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ABSTRACT 

Aggregate financial data histories are extensively used by actuaries in projecting ultimate 
liabilities, but the claim occurrence, reporting, and settlement process which generates these 
data is not perfectly understood, rarely modeled directly, and not incorporated into the 
structure of most popular reserving methods. This paper utilizes today’s computer 
applications to create an automated simulation tool. This module allows the user to choose 
statistical assumptions for each element of the claims process and specify the structure of the 
simulation experiment. It then generates random paid loss and claim count histories based on 
these inputs. 

The module is used to perform an experimental test of the performance of aggregate versus 
structural reserving methods over tune. The methods chosen are the paid loss development 
method and a new “closed claim cost” structural method presented in the paper. In each trial, 
a database of ten accident years at ten annual evaluations is simulated. Then both methods are 
run at five successive calendar year evaluations of the simulated data. Several error functions 
are tabulated at each valuation date and the speed of the approach of each method’s indication 
to the true value of the aggregate costs is examined. Suggestions for enhancement of the 
simulation model and performance tests follow. 
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INTRODUCTION 

Here is one way to think about the problem of loss r esenkg and the reason we actuaries are 
highly qualified to do it As actuaries, we are expected to predict financial outcomes which are 
results (or values) of a relatively well-defined dynamic process or “objective function”, a term 
used by analysts in some other fields for the mathematical description of the process whose 
result they are hying to predict. This is a function of a number of inputs (or variables), whose 
values are in turn determined by externally imposed characteristics of the stochastic process (or 
parameters). Under this technical description, it is easy to see that the job in itself does not 
distinguish us from many other professionals, notably statisticians, economists, and engineers. 
What does set us apart is that, in addition to having the imagination, modeling abilities and the 
general set of quantitative skills required to Perform any estimation job, we are presumed to 
have expert knowledge of the insurance function which generates financial outcomes for risk- 
bearing entities and the variables on which it depends, as well as extraordinary prior judgment 
about the parameters of the process. As a result, we spend much of our time trying to 
understand which issues drive the occurrence, reporting, development, and settlement of 
insurance claims and the magnitude and direction of their effects on ultimate costs. 

One of the most powerful tools for gaining this understanding of the objective function and 
improving our parameter judgments is historical empirical data. The trouble is, data collection 
is typically financial in nature and focuses on the effects of the process - aggregate costs - rather 
than the causes, namely exposure to loss, accident frequency, delays in reporting claims, 
inflation of liabilities for open claims, and delays in claim settlement. Therefore, this branch of 
actuarial science has evolved as such: given prior values of the objective function (historical 
cost outcomes), we must (explicitly or implicitly) identify the form of the underlying objective 
function and the key variables on which it depends, and estimate the values of the parameters 
governing each variable. Predictive success for a given financial or insurance product is 
usually measured by the proximity of our predicted values to those which do emerge, and by 
how quickly our predicted values improve when we get additional information and update our 
parameter estimates. 

A manifestation of this evolution is that most of our canonical reserving methods depend 
heavily on availability, validity and consistency of regularly collected historical data. This 
dependence necessitates the assumption that the “rules of the game” (the objective function, its 
variables, and their parameter values) have not changed substantially over our experience 
period. We are all familiar with the forces operating on the players in the game and the low 
likelihood that this is the case over a long period of time. Both operational and financial 
managers tend to make big changes based on short-term considerations which overshadow 
their desire for integrity of the actuarial database. When we are confronted with the 
knowledge of interim changes, we usually turn to a collection of piecemeal, though sometimes 
ingenious, methods for adjusting the canonical model, rather than looking for an alternative 
approach. 

The problem of making projections from aggregate data which do not reflect a constant process 
is accompanied by the dual problem of testing loss reserves. The same databases which distort 
reserve projection methods also wreak havoc on traditional runoff tests -just ask anyone who 
tries to make a firm statement based on results from Schedule P of the statutory Annual 
Statement. It is difficult from these retrospective tests on historical data to solidly determine 
which reserving methods actually are less biased or volatile over time than others. 

139 



Another manifestation is that most popular reservin g methods are designed to input aggregate 
financial data rather than claim frequency, reporting, settlement, and severity information. 
Thrs is certainly understandable when no such data is collected responsibly, but we should be 
designing methods that will work with comprehensive data sets and improve over the 
performance of the old methods, anticipating the glorious day when technological and 
management advances will allow us to capture all the information we need. 

These observations about loss reserving problems are hardly new, but our professional 
literature has historically been long on identifying theoretical issues and short on empirical 
solutions. In this paper, 1 try to make a contribution to addressing the issues by creating and 
doing a simple experiment. In particular, 1 design a flexible algorithm and a software tool for 
simulating the structure of the claims process, set up an aggregate and a new structural 
reserving method to make projections of ultimate losses, run the simulation algorithm under a 
basic scenario, and test the accuracy and volatility of the projections of each method as the 
experience period runs off over tune. I also ignore several phenomena which certainly enter 
the structure of the process in the real world, but hopefully leave the architecture of the 
experiment open enough so that we can flesh it out in a modular fashion as research 
progresses. 

OBJECTIVES 

The objectives of this paper are several. 

Fill Gape in Historical Literature 

Most of the reserving literature concerns projection methods which rely exclusively on 
historical data. A notab!e exception is Stanard’s 1985 paper on simulation testing [l], to which 
this experiment may be compared. His paper is an excellent starting point for designing 
simulation techniques and choosing performance criteria. This paper is somewhat dissimilar in 
that Stanard used a different algorithm for generating his database, did not consider structural 
reserving methods in his experiment, and did not track the bias of the selected methods as the 
accident periods matured over calendar tune. 

A moderate amount has been written on testing the performance of loss projections. Khury [2] 
emphasized the idea of a time-dependent radius of confidence about point estimates of 
reserves and considered the form of the decay of that radius function R(t) to zero as reserves 
are run off. He also focused on structural knowledge of the “pressure points” underlying the 
current process as the key to the prospective reserve computations, rather than historical 
knowledge of the adequacy of past reserves. Unfortunately, when new reserving methods are 
proposed in our literature, regardless of the data sources, the authors rarely undertake 
performance tests which track the accuracy of the method’s projections or the radius of the 
confidence interval over several ensuing calendar years. 
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Tool Development 

With today’s technology, we can create executable computer applications to run even 
sophisticated or computationally cumbersome simulations, and generate output which is 
compatible with commercial spreadsheet or database systems, allowing further analysis or 
presentation of results. 1 chose to write a set of macro modules for Microsoft Excel in the 
Visual Basic framework. The software plaffonns available today also encourage modularity of 
code and therefore easy addition of enhancements to the model in the future. 

Model Building and Refinement 

An advantage of simulation techniques is that we can specify an algorithm which models the 
claims process, identify the variables (drivers of the claims process) in the algorithm, and make 
statistical assumptions about them individually, whether or not those assumptions facilitate 
easy computations or closed-form aggregate distributions. Running the simulation wiU still 
give us valuable information about ultimate costs and, perhaps more importantly, the 
sensitivity of those costs to changes in the type of variables in the model and the parameters 
which govern how they are generated. For instance, if we learn the claim department is three 
months behind in logging new reports, we can estimate the effect of the operational change 
directly and immediately rather than mumbling something about the “robustness of the 
aggregate loss distribution” to management or the client when our model ia not flexible 
enough. 

AU of this would be no good if we had to reconstruct the model every tune a major strategic or 
operational change occurred. Fortunately, simulation models are built like a house; namely, 
the foundation and walls are completed before the trim is painted and the azaleas are planted 
out front. We add enhancements to the algorithm as we learn more about the process we are 
modeling. In fact, the model described in this paper is intentionaLly kept very simple, and I 
will caU upon the creativity and keen senses of the rest of the profession to add details. Even 
supposing the simulation algorithm is adequate, the parameters of each of the variables will 
require calibration in order to customize the model to any particular company. This is the 
work of keeping up with a constantly changing business environment, but I think it beats 
adjusting historical data. 

Better Structural Reserving Methods 

Structural methods which rely on claim reporting, claim closure, and other information about 
the loss process have historically been underdeveloped in the literature, probably because they 
require more data and computations to apply. The results of my experiment may prove me 
wrong, but my a priori belief is that estimates produced by structural methods have the 
potential to be more accurate predictors of ultimate losses, especially at immature ages, than 
those from aggregate methods. Another hypothesis of mine is that structural methods will 
respond with less volatility and bias to specific changes in the operating environment, like 
slowdowns in claim reporting, improvements in processing in the claim department, or 
commutation efforts on claims which would otherwise generate periodic partial payments. 
Without the albatross of insufficient or unsuitable historical data dangling from our necks, 
development of better structural reserving methods will provide a different and possibly more 
lucid actuarial perspective in loss reserving. 
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I have set up a simple structural method which projects ultimate claim counts from reported 
count data, projects closed claims incrementally from closed count data, projects average 
severity from paid loss data, and computes the required reserve for unsettled claims. It does 
not duplicate any algorithm of which I know, though it borrows some mechanics from the 
closure model for bodily injury claims in Adler and Kline’s 1988 paper [3]. The method is 
intended to be a reasonable archetype, not universal or suited to all areas of actuarial practice. 
By way of comparison, it is applied to the simulated databases in parallel with an aggregate 
paid loss development method and the performance of the two methods is compared over 
time. 

Time-Dependent Performance Standards 

Khury elucidated an important concept when he graphed the radius function of a reserving 
method against time. Since this paper is not predicated on an wegate statistical model, 
confidence radius functions are not calculated, but error functions are. A good performance 
test should consider the speed and consistency of the approach to ultimate of projected losses 
at successive valuation dates. Unfortunately, both actuaries and lay users of financial 
statements tend to “turn it around” and think in terms of the favorable or adverse development 
m the original estimate over time, not the development toward the target answer. 

Moving Beyond Historical Data 

This theme pervades the entire discussion, so I won’t belabor it here. It should be apparent 
that the more intellectual capital we as a profession invest in models and technologies which 
free us from the rigid historical data triangle, the more flexible and valuable our skills will be. 
Economists, for example, have built many useful models predicting the effects of policy 
changes on aggregate costs (or profits) which are not as dependent on either sheer volume or 
consistency of historical data. 

THE SIMULATION MODEL 

The Environment 

The simulation algorithm, ik inputs and outputs, the reserving methods used in the 
experiment, and the test results are all stored in Microsoft Excel spreadsheets. The simulation 
model and ik interface with the analyst are written as macro modules and dialog boxes in 
Visual Basic for Applications. This platform is nice because it allows seamless transitions 
among an aesthetically pleasing user interface, a structured but flexible programming 
environment, and a powerful number-crunching and exhibit-making tool, all three of which are 
desired to accomplish the (perhaps overly ambitious!) objectives set out for this paper. 

How it Works 

The algorithm is intended simply to approximate the reality of the claims process rather than 
conform to any nice closed-form solution or coordinate with any prior actuarial literature. It 
generates a claims and actuarial (triangular format) database in a few simple steps. While the 
following quick description of the algorithm will gloss over several assumptions about the 
variables and their relationships, we will discuss them in detail later. 
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We should first structure the output database by choosing values for the number of accident 
periods to simulate, the length of each evaluation interval (e.g. annual, quarterly, etc.), the last 
evaluation age (where the tail starts), and the maximum number of claims in a period. These 
inputs teU the modeling software the size of the output matrix. The input box used in my 
application is shown in Exhibit 1, page 1. I will speak of data matrices rather than triangles - 
matrices only become triangles when we analyze them at a particular calendar point in time, 
before the values of all the cells in the matrix are known. We are simulating the database, so 
we know the answers before we make and test estimates. The maximum number of claims is 
necessitated by computing rather than theoretical considerations. 

Parameter values for the statistical distributions used to generate the random variables in the 
model must be chosen. The change in exposure volume (from one accident period to the next), 
claim frequency (per unit of exposure) for each accident period, report lag for each claim, 
settlement lag for each claim, and the ultimate severity (in today’s dollars) for each claim are 
all drawn randomly from sampling distributions. Parameter values specify the scale and shape 
of those distributions. FmaUy, the rate of inflation applicable to claim payments and the base 
exposure volume (a scale factor) must be specified. The inflation rate is nonstochastic in the 
model as constructed. The input box for the statistical assumptions is shown on Page 2 of 
Exhibit 1. 

The algorithm then goes to work. Using the selected structural and statistical parameters, we 
Iteratively compute the exposure amount for each accident period as last year’s volume 
multiplied by a percent change which is randomly drawn from a normal distribution. (For the 
first accident period, the base exposure volume is used.) We draw each period’s claim 
frequency (independentlv from the exposure volume and prior frequency values) from a 
normal distribution. The ultimate number of claims for the period is the product of the 
exposure level and the frequency per unit. 

For each claim indicated within each accident period, we draw ik accident date horn a uniform 
distribution over the accident period, ik report lag from a gamma disbibution, its settlement 
lag from a gamma distribution, and its ultimate severity (in today’s dollars) from a gamma 
distribution. These random variables are aU drawn independently and contemporaneously. 
Along with the predetermined parameters above such as the inflation rate, they give us enough 
information to allocate claim reports, claim counts, and loss payments to the appropriate cells 
in the simulated data matrices. (The payout amount for each claim is allocated entirely to the 
interval of settlement.) Computers do this kind of thing very efficiently, so we let them do all 
the sorting, data-handling, and arithmetic operations necessary to leave us with a finished 
actuarial (and, as a by-product, detailed claims) database. This data is ready to use as input to 
any reservmg model, excepting those which use outstandmg case reserves. Methods that do 
will not be considered in this paper. 
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Structural Aseumptions 

The model is flexible in terms of how the final loss matrices and triangles will look. A typical 
set of output matrices is shown in Exhibit 3, page 2. A maximum number of claims is specified 
because theoretically it is desirable to draw the claim frequency from a distribution which is not 
truncated from above, such as the normal or lognonnal, but in practice the spreadsheet which 
is used as the backbone of the application would run out of space if the number of simulated 
claims in one trial exceeds about 8,ooO. Since the number of claims depends directly on the 
exposure and frequency parameter assumptions, the effect of this limit can be made 
insignificant if the mean and standard deviation of the claim frequency and the exposure 
growth variables, as weU as the base exposure amount, are chosen accordingly. 

The other limitation concerns the tail. The algorithm produces matrices for reported counts, 
closed counts, and loss payments which are of a finite number of columns. Like the claim 
frequency, the report and settlement lag for each claim are also drawn horn distributions with 
no upper limit. Rather than artificially truncating the distributions, it is theoretically purer to 
handle the upper bound by specifying a !?nal evaluation of the data and let any payments, 
reports or settlements made at more advanced ages be allocated to a tail interval. 

Outside of limitations of these and other structural parameters to finite values, the accident 
periods and evaluation intervals can be any length. The software measures aU lengths in 
months, so six-month policy periods, quarterly or monthly data collection, and other common 
situations can be handled effectively. Note that the model assumes an exposure base measured 
m real terms - an “inflated exposure” column showing nominal exposure values inflated at a 
constant 5% per annum is shown on some exhibits, to satisfy the analyst who is modeling 
Workers Compensation or some other line with an inflation-sensitive exposure base. 

Statistical Assumptions 

The outcomes of the sunulahon model depend on some stochastic assumptions about the 
variables. 1 hypothesize that most of the observed results and conclusions drawn from the 
upcoming sunulahon experiment will be highly robust to reasonable changes in the statistical 
assumphons. In fact, given the time and inclination, sensitivity tests on this model are easy to 
run. Yet we aU know actuaries love to quibble about mathematical assumptions, so I will 
discuss them here. For a quick summary of the assumptions used in the scenario tested in this 
paper, turn to Exhibit 2. 
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Ezpositre Changes 
Assuming some base exposure amount, the real change in exposure from period to period 
should depend on operational and strategic considerations, as well as the economic constraints 
facing the client company. Ignoring underwriting cycles and macroeconomic fluctuations for a 
moment, the periodic change can be approximated by some kind of random walk with a drift. 
The classic assumption for random walk time series models is that unsystematic changes are 
normally distributed. The variability of the random walk is represented by the standard 
deviation parameter, and the drift represented by the mean (a zero mean implies no drift). The 
drift itself is a proxy for the long-term underwriting growth rate for an insurance company, or 
the business growth rate for a self-insured client. Incorporating the effects of national business 
cycles, as well as industry-specific cycles depending on the model’s client company, into the 
exposure time series is an obvious enhancement since so much work has already been done by 
economists on modeling the cyclical nature of growth. 

Note that a powerful practical use of this mode1 for decision-making might be testing the 
sensitivity of ultimate costs or their present value to the growth strategy of the client company. 
Varying the mean growth rate, the variability of exposure growth, or the length of 
underwriting cycles could provide valuable insights to management. 

Claim Frequency 
Claim frequency may also be subject to some cycles, and may not be completely independent 
of exposure changes. For instance, a fast-growing manufacturing operation is probably 
associated with adverse selection in the labor markets, and we might expect the Workers 
Compensation claim frequency to be positively correlated with the exposure growth rate. 
Lacking strong studies of such phenomena in the general case, we assume that claim frequency 
from period to period is independently and normally distributed, with the mean and SD 
chosen appropriately. 

Lags 
The assumptions for individual claims bring us closer to the core competencies of our 
profession. Though experience m annual periods is not always uniform, particularly for 
property claims which tend to be seasonal, in the general model we assume that occurrences 
are uniformly cbstrubuted over each period. The distributions of report lags and settlement 
lags have received some attention in actuarial literature, and some of my intuition about these 
variables has probably been influenced by Weissner’s paper on truncated maximum likelihood 
estimation [4]. In particular, a report lag represents a phenomenon similar to the waiting time 
for a Poisson process and should be subject to some of the same considerations. The three key 
assumptions underlying the Poisson process are detailed in Hogg and Klugman (51 and most 
coUege texts on mathematical statistics. Engineers model the number of defective pieces of 
equipment produced in a day and the expected time to failure of a piece of equipment with 
such process models. The gamma distribution is the theoretically correct model of the waiting 
time for the Nth occurrence of a “failure” or Poisson event, where the failure rate is constant 
over time and where N is a parameter of the distribution (usually denoted alpha). While 
supporting a theoretical model of report lags as failures in the Poisson process is beyond the 
scope of this paper, it seems reasonable to use the gamma distribution to model the variable. 
The settlement lag is also essentially a waiting time variable, and it appears Just as reasonable 
to model it with the same statistical assumptions. 
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Claim Severity 
Modeling claim severity distributions is arguably one of the most important areas of research 
for the actuarial profession. Again, this paper is not intended to add anything to the body of 
knowledge of loss size distributions or even survey the voluminous existing literature on the 
subject. Nevertheless, an assumption must be chosen. For the general case presented here, we 
select the gamma distribution as a flexible proxy for many moderately skewed distributions, 

We assume that report lag, settlement lag, and ultimate severity are mutually independent. In 
reality, it is almost certain that they are pairwise correlated. In fact, many actuarial techniques, 
particularly those embodied in structural reserving methods, depend on the assumption that 
larger claims are reported later and stay open longer. In order to reflect this in our model, we 
would have to specify a function (not necessarily in analytic or closed form) that relates them: 
F(report lag, settlement lag, severity) =O. One way of doing this is to select the parameters of 
theloss severity distribution for a given claim as functions of the previously drawn report and 
settlement lags for the same claim rather than determine the severity and the report and 
settlement lags contemporaneously. The scale and shape of the severity draw would be altered 
to reflect the type of claim, but the draw would stiII be random rather than deterministic. In 
my opinion, adding this aspect to the model might significantly improve the approximation of 
the claims process and change the test.results. It is a challenge which remains for further 
research. 

Inflation 
The inflation assumptions in the general model are nonstochastic for simplicity’s sake. 
Economic literature is replete with time series models of inflation, and it would be a relatively 
easy enhancement to incorporate a cyclical, random walk, or other time series model of a 
calendar year price index into the simulation routine. 

There is also the question of how inflation affects loss payments. Butsic [6] constructed a 
theoretical model in order to contrast a paid loss inflation effect based on the date of accident 
with an effect based on the date of claim settlement. We assume that the price index at the date 
of claim settlement determines the nominal value of the paid losses associated with the claim 
(or, in Butsic’s notation, alpha equals one). Therefore, nominal claim severity & positively 
correlated with the length of the report and settlement lags in this model. 

Other Comments on Statistical Assumptions 
The assumptions presented here have been justified as reasonable for an experimental case, but 
not rigorously supported. In a situation where historical data allows empirical examination of 
any of the above variables, the assumptions can be tailored to the client company by fitting a 
variety of distributions to the available data, selecting a model and parameters based on some 
“best fit” criteria, and modifying the simulation model to take account of the superior 
information. The simulation can also be improved if anticipated changes to the operating 
environment are reflected in the statistical assumptions. For example, if management has 
determined that a more aggressive legal department should be installed to handle an inventory 
of troublesome liability claims, the settlement lag assumptions and standard deviation of 
severity can be changed accordingly. 
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Most good statistical models follow the principle of parsimony - that is, the inclusion of 
random variables which do not add substantial information to the model and the use of 
distributions with more parameters than necessary to capture the shape of the probability 
function should be avoided. With such a complex insurance process to model, we should be 
sure not to include superfluous elements in the simulation algorithm, but careful to incorporate 
aU of the key cost drivers. 1 have tried to avoid unnecessary complexity by advocating the use 
of simple two-parameter distributions for modeling the key variables and by constructing an 
algorithm based on the way I think the loss generation process works in practice and the major 
elements influencing the said process. It is certainly possible that the success of any 
experiment using this approach may be improved by adding some variables which 1 did not 
consider, by modifying or simplifying some of the statistical assumptions, or by removing a 
variable to which the results are not sensitive, but that simply adds complexity to the model. 
Testing for overspecification in algorithms such as standard least-squares estimation (i.e. 
collinearity and overidentification of instrumental variables) has been somewhat codified, but 
in the model described in this paper, actuarial judgment will have to prevail for now. 

THE EXPERIIvfENT 

Description 

The design of the experiment is as follows: 

Step 1: Create Scenario 
Choose distributions and their parameters for each variable. The variables in the general case 
explained above are exposure growth, claim frequency, report lag settlement lag, ultimate 
(present value) severity, and the claim cost inflation rate. While 1 have described a “general 
case” algorithm for the experiment presented here, only the analyst’s imagination limits what 
can be simulated if he/she is wiIling to write some code. I will do a little imagining later in the 
paper. Keep in mind that the number of claims in the simulated database will depend on the 
choices for exposure volume and claim frequency. The distributions and parameter values for 
the “base” scenario are shown on Exhibit 2. 

Step 2: Generate Data 
Run the simulation routine to generate a claim database and data matrices of substantial size. 
In this experiment, we use ll-month accident periods, 12-month valuation intervals, ten 
accident periods of exposure, and ten evaluation intervals with the “tail” attaching at 120 
months. A sample output claim database and actuarial data matrices are shown on Exhibit 3, 
pages 1 and 2. 
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Step 3: Make Proiections 
Apply the aggregate and the structural reserving methods to the simulated data to project 
ultimate losses, at a valuation date such that the latest accident period is 12 months old. With 
ten annual accident periods, this would be at the end of “calendar year 10”. Advance the 
valuation date 12 months and m-apply each reserving method. Continue to advance the 
valuation date 12 months at a time and *apply the methods for a total of five iterations (in 
other words, at five successive calendar year-ends). The descriptions of the archetypical 
aggregate and structural reserving methods used in this experiment follow in the next section 
of the paper. In order to make the experiment consistent and repeatable, follow the general 
rule of using the weighted average from aU of the available data to approximate values which 
would normally be selected by actuarial judgment (e.g. loss development factors in the 
aggregate method, and claim closure rates in the structural method, are selected as the loss- 
weighted average over aU of the prior accident periods). 

Step 4: Track Errors over Time 
Calculate the absolute and squared projection errors of each method, which are simply the 
difference or squared difference between the ultimate loss projections at the valuation date and 
the true ultimate losses, which are known since we are simulating the data. Also calculate the 
error statistics on a relative basis (as a percent of the true ultimate losses). The relative error 
statistics can also be expressed as a ratio to the unpaid losses at the valuation date. Tabulate 
the error statistics from each calendar year’s projections for each method and compare the 
reserving methods in terms of absolute (signed) error, magnitude (absolute value) of error and 
the speed of approach of their successive calendar year estimates to the true ultimate losses. 
The relative errors as proportions of unpaid losses can also be examined, but the changing 
denominator over time means the target is moving with each successive calendar year. The 
reporting format of results for a single trial of the experiment is shown in Exhibit 6. 

Practical Considerations 

How much data and how many trials are needed to draw useful conclusions? The question of 
credibility in general is central to actuarial science, but I will focus on practical limitations 
rather than theoretical support for “full credibility” of the database. In the scenario tested here, 
we have selected parameters which imply an average of 100 claims in each accident period, or 
loo0 claims in the database per trial. The actual generated number of claims is random due to 
the stochastic modeling of exposure and claim frequency. Credibility, under most measures, is 
an increasing function of the sample size. Therefore, it would be best to run an infinite number 
of trials in order to maximize the implied credibility of the experimental outcomes and get the 
best picture of the realism of the simulation algorithm and the performance of the different 
reserving methods, but we have limited the experiment to 25 trials for purposes of this paper. 
Therefore, the total number of claims simulated should be about 25,ooO. 

I should point out that the experiment, while stochastic in nature and dynamically tested, is 
stiU static in one way - once the variables are randomly drawn and the calculations completed, 
the loss and claim count matrices are set. If a new claims manager was installed during 
calendar year 12, for example, the settlement lag parameters for open claims would not be 
revised. This means that were there a “perfect” reserving method which produced zero errors 
on a “perfect’ simulated database (e.g. one that explained the real-world claims Process 
exactly) , even over an infinite number of trials, the same method would not produce zero 
errors when dvnamically tested on a real book of claims. 
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One modification has been made to the experiment for the purpose of testing the performance 
of reserving methods. For liability lines with lengthy reserve durations, and for reinsurers who 
are frequently not “on the hook” until advanced ages of development, estimation of tail factors 
is a complex process which is usually somewhat distinct from the procedure used to develop 
the indicated reserves from historical data. It often involves curve-fitting and extrapolation, the 
resdk of which are then mated to the original reservin g method somehow. While the subject 
of tail factors is extremely interesting (at least to me), I did not want any difference in tail factor 
estimation procedures to bias the comparative performance of the aggregate and structural 
reserving methods. Therefore, all of the error functions compare the “age 120 months” losses 
estimated at a given valuation age to the simulated losses emerged at age 120 months. In other 
words, we are pretending 120 months is ultimate and forgetting about any simulated losses 
emerging beyond this point. Depending on the characteristics of the process the analyst 
wishes to simulate, this simplification may cause no alarm at all or may leave the anticipated 
performance of the reserving methods very uncertain. In the scenario tested here, the 
parameters have been chosen so that there are usually no IBNR claim counts after 120 months, 
and only a small proportion of unsettled claims after 120 months. Since loss payments are 
assumed to be lump-sum at date of settlement in this model, the proportion of ultimate losses 
paid after 120 months is also small. 

THE RESERVING METHODS 

Paid Lose Development (Aggregate) Method 

This is the canonical chain ladder reserving method, applied to the paid loss matrix generated 
by the simulation model. The concentration of actuarial judgment in this method is usually in 
the selection of age-to-age development factors, which may be based on historical weighted or 
simple averages, averages excluding extreme values, or linear or exponential trends. For a 
controlled test, the method must be made mechanical, and so the weighted average age-to-age 
factor over all observed exposure in the triangle is selected for each age interval. In my 
opinion, this selection is probably less likely to introduce bias into the method than simple 
average or “excluding high and low” selections. 

In accordance with the desire to avoid the bias introduced by tail factor selections, the tail factor 
from 120 to ultimate has been set to unity. Therefore, the “ultimate losses” of the aggregate 
method are valued at 120 months rather than at a true ultimate. I stress again that aggregate 
methods are not applied so mechanically in everyday actuarial practice, but scientific method 
as well as statistical theory demand that we standardize each trial. The mechanics of the 
method should be well-known to actuaries; for completeness, Exhibit 4 shows the setup of the 
calculations for multiple calendar years of application. Some of the matrices in the exhibit may 
be a little confusing, because it is applying the method at calendar years-end 10 through 19 all 
at once, but rest assured that we are using “plain vanilla” paid loss development at each 
valuation, The numerical values shown here and in Exhibit 5 should tie together within the 
exhibit, but do not represent any sort of test resulk, only an example. 
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Closed Claim Coat (Str~ch~ral) Method 

This method is more complicated and customized for the experiment than the aggregate 
method. Since ik mechanics involve extensive manipulation of matrices of payment and claim 
count data, it is tempting to resort to the notation of matrix algebra to explain it, but I think that 
might obfuscate more than it helps. Therefore, the method is explained in plain English and 
Exhibit 5 ilhrstrates each step. Note that it is essentially impossible to apply the method at 
multiple calendar years-end on one exhibit as we did with the aggregate method, so a separate 
sheet runs each calendar year application. The exhibit shows the setup for the first evaluation - 
at the end of calendar year 10. 

Steu 1: Project Ultimate Claim Counts foape 2) 
Using the historical triangle of reported counk, select age-to-age factors for each evaluation 
interval and compute the age-to-ultimate factor for each accident period as the product of ah 
the selected factors beyond the current age of the period. For each period, multiply the 
reported counts at the valuation date by the respective age-to-ultimate factor to get projected 
ultimate claim counts. In other words, apply the chain ladder development approach to claim 
counts. (We select the historical weighted average age-to-age factor in this experiment, just as 
we did for losses in the aggregate method.) An additive approach could be used instead 
without loss of the integrity of the structural method. 

Steu 2: Proiect the Claim Closure Pattern loam 3) 
Use the triangle of incremental closed counts during each interval and the vector of projected 
ultimate counk. For each accident period, divide the number of closed claims in each interval 
by the projected ultimate for the accident period to get the historical closure density (the 
density percentage triangle is not shown). Examine each column of the resulting triangle of 
percentages to select a representative percent of projected ultimate to be closed in the interval 
(shown at the top of page 3). The set of selections will form a selected closure density function, 
except for the “tail factor” which, in this case, represents the proportion of ultimate claims 
closed beyond the last evaluation age in the matrix. In this experiment, to substitute for 
actuarial judgment as we did in selecting age-to-age factors, we select the historical weighted 
average closure percentage (over all applicable accident periods) for the density in each 
interval, and simply leave the tail factor to be 100% minus the sum of the selected percentages 
over all intervals. 

Step 3: Proiect Claims Closed in Each Interval (uage 3) 
Subtract the current cumulative number of closed claims from the projected ultimate for each 
accident period to get the estimated unsettled counts for the period. Allocate the unsettled 
counts to future settlement intervals as follows. The selected density (incremental proportion 
of ultimate claims to be closed) in each future interval, divided by the remaining cumulative 
proportion of claims to be closed over all future intervals, should be the share of unsettled 
claims assigned to the given interval. This sounds complex in English but it is the “common 
sense” way to do the allocation. Multiply the allocation share by the number of unsettled 
claims for the period to get the number of unsettled claims during the interval. The only 
theoretical problem here is that non-integer amounts are allocated to each interval. When 
projecting aggregate unpaid losses over several accident periods, I believe it is more accurate to 
leave the fractional amounts alone, as they will be multiplied by projected severities and 
summed over all cells later in the method. 
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Steu 4: Proiect Average Severities (paces 3 and 4) 
Segregate the data triangles into columns representing age intervals or groups of intervals. 01 
the premise that claims closing quickly have different average severities than those that sky 
open, calculate the historical average severity in each age group by dividing the total 
incremental paid losses (shown back on page l), over all accident periods, in the age group by 
the number of claims closed in the age group. Once the baseline historical severity is 
determined for every group, project the severities of claims closed in each group in future 
calendar periods (the cells below the diagonal in the triangle of severities). To the extent we 
expect a severity trend, the future severities are projected by trending the baseline historical 
severities forward from the average time index of the historical column above the diagonal to 
the average tie index in each of the cells below the diagonal (in the same column). The 
midpoint of accident period 1 is nominally selected as time zero. In this experiment, we match 
the assumed severity trend rate to the assumed rate of inflation in the simulation model to 
avoid specific bias due to underestimation of a nonstochastic variable. 

Steo 5: Proiect Unpaid Losses (oage 4) 
The goal of the previous steps was to fill in each of the cells below the diagonal of a triangle of 
incremental closed claim counts and a triangle of average severities. With these projections in 
hand, the unpaid losses ar e simply the sum of all the products of the corresponding cells in the 
closed claim triangle and the severity triangle. Note that unpaid losses are the direct output of 
the structural method, whereas aggregate methods usually project ultimates and subtract some 
known quantity to get total or IBNR reserves. 

A good high-level discussion of the contrasts between aggregate and structural reserving 
methods is given by Wiser j7j. Basically, aggregate methods are growth models which are 
applicable to projecting the value of any random variable which is a function of time. 
Structural methods follow a process based on frequency (or failure rates) and severity (or some 
other measure of magnitude or intensity) to project individual occurrences which are 
integrated in the final step and added to known payment information to find the value of the 
objective function (aggregate ultimate costs). The development of a database simulation 
algorithm and a closed claim cost method of reserving notwithstanding, the central question 
considered by the experiment is how these two fundamental approaches to reserving perform 
over time in a controlled environment. We now look at the results of the experiment and the 
metrics used to answer that question. 
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THE RESULTS 

Baae Scenario 

The base scenario is designed to simulate the runoff of liability clauns for a stable client 
company in a moderately inflationary environment without the occurrence of a catastrophe in 
the experience period. The exposure growth (in real terms) is flat on average but ranges about 
10% in either direction in a particular non-zrisis year (mean of zero, SD of 5%). Accidents 
giving rise to Liability occur evenly over the year. They are reported an average of one year 
after they occur, but some accidents can be latent for several years (mean of 12 months, SD of 
12 months). Settlements are reached (or verdict returned) an average of two years after 
notification, but again some claims drag out for several years (mean of 24 months, SD of 24 
months). The average claim costs $2O,ooO in today’s dollars, and the operations and insurance 
program of the client company are such that catastrophic claims will not occur during the 
experience period (mean of $2O,ooO, SD of $2O,ooO). The general rate of claim cost inflation 
applies to costs at the date of settlement and remains steady at 5% over the experience and 
payout periods. 

Exhibit 7 presents the aggregate resulk of 25 simulations of ten accident periods at a time, each 
producing an average of 100 claims. This report is produced for each trial individually (as 
demonstrated in Exhibit 6), but it would be cumbersome to display all 25 pages in the paper. 
On page 1 of Exhibit 7, separately for the paid chain ladder and the closed claim cost methods, 
the true simulated losses at age 120 months (leftmost column) for each accident period, 1 
through 10, are compared against the method’s valuations at the end of calendar years 1411, 
12,13, and 14 (CO~UINIS progressing to the right). The sums over all accident periods are 
displayed beneath in the same columns. The aggregate absolute difference between each 
calendar year’s evaluated losses and the true losses, the relative difference as a percent of the 
true losses, and the squared difference from the true losses are all displayed. The same 
display, using hue and estimated unpaid losses at each calendar year-end is shown on page 2. 
The only difference is that the true unpaid ldsses vary by evaluation date, but the true “age 120” 
proxies for ultimate losses do not. The absolute and squared differences in unpaid losses will 
be the same as on page 1 (we are only subtracting paid-to-date from both values), but the 
relative errors to unpaid losses will be larger as the base becomes smaller over time. 

A few observations seem to jump out from the results. The stiuctural method appears to 
perform much better than the aggregate method at the earliest evaluations, but the aggregate 
method “catches up” and eventually outperforms the structural method III terms of accuracy 
after calendar year 12. In Khury’s framework, the aggregate error radius function has an 
(approximately) zero mode, but decays rapidly as a function of time. On the other hand, the 
structural method does not improve as rapidly U-I the second calendar year, but begins a 
downward dnft afterward. In fact, the error drifts across the true value over time, progressmg 
from an overestimation to an underestimation of the ultimate losses. This indicates either an 
oscillation inherent in the method or a downward bias. We might suspect a bias, though not as 
pronounced, in the aggregate method as well, smce the estimated losses do cross the true value 
at the fifth evaluation. 
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Examining the results by accident period is also interesting. In terms of sign, the aggregate 
method errors do not show a strong pattern across accident periods at the first test date - some 
are negative, others are positive with no obvious serial correlation. The estimated losses for 
many individual accident periods oscillate over time, crossing the true losses and sometimes 
more than once. Improvements in the projections over time, on a relative basis, do not show a 
strong trend toward later or earlier accident periods. In terms of magnitude, however, it is 
clear that the worst errors occur in the most immature, leveraged accident periods - over $12 
million of the $13 million overstatement at calendar year 10 is on accident periods 9 and 10 
alone! The errors in prior accident periods jump around somewhat, but generally do not 
exceed $1.5 million in either direction. 

On the other hand, the structural method clearly appears to dampen the fluctuations in the 
immature accident periods. The errors for accident periods 6-10 are generally of smaller 
magnitude, and not necessarily the same direction, as those of the aggregate method. The $2.5 
million overstatement in the latest period at calendar year 10 is significant, but certainly much 
less than that of the aggregate method. The structural method seems to have trouble, 
especially in the latest accident periods, at subsequent evaluations. Downward movements of 
nearly $1 million occur for accident periods 9 and 10 between calendar years 13 and 14, quite a 
swing at such an advanced age. The aggregate method is apparently less sensitive to slight 
changes in the data once the loss development pattern has been established. An interpretation 
might be that the structural approach might be more powerful when very little payment and 
claim count information has emerged for an exposure period, where claim count and trended 
severity estimates are (both individually and as a product) more stable than multiplicative 
relationships in aggregate cost data. When cost data become more mature, the aggregate 
relationship may be more stable than severities which have been extrapolated many periods 
into the future and claim closure patterns which are selected from long-past accident periods. 

“Mming” both the aggregate results and the individual trial data might yield many more 
mteresting conclusions, particularly if a much larger set of trials were run. Some possibilities 
for the analyst who has tailored the model to a particular client company or situation are binary 
(signed error) tests for bias by accident period and calendar year, plotting the error radius 
fimction by accident period over five (or more) calendar years and lookmg for decay patterns UI 
more and less mature periods, and so on. I have not explored these paths in the paper for 
several reasons. The tools, algorithms, and reserving methods described here are intended to 
stimulate thinkmg and discussion about the process for setting up computer experiments, the 
key elements of a good simulation technique, and how the performance of reserving methods 
in general should be tested. Therefore, the focus is not on drawing conclusions. Also, I believe 
the imposition of conclusions regarding a new technique applied to a new reserving method 
would tend to stifle rather than stimulate criticism, creative thinking. and further research. 

CONCLUSIONS 

At the outset of the paper, I asserted some objectives. The reader, of course, must decide how 
well we have accomplished any or all of them, but 1 will analyze our progress on each front for 
a moment. 
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We have partially filled the gap in historical literature regarding simulation approaches to 
generating data and structural approaches to loss reserving, just by the expositions of the 
simulation algorithm and the closed claim cost method. The practical utility of either is still 
open to question and requires further experimentation as well as attempts to actually apply 
the ideas to particular client companies. 
We have developed a working tool to generate the required databases according to the 
model we have discussed. However, many refinements should be added so that the end 
user has more choices about how the data will be simulated and how the output will be 
organized. 
We have shown that assumptions about key components or variables of the insurance 
function can be incorporated into a model which generates reasonable-looking actuarial 
data suitable for analysis with several reserving techniques. We do not yet know how well 
the model approximates reality for any particular segment of the insurance industry or 
client company. 
We have created, explained and tested a structural approach to estimating loss reserves. 
The assumptions underlying it are, in my opinion, reasonable, but many of them could be 
inaccurate in some specific situations. Also, the projections of the method could be 
unacceptably sensitive to some of them. Again, further research as weU as practical 
application will help us identify the weak areas. 
We have analyzed the performance of our simulation model and reserving methods using 
time-dependent performance standards based on absolute, relative, and squared 
differences from true losses at 10 years of development. Such criteria provide unique 
insights which are not possible with static evaluations of a reserving technique. Dynamic 
testing should, however, be expanded to use more sophisticated performance criteria and 
parametric or nonparametric statistical tests. 
We have, starting from “scratch”, incorporated our quantitative expertise as well as 
knowledge of the insurance process and actuarial judgment about the variables in the 
process to generate estimates of ultimate losses on a volume of exposures without basing 
any of our functions on historical data. What we can not do without some historical data is 
cahbrate the model to make it accurate for a particular client company. However, we have 
reduced our reliance on a critical volume of historical data and avoided the constraints 
introduced by the rigid data requirements (regular data collection intervals, consistency 
and accuracy of case reserves, consistency of historical payout patterns, etc.) of many 
canonical actuarial techniques. 

Given the relatively small number of claims simulated in the experiment to date and the 
construction of just a baseline scenario, strong conclusions about the performance of reserving 
methods are difficult to draw. I have tried to make as many germane observations as possible 
about the “typical” single experiment run for this paper, and we do have some results which 
indicate that intuitions about the performance of reserving methods at successive points in time 
may not always be supported by empirical studies of the insurance process. In particular, 
structural methods may not be superior to aggregate methods mature accident penods, and 
both structural and aggregate methods’ estimates may not monotonicaUy converge to the 
ultimate costs. In addition, both structural and aggregate reserving methods may be prone to 
biases if not adjusted. 

154 



The most glaring need at this point is to spend a lot more time and imagination experimenting 
with different scenarios, sensitivity testing the results of each scenario to key algorithmic and 
parameter assumptions, and simply generating a larger volume of data for each scenario 
(running more trials) so that we can give more credibility to the results. That being said, in the 
final section I will bring up a few specific ideas and issues to think about as we undertake 
additional research. 

REFINEMENTS AND RESEARCH OPPORTUNITIES 

As I mentioned before, an algorithm should be flexible enough to incorporate new ideas 
without requiring a complete redesign. The specificity of application of this simulation model 
to ,mdividual client company situations is limited only by the analyst’s imagination (and 
progranuning skills or ability to marshal those colleagues with them). The following are some 
ideas which I have not implemented, but which cry out for experimentation. 

Exposure and Inflation Time Series 

We can draw from the great body of literature on modeling business, economic and monetary 
cycles to build a time series model of these variables containing both trend and cyclical 
components. Such a model could be made to “plug and play” with this simulation routine, 
though not without some progr amming work. In addition, since underwriting or company 
growth rates are typically a controllable variable in the eyes of management, testing the 
predicted value of liabilities under various assumed growth scenarios is a legitimate use of the 
model. 

Alternative Statktical Assumptions 

In the practice of using simulation models, calibration takes the place of adjusting historical 
data triangles. The normal and gamma distributions have been used here for simplicity and 
flexibility and because they are reasonable, but a variety of statistical distributions and 
parameter assumptions can be used to customize the model. It can be calibrated against 
historical measurements of the variables (by statistical or other means), coupled with 
managerial foresight about the expected future behavior of the key variables, developed from 
theoretically correct models of the variables (see the discussion about report lags above), and of 

Partial Payments and Subdivision of Claim Types 

For simplicity, the algorithm assumes that all liabilities associated with the claim are 
discharged at the date of closure, in one lump-sum check In reality, loss adjustment expense 
assumptions, information about statutory benefit disbursement procedures for WC, and other 
refinements can be incorporated into the progra mming of the algorithm to simulate the partial 
payments which are common in some tines of insurance. The model could also be easily 
enhanced to randomly assign a “type” to each claim, where each type of claim exhibits different 
lags, severity, and timing of payments. For example, in a WC simulation, perhaps one claim in 
ten could be a permanent partial disability claim which generates many annuity payments 
rather than one lump sum, and five in ten could be medical only claims which are discharged 
for a constant small amount without a significant settlement lag. 
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Separation of Losses and Loss Adjustment Expenses 

The programmin g of the model could be easily modified to simulate loss adjustment expense 
as well as loss payments. In liability lines, one way would be to open two “subclaims” for 
every claim drawn, with an identical report lag but different settlement lags, partial payment 
patterns, and ultimate severities. The first subclaim would be losses, the second legal and 
other adjustment expenses. Similar schemes could be programmed to track indemnity versus 
medical payments in WC, and other payout structures unique to certain contractual 
arrangements. 

Relationship of Report Lag, Settlement Lag, and Severity 

As actuaries, we generally assume that claims which are reported (and settled) at more 
advanced ages cost more on average. To my knowledge, there has been no attempt in the 
actuarial literature to empirically estimate the general quantitative relationship between report 
lags (or settlement lags) and ultimate severity. Therefore, I have no guidance on which to base 
a relationship which could be modeled in the simulation routine. However, this relationship is 
an integral part of the process we are trying to model, whether our models extrapolate from 
historical data or operate on a simulated database. It is an area ripe for further research. 

Mechanical Refinements to the Closed Claim Cost Method 

The closed claim cost method presented here has some potentially serious technical flaws. It 
depends heavily on the absence of partial or annuity payments and the relationship between 
closure age and severity. Its results are sensitive to the choice of severity trend rate and the 
resulting projected severity applied to unsettled claims. Its projection of the closure pattern of 
unsettled claims depends on good actuarial judgment as well as the consistency of past 
settlement patterns. Some of these weak spots may be endemic to structural reserving 
methods, but others could be cured with a little ingenuity. The method tested here is intended 
to spur thinking about structural methods and ways to integrate claim-level data into the job of 
loss reserving, and represents an archetypical approach, rather than a ready-made actuarial 
technique for a particular empirical data set. 

Incorporation of Outstanding Losses 

Since case reserves are a function of human judgment, one might not expect case reserve data 
to adapt well to a simulation algorithm. I have chosen paid loss data as the basis of the 
experiment, but perhaps industrywide case reserving patterns and practices could be used to 
create a simulated reported loss matrix. In fact, Stanard tried to incorporate case judgment in 
his model by including a “reserve error” random variable. I decided that making the same 
attempt would add unnecessary “noise” to the experiment and complicate the simulation 
algorithm. 
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Estimation of Tail Factors 

As discussed above, to avoid introducing superfluous components to the experiment, we 
tested the methods against losses emerged at ten years of development, not the ultimate losses 
generated by the model. In reality, tail factors are the source of much of the parameter risk 
associated with a particular reserving method, and the approach used to calculate the tail factor 
should be subject to the same performance testing as any other component of the method. Two 
methods which otherwise do equally well on a given test could diverge substantially if one tail 
factor is estimated more efficiently than another, particularly in a line like WC or professional 
liability. 

In aggregate methods, tail factors are usually based on extrapolation (by judgmental or 
statistical means) from the empirical payout or reporting patterns embodied in the age-to-age 
factors. The intuition is less clear for structural methods, but 1 suggest choosing an average 
severity in the tail intervaL perhaps based on a multiple or trend of the average severities in 
prior intervals. Multiplying the selected average severity by the projected number of claims 
closed in the tail interval (a by-product of the projected closed claims calculation) generates an 
estimate of losses paid in the tail interval. Of course, like all tail factors, this estimate will be 
sensitive to its input variables - in particular, it will depend dollar for dollar on the selected 
average tail severity and be strongly influenced by the closure density which determines the 
number of claims closed in the tail. 

This simulation model can certainly be extended to use a twenty or even fifty-year payout 
matrix, essentially eliminating the tail interval, but 1 did not want to undertake an experiment 
handling such a large volume of data. I encourage excess and specialty insurers and other 
interested parties to think about and implement the types of experiments which would prove 
most useful to their interests. 
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Exhibit 2 

Variable Base Scenario 
Exposure Changes Normal with mean 0, SD 5% 

Other Example Scenarios 
High-Growth (mean 20%, SD 10%) 
Decline (mean -5%, SD 5%) 
Skewed (Lognormal with mean 5%, SD 5%), etc. 

Claim Frequency per Unit Normal with mean .Ol, SD .M)5 Stable (SD of zero) 
Volatile (Lognormal, SD of twice mean), etc. 

Report Lag Gamma with mean 12 months, SD 12 months Short-Tail (mean 6 months, SD 3 months) 
Product Liability (Pareto, mean 36 months, SD 36 
months), etc. 

Settlement Lag Gamma with mean 24 months, SD 24 months Short-Tail (mean 12 months, SD 6 months) 
Litigated (Pareto, mean 24 months, SD 60 
months), etc. 

Claim Severity (present value) Gamma with mean $2O,o,aoO, SD $2O,ooO Physical Damage (mean $5,ooO, SD $2,oW) 
Mass Tort (Inverse gamma, mean $5O,Mw), SD 
$2oO,ooO), etc. 

Claim Cost Inflation Constant 5% per annum Inflationary (12%) 
CostContainment (2%) 
Stochastic or time series models, etc. 
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Accident EXpOSUlT 
Period Amount 

I 10,000 
I 10,oQo 
1 10,000 
I 10,000 
1 lO,OCJO 
1 10,000 
2 9,600 
2 9,600 
2 9.600 
2 9,600 
2 9,600 
3 9.885 
3 9,885 
3 9,885 
3 9,885 
3 9,885 
4 10,506 
4 10.506 
4 10,506 
4 10,506 
4 10,506 
5 9,681 
5 9.681 
5 9.681 
5 9.681 
5 9.681 

Inflated Claim Total # of Claim 
EXpoSWe Frequency Clatms Number 

10,000 0.0080 80 75 
lO,OQO 0.0080 80 76 
10,000 O.oit80 80 77 
10,000 0.0080 80 78 
10,000 0.0080 80 79 
10.000 0.0080 80 80 
10,080 0.0082 79 75 
10,080 0.0082 79 76 
10,080 0.0082 79 77 
10,080 0.0082 79 78 
10.080 0.0082 79 79 
10,898 0.0069 68 64 
10,898 0.0069 68 65 
10,898 0.0069 68 66 
IO.898 0.0069 68 67 
10,898 0.0069 68 68 
12,162 0.0064 67 63 
12,162 0.0064 67 64 
12,162 0.0064 67 65 
12.162 0.0064 67 66 
12,162 0.0064 67 67 
11.767 0.0179 173 169 
11,767 0.017Y 173 170 
11,767 0.0179 173 171 
11,767 0.0179 173 172 
11.167 0.0179 173 173 

Accident 

Lag 
(months) 

4.6 
1.2 
2.3 
8.1 
0. I 
8.7 
3.2 
4.6 
7.1 
1.7 
8.7 
1.7 

11.0 
10.1 
9.8 
10.2 
11.3 
4.3 
6.5 
4.3 
9.3 
0.8 
9.0 
3.6 
7.1 
2.2 

Report Lag 
(months) 

1.9 
4.3 
2.1 
9.1 
19.1 
2.9 
3.9 

31.8 
28.5 
21.7 
29.5 
2.1 
0.8 
6.7 
5.3 
12.3 
7.8 
8.6 
5.3 
16.5 
1.3 
9.8 
11.0 
16.3 
2.6 
1.3 

Settlement 

Lag 
(months) 

13.3 
8.8 
18.7 
7.7 
52.4 
4.9 
42.5 
3.4 
20.6 
10.0 
54.7 
31.2 
21.4 
10.9 
7.2 
15.5 
IX.2 
45.7 
10.2 
53.4 
7.8 
7.7 
4.8 

23.1 
17.7 
0.6 

Severity 
(dollars) 
34,932 
a.957 
12,795 

480 
4,343 

41,691 
39.195 
10,631 
4.350 
13,634 
24.134 
2.344 
759 

10.974 
60,038 
7,904 
33,288 
36,944 
13,976 
96.408 
27,011 
14.940 
5Y,525 
6,773 
879 

2.770 
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Exhibit 3. page 2 

oto12 121024 t4lo36 361048 48 to 60 601012 12 to 84 8410% %CO10.9 108m129 L*otoul 

36.664 512.3Jl 529.949 195.915 185.356 L20.801 119.318 0 01.622 0 63.55, 

51,430 133.680 355,731 322.011 161J% 11.084 96.m 102741 152.806 82.144 10,591 

23.170 501.W 358.617 159.639 106.333 I55,510 SO.660 67.860 0 0 lJZ6J1 
0 498.488 241.4QJ 498.296 29I341 109.236 no.*99 119.111, 0 1.945 20.290 

410.222 i.mi.885 95i9s4 971.13s 594;693 355;090 Yl.836 277;not lS2113 il.656 99,460 
60.119 536.815 334.7l6 341.332 261.503 152.330 22.151 48.341 13.1,1 0 0 

52,839 534.132 653,538 366.31, 213.951 I 10.960 102,904 41.918 1.074 52779 91.211 

0 82,673 162.105 151.606 40.641 42,153 0 6,314 0 0 0 

91.491 797,491 a24.m 170.568 63l.m 461.114 221.248 164.969 71,229 4.531 0 
18,797 317.873 JL928 52030 114.340 0 0 0 0 0 0 

01.312 12102. 24~36 361048 48,060 6Oto12 12tow 8410% %101a3 10810120 ,2OlOIJl 

01012 12t07.4 24,036 361048 48,069 60,012 121084 6410% %,o,m, *o*to 120 12otom. 
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Accldmt 
PCt-kld 

1 
2 
3 
4 

5 
6 
7 
u 
9 

IO 

lo.m 

9.600 
9,885 
10.X.5 

9.68 I 
9.547 
9,508 
9.470 
8,624 

8237 

Accident 
P&Xl 

I 
2 
3 
4 
5 
6 
7 
8 
9 
IO 

Accident 
PCiiOd 

I 
2 
3 
4 
5 
6 
7 
8 
9 
IO 

PAID LOSS DEVELOPMENT MLTHOD 

0..12 If..24 24..36 36.48 4K.60 60..72 72..84 U.96 96..108 108..120 I2o..uIt 

36,664 512,357 529,949 195.915 185.356 120.807 159.378 0 81,622 0 63,555 
51.430 733.688 355.737 322.0 I I 161.896 77.084 96.400 102.741 152.806 82.144 IO.591 
23.170 SOS.884 358,617 159.639 106.333 155.510 80.660 67,860 0 0 152.654 

0 498,488 147.405 498286 292.34 I 109,236 220.199 179.815 0 1.945 20290 
410.222 1,204.885 952.984 977.138 594,693 355.080 54 I .836 277.802 182.573 101.656 89.460 
60.779 536.815 334,776 341.332 261.503 152330 22.557 48.34 I 13.717 0 0 
52.838 534.732 653.538 366,378 213.957 I IO.960 102.904 47.818 7.074 s2.779 95.214 

0 81.673 l62,IOS 157.606 40.648 42.753 0 6274 0 0 0 
91.491 797,497 824.87 I 170,568 633.722 461.174 228.248 164.969 71229 4.531 0 
78.797 3 17.873 55,928 52,030 174.340 0 0 0 0 0 0 

Cumuhtivc I..nsu P.id at Ap 

12 24 36 48 60 72 84 96 IOU 120 ultim6te 

36,664 549.021 1.078.970 1274,885 I .46024 I 1.581.048 1.740.427 1.740.427 1.822.048 1.822.M8 1.885.603 
5 I.430 785.118 1.140.855 1.462.866 1.624.762 1.701.846 1.798.24s 1.900,9% 2.053.792 2.13s.936 2.146.527 
23.170 532.054 890.672 I .050,3 1 I I, 156,643 1.312.153 1.392.813 I .460.673 I .460.673 I .460.673 1.613.327 

0 498.488 745,893 1244.179 1.536.520 1645.756 1.865.95s 2.045.770 2.045.770 2.047.71s 2.068.004 
4 10.222 1.615.107 2.568.091 3.545229 4.139.922 4.49s.002 5.036.838 5.3 14.639 5.491.2 I2 5.598.869 5.688.328 
60.779 597.594 932,370 I .273.702 I.535205 I .681.535 I .7 10.093 1.758.434 1.772.151 1.772.151 1.772.151 
52.838 587,570 1.241.107 1.607.486 1.821.4d3 I .932.402 2.035.3C-S 2.083.124 2.090.198 2.142.977 2238.191 

0 82,673 244,778 402.384 443.032 485.785 485.785 492.158 492. Is8 492.158 492.ls8 
91.491 888,988 1.713.859 1.884.426 2.518.148 2.979.321 3207.569 3.372.538 3.443.761 3448.298 3.448298 
78.797 3%,670 452.598 504.628 678,968 678,968 678.968 678.968 678.968 678.968 618.%8 

Il..24 24..36 36..48 4C.60 60..72 72..84 84..96 96..108 loa.. 120..ult 

14.974 1.965 1.182 1.145 1.083 I.101 l.cKm 1.047 l.wO 1.035 
IS.266 1.453 1.282 I.111 I.M7 I 057 1.057 1.080 I .I40 1.005 
22.963 I.674 I.179 I.101 I.134 I.061 I.049 l.coO 1.000 I.105 

7lm/oI I.496 I 66u 1.235 I .07 I I I34 I.096 I .Mn IO01 IO10 
3.937 I 590 I .380 I.168 I.086 I.121 I.055 I.034 IO18 I.016 

9.832 1.564l I.366 I.205 1.099 I.013 1.028 I ma 1.m lam 
II.120 2.112 1.295 I.133 I.061 1.053 1.023 I.303 I.025 1.044 

#DlvrnI 2.%l 1.644 I.101 1097 1.000 I.013 1.m 1000 l.OOQ 
9.717 I.928 I.100 1.336 I.183 I .077 I.OSI I.021 I.001 loo0 
SO34 I I41 I.115 1.34s l.WO IMX) I.cm 1000 I.000 I.000 
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Calendar 
Year-End 

IO 
II 
12 
13 
14 
15 
16 
17 
18 
19 

Calendar 
Year-End 

10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 

Age-to-Ae Factor Applied 

lx?4 2k.36 36..48 48.&l m.12 72..84 84..% 96.. 108 108..120 120..Ult 

8.446 1.685 1.333 1.163 1.082 I .089 1 .a35 1.064 Loo0 l.ooo 
1.720 1.341 1.158 1.085 1.102 1.052 1.046 1.021 1.ooo 

1.302 1.157 1.081 1.090 1.053 1.033 1.01s l.ooo 
1.181 1.082 1.085 1.050 1.033 I.011 l.oQ3 

1.098 I .082 1.046 1.030 1.014 1.000 
1.081 I a45 1.027 1.013 l.ooo 

1.046 I.026 I.014 1.ooil 
1.025 1.014 l.OLW 

1.012 l.OW 

36..Ult 

2.012 
2.087 
1.961 

Age-to-Ultimate Factor Applied 

48..IJk 6Q.mt 72..Uk 

1.509 1.298 1.199 
1.556 I.343 1.238 
1.506 I.302 I.204 
1.522 1.289 1.191 

1.300 1.184 
1.176 

84..Ult 96..UIt 108..Ult lZO..Ult 

1.101 1 .I64 1.000 l.wo 
1.123 I.068 1.021 1.ooo 
1.104 1.049 1.015 I.000 
I .097 1.045 1.011 1.000 
1.094 1.045 1.014 1.ooo 
1.087 1.040 1.013 1.000 
1.089 1.041 1.014 l.ooo 

1.039 1.014 1.W 
1.012 l.ooo 

1.000 
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ACddtnl 
PWiOd 

I 
2 
3 

4 
5 
6 
7 
8 
9 
IO 

Irrua P&l mt Erxl of Cdmdm Ynr 

10 11 12 13 14 15 16 17 18 19 

1.822.048 1 1.885.603 1.885.603 1.885.603 1.8.35.603 1.885.603 1.885.603 1.885.603 1.885.603 1.885.603 
2.053.792 2.135.936 1 2.146.527 2.146.527 2.146.527 2.146.527 2.146.521 2.146,527 2.146.527 2.146.527 

1.460.673 1,460.673 1.460.673 1 1.613.327 1.613.327 1.613.327 1.613.327 1613.327 1.613.327 1.613.327 

1.865.955 2.045.770 2.045.770 2.047.715 1 2.068.OD4 2.068.C04 2.068.004 2,068.ocn 2.068.004 2.068.004 
4.495.002 5.036.838 5.314.639 5.497,212 5.598.869 1 5.688328 5.688328 5.688.328 5.688.328 5.688.328 
1.535.205 1.687.535 1,710.093 1.758.434 1.772.1S1 1.772.151 1 1.772.151 1.772.151 1.772.151 1.772. ISI 

1.607.486 I .a2 I .443 1.932402 2.035.306 2.083.124 2.090.198 2.142.977 1 2.238.191 2.238.191 2238.191 

244,778 402,384 443.032 485.78s 485.785 492.158 492. I58 492.158 1 492.158 492.158 
880.988 1.713.859 1.884.426 2.518.148 2.979.321 3207.569 3372.538 3.443.767 3.448298 1 X448.298 

78.797 396.670 452.598 504.628 678.968 678.968 678.%8 678.968 678.968 678.968 

Accident 
Ptti 

10 11 

Pro&ted Age 120 Loua at End al C&n&r Year 

12 13 14 1s 16 17 18 19 

I,822048 [ 1.822.048 1.822.048 1.822.048 1.822.048 1.822.048 1.822.048 1.822.048 1.822.048 1.822.048 
2.053.792 2.135.936 1 2.135.936 2.135.936 2.135.936 2.135.936 2.135.936 2.135.936 2.135.936 2.135.936 
1.554.708 1.491.630 1.460.673 1 1.460.673 1.460.673 I .460.673 1.460.673 1.460.673 I .460.673 1.460.673 

2.054.788 2.185.118 2.077260 2.047.715 ~2.047.715 2.047.715 2.W7.715 2.047.715 2.047.715 2.047.715 

5.391.390 X657.263 5.573.434 5.559.829 5.598.869 1 5.598.869 5.598.869 5.598.869 5.598.869 5.598.069 
1.993.168 2.089.337 1.888.565 1.837972 I .797.709 1.772.151 1 1.772.151 1.772.151 1.772.151 1.772.151 

7 2.426.426 2;446.127 2.326.646 2233:633 2.177:169 21116.6% 

8 492.4 I5 626,032 576.856 578.574 531.322 511.781 
9 3.013.548 3.576.571 2.837.738 3244,824 3.527.330 3.487.169 

2.142.977 2.142.977 

‘s, 326 

1 2.255.95 I 1.424.023 887.445 768.066 882.328 798.304 739.430 705.738 686,949 678.968 

2.142.977 1 2.142.977 
499.170 492.158 

3.509.745 3.491.430 
IO 

Au Yearn: 23.058.234 23.454.085 21.586,600 21.689269 21.981.099 21.751.341 21.728.714 21.669.696 21.607.774 21.599.793 

Absdute Error: -..-...---.._ -..!EkE!. . . L%??L-2.193) -..-.. 2.4~ -....2* ..__... !5.!28 128.920 69 902 .: ,,.____. 7981 - __......! _.... 0 -- - _I....._._.I 

-__--_.-_ ._ .__..... -LE.- __...-.... !.:6”- Rdattvc Error: -0.1% 0.4% 1.8% 0.7% 0.6% 0.3% 0.0% 0.0% -.___ - ___.-.. ____.-__- 
Sqwed Error: 2.138+12 3.44E+lZ 1.74E+oS 8.0lEtW 1.45E+ll 2.30E+IO lfhE+IO 4.89E+o9 

___.._..........._ ~~~~~~7-lii~~~~ 

Age 120 
ba3w 
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Acddatt 
P.&d 

2 9.&l 
3 9.885 
4 10.5o6 
5 9.681 
6 9.547 
7 9,508 
8 9,470 
9 8.624 
IO a.237 

ElpCNN 
Amount 
10.000 

Accident 
PCti 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Acctdmt 
PWbd 

2 
3 
4 
5 
6 
7 

8 
9 
IO 

0.. 12 rk.24 

36,664 5 12.357 
5 I.430 733.680 
23.170 508.884 

0 498.488 
410.222 i,204.885 
60.719 536.815 
52.838 534,732 

0 82.673 
91.491 797,497 

78.797 317.873 

CLOSE11 CLAIM COSI' MKI'IIOI~ 

24..36 

529.949 
355.737 
358.617 
247,405 
952.984 
334,776 
653.538 
162.105 
824.87 I 
55,928 

36..48 48..60 60..72 7z.84 84..96 96.. 108 

195.915 185,356 t20.807 159.378 0 8 I.622 
322.011 161.8% 77,084 96.400 102.74 I I 52.8o6 
159,639 lo6333 155.510 so.660 67.860 0 
498,286 292.3441 IO9236 220.199 179.815 0 
977.138 594,693 355.080 54 1.836 277.802 182.573 
34 1,332 26 1,503 152.330 22.557 48.34 I 13.717 

366.378 213.957 1 IO.960 102.904 47.8 is 7.074 
157.6% 40.6448 42.753 0 6.374 0 
170.568 633,721 461.174 228.248 164.969 71229 
52,030 174,340 0 0 0 0 

108..120 1zo..ult 

0 63.555 
82.144 IO.591 

0 152,654 
1.945 20.290 

101,656 89,460 
0 0 

52.779 95214 
0 0 

4.531 0 
0 0 

0.. 12 12.24 24.36 36.48 48..68 60..72 72.X4 84.96 %..I80 108..120 120..Ult 

42 26 9 2 I 0 0 0 0 0 0 
27 32 10 IO 0 0 0 0 0 0 0 
24 33 7 0 3 I 0 0 0 0 0 
18 39 8 2 0 0 0 0 0 0 0 
60 69 28 10 2 3 0 0 0 0 I 
30 23 7 3 3 0 0 0 0 0 0 
I9 32 I2 2 I 0 0 0 0 0 0 
3 I2 2 I 0 0 0 0 0 0 0 

38 30 IS 8 3 0 2 0 0 0 0 
7 9 4 2 0 0 0 0 0 0 0 

Simuhted Comb clmed During Ap htervd 

0..12 lZ.24 24.24 36..48 48.11.60 61L.72 72..84 84..96 96..108 ltw.120 13o..Lot 

3 24 2.2 11 6 7 3 0 I 0 3 

3 21 21 7 7 7 4 5 2 I 1 
2 15 I7 IO 9 7 4 1 0 0 3 
0 17 II I4 12 3 4 4 0 I I 
I2 45 33 32 I3 13 10 6 4 3 2 
3 23 14 6 I2 3 2 2 I 0 0 

3 IS 16 9 7 5 2 2 I 2 4 

0 3 3 7 3 I 0 I 0 0 0 
5 21 25 IO IS 9 4 5 I I 0 

GENEXHXLS 61-2~97 



Exhibit 5, page 2 

Accident 
Peliod 

2 
3 
4 
5 
6 
7 
8 
9 
IO 

Calendar 
Year-End 

IO 

Calendar 
Year-End 

10 

Accident 
PCliod 

2 
3 
4 
5 
6 
7 
8 
9 
IO 

I2 24 36 

Cumulative Counts Reported at Age 

48 60 72 84 96 108 120 Ultimate 

27 59 
24 57 
18 57 
60 129 
30 53 
19 51 
3 IS 

38 68 
I ( 16 

42 68 77 79 80 80 80 80 80 80 80 
69 19 19 19 19 79 79 1 

1 
79 79 

68 68 68 [ 68 68 68 
65 67 67 67 67 61 67 61 67 
157 167 169 172 

I 
1 

1 
I72 112 172 172 173 

60 63 66 66 66 64 66 66 66 
66 6G 66 66 66 66 
18 18 18 18 18 I8 
94 96 96 96 96 96 

20 12 22 12 22 22 22 22 22 

12..24 24.36 36..48 

Age-to-Age Factor Applied 

48..60 60..72 72.M 84..96 96,108 108..120 12o..uit 

1 2.134 1.170 1.052 I.017 I .009 l.ooo l.ooo l.OlXl l.cm I LCQI 1 

Age-to-Ultimate Factor Applied 

12..wt 24..ut 36..Ult 48..Ult 60..Ult 72..u1t 84..u1t 96..Ult lOB..Ult 12o..ult 

1 2.699 I.265 1.08 I 1.028 I.010 1001 I.001 I.001 I.001 l.GQl 1 

Projected Claim Counts Reported at Age 

12 24 36 48 60 12 84 96 108 120 

42 68 77 79 80 80 80 

80 

27 59 69 79 79 79 24 5-l 64 64 67 68 I8 57 65 61 67 61 i; [ i 4 18 

172 I72 
61 67 61 67 

3 I5 
3x 6X I- 

60 129 
30 53 
19 51 

I7 1 18 I8 18 I8 IS I8 I8 
__ _- , 80 84 85 86 86 86 86 86 
7 1 15 I7 I8 I9 I9 I9 I9 I9 I9 

Ultimate 

80 
79 
68 
67 
172 
67 
67 
I8 
86 
I9 

TNC 
Ultlmnte 
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2 
3 
4 
5 
6 
7 
8 
9 
10 

Accidmt Expmure 
PCliCd Amount 

I lO.noO 

2 9.600 
3 9.885 
4 10.506 
5 9.681 
6 9,541 
7 9.508 
8 9.470 
9 8.624 
IO a.237 

Cimure knrity Appkd 

O..lZ 12..24 24..36 36..40 48..60 60..12 72..84 W4..% %..I08 108..120 120..111t 

1 4.4% 26.1% 22 2% 14.8% 11.1% 7.9% S.I% 2.6% 1.9% 0.0% 1 3.9% J 

0..12 12..24 24..36 

Pmjcctcd Count3 Ctod During Interval 

36..JB 40..0 8..12 72..U4 w4..96 %..lOU IOU..120 120..1111 

3 
2 
2 
3 
7 
2 
3 
I 
3 
I 

Average Severity of Counlr Clod Wing Hirtorkd Interval 

0..24 24.M 48..12 72..120 

28.175 i 28.566 j 25.207 I 40.069 1 I 

Iii Index In Inlerv~b 

OJ2 12..24 24..36 36.48 48..60 60..12 72.M 84..% 96.108 108..120 lZO..lJlt 

0 I 2 3 4 5 6 7 8 9 IO 
I 2 3 4 5 6 7 a 9 

1 
( 

1 
10 II 

2 3 4 5 6 7 8 9 IO II I2 
3 4 5 6 7 8 9 IO II 12 13 
4 5 6 7 8 9 

1 
J 

1 
10 II I2 I3 14 

5 6 7 8 9 IO II 17. I3 14 I5 
6 7 8 9 IO II I2 I3 14 IS I6 
1 R 9 

J 
1 

J 
IO II I2 I3 I4 IS 16 17 

8 9 IO II 12 13 I4 IS 16 I7 I8 
9 1 IO II I2 I3 I4 I5 I6 17 I8 19 

Aver~~eTme Index inllirtorirdlntend 

0..24 14.M 48..12 72..120 

I’mjrckd chmcd tn unrcttled 
UlthWlC Date ccunlr 

80 77 3 
19 77 2 
68 65 3 
67 61 6 
172 I48 24 
67 S8 9 
67 43 14 
I8 6 I2 
86 26 60 
I9 I II 

I 4.62 5.70 6.72 800 1 
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A&lent 
PWiCd 

6 
7 
8 
9 
IO 

Accident 
PCliOd 

I 
2 
3 
4 
5 
6 
1 
8 
9 
IO 

0..12 12..24 24.A 

Projected Sewity 0~Camb Closed I)uring Interval 

36.4 4aAa &I..72 72..84 84..% %..I00 108..120 IZO..ult 

I 
d 

46 376 
d ::::i 48:695 

liizf i” 
46;376 

46.376 48;69S 51;130 
1 29.515 48.695 51.130 53.686 

j 
29.515 31.054 48.695 51.130 53,686 56.31 I 

( 35.231 31,054 32.601 51.130 53.686 56.371 59.189 
1 35.231 36,993 32.607 34.231 53.686 56.371 59. I 89 62.149 

r 37.412 36,993 38,843 34.231 35,949 56.31 I 59.189 62.149 65,256 

Projected Laua Paid Durtn~ Interval 

0..12 12..24 24..36 3*.48 48.&l 60..12 72..84 84.96 %..I08 108..120 lZO..Ult 

I I I 

ri 

r 

Unpd 
l..nms 

SJ95.029 

Paid to Date 
As 120 
Irnsa 
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Simuhtion Experiment 
PERFORMANCE TEST OF RESERVTh’G METHODS 

Resulta of 25 Trialr - Base Seemrio 

(Relative to Paid losses at Age 120) 

Paid Chain L&r Mdhod 

TllIC 
Accident Age 120 
Penod Lc!w 

1 57.304.345 
2 60,055,258 
3 63,964.783 
4 63.602.052 
5 75.776.039 
6 75,663,897 
7 77,462,112 
8 92.548.970 

ii? 92,610,795 89.170.120 
All 748.218.371 

ElTOr 
Function 

Relative 1.7% 1 .O% 0.4% 0.0% (0.0%) 
Squared 1.67E+14 5.94E+13 6.95E+12 l.OSE+ll 5.72E+lO 

Tme 
Accident Age 120 

Period Qgg 
1 57.304.345 
2 60.055.258 
3 63.964.783 
4 63.602.052 
5 75.776,039 
6 75.663.897 
7 77,462,112 
8 92.548,970 
9 92,670,795 

lo 89.170.120 
All 748.218,371 

Error 
Function 
Absolute 
Relative 
Squared 

Estimated Age 120 Paid Losses at End of Calendar Year 

lo u I2 13 14 
57.304.345 57,304,345 57.304.345 57,304,345 57.304.345 
60,329.498 1 60.055.258 60.055,258 60.055.258 60.055.258 

75.886.781 76.064.845 75,474,083 75.277,583 75,267,483 
80,612,645 79,091,979 78.371,067 77.741.958 77.449.003 
91,038,318 92,473,819 94,212,413 93.252.786 92.568,113 
95,909,125 92,110,826 91.147.803 90.454.071 90,420,681 
98.105.319 97.654.037 91.822.288 91.622.772 91.571.453 

761.135.954 755,928,183 750.854,OOl 748.542.435 747,979,211 

Value of Error Function at End of Calendar Year 

lo 1 12 15 14 
12,917,583 7.709.812 2.635,630 324.064 (239,160) 

Estimated Age 120 Paid Losses at End of Calendar Year 

lo 11 A2 13 I 
57.304.345 57.304.345 57.304.345 57,304,345 57.304.345 
61.064.976 1 6G,O55,258 60.055.258 60.055.258 60.055.258 
65.158.008 63.280.469 1 63.964783 63,964,783 63.964.783 
63J22.854 65.637.899 639229,996 1 63.602.052 63.602.052 
74.452.354 74.411.866 75.359.622 75.103.820 75.7763039 
74B607.460 74.883.272 75,012,579 75.092,867 75,246,837 
78.700,807 78.059.367 77.632.951 77.403,373 77.176.938 
92.283,473 93.063.853 93,661.441 93,356,706 92,683,211 
91,500,021 91.909.256 91.591.978 90,811,683 90.581.052 
91.655.713 91.815.401 91.026.225 91.012.938 90.528.099 

750.050,Oll 750.420.987 748,839,178 747.707.826 746,918,614 

Value of Error Function at End of Calendar Year 

ro 11 i2 
1,831,640 2,202,616 620.806 (51Oy45) (1 29:7757) 

0.2% 0.3% 0.1% (0.1%) ;0.2&) 
3.35E+12 4.85E+12 3.85E+ll 2.61E+ll 1.69E+12 
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simubuan Exprtmem 
PERFORMANCE TEfl OF RESERVING METHODS 

Mb ol2S Thh - Base Scmwia 
(RelMive to Unplid Portion of Am 120 Lows) 

A&dent True Unpaid h .I End of Cakndar Year Esth~bd Unpaid Lasses at End of Cakndar Year 

pcrlod lo 1 12 P 14 lo ll 12 II 34 
0 0 0 0 0 0 0 0 0 0 

Accident 
&@ 

680.949 0 0 0 0 955.189 0 
1.751.559 819.735 0 0 0 2.573.797 1.103.469 
X139.386 3.0X59.975 1.216.269 0 0 4.628.727 2s249.294 
11.593.209 6.787.120 3.169.761 1.688.713 0 9.889.180 5.164.264 
16.094.654 9.519.OQO 5,590.763 3.261.043 1.744.837 16,317.538 9.919.949 
24.715.114 1~.119.055 9,261SW 5.450.922 3.104.016 27.865.647 16.748.923 
49323,145 31.532.@37 18.764.415 I1,482,073 6.6833.789 47.712.492 31.456.856 
68,610.911 49,067,&Z 32.633.829 21.62S.439 14.0S1.234 71.1149.241 48,507.8% 
84.426.396 64.404.61s 45.715.787 28.762.'113 lz.luLm l?2Ja&m ?2.%ml 

262.235.322 180.409.372 116.353.406 72.270.902 42.770.86s 275,152.905 188.119.l83 

0 
0 

845.218 
2.664.685 
s.400.949 
10.17l.S35 
20.427.858 
31.110.837 

I18.989.036 

0 
0 
0 

1.179.499 
2.874.730 
5.730.768 
12.185.889 
19,408.715 

?=laLlm 
72,594.966 

0 
0 
0 
0 

u4*423 
3.090908 
474933 
11.801,120 

42.531.707 

Value of Error Function at End olCahdu Year 

ro 11 I.2 11 k! 
12917.583 7.709.812 2.635.630 324.061 039.w 

4.9?? 4.3% 2.3% 0.4Y. (0.6%) 
I .678+14 5.94E+13 6.95E+ll I .OSE+l I 5.72E*10 

Chrcd Ctaim Cost Method 

True Unpaid Loga at End olC&ndnr Yur Estimhd Unpaid Lcau .t End of Cakndsr Year 

la 11 I2 u u I9 ll l2 L! l!l 
0 0 0 0 0 0 0 0 0 0 

680.949 0 0 0 0 1.690.667 0 0 0 0 
1.751.559 829,735 0 0 0 2.944.784 145,421 0 0 0 
5.139.386 3.069,975 I .2 16.269 0 0 4.%O.l88 5.1OS.822 844.213 0 0 
11.593.209 6.787.120 3.169.764 1.688.713 0 10.269.524 X422.948 2.753.347 l.OlbA94 0 
16.094.6S4 9.519.Owl 5.590.763 3,261.043 1.744.837 15.038.217 8.738.376 4.939.44-t 1.690,013 1.327.777 
24.715.114 lS.119.055 9262.580 5.450.922 3.104.016 25.953.809 15.716.310 9.433.419 5.392.183 2.818.842 
49.223.145 31.532.007 18.7644.415 11.482.073 6.683,789 48.957.647 32.046.891 19.876.885 12.269.809 6.818.030 
68.610.911 49.067.865 32.633.829 21.625.439 14.051234 67.440.136 48.306.326 31.555.012 19.766.327 11.961.491 
84.426:396 &:484;615 45:715:787 28:762:712 17.186:992 

262.235.322 180.409.372 116.353.406 72.270.902 42.770.868 
86191 I:988 67j29.895 47.571.891 30;605:531 L8.%444:97Q 

264.066.962 182,611.988 116.974.213 71.760,357 41.47l.lll 

m lo ii 1 12 Ll 
AbChtC 1.831.640 2,202.616 620.806 (510.545) (1.299.7S7) 
R&uvc 0.7% 1.2% 0.5% ~(0.7%) (3.0%) 
squwed 3.35E+l2 4.8SE+12 3.85E+l I 2.6lE+I I 1.69E+12 
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