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A COMPARATIVE STUDY OF THE PERFORMANCE OF 
LOSS RESERVING METHODS THROUGH SIMULATION 

ABSTRACT 

Actuaries are often asked to provide a range or confidence level for the loss reserve along 
with a point estimate. Traditional methods of loss reserving do not provide an estimate of 
the variance of the estimated reserve and actuaries use various ad hoc methods to derive a 
range for the indicated reserve. Regression models for loss reserving are getting 
increasing attention in actuarial research as they provide an estimate of the variance of the 
loss reserve, along with a point estimate. However, these methods are rarely used in 
practice, both because of their complexity and the lack of their historical use. In this paper 
we use a Monte Carlo simulation method to compare loss reserve estimation methods, 
including traditional methods, and regression based methods of loss reserving. Our 
approach is similar to that of Stanard [S], where he compares several traditional actuarial 
methods using simulation techniques. However, we use different methods for simulating 
loss triangles, and compare the estimated reserve based on several characteristics. 
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A COMPARATIVE STUDY OF THE PERFORMANCE OF 
LOSS RESERVING METHODS THROUGH SIMULATION 

L Introduction 

Loss reserving, or projecting losses to their ultimate value, is an important actuarial 
function. The loss development factor (LDF) method attempts to estimate the pattern with 
which losses for a given cohort of claims changes over time. This method produces a point 
estimate of the required reserve, and is probably the most commonly used actuarial 
technique for projecting losses to their ultimate value. However, actuaries are often asked 
to provide a range or the variability associated with the point estimate of the loss reserve. 

In the last decade, a variety of methods have been suggested by actuaries for this purpose. 
Thomas Mack [3] developed a methodology to estimate the variability of the estimated 
loss reserves when the LDF method is used. However, his method may not be appropriate 
in many situations as the selection of the development factors is often judgmental. Randall 
Holmberg [2] has also presented a model by which actuaries can estimate the variability of 
their loss reserve estimates. Regression modeling of the loss triangle, which can provide 
both a point estimate and the variability associated with the point estimate, is getting 
increasing attention from actuaries. Regression methods provide an estimator of the 
variance more directly. These methods, however, are rarely used by actuaries both 
because of their complexity and the reluctance to use a methodology that is not widely 
used. It is desirable to thoroughly test a new methodology before it can be accepted as an 
appropriate technique and used in practice. Comparisons of forecasting methods based on 
historical data are not generally considered an objective method for testing forecasting 
methods. Such studies are likely to be biased by the preference of the investigator. 

Alternatively, statistical simulation is a well-accepted technique for comparing various 
methods of estimation when the properties of the estimators cannot be studied analytically. 
Stanard [5] used this technique to compare various traditional methods of loss reserving. 
We shall apply the same technique to compare the traditional methods with the regression 
method of loss reserving. Our study is more comprehensive in the sense that it uses a 
variety of methods to simulate the loss triangles. 

We have selected the LDF method as one of the methods to compare because it is the 
most commonly used traditional actuarial method. We have included the Buhlmann 
complementary loss ratio method (which Standard refers to as the additive model), 
because this method was the best of the tested methods per the Stanard [5] study. We 
have compared these loss reserve estimation methods and regression methods. The 
various loss reserve estimation regression models considered in this study differ in the 
number of the parameters used in modeling the loss triangle. 

Our approach is to simulate random loss triangles by a variety of methods, and estimate 
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the corresponding loss reserves using the traditional, Buhlmann complementary loss ratio 
model, and log-regression models. We assume that the ultimate losses, hence the 
reserves, are known with certainty. We compute the deviations of the estimated reserves 
from the actual reserves derived by various methods. We expect this deviation to be small 
for a good reserving method. We use several criteria to compare the estimated deviations 
of actual versus estimated reserves under the various reserving methods. 

In Section II, the particular methods of simulating random loss triangles are described. 
We do not claim that these methods capture all the intricacies of the claims process. 
However, we do believe that they generate loss data triangles that are stochastic and do 
not provide an apparent advantage to any particular method of loss reserve estimation, A 
particular method of reserve estimation may incorporate some underlying assumptions 
about the claims process and will obviously provide a better estimate of the loss reserve if 
those assumptions are satisfied. In practice it may not be possible to test the assumptions 
underlying a particular loss reserve estimation method. If a statistical test is applied, it can 
only detect a gross violation of the assumptions and cannot confirm that those 
assumptions are in fact true. 

Loss development factor methods have an extensive history of use in actuarial practice, 
which preceded the investigation and documentation of the assumptions underlying these 
methods. Given the current and historical familiarity with loss development factor 
methods, the assumptions underlying these methods are in some sense secondary to the 
methods themselves. Or, in other words, given their widespread historical use and 
technical adequacy as loss development estimation methods, actuaries would presently be 
using loss development factor methods even if no studies about the underlying 
assumptions were ever published. This is a major consideration which led us to use a 
variety of methods to simulate the random loss triangles. 

We are comparing a traditional loss development factor loss reserve estimation method, 
the Buhlmann complementary loss ratio method, and three fxed regression loss estimation 
models to estimate the loss reserves. These methods and models are briefly described in 
Section III. Section IV discusses the criteria used to compare the results of the 
simulations. One can definitely define comparison criteria other than those used here. 
However, the criteria used are comprehensive, and an estimator performing better in the 
criteria considered will likely be a good estimator with respect to other reasonable criteria. 
We have also provided a brief summary of the results of the simulations for the aggregate 
loss reserves in this section. Appendix B provides the individual accident year results of 
our computations. Section V makes several observations on the results and draws some 
conclusions based on this simulation study. 
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II. Simulating Random Loss Triangles: 

Modeling a claims process to generate the random elements of a loss triangle is quite 
complicated. There does not appear to be any study that derives a severity distribution for 
losses where the individual loss amount may change over time. Stanard [5] and 
Pentikainen and Rantala [4] describe methods of simulating random loss triangles. Their 
methods are findamentally different. The Stanard method is based on a loss severity 
distribution of individual claim amounts whereas Pentikainen and Rantala [4] use an 
aggregate stochastic claim process. 

The various methods of loss triangle simulation used here do not satisfy the assumptions 
underlying the various methods of loss reserving compared. For example, for log- 
regression modeling, it is assumed that the incremental losses are independent. However, 
this assumption is violated by all the methods used for simulating the random loss 
triangles. Similarly the random loss triangle simulation methods do not satisfy the basic 
requirement of the LDF method that the future development is completely determined by 
the latest available data. One can then infer that our study tests the robustness of the 
various methods of loss reserving. 

While we have defined and used particular methods of random loss triangle simulation in 
this analysis, similar methods may have been used in earlier actuarial studies. We have not 
performed an exhaustive literature search, and therefore make no specific attribution, 
believing that our application of these methods of generating random loss triangles is 
original. 

We have used four different techniques for simulating the loss triangles. The Pentikainen 
and Rantala [4] method is one of them. As we shall see later, the log-regression method 
of loss reserving requires that the incremental losses be positive. If this is not the case, 
some subjective judgments need to be made. One way to treat such incidences is to delete 
such observations from the data set. To be uniform and consistent, we have selected loss 
triangle simulation methods that will generate positive incremental losses. Stanard’s 
method does not satisfy this requirement and is not used. 

For all the methods utilized in this study, eleven accident years are considered. It is 
further assumed that the losses completely mature at the 1 I th year of development, i.e., 
the first accident year is at the ultimate loss level and no finther development is expected. 
Since we require complete knowledge of the ultimate losses for a proper comparison of 
the reserve estimation results of the different estimation methods, we generate a complete 
history for each accident year. However, in estimating the reserves, only the top half of 
the loss triangle is available to the actuary as data, and is used to estimate the lower half of 
the triangle, particularly the last (rightmost) column, which represents the projection of 
ultimate losses. We shall denote by b,j the losses for the accident year i at the end of the 
period i + j - 1 and by Si,j the corresponding incremental losses. For simplicity, i and j are 
assumed to vary from 1 to 1 I. 
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1. Random Reporting Factor: 

The steps of this random loss triangle generation method are: 

(i) Generate N, the frequency of losses, as Poisson with mean 100 

(ii) Generate N log-normally distributed random variables with parameters 
p (7.3659) and u (1.517427) and add them together. This is our ultimate loss for 
accident year 1 and let us denote it by Sr. These parameters correspond to a 
severity mean of 5000 and a coefficient of variation of 3. 

(iii) Generate 10 uniform random numbers Xj and compute 
Tj=0.1+0.5*Xj+00.5*ln(j), j=1,2 ,... 10. 
Uj= Tr + Tz+ . . . Tj. 

(iv) The loss for accident year 1 at delay j, L1.j is given by 
Lr,j= Sr * (1 - ExP(-UJ) and 
Ll. ,I = SI. 

(v) Repeat steps (i) through (iv) for the accident years 2 through 11 except 
that the ultimate losses for the accident year i are multiplied by I .06yi - 1) 
or accident year losses are inflated 6% a year. 

This method may look like a development factor model. However, this method does not 
strictly satisfy the assumptions of the loss development factor model. The ratio of the 
expected losses ELi, j+rl ELt, j is a constant, not the conditional expectation. It also does 
not satisfy the assumption of independence of incremental losses. 

2. Random Backward Development Factor: 

This method is similar to method 1 except that the factors are computed backward. 
The steps of the method are: 

(i) Generate N, the frequency of losses as Poisson with mean 100. 

(ii) Generate N log-noonnally distributed random variables with parameters 
tr (7.3659) and o (1.5 17427) and add them together. This is our ultimate loss for 

accident year 1 and let us denote it by Sr. 

where (iii) G enerate lognormal variates Yrr .j for j = 1,2 ..lO with parameters aj and bj 

aj =(j+(i- 1)“2)/100and 
bj = (j + (i - 1)“2)/500. 
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Yj is actually a randomly generated development factor for the period j to j+l. 

(iv) Losses reported at the end of year j for the accident year 1, LI, 10, are 
Sr/ Yto. The reported losses at earlier valuation dates are computed 
by dividing by Yj SUCC&V~Y. 

(v) Repeat the steps (i) through (iv) for the accident years 2 through 11 except 
that ultimate losses for the accident year j are multiplied by the l.OSh(i - 1) 
or accident year losses are inflated 6% a year. 

The aj and bj parameter are selected so that Yj is greater than one with very high 
probability. 

3. Individual Losses With Changing Severity: 

This method is based on the ideas of Stanard [5] and Buhlmann, Schnieper and Straub 
[ 11. As in Stanard, we assume an exponential delay in reporting and settlement with the 
added assumption that the severity distribution varies with delay. The actual method is 
described below: 

(i) Generate N, the frequency of losses as a Poisson variate with mean 100. 

(ii) For each N, generate a uniform variate X 1 for the occurrence date, and 
exponential variates Xz and XI, mean 2 and 5 respectively, for the reporting delay 
and the settlement delay. Based on these values, individual claims amounts are 
determined as follows. 

(iii) If X 1 + X2 is greater than j, the loss amount for this claim by delay j is zero. 

(iv) The claim amounts for a claim follow a Pareto distribution. The percentile 
level of an individual loss remains constant over time but the shape and scale 
parameters change until the claim is settled. The Pareto distribution function and 
the parameter values by delay are given in Appendix A. After settlement, the claim 
value or the loss amount does not change. As we require that the ultimate values 
of the claim be known, we truncate X r + X2 + X s at 11. This provides loss 
amounts for each claim for delays 1 to 11. These are added together appropriately 
to get the aggregate losses at each delay period. 

(v) Repeat the steps (i) through (iv) for the accident years 2 through 11 except 
that ultimate losses for the accident year i are multiplied by the l.O6”(i - 1) or 
accident year losses are inflated 6% a year. 
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4. Pentikainen and Rantala Method: 

This method is based on the procedure described by Pentikainen and Rantala [4]. Our 
implementation may differ slightly from theirs. We shall describe the computational steps 
of this method very briefly and the reader is encouraged to review the original 
PentikainenRantala paper for a complete understanding of the method. The 
computational steps of this method are: 

(i) We assume a reporting pattern for a cohort of aggregate losses. This pattern is 
constant over time and includes pure IBNR. The pattern used is 0.220,O. 180, 
0.150, 0.120, 0.100, 0.080, 0.060, 0.040, 0.027, 0.016, 0.007 and will be denoted 
byX(i),j= 1,2... Il. 

(ii) Claims for the accident year i reported at delay j are given by 
Si,, = K*X(j) *XP(i)* q(i, j)*inf(t) 

where 
K is a parameter and related to the overall loss level for accident year I, 
X(j) is j th element of the reporting pattern of aggregate losses discussed earlier, 
XT’(i) =( 1 .Ol”(i - l))*( l.O6”(i - 1)) are exposure and inflation growth, 
q(i, j) = 0.4 + 0.6 * q(i, j - I) + E, q(i, 0) = 1 and E is distributed N(O,O.O5), 
t= i+j-I, 

inf(t) = ,e, (1 + infl(k)) and 

infI(k + 1) = max(0.06 + 0.7 * (infl(k) - 0.06) + E, 0.03), infl(1) = 0.06, and E N(0. 
0.015). 

This method is based on randomizing the aggregate losses of all the claims for an accident 
year. Claims reporting and inflation are modeled by auto-regressive processes. We 
further restrict the inflation rate to a minimum of 3%. This method also has an exposure 
growth of 1 percent. 

One can see that each of the four methods of generating loss triangles has several 
parameters. As these parameters are changed, the simulated triangles may exhibit 
significantly different development patterns. A particular method of loss reserving, 
considered best with a selected set of loss triangle generation parameters, need not be 
better for any other set of loss triangle generation parameters. The simulation conducted 
here emphasizes more on a variety of methods of loss triangle generation than on the 
sensitivity of the loss triangle generation methods over a range of possible parameters. 

We note here, that in the simulation of random loss triangles by methods 1, 2, and 3, as 
described above, individual claim severity is unlimited. In actual practice individual losses 
will have an upper limit in most cases. Occurrence of an individual very large loss in the 
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simulation process may cause an individual accident year loss to be out of line with other 
accident year losses in an individual loss triangle. 

It is worth stating that the computations for the simulations were performed in EXCEL 
We have, however, implemented our own module to generate the uniform random variate. 

III. Methods of Loss Reserving: 

We assume that there is no further development beyond year n or, equivalently, L i, m is the 
ultimate loss value for the accident year i. We further assume that all S i, j are positive and 
let Z i j denote the In(S i, j). To simplify the later exposition of our estimation process, we 
further assume that the accident year loss inflation rate is 6% and there is no exposure 
growth except for method 4 in which constant exposure growth of 1 percent is assumed. 
WeknowL;,j,i=l,...n,and j=l,...n+l-iandareinterestedinestimatingLi.jfori 
=2 ,... nandj=n+2-i ,... n. 

We shall use two traditional methods of loss reserving and three regression models. The 
two traditional methods are the loss development factor method and the Buhlmann 
complementary loss ratio method. The loss development factor method is the most 
commonly used actuarial technique and the Buhlmann loss ratio method was chosen for 
this analysis because this method outperformed other actuarial methods in the simulation 
study by Stanard [5]. 

The three regression models we have selected for comparison are similar and the 
differences among them lie in the number of parameters fitted These methods are 
described next. 

I, Loss Development: 

We compute: 
6,j= Li.j*l/Ll,j 

f, = 2,fi.j /(n -j) 

and an estimated L ,, n is given by 

i,,,=Li,n.i+l*Un.i*l 

2. Buhlmann Complementary Loss Ratio Method: 

(1) 

This method of loss reserving has not been commonly applied in North America and is 
suitable for application to paid loss data. It is based on the presumption that the 
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proportion of losses paid at a particular delay remains constant over time. This proportion 
is estimated from the historical loss experience and is used to forecast the future. We 
compute: 

n-j+* 
Mj = ,C, (S,j *(I + infl)“(n - i))/(n - j + 1) for j = 2,3...n and 

Si,j= ?$*(I +infl)“(i-n) forj=n+2-i ,.,, n,andi=2,3...n, 

where infl is the inflation for losses and assumed to be 6% 

3. Regression Models 

Our discussion of the regression models considered in our analysis is very brief. These 
models are discussed in greater detail by Zehnwirth [7] and Verral [6] among others. We 
have used an unbiased estimator for the loss reserves as recommended by Verral [6] rather 
than Bayes or maximum likelihood estimates (MLE). In these models the incremental 
losses are assumed to follow some stochastic distribution, Usually some transformation is 
applied to the incremental losses before the model parameters are estimated. Although 
various transformations have been investigated, the logarithmic transformation is most 
commonly used. Let us describe the methodology briefly with the log transformation for 
completeness. Readers not familiar with the methodology are encouraged to review the 
papers by Verrall [6] and Zehnwirth[7]. Let Zij be the logarithm.of the incremental loss 
for accident year i and delay j. We assume that 

Zi,j=p+ai+pj+Ei,j 

where ).I, a;, flj are the parameters of the model and E ,, j, are assumed independent 
identically distributed normal variates with mean 0 and variance 02, and are the error terms 
or the random noise. We make the usual assumption that al, gr are zero to make the 
model of full rank. The parameters of the model are estimated by the least squares 
method, Under the assumption of the normality of the error terms, the estimates are also 
h&Es. We use the unbiased estimate for the forecasting and do require that the errors are 
independent and normally distributed. 

The three regression models investigated in this paper are: 

Model 1. oi and pi are all different for i, j = 2,3, n 

Model2,oi=(i-l)*a fori= 2,...11andj3jareall differentfor j=2,3,...n. 

Model3,oi=(i-l)*oand&=(j-l)*B+y*ln(j)fori,j= 2,3,...n 
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The main difference among the three models lies in the number of parameters used to fit 
the data. In the actual application of regression models, one will select the model which 
provides the best fit to the data based on the evaluation of the residuals and other statistics 
of the fitted models. However, such an approach is not feasible in simulation. The number 
of parameters used in the three regression models are 21, I2 and 4 respectively. 
Zehnwirth [7] emphasizes parsimony when applying the regression models for forecasting, 
Obviously regression model 1 has too many parameters and model 3 too few to capture 
the essence of a random loss triangle. In selecting these regression models, our purpose is 
not to compare these models with each other but to see the effect of using lesser numbers 
of parameters in regression modeling. 

The parameters are estimated by the method of least squares and used to forecast ultimate 
losses. We refer the reader to Verrall [6], who has provided a complete description of the 
estimation method and an unbiased estimator of the lower triangle for model I The other 
regression models require revisions to the design matrix, and modification of the 
appropriate equations, from those described in Verrall[6]. 

IV. Comparison of Procedures 

We have generated 5000 realizations of hypothetical loss triangles for each of the 
simulation methods described earlier for generating such loss triangles. For each of the 
5000 sets of hypothetical data, the reserves were estimated by the loss development 
method, Buhlmann complementary loss ratio method, and the regression loss reserve 
estimation methods ‘as previously outlined. The deviations between the loss reserve 
estimates and the actual reserves were computed. 

An important property of a good estimator is that it is unbiased. Stanard [S] in his study 
used this criterion for comparing various loss reserve estimators. If an estimator was 
unbiased, the average deviation of estimated versus actual reserves, over many 
simulations, will be negligible. 

Between two unbiased estimators, statisticians prefer the estimator with the smaller 
variance. Between biased estimators, the estimator with the minimum mean square error 
is preferred. In our context, this means that the average squared deviations between the 
estimated and actual reserves should be small. This is an important criterion for a reserve 
estimation method in the insurance context. The reserves are an important component of 
the insurer’s financial reporting. A reserving method which provides estimates with small 
biases, but for which the individual simulation (data set) estimates vary a lot from the 
actual reserves, may not be an appropriate reserve estimation method. One will prefer the 
reserve estimates to be closer to the true value. We have used root mean square error and 
the average absolute deviation of the estimated versus the actual reserve, to test the 
closeness of the reserve estimators to the actual reserve values. We have also computed 
the average percentage error. A reserve estimation method which generates a smaller 
percentage error in the estimate is better. Another criterion used to compare the various 
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loss reserving methods was to compute the correlation between the actual reserves and the 
estimated reserves. One would expect a high correlation for a good reserving method. 

Summarizing briefly our observations based upon our analysis (refer to Table 1, below), 
we compare the reserve estimates for each of the loss reserve estimation methods, for each 
ofthe random loss triangle simulation methods: 

1. Random Reporting Factor 

It is easy to see that the Buhlmann complementary loss ratio method is clearly the best loss 
reserve estimation method for the random reporting factor method of random loss triangle 
simulation. The regression models of loss reserve estimation have performed better than 
the loss development factor method. The correlation for all the reserving methods is low 
and surprisingly is smallest for the Buhlmann complimentary loss ratio method which is 
probably the best of all the methods. 

It is interesting to note that regression model 2 has performed slightly better than 
regression model 1. The main difference between these models is that regression model 2 
estimates accident year inflation, and allows one parameter for that model component, 
whereas regression model 1 allows an inflation parameter for each accident year. Our 
results indicate that parsimony in the regression model is very important, and that over 
parametrization may provide inferior results. 

2. Random Backward Development Factor 

Regression model 3 appears to be the best method for this loss simulation method based 
on aggregate combined accident years’ forecast. However, examining the individual 
accident year forecasts, one will identify the Buhlmann complementary loss ratio method 
being superior. Regression model 3 does not capture the payout pattern correctly. The 
other regression models have performed better than the loss development factor method. 

The Buhlmann method again shows poor correlation with the actual reserves while the 
other methods show a reasonable correlation level. 

We conclude that the Buhlmann method, and regression model 2, perform better for this 
method of random loss triangle simulation than the other tested methods. 

3. Individual Losses With Changing Severity 

Loss development method has performed very well for this loss simulation method. 
Regression model 2 appears to be better overall. Regression model 3 performs poorly, 
perhaps because of an insufficient number of model parameters 

4. Pentikainen and Rantala Method 
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Regression models 1 and 2 outperformed the other methods. The loss development factor 
method performed better than the Buhlmann complementary loss ratio method and 
regression model 3. 

Tables 1 summarizes our results for each of the four methods of random simulation of the 
hypothetical loss triangles. Appendix B provides similar statistics for individual accident 
years. As can be seen Corn these tables, one or the other of the three regression models 
considered in this analysis is generally better than the LDF method. The Buhlmann 
method is slightly better in some cases. However, we had assumed that the inflation rate 
is known for the Buhlmann method. We are therefore utiliig additional information for 
this method, and obtaining slightly better answers. Such information will ordinarily not be 
available in actual practice. Actual loss data will be tainted by both exposure changes and 
the inflationary loss cost changes which will vary over time. One should note that for 
most of the methods of random loss generation the effect of inflation has a minimal impact 
on the ultimate answer derived by traditional methods. Inflation affects the weighting 
given to individual accident years in the total reserve. For regression models, intlation will 
affect the forecast in a much more complicated fashion. 

Although no particular method can be identified as superior to other methods in every 
situation, the performance of regression models is in general quite good. It is worth 
noting that we have not performed a sensitivity analysis of the individual methods of 
simulating the loss triangles. By changing the inflation rate or the reporting pattern, for 
example, one may find that the performance of the individual methods of loss reserving 
will be different. However, we suspect that the overall performance will be similar. 
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TABLE 1 

Buhlmann Regression 
Method of Forecast: Dev Factor Loss Ratio Model I Model 2 

Five Thousand Iterations Under Method 1 

Actual Total Reserve: Average = 1,108.298 SD= 244.287 

Bias 151,661 5,222 36,486 31,240 
RMSE 466,055 266.874 395,819 328,870 

Avg Abs Dev 364,628 204,674 314,829 254.069 
Avg % 16.84% 4.84% 6.22% 6.75% 

CorrActuelvsEst 0.25 0.09 0.25 0.15 

Five Thousand Iterations by Method 2 

Actual Total Reserve: Average = 3.665,734 SD= 485.206 

Bias 157.684 (8.088) 55.356 15,393 
RMSE 512.092 639,187 481.727 542.257 

Avg Abs Dev 391.022 485,769 373,282 420.438 
Avg% 4.38% 1.23% 1.56% 0.79% 

Cm Actual vs Est 0.70 0.11 0.70 0.57 

Five Thousand Iterations by Method 3 

ActualTotal Reserve: Average= 1,634.559 SD= 252,631 

Bias 30,566 (83.039) (144,192) (52,327) 
RMSE 413,137 441,109 375.367 299.099 

Avg AbsDev 356,932 347.340 314,629 259,057 
Avg% 1.39% -4.36% -9.49% -3.31% 

CorrActualvs Est 0.62 0.39 0.68 0.66 

Five Thousand Iterations by Method 4 

Actual Total Resewe: Average = 3.183.654 SD= 330.776 

Bias 10,106 (21,441) 5,326 4,789 
RMSE 186,688 186,916 183,351 195,148 

AvgAbsDev 147,536 147.030 145,029 153,675 
Avg % 0.23% -0.24% 0.07% 0.06% 

Model3 

51,367 
341.537 
263.444 

8.69% 
0.14 

3.125 
519,705 
403,056 

0.47% 
0.58 

(176,089) 
340,506 
280.243 

-9.52% 
0.32 

34,136 
201,012 
157,203 

0.98% 
CorrActualvs Est 0.89 0.84 0.89 0.88 0.88 
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V. Conclusion 

It is interesting to note ppropriate tool for 
estimating loss reserves. best answers in all 
situations, but are stable directly the variance 
or the contidence interval for the reserve estimate. One should also note that the 
regression models studied are a priori fixed. In actual practice, the structure of the models 
will be determined from a much wider set of possible models based on an analysis of the 
data under review. It is expected that the testing and selection of an appropriate loss 
reserving regression model should improve the ultimate loss reserve forecast in actual 
application. 

It is true that actuaries do not apply the more traditional LDF method blindly. The array 
of development factors is typically examined carefully before a selection of particular 
factors entering the reserve estimation is made. The appropnateness of the LDF method is 
determined for the given data set before the results of any such analysis are accepted. 
However, professional judgment, and the selection of an appropriate model is much more 
important when regression loss reserve estimation methods are used. Therefore, an 
important step is missing for the regression methods as applied in this study. For the 
Buhlmann method, we have assumed knowledge of the inflation rate in addition to what is 
assumed known for other methods. In practice, inflation will not be known precisely, and 
the loss triangle will be distorted by exposure changes and inflation. This method may 
therefore not be as well behaved in practice, as in the simulation studies presented here. 

The point estimation of the loss reserve has been the primary focus of this study and we 
have not considered the variability of loss reserves around the point estimate. Vernal [6] 
has outlined the procedures for computing the variance of the forecast including both the 
forecasting error and the parameter uncertainty. 

One should note that the overall peFformance of the LDF method is quite satisfactory. 
The closeness of the answers of the various methods gives a comfort that the actuarial 
methods of loss reserve estimation are generally well behaved. These results also tell us 
that regression modeling provides estimates similar to traditional actuarial methods and 
one should not hesitate to use them. Given the advantage that regression methods also 
estimate the variability of the estimated reserve, it is expected that their use in the actuarial 
field will increase. 
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Appendix A 

In this appendix a brief description of the method to generate a random loss amount at 
delay k for method 3 is provided. Let us define two vectors h(i) and e(i), i =1,2...n. We 
generate a uniform random number X for each claim as soon as the claim is reported, If 
the claim is settled at delay k i.e. in between delay k -I and k then the loss amount is given 
by 

Loss(k) = h(k) l ((I-X)“(-l/e(k)) -1) A.1 
and remains constant at later valuations. The claim amount for an open claim at delay k is 
computed by the equation A. 1. However its value keeps changing over time as h(k) and 
B(k) are different for each value of k. By keeping X constant for an individual claim, the 
percentile level of the loss amount is fixed. However, the claim amount increases over 
time as the parameter of the Pareto distribution changes. In actual practice, the claim 
amount may decrease from an earlier to a later valuation for some claims. The procedure 
used here will always increase the severity of the loss from one valuation to the next. This 
is done to force the incremental losses to be positive. 

Parameters h(k) and B(k) are: 

~(k)=(lOOO+(k-I) *-SO) * 1.06”(k-1) and 
B(k) = 2.5 -.OS * (k -1). 
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TABLE 64 

Random Reporting Factor 

Method of Forecast: 

AY 
Model 1 

BhS 

2 0 
3 1 
4 3 
5 (1) 
6 21 
7 60 
8 371 
9 1.365 

10 9.755 
11 140,106 

0 
1 
3 
3 

,:i, 

(60) 
,121) 

1,141 
4,253 

(0) 0 (0) 
(1) (1) 3 

(5) (4) 7 

,261 ,231 (17) 
(6’3) 63 ,144) 

,211) (158) ,607) 
(363) (105) ,1.228) 
(644) 1,135 665 
965 7.587 14.377 

37.041 22.671 36.312 

Total 151.661 5,222 36,466 31,240 51.367 

AY RMSE 

2 7 8 4 8 5 
3 25 31 17 29 25 
4 101 122 72 116 107 
5 380 470 291 451 425 
6 1,371 1.772 1.066 1,662 1.563 
7 4,470 6,041 3,722 5,660 5,390 
8 13.713 18,441 12.389 17.657 16.615 
9 37,972 51,449 37.716 51.563 50.046 

10 110,936 117,020 116.163 125,616 120.393 
11 441,193 218,265 366,764 256,292 265.167 

Total 468.055 266,674 395,819 326.670 341,537 

AY Average Absolute Devlatlons 

2 5 
3 19 
4 74 
5 288 
6 1,018 
7 3,373 
a 10.440 
9 29,290 

IO 66,296 
11 346,362 

6 3 6 
23 12 21 
90 51 65 

356 209 332 
1,295 772 1,196 
4.430 2,750 4,150 

13,704 9,320 13,206 
37.626 26,973 36.261 
68.748 91,752 96,232 

166,051 296,479 197.607 

204.674 314.629 254,069 

Average Percentage Errors 

4 
16 
79 

312 
1,119 
3,076 

12,359 
37,003 
97,421 

203,655 

Total 364,626 263,444 

AY 

2 25.67% 3600% 995% 35.36% 19.36% 
3 22.20% 33 13% 9.27% 29.45% 35.19% 
4 20.02% 2968% 8.80% 25.10% 29.46% 
5 I6 10% 26.60% 7.65% 21.61% 21.16% 
6 14.12% 2331% 7.46% 19.31% 15.14% 
7 11 63% 20.26% 6.92% 17.33% 11.96% 
8 10.17% 1767% 700% 16.12% 12.06% 
9 8.67% 15.01% 6.57% 15.10% 14 19% 

10 9.69% I3.16U 7 30% 14.60% 17.14% 
11 30.23% 10 57% 1290% 1369% 16 36% 

Total 16.64% 4.64% 6.22% 6.75% 
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TABLEBZ 

R4ndom Backward Development Factor 

f 
MHhodofForecast: 

Buhlmann-, 
DevFacbr LossRatIo Model1 

AY 1 5lal 

2 2 11 (22) 
3 119 20.3 69 
4 222 360 156 
5 694 (470) 534 
6 1,321 (QW 6&a 
7 3.705 (643) 1.663 
e 040 (3.630) 3,237 
9 23,597 1,501 12,390 

IO 42,679 (1.654) 16,565 
11 76.406 (2.667) 20.062 

TOtAll 157.664 

AY 

(8.088) 55,356 

RMSE 

(22) 16,639 

(:I 32.153 36.008 
(1.165) 27,398 
(1.643) 2,799 

W’N (26.084) 

(2.019) (47,440) 
5,744 (37.721) 
5,605 (15.255) 
9.364 12.626 

15.393 3,125 

2 1.564 2.037 1,591 2.766 17,107 
3 4,614 9,596 4,791 9,176 33.712 
4 11,064 24.442 11.681 22,660 44,274 
5 22,705 60,989 24,316 46,956 52,965 
6 40,045 67.472 43,509 70.937 77.117 
7 64m 133.834 70,337 121,306 120.900 
0 105,093 188.472 111,145 171.606 174,206 
9 154,998 222,490 157,4d9 210,056 206,665 

10 231,105 26B.200 222,925 271.969 266,947 
11 320.345 267.746 293.720 318,968 317,606 

Total 512,092 

AY 

639,167 401.727 542,257 5t9.705 

AverageAbsoluteDevlaUonr 

2 1,167 2.062 1.206 2.056 
3 3,553 7,119 3.681 6.648 
4 a.525 16,316 8.996 17,259 
5 17.267 37,913 16,525 34,859 
6 30,623 63.647 33,027 57,937 
7 49.699 99.623 53.607 89,929 
a 76.096 133,685 02,422 122.794 
9 115,161 163.563 116,176 156,441 

IO 167,451 193,324 163.199 200,545 
11 233.783 211,057 219,467 240,241 

16.639 
32.192 
391640 
43,360 
57,143 
86&O 

119.958 
151,540 
196.412 
239,523 

TOt8l 391.022 465,769 373.262 420.430 

AY AvemgePercmtapeErmn 

403.056 

2 4.73% 13.54% 4.23% 13.27% X0.75% 
3 3.43% 12.41% 3.16% 11.90% 171.65% 
4 2.61% Il.OBI 2.51% 10.42% 77.29% 
5 2.30% 9.75% 2.21% 6.90% 31.55% 
6 2.01% 8.80% 1.74% 7.96% 9.62% 
7 2.25% me% 1.74% 8.10% 0.62% 
0 2.65% 8.33% 1.55% 7.37% -2.07% 
9 4.37% 6.61% 2.64% 8.09% 0.93% 

10 6.14% 0.52% 2.75% 8.36% 5.41% 
11 9.19% 8.02% 2.65% 6.63% 9.01% 

Total 4.30% 1.23% 1.50% 0.79% 0.47% 

hcdel2 mode13 
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TABLES3 

DevFactor 

MethOdotForecast: 
Buhlmann m!Qresm 
LOSS Ratlo Model 1 Model2 MC&l3 

AY Blar 

2 1,048 
3 2.867 
4 (25.022) 
5 38.381 
6 29,767 
7 MS3 
8 40,407 
9 3,817 

10 6,224 
11 (2.480) 

TOW 30,566 

AY 

3.668 788 3,751 (9.394) 
(5.109) 508 (5,560) (19.900) 

(28.645) (27.849) (26,329) (43,OQO) 
(18.267) 17,366 (17,199) (31.036) 
40,903 24,706 39,074 23,710 

(77,462) (72,000) wJ.096) (93,727) 
6.886 16,237 6,239 (2,950) 
9,224 (7.890) 13,152 8.B34 

41.065 (9,994) 52,394 46.612 
(55.304) (WQ63) (35,753) e5,248) 

(83.039) (144.192) (52.327) (176.089) 

RMSE 

2 31.330 
3 52,869 
4 115,037 
5 171.424 
6 61.614 
7 222,605 
6 110,691 
9 117,997 

10 94.518 
11 259.037 

TOM 413,137 

AY 

36,022 30,391 
43,391 51,745 

126,487 114,408 
78.104 130,753 
69,934 50,478 

230.023 221,536 
107,524 86.577 

55,953 119.472 
97,249 96,401 

22236 260,944 

441,109 375.367 

35.894 14.678 
43.108 36,400 

125.039 116.422 
70.614 75,765 
64.412 40,414 

232,337 262,153 
95,115 80,851 
77,163 74,208 
90,863 66.043 

173,258 169,985 

290.099 340,506 

2 19,830 
3 37,669 
4 72.059 
5 105,641 
6 35,254 
7 111,397 
a 94,362 
9 90,948 

10 61.845 
11 202,172 

TOtal 356,932 

AY 

24,090 18.965 24,010 12,509 
31,125 38,989 31.640 24,974 
77,767 70,388 76.060 62,687 
59.338 88.162 61,260 54,471 
45,292 33,024 44.186 31,115 

120,745 106,006 113,100 119,757 
07,744 76,900 78,786 66,943 
46.065 68,693 66,927 63,907 
75,610 77,164 75.122 66.540 

161.009 209.366 135.948 127.446 

347,340 314,629 259,057 

AveragcPsrcfntage Errors 

280,243 

2 47.071 94.00% 44.07K 95.09u -17.1o*b 
3 49.86% 20.49% 42.22% 2o.lo*b -13.53% 
4 57.18% 63.35Ob 48.70% 62.45Ob 16.07% 
5 119.19K 12.26% 80.54% 16.42U 0.49% 
6 56.20% 77.73% 46.35% 74.57% 46.74% 
7 5.03% -O.al*b 0.06% -3.61% -7.8236 
6 42.12% 29.37% 27.35% 25.73% 17.56% 
9 15.321 8.671 9.34% 14.34% 13.17Ob 

10 6.43% 21.7546 0.22Ob 25.76W 23.66% 
11 20.04% 3.88% -2.671 5.32% -1.39% 

T&l 1.39% -4.36% -9.491 -3.31% 

194 
-9.52% 



Model3 
AY Has 

2 2 1 (2) 11 6.037 
3 26 (44) 12 11 9.160 
4 114 (52) 78 118 9,389 
5 263 (217) 213 190 7,237 
6 313 (680) 197 162 (755) 
7 456 (1,090) 222 473 (9.710) 
8 1.225 (2.113) 855 549 (14,271) 
9 1.037 (3.758) 1,257 497 (7,450) 

10 3,050 (5.083) 1,984 1,456 7.505 
11 2.801 (8,407) 503 1.322 26,995 

TOW 10,106 4,709 34,136 

AY 

(21.441) 5.326 

RMSE 

2 672 
3 1.897 
4 4,070 
5 7,375 
6 12,478 
7 19,710 
8 293727 
9 40,540 

10 54,907 
11 74,329 

TOtill 186,688 

608 620 
1.724 1,759 
3,650 3,022 
6.387 6.997 

10.655 11.986 
17.324 19,117 
26,563 29,027 
37.157 39,974 
51,969 54.481 
71.882 73,934 

l&3.916 183,351 

607 6,101 
1,733 9,399 
3.887 10,222 
6.478 9.896 

10,987 10,942 
17,608 19.634 
27.007 29.730 
37.662 37.013 
53,404 54,281 
76,120 82,500 

185,148 201.012 

AY Average Absoluta Devlathxs 

2 536 
3 1,499 
4 3,m 
5 5.839 
6 9,007 
7 15.628 
8 23,414 
9 31.746 

10 43,420 
11 58.767 

462 493 480 
1.363 1.300 1.308 
2.912 3,029 2,924 
5,070 5,547 5,105 
8.663 9,495 0,759 

13.742 15,153 13.966 
21,143 22,668 21,350 
29,300 31,319 29,800 
41,011 43.107 41,990 
56.665 58.504 60.077 

147,930 145,029 153,675 

Average Percentage Errors 

6.037 
9,160 
9,401 
8,119 
0.728 

15,864 
23,951 
30,088 
42.469 
64,294 

Total 147,536 157.283 

AY 

2 0.42*b 0.515( 0.32% 0.56% 89.77% 
3 0.38% 0.25W 0.29% 0.34% 40.30% 
4 0.44% 0.35% 0.35% 0.461 16.60% 
5 0.46% 0.23% 0.371 0.38% 7.81% 
6 0.30% O.OWb 0.21% 0.25% -0.35'?b 
7 0.25Ob 0.08% O.lS# 0.301 -3.72% 
8 0.37% 0.00% 0.26% 0.25% -3.71% 
9 0.34% -0.13% 0.231 0.15Ob -1.36% 

10 0.40% -0.09k 0.25U 0.22% 1.06% 
11 0.26% -0.22% O.OPb 0.16% 2.62% 

Total 0.23% -0.24% 0.07% 0.06% 0.98% 

TABLE84 
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