi 

matrix the upper left (3x3) and lower right (3x3) submatrices are identical. Therefore, in 

Exhibit 16 the variances of the three “incurred” rows are equal to those of the three “Paid” 

rows. 

But from the exhibit it is evident that Model 2 has tighter prediction errors than does Model 

1, and Model 3 is tighter still. Because the (3x3) off-diagonal covariance blocks of V, are 

zero, the “Balance” variances of Model 1 are the sums of the corresponding “Incurred” and 

“Paid” variances. In Model 2 there is some positive correlation between incurred and paid 

losses; hence. its “Balance” variances are less than those sums. And Model 3 was 

constructed with so much correlation between incurred and paid losses that its “Balance” 

variances must be zero. 
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The upper left (3x3) submatrices of the Vjs fittingly represent the variance of the ultimate 

losses: 

u, = [vl]2x3 = 

i 99.30556 198.6111 

0 

147.444 

U2 = [V,]l,X = i - 11.6403 
62.0819 

106.597 

u3 = [%],,, = 0.000 
53.299 

0 99.30556 

148.9583 0 0 1 198.6111 

- 11.6403 

122.224 - I 1.6403 
- I 1.6403 62.0819 1 147.444 0.000 53.299 

119.922 - 39.974 

- 39.974 146.571 I 

It can be shown that U, - U, is positive definite (PD), so U, < U, (cf. Appendix A). 

Therefore, Model 2 dominates Model 1. However, neither U, - U, nor U3 - U, is PD; and 

similarly with U, and U,. Exhibit 16 shows some important linear combinations of the 

predictions, and Model 3 dominates. But there are some (1x3) vectors A such that AU,A 

and/or A&A’ < AU,A’. Is there some measure of efficiency among the Ujs, even though 

they rank differently depending on linear combination? 

The determinant of a variance matrix, e.g., 1x1, encapsulates in one scalar much of the 

information of the matrix (cf. Johnson [IO: 104-1081). If x is an (nxl) random vector with 

mean u and PD variance X, then {x: (x - u)‘C-‘(x - u) < i} is an n-ellipsoid which 

approximates a densest confidence region (cf. Appendix D). X’ can be factored as W’W 

where W is non-singular. Define y as (llr)W(x - u), so x = rW-‘y + u. Then-(x: (x - u)‘Z-’ 

(x - u) < ?} maps one-to-one onto fy: y’y < I}, which region is a unit n-spheroid. Let dv, 
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denote a differential volume in the x coordinate frame, and dV, a differential volume in the 

y coordinate frame. Because of the one-to-one linear mapping between x and y, dv, = 

(rW-‘(dV, = r”(W“(dV, = r~(X]%V,.4 If kn denotes the n-volume enclosed by a unit n- 

spheroid:’ 

Thus we have the formula for the n-volume of (x: (x - u)‘X’(x - p) < ?}. If x is of high 

variance, then this volume will be great; if of low variance, it will be small. Therefore, one 

way to compare the efficiency of models is to compare the square roots of the determinants 

of their variance matrices. The determinants of the Ujs are respectively 4,406,900, 

2,162,922, and 1,362,668; the square roots are 2,099, I,47 I, and 1,167. Efficiency could be 

defined as inversely proportional to the square roots. Hence, we could say that the 

efficiency of Model 2 is 209911471 = 1.43 times than of Model 1, or that Model 2 is 43 

percent more efficient than Model 1. Similarly, Model 3 is 80 percent more efficient than 

Model 1, and 26 percent more efficient than Model 2. 

Anderson [2: 2591 calls JZ] the generalized variance of x. If Z is diagonal, then (C] is the 

product of the variances. Appendix A shows that ]C] is the product of the eigenvalues of C, 

which are the variances of a suitable orthogonal transformation of x. Therefore, according 

to Anderson’s definition, the dimension of the generalized variance is variance raised to the 

nlh power. The author would like to modify the definition of generalized variance as n!@. 
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In other words, in this paper the generalized variance will be the geometric mean of the 

eigenvalues, and will have the dimension of variance. Accordingly, the generalized 

variances of the Ujs are the cube roots of their determinants, or 163.950, 129.34, and 

110.866. And, defining efficiency as inversely proportional to the generalized variance, we 

could say that the efficiency of Model 2 is 163.9501129.324 = 1.27 times that of Model 1, 

or that Model 2 is 27 percent more efficient than Model I. Similarly, Model 3 is 48 percent 

more efficient than Model 1, and 17 percent more efficient than Model 2. 

Though 1x1” and fi yield different efftciency gains, at least they rank the models in the 

same order. 

4. A Realistic Example of Conjoint Prediction 

In an earlier paper [7] the author applied a linear statistical model to a medical provider that 

self-insured its workers compensation. In that paper the author dealt only with paid losses, 

which are reproduced in Exhibit 17. In this exhibit ‘FY’ means both ‘Fund Year’ and 

‘Fiscal Accident Year’. The fund’s fiscal years commence on April 1. The losses are as of 

31Marl995 (FY 1994 as of 12 months). The exposures (employee payroll in units of a 

hundred dollars), adjusted to 1995 expected conditions,” are also shown, the exposure for 

FY 1995 being a forecast. As the earlier paper explained 17: 51, in self-insurance 

evaluations it is common to estimate not only the losses already incurred, but also the losses 

which will be incurred before the next evaluation. Actuaries commonly think of the former 
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type of estimation as reserving, and of the latter type as ratemaking; but this distinction is 

immaterial to statistical modeling. 

The portion of the paid loss rectangle above and to the left of the staircase shows observed 

payments, whether they be cumulative or incremental. In the exhibit the rectangle is 

completed in two ways, by the Chain Ladder Method and by the Additive Method. Both 

methods are well known to actuaries, and are described by Stanard [18: 13Of.l. The 

development factors and the ratios of each method are weighted-averaged, i.e., rows are 

included in column sums only if both the columns being ratioed have observations. So, for 

example, the development factor @60, 1.091, equals (526,989 + 1,023,551 + 1,016,903) / 

(518,865 + 904,916 + 930,475). And the ratio @60, 0.514, equals (8,124 + 118,635 + 

86,428) / (131,332.20 + 141,672.24 + 141,677.29). The age of the oldest FY is 84 months 

as of 3 IMar95, so all movements after 84 months (movements to ultimate) are unobserved. 

For a reason which will be explained in Section 7 the author chose to call ultimate 108 

months. Data from a rating bureau suggested that a FY at 84 months is 90 percent paid out; 

therefore, the development factor from 84 months to ultimate is 1.00/0.90 = 1 .l Il. This 

also means that the payments after 84 months are expected to be ten percent of the total 

payments, and one ninth of the total payments before 84 months. 

The Chain Ladder Method uses the development factors to project FY 1988- 1994 losses to 

ultimate. Each FY’s ultimate divided by its exposure yields its pure premium, and the 

weighted-average pure premium for 1988-1994 is 7.94. Since the exposures have been 

adjusted to 1995 conditions, the ultimate paid loss of FY 1995 may be estimated as 115,000 
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x 7.94 = 912,905. The Additive Method formed the ratios of incremental paid losses to 

exposures for ages 12 to 84. The ratio for age 108 equals one ninth of the sum of the other 

ratios. By these two methods ultimate paid losses are estimated, and the results are shown 

in the boxes of the exhibi& 

Exhibit 18 is entirely analogous to Exhibit 17, but treats of incurred losses, or paid losses 

plus case reserves. The rating-bureau data suggested that at 84 months the case-incurred 

losses would be 95 percent of ultimate, which implies a development factor to ultimate of 

l/O.95 = 1.053. Therefore, the incurred amounts after 84 months are expected to be one 

twentieth of the total incurred, and one nineteenth of the total incurred before 84 months. 

We now have two estimates of ultimate incurred losses, which makes for four estimates of 

ultimate losses. The incurred estimates are much lower than the paid; however, the actual 

amounts are not important. What is important for our purpose is that we in typical actuarial 

fashion have produced several estimates and are now faced with the problem of 

harmonizing them. Moreover, we have no idea as to how the much the ultimate losses will 

vary from any of our estimates, since such an idea requires statistical modeling. 

We will work up to a conjoint model by degrees. As a first step, Exhibit 19 shows a simple 

paid loss model (Model 1). A model with 64 rows (28 observations and 36 predictions) is a 

bit large for a spreadsheet, and its solution will not be worked out, as were the exemplary 

models (Exhibits 3, 6, and 14). Appendix G contains the SAS” code used to generate the 

solutions of this and the following models. The solution of Model 1 is given in Exhibit 20. 

It is important to understand that since there is no observation at age 108, plDll could not be 
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estimated without the constraint. Exhibits 21 and 22 are analogous to Exhibits I9 and 20, 

except that they pertain to incurred losses (Model 2).’ 

A first pass through the data indicates that the paid loss model, Model 1, is superior to the 

incurred loss model, Model 2. The estimate of o2 and the variances of Model 1 are much 

less than those of Model 2. It is for this reason that the author ignored the incurred losses in 

the earlier paper. However, it is a mistake to think that “not as good” means “no good;” as 

will be seen, the incurred losses are still useful. 

Model 3 (Exhibit 23) which for the first time puts together paid and incurred losses, is like 

Exemplary Model I (Exhibit 2). That Model 3 has two constraints is immaterial, since the 

constraints refer to rows that are not observed. The difference of Model 3 from Exemplary 

Model I is that the variances of the incurred rows of Model 3 are not unity, but rather the 

ratio of the estimate of the u’ of the incurred model to that of the paid model (about 2.089). 

Because of the block-diagonal nature of the matrices X and D,, Model 3 with its 128 rows 

will reproduce both Models I and 2, each with 64 rows. So as yet there is no commingling 

of paid and incurred losses. 

Exhibit 24 shows the conditions which must be imposed on Model 3 in order for it to 

perform conjoint prediction. The matrix G differences incurred losses from paid losses for 

each FY. So the new 0 matrix, with the constraint that GXg = 0, guarantees that for each 

FY the ultimate paid and incurred losses will be equal.* The constraint [ 1 I** -1 ,JS = 0 

guarantees the equality of the paid and incurred pure premiums. GX is eight columns of 
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exposure followed by eight columns of negative exposure; so GXP = 0 adds nothing the 

pure premium constraint. The results of Model are shown in Exhibit 25. It is satisfying to 

see that the ultimate paid losses and their variances are the same as the ultimate incurred. 

Exhibit 26 gives an idea as to how much conjoint prediction (Model 4) improves upon the 

separate paid and incurred models (Models 1 and 2). The estimate of o’ of the incurred 

model is more than twice that of paid model; so it is surprising (at least to the author) how 

much the conjunction of the losses reduces the FY variances, about a one-third reduction 

from Model 1 variances for an efficiency gain of 50 percent.” 

5. Comparing the Results of the Methods 

Exhibit 27 summarizes the various methods of arriving at ultimate losses. Model 3 is not 

included because, as explained in the previous section. it combines but does not surpass 

Models I and 2. Except for the conjoint model, the paid losses project higher than do the 

incurred losses. Therefore, it is not surprising that the constraint of the conjoint model, that 

ultimate paid and incurred losses be equal by fund year. pushes the ultimate paid losses 

down and pulls the incurred losses up. The additive mc~huds are not much different from 

Models 1 and 2, the difference being explained in lootno~c 7. Stanard [ 181 has noted that in 

simulations the chain ladder method with paid losses seems hiased upward (cf. also [8: 

Section 21). Unlike the development factors of paid losses. which are greater than one, the 

development factors of incurred losses may be less than one, as is the case with the 

development factor from 72 to 84 months in Exhibit 18. This can give the chain ladder 
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method with incurred losses a downward bias, as here. Therefore, the ordering of the 

methods is reasonable: 

lncd CL < lncd Additive * Model 2 < Conjoint < Model I= Paid Additive < Paid CL 

The reduction of the incurred losses of FY 1988 between 72 and 84 months causes the 

development factor of Exhibit 18 to be less than one, as well as the ratio of the same exhibit 

and fi,, of Model 2 (Exhibit 22) to be negative. Hence. the projected incremental incurred 

losses between 72 and 84 months for the subsequent fund years are negative. However, the 

incremental incurred projections of the conjoint method for this period are positive for all 

fund years except 1991 (Exhibit 25). As mentioned above. this is due to the upward pull of 

the conjoint method on the incurred losses. That FY 1991 is still negative is explained as 

follows: in Exhibit 27 the ultimate losses of Model I are on average about twenty percent 

higher than the corresponding losses of Model 2. But the FY 1991 ultimate loss of Model 1 

is only 2.2 percent higher than that of Model 2. Therefore. the upward pull of the conjoint 

model on the incurred losses of FY 1991 is mild, and the 72:84 increment stays negative. 

Exhibits 28 and 29 show paid and incurred loss patterns. Exhibits 17 and 18 actually 

display the chain-ladder (CL) and additive patterns. The other patterns can be derived from 

the FY 1995 ratios of cumulative sums to ultimate in Exhibits 20, 22, and 25. Every paid 

pattern is constrained by the rating-bureau data to be 90 percent at 84 months, as is every 

incurred pattern to be 95 percent. It is consistent with the ordering of the methods given 
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above that the paid CL pattern is slower than the paid conjoint pattern, and that the reverse 

relation holds for the incurred patterns. 

6. Quasi-Observations and Collateral Information 

In Model I of the self-insured entity (Exhibits 19 and 20) bureau data was invoked that 

payments after 84 months are expected to be one ninth of the total payments before 84 

months; thus [ I I 1 I I I I -9]p = [O]. This is extraneous. or collateral. information. 

However. P,,,r is, so to speak. at the mercy of /3,* through &. Even its variance and its 

covariances with the other elements of p are determined. There is another way to 

incorporate collateral information into a statistical model, viz., by quasi-observations. In 

effect, this is how the author treated collateral information in the earlier paper, although not 

explicitly. Since it is not obvious how the earlier treatment used quasi-observations and it 

makes for a good example, the problem will be redone here as Model 5. 

Model 5 is like Model I (Exhibit 19); however, in the earlier paper [7: 91 the author 

introduced the constraint that the pure premium of the total payments before 84 months is 

7.213, or [ 1 I I I 1 1 1 O]fl = [7.213]. Unlike the constraint of Model 1, this constraint 

affects the observed rows the model. The bureau data was invoked that the remaining 

payments to ultimate should be one ninth of 7.213, or 0.801. Also, the author argued that 

the variance of the pure premium of the remaining payments is 0.2 128, and that it does not 

covary with the pure premiums before age 84 [7: 121. So. it is as if we had observed 0.801 
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as plos plus an error term, where we knew the variance of the error term to be 0.2128. 

Exhibit 30 shows the quasi-observation appended to the real observations. 

But the quasi-observation has a definite variance, 0.2128. whereas the variance of the true 

observations is cr’, which without the quasi-observation was estimated as 6.2717~10” [7: 

261.” Therefore, in the 0 matrix we make its variance relativity 0.2128/6.2717x 109. Due 

to the block-diagonal relation between the real observations and the quasi-observation, the 

resulting estimate of o2 will not change: ” it will still be 6.2717~10’. The SAS” code for 

solving Model 5 also appears in Appendix G, and the results are shown in Exhibit 3 I. They 

are identical to the results of the earlier paper [7: 301. 

Most of the variances of Model 5 are greater than those of Model 4. However, the seven 

and eight FY aggregate variances of Model 5 are less. and so too is the generalized 

variance. ,So by some measures Model 5 is superior to Model 4. However, Model 5 

imposed an extra constraint, viz., that the pure premium of the total payments before 84 

months is 7.213. Therefore, by all means, Method 4 compares favorably with Method 5. 

The method of quasi-observations is well suited for the estimation of movements after the 

most aged observation (or, movements to ultimate), perhaps even better suited than the 

method of constraining the ultimate to be a function of the observed. But its disadvantage 

is that it requires more collateral information or assumptions. 
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7. Present Valuing the Future Loss Payments 

Even in the unlikely event that incurred-loss data were deemed sufficient for the estimation 

of ultimate losses, it might still be necessary to estimate the future loss payments. Despite 

the slowness of accounting to recognize the present value of unpaid losses, more and more 

often actuaries are being asked for the present value of their loss predictions. If Y2 

represents the unobsenfed paid losses, of which 9, is the best linear unbiased estimator 

(BLUE), then the present value of these paid losses will be Dy,, where D is a diagonal 

matrix of discount factors. In Appendix C it was proved that if f, is the BLUE of y2, then 

A 
the BLUE of Dy, is: (Dy,) = II?+, Moreover, as for the prediction error matrix: 

= VaxY, -fJ 
= DVar[y, -$,]D’ 

Therefore, the present valued estimates and prediction errors are readily obtainable from the 

nominal quantities. 

Hence, one needs only to know the time of each payment and the discount factor 

appropriate to that time. The common opinion is that discount factors should depend 

somehow on the variability of the payments. But Appendix F argues that there is only one 

discount factor, viz., the so-called “risk free” discount factor. So loss estimates should be 

present valued as if they were certain. However, the sum of present value of the payments 

is disconnected from the value that they might have to someone, or from the price which at 
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which they might be exchanged. Appendix F suggests that utility theory is the bridge from 

present value to price. 

Exhibit 32 shows the present value of the loss estimates of Model 4. The present is the time 

of the evaluation, 3 lMar95. As explained more fully in the earlier paper [7: 13f.1, on that 

date yields on stripped US Treasury securities (effectively, risk-free zero-coupons) were 

obtained from the financial press. For simplicity it was assumed that a loss would be paid 

at the midpoint of its period. For example, FY 1995 @I2 would be paid at FY 1995 @6. 

Since 31Mar95 is FY 1995 @O, this payment will occur six months into the future. The 

yield to a maturity of six months was found to be 6.03 percent; therefore, the discount 

factor is (1.0603)“-’ = 0.971. The author decided that all payments after 84 months would 

be considered paid at 102 months, which effectively puts ultimate at 108 months. 

Therefore, every payment occurs either 0.5. 1.5,2.5, 3.5, 4.5, 5.5, 6.5,7.5, or 8.5 years from 

the present. The corresponding yields to maturity are 6.03, 6.36, 6.84, 6.99, 7.04, 7.14, 

7.15, 7.21, and 7.21; therefore, the discount factors are 0.971, 0.912, 0.848, 0.789, 0.736, 

0.684, .0638,0.593, and 0.553. The SAS@ code can be found at the end of Appendix G. 

8. Refinements 

Very little is perfect in this life; there is almost always room for improvement. The author 

disclaims that the models of this paper cannot be improved. Aside from the modified 

variance matrix IZ* = Z - CA’(AZA’)‘AC, all variance matrices have been diagonal. 

Furthermore. most of these diagonal matrices have been of the form C&J = 0’1. But quite 
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likely, the variance of the observations varies by age. To account for this heteroskedasticity 

(viz., that CD # I, but is at least diagonal) one could have variance relativities, dependent on 

age, down the diagonal of 0. 

Another well known complication is autocorrelation, which means that 0 has non-zero 

elements off the diagonal. Autocorrelation is easily understandable in the context of 

conjoint prediction. Incurred losses involve the psychology of loss adjusters. It is possible 

that as paid losses are exceeding expectations, the loss adjusters are increasing case 

reserves. This would imply a positive correlation of incurred losses concurrent with paid 

losses. On the other hand, the adjusters might interpret this as a faster closure of claims, 

and decrease case reserves. This would imply a negative concurrent correlation, Also, it is 

possible that the loss adjusters might react to the paid losses of the previous period(s), 

which would give rise to correlation of incurred losses subsequent to paid losses. Or, the 

adjusters might be prescient, affecting the reserves before the payments, which would entail 

precedent correlation. Even more complicated, the correlation could be a local 

phenomenon, being, for example, concurrent at some accident or calendar periods and 

subsequent at others (perhaps even cyclical). The possibilities are limitless, and to 

investigate them is daunting.‘* The actuary must judge whether the possible gain in 

precision is worth the additions in effort, in the risk of error, and in the difficulty of 

explaining the model to others. 
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9. Conclusion 

Blending predictions has always been both a problem and a challenge to actuaries. A 

statistical model, whether or not it be linear, can incorporate many types of data at once. 

Paid and incurred loss data are two obvious types. All that is needed is to deepen the theory 

of estimation to allow for constraints and singular variance matrices. Then one can 

estimate y2 and Var[y, - jz] in the very general model: 

subject to 
w=b 
Cy=d 

This deepening is performed in the appendices. 

As for results, consider the example of the self-insured entity. It was fairly obvious that the 

loss reserves were inadequate. Many actuaries, like the author himself in the earlier paper, 

would write them off and deal only with the paid losses. However, even though the relative 

strength of the paid model to the incurred was as of a lion to a mouse, when the two were 

conjoined it was of appreciable benefit even to the lion. The moral here is that inferior data 

is still useful data, and that efficiency gains can be squeezed out of unlikely places. 

Moreover, when a statistical model predicts loss payments, it is easy to derive the first two 

moments of their present value, which is requisite to pricing. 
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This paper is long and at times diffkult, but fairly self-contained. Even apart from conjoint 

prediction, the author hopes to impress upon the readers the enormous and untapped power 

of statistical modeling. 
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Notes 

’ Ancient wisdom on the subject of using different approaches is found in the biblical book 
of Ecclesiastes 4:9-12, especially v. 12: “A threefold cord is not quickly broken.” In a 
philosophical vein, according to Eric T. Bell (Men of Mathematics, New York, Simon and 
Schuster, 1965, p. 227) Carl Friedrich Gauss, “the prince of mathematicians,” was not 
satisfied with a theorem until he had proved it in more than one way. Perhaps one reason 
for his doing this was to assure himself that he had not erred. But the major reason was that 
from several approaches he hoped to gain more understanding and leads to other theorems. 
In logic and mathematics one has assurance that different approaches will attain to the same 
truth; otherwise there is a contradiction in the assumptions. The actuary, however, has no 
such assurance when forecasting losses. 

.’ The only thing estimated conjointly in Model 1 is 02, which is irrelevant to the purposes 
of this example. But for simplicity it was assumed that the paid and the incurred losses are 
homoskedastic. so that they have a common o*. 

’ Here is a proof that if A is (mxn) of rank m and X is (nxn) positive definite (Appendix A), 
then the rank of I* will be n - m. At the end of Appendix A it is shown that under these 
conditions ACA’ is non-singular, so C * = X - ZA’(ACA’)“AZ exists. Also in Appendix A it 
is shown that there exists an (nxn) matrix W such that 1 = WW’. The rank of W must be n. 
Then, C* = WW’ - WW’A’(AZA’)-‘AWW’ = W(I, - W’A’(AZA’)-‘AW)W’ = W(M)W’. 
Because W is non-singular, the rank of Z* is equal to the rank of M. But M is a symmetric 
idempotent matrix (check it), and it was shown in Appendix B that the rank of such a 
matrix is equal to its trace. Therefore, using properties of the trace operator (Judge [I I: 
927]), p(Z*) = p(M) = Tr(M) = Tr(l, - W’A’(AZA’)“AW) = Tr(ln) - Tr(W’A’(AZA’)-’ AW) 
= Tr(l,) - Tr((ACA’)-‘AWW’A’) = Tr(I,) - Tr((ACA’)“AZA’) = Tr(I,) - Tr(I,) = n - tn. 

’ If y = Ax + b. where A is non-singular, then dv, = (AIdV,. Schneider [16: 161-1721 
introduces the determinant as a volume function. This is a more intuitive and elegant way 
of developing the theory of determinants than the usual way of permutations. It makes for 
easy apprehension of the equation c/L’, = IA/LA’,. 

’ Johnson [ 10: 1071 states that k,, 
2n" 2 

= ___. but does not mention that this is the formula 
nr(n/2) 

for the volume of a unit rl-spheroid. ‘I‘IlC recursive relation is 

k 
,7 r(n/2)r(t/2) 

,,+, = 4, __ n+l I-((n+l)/2) ’ 
which uses the fact that I‘( l/2) = x . . Once one knows kn. 

by induction k,,,, = ]k,,(l - I,' )""du. This amounts to approximating a unit (nt I )- 
-I 

spheroid as many (n+l)-discs whose bases are n-sphen%is. and will yield the recursive 
relation. 
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6 In [7: S-71 the author argued that it is the exposures (or the control variables, the columns 
of the design matrix) rather than the losses (or the observed quantities) that should be 
adjusted to account for changing conditions, The reader is urged to refer to the argument. 

’ The reader may be wondering why the estimate of l3 in Exhibit 20 is not the same as the 
“Ratio” row of Exhibit 17, even though it is close (similarly with Exhibits I8 and 22). The 
reason is that the observations of Exhibit 20 are assumed to be homoskedastic, so that each 

c 8 ‘8 element of l3 is of the form z:,tj , whereas the ratios of Exhibit 17 are of the form 

CJJ~ - 
xx, 

If Exhibit I7 were modeled, its variance matrix would be heteroskedastic. Another 

CL 
common form is --z 

Cl 
All three forms imply different variance matrices. This has been 

frequently explained in the actuarial literature, e.g., Mack [ 12: 1221, Murphy [ 13: 188. 2321, 
and Peck [14: 104f.l. 

* Actuaries sometimes adjust paid and incurred n’h-to-ultimate development factors to force 
certain paid and incurred ultimate losses to be equal. But if the adjustment were to force a 
general equality, or an equality over several fund years, then there would not be equality in 
any particular fund year. And if the adjustment were to force an equality in one fund year, 
there would not be equality in the others. Conjoint prediction obviates the need for such an 
unsatisfactory adjustment, 

’ Because the paid model (Model I) had more explanatory power than the incurred model 
(Model 2). it is not surprising that the incurred losses receive a tremendous efficiency gain 
from conjoint prediction. In explanatory power, Model 1 is to Model 2 as a lion is to a 
mouse. But there is a children’s story of a lion and a mouse: the lion condescended to the 
mouse until a thorn lodged in his paw, which the mouse was able to remove. So here too, 
the incurred losses are of significant gain to the paid losses. 

I0 Despite the similarity of Model 5 to Model 1, the estimate of o2 of Model 5 (6.2717~10~) 
differs from that of Model I (6.5637~10’) because in Model S the sum of pu though OS4 is 
constrained to be 7.2 13. 

” As a proof, consider a model whose observations are block diagonal with no covariance 
between the blocks: 
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Y = LP+e 

If X is of full column rank, then so too must be X, and X,. Therefore: 

According to the formula of Appendix C: 

= ((I, _ k, ) !j!+ 
I I 

=((I, -k,)(T; +(t2-k2)6;)l(1-k) 

= Cl, -4)&f +(I, -k,)% 

0, -4) + ({I - k, 1 

This shows that the estimate of o* of the composite model is a weighted average of the 
estimates of the separate models. the weights being the degrees of freedom, ti - ki. If the 
second model is a quasi-observation, then X2 = I, which is of full column rank, and G2 = 0. 
Also, 1, = k,; hence. I - k = (t, - k,) + (tl - kJ = t, - k,. Therefore: 

So the quasi-observation has no effect on the estimate of & 

‘* For discussions of incorporating heteroskedasticity and autocorrelation into the variance 
matrix see [8] and [I I : Chapter 91. One of the beauties of linear unbiased estimation is that 
even if one chooses a simplistic, or even an erroneous, variance structure, the estimates will 
still be unbiased. However. the estimates are no longer best. 
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Exhibit 1 

Exemplary Data 

AYI 

AY2 

AY3 

Cumulative Losses 

AYI 

AY2 

AY3 

lncd 
Paid 
lncd 
Paid 
lncd 
Paid 

Incremental Losses 

@2 @3 
75 15 IO 
50 30 20 
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Id AYl@l 
AY1@?2 
AY1@3 
AYZ@l 
AY2@2 
AY3@1 

Paid AYl@l 
AY1@2 
AY1@3 
AY2@1 
AY2@2 
AY3@1 

Exhibit 2 

Exemplary Model 1: y= XP+e, where Var[e]=021,8 

lncd AY2@3 IL) 
AY3&2 
AY3@3 

Paid AY2@3 
AY3@2 
AY3@3 I.J 

1 
1 

1 
1 

1 
1 

1 

P + e1 
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Exhibit 3 

Exemplary Model I (Cont’d): Best Linear Unbiased Estimation 

t1 12 
k 6 
df = t,-k 6 
d= e,‘e,/df 99.30556 

X,‘Yl 
200 

40 
10 

7 

I55 
55 
20 

P = (x,‘w’x,‘Y, 
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Exhibit 4 

Exemplary Model 1 (Cont’d): Results 

Cumulative Losses 

AYI 

AY2 

lncd 
Paid 

AY3 

AYI 

AY2 

AY3 

lncd 
Paid 
lncd 
Paid 
lncd 
Paid 

Incremental Losses 

75 15 IO 
50 30 20 
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Exhibit 5 

Exemplary Model 2: y= Xp+e, where Varfe]=021,B. 
subject to the constraint that [ 1 1 1 -1 -1 -115 = [0] 

Reduced Model: y= XVv+e = ry+e, where 6 = Vy and Vafle]=o*l,,, 

lncd AYl@I 
AY1@2 
AY1@3 
AY2@1 
AY2@2 
AY3@1 

Paid AYl@l 
AY1@2 
AY1@3 
AY2@1 
AY2@2 
AY3@1 

lncd AY2@3 
AY3@2 
AY3@3 

Paid AY2@3 
AY3@2 
AY3@3 

-0.26202 0.80783 -0.11865 0.30139 0.08472 
0.26202 -0.30116 0.75893 0.30139 0.08472 
0.26202 0.50667 0.64028 -0.30139 -0.08472 
0.05958 0.00000 0.00000 0.75008 -0.51688 
0.04244 0.00000 0.00000 0.35363 0.84052 

0.8881 0.0000 0.0000 0.1995 
-0.2620 0.8078 -0.1187 0.3014 
-0.2620 -0.3012 0.7589 0.3014 
0.8881 0.0000 0.0000 0.1995 

-0.2620 0.8078 -0.1187 0.3014 
0.8881 0.0000 0.0000 0.1995 
0.2620 0.5067 0.6403 -0.3014 
0.0596 0.0000 0.0000 0.7501 
0.0424 0.0000 0.0000 0.3536 
0.2620 0.5067 0.6403 -0.3014 
0.0596 0.0000 0.0000 0.7501 
0.2620 0.5067 0.6403 -0.3014 
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Exhibit 6 

Exemplary Model2 (Cont'd): Best Linear Unbiased Estimation 

x “X * I I 

2.78689 0.05385 0.36662 0.1622 0.02604 
0.05385 2.16602 0.55297 -0.06194 -0.01741 
0.36662 0.55297 1.83398 -0.42171 -0.11854 

0.1622 -0.06194 -0.42171 1.91476 -0.28337 
0.02604 -0.01741 -0.11854 -0.28337 1.29835 

X,“X,‘)” 
0.0127 -0.09337 -0.05602 -0.02809 

0.0127 0.50137 -0.15958 -0.02191 -0.01288 

-0.05602 -0.02191 0.16106 0.58289 0.14275 

11 12 

k 
df = 1,-k 

a'= e,'e,/df 85.3626 

31.9583 l,O;l418 -7.97003 -4.78226 -2.39782 

-13.622 55.9291 13.7486 8.08411 
-4.78226 -1.87025 13.7486 49.7572 12.1656 
-2.39782 -1.0997 8.08411 12.1856 69.1779 

Varfp] = War[y]V 
25.8674 -3.88012 -7.76023 2.58674 3.88012 7.76023 

-3.68012 36.6611 -11.6403 3.66012 5.82017 11.6403 
-7.76023 -11.6403 62.0819 7.76023 11.6403 23.2807 
2.58674 3 88012 7.76023 25.8674 -3.88012 -7.76023 
3.68012 5.82017 11.6403 -3.88012 36.6611 -11.6403 
7.76023 11.6403 23.2807 -7.76023 -11.6403 62.0819 

cl = X&Jll.'XI 

Var[y,-yJ = 222-221Zll-'r,,+QVarlP]Q 

1 147.444 -11.6403 62.0819 23.2807 11.6403 23.28071 
-11.6403 122.224 -116403 11.6403 5.82017 11.6403 
62.0819 -11.6403 147.444 232807 11.6403 23.2807 
23.2807 11.6403 23.2807 147.444 -11.6403 62.0819 
11.6403 5.82017 11.6403 -11.6403 122.224 -11.6403 
23.2807 11.6403 23.2807 62.0819 -11.6403 147444 

y = (x,“x,yx,*y, 
67.1949 
39.2778 n 38.6286 
34.3976 

1 5.11848( 

e1 = Y,-Xl’7 

P = vu 
66.8939 

l-l 20.3409 
10.6818 
51.4394 u 27.1591 
19.3182 

Y2 = &P+wGl .‘e, 
10.6818 
20.2409 
10.6818 

a 

19.3182 
27.1591 
19.3182 
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Exhibit 7 

Exemplary Model 2 (Cont’d): Results 

Cumulative Losses 

AYI 

AY2 

lncd 
Paid 

AY3 

AYl 

AY2 

AY3 

lncd 
Paid 
lncd 
Paid 
lncd 
Paid 

Incremental Losses 

@2 @3 
75 15 10 
50 30 20 
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Exhibit 8 

Exemplary Model3:y=Xp+e,whereVafle]= I=o%. 
subjecttothe constraints that1 1 1 1 -1 -1 -l]p = [0] and Ay = 0 

A 
1 1 1 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 -1 -1 0 1 0 0 -1 0 0 
0 0 0 0 0 1 0 0 0 0 0 -1 0 1 1 0 -1 -1 

Ax 
1 1 1 -1 -1 -1 
1 1 1 -1 -1 -1 
1 1 1 -1 -1 -1 

cb = l,n - A'(AA')-'A 

Partitionsof0: 
011 12x12 @IZ 12x6 
%I 6x12 a222 6x6 

,_ 
0.833 -0.167 -0.167 0.167 0.167 0.167 

-0.167 0.833 -0.167 0.167 0.167 0.167 
-0.167 a.<67 0.833 0.167 0.167 0.167 

0.833 -0.167 0.167 0.167 -0.167 0.167 
-0.167 0.833 0.167 0.167 -0.167 0.167 

0833 0.167 -0.167 -0.167 0.167 0.16 
0.167 0.167 0.167 0.833 -0.167 -0.167 
0.167 0.167 0.57 -0.167 0.833 -0.167 
0.167 0.167 0.167 -0.167 -0.167 0.833 

0.167 0.167 0.833 -0.167 0.167 -0.167 
0.167 0.167 -0.167 0.833 0.167 -0.167 

0.167 0.833 0.167 0.167 -0.167 -0.16 
-0.167 -0.167 0.167 0.167 0.833 0.167 

-0.167 0.167 0.833 -0.167 0.167 0.16 
-0.167 0.167 -0.167 0.833 0.167 0.16 

0.167 0.167 -0.167 -0.167 0.167 0.633 
0.167 -0.167 0.167 0.167 0.833 -0.16 
0.167 -0.167 0.167 0.167 -0.167 0.83 



Exhibit 9 

Exemplary Model 3 (Cont’d): y= XP+e, where Var[e] = C = u%, 
subject to the constraint that [ 1 1 1 -1 -1 -110 = (01 

lncd AYi@l 
AYl@Z 
AY1@3 
AYZ@l 
AY2@2 
AY3@1 

Paid AYl@l 
AY1@2 
AY1@3 
AY2@1 
AY2@2 
AY3@1 

X 
1 

1 
1 

1 
I 

1 
1 

1 

1 
1 
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Exhibit IO 

Exemplary Model 3 (Cont'd): y= XP+e, where Var[e] = Z = a'@, 
subject to the constraint that [ 1 1 1 -1 -1 -l]p = [0] 

Diagonalizalion of a,, = WAW 

W is orthogonal (WW = WW = I& and A is diagonal. 

W 
0.125 0.110 0.107 0.857 0.208 0.103 0.082 0.408 
0.125 0.277 0.107 -0.393 0.208 0.103 0.722 0.408 

-0.009 0.506 0.107 -0.272 0.208 0.103 -0.662 0.408 
-0.649 0.269 0.095 0.289 -0.308 0.237 0.116 0.500 
0.711 -0.036 -0.045 0.289 -0.308 0.237 -0.079 0.500 

0.707 0.707 
0.052 0.194 -0.519 0.042 0.491 0.529 0.031 -0.408 
0.188 0.700 0.007 0.150 -0.093 -0.515 0.111 -0.408 

0.834 0.226 0.294 -0.408 
0.866 -0.500 

0.063 0.233 0.050 -0.289 -0.616 0.474 0.037 4.500 
0.707 -0.707 

I 

1 
I 

1 
1 

1 
1 

1 
1 

0.6667 
0.3333 

0 
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Exhibit 11 

Exemplary Model 3 (Cont’d): y= X(3+e, where Var[e] = Z = (~~41, 
subject to the constraint that [ 1 1 1 -1 -1 -l]p = [0] 

Transformation of Observations 

Y2 
lncd AY2@3 

AY3@2 
AY3@3 = 

Paid AY2@3 
AY3@2 
AY3@3 

Y,’ = WY, x: = wx. 
lncd AYl@l -9.941 

AY1@2 73.274 
AY1@3 n - 1.685 

-0.524 0.836 -0.009 0.052 0.251 
0.379 0.242 0.506 0.194 0.933 
0.107 0.107 0.107 -0.519 0.007 0.834 
0.952 -0.438 -0.272 0.042 0.200 
0.289 0.289 0.866 -0.289 
0.707 0 707 ‘D + We, 

-0.100 -0.100 0.208 0.491 -0.710 0.226 
0.340 0.340 0.103 0.529 -0.041 0.294 
0.197 0.643 -0.662 0.031 0.148 
0.707 -0.707 
0.500 0.500 -0.500 -0.500 
0.408 0.408 0.408 -0.408 -0.408 -0.408 

: 
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Exhibit 12 

Exemplary Model 3 (Cont’d): y= XP+e, where Vafle] = C = &D, 
subject to the constraint that [ 1 1 1 -1 -1 -110 q (01 

Transformation of the Variance Matrix 

cl+,* = wb,,W = W(wAW)W = A 
1 

1 
1 

1 
1 

1 
1 

1 
1 

0.667 
0.333 

02,* = @,2W 

r -0.333 
-0.236 
-0.236 

0.333 :, 0.236 . 

O,,’ q w-q* 

I -0.236 -0.236 0.236 0.23f 
-0.333 0.333 

Q, ‘-Q 22 - 2.2 

[ 0.833 0.167 



Exhibit 13 

lncd AY1@1 
AYl@2 
AYl@3 
AY2@1 
AY2@2 
AY3@1 

Paid AYl@l 
AY1@2 
AY1@3 
AY2@1 
AY2@2 

lncd AY2@3 
AY3@2 
AY3@3 

Paid AY2@3 
AY3@2 
AY3@3 

Exemplary Model3(Cont'd):y'=X*9+e',whereVarfe*]= Z= o%*, 
subjecttothe constraintthat[ 1 1 1 -1 -1 -I]6 = [O] 

Reduced Model: y*=Xvy+e*=X'~+e*.wherej3=Vy 

V 
1 0.88808 0.00000 0.00000 0.19954 0.069491 

-0.26202 0.80783 -0.11865 0.30139 0.08472 
-0.26202 -0.30116 0.75893 0.30139 0.08472 
0.26202 0.50667 0.64028 -0.30139 -0.08472 
0.05958 0.00000 0.00000 0.75008 -0.51688 
0.04244 0.00000 0.00000 0.35363 0.84052 

Y2 

--I 

; 

x,21 = x,’ 
-0.6535 
0.2472 

-0.0610 
1.0540 
0.3904 
0.8132 

-0.0212 
0.3344 
0.1967 
0.4427 
0.1522 

0.7045 -0.0728 0.3169 
0.1410 0.4795 0.9422 

-0.2084 -0.2634 0.5426 
-0.2512 -0.1274 0.1137 
0.6720 0.5202 -0.3329 
0.3583 0.4527 -0.0720 
0.1052 0.4841 -0.5879 
0.5116 0.3764 0.1148 
0.7345 -0.5591 0.1351 

-0.3583 -0.4527 0.3542 
0.1506 -0.3795 0.0261 

x,v = x*’ 
1 -0.2620 -0.3012 0.7589 0.3014 0.08471 
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Exhibit 14 

Exemplary Model 3 (Conrd)- Best Linear Unbiased Estimation 

0.165 0.077 -0.430 -0 244 1.590 

11 11 

k 
df = 11-k : 
a'= eI"@,,'~'e,'ldf 106.597 

-6.545 -6 316 20.115 15 106 75.793 

Var[P] = War(y]\r 
1 29610 -5 922 

Var[y,-yl] = o-(~Z1-ml,'~,,"'~,2.)+QVar[y]Q 

106 597 0 000 53299 106597 0.000 53.299 

0 000 119 922 -39.974 0 000 39.974 39 974 

53 299 -39.974 146 571 53.299 39 974 86 623 

106.597 OOCKI 53299 106597 0.000 53 299 
0 000 39 974 39 974 0 000 119 922 -39.974 

53 299 39 974 66.623 53 299 -39 974 146.571 

x,%,l’~‘y,’ 
212.320 
109.461 

n 95.594 
57.607 
-0.753 

y = (XI'~,,*“X,')-'X,"Q,,~'y, 

66.968 
40.333 

n 

38.149 
33 912 

6 146 

e,' = y,'-X,'y 

P = vu 
66 667 
21 250 

n 

10.000 
51 667 
26 250 

( 20000~ 
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Exhibit 15 

Exemplary Model 3 (Cont’d): Results 

Cumulative Losses 

AY1 

AY2 

lncd 
Paid 

AY3 

AY1 

AY2 

lncd 
Paid 
lncd 

Incremental Losses 

@’ @2 @3 
75 15 10 
50 30 20 
75 25) 

Paid 60 22.5 
AY3 lncd 50 12.5 

Paid 45 17.5 
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Exhibit 16 

Exemplary Models. Comparison of Vanances 



Exhibit 17 

Self-Insured Entity: Pad Workers Compensation Losses 

FY Exposure 
1988 131.332.20 
1989 141.672.24 
1990 141,677.29 
1991 142377.99 
1992 143.28558 
1993 138261.75 
1994 121,857.69 
1995 715.00000r 

Chain LadderMethod-Cumulative Losses 

Development Factor: 2.087 1327 
Pattern. 22.3% 46.6% 61 9% 

FY 1988-1994 
F-f 1995. 
Total 

M Exposure @?I2 
1988 131.33220 266,354 
1969 141.672.24 246.981 
1990 141.677.29 203,178 
1991 142.577.99 395.630 
1992 143.265.58 207.698 
1993 138.26175 167,681 
1994 121.85769 215.74or 
1995 ir5,000.00r 203.895 

1.157 1 091 1.076 1.072 
71 6% 70.1% 84 0% 90.0% 

Paid Unpaid Ultimate 
5.026.994 2.599.058 7526.052 

912 905 912.905 
5.026,994 3.511:964 8.538.958 

Additive Method Incremental Losses 

193.588 142.540 

Ratio 1.773 1.683 1.239 
Cumulative. 1.773 3456 4.696 
Pattern. 235% 45 9% 62 4% 

102.504 621647 52,320 36266 
96,735 59.121 49,376 34245 

0.841 0514 0 429 0 298 
5537 6051 6.480 6776 

73.5% 80.3% 660% 90 0% 

FY1988.1994 
F-f 1995: 
Total 

647.602 4.93 
1.338.501 945 
1.302.693 919 
1.529.306 1073 

681.071 6.15 
960.741 695 
965,937 7.93 
912,905 7 94 

1.111 
100.0% 

@IO6 Ukmate 
96.912 681,934 

106.699 1.272.730 
106.703 1 226,626 
107.361 1.379.029 
107.914 951.247 
104131 1011.260 

9,776 917446 
836:l 866 112 



Exhibit 18 

Self-Insured Enhty: Incurred Workers Compensation Losses 

Chain Ladder Method Cumulatw Losses 
FY Exposure @I2 @24 @36 @46 @@3 a72 

1988 131.33220 
@64 @108(Ult) Pure Prem 

422.076 506,045 613.707 467 1989 141.672.24 457.750 855,007 1.006'522 525,616 
1068466 

1990 141.677.29 345.084 727.598 1204'197 11471426 ,633054, 1.069.667 ,561633; ,569,929/ 55:;;) 

1.061.962 1.024.044 1.027.712 
1991 142.57799 591.642 660.633 1032.814 1.340032 1.372.471 1.377.387 1.268:526 ; 

1.112.360 7.85 
996,304 703 

I .335.293 9.37 
682.792 477 
606.773 4.39 
460.636 3 78 
695.276 605 

Development Factor. 1579 1.211 1.120 1.024 1004 0.921 1053 
Pattern, 468% 740% 89 6% 1004% 1028% 1032% 95.0% 100 0% 

FYl968.1994 
FYI995 
Total 

Incurred IBNR Ultimate 

/ 

Ratio: 2832 1.510 1.056 
Cumulative: 2632 4.342 5.390 
Pattern. 45.0% 68.9% 85.7% 

FY1968.1994 
FY1995, 
Total 

1oa:535 22.051 3.218 -52,672 
95.658 19,435 2.836 -46.423 
90,274 18,341 2,677 -i3.810 

0.785 0 159 0.023 -0.361 

6.183 6.342 6 366 5.985 
96.1% 100.7% 101.0% 95.0% 

Incurred IBNR Ultimate 

@roe Ultimate 
41.366 624.390 
44,625 1.136.080 
44627 1.017.995 
44.911 1.356.684 
45,133 740.816 
43,551 719,531 
38,364 638,448 
36,224 724,475 

0.315 
6.300 

100 0% 



1993 72 
1993 I?4 
1993 108 
1994 12 
,994 24 
,894 38 
1994 49 
1994 60 
1994 72 
1994 84 
1994 108 
1995 12 
1995 24 
1995 38 
1995 48 
1995 60 
1995 72 
1995 84 
,995 108 

Exhibit 19 

Self-Insured Entity Model 1: Pad Losses 

yw= Xp+s, where Var[e]=o’l~, subject to the constmnt that [ 1 1 1 1 1 1 1 -9]p=[O] 

0 
0 
0 
0 
0 

142.577 99 
0 
0 
0 

0 
0 
0 

0 
0 

142.577 99 
0 
0 

0 
0 

142.577.99 
0 
0 
0 
0 
0 
0 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

142.577 99 0 
0 ,42,577.99 
0 0 
0 0 
0 0 
0 0 
0 0 

141.877.29 
0 
0 
0 
0 
0 
0 
0 

142.577 99 
0 I 
0 
0 
0 
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Exhibit 20 

Self-Insured Entity Model 1 (Cont'd): Results P 
@‘2 
~924 

@36 

cm 
@6’3 
t3.72 
@M 
@OS 

Total 7.859 

FY Q.12 
1988 266,354 
1989 246.981 
1990 203,178 
1991 395,630 
1992 207,698 

WSI 
0.0496 0 0 0 0 0 0 0.0055 

0 0.0559 0 0 0 0 0 0.0062 
0 0 0.0668 0 0 0 0 0.0074 
0 0 0 0 0845 0 0 0 0.0094 
0 0 0 0 0.1144 0 0 0.0127 
0 0 0 0 0 0.1759 0 0.0195 
0 0 0 0 0 0 0.3605 0 0423 

0.0055 0.0062 0.0074 0.0094 0.0127 0.0195 0.0423 0.0115 

~24 
Incremental Paid Losses 

@36 @48 @@J a72 @34 @IO8 Ultimate Variance 

1993 167.681 : 
63,951 53,653 36,260 95,763 957.338 6.205E+lO 
60,352 50,633 34,245 90,374 903.741 6.765E+lO 

Paid Unpaid Ultimate Variance Std. Dev. 
FY 1988-1994: 5,026.994 2.495,840 7.522.834 7.114E+ll 843.448 
FY 1995: 903,741 903,741 6.765E+lO 260,105 
Total 5,026,994 3,399.580 8.426.574 9.468E+ll 973,022 

Generalized Variance 7.710m09 



Exhibit 21 

Self-Insured Entity Model 2: Incurred Losses 

ymcd= @+a. whcrre Va+3]=& subject to the constraint thaf [ 1 1 1 1 1 1 1 -19]0=[0] 

FY .Qe 

,888 12 
1968 24 
1988 36 
,989 48 
1988 60 
1986 72 
l9BB 64 
,888 106 
1989 12 
1999 24 
1999 36 
1969 48 
1989 60 
1989 72 
1999 64 
1969 108 
1990 17, 
1990 24 
,990 36 
,990 48 
,990 60 
1990 72 
1090 84 
1990 108 
1991 12 
1991 24 
1991 36 
1991 4.3 
1991 60 
1991 72 
1991 84 
,991 108 
1992 12 
1992 24 
1992 36 
1992 48 
1992 60 
1992 72 
,992 84 
1992 106 
1993 12 
1993 24 
1993 36 
1993 48 
,993 60 
1993 72 
,993 64 
1993 108 
,994 12 
1994 24 
1994 36 
1994 48 
1994 60 
1994 72 
,994 84 
1994 108 
1995 12 
1995 24 
1995 35 
1995 48 
,995 60 
,995 72 
1995 84 
1995 108 

131.332 20 0 0 0 0 0 0 0 
0 131.332.20 0 0 0 0 0 0 
0 0 
0 0 
0 0 
0 0 

13132.20 0 0 
131,332 20 0 

0 131.33220 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 
0 0 0 
0 0 0 

131.33220 0 0 
0 131.332.20 0 
0 0 131.332.20 
0 0 0 

0 
0 
0 
0 
0 
0 
0 

141.672.24 
0 
0 
0 
0 
0 
0 
0 

141.677 29 
0 
0 
0 
0 
0 
0 
0 

142.577.99 
0 

0 0 
0 0 

141.672 24 0 
0 141.672 24 
0 0 

0 0 0 
0 0 0 
Cl 0 0 

0 0 
141.67224 0 

0 141 67224 
0 0 

0 0 
0 0 
0 0 
0 0 

0 0 0 

141.672.24 0 0 141.672 24 0 I 0 0 0 
0 0 
0 0 
0 0 
0 0 

141.67729 0 
0 ~416,729 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

142.57799 0 

0 
141.87729 

0 
0 

0 
0 

141.67729 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

14167729 0 

141.672.24 
0 
0 
0 

0 
0 

0 
0 

0 
0 
0 0 0 

0 
0 

0 
0 

0 141.677 29 
0 0 

0 
141.677.29 

0 
0 
0 
0 

14257799 0 
14253799 

0 
0 

0 0 
0 0 
0 0 
0 0 

0 
0 
0 

0 
0 

0 
0 

142.57799 
0 
0 
0 

0 
142.577.99 

0 
0 
0 
0 
0 
0 
0 

143.285 58 

0 
0 

142.57799 

0 
0 
0 

142.57799 
0 
0 
0 
0 
0 
0 
0 

143.285.58 
0 
0 
0 
0 

0 
0 0 

0 
0 
0 
0 
0 
0 

143.285% 
0 
0 

0 
0 

143.2855s 
0 
0 

0 
143.28558 

0 
0 

0 
0 

0 
0 
0 

13.8.*6175 

0 0 

0 
0 

0 
0 

0 
0 

0 
,38.*61,5 

0 
0 

0 
0 

136.261 75 
0 

0 0 
0 
0 

0 
0 

0 
0 

138.261.75 0 0 0 
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P 
@‘2 
cs24 

6’36 
co48 

@60 
@72 
cc?84 

@lOS 

TOIal 6 575 

Exhibit 22 

Self-insured Entity Model 2 (Cont'd)- Results 

W PI 
0 1037 0 0 0 0 0 0 0.0055l 

FY 
1988 
1989 
1990 
1991 
1992 

@I2 
422.076 
457,750 
345,084 
591,842 
379,033 

a24 
Incremental Incurred Losses 

@36 @48 @60 a72 @84, @IO8 Ultimate Variance 
43.176 626,198 1.380E+lO 
46,575 1.140.030 4.516E+lO 
46,577 1.017.587 6 702E+lO 
46,873 1.357.111 8.643E+lO 
47.106 742,470 l.O45E+ll 
45,454 722,689 '.186E+ll 
40.061 669,733 1.262E+ll 
37.807 756,132 '.381E+ll 

FY 1988-1994: 
FY 1995. 
Total 

Incurred IBNR Ultimate Variance Std. Dev. 
5.370,760 905.058 6.275.010 '.338E+12 1.156.753 

756.132 756,132 1.3alE+ll 371.584 
, 5.370.760 1,661.190 7.031.950 1782E+12 1.334.794 

Generalized Variance 1.609E+lO 



Exhibit 23 

Self-Insured Entity Model 3: Unrelated Paid and Incurred Losses 

y= Xp+e, where Var[e]=6’@,, subject to the constraint that 

[ 

I I I 
0 0 0 

I I I l-9 0 0 0 0 0 0 0 0 
0 0 0 0 0 III III I -19p= 1 [I : 

Y 
0 
a 

d 

Ij 

Y 
n 

c 

d 

X 64x8 I /I 
/ 
I 

64 I 
I 

Note 1: X 6LIB IS the same as X In Exhibits 19 and 21. 

Note 2: o’ratio = 02,ncd (Exhibit 22)Imzpaa (Exhibit 20) = 1 3710E+10/6.5637E+09 = 2.089 

Note 3: o* wll equal OZpad, and Model 3 wll reproduce the results of Exhibits 20 and 22. 



Exhibit 24 

Self-Insured Entity Model 4: Paid and Incurred Losses have same Ultimate 

Similar to Model 3 except that new @ = a-@G’(G@G’)-‘G@, where 

and with additional constraints: 

GXf3 = 0 

[ 1 1x8 - 11x8 1 p=o 



Exhibit 25 

Self-Insured Entity Model4 (Cont'd) Results 

FY 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995r 

FY 

i 08a 
1969 
1990 
1991 
1992 
1993 

1994 
1995r 

a12 a24 

Incremental Pad Losses 

@36 @46 @SO 
266.354 166,572 32 329 53,610 8.124 

246.981 359,380 229.016 69.539 116.635 

203.064 220,742 141 007 93197 56.642 

a72 @64 @108 Ultfmate Variance 
16.924 39.1091 81.406 664,426 4.557E+09 

i00.292r 5,626 99.174 1.226.645 1516E+lo 
42.446 2,593 96.142 1.158.085 2248E+lO 

60,977 20.671 115.015 1.371.579 2 893E+10 

46.250 7,945 102,556 683.620 3.489E+lO 

42.873 3.961 95.275 918.969 3952E+iO 

37,777 3,500 83.962 656.646 4161E+lO 

41.465 9.116 as.051 850.505 4565E*lO 

FY 1986.1994 
FY1995 
Total 

Paid Unpard Ulttmate Vanance Std Dev 

5.026.994 2 057.176 7.084.172 4667E+ll 683.140 

850.505 850.505 4565E+lO 213.656 
5.026.994 2.907.683 7.934.677 6212E+11 780.147 

GenerallzedVanance 7112E+09 

Incremental Incurred Losses 
@12 @24 @36 @48 @?sO 

422.076 83,969 19.571 55.987 -11674 

457,750 397.257 151,515 61.946 135,729 

a72 @64 
63,125 -50.032) 

-56.771r 17.128 
40.140 23,466 

2,252 -14.527 
29,479 12,617 
36.143 19.872 
31.874 17.534 
17.937 4,404 

@108 
01.406 
64,091 
70,433 
32,737 
60.115 
65,705 
57,929 
42.525 

FY1968.1994 
FYI995 
Total 

Generaked Varlanca 

Incurred li3NR Ultimate Variance Std Dev 

5.370.760 1.713.412 7.064.172 4 667E+ll 663,146 

850,505 650.505 4565E+lO 213656 

5.370.760 2.563,917 7.934.677 6.212E+ll 766.147 

1262E+lQ 

664.426 
1.226.645 
1.156.065 
1.371.579 

663.620 
918,969 
856,646 
850,505 

Vanance 
4557E+OY 
1518E+lo 
2248E+lO 
2893E+lO 
3489E+lO 
3952E+lO 
4 18lEtlo 
4565E+lO 



Exhibit 26 

Self-Insured Entity Models: Comparison of Variances 

Paid Losses 
Variance Efficiency Gain 

FY Model 1 Model 4 Model 4 Model 1 
1988 6.761E+09 4.557E+09 1.484 48.4% 

1518E+lO 
2.248E+lO 
2.893E+lO 
3.489E+lO 

I 3.952E+lO 
4.181E+lO 
4.565E+lO 
4.667E+il 
4.565E+lO 

1.495 
1.493 
1.492 
1.490 
1.488 
7 484 
1.482 
1.524 
1.482 

Total 1 9.468E+ll 6.212E+ll 1.524 52.4% 
Gen. Var.1 7.718E+09 7 112E+091 1.085 8.5% 

Incurred Losses 
Variance Efficiency Gain 

FY Model 2 Model 4 Model 4 : Model 2 
1988 1.380E+lO 4 557E+09 3.029 202.9% 
1989 4.516E+lO 1.518E+lO 2 975 197.5% 
1990 6.702E+lO 2.248E+lO 2.982 198.2% 
1991 8.643E+lO 2.893E+lO 2.988 198.8% 
1992 l.O45E+ll 3.489E+lO 2.994 199.4% 
1993 l.l86E+ll 3.952E+lO 3.002 200.2% 
1994 1.262E+ll 4.181E+lO 3.017 201.7% 
1995 1 381E+ll 4.565E+lO 3.025 202.5% 

1988-1994 1.338E+12 4.667E+ll 2.867 186.7% 
1995 1.381E+ll 4.565E+lO 3 025 202.5% 
Total 1 782E+12 6.212E+ll 2.666 186.8% 

Gen. Var. 1.609E+lO 1.262E+lO 1.276 27.6% 
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Exhibit 27 

Self-Insured Entity Models: Comparison of Methods 

Paid Losses 
Chain Ladder Additive Model 1 Model 4 (Conjoint) 

Exhibit 17 Exhibit 17 Exhibit 20 Exhibit 25 
FY Ultimate Relation Ultimate Relation Ultimate Relation Ultimate Relation 

1986 647.802 97% 681,934 103% 686,231 103% 664,420 100% 
1989 1.338~501 109% 1,272,730 104% 1,277,366 104% 1.226,645 100% 
1990 1,302,693 112% 1,226.626 106% 1,232,810 106% 1,158,085 100% 
1991 1,529,306 111% 1.379,029 101% 1,386.779 101% 1,371,579 100% 
1992 881,071 100% 951,247 108% 960,371 109% 883,820 100% 
1993 960,741 105% 1,011,280 110% 1,021.938 111% 918,969 100% 
1994 965.937 112% 917,446 107% 957,338 111% 858,646 100% 
1995 912,905 107% 866,112 102% 903,741 106% 850,505 100% 

1988-1994 7,626,052 108% 7.440,292 105% 78522,834 106% 7.084.172 100% 
1995 912,905 107% 866,112 102% 903.741 106% 850.505 100% 
Total 8,538,958 108% 8,306,405 105% 8s426.574 106% 78934,677 100% 

Incurred Losses 
Chain Ladder Additive Model 2 Model 4 (Conjoint) 

Exhibit 16 Exhibit 18 Exhibit 22 Exhibit 25 
FY Ultimate Relation Ultimate Relation Ultimate Relation Ultimate Relation 

1988 613,707 92% 624,390 94% 626,198 94% 664,428 100% 
1989 1,112,360 91% 1.138,080 93% 1,140.030 93% 1.228,645 100% 
1990 996,304 86% 1,017,995 88% 1,017.587 88% 1,158.085 100% 
1991 1.335.293 97% 1.356.684 99% 1,357,111 99% 1.371,579 100% 
1992 682,792 77% 740,818 84% 742.470 84% 883,820 100% 
1993 606,773 66% 719,531 78% 722,689 79% 918,969 100% 
1994 480.836 54% 638,448 74% 669,733 78% 858,646 100% 
1995 695.276 82% 724,475 85% 756,132 89% 850,505 100% 

1988-1994 5.808,065 82% 6,235.947 88% 6,275,818 89% 7,084.172 100% 
1995 695,276 82% 724,475 85% 756,132 89% 850,505 100% 
Total 6.503.341 82% 6,960,422 88% 7,031.950 89% 78934,677 100% 
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Exhibit 28 

Self-Insured Entity Models: Comparison of Paid-Loss Patterns 

@:: 
a24 
@36 
@46 
@60 
a72 
@84 
@Jrt 

Paid Losses 
CL Additive Model 1 Conjoint 

22.3% 23.5% 22.6% 23.9% 
46.6% 45.9% 47.2% 49.8% 
61 .Q% 62.4% 63.1% 66.4% 
71 6% 73.5% 73.9% 77.4% 
78.1% 80 3% 80.6% 84.1% 
64.0% 86.0% 86.2% 88.9% 
90.0% 90.0% 90.0% 90.0% 

100.0% 100.0% 100.0% 100.0% 

100.0% 

90 0% 

60 0% 

70 0% 

60.0% 

50.0% 

40 0% 

I 
; 30 0% 

20.0% 

10.0% 

00% 

+cL 

+Additive 

+-Model 1 

+Conpint 

@I2 @24 @36 @48 @60 @72 (984 @Ult 
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Exhibit 29 

Self-Insured Entity Models. Comparison of Incurred-Loss Patterns 

$2 
a24 
@36 
@48 
6360 
a72 
@84 
@W 

Incurred Losses 
CL Additive Model 2 Conjoint 

46.8% 45.0% 43.4% 38.7% 
74 0% 68.9% 69.9% 62.6% 
89.6% 857% 86.1% 77.7% 

100.4% 98.1% 98.2% 89.4% 
102 8% 100.7% 100.7% 924% 
1032% 101 0% 100.8% 94.5% 
95.0% 95.0% 95 0% 95.0% 

100 0% 100.0% 100.0% 100.0% 

60 0% 

40 0% 

20 0% 

0 0% 

-CCL 

-S-Additive 

-A-Model 2 

*Coniomt 

@12 @24 @36 @48 @SO 872 @a4 @UN 
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Exhibit 31 

Self-Insured Entity Model 5 (Cont'd): Results 

@lo8 1 0.8OlJ 
Total 8.014 

FY 6312 
1968 266,354 
1989 246,981 
1990 203.178 
1991 395,630 
1992 207,698 

WPI 
1 0.0449 -0.0029 -0.0034 -0.0043 -0.0058 -0.0090 -0.0195 01 

-0.0029 0.0502 -0.0038 -0.0049 -0.0066 -0.0101 -0.0219 0 
-0.0034 -0.0038 0.0592 -0.0058 -0.0079 -0.0121 -0.0262 0 
-0.0043 -0.0049 -0.0058 0.0733 -0.0099 -0.0153 -0.0331 0 
-0.0056 -0.0066 -0.0079 -0.0099 0.0958 -0.0207 -0.0448 0 
-0.0090 -0.0101 -0.0121 -0.0153 -0.0207 0.1362 -0.0689 0 
-0.0195 -0.0219 -0.0262 -0.0331 -0.0448 -0.0689 0.2144 0 

0 0 0 0 0 0 0 0.2128 

a24 
Incremental Paid Losses 

@36 @48 @6’3 @72 @64 @IO6 Ultimate Variance 

FY 1988-1994: 
FY 1995: 
Total 

Paid Unpaid Ultimate Variance Std. Dev. 
5,026.994 2.595.006 7,622.OOO 4.325E+ll 657,623 

921,651 921,651 5.299E+lO 230,169 
5.026,994 3,516.658 8543,652 5.325E+ll 729,701 

Generalized Variance 7.503E+09 



Exhibit 32 

Self-insured Entity Model 4: Results at Present Value 

FY 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995r 

Incremental Unpaid Losses at Present Value 

FY 1988-I 994: 
FY 1995: 
Total 

Generalized Variance 4,714E+09 



Appendix A 

Basic Multivariate Statistical Concepts 

A random matrix is a matrix whose elements arc random scalars. Suppose Y to be an 

(mxn) random matrix. whose ij”’ element. (Y);i. is the random scalar vii. Then the 

expectation of Y. denoted E[Y]. is an (mxn) matrix whose ii”’ element. {E[Y])ij, is Eb:ij]. 

In orher words. the expectarion of a matrix is the matrix of‘ the expectations. 

Now consider AY. where .4 is a (I>xM) non-stochastic matrix. Then AY is a @WI) random 

matrix. whose $” element is: 

Since the expectation of AY is the matrix of the expectations. the ij”’ element of E[AY] is: 

@WI},, = E[ by),,] ,,I = E [ 1 &,k or, 1-I 0, 
= c E[a,, ye 1 

A=, 
,I, 

= pY,,l 

P8, 
= z iAh {Wl~,, 

= @W’l) ‘I 

Therefore. if A is non-stochastic. then E[AY] = AE[Y]. By similar reasoning. if B is non- 

stochastic E[YB] = E[Y]B. Also, E[AYB] = E[A(YB)] = AE[YB] = AE[Y]B. 
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Let x, be an (mx 1) random column vector whose expectation exists, viz., E[x,] = u,. 

Similarly, let xr be an (n” I) random vector whose expectation is u2. The covariance of x, 

with x1 is defined as Cov[r, . xr] = E[(x,-u,)(x,-uzY]. an (mxn) matrix. But Cov[x, , x2] = 

E[(x,-p,)(x,+J] = E[((x,-~,)(x~-~~)‘,‘]’ = WX&(X,-P,)II = CovIx, ,x,l’. Also, 

Cov[Ax,,Bx,]= E[(Ax, -Au,)(Bx, -Bu,)‘] 

= E[A(x, -P,)(B(x, -P~H’I 
= ElA(x, -P,#x, -pz)‘B’l 
=W(x, -P,)(x, -P,)‘IB’ 
= ACov(x,.x,]B’ 

The variance of x is defined as Var[x] = Cov[x, x] = E[(x-u)(x-u)‘]. Therefore, Var[x] = 

Cov[x. x] = Cov[x, x]’ = Varlx]‘. In other words, a variance matrix must be symmetric. 

Also. Var[Ax] = Cov[Ax, Ax] = ACov[x, ~$4’ = AVar[x]A’. 

Throughout this paper we assume that the elements of all matrices belong to the real 

numbers, i.e., that no complex numbers are allowed. If we now restrict A to being a (1 W) 

non-stochastic row vector, then Ax will be a real-valued (I x I) linear combination of the 

elements of x. Its variance, AVar[x]A’. is a (1x1) matrix whose element must be greater 

than or equal to zero (since the variance of a real-valued random scalar cannot be negative). 

This shows that the variance of a real-valued random vector. Z = Var[x], must have the 

property that for every conformable row vector A, ACA’ 2 [O]. A symmetric matrix Z with 

this property is said to be non-ne,r@ve dejinile. Of course, if A is a zero vector, then ACA 

= [O]; so [0] can always be obtained. However, if for all non-zero A, ACA’ > [0], then Z is 

said to be positive definite. 
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Consider the following symmetric (2x2) matrices: 

z,=; ; [ I 1 1 c, = [ 1 I I 

x3 = [ 1 2 
2 1 1 

Letting A be [a, a?], we have A&A’ = [N,’ + ~~‘1. This is greater than or equal to zero, and 

equal to zero if and only if u, and a, are zero. Therefore C, is positive definite. And A&A 

= [a,’ + 2a,a, + nz’] = [(a, + a$]. This is greater than or equal to zero, but is equal to zero 

whenever a2 = -0,. Therefore, X2 is not positive definite. but only non-negative definite. 

Finally, A&A’ = [a,2 + 4o,a, + a2’]. This is negative for many values of a, and u2, for 

example, for a, = I and aI = -I. Therefore, C, is not even non-negative definite. C, cannot 

be a variance matrix for some x; otherwise [I -I]x would be a real-valued random variable 

with a negative variance. C, can be a variance matrix for some x; however, [I -11x has a 

variance of zero. If the variance of a random vector is positive definite, then no non-zero 

linear combination of the random vector is without some variance; whereas if it is only non- 

negative definite, then some non-zero linear combination degenerates to a constant. 

Consider two (nx I) random vectors, x, and x2, with respective (nxn) variances C, and Z,. 

How can we decide which variance is smaller when n > l? Order relations are defined only 

for real-valued scalars and (Ix I) matrices. So consider Ax, and Ax,, where A is (lxn). 

These are (1 x 1) random vectors, whose (lx 1) variances A&A and AZ&A’ are susceptible to 
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ordering. We could say that the n-dimensional random variables x, and x2 have been 

collapsed into l-space by the linear combination A. If the variance of x, is less than or 

equal to that of x2 aficr any such collapse into l-space, then we could define x,‘s variance 

to be the smaller. In other words. C, 5 C?. means that for any (Ixn) vector A, A&A’ 2 

AI&A’. But A&A’ 5 A&A’ if and only if [0] 5 A&A’ - AC,A’ = ,4(X2 - Z,)A’. This means 

that C2 - C, is non-negative detinite. Similarly. Z, < I2 means that Z1 - C, is positive 

definite. Every two real-valued scalars are able to be ordered. i.e., the one is either less 

than, equal to. or greater than the other. This is called the law of trichotomy. For 

symmetric matrices in general. the law of trichotomy does not hold: A)3,A’ may be less than 

A&A’ for some A. and greater for others. However. \I henever we have two unbiased 

estimators and the difference between their variance matrices is non-zero and non-negative 

definite, then we have reason for preferring one estimator to the other. This is the basis for 

determining what is “Brst” in Best Linear Unbiased Estimation (BLIJE). 

The many theorems about non-negative definite (NND) and positive definite (PD) matrices 

can be proved easily by matrix diagonalization. It is a theorem of matrix algebra that if X is 

an (nxn) symmetric real-valued matrix. then Z can be factored as WAW’. where W is 

orthogonal and A is diagonal. W and A are real-valued. .4n orthogonal matrix is one 

whose inverse is its transpose. so WW’ = W’W = Iti. To demonstrate this factorization (cf. 

Iiealy 19: 56-591 and Judge [I I: Appendix A, 951-9571) involves eigenvalues. and the 

diagonal elements of A (the non-diagonal elements are zeroes) are called the eigenvalues of 

II. Diagonalization helps in this way: whether or not a symmetric matrix C is NND (or PD) 

depends on the behavior of AIM’. But. by diagonalization. ACA’ = A(WAW’)A’ = 
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(AW)h(W’A’) = t.IW)A(AW)‘. But AU’. a (I XHJ rou vector. is an orthogonal one-to-one 

transformation of A. an arbitrar!, (I xn) row i’ector. And AW = 0 if and only if A = 0. 

Therefore. Z is NND (or PD) if and only if A is NND (or I’D). ‘Therefore, if one knows the 

eigenvalucs of a symmetric matrix. one li,ill knou, as to itc: dclinitcncss. 

The definiteness of a diagonal matrix is easily determined: 

AA/I’+ .._ ‘I,,] 

Barring A = 0, the element will always be positive if and only if all the his (the 

eigenvaluesj are positive. Therefore, any symmetric real-Lalucd IX is positive definite if and 

onI4 if all its eigenvalues are positive. It is non-negative definite if and only if all its 

eigenvalues are non-negative. Also. since 1 can be factored as WA%“. (E( = (WAw’( = 

\WI\AIju”j = !AJ]W’JjWj = JhjJW’W\ = jhjjl,?J = )A). But the determinant of A. a diagonal 

matrix, is the product of the diagonal elements. Therefore. the determinant of C is equal to 

the product of its eigenvalues; so that if Z is NND (or PD). then IZ( 2 0 (or .Z 0). 

If C is NND, then all its cigenvalues. heing non-negative. have non-negative square roots. 

Let A” he the diagonal matrix containing these square KXUS. Then Z = WAW’ = WA”A”‘W’ 

= Wh’“A”:‘W’ = WA’:(WA”J’. This shows that every NND matrix can be factored as the 

product of some real-valued matrix and its transpose. The converse is also true. viz., that if 

a matrix can be factored as the product of some real-valued matrix and its transpose. then it 
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is NND. For suppose that Z = QQ’: for some (nxp) Q. Then ALA’ = AQQ’A’ = (AQ)(AQ) 

2 [0], since AQ is a real-valued (1 xp) row vector, the sum of the squares of whose elements 

equals the element of (AQ)(AQ)‘. Therefore. a matrix is NND if and only if it can be 

factored as the product some real-valued matrix and its transpose. 

If Z = WAW’ is PD, then all the diagonal elements of A are positive. Then A-’ exists, its 

diagonal being the reciprocal of the diagonal of A. All the elements of A? are positive, so 

A-’ is positive definite. However, since W is orthogonal: 

E(WA-‘W’) = (WAW’)(WA-‘WI) 

= wn(w’wjA-‘wt 

= WA(I,)A-‘W’ 

= WhA-‘W’ 

=WW’ 

= ,I I 

Similarly, (WA-‘W’)Z = In. Therefore, X has an inverse. which inverse, having positive 

eigenvalues. is also positive definite. So Z is PD if and only if Em’ exists and is PD. Also, if 

a NND matrix has an inverse, then it is also PD. For if the NND matrix has an inverse, then 

its determinant is non-zero. But its determinant is the product of its eigenvalues. 

Therefore, no eigenvalue is zero. Since the eigenvalues of the NND matrix are non- 

negative, and none is zero, then they are all positive, which makes the matrix also PD. 

Finally, consider the expression UZU’, where U is (mxn) and C is an (nxn) NND matrix. As 

shown above, there is an (nxn) matrix Q, such that C = QQ’. Then UCU’ = UQQ’U’ = 

(UQ)(UQ)‘, so we know that UZU’ is an (mxm) NND matrix. 
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Now, in addition suppose that C is PD and that the rank of U, or p(U), is m. It is a theorem 

of matrix algebra (cf. Eves [5: 84f.l) that if U is real-valued. then p(UV) = p(U) = m. Then 

UU’ is an (mxm) matrix of rank m, which means that (VU’)-’ exists. UCU’ is known to be 

NND; it will also be PD if and only if, for any non-zero (I Xm) A, AUCU’A’ = (AU)Z(AU) 

> [O]. Since Z is PD, (AU)Z(AU)’ > [0] if and only if AU is non-zero. Now, if A = 0, then 

AU = 0. Conversely, if AU = 0, then A = AIJU’(UV)~’ = OIJ’(IJU’)-’ = 0. Therefore, due to 

the additional suppositions, AU is non-zero if and only if A is non-zero. Therefore, if U is 

of full row rank and C is PD, then UCU’ is PD. 
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Appendix B 

The Moore-Penrose Inverse and the Solution of Linear Equations 

A matrix G is an inverse of an (~nxn) matrix A if and only if AG and GA are identity 

matrices, For AG and GA to exist. G must be @am). Therefore, AG = Im, and GA = In. It 

is a theorem of matrix algebra (cf. Eves [5: 821) that the rank of a product of matrices is 

less than or equal to the rank of each of the matrices, e.g.. p(AG) I min(p(A), p(G)). Also. 

both p(A) and p(G) are less than or equal to min(m, n). Therefore, p(AG) 5 min(nr, n), But 

nt = p(I,n) = p(ACi) I min(p(A). p(G)) 5 min(m. n) i err. Hence, both A and G must be of 

rank m. Similarly. ,I = ~(1,~) = p(GA) 5 min(p(G), p(A)) - c mintm. 17) < n. and both A and G 

must be of rank n. Since the rank of a matrix is unique. /tt = II. Therefore. a matrix has an 

inverse if and only if it is square and of full rank. 

But the concept of an inverse has been generalized to any (mxn) matrix A. and the 

genrroiized inrersr of a matrix is very useful. This appendix will treat one type of 

generalized inverse, the Moore-Penrose inverse, and its application to the solution of linear 

equations. All this will be relevant to the linear statistical model. 

Searle [ 17: I] defines a generalized inverse thus: G is a generalized inverse of A if and only 

if AGA = A. If A is (rnsn), then G must be (nxm). G may not be unique; in fact, if A = 0, 

then any (,7xm) matrix will be its generalized inverse. This definition does not demand that 

AG = I,. a condition too restrictive. However, it does demand that AG behave like I, 

when premultiplying A, since (AG)A = A = (1,)A: so in a sense AG is like I,. 
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The traditional matrix inverse has the property that the inverse of the inverse of A is A. or 

(A-‘)-’ = A. The Moore-Penrose (MP) inverse goes beyond the generalized inverse by 

demanding that if G is an MI’ inverse of A. then A is an MP-invcrsc of G. This is 

equivalent to demanding that GAG = G. Again. it is not demanded that GA = I,,. only that 

it behave like I,, when premultiplying G. 

The MP inverse will make G as close as possible to the traditional inverse. Two more 

demands are made: althaugh .4G and G/I ma! not be idc%ntit)’ matrices. they should at least 

have the symmetry of identity matrices. Thus WC have ~hc definition: G is an MP inverse of 

A ifand on1y it? 

I. AGA = .4 
2. GAG =G 
3. AG is symmetric. or AC; = (AG) 
J. GA is symmetric. or L\ = (GA) 

The first task is to establish that ever!’ matrix has an MP inverse. i.c.. the proof of existence. 

To do this we start ti:jlh an (mr~7) matrix A \vhosc rank IS I’. We need to prove that A can 

be factored as BC. where B is (nrxr), C is (rxn), and p(B) = p(C) = r. A fundamental 

theorem of matrix algebra (cf. I:\cs [5: 741) states that there exist non-singular matrices P 

and Q such that: 

A=P Q 
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The right side of the equation is called a canonical form of A, and r (the rank) is the same 

for all such forms of A. The matrix in between P and Q is zero, except that the first r 

elements of its diagonal are ones. Then A can be factored as: 

Since P, Q, and I, are non-singular, B and C are names of canonical forms; so they are both 

of rank r. As explained in the last paragraph of Appendix A, (BIB)-’ and (CC’)-’ exist. 

Then G = C’(CC’)-‘(BIB)-‘B’ is an MP inverse of A, since it satisfies the four conditions: 
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AGA = BC(C’(CC’)-‘(B’B)-‘B’)BC 

= B(CC’)(CC’)-‘(B’B)“(B’B)C 

=BC 

=A 

GAG = (C’(CC’)-‘(B’B)-‘B’)BC(C’(CC’)-‘(B’B)-’B’) 

= C’(CC’)-‘(B’B)-‘(B’B)(CC’)(CC’)-’(B’B)“B’ 

= C’(CC’)-‘(B’B)-‘B’ 

=G 

AG = BC(C’(CC’)-‘(B’s)-‘B’) 

= B(CC’)(CC’)-‘(B’B)-‘B’ 

= B(B’B)-’ B’ 

= (B(B’B)“ B’)’ 

= (AG)’ 

GA = (C’(CC’)-‘(B’B)-‘B’)BC 

= C’(CC’)-‘(BIB)-‘(B’B)C 
= cf(ccyc 

= (cyccyc)~ 
= (GA)’ 

Therefore, every matrix has an MP inverse. 

The second task is to establish the uniqueness of the MP inverse. Suppose that G, and G, 

are MP inverses of A. Then, by a series of small steps involving the MP conditions and 

matrix transpositions: 
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G, = G,AG, 

= G,(AG,)’ 

= G,G,‘A’ 

= G,G,‘(AG,A)’ 

= G,G,‘A’G,‘A’ 

= G,(AG,)‘G,‘A’ 

= G,AG,G:‘A’ 

= G,G,‘A’ 

= G,(AG,)’ 
= G,AG2 
= G,AG,AG? 
= (G,A)‘G,AG, 

= A’G,‘G,AG, 

= (AG?A)‘G,‘G,AG. 

= A’G,‘A’G,‘G,A’& 

= (C,A)‘(G,A)‘G,AG? 

= G,ANG,A)G,AG, 
= G2AG,(AG,A)G, 
= GZAG,AG, 
= G,AG, 

=Gz 

Thus. the MP inverse is unique. Because of its existence and uniqueness we can denote the 

MP inverse of A as A+ [I I : Appendix A. 9391. 

A few theorems will now be proved: 

Theorem: (A’)’ = A 
Proof: A satisfies the four conditions for king an MP inverse of A*: 

1, A’AA+ = A’ 
2. AA’A=A 
3. A’A is symmetric 
4. AA* is symmetric 
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Theorem: 
Proof: 

Theorem. -’ 
Proof: 

Theorem: 
Proof: 

Theorem: 
Proof: 

Theorem: 
Proof: 

Theorem: 
Proof: 

Theorem: 
Proof: 

If A-’ esists. then .Y = .\ ‘. 
Again, by satisfying the four MP conditions, since A-’ exists: 
1. AA-IA = A 
2. A’AA’=A’ 
3. AA ’ = 1. which is symmetric 
4. A-‘A = I. which is symmetric 

(A’)- = (A’)’ 
Again, by satisfying the four MP conditions: 
I. A’(A’)‘A’ = (AA’A)’ = A’ 
2. (A-)‘A’(A.)’ = (A*AA*)’ = (A’)’ 
3. A’(A*)’ = (A-A)’ = A’A, which is symmetric 
4. (A’)‘A’ = (AA*)’ = AA’, which is symmetric 

A’ = A’&?- z A’ AA 

A’ = (AA’A)’ = A’(AA-)’ = A’AA- 
A’ = (AA’A)’ = (A’A)‘A’ = A*AA’ 

(AA)- = A’(A)- 
By satisfying the four MP conditions, with earlier theorems: 
I. A’A(A’(A’j-)A’A = (A’AA+)((A’j A’A) = (A’AA’)((A’)‘A’A ) 

= (A’AA’)( A’AA’)’ = (A’)(A’)’ = A’A 
2. (A’(A’)-)A’A(A’(A’)‘) = A‘(A’)‘(A’AA’)(A’)’ = A+(A’)+A’(A’)’ 

= A-(A’)’ 
3. A’A(A.(A’)‘) = (A’AA’)(A’)’ = A’(A)- , which is symmetric 
4. (A’(A’)‘)A’A = A-((A’)‘A’A) = A’((A’)‘A’A) = A+(A’AA+)’ 

= A’(A’)’ = A-A, which is symmetric 

A- = (A’A)‘A’ = A’(AA’)‘ 
A- = A’(AA’) = A+(AA’)’ = A+(A’j’A’ = A’(A’)‘A’ = (A’A)‘A 
A’ = (,&A+ = (A’A)‘A’ = A’(A‘)‘A = A’(A’)*A+ = A’(AA’)’ 

A(A’A)- A’A = A 
A(A’A)‘A’A = A((A’A)‘A’)A = A(A )A = A 

p(A’) = p(AA-) = p(A’A) = p(A) 
Because the rank of a product is less than or equal to the rank of 
any of the factors. p(A) = p(AA’A) I p(AA’) 5 p(A). Therefore, 
p(AA’) = p(A). So, p(A) = p(AA’) 5 p(A’j. Similarly, p(A’) = 
p(A’AA’) 5 p(A-A) 5 p(A). Hence. p(A) = p(A’A) = p(A). 
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Recall that A is a real-valued (nrxn) matrix. If p(A) = m (i.e., A is of full row rank), then 

(AA’)’ exists; so A’ = A’(AA’)’ = A’(AA’) ‘. Also. AA* = Im. Similarly, if p(A) = n (i.e., 

A is of firll column rank), then (A’A).’ exists; so A’ = (A’A)‘4’ = (A’A)‘A’, and A’A = I,. 

After the analogy of the traditional inverse, one might suppose that (BC)’ = C’B’. 

However. the analogue for the MP inverse has an explicit condition: if B (mxr) and C (rxn) 

are both of rank r, then (BC)’ = C’B’. This is proved by noting that BC is the factorization 

discussed in the existence of the MP inverse. Therefore, (BC)’ = C’(CC’)-‘(BIB)-‘B’, which 

because of the full ranks of B and C is equal to C’B+. 

Practically speaking, how does one calculate the MP inverse, rather than just blindly accept 

the results of a software package (e.g., the SAS/IML@ function for A’ is GlNV(A))? In the 

case of a diagonal matrix, A’ is easily determined: first. invert the diagonal elements, 

except that any zeroes on the diagonal are let3 as zeroes; then transpose. This is the 

essence of a generalized inverse. viz., that the inverse of a non-zero scalar is its reciprocal 

and the inverse of zero is zero. If A is not diagonal, things are not so easy. But due to the 

theorem that A* = (A’A)‘A’ = A’(AA’)‘. we can calculate A’ if we know (A’A)’ or (AA’)‘. 

This reduces the problem to calculating the MP inverse of a symmetric real-valued matrix. 

But. as was mentioned in Appendix A, any such matrix can be diagonalized, or factored as 

WAW’, where W is orthogonal and A is diagonal. One can show that WA’W’ satisfies the 

four MP conditions. So even here the problem reduces to the simple case of a diagonal 

matrix (however. the practicalities of the eigenvalue problem are formidable). 
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Consider now the matrices AA* and A’A. One is (mxm) and the other is (nxn), but 

according to a theorem above they are of the same rank as p(A). The third and fourth MP 

conditions state that both matrices are symmetric. But note that (AA*)(AA’) = (AA’A)A’ = 

AA’. Similarly, (A’A)(A*A) = A’(AA’A) = A*A. By definition, if a matrix M has the 

property that MM = M, then it is said to be idempotent. Therefore, AA’ and A’A are 

symmetric idempotent matrices. 

Symmetric idempotent matrices have three useful properties. First, if M is symmetric 

idempotent, then M = MM = MM’, which implies that M is non-negative definite (NND, cf. 

Appendix A). Second, since M is symmetric, it can be factored as WAW’, where W is 

orthogonal and A is diagonal. Then WAW’ = M = MM = (WAw’)(WAW’) = 

WA(WW)AW = WAAW’. Therefore, WAW’ = WAAW’; hence, h = W’(WAw’)W = 

W’(WAAW’)W = AA. This can happen if and only if every diagonal element of A is either 

zero or one. Therefore, every eigenvalue of a symmetric idempotent matrix is zero or one. 

And third, the rank of A is equal to be number of non-zero diagonal elements. Since these 

elements must be either zero or one, the rank of A is equal to sum of its diagonal elements. 

The trace of a matrix is a scalar equal to the sum of the diagonal elements; therefore, p(A) = 

Tr(A). However, the trace has the property that Tr(AB) = Tr(BA) (cf. Judge [ 11: Appendix 

A, 9271). Therefore, since the ranks of M and A are equal. p(M) = p(A) = Tr(A) = Tr(AI) = 

Tr(AW’W) = Tr(WAW’) = Tr(M), i.e., the rank of a symmetric idempotent matrix is equal 

to its trace. 
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Moreover, if (nxn) M is symmetric idempotent, then so too is I, - M; because I, - M is 

symmetric, and (I, - M)& - M) = I, - M - M + MM = I, - M - M + M = In - M. Every 

symmetric idempotent matrix is non-negative definite; therefore O,,,,, 2 M and O,n.n, 2 In - 

M, which last inequality implies that M 5 I,. Therefore. OCn,n, I M I I,. All this shows 

that a symmetric idempotent matrix is an orthogonal transformation of a matrix which is 

like an identity matrix except possibly incomplete. A symmetric idempotent matrix is the 

closest thing to an identity matrix; so it augurs well for the MP inverse that AA* and A’A 

are symmetric idempotent. 

The MP inverse helps in the solution of linear equations. Let Ax = b be a linear equation to 

be solved for x. where A is (mxn), x is (nxp), and b is (n7xp). It is usual for x to be (nx I). 

or a row vector, but at this point we can be general. An important theorem is that Ax = b 

has a solution for x if and only if AA’b = b. Obviously, if AA*b = b, then a solution exists, 

viz., x = A’b. Conversely. if there is an x such that Ax = b. then AA’b = AA’ = Ax = 

b. This is to say that whether Ax = b is consistent or inconsistent depends on whether or 

not AA’b = b. 

The function SOLUTION(A. b) of Appendix G returns x = A’b if Ax = AA’b = b. 

However, due to limitations of computing precision, AA’b may not exactly equal b. It can 

be shown that AA’b = b if and only if (AA’b)‘(AA’b) = b’AA’b = b’b. And because AA 

and I, - AA’ are symmetric idempotent, (AA’b)‘(AA’b) = b’b if and only if their diagonals 

are equal. The function performs a relative check, viz.. that the quotient of each pair of 

diagonal elements is tolerably close to one. 
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If Ax = b is consistent (i.e.. having at least one solution). then there is something special 

about the solution A*b. viz.. for every solution x. (A’b)‘(A h) 5 x’x. with equality obtaining 

if and only if x = A-b. The proof of this makes USC of theorems from both Appendix A and 

this appendix, as well as of the fact that Ax = b: 

02(x-A+b)‘(x-A’bj (with equality if and only if x = A’bj 

=(x-A’(AA’)‘b)‘(s-A’(AA’)‘b) 

=(x’-b’(AA’j’A)(s-A’(AA’j‘h) 

= s’x - x’.4’(AA’)’ h- b’(AA’j’ Ax + b’(A4’)‘AA’(AA’)‘b 

= x’x - (As)‘(AA’) b - b’(AA’)’ Ax + b’(A)\‘) AA’(AA’)’ b 

= x’x- b’(AA’)’ h- b’(AA’)’ b + b’(AA’) :\A’(AA’)‘b 

= x’x - b’(.i\A’)’ b - h’(AA’)- b + b’(AA’). h 

= x’s - b’(AA’). b 

= x’x-b’(A’)-A.b 

= x’x - b’(A )‘A h 

= x’x-(A b)‘(A’b) 

If for the moment we restrict x to an (nx I) row vector. then x’x represents the square of the 

distance of x from the origin of Jr-space. Therefore. x = A’b is the solution closest to the 

origin. It can now be seen that the previous theorem. that As = b has a solution for x if and 

only if AA-b = b. is tantamount to stating that if Ax = b has a solution, then it has a solution 

closest to the origin. 

.4nother way of understanding how the MP inverse works is to consider the mapping from 

n-space (xj to m-space (y): x + (Ax = y). An inverse should undo the mapping: (x = A’y) 

t y. However, the mapping from x to y may be many-to-one. in which case returning to x 

from y is impossible because of the multiplicity of candidates for x. In this situation the 
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MP inverse does the next best thing; it maps back to the candidate closest to the origin of n- 

space. 

The MP inverse helps in the solution of the least-squares problem. viz., to find the value of 

p which minimizes (y - Xp)‘(y - Xp). Searle [ 17: SO] and Judge [I I: 190-1921 show that 

the minimizing value solves the equation X’XP = X’y (frequently called the normal 

equation). If X is of full column rank, then (X1X)-’ will exist and the solution will be 

unique: p = (X’X) ‘x’y. However, the normal equation has a solution, irrespective of the 

rank of X, because X’X(X’X)‘X’y = X’y: 

X’X(X’X)’ X’y = x’xx*(x’, * X’y 

= (X’XX * )(X’) * X’y 

= X’(X’)‘X’y 

= X’y 

So the general solution of the minimization problem is p = (X’X)‘X’y = x’y. When X is 

not of full column rank (in other words, X is multicollinear), then this solution is not 

unique; however, of all the solutions it is the one closest to the origin. 

The MP inverse plays a role in the multivariate Cauchy-Schwartz inequality. Let C be 

NND, and partitioned into quadrants. Then, by the rules of partitioned matrix 

multiplication (Eves [5: 37-401): 
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If Z is PD, then all the instances of ‘2‘ in the previous proof may be replaced with 2’. 

Finally, we will use the MP inverse to build the solution set {x: Ax = b}. As before, A is 

(mxn), x is (nxp), and b is (mxpj. Unless AA’b = b there is no solution; so we will assume 

that A’b is one solution. First, Ax = b if and only if A’Ax = A’b. For if Ax = b, then 

A’Ax = A’b. Conversely, if A’Ax = A’b, then Ax = A(A’Ax) = A(A’b) = b. The form 

A’Ax = A’b is convenient because the (fzxn) matrix A’A is symmetric idempotent. Also we 

know the rank of A, which we will call r, because r = p(A) = p(A’A) = Tr(A’A). And let s 

=n-r. 

Next, A’A can be factored as WAW’, where W is orthogonal and A is diagonal. In 

SAS/lML@ the subroutine EIGEN(A, W, GINV(A)*A) returns W and A. As shown above, 

the diagonal elements of A must be zeroes and ones; and W and A can be arranged such 

that the ones occupy the first r places of the diagonal. (The subroutine EIGEN orders the 

eigenvalues in descending order.) What we have done to this point is expressed as follows: 
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Ax = b 

A’Ax=A’b 

WhW’x=A’b 

W 1 or,, 11, [ 1 Q OS,, 
W’x=A.b 

**I 

Now multiply both sides by w’. and let y = W’x and c= W’A’b. Since W is orthogonal. this 

multiplication is a transformation which looses no information: i.e.. it is reversible. The 

solution set of y corresponds one-to-one with the solution set of x. Partition the first r rows 

of y as y,, the remaining s rows as yz; and do similarly with c. Employing partitioned 

matrix multiplication at the end. we have: 

W’x= W’A.b 

1 O,~, I-r [ 1 0 OS”, W’x = W’/Z ‘b 
s.r 

Therefore, the solution set of y is any (nxp) vector whose first r rows equal c,; the last s 

rows of y are irrelevant. That c,. the last s rows of c = W’A’b, must be zero is a 
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consequence of the tall that A’b is a solution for s: if c? were not zero. then Ax = b would 

be inconsistent 

The last step is to transt’orm back to x = I,+ =W(W’x) -; Wy. also partitioning the first r 

columns of W as W, and the lasts columns as W,: 

= WW’A b + W 

=A’b+W ’ 
[I Y? 

=A’btW,y, 

It should be noted that W,‘W, = I,, W,‘W, = 0, and W;M’: = I,Y due to the orthogonality of 

W: 
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Therefore. p(W,) = s; and y? = W2’(W,y,) = W,‘(x - A’b) 

To summarize, to generate all the solutions of Ax = b, calculate A* and determine whether 

A’b is a solution. If it is not, then the equation is inconsistent. But if A’b is a solution, then 

calculate A’A and r = Tr(A-A). Next, diagonalize A’A as WAW’, and note the columns of 

A which contain the zero eigenvalues. Select the same columns of W, and call this 

submatrix V (V’V = 1). Then x is a solution if and only if there exists a y such that x = A’b 

+ Vy. If A has no zero eigenvalue, then A’b is the only solution. If x is (nx l), then (x: Ax 

= b} will be an n - T dimensional subspace of n-space. 
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Appendix C 

The Linear Statistical Model and Best Linear Unbiased Estimation 

A stafistical model is an explanation of a random vector (y) as the sum of a known function 

v) of an unknown vector (B) and an error vector (e): 

Y ,r, = f@,,,) + e,,, 

Although S is not known, it is not random; an estimator of B is random, but /3 itself is not. 

What injects randomness into y and an estimator of B is the error term e. The purpose of 

AD) is to specify the expectation of y; hence, E[e] = 0. The variance of e is known at least 

to within a proportionality constant; i.e., Var[e] = C = c-r%, where at least Q, is known, and 

possibly cr2 also. When we say ‘known’ in this context, we mean ‘taken for granted’ rather 

than ‘known for certain’. In this appendix no assumption is made as to the probability 

distribution of e. 

A linear statistical model is one whose function is linear: 

f(Pk,, 1 = XP 
... Y,xt = L Pk.., + e 

X is often called the design matrix, and its columns are sometimes called control variables. 

The elements of /3 are variously called parameters and effects. There is much talk 

nowadays about non-linear processes; so one might be inclined to disparage a linear model. 

However, in practice, the functions of non-linear models are differentiable; and Taylor’s 

theorem shows that such functions are by locale approximately linear. In multivariate 

terms, in the neighborhood of p,, (Judge [I I : 508-5 11 I): 
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df 
Y = .f(P,) + T$ 8=p,, (P - I% I+ e 

Therefore, we consider linearity to be not much of a drawback, and to be the phase 

analogous to walking. which comes in between crawling and running. 

Most presentations of the linear statistical model dwell on how to estimate 0. But here a 

wider approach will be taken. Suppose that the [ rows of the y are of two types, those 

which have been observed and those which have not. The observed portion of y we will 

call y, and say that it is ([,x1): the unobserved will be y? and ((+I). Of course, I, + r, = 1. 

We can also arrange the rows of the model such that the observed portion comes first. 

Similarly partition X and e, so that the model looks like: 

Being unobserved. yz contains missing values. The error term e. like p. is not knowable; 

however, its expectation is zero and its variance is known IO be C (or proportional thereto). 

Both y, and X are known. the first by observation and the second by design. It will be our 

task to formulate an estimator of yz based on y,. X. and Z. In particular, we want the 

estimator to be linear in y,. to be unbiased, and to he in some way optimal; i.e., we want the 

best linear unbiased estimator (BLUE) of y?. 

To be linear the estimator must be of the form y2 = Ay, + b However, in the case that y, 

were observed to be zero. it would be most natural to assume that B = 0 and Z = 0, which 
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would make zero the most reasonable estimator for y!. ‘Hxrcfore. we can consider b to be 

zero. and the estimator to be of the form y? = Ay, . where A is (I+ /,) and some function of 

X,, X?. I,,, L,!. L, ( = I,?‘. cf. Appendix A). and I.,> .~ 

For the estimator to be unbiased the following must hold. regardless of the value of !J: 

W? I = E[Y 2 I 
But E[y?] = E[Ay,] 

=AE[y,l 
= AE[X$ + e, 1 

= A(X,P + E[c, 1) 
= .I\x,p 

And E[y!l= EtX$+ezl 
= XJ3 + E[e, ) 

=X$ 

Therefore. fix all p. AX,0 = X$. p is a (kxl) row vector. but we could join columnwise I 

such vectors to t‘orm a (kxl) matrix B. and it would still hc true that for all B, AX,B = X,B. 

From the CBSC that B = lk. we conclude that AX, = X!. The converse is obvious; therefore. 

Ay, is an unbiased estimator ofy, if and only if AX, = X, 

We do not know how yI, when it will have been observed. will differ from its estimator. If 

we had information about this, ue could use it to improve upon the estimator. But we can 

say that of competing linear unbiased estimators the best estimator is the one the variance 

of whose prediction error is smallest: 

Var[y, - i2] I Var[y, - y2 ] . or 

O<Var[y, -y?]-Var[y, -jlJ 
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As explained in Appendix A, this means that the right-hand side of the second inequality is 

non-negative definite (NND). The estimator with the caret is at least as good as the one 

with the tilde; and if the expression is non-zero, it is better. 

We now show that when A, = Zz,Z;: +(X2 -Z,,Z;:X,)(X;Z;:X,)-‘X;Z;:, 9, =A,y, 

is the best of all the linear unbiased estimators of y2. The only requirement for A, to exist is 

that both C,, and X,‘C,,“X, be nonsingular. This makes both Z,, and Z,,” positive definite; 

so, according to the last theorem of Appendix A, X,‘Z,,“X, is nonsingular if and only if X, 

is of full column rank. In practice this is usually met; and later it will be shown how to 

handle a non-singular C,, and an X, of less than full column rank. & depends only on the 

partitions of X and Z. things which are known. (Even if only @ = I/o* is known, A,, is 

invariant with respect to I?.) Moreover. A, makes for an unbiased estimator, since: 

A,X, = (L,C;: +(X1 - C,,C;:X,)(XlZ;:X,)-‘X:Z;:)X, 

= z,,z;;x, +(X2 - ~2,~;:x,)(x;~~:x,)-‘(x;~;~x,) 

= zL,c;;x, +(X2 -z*,z;:x,) 

= x, 

The proof that the estimator with A, is best begins as follows: 

But: 
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Wi, -hl=WA,y, -AY,I 
= VW% - NY, I 
= (A, - NWY, IV, - A)’ 
=(A,, -A)Z,,(A, -A)’ 

20 

C,, is an NND matrix. Rut requisite to the existence of A+ it is also non-singular. 

According to Appendix A, a non-singular NND matrix must be positive definite (PD). 

Therefore. (& - A)Z,,(A, - A)’ = 0 if and only if A = A,. As for the covariance term: 

CWY, -92, i, -AI=CWY, -A,Y,, A,Y, -AY,I 
=(WY, -by,, (A, -A)Y,I 
=CNY, -by,, y,l(A, -A)’ 
=(‘WY,, Y,I-~vLA,Y,, y,lXA,, -A)’ 
=OV[Y,. ~11 -A,Cov[y,. YI IXA,, -A)’ 
=(C:, -AJ,,)(A, -A)’ 

=G,, -P&;: +(X, -z,,z;:X,)(Xlc;:X,)-‘X;z;:)z,,)(A, -A)’ 

=P,, -P,, +(X, -C2,~;:X,)(X;C;:X,)-‘X;))(AO -A)’ 

=-(X, -z,,c;:X,)(X;cT:X,)-‘Xl(A, -A)’ 

=-(X1 -~~,z;:X,XXlc;:X,)-‘((A,, -A)x,)’ 

=--(X2 -~2,~;:X,XX;~;:X,)“(AOX, -Ax,)’ 

=+x2 -~:?,c;:x,)(x;~;:x,)-‘~! -X2)’ 
=o 

Therefore: 

Var[y, -y,]=var[y, -f,]+cov[y, -i,, 3, -~~l+cov[Y? -92. Y, -~*l’+VaGY* -%I 

=Var[y, -y,]+O+O’+(A, -A)C;:(A, -A)’ 

= Var[y, - y,] + (A, - A)z;: (A, -A)’ 
zvar[y, -y,] (tithequalityifandonlyifA=A,) 

~mts, 9, = (z,,Z;~ +(X2 -C2,Z;:X,)(X:C;:X,)-‘X;C;:)y, is the best linear unbiased 

estimator of yz, 
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The variance of the prediction error is determined as follows: 

Var[yz -?,I= VW, -A,y,l 
=COV[Y, -A,Y,,Y, -A,y,l 
=~ov~~,~y,l-~ov~y,.A,~,l-~ov~A,,~,~~,l+~ov~A,~,~A,y,] 
=~~~~Y,~Y,~-~~~~Y,~Y,~~;, -A,~ov[y,,y~l+A,Cov[y,,y,lA~ 
= 13,> -%,A:, -.4,X,, +A,Z,,A; 
= L: -A,Z,, +(A&, - &,)A; 

But: 

(&,I,, -&,)A;, = (C,,z;,’ +(X, -C,,Z,:X,)(X;C;,‘X,)~‘X;C;:)Z,, -&,)A;, 

= (I;, +(X2 - Cz,Zl:X,)(X;C;:X,)-‘X; -&,)A; 

= (X2 - zz,~,:X,)(X;C;:X,)~‘X;A;, 

=(Xz -z?,~.;:x,)(x;c;:x,)-‘(,~~,x,)l 

=(x’ - ~:2,~;:x,)(x;c;:x,)-‘xI, 

Also: 

-A,& = -(C,,E;; +(X1 -c,,z;:X,)(X;z;:X,)-‘X;c;:)c,z 

=-c,,z,:q2 -(Xz -~,,~;:x,)(x;~,:x,)-‘x;c;:~,, 

Therefore. 

These formulas for the best linear unbiased estimator of y? and the variance of its prediction 

error are complicated: however. an insight will reduce them to more familiar terms. As a 

special case of y2 = XJ3 + ez consider X2 = lk. and Var[e,] = & = 0. If & = 0. then for the 
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whole (1x0 E variance matrix to remain NND the covariances IL,? and x2, must also be zero. 

Then yZ = p. and the estimator of y? will be the estimator of!3 The formulas reduce: 

p=jl, 

=(L,c;: +(x, -c,,z~~x,,(x~r,;~x,,-‘>c~z;:,y, 

=(oc;; +(I, -b& ,)(x;c;:x,)-‘x;c~:,y, 

=(x;z;,‘x,)-‘x;q,‘y, 

Var[b] = Var[j3 - p] 

= Var[y> -f? I 
= Lz - L,c;:x,> +(Xz - L,x.;:x,)(x;~,:x, P(X2 - ,L,x;;x,y 
=o-oc;;o+(l, -o~,;:x,)(x;zl:x,)-‘(I, -oz;;x,y 
= (x;x.;;x,)-’ 

These formulas regarding the estimator of p are then inserted into the general formulas: 

These are the more familiar forms that are found in other works, e.g.. in Halliwell [8: 

Appendices A and C]. forms that are derived from the least squares principle. Thus, best 

linear unbiased estimation gives the same results as does least squares. 

It is instructive to see how the formulas work on the following simple model: 
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The estimated rows are of the same form as the observed rows; even the variance of the 

estimated rows, I&, is equal to the variance of the observed rows, C,,. As a first case of this 

model let C,, = &’ be zero. Therefore. the observed rows and the estimated rows are like 

two random samples from the same distribution. Accordingly, 

$2 = Kc1 +%J;:(Y, -X,P) 

= x,p +oz;: (y, - Xj) 

= x,b 

Var[y, -+z]=(C12 -~?,~;:~,?)+(X2 -L,Z;:~,)Va4)(& -C,,xL:X,)’ 

=(C,, -OE;:O)+(X, -OZ;:X,)Var(p)(X, -OZ;:X,)’ 

= z,, + x,var(b)x; 

As a second case. let L, = C,,’ = Z,,. The simplest interpretation of this case is that the 

observed rows and the estimated rows are the same sample. Then: 

92 =X,i+~,,q:(r, -x,P, 

=x,i+z,,z;:(Y, -x,b 

=X,P+(y, -x,6, 
= YI 

Var[y? -i2]=(Cz2 -Z1,C;:C,,)+(Xz -&~;:X,)Var(IG(X, -C2,CL:X,)’ 

=(c,, -Z,,Z;:Z,,)+(X, -Z,,Z;~X,)Var(lj)(X, -~,,~;iX,>’ 

=(C,,-r_,,)+(X,-X,)Var(B)(X,-X,)’ 
0 

This makes sense: If the model dictated that the same thing would happen twice, then the 

best estimate would be what had been observed; and there could be no different outcome 

the second time 
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Usually C is known only to within a proportionality constant. i.e., d, of the equation Var[e] 

= Z = o% is known and t? must be estimated. 0’ can be estimated as follows. First, let: 

0, =y, -x,6 

= y, -x,(x;~,,‘x,)-‘x;~,~‘y, 
II III =(l,, -x,(x,@,; x,j- x,q )Y, 

Also. E[i,] = E[(I,, - X,(X;@,;‘X, )-IX;@,-;)y,] 

= (I,, - X,(X;~,‘X,)-‘X;~,,‘)E[y,] 

= (I,, 
I , 

-x,(x;@,: x,1- xl@,; I W,P 

=(x, -x,(x;~,,‘x,)-‘x;~~,-,‘x,)p 

=(X,-X,)0 
=o 

Then, using the trace operator of Appendix B and the fact that Var[y,] = Var[X,p + e,] = 

Var[e,] = C,, = c%,,, we have: 
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E[6;0;;;:i, ] = E[Tr(il0,,‘ii,)] 

= E[Tr(U&O;)] 

=Tr(E[U$iS,C;]) 

=Tr(@;:E[8,f;]) 

= Tr(U$;:Var[k,]j 

=Tr(U$Var[(I,, - X,(X;~;;:X,)-‘X;~,;:)y,]) 

=Tr(D;;(I,, -X,(X;~;;:X,j“X;~~;:)Var[y,](I,, -X,(X;~~:X,)“X;~~;:j’j 

=T@,;;(I,, - X,(X;~;;lX,).‘X;~;;:)02~,,(I,, - X,(X;~,;lX,j-‘X;~~;lj~) 

=o’Tr(0;;(1,, -X,(X;~~;:X,)-‘X;~~;:j~,,(I,, -X,(X{@;;X,)-‘X;0;;)‘) 

=o*Tr(@;,‘(@,, -X,(X~U$X,j~‘Xlj(l,, -X,(Xl~~;:X,)-‘X;~;:j’j 

=o’Tr((I,, -~,-lX,(X;~~;:X,)-‘X;)(I,, -X,(X;~~~X,)“X;~~;:)‘) 

=o’Tr((I,, -~,;lX,(X;~~:X,)-‘X;,(I,, -~,;:X,(X;~~;lX,)-‘X;,) 

=02Tr(I,z -q;x,(x;q;:x,)“x; -q;:x,(x;q:x,)-‘x; +q;:x,(x;q;:x,)“x;j 

=02Tr(l,, ’ ’ ’ ’ ’ -q,x,(x,~;,x,)~ x,1 

=o’Tr(I,,)-o’Tr(Q;~X,(X;U$X,)“X;) 

=&Tr(I,, j-o’Tr((X;~;:X,,‘X;cD,‘:X,) 

= o’Tr(I,, j - 02Tr(Il ) 

=a’(/, -k) 

qD,,;‘6, 
Therefore, one can estimate CS’ as (32 = r, which estimator is unbiased because 

I 

E[&‘] = 
E[i;@,-,‘C,] _ cr’(/, -k) _ oz, 

I, -k [,-k 

This approach to the linear statistical model and estimation should be compared with Gary 

Venter’s profound chapter on credibility [ 193. Venter concentrates on what he, borrowing 

from Arthur Bailey in the 1940s. calls “greatest accuracy credibility.” This subject, he says, 

has two subdivisions, least squares credibility and Bayesian analysis [19: 383-3871. As an 
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illustration of least squares credibility. he set forth N risks. each one being observed over n 

years. ,Yir, represents the pure premium of the i”’ risk in year II [19: 4164181. and an 

estimator is sought for .li,,,. the pure premium of the g”’ risk in a future year. The desired 

estimator will be linear in the -I’,r,s. using “the weights (a‘s) that minimize” [ 19: 4181: 

E[,Y,,, -(a,, +-&L-L )I’ 

Venter assumes a variance structure which Searle calls ;I one-way random effects model 

[ 17: 4731. and minimizes the mean squared error by differentiation with respect to the a’s, 

Me calls the result a credibility formula: 

Thus the best linear estimate of ,I&, turns out to be a credibility formula. 
This formula can alternatively be derived as the least squares linear estimate 
having o,, = 0 but constrained to be unbiased \ 19: 4231. 

Thus Venter is essentially doing best linear unbiased estimation on a linear model. The 

author hopes that actuaries will begin to see the subject of credibility from the perspective 

of statistical modeling. 

A desirable property of best linear unbiased estimation is that it is a linear operation, which 

will now be proved. Consider the linear model: 

y, =X,o+e, c,, Xl? c,, 
yz = Xlp+e, Z = C,, Z:,. Z,, 
y, = X,P+e, I- I Cl, ZI, x,, 

The second and third groups are unobserved. and we wish to estimate the linear 

combination y4 = D,y, + D,y, = (D2XI + DIX,)p + D,e, + D,e, = (D2X2 + DIX,)p + e4. The 

variance matrix is: 
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Then: 

(0,y2~D,y,)=(‘;,,z;: +((D,X, +I,,X,)-c,,r,;:X,)(Xlc;:X,,-‘Xlr;:)y, 

-((D& +D,&,G;: +((D,Xz +D,X,)-CD&, +Dlz,,)Z;:X,XX:~~~X,)“X;C;:)y, 

=((D,zl,)Z;; +((DIX,)-(D,~,,)Z;:X,)oclx;:X,).’XIZ;:)y,+ 

W,&,)G +(@,x,)-(D,z,,)z;:x,)(x;c;:x,)-‘X;z;:)Y, 
= D1CX:,J;: +o(, -C,,Cl:X,Kx:z;:X,)-‘X;Z;:)y, + 

D,(C,,C;; +(X, -Z,,Z;:X,)~:C;:X,)-‘X;c;:,y, 
=D2f: +Dz$, 

Now consider the linear statistical model with a constraint on p: 

yI = W+e, 
b rm, = A,,,x,P,x, 

yI = X,P + e, 

where p(A) = I’. Let s = k - r. Assume that the constraint is consistent. Then, according to 

Appendix B, there exists a (kxs) matrix V such that V’V = Is, and every solution will be of 

the form p = A’b + Vy, for some (3x1) y. Therefore, we can transform the model into an 

unconstrained model in y: 

y, = X,(A’b+Vy)+e, 

yz = X,(A+b+-Vy)+e, 

(Y, - X,A’b) = (X,W +e, 
(y2 - X,A+ b) = W,Vy + ez 
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It was required that X,‘Z,;‘X, be nonsingular. Since it is NND, then it must be also PD. 

And since V’V = Is, p(V) = .r. From the last theorem of Appendix A we can infer that 

V’(X,‘Z,;‘X,)V = (X,V)‘C,;‘(X,V) is PD, which implies that it is non-singular. Hence, the 

transformed model satisfies the requirement. 

Hence, relying on previous theorems of the appendix, we have: 

i, = (i, - X,A+b) + X,A+b 

A 
=(y2 -(X,A+b))+X,A+b 

A 
= (y2 - X,A+b)+ X,A+b 

=(X,V)f +C,,Z;;((y, -X,A+b)-(X,V)q)+X,A+b 

=X,(A+b+V~)+Z,,Z;;(y, -X,(A+b+Vf)) 

A A 
=Xz(A+b+Vy)+C&;;(y,-X,(A+b+Vy)) 

= x2i + w;:(Y, - xh 

Var[y, -~2]=(x,v-c,,~:;:x,v)var(y^)(x,v-~,,c;:x,v)'+(c, -x*,c;:c,,) 

=(X, -c,,c;:x,)war(~)v'(x, -z,,c;:x,)'+(c, -c~,z;;z,,) 

'(Xz -c,,z;:x,)wv~)(x, -z,,~;:x,)'+(~, -Z,&$,) 

=(X2 -C,,Z;;X,)Va.r(A+b+V~)(X, -C,,C;;X,)‘+(C, -&,C;;C,,) 

=w, -~,,~;:wwhx, -w;:x,)‘+&2 -LW,) 

Therefore, even though the transformation puts the model into y-space, the results can be 

transformed back into p-space. 

Before proceeding to relaxing the requirement that Z,, be non-singular, consider the 

transformation of the observations by a (r,x t,) non-singular matrix D: 
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Dy, = DX,o + De, z’ = DC,,D’ Dx,? 
Y: = X$+e, C,,D’ 112 1 

Then: 

y2 = (L-,,D’(DZ,,D’).’ +(X2 - TJ)‘(U T,,D’).‘DX,)(X;D’(DZ,,[)‘) ‘1)X,) ‘X;D’(DZ,,D’)“)Dy, 

= (Z,,(DZ,,)“ +(X1 - L,(DZ,, )-‘DX,J(X;(DT,,)‘DX,) ‘X;(IE,,I’IDy, 

=(~J;w +lX,-~~,‘,:X,lo( ;x;:x,) ‘x;z;p’,Dy, 

~(\‘,,~,:+o;:-z,,z,,1x,)(x;z;:x,) ‘x;z,:)y, 

Var(y: - j,J = I,? - L,D’(DZ,,DT’DZ,, +(X1 - Z2,1)‘(DZ,,D’).‘1)X,)(X;I)‘(D-,, 7 D’).‘X,j ‘(X, - Z:,D’(DZ,,D’)-‘DX,)’ 

=(x2 - Z,,Z,,1X,wr(~)lX: - ‘,,Z,,1X,)‘t(L, - z,,Z;:r,,) 

Therefore, a non-singular transformation of the observations has no effect on the estimator 

of y1. 

NOW suppose that (I,X I,) Z,, is singular; in fact, let p(C,,) = r < i,. and let s - [, - r. Then 

(cf. Appendix A) C,, can be diagonalized as WAW’. where W is orthogonal. Moreover. A 

can be arranged such that the eigenvalues are in descending order. which makes the first r 

diagonal elements of A positive and the remaining .F Lsro. According to the previous 

theorem. the observations can be transformed by W’ without affecting the estimator: 

W’y, = W’XJ3 + W’e, c’ = 
I 

W’Z,,W w’z,2 
yt =X,P+q c,,w %, 1 

where W’E,,W = W’(WAW’)W = 14 = ,^r 
0 i 1 OrS’ I.7 >.l 

Let W,’ be the first r rows of W’. and y2’ be the last .r rows. Equivalently. let W, be the 

first r columns of W, and Wz be the last s columns. As mentioned in Appendix B, because 
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W is orthogonal. W,‘W, = I,+. W,‘W? = 0,..,. and W,‘W, = I,\. Then the model can be written 

W,‘y, = W;X,p + W/e, 

i 

11, or., W,‘Gz ,?I* 
W;y, = WijX,p+W;e, 2’ = O,“, 0 \I W2)CIz \+ 

y: = X$+ez &WI rt., x:;w: I,.< %2 I,,,: 

But whenever a NND matris has a zero diagonal element. the entire row and column 

intersecting that element must be zero. Therefore, WiZY:,, and its transpose must be zero. 

Thus the transformed model becomes a model with a constraint on fi: 

Since X, is still assumed to be of full column rank. the requirement that both Ar and 

(W,‘X,)‘A+‘(W,‘X,) be non-singular is satisfied; therefore. as long as the constraint is 

consistent. there is a best linear unbiased estimator of y,. For a slightly different treatment 

of this subject see Amemiya [I : 1851. 

According to the last theorem of Appendix A, If C,, is non-singular and X, is of full column 

rank. then X,‘Z,;‘X, is PD. and hence non-singular. But iJ_ Z,, is non-singular and X, is not 

of full column rank (or. X, is multicollinear) then X,‘Z,;‘S, will be singular. It is natural to 

try (X,‘I, ;‘X,)‘ in the definition of A,: 

yz =A,y, =(C,,C;; +(X2 -Z,,C;:X,)(X;Zl:X,,‘X;C;:)~, 

The proof that this estimator is best will still hold when the traditional inverse is replaced 

with the MP inverse. However, the unbaisedness of the estimator is imperiled. This will be 
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demonstrated in the following, which uses MP theorems of Appendix B and the theorem 

that the PD matrix Z, ;’ can be factored as W’W. First: 

z;~x,(x;z;~x,)+x;z;~x, = w’wx,(x;w’wx,)+x;w’wx, 

=W’(WX,)((WX,)‘(~,))‘(~,)‘(~,) 
= W’(WX,) 
= c;;x, 

Then: 

A,X, = (C,,E;; +(X2 -C,,C;:X,)(X;C;:X,)+X;C;:)X, A,X, = (C,,E;; +(X2 -C,,C;:X,)(X;C;:X,)+X;C;:)X, 

= z,,c;;x, +x,(x~c;;x,)+x;z;;x, -z,,z;:x,(x;z;:x,)+x;z;:x, = z,,c;;x, +x,(x~c;;x,)+x;z;;x, -z,,z;:x,(x;z;:x,)+x;z;:x, 

=&,q,‘x, +x,(x;c;:x,)*x;z;~x, -c,,z;:x, =&,q,‘x, +x,(x;c;:x,)*x;z;~x, -c,,z;:x, 

= x,(x;z;;x,)+x;z;:x, = x,(x;z;;x,)+x;z;:x, 

But the estimator is unbiased if and only if A&, = X,. When X, is multicollinear, the 

equality is spoiled by the addition of the symmetric idempotent (X,‘~,,“X,)‘X,‘C,,“X,. As 

mentioned in Appendix B, such a matrix is the closest thing to an identity matrix. But all 

we can say is that the estimator is close to being unbiased. However, if there is a matrix D 

such that X2 = DX,. then the estimator is guaranteed to be unbiased: 

A,X, = X,(X;Z;;X,)+X;Z;;X, 

= DX,(X;C;,‘X,)+X;Z;,‘X, 
I ,I* I 

=W,G,X,(X,F,X,) W;,X, 
= DZ,,Z;;X, 
= DX, 
= x, 

In other words. if the design matrix of the estimations has the same linear dependencies as 

the design matrix of the observations, then multicollinearity is inconsequential. 
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Appendix D 

Confidence Ellipsoids and Chebyshev’s Inequality 

Appendix C touched on Gary Venter’s discussion of greatest accuracy credibility, but was 

not the place to dwell on the subject. The term “greatest accuracy credibility” originated 

with Arthur Bailey [3: 201. Venter subdivides this into two parts, least squares (LS) 

credibility and Bayesian analysis 119: 383f.J. Though best linear unbiased estimation 

(BLUE) provides a more general approach to the linear statistical model than does LS, 

Appendix C noted that the two approaches produce the same results. Therefore, Venter’s 

evaluation of least squares credibility applies in part to BLUE; and the author wishes to 

defend BLUE against some of his criticisms of LS credibility. 

In comparing LS credibility with Bayesian analysis Venter says: 

An apparent advantage of credibility over Bayesian analysis is that 
distributional assumptions are not needed for credibility. That is, credibility 
gives the best linear least squares answer for any distribution, whereas a 
Bayesian analysis will be different for different distributions. There are two 
problems with this conclusion, however. First, . . when the Bayesian 
estimates are not linear, as in the case of most highly skewed distributions, 
credibility errors can be substantially greater than the Bayes’ errors. Second, 
when Bayes’ estimates are linear functions of the data, postulating normal or 
gamma distributions will give the same answer as credibility, because the 
Bayesian predictive means are linear in the observations for these 
distributions. Thus credibility analysis gives the same answer as assuming 
normal (or gamma) distributions and doing a Bayesian analysis, and it gives 
a useful answer only in those cases where normal or gamma distributions 
would be reasonable. 

. . . An advantage of Bayesian analysis is that it gives a distribution around 
the estimate, so that the degree of likely deviation from the estimate can be 
quantified. [ 19: 386f.1 
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Obviously. if the distribution underlying the error vector e of a statistical model is highly 

skewed, then employing knowledge of the distribution will improve the estimation. (Since 

E[e] = 0, conventional distributions must be centered around their means.) But actuaries 

usually are content to work with such light-tailed distributions as the gamma; perhaps only 

in reinsurance (Venter’s specialty) is there need to use heavy-tailed distributions, the 

“grand-daddy” of them all being the transformed beta distribution [ 19: 4801. 

The great advantage of BLUE, which cannot be said of Venter’s LS formulation, is that it is 

multivariate. A (/?xl) random vector. yz, is estimated LI.Y o WC/; there are not I, separate 

estimations. This is the basis for the “conjoint prediction” of the body of this paper. And 

BLUE minimizes the variance of the prediction error NS (I unir, relying on the concept of a 

non-negative definite matrix (Appendix A). This does justice to Arthur Bailey’s criterion 

that estimates should be optimal overall and not necessarily piece-by-piece [3: 131. 

Also, when loss triangles are involved, whether in ratemaking or in reserving, invariably the 

sum of many cells in the triangle is more important than tbe individual cells themselves, So 

even if the error of each cell is highly skewed, the sum of many such cells may not be 

significantly skewed. Moreover. Venter himself says: 

A useful alternative when working with highly skewed distributions is to 
transform the data, e.g.. by taking logs, before doing the analysis. The 
purpose of this is to get distributions which are closer to the normal or 
gamma. so that the credibility estimator is more nearly optimal [l9: 3873. 
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This is good advice. and statisticians and econometricians frequently transform their data 

for the reason specified by Venter. The only drawback when this is applied to loss triangles 

is that if one desires the estimate of a sum of cells. c.g.. X, + X,, and one has log- 

transformed the data. it is not true that X, + X, = exp(ln(X,) + In(X,)). 

But what Venter says about LS credibility. that it does not give a distribution around the 

estimate, is not true; at least it is not true when translated into BLUE, since BLUE yields 

the variance of the prediction error. Var[g, - yI]. 

Multivariate variance is extremely powerful. Consider an (rtxl) random vector x. whose 

(nxl) mean is p and (nxn) variance is 2 Stating that x is within a certain distance from p 

to a certain confidence has little relation to how close each element xi is to the 

corresponding pi. In fact. the notion of multivariate distance needs clarification. For an 

(nx I) vector x. x’x represents the square of the distance 01.x from the origin of n-space. and 

(x - p)‘(x - p) = r2 represents a sphere in n-space with center IL and radius r. It is logical to 

use this measure of distance with a random vector of mean u and variance I,. 

Now suppose that x has mean p and positive definite variance Z. Then according to 

Appendix A C is non-singular and there exists a nonsingular W such that Z = WW’. And if 

y = W-‘(x - JJ), which happens if and only if x = Wy + u, then E[y] = 0, and Var[y] = 

Var[W-‘(x -cl)] = W”Var[(x - p)]( W-‘) = W-‘Z(W.‘) = W’WW’(W-‘y = (W-‘W)(W-‘WY = 

I,. Since y’y is the appropriate measure for y, then the appropriate measure for x is: 
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y’y = (w-‘(x-~))‘(W.‘(X-~)) 

=(x-p)‘(W.‘yw-‘(x-p) 

= (x - p)‘(W’).‘w-‘(x - 11) 

=(x-p)‘(WW’).‘(x-p) 

=(x-p)T’(x-p) 

The last expression defines an ellipsoid with center p and axes of lengths proportional to 

the square roots of the eigenvalues of Z (cf. Johnson [ 10: I3 I]). C also determines how the 

axes of the ellipsoid are oriented with respect to the axes of n-space. 

In the case of the multivariate normal distribution (cf. Johnson [IO: 126-1331 and Judge 

[II: 970-9731) the densest confidence regions are ellipsoids. But regardless of the 

distribution Chebyshev’s inequality provides an ellipsoid guaranteed to enclose a certain 

confidence level. The proof depends on theorems from Appendices A and B, using the 

notation of the previous paragraph: 
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n = Tr(l,) 

= Tr(Var[W-‘(x- p)]) 

= Tr(E[(W”(x- p))(W-‘(x- p))‘]) 

= E[Tr((W“(x - p))(W-‘(x - p))‘)] 

= E[Tr((W-‘(x-p))‘(W”(x-p)))] 

= E[Tr((x-p)‘(W-‘)‘W-‘(x-p))] 

= E[Tr((x - p)‘C.‘(x- p))] 

= E[(x - p)‘Z.‘(x - p)] 

= I(x-p)‘Z’(x-p)dF(x) 

= j(x-p)‘z”(x-p)dF(x)+ 
(I-L).x-‘(*-“)<r: 

j(x-p)Y(x-p)dF(x) 
(r-p).I.‘(x-,,kr! 

> j(x-p)‘c.‘(x-p)dF(x) 
(x-p).P(x-,tI1I’ 

2 Jr2 dF(x)=r’Prob[(x-p)‘C.‘(x-p)Tr*] 
(x-,t)~r’(r-,,~r~~ 

:. Prob[(x - p)‘Z.‘(x - IL) < r’] z I - -!- 
r* 

Hence, if one wishes to enclose at least p = 1 - n/2 of probability, then one should choose r 

as sqrt(nJ 1 - p)). 
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Appendix E 

The Allocation Problem 

An interesting and important application of the linear statistical model involves what might 

be called quasi-observations. The form of this model is: 

AY, = AX$ + Ae, 

yt =X$+e, 

It can be seen that the observed rows of the model are a matrix times the unobserved rows. 

Therefore, the subscript will be dropped: 

Ay=AXP+Ae 

y=Xp+e 

Ay might be observed. or it might be demanded from rhrory or from some other source. 

Also, frequently the model places constraints on j3, even to a single value. Whether /3 is 

known or unknown, the best linear unbiased estimator (cf. Appendix C) of y is: 

i=X$+Z,,Z;;(Ay-AXi) 

= Xi + (ZA’)(ACA’).‘(Ay - AXi) 

The estimator premultiplied by A will have the value of the quasi-observation: 

Ai = AXb + A( CA’)( ACA’).’ (Ay - AXfi) 

= AXb + (ACA’)(ACA’)” (Ay - AXlj) 

= AXi + (Ay -AX& 
=Ay 

The allocation problem is the simplest form of this model. Letting Jl denote a (/xl) vector 

of ones, we state the problem as: 
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J:y=J:p+J;e 
E= 

y=I,p+e 

where u is known. We do not know y. but we do know the quasi-observation J,‘y, which is 

the sum of the elements of y. The estimator of y is: 

y = l,~+(W,)(J:ZJ,).‘(J:y-J;~) 

=u+(.IJ,)(J:ZJ,)“(J;y-.l;u) 

This estimator answers the qucrtion: Knowing that y has mean u and variance Z, how 

should our expectation of y be modified when we know the sum of the elements of y? 

Consider the allocation of surplus. An insurance company has I liabilities, represented as a 

([xl ) vector y, whose mean 11 and variance X are known. Also. the company has a surplus 

of S. considered as a (1 x 1) vector. We wish to allocate the surplus to the I liabilities. Think 

of what would be expected to happen to the liabilities it’ the total liability were exactly to 

consume the surplus: 

y=p+(ZJ,)(J;W,)-‘(J;y-J;Jt) 

=u+(CJ,)(J:ZJ,)-‘((J;u+.\)-J:u) 

= u +(ZJ,)(J;CJ,).‘.r 

The second term of the last line shows how the losses consume the surplus, or how the 

surplus is allocated. ZJ, represents the sums across the rows of 1; J,‘CJ, represents the sum 

of all the elements of Z. Therefore. surplus is allocated to the i”’ liability according to the 

ratio of the sum of the ith row of Z to the sum of all the rows of 1. As a check, if a liability 

had zero variance, then (since Z is non-negative definite) all its covariances would be zero, 
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and zero percent of the surplus would be allocated to it. Moreover, if Z were diagonal, then 

surplus would be allocated according to the variances. 

Another example of the allocation problem concerns price. As before. y is a (1x1) vector 

whose mean p and variance C ate known, and y represents the present value of the I objects. 

Because buyers are not normally risk-neutral, prices usually differ from p. Suppose that we 

know the sum of the prices of the ( objects, M, which might also be called the price of the 

whole market. Then the price P ought to be allocated as: 

P=u+(ZJ,)(J;ZJ,).‘(M-J$) 

Because of the relation between the estimator and the quasi-observation, J,‘P = M. Finally, 

if one defines yM as J,‘y, or as the present value of the whole market, then the equation can 

be written as: 

This looks like the Capital Asset Pricing Model [6: 3601. except that the CAPM refers to 

rates of return. whereas the equation above refers to values and prices. 
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Appendix F 

The Value of a Stochastic Cash Flow 

For every time t, there is an amount u(t) such that an investor is indifferent to receiving one 

dollar now (time 0) or receiving u(t) dollars at time t. Because more money is better that 

less money, the investor would prefer receiving one dollar now to receiving less than a(t) 

dollars at time f; and he would prefer receiving more than a(t) dollars at time I to receiving 

one dollar now. Of course, a(O) = I. Let v(r) = a(f)-‘. This represents the investor’s 

indifference to receiving v(f) dollars now or receiving one dollar at time t. These 

indifference functions presuppose that the reception of the dollars is certain, or risk-free. 

For every cash flow there is an amount such that the investor indifferent to receiving that 

amount now or receiving the cash flow. This is true whether or not the cash flow is 

stochastic. We will call this amount the certainty equivalent value (CEV) of the cash flow, 

a fancy word for price. 

Cash flows can be extremely complicated; but we will call the smallest unit of a cash flow 

an atom of cash flow, or an atomic cash flow. An atom of cash flow is the receipt of w units 

of money at time 1. Let utzr,) = with mean p = 
vr 

[ I P, . 
The atom is certain, or non- 

stochastic, if and only if Var[u] = 0; otherwise, the atom is uncertain, or stochastic. If the 

atom is non-stochastic, the only possible value is the mean. The investor will be indifferent 
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to receiving ux at time ur or receiving ux.v(pt) now. Therefore, the CEV of a non- 

stochastic atomic cash flow is ~~~.v(u~). 

When the atom is stochastic it makes sense to consider .u.v(t) as a random variable. Letting 

fbe the probability distribution function of u, we have: 

E[x. v(t)] = (1. v(r)J(u)u’u 

Var[x,v(t)] = j(x.v(r)- E[x~v(f)])‘.j’(u)du 

We will call E[.r.v(r)] the rrctunridpre.resrnt value (APV) of the cash flow. In the case of an 

non-stochastic cash flow APV = u.x.~+.q) = CEV. 

Consider a simple atom of cash flow: a coin is tossed, and if it lands heads. one dollar will 

be received now: if tails, zero dollars will be received. This is a stochastic cash flow. 

because x varies, even though t is always zero. x.v(f) is a Bernoulli random variable with 

probability of one-half: therefore. APV = E[x,v(t)] = %, and Var[xv(r)] = %. 

However. it is a fact of life that an investor may not be indifferent to receiving this cash 

flow or receiving the APV of half a dollar now. When the coin lands heads the investor 

gains half a dollar more than he would with certainty option; and when the coin lands tails 

he loses the half a dollar that he would have with the certainty option. If the investor 

desires the half a dollar gain more than he dreads the half a dollar loss, then he will prefer 

receiving the stochastic cash flow. Such an investor is rbk-inclined. But if the investor 

dreads the loss more than he desires the gain, he will prefer receiving the APV of half a 
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dollar now. and will be ri.d-tr\ww. Only a risk-ner~rrcd investor is indifferent to the two 

cash flows. 

Therefore. we can say that the CEV of a stochastic cash tlow is less than the APV to a risk- 

averse investor. is equal to the APV to a risk-neutral investor. and is greater than the APV 

to a risk-inclined investor. Another fact of life is that most investment decisions are risk- 

averse. 

Because CEV = APV for non-stochastic cash tlows. financial theorists have tried to modify 

the APV formula to serve for stochastic cash flows. Think of the case of the risk averse 

investor. to whom CEV = APV* <. AD’. How should the formula APV = Ix’ v(r),/(u)& 

be modified (denoted by the asterisk)‘? The theorists hastened on to the factor v(r), so 

APV* = (x ‘I’ * (I) 1 (u)tlu If you want APV * < APV. then make v*(f) < v(l). Since v(r) is 

a discount function. the theorists decided to deepen the discount function to compensate for 

risk. Ignoring the term structure of interests rates. we rn~y consider v(f) to be (I + $1 for 

some i. Then the solution consisted in choosing some r .‘ i. and letting v*(r) to be (1 + r)-f. 

This seemed to be in keeping with the thinking of investors. who demanded a higher return 

(r) on a stochastic investment than that (i) on a non-stochastic investment. 

Therefore. according to modern financial theory. the WV of an atomic cash flow results 

from the correct choice of r in the equation: 
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PV= ~X.(l+r)-‘f(u)du 

‘PV’ stands for ‘present value’; it is the accepted language, and for now we shall reserve 

rrcr~rarial present value for the case in which the discount function within the integral is v(l). 

Therefore. it is accepted theory that the CEV is obtained by present valuing the cash flow at 

the correct risk-adjusfed rare o~refum. It is important to understand that this theory means 

more than the statement that there exists an r such that CEV = 1~. (I+ r)-’ f(u)du . This 

would merely be an application of the intermediate value theorem. Rather, the theory states 

that the PV equation is the cause of the CEV’s being what it is, that the correct way to 

arrive at the CEV is the PV equation, and that it should be easier to determine the correct r 

than to determine the CEV. The theory is canonized by the Actuarial Standards Board in its 

“Actuarial Standard of Practice No. 19: Actuarial Appraisals.” 

But the theory will not stand up to three very simple problems. The first involves the term 

structure of interest rates. The true v(f) is not equal to (1 + i)-‘; rather there is a yield curve 

i(f) such that v(f) = (1 + i(f))*(. It stands to reason that there should be a risk-adjusted yield 

curve as well, r(f), so that V*(I) = (I + r(r))-‘. In the case of a flat yield curve, there is some 

constant y such that v*(f)lv(f) = y-t. Therefore, the financial theorists at the very least chose 

wrongly on the form of the modified discount function; instead of (1 + r)-f, it should be 

v(f)y-f. 

The first problem demonstrates a flaw in the accepted theory which many would not 

consider to be grave. In fact, the demonstration also specified how to fix the flaw. But the 
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second and third problems will be devastating to the theory, and will also point toward the 

true solution of the CEV of a stochastic cash flow. In the second problem the accepted 

theory does not discount when it should. This is like a type I error, wherein a test does not 

accept the null hypothesis when it should. In the third problem the accepted theory 

discounts when it should not. This is like a type II error, wherein a test accepts the null 

hypothesis when it should not. 

The second problem uses the example of the coin toss. If the coin lands heads, one dollar 

will be received now; if tails, then nothing is received. The APV of this stochastic cash 

flow is half a dollar. But the true theory should be able to explain how to some investor the 

CEV is, for example, forty cents. Using the PV equation. we have: 

CEV = IX+++l/(u)& 

=cx, .(l+r)“,p, 

=l-(l+r)-0(l/2)+O~(l+r)-0(1/2) 

=I.(l+r)-“(I12) 
= l-1(1/2) 
=I/2 

This problem shows that the accepted theory cannot perform the requisite discounting of 

ten cents on present cash receipts. It is to no avail to argue that the money will be received 

at some f > 0. For then let the time of receipt be E, and take the limit as E + 0’. The theory 

just won’t budge from the APV for cash flows in the present, or in the immediate future. 

For the third problem imagine the following atomic cash flow: a time f is picked at 

random, as the result of which x = a(r) dollars will be received at time t. This atom is 
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stochastic as respects both amount and time. But because o(l) represents the investor’s 

indifference, he is indifferent to receiving a(r) dollars at time r or a(+v(t) = I dollar now. 

No matter what I is picked. the investor will receive a cash flow which, were it on its own 

as non-stochastic. would have a CEV of one dollar. Therefore, the CEV of this cash flow 

has to be one dollar. If one used the PV equation with a risk-adjusted rate of return, one 

would obtain the wrong answer ot’a CEV of less than one dollar. 

The key to valuing a stochastic cash flow is evident from these two problems. The CEV of 

the second problem is less than the APV to risk-averse imestor because Var[zv(r)] > 0. In 

the third problem Varlx,v(t)] = 0. and the CEV is not less than the APV. The risk to which 

the investor is averse is not the variability of x and I, but the variability of zv(l). The 

following table summarizes the relation of CEV to APV: 

Risk-averse Investor 
Risk-neutral Investor 
Risk-inclined Investor 

Var[xv(r)] = 0 Var[x.v(t)] > 0 
CEV = APV CEV < APV 

CEV = APV CEV = APV 
CEV = APV CEV > APV 

Let us redefine the present value of an atomic cash flow as .v = WV(~). This means that from 

now on the identity is severed between certainty equivalent value and present value. It also 

means that there is only one present value. the one which uses v(f), rather than a present 

value for every risk-adjusted rate of return. 

Keeping in mind this definition of present value. we now pose the question: How do we 

determine the CEV of a cash flow whose variance is positive? H&e is the author’s 
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suggested solution: Do it from rhc top do\\n. Take a universe of cash flows and atomize it 

into n atoms. Let yi be the present value of the i”’ atomic cash flow, and let the (nxl) 

random vector y have the yis as its elements. Let the mean and variance of y be p and C. 

Then the present value of the universe of cash flows (or the market) is the sum of the 

elements of y, or. to use the notation of Appendix E, yh, z: J,‘y. The mean and the variance 

of y&, are J,ip and J,‘CJ,. 

The investor. looking at things from the top level, asks what should be the CEV of y&,, The 

author suggests that this question is answered in the realm of utility theory (cf. Bowers [4: 

Z-151). If the investor’s utility fimction is r,. then the CEV of yu is the solution of the 

equatlon ;I(CEV,) = l2lx(y&,)]. or CEV, = ~“(E[x(y~,)]). Once CEV, is determined, it is 

allocated to the atoms according to the manner in which price was allocated in Appendix E: 

CEVIYI= E[YI+C~~[Y.Y,IC~~~[Y..Y,, l~‘(CEV,, - E[y,l) 
=~irJ,,(J:,~J,,)-‘(CEV, -J;,pl 

As a check of the correctness of this theory. the CEV of a linear combination of atomic cash 

flows (which would be a complicated cash flow) equals the linear combination of the CEVs 

of the atoms: 

CEV[Ay]= E[Ay]+Cov[Ay.y.]Cov[y..y,,]-‘(CEV,, -E[y.]) 

= AE~YI+AC~~~Y~Y.IC~~~Y,,.Y,,I”(CEV~, -EIY,I) 

= .4Wyl+ Cov~~.~~,lCov~y~, >y,, I’KEV,, - EIy,,l)j 
= A(CEV[y]) 
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Therefore, the value (CEV) of a cash flow equals its expected present value plus a beta 

times the difference of the expected present value of the universe from the CEV of the 

universe, where beta is the covariance of the cash flow with the universe divided by the 

variance of the universe. If the covariance is zero, a special case of which is if the cash 

flow is non-stochastic, then the CEV is equal to the expected present value. 

Present valuing is a prerequisite to certainty equivalent valuing; it was a mistake for the 

financial theorists to try to make it explain certainty equivalence, which the author suggests 

to be founded on utility theory. By the same token, it is a mistake for actuaries to set risk 

margins on loss reserves by present valuing at supposed risk-adjusted rates of return. 
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Appendix G 

A SAS” Subroutine for the Linear Statistical Model 

The examples of this paper were performed with the following SASe subroutine. The 

author believes that a programming language, particularly one designed for statistical work, 

is necessary for all but the simplest linear models. Some spreadsheets do not have even 

simple matrix functions, much less generalized inverse and eigenvalue routines; and 

spreadsheet recalculation with matrices of rank greater than twenty can be very time- 

consuming. Subroutine LINMOD should be understandable to someone who is acquainted 

with the interactive matrix language of SAS” (SASIIML’B [ 151) and who has studied 

Appendix C of this paper. In particular, the notation of the subroutine closely follows the 

notation of Appendix C. Sometimes, especially at the end of the subroutine, the code is 

cluttered with ‘if statements in order to handle degenerate situations involving (0~) and 

(mx0) matrices. These situations tit well into matrix theory, but most software does not 

accommodate them. Also, the function FUZZ(A) will round each element of A which is 

within IO-‘* of an integer to that integer. This is a helpful function in matrix programming, 

where rounding errors can be significant. 

proc iml; 

start solution (A, b); 
*****tt*****f******t*****t*tttt*****t*****~***~*******.*. 

l * Returns x=ginv(A)*b if it approximately solves A*x=b **I 
**t**tt*t*t**.t***tt**ltt******************"***~~***~*********; 

G =ginv (A) 
Gb =G*b , 
if any(nmiss(Gb)) then return (.) ; 
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dbtb =b[##,] 

if any(dbtb=O) then zero=loc(dbtb=O) 
else zero= . 

if any(dbtbz0) then pos =loc(dbtb>O) I 
else pos = . 

AGb =A*Gb , 
dbtAGb =AGb[##,] I 
if n(pos ) then do 

reldiff=dbtAGb[pos]/dbtb[pos]-1 I 
if any(fuzz(reldiff)) then return (.) ; 

end I 
if n(zero) then Gb[,zero]=O 9 
return (Gb) 

finish solution; 

start genvar (S); 
************~*****tt**ttt*t*tt****tt****~~*********~****. 

***** Returns the generalized variance of S *****I 
t**ft**ttt**l***t*****tt**f*******t***t*~~*~*~****. 3 

scale=exp((log(vecdiag(s))))[:]); 
return (scale*det(S/scale)**(l/nrow(S))); 

finish genvar; 

start linmod (analysis,yZest,y,X,Phi,A,b); 
*t******t*****ttttt*t*ttt*tt**f****t*ftt*~~**~*~**. 

l * Linear model: y=X'beta+e where Var[e]=s2'Phi **! 
** subject to A*beta=b **. 

** Inputs: y,X,Phi,A,b. Outputs: analysis,yZest **I 
ttf**tf*ttt*t*tt**t**********t*t*f****~~*~*~********~"**. 

analysis= ; 
y2est = . ; 

t=nrow(y); 
k=ncol(X); 

/******At** Error trapping *t****ttt*/ 

if (type(y)*='N')((type(X)^='N')((type(Phi)"='N')I 
(type(A)*='N')I(type(b)^='N') then do; 
analysis='Faulty Model: Non-Numeric Matrix'; 
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return; 

end; 

if (nrow(X)-=t)j(nrow(Phi)"=t) then do; 

analysis='Faulty Model: Non-Conformable Matrices in Model'; 
return; 

end; 

if (ncol(y)^=l)l(ncol(b)*=l) then do; 
analysis='Faulty Model: y or b is not a column vector'; 

return; 

end; 

if any(nmiss(X))(any(nmlss(Phi)) then do; 
analysis='Faulty Model: Misssing Values In X or Phi'; 
return; 

end; 

if nrow(phi)"=ncol(phi) then do; 
analysis='Faulty Model: Non-Symmetric Phi'; 

return; 

end; 

if any(fuzz(phi‘-phi)) then do; 
analysis='Faulty Model: Non-Symmetric Phi'; 
return; 

end; 

if any(fuzz(eigval(phi))<O) then do; 
analysis='Faulty Model: Phi is not Non-Negative Definite'; 

return; 

end; 

if all('A) & all(^b) then do; 
A=shape(O,l,k); /* dummy constraint *I 

b=shape(O,l,l); 
end; 

if (nrow(A)^=nrow(b))l(ncol(A)^=k) then do; 
analysis='Faulty Model: Non-Conformable Matrices in Constraint'; 

return; 
end; 

if any(nmiss(A))lany(nmiss(b)) then do; 
analysis='Faulty Model: Missing Values in Constraint'; 
return; 
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end; 

if any(nmiss(solution(A,b))) then do; 
analysis='Faulty Model: Inconsistent Constraint'; 

return; 
end; 

I******** End Error trapping ********I 

rowl=n (Y); I* the observed rows l / 

row2=nmiss(y); I* the unobserved rows *I 

if any(row2) then do; 
row2 =loc(row2 )i 

Y2 = y(row2, 1; 
x2 = X[row2, 1; 

Phi22=Phi[row2,row2]; 
t2 = nrow (YZ)i 

end; 
else t2=0; 

if any(row1) then do; 
row1 =loc(rowl); 

Yl = y[rowl, 1; 

Xl = X[rowl, 1; 
Phill=Phi[rowl,rowl]; 
if any(row2) then do; 

Phil2=Phi(rowl,row2]; 
Phi2l=Phi[row2,rowl]; 

end; 
t1 = nrow (Yl)i 

call eigen(lambda, W, Phili); /* Phiil=W*Diag(lambda)*W‘ */ 

lambda=fuzz(lambda); 
if any(lambda<O) then do; 

analysis='Faulty Model: Phil1 not Non-Negative Definite'; 
return; 

end; 
if any(lambda=O) then zero =loc(lambda=O); else zero =.; 

if any(lambda>O) then positive=loc(lambda>O); else positive=.; 

Yl =W‘*yl; 

Xl =W‘*X1; 

Phill=Diag(lambda); /* equal to W‘*Phill*W */ 
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if t2 then do; 

Phil2=W‘*Phil2 ; 
PhiPl= Phi21*W; 

end; 

if any(zero) then do; 
A =A//(Xl[zero,)); 

b =b//(yl(zero,l); 
if any(positive) then do; 

y1 = yl[positive, 
Xl = Xl[positive, 

/* Phil1 not of full rank l / 

/* augmented constraint l / 

1; 
1; 

Phill=Phill[positive,positive]; 
if t2 then do; 

Phil2=Phil2[positive, I; 
Phi21=Phi21( ,positive]; 

end; 

t1 =nrow(yl); 

end; 
else tl=O; I* Phil1 was zero l / 

end; 
end; 

else tl=O; 

,t***~***ttttt**t****************t~.*~~********** 

The model now is: 
yl=Xi*beta+el Phil1 Phil2 

y2=X2*beta+e2 Phi21 Phi22 

subject to A*beta=b. 
Phil1 is diagonal and positive definite. 
tl and t2 can be zero. 

*~**********tt**t*****tttt**t**tt**f************~***.******.**, 

G =ginv(A); 

GA =G+A ; 

Gb =G'b ; 
if any(nmiss(solution(A,b))) then do; 

analysis='Faulty Model: Inconsistent Augmented Constraint'; 
return; 

end; 
call eigen(lambda, W, GA); 
lambda=fuzz(lambda); 
if any(lambda>O) then do; 

positive =loc(lambda>O); 
U =W(,positive]‘; 

r =nrow(U) , 
C =U'Gb ; 

/* beta has r constraints l / 

/* Reduced constraint: U*beta=c *I 
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u =fuzz(U) 
C =fuzz(c) 

end; 
else r=O; 
if any(lambda=O) then do; 

zero =loc(lambda=O); 

V =W[,zero 1 ; 
S =ncol(V) 

end; 
else s=O; I* beta is fully constrained */ 

/* beta has s degrees of freedom *I 

,*********************tt*********.****.******************.*********** 
beta is a solution of A*beta=b if and only if there 
exists a gamma such that beta=Gb+V*gamma, where V 
is (kxs) and of full column rank 

Transformed model: 
pl=yl-Xl*Gb=Xl*V*gamma+el=Ol*gamma+el Phil1 Phil2 

p2=y2-X2*Gb=X2*Vngammate2=02*gamma+e2 Phi21 Phi22 

Xl is (tlxk) Ql is (tlxs) Phil1 is (tlxtl) Phil2 is (tlxt2) 

X2 is (t2xk) 02 is (t2xs) Phi21 is (t2xtl) Phi22 is (t2xt2) 

Phil1 is (tlxtl) diagonal and positive definite. 
tl, t2, and s can be zero. 

p2 is estimable if there exists a 0 such that 02=D*Ql, or 
Ql‘*D‘=P2‘. If t2=0 or s=O, a solution exists. If t2>0 

and s>O and tl=O, a solution exists if and only if Q2=0. 
***********************.************t***.*************.********, 

if tl then InvPhill=diag(l/vecdiag(Phili)); * (tlxtl); 

if tl then pl =yl-Xl'Gb; * (tlx 1); 

if tl & s then 01 = x1*v ; * (tlx s); 

if t2 then p2 =y2-X2*Gb; * (t2x 1); 

if t28 s then 02 = x2*v ; * (tzx s); 

if t2& s then do; 
if (*tl& any(Q2)))(tl& any(nmiss(solution(Ql',Q2')))) then do; 

analysis='Faulty Model: y2 not estimable'; 

return; 

end; 
end; 

if tl & s then OtIPhi =Ql‘*InvPhill ; 

if tl & s then QtIPhiQ =QtIPhi*Ql 

* (S xtl); 
+ (S x 5); 
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if "tl 8 s then OtIPhiO =shape(O, s, s) ; * (S x s); 

if tl 8 s then QtIPhip =QtIPhi*pl * (S x I); 

if ^tl & s then QtIPhip =shape(O, s, 1) ; l (S x I); 

if s then GQtIPhiQ=ginv(QtIPhiQ) ; * (S x s); 

if s then gamma =GOtIPhiQ*QtIPhip; * (S x 1); 

if tl & s then plhat =Ql*gamma * (tlx I); 

if tl B*s then pihat =shape(O,tl, 1) ; * (tlx 1); 

if tl 

if tl& df 

if 

if 

lf 

if tl 

if tl 

if ti8 t2 

if tl& t2 

if 'tl& t2 
if tl& t2 
lf -tl& t2 
if t2 

then elhat =pl-plhat 
df =tl -s 

then s2=(elhat‘*InvPhill*elhat)/df; 
else s2= 

s then Vargamma=s2#GQtIPhiQ 

s then beta =Gb+V*gamma 

else beta =Gb 

s then Varbeta =V*Vargamma*V‘ ; 

else Varbeta =shape(O, k, k) ; 
then rsqrd =(plhat'*InvPhill*plhat) 

/(Pl 'InvPhill'pl ); 

else rsqrd = I 
then rbarsqrd=l-(tl/df)*(l-rsqrd) ; 
else rbarsqrd= 
then Phi2111 =Phi2l*InvPhill 

then y2hat =X2*beta 
+Phi2lll*(yl-Xl*beta); 

then y2hat =X2*beta , 
then X2X1 =X2-Phi2111*Xl , 
then X2X1 =x2 
then Vary2hat=s2#(Phi22-Phi2ill*Phil2) 

+X2Xl*Varbeta*X2Xl'; 

analysis=df~~sZ~~rsqrd~~rbarsqrd)~r; 
analysis=shape(analysis,k,ncol(analysis)); 
analysis=betaj IVarbetaj Ianalysis; 
constrnt=shape(O,k,k+l); 
if r then constrnt[(l:r),)=UIJc; 
analysis=analysis( Iconstrnt; 
if t2 then do; 

y2est=row2') ly2hatl IVary2hat; 
end; 
else y2est=.; 
return; 

finish linmod; 

* (tlx 1); 

l (S x s); 

* (k x 1); 
* (k x 1); 

* (k x k); 
' (k x k); 

* (t2xtl); 

* (t2x I); 
* (t2x 1); 
* (t2x k); 
l (t2x k); 

* (t2xt2); 
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The following statements will solve the exemplary models of Section 2: 

y={75 15 IO, 

75 25 ., 
50 . 
50 30 20: 
60 25 ., 
45 . .}; 

y=shape(y,l8,1); 

X=(1 0 0 0 0 0, 
010000, 

001000, 
100000, 
010000, 
001000, 
10 0 0 0 0, 
0 10 0 0 0, 
001000, 
000100, 
000010, 

000001, 
000100, 
0 0 0 0 1 0, 

000001, 
0 0 0 10 0, 
000010, 
0 0 0 0 0 1); 

Phi=i(lB); 

print 1; 
print 
"Variation 1: Unrelated Paid and Incurred Losses"; 

A=.; 
b=.; 
call linmod(analysis,yZest,y,X,Phi,A,b); 
print analysis, y2est /; 

print 
"Variation 2: Expected Paid and Incurred Losses have same Ultimate"; 
A={1 1 1 -1 -1 -1); 

b={O}; 
call linmod(analysis,y2est,y,X,Phi,A,b); 
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print analysis, y2est I; 

print 
"Variation 3: Paid and Incurred Losses have same Ultimate”; 
G={ 1 1 1 0 0 0 0 0 o-1-1-1 0 0 0 0 0 0, 

0 0 0 1 1 1 0 0 0 0 0 o-1-1-1 0 0 0, 
0 0 0 0 0 0 1 1 1 0 0 0 0 0 o-l-1-l); 

A=G*X; 

b={O, 0, 0); 
Phi=Phi-Phi*G'*inv(G'Phi*G‘)*G*Phi; 
call linmod(analysis,y2est,y,X,Phi,A,b); 
print analysis, y2est; 

The following statements apply the subroutine to the self-insured entity of Sections 4-7: 

exposure={1988 131332.20, 
1989 141672.24, 
1990 141677.29, 
1991 142577.99, 

1992 143285.58, 
1993 138261.75, 
1994 121857.69, 
1995 115000.00}; 

age ={ . 12 24 36 48 60 72 84 

paid={1988 266354 166572 32329 53610 8124 16924 39109 
1989 246981 359380 229018 69539 118635 100292 , 

1990 203178 375768 276617 74912 86428 . . 

1991 395630 260643 167709 270692 . . 
1992 207698 174615 162640 . . . . 
1993 167681 280176 . , . . . 
1994 215740 . . . . . . 
1995 . . . . . 

incd=(1988 422076 83969 19571 55987 -11674 63125 -50032 
1989 457750 397257 151515 61946 135729 -56771 . 
1990 345084 382514 342069 12295 -57918 . . 
1991 591842 288791 152181 307218 . 

1992 379033 157808 74764 . . . . 
1993 308803 139977 . . . . . 
1994 215851 . . . , . . 

1995 . . . . . . . 

fyid =shape(repeat(paid[,l],i,8),64,1); 
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ageid =shape(repeat(age[2:9],8,1),64,1); 
X =exposure[,2]@i(E); 
Phi =i(64); 

print I; 
print “Model 1: Paid Losses"; 

ypaid =shape(paid[,2:9],64,1); 
Al ={I 1 1 1 1 1 1 -9); 

bl =o; 
call linmod(analyzel,y2estl,ypaid,X,Phi,Al,bl); 
print analyze1 /; 

print "Model 2: Incurred Losses"; 
yincd =shape(incd[,2:9],64,1); 
A2 ={I 1 1 1 1 1 1 -19); 

b2 =o; 
call linmod(analyze2,y2est2,yincd,X,Phi,A2,b2); 
print analyze2 /; 

print "Model 3: Unrelated Paid and Incurred Losses"; 
52ratio=analyze2(1,1i]/analyzei[l,ll]; 

Y =ypaid//yincd; 
X =block(X,X); 
Phi =block(i(64), s2ratio#i(64)); 
A3 =block(Ai,AP); 

b3 =bl//b2; 

call linmod(analyze3,y2est3,y,X,Phi,A3,b3); 
print analyze3 /; 

print "Model 4: Paid and Incurred Losses have same Ultimate"; 
G =i(E)@{l 1 1 1 1 1 1 I}; 

G =GII(-G); 
Phi =Phi-Phi*G'*inv(G*Phi*G‘)*G*Phi; 
A4 =A3//{(81 1 [El -I)// (G'X) 
b4 =b3// (0) il~o,o,o,o,o,o,o,ol; 
call linmod(analyze4,y2est4,y,X,Phi,A4,b4); 
print analyze4 I; 

print "Model 5: Paid Losses with Ultimate Quasi-Observation"; 
A5 ={l 1 1 1 1 1 1 0); 

b5 =7.2129233260; 

yquasi =ypaid ll(b5lQ) I 
X =(exposure(,2]Qi(E))//{O 0 0 0 0 0 0 1); 

s2ratio=0.212750769/6271655116; 
Phi =block( i(64) s2ratio )i 
call linmod(analyze5,y2est5:yquasi,X,Phi,AS,b5); 
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print analyze5 I; 

/***Predictions***/ 
unpdl =y2estl[ 1:36,2); 
ibnr2 =y2est2[ 1:36,2); 
unpd3 =y2est3[ 1:36,2]; 
ibnr3 =y2est3(37:72,2]; 

unpd4 =y2est4[ 1:36,2]; 
ibnr4 =y2est4[37:72,2]; 
unpd5 =y2est5[ 1:36,2]; 

/***Variances of Prediction Errors***/ 

varunpdl=y2estl[ 1:36, 3:38]; 
varibnr2=y2est2[ 1:36, 3:38]; 
varunpd3=y2est3( 1:36, 3:38]; 
varibnr3=y2est3[37:72,39:74]; 

varunpd4=y2est4[ 1:36, 3:38]; 
varibnr4=y2est4(37:72,39:74]; 
varunpd5=y2est5[ 1:36, 3:38]; 

fysums=shape(0,10,36); 
fysums[ 1, 1:l ]=l; 

fysums[ 2, 2:3 ]=l; 
fysums[ 3, 4:6 ]=l; 
fysums( 4, 7:10]=1; 

fysums[ 5,11:15]=1; 
fysums[ 6,16:21]=1; 

fysums( 7,22:28]=1; 
fysums] 8,29:36]=1; 
fysums[ 9, 1:28]=1; 
fysums(l0, 1:36]=1; 

I' FY 1988 
/' FY 1989 
/* FY 1990 
/* FY 1991 

/* FY 1992 
I' FY 1993 
/* FY 1994 

/* FY 1995 
/' FY 1988. 
/* FY 1988- 

*/ 
*/ 
*I 
‘I 
‘I 
*/ 
*/ 

1994 */ 
1995 'I 

/***Variances by Fund Year***/ 

fyvunpdl=vecdiag(fysums*varunpdl*fysums‘); 
fyvlbnr2=vecdiag(fysums*varibnr2*fysums‘); 

fyvunpd3=vecdiag(fysums*varunpd3*fysums'); 
fyvibnr3=vecdiag(fysums*varibnr3*fysums'); 
fyvunpd4=vecdlag(fysumsfvarunpd4*fysums'); 
fyvibnr4=vecdlag(fysums*varibnr4*fysums‘); 
fyvunpd5=vecdiag(fysums*varunpd5'fysums‘); 

rows={'1988', '1989', '1990', '1991', '1992', '1993', 
'1994', '1995', '1988-1994', '1988-1995'); 

cols={'@12' '624' '@36' '648' '@60' '@72' '@84' '@108'); 

trlunpdl=shape(.,lO,E); 
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tr~unpdl(y2estl(,l]]=unpdl; 
genvar=genvar(varunpdl); 
print “Conjoint Prediction of Paid and Incurred Losses: Exhibit 20"; 
print triunpdl [format=comma9.0 colname=cols rowname=rows] 

fyvunpdl [format=el0.3]; 

print genvar [format=elO.3] /; 

triibnr2=shape(.,l0,8); 
trlibnr2[y2est2[,1]J=ibnr2; 
genvar=genvar(varibnr2); 
print "Conjoint Prediction of Paid and Incurred Losses: Exhibit 22"; 
print triibnr2 [format=comma9.0 colname=cols rowname=rowsJ 

fyvibnr2 (format=elO.S]; 
print genvar [format=el0.3] I; 

triunpd4=shape(.,l0,8); 
triunpd4[(y2est4[,1])[1:36]]=unpd4; 

genvar=genvar(varunpd4); 
print "Conjoint Prediction of Paid and Incurred Losses: Exhibit 25" 

print triunpd4 (format=comma9.0 colname=cols rowname=rows] 
fyvunpd4 [format=erO.3]; 

print genvar [format=el0.3] I; 

triibnr4=shape(.,l0,8); 
triibnr4[(y2est4[,1])[1:36]]=ibnr4; 
genvar=genvar(varibnr4); 
print "Conjoint Prediction of Paid and Incurred Losses: Exhibit 25’; 
print triibnr4 [format=comma9.0 colname=cols rowname=rows] 

fyvibnr4 [format=el0.3]; 
print genvar [format=elO.3] /; 

triunpd5=shape(.,l0,8); 
triunpd5[y2est5[,1]]=unpd5; 
genvar=genvar(varunpd!j); 
print “Conjoint Prediction of Paid and Incurred Losses: Exhibit 31"; 
print triunpd5 [format=comma9.0 colname=cols rowname=rows] 

fyvunpd5 [format=el0.3]; 
print genvar [format=el0.3] /; 

/***How to present value the predictions***/ 

maturity={ 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5); 
yield ={6.03 6.36 6.84 6.99 7.04 7.14 7.15 7.21 7.21); 
dscfac =(l+yield/lOO)##-maturity; 
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time0 =(1995+ 0112) I 
time =(fyid+ageid/l2)-time0; 

time =time[loc(time>O)] ; 

Pv =diag(dscfac[time]) ; 

I*** An example of discounting***/; 
dscunpd4=pv* unpd4 
dvarupd4=Pv*varunpd4*pv'i 
fydvupd4=vecdiag(fysums*dvarupd4*fysums'); 

tridupd4=shape(.,l0,8); 
tridupd4[(y2est4[,1])[1:36]]=dscunpd4; 

genvar=genvar(dvarupd4); 
print “Conjoint Prediction of Paid and Incurred Losses: Exhibit 32'; 
print tridupd4 [format=commaS.O colname=cols rowname=rows] 

fydvupd4 [format=el0.3]; 
print genvar [format=elO.3] /; 
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Appendix H 

Conjoint Prediction and the Minimum Bias Method 

One of the reviewers of this paper, Al Weller, FCAS, commented, “The paper presents a 

special case of simultaneous estimation and should therefore include the Bailey-Simon 

paper among its references.” Both the Bailey-Simon paper [I] (references, notes, and 

exhibits follow) and the later Bailey [2] paper showed how to determine class differentials 

simultaneously over two or more dimensions so that the resulting rates have “minimum 

bias.” Recently. Robert Brown [3] elaborated on these papers, and Gary Venter [5] 

contributed much to the subject in his discussion of Brown’s paper. Although the reviewer 

did not ask for a comparison of conjoint prediction with minimum bias ratemaking, the 

author believes that a brief comparison will be valuable. 

The comparison will use the simple example (Exhibit I) of a (3x2) matrix Y of pure 

premiums. The row dimension (i) could represent type of driver, and the column dimension 

0’) could represent territory. For simplicity it is assumed that the variances of all six cells 

are equal. This would normally mean that the exposures underlying the cells are equal. 

The pure premiums were simulated by the additive formula J’,, = i + i + e,, , where the eqs 

are independent standard normal variables. 

The most obvious approach, called “Two-Way ANOVA” (Analysis of Variance) in the 

exhibit, is to calculate the column meansyj (2.3484 4.4835) and the row meansy;, (I .2621 

370 



4.3618 4.62391. The srand meany is 3.4160. A prediction ofyij is thenyi, + y,.i - y,,. In 

a rating manual the purr premiums nould most naturalI! bc expressed as the grand mean 

plus row and column surcharges: yii =y + (y;, -y, ,) + (I> j ~~ .y .). The average surcharge is 

zero. 

In this additive example the ro\v and column averages are calculated separately from each 

other. Bailey’s idea was to calculate them simultaneously. Having assumed starting 

vjalues. one cycles through the dimensions solving a balance equation for the values of one 

dimension in terms of the values of the others. These cycles are continued until 

convergence is achieved (hopefully). This is illustrated in the second part of the exhibit. 

Convergence is achieved after three iterations. The grand ntean will counr in the dimension 

of the first iteration only. in this case the row dimension yi,. Since the prediction of 

Bailey’s method is the same as the ANOVA prediction. \\hat is gained by Bailey’s method? 

In this simple example nothing; but the method can be valuable to less simple problems. 

Also. we can consider this as a least-squares problem. f&presenting the row dimension as 

a and the column dimension as fl. we can model yu as U; + pi + eii. Assuming the eiis to 

be non-covarying and of equal variance. we can find the us and ps which minimize the 

function: 

/‘= CC(Y,, -a, -P,l’ 

The function is minimized for as and ps which set the first derivatives to zero: 
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$=5;2(y,, -a, -P,)(-1) 

:.o=C(y,,-a,-,) , 
?a, = lyY>, -I%) 

E(Yi -IT) 
a,= ’ 

? 

and similarly for &. But the equations for the as and gs are the same as Bailey’s balance 

equations, Therefore, Bailey’s minimum bias method, at least for this example, is really an 

iterative method of solving a least-squares problem. It can be shown that in general his 

method is equivalent to a weighted least-squares problem which may be non-linear in the 

as and j3s. But it was mentioned in Appendix C that the best linear unbiased estimator of p 

in the linear model y = Xp + e, where Var[e] = Z, minimizes the least-squares equationJj3) 

= (y - Xg)‘C-‘(y - Xp). Therefore, Bailey’s linear models can be expressed as linear 

statistical models.’ 

Exhibit 2 shows the simple additive example as a statistical model. If the model were fully 

expressed, it would appear as: 

‘0.9122 
1.6120 
3.4770 
5.2167 
2.6560 
6.5918 

100 1 o- - 
i 0 0 0 I ab 
0 10 I oa2 

=v=xp+e= 0 I 0 0 1 a3 
f-4 

; i ; ; ‘: .A.. 

+e 
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In this form the model is obviously a two-way ANOVA problem? However, the solution 

of the parameters is not unique, since one could obtain another solution simply by 

subtracting any amount S from each a and adding it to each p. Therefore, in Exhibit 2 a, 

was arbitrarily set to zero, which eliminates the first column from the (6x5) design matrix X 

and allows for X’X to be non-singular.’ The exhibit then estimates the parameters of the 

model, and arrives at the same predictions as did Exhibit 1. 

The minimum bias method, therefore, makes an n-dimensional ANOVA model out of n l- 

dimensional models. The n-dimensionality shows up in the design matrix. But “minimum 

bias” is a misnomer. The estimates of an ANOVA model are best linear unbiased estimates 

(BLUE). It is not that they are of minimum bias; rather, they are unbiased. In certain 

situations, an n-dimensional model has more explanatory power than do n l-dimensional 

models; but this is not to say that the n-dimensional model is less biased. Nor is it 

momentous to say that the dimensions of the n-dimensional model are estimated 

simultaneously. It is true that whereas they had been treated as n separate p vectors in n 

models, now they are assumed into one great p vector in the composite model. But to say 

that the dimensions are estimated simultaneously is of no greater moment than to say of any 

vector operation that the elements are calculated simultaneously. What really matters is 

that lesser models are combined into a greater model, and that by way of the design matrix. 

The conjoint prediction of this paper combines lesser models, but in a different way. One 

can place matrix brackets around linear statistical models and treat them as one grand 

model, and yet the models can be unrelated. Consider the following example: 
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This may look like an imposing grand model of I = I, + t2 observations and k = k, + k2 

parameters.’ But if e, does not covary with e,, i.e., if Var [:1]=[2’ S,]=x. then. 

according to Appendix C: 

fi = (x’zx)-’ X’Q 

This means that the grand model produces the same estimates as do the lesser models, but 

at greater expense due to its larger (and sparse) matrices. 

But conjoint prediction of paid and incurred losses requires that the ultimate paid and 

incurred losses of each exposure period be equal. This causes the paid observations to 
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covary with the incurred. i.e.. 1,: = C,?’ # 0. So conjoin1 prediction combines models not by 

way of the design matrix (which is Mock diagonal). but rather by way of the variance of the 

error term. Because one normally assumes this veriancr IO he diagonal, or block diagonal, 

statisticians refer to models like conjoint prediction a> .wemi~7g!)’ unrelated models (cf. 

Judge [a: Chapter1 I]). The combination of models in cunioint prediction is more subtlc 

than that of class-differential models. 
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Notes to Appendix H 

’ Also, Bailey’s non-linear models can be expressed as non-linear statistical models. The 
beginning of Appendix C mentions how to generalize from linear to non-linear models. 

2 Venter [5:340] notes that at least one author has seen the connection between Bailey’s 
method and ANOVA. His reference is to Chamberlain, C., “Relativity Pricing through 
Analysis of Variance,” 1980 Discussion Paper Program. Casualty Actuarial Society. 

’ Venter [5:338] mentions that fully expressed ANOVA models in two or more dimensions 
are overspecified. As discussed in Appendix C, this means that the design matrix X is not 
of full column rank. The simplest solution is to set some parameters to arbitrary values. 
Another solution. which is more complicated. is to introduce an intercept to the model by 
adding a column of Is to the design matrix. and then to constrain the sums of the 
parameters by dimension to be zero. 

’ The notation here differs from that of Appendix C. Here the subscripts 1 and 2 refer to 
models I and 2, and the grand model considers only observations. In Appendix C the 
subscript I refers to observations and the subscript 2 refers to predictions. 
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Appendix H 

Exhibit 1 

Two-Way ANOVA 

i \j 

i pz?ixiJ ;;z; mm 

Y, 2.3484 4.4635 3.4160 

First Iteration 

3 1 2.6560 6.5918 
Y 0.0000 0.0000 

Second Iteration 

3 1 26560 6.5918 
YI -1.0676 1.0676 

Third Iteration 

3 1 2.6560 6.5918 
Yl -1.0676 1.0676 

YS 
1.2621 
4.3618 
4.6239 

Yl 
1.2621 
4.3618 
4.6239 

378 



Appendix H 

Exhibit 2 

Y 

p = (x’x)-‘x’y 
3.0998 
3.3618 
0.1945 
2.3297 

Equivalent Linear Model 

XX 
2 0 1 1 
0 2 1 1 
1 1 3 0 

I 1 1 0 31 

Prediction 

t 6 
k 4 
df 2 
o’ = e’eldf 1.3591 

Var[p) = u’(x’X)-’ 
I 1 3591 0.6795 -0.6795 -0 679.51 
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