
A Survey of Mefhods Used to 
Reflect Development in Excess Ratemaking 

by Stephen W. Philbrick, FCAS, and 
Keith D. Holler, FCAS 

243 



Ab&act 

This paper discusses the strengths, weaknesses, and application of several methods used to 

obtain an estimated ultimate loss distribution from data whose valuation is less than final. The 

central issues are introduced by examining several basic methods via a simple example. This 

foundation is followed by a description of three additional methods which rely on industry loss 

distributions as a basis for obtaining the ultimate loss distribution using limited data. Finally, a 

more robust method is introduced which accommodates slightly more refined, but not atypical, 

data. 
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Introduction 

There is a substantial amount of published material on fitting statistical distributions to sample 

data’. In actual practice the sample data usually consist of individual claims and the 

distributions fit to this claim data are referred to as loss distributions. Several authors’ have 

illustrated the use of loss distributions in estimating various insurance pricing factors, such as 

deductible credits, increased limits factors, and excess loss factors. However, most of these 

materials tiptoe around the issue of loss development. For instance, the current staple 

reference of the profession regarding loss distributions, “Loss Distributions” by Messrs. Hogg 

and Klugman’, directly fits loss distributions to property and liability claims and then 

immediately uses these curves in further computations. This process essentially makes the 

development assumption that the individual case reserves are correct and that unreported 

claims will basically be no different in nature than the claims which have been reported. While 

this assumption may be appropriate for direct use in estimating deductible factors, increased 

limits factors, etc., for property claims, the errors arising are often too large to be ignored 

without adjusting the distribution for the effects of loss development for non-property claims. 

Appendix A discusses some of the literature references to this problem. 

’ Hogg, R.V.. and Klugman, S.A.. Loss Distnbutions. 1984 
Hogg. R.V.. and Craig, A.T.. Introduction to Mathematical StatiStics (Fourth Edition) 
Hossack, IS.. Pollard, J.H.. and Zehnwirth, B.. Introductory Statistics with Applications in General 
France, 1983. Chapters 4 (all sections), 5 (all sections), 6 @l-6.4), and 8 (excluding 8.7). 

Gary S Patrik. ‘Reinsurance.’ Foundations of Casualty Actuarial Science (Second Edition), Casuahy 
Actuarial Society, 1992 
Keith D. Holler, Review of ‘The Mathematics of Excess of Loss Coverages and Retrospective Rating - A 
Graphical Approach,” Forum, Spring 1992 
Htephen W. Philbrick, A Practical Guide to the Single Parameter Pareto Distribution, PCAS BXll, 1985 

Hogg, R.V.. and Klugman, S.A., Loss Distributions, 1984 

245 



_ .--- 
J 

This paper discusses some of the issues regarding the recognition of loss development when 

estimating liability loss distnbutions. It is separated into three sections. These sections are 

organized as follows: 

Section I 

Section II 

Section Ill 

This section will illustrate the nature and potential magnitude of the problem of 

using an artificially simplified data set containing a handful of claims, This 

section also demonstrates that several standard adjustments for development 

do not sufficiently address the problem. 

This section illustrates three intermediate techniques which provide a more 

complete solution to the problem: 

Use shape of industry curves without adjustment 

Use shape of industry curves with adjustment for mean values 

Use industry curves incorporating the latest evaluation date of 

individual claim data. 

This section will discuss a more rigorous approach to account for loss 

development in the case that more complete historical data on individual claims 

is available. 
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Section I - Examining The Basic Problem 

In order to examine the basic dynamics surrounding the development issue, this section will 

discuss a simple empirical sample which at the time of evaluation, consists of 10 claims. 

Continuous loss distributions, other than the empirical distribution, will not be discussed in this 

section as the basic concepts are unaffected by the transition from the actual data to a 

continuous loss distribution that seeks to model the process underlying the actual data. While 

we realize that this simple example may not totally reflect reality, it is provided to familiarize the 

reader with some of the fundamental issues surrounding the problem and thereby more fully 

prepare the reader for the latter sections of the paper. 

Given the follotiing ten claims from a specific accident period, the goal will be to estimate a 

$1,250 deductible credit, a $12.500 increased limits factor (ILF), and a $7,500 excess loss 

factor (ELF). Assume that the base limit is $5.000. 

Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Open 

Closed 
Open .- 

800 
1,100 
1,300 
1,600 
1,800 
2,500 

0 
11,000 

n 

800 
1,100 
1,300 
1,600 
1,800 
2,500 
3,000 

11,000 
12,000 

10 I $20,700 $35,700 

Status Paid Value 
Closed 3600 

Incurred Value 
3600 

The goal is to estimate the following quantities for all claims occurring during the specific 

accident period after they have each been reported, settled, and closed. 
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Deductible Credit’ = Sum losses limited to the deductible 
Sum of unlimited losses 

Increased Limits Facto?’ = Sum of losses limited to $12.500 
Sum of losses limited to the basic limit ($5,000) 

Excess Loss Factor = (Sum of unlimited losses - Sum of losses limited to $7.500) 
Sum of unlimited losses 

The process of loss development consists of the reporting of claims to the insurer and the 

adjustment of those claims until each claim is closed. Typically, as a body of claims develops, 

the total value and the average value of the claims increase on both a paid and an incurred 

basis’. Assume, for the present, that no IBNR claims are reported. We will revisit this 

assumption later. Assume that the final settlement values for each claim are as follows: 

Claim Number 1 Status 
1 Closed 

10 
Total 

Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 

10 

Final Value 
$800 

800 
1,100 
1,300 
1,600 
1,800 
2,500 

15,000 
11,000 
20,000 

$55,700 

Based on the ultimate distribution of the 10 claims from this accident period. the actual factors 

should be: 

4 Calculation of deductible credits in the context of workers compensation coverage normally uses the 
sum of unlimited losses as the denominator. In liability coverages. it is more usual to use losses at some 
limit as a denominator. The reader is invited to restate the data if a different convention is prefened. 
’ The concept of increased limits factors rarely occurs directly in workers compensation. However, the 
pricing of excess layers often uses techniques that are mathematically equivalent to an ILF approach, so 
we believe the issue associated with appropriate adjustments to ILF’s to account for development also 
apply to workers compensation. 
’ This is apparent if one divides the paid or incurred losses by the reported counts for the industry in total 
using data from Best’s Aggregates and Averages. It is also apparent upon examining the average loss 
by settlement lag implied by ISO’s selected loss distributions for general liability. 
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Item Calculation Value 
Deductible Credit (DED) 11,25Ol55,700 0.202 
Increased Limits Factor (ILF) 45,700/24.700 1.850 
Excess Loss Factor (ELF) (55,700 - 32,200)/55,700 0.422 

These are the actual factors for this accjdent period that we are trying to estimate. The key is 

that these factors are usually estimated using a body of claims that are not fully developed. In 

this example, we need to estimate the actual factors using the original ten claims. 

The following are several basic approaches that might be used: 

w Estimation using the eight closed claims; 

n Estimation using the incurred value of the ten claims; 

n Estimation using the incurred values after adjusting by a single loss development factor; 

and 

n Estimation using the incurred values of the ten claims after adjusting the open claims by a 

single total case reserve development factor, which includes a provision for the unreported 

claims 

Each of these approaches will mis-estimate the actual factors. 

The purported justification for using closed claims is that they are settled and their values will 

not be subject to change. The problem with using closed claims is that the eight closed claims 

do not represent the same loss distribution as the ultimate body of ten claims. The estimated 

factors using the closed claims only are: 

Item 
DED 
ILF 
ELF 

Calculation Value 
8,750/20.700 0.423 

20,700/14,700 1.408 
(20,700-17,200)/20,700 0.169 
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The deductible credit is overstated because the larger claims, which develop and are closed 

later, add more to the denominator of the calculation of the deductible credtt than they do to 

the numerator. The ILF is understated because the future development of the larger claims 

tends to push a greater percentage of the losses into the hrgher layers. The excess loss factor 

IS understated for the same reasons. 

One could use the incurred values of the ten claims. The use of incurred values attempts to 

include more information about the claims than IS contained in the actual paid values alone. In 

essence, the incurred values recognize more of the development in the claims than the paid 

values. The use of the mcurred claim values results in the following estimates: 

Item Calculation Value 
DED 11,250/35.700 0.315 
ILF 35.7OOi22.700 1.573 
ELF (35,700-27,700)/35,700 0.224 

The use of incurred claim values produces errors in the same direction as the use of closed 

claims. However, the magnitude is smaller. 

Once again, this is due to the fact that the average claim value and the spread of the claims 

tend to increase with time. The increase in the average claim value over time is supported by 

statistics from Best’s aggregates and averages’, while the increase in the spread of claims is 

supported by actual data and common sense. There are two common sense arguments 

supporting the latter phenomenon. The first is that if the average value increases, then if all 

claims have been reported, the total increase must originate from the openclaims. If one 

’ Average incurred claim size can be calculated from incurred dollars and reported counts shown in the 
industry aggregate Schedule P exhibits. A comparison of subsequent years’ values will demonstrate the 
increase over time. 
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assumes that the average open claim is larger than the average closed claim, then increasing 

the values of open claims should increase the variance of the total body of claims. The 

second common sense argument is the “big bang” theory. The big bang theory suggests that 

adjusters do a pretty good job on most of the claims. but usually get surprised by one or two 

claims. Thus, given a body of claims with ten open claims, eight might settle within a relatively 

small percentage of the case reserve, but the remaining two claims “explode” and settle at 

much more than the case reserve. The net effect is that the two problem claims spread the 

distribution of all the claims and account for a substantial portion of the total dollar 

development. 

In order to more properly recognize claim development, one might suggest that we simply 

multiply each of the incurred claims by a development factor and then compute the statistics. 

This approach has the continuous loss distribution analog of multiplying the individual losses 

‘by a development factor before fitting the loss distribution. In the example, assume that the 

incurred development factor is known with certainty to be 1.560 (55,700/35,700). The resulting 

factors are: 

Item Calculhtion Value 
DED 12.104l55,700 0.219 
ILF 44,815/29,815 1.503 
ELF (55,700-34,915)/55,700 0.375 

If all the claims are reported, the deductible factor is still overstated because the use of a 

uniform development factor increases the value of the small closed claims too much. The ILF 

and the ELF for the larger limits are understated because the majority of the true upper layer 

development is distributed by the use of uniform factor to the more frequent smaller and 

moderate sized claims. Once again, the actual change in the spread of claims is not 

completely captured. For more moderate limits, the ILF and the ELF would be overstated 
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because the values of many moderate-valued claims are increased beyond what they will 

actually settle for. This is due to the dollars that must be accounted for in the loss 

development factors arising from increases in large value claims. 

Finally, one might decide to apply a development factor to the open reserves’. This factor can 

be calculated directly from historical data, or solved for using paid and incurred development 

factors. In this case, assume that the development factor applicable to open reserves is 2.333 

((20,000 + 15.000)/(12.000 +‘3.000)). Applying this factor to the open claim reserves, and 

calculating the resulting factors yields: 

Item 
DED 
ILF 
ELF 

Calculation Value 
11,25Ol55,700 0.202 
40,200/24,700 1.628 

(55,700-31.700)/55.700 0.431 

The deductible factor is tight on (although if we construct an example with open reserves well 

below the deductible amount, we would still get an error). The ELF is reasonably close while 

the ILF is still not close. 

The calculations to this point have been based upon the assumption that no new claims are 

reported and the only development arises from known, open claims. In the usual situation in 

which IBNR claims do emerge, the picture becomes more complicated. 

’ The technique of using a factor applicable to open reserves only is not as widespread as other 
traditional methods, Part of the reason is the correct perception that the factor can be leveraged - at 
close to maturity, only a small portion of total incurred is still outstanding and the factors may swing 
widely based upon the actual prior settlements of just a few claims. However, at less mature ages, the 
perception of instabillty may be false. While the factors appear larger and more volatile, it should be 
noted that an incurred development fador can be derived from an outstanding development factor by 
adding a constant (paid dollars) to both numerator and denominator. While it should be clear that adding 
such a constant does force the resulting value closer to one, it can be argued that it is an artificial 
dampening of results. In any event, we think that this method should not be rejected simply because the 
typical factors are larger and M to be more volatile. 
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Let us assume that, at ultimate, our total incurred is supplemented by two IBNR claims, one at 

$5,000 and one at $25,000. Then our ultimate distribution is as follows: 

Claim Number 

: 
3 
4 
5 
6 

T 
7 
8 
9 
10 
11 
12 

Total 1 

Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed 
Closed I 

Status Paid Value Incurred Value 
s 600 

800 
1,100 
1,300 
1,600 
1,800 
2,500 

15,000 
11,000 
20,000 
5.000 

25,500 
$85,700 L 

$ 600 
800 

1,100 
1,300 
1,600 
1.800 
2,500 

15,000 
11,000 
20,000 

5,000 
25.000 

$85,700 

With these ultimate claims, the correct factors are as follows: 

Item Calculation Value 
DED 13,750/05,700 0.160 
ILF 63,200/34,700 1.821 
ELF (85,700~44,700)/85,700 0.470 

The calculation of estimated factors using closed only claims does not change. For 

convenience, the results are repeated here: 

Item Calculation Value 
DED 0,750/20,700 0.423 
ILF 20.700/14.700 1.400 

ELF (20,700-17,200)/20.700 0.169 

Note that the deductible and ELF factors are further away from the correct values. The ILF is 

only marginally closer. 
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Similarly, the calculation using incurred amounts is unchanged and reproduced here: 

Item Calculation Value 
DED 11,250/35,700 0.315 
ILF 35,700/22,700 1.573 
ELF (35,700-27.700)/35.700 0.224 

Assuming that we have accurate incurred loss development factors reflecting IBNR 

emergence, we can update the incurred development method with the revised factor of 2.401 

as follows: 

Item 
DED 
ILF 

ELF 

Calculation Value 
12,500/85.700 0.146 
55,407/37,284 1.400 

(65,700-45,487)/65,700 0.469 

Note that the derived deductible factor is now too low (as contrasted to the situation where we 

assumed no IBNR). This understatement results because the IBNR claims would include a full 

deductible, but the development factor applied to known claims with incurred values above the 

deductible produces no new deductible losses. The ELF factor is reasonably close, but the ILF 

factor is still substantially off. 

When we update our open reserve development method, we can consider the possibility that 

the entire development factor should be applied to the open reserves, but a few moments 

reflection should indicate that this does not make much sense. To increase open reserves for 

anticipated development of open claims is plausible, but to increase individual claim amounts 

to account for newly reported counts seems unreasonable. 

Given that our goal is to estimate the ultimate distribution as opposed to the total incurred, it 

would be entirely appropriate to ignore the IBNR claims if these claims had the same expected 
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size distribution as known claims. However, experience tells us that IBNR claims tend to have 

higher loss amounts than previously reported claims. Loading pure IBNR dollars into known 

claims is clearly wrong, but ignoring these counts also introduces errors. 

We have reproduced below the open case development approach using only expected 

development on known claims: 

Item Calculation Value 
DED 11.250/55,700 0.202 
ILF 40,200/24,700 1.628 

ELF (55,700-31.700)155,700 0.431 

While this method produces better results than incorporating the entire development into the 

open reserves, our correct factors have now changed and we see that the resulting factors no 

longer match the correct factors. 

The relative error of these procedures depends upon the context in which the results will be 

used. In the rating factors being estimated in the example, one must keep in mind how the 

factors will be applied and the nature of the overall objective. For example, the ILF will be 

applied to an adequate base rate to estimate losses/premiums above the base limit but below 

the increased limit. Similarly, the deductible factor and ELF might be used to layer the 

unlimited losses for workers compensation, which are assumed to be reflected in the rate. We 

will use the following error functions for each: 
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Deductible Credit Error: 

(Estimated Dollar Deductible Credit - 
Actual Dollar Deductible Credit)/ 
Actual Dollar Deductible Credit 

This Equals: 

Estimated Deductible Factor _ , 
Actual Deductible Factor 

Increased Limits Factor Error: 

(Estimated dollar increased limits cost - 
Actual dollar increased limits cost)/ 

Actual dollar increase limits cost 

This Equals: 
(Estimated ILF - Actual ILF] 

Actual ILF - 1 

Excess Loss Factor Error: 

Estimated Dollar Excess Losses - Actual Dollar Excess Losses 
Actual Dollar Excess Losses 

This Equals: 

Estimated ELF _ I 
Actual ELF 

The table below displays the errors associated with the methods discussed under the 

assumption that no IBNR claims would be reported: 

Method 
Closed Only 
Incurred Only 
Incurred Developed 
Open Developed 

ESTIMATION ERROR -without true IBNR 
Deductible ILF 

109% -52% 
56% -33% 

8% -41% 
0% -26% 

ELF 
-60% 
-47% 
-11% 

2% 
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The next table displays the errors associated with the methods under the assumption of two 

IBNR claims: 

Method Deductible 
Closed Only 163% 
Incurred Only 96% 
Incurred Developed -9% 
Open Developed 26% 

ILF ELF 
-50% -65% 
-30% -53% 
-41% -2% 
-24% -10% 

Although this is a simple example, the magnitude of the errors should be unappealing for most. 

In subsequent sections of this paper we will discuss several techniques being used to reflect 

loss development in distributions 

The final introductory topic regards trend. The deductible credits, ILF’s and ELF’s are probably 

being estimated for a prospective period. Even if the ultimate loss distribution is estimable 

based on prior claims, it still must be adjusted to reflect the economic cost levels of the 

prospective period being considered. 

For the sake of simplicity, we will assume in this section that trend is uniform. Loss 

distributions are very malleable under this assumptiong. Unfortunately, little research that we 

are aware of has been performed in the area of non-uniform trend, although a recent article by 

Philbrick” did discuss the issues surrounding the problem. 

If the accident period being projected is four years later than the accident period of the sample 

claims, then the estimated claim values at ultimate for the projected period, assuming a 

’ Hogg and Klugman. p. 178 
” Stephen W. Philbrick. ‘Brainstorms,’ Actuarial Review, August 1994 
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uniform annual trend of 5%, would be (working only with the original reported claims and 

ignoring the IBNR claims): 

Claim Number 

2 
3 
4 
5 
6 
7 
a 
9 

10 
Total 

Original Ultimate Claims Trended Ultimate Claims 
600 729 
000 972 

1,100 1,337 
1,300 1,580 
1,600 1.945 
1,800 2,188 
2,500 3,039 

15,000 18,233 
11,000 13,371 
20,000 24,310 
55,700 67,704 

The trended claim values equal the ultimate value multiplied by 1.05’. The resulting deductible 

credit, ILF. and ELF are ,173. 1.84, and .49. As one might expect, the deductible credit 

decreases with trend and the ILF and ELF increase. Fortunately, assuming uniform trend, the 

estimation error can be eliminated by multiplying the original claim values by the trend index of 

1.05’ before fitting the loss distribution. Alternatively, the original claims may be indexed to an 

overall severity of 1 before fitting. The selected ultimate indexed distribution may then be 

scaled to the ultimate severity. This approach is discussed in further detail in Section II of this 
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Section II - Some Practical Methods to Reflect Development 

Quite often the data available for use in a loss distribution fitting process consists of individual 

claim values for a particular valuation and other aggregate projections from more traditional 

triangular methods. In less optimal cases, only the aggregate data may be available. This 

section discusses three methods for developing loss distributions, which reflect loss 

development, using data provided in one of these formats. These methods will rely 

substantially on “industry” analysis performed by the Insurance Services Office (ISO) and the 

National Council on Compensation Insurance (NCCI). 

The first method uses the projected ultimate unlimited severity (the average claim) for an 

individual risk or line of business and an appropriate coefficient of variation (CV) based on 

industry data to obtain parameters for three two-parameter loss distributions. The second 

method adjusts actual industry distributions to produce the projected average claim of the 

individual risk being considered. This process is referred to as “scaling” the industry curves 

and is described by Venter”. The third method, unlike the first two methods, requires 

individual ground up claim information for a single valuation. This claim detail is used to 

estimate an immature CV. Industry loss distribution development patterns are employed to 

develop the immature CV to ultimate. The ultimate CV is combined with the projected average 

claim, as in the first method, to obtain the parameters of several two-parameter loss 

distributions. 

” Gary C. Venter. ‘Scale Adjustments to Excess Expected Losses, * Proceedings, May 33, 24, 25, 23, 
1982. Vol. LXIX. Part 1. No. 131. 
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Using industry Coefficients of Variation 

For each of the three methods discussed, we will assume that an estimated ultimate average 

severity for the accident year in question is available. This estimate could be developed by 

projecting ultimate losses and non-zero claim counts to ultimate using traditional actuarial 

techniques. An exponential regression could then be fit to the indicated historical ultimate 

average values and used to estimate the ultimate seventy for the prospective period’*.. 

Some of the more familiar loss distributions such as the Pareto, lognormal, and the gamma 

distribution have two parameters which define them. Estimates of these parameters can be 

obtained if two quantities about the distribution are known. These quantities might be the 

mean, mode, median, second moment, variance, CV. 99th percentile, etc.” As discussed, it is 

assumed that a projected average cost per claim or mean is available. The second quantity 

used to parameterize the loss distributions in this-first method will be CV’s based on IS0 and 

NCCI (industry) published information. 

In order to obtain an industry CV for workers compensation, the loss distributions used by the 

NCCI in developing excess loss premium factors for use in retrospective rating may be used. 

However, we are interested in a total CV, whereas the NCCI distributions are by injury type. 

Further, the NCCI distributions have been “indexed” so that the expected value for each 

distribution is one. For a more complete description of this process see Gillam”. 

Q It should not be inferred that this is the only or even the best method to determine these values. This 
;?pproach is suggested as one specific method. Other methods do exist and may be appropriate. 

It should be understood that the calclilation of parameters from the various quantities cannot be 
performed arbitrarily. Issues of bias and efficiency are important. Certain pairs of quantities could be 
very poor choices for the determination of parameters. The selection of parameters is discussed in 
zany good statistics references and is beyond the scope of this paper. 

William R. Gillam, Parameterizing the Workers Compensation Experience Rating Plan, PCAS LXXIX. 
1992 
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In order to develop a CV for the general disttibution underlying any workers compensation 

claim, we need to describe the mixture process somewhat further. Appendix B contains a 

discussion regarding the mixture of models. This process is often confused with the addition 

or convolution of two random variables. The NCCI developed three loss distributions: 

1. Fatal claims (D) 

2. Permanent total (PT) and major permanent partial (major) 

3. Minor permanent partial (minor) and temporary total (TT) 

The cumulative distribution function (cdf) for the general workers compensation claim is: 

b(x) = PDFD(x) + Pmm.,or~mn.,w (1) + C-mnmo, b-r,m~ (xl+ PmoFmo (x) 

Where Pi is the probability that a claim is from injury type i, Fi is the cdf for injury type i, and 

MO claims are claims with medical losses only. 

The expected value for the general workers compensation claim is: 

E[ S] = P,E[ D] + PPTlmqw E[ PTI major] + P,,,, E[ TT /minor] + PM0 E[ MO] 

Where E[i ] is the expected value of injury type i. 

The second moment for the general workers compensation claim is: 

Based on NCCI published data and other internal data, we developed the following table. 

Average Claim 
Probability 

INJURY TYPE 
Fatal 1 PTlMajor 1 Minor/TT 1 Med Only 

I .0006 
1 $210,000 16160,000 $6,500 $400 

.0270 .2264 .7460 
1 Second Moment ] 1.34Ell 2.06Ell 2.60E6 213,333 , 
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The second moment by injury type is the major item which was estimated using the NCCI loss 

distributions. It should be noted that the second moment for PT/Major claims is undefined in 

the NCCI information. The value shown here is calculated by capping the PT/Major loss 

distribution at $50 million. This capping allows us to calculate a second moment. We believe 

this is an acceptable adjustment, however, this means that the value shown should not be 

characterized as an NCCI value. Additionally, we assumed that the distribution for medical 

only claims is uniform from zero to twice the mean. Finally, the NCCI produces two different 

loss distributions for fatal claims, based on state benefit types. We averaged the CVs for the 

two distributions to produce our single second moment. Similarly, the NCCI has two separate 

distributions for PTlMajor claims based on state benefits, which we averaged. 

The CV of the total distribution is the standard deviation of the total distribution divided by the 

mean. The standard deviation can be calculated using total mean and second moment’5. The 

resulting total CV is 10.474. If the total claim process being considered excludes medrcal only 

claims the CV is 5.441. 

Some extensive client data was available for testing the three methods presented in this 

section, as well as the more robust method presented in Section Ill. The data consisted of the 

incurred value, paid value, accident date, report date, and closure date (if closed) for all claims 

occurring subsequent to l/l/75 and prior to 3131195. The claims were due to products liability 

self-insured exposures for a diverse manufacturer. We transformed the actual claim amounts 

to preserve the confidentiality of the client’s data. Therefore, all of the loss distributions fit to 

this sample data are for illustrative purposes only and are not suitable for use in any other 

circumstances. 

l5 Variance jT) = Second Moment [T] - (Mean [T])’ 
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Given the estimated industry CV of 10.474 and an estimated ultimate average claim size of 

$133,692, a lognonnal and Pareto distribution were parameterized”. The table below displays 

the limited expected values (LEVs) and the cdf for the two loss distributions and the 

undeveloped trended empirical data. 

Loss 
Limit 

Lognormal I Pareto Empirical 
F(x) 1 LEV 

! 
F(x) 1 LEV F(x) LEV 

0.015 993 0.215 672 
0.070 4,821 0.404 3,519 
0.134 9,308 0.481 6.296 
0.289 21,081 0.602 13,090 
0.671 57,336 0.808 33,321 
0.955 105,807 0.965 64,342 
0.986 116,261 0.984 76,434 

This method assumes that no individual claim data is available. This makes it difficult to select 

the most appropriate loss distribution. Because of development, we would expect that the 

empirical cdf and LEV would be less than that of the ultimate loss distributions. It appears that 

both of the distributions had trouble handling the combination of the large CV and the large 

unlimited severity. Therefore, it would probably be better to use a CV from ISO’s products 

liability distributions, discussed next, as the data consists of products liability losses and the 

average IS0 claim sizes are much more consistent with the client data. 

IS0 has estimated distributions for the premises and operations (PremOPs) and products and 

completed operations (products) lines of business”. IS0 has generated three compound 

distributions for each, tables 1-3 for PremOps and tables A-C for products. The tables 

l6 Given the unlimited mean, M, and the CV. the parameters of the three distributions are: lognormal 
sigma = sqrt(~n(l+CV*)). mu = In(M) - .5 sigma2; gamma alpha = l/C+?. beta = alpha/M: and Pareto 
$lpha = l/CV +2, lamda=Mx(alpha-1). 

Insurance Services Office, Inc.. Revision of Premises/Operations and Products/Completed operations 
Increased Limits and Deductible Discount Factors, Filing GLQS-ICDDl-Louisiana March 17, 1995. 
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represent increasing degrees of hazard within the line. The parameters for these tables are 

included as Section II. Exhibit 1 a-lb. 

The total loss distribution for a given line for a given hazard group is a compound process. All 

of the accidents for a given accident year are separated by settlement lag. Settlement lag is 

the number of years after the accident year in which an individual claim settles. Two Pareto 

distributions represent the group of claims in each settlement lag. The total cdf for the process 

is: 

F(x)=Cp,[P,F;,(x)+(l-P,)F;,(x)] 
,=I 

Where i is the settlement lag, Fij is the jth Pareto distribution for the ith settlement lag, Pi is the 

weight for the first Pareto distribution in settlement lag i, and qi is the relative percentage of 

claims which settle in settlement lag i. 

The mean and variance of the compound process are calculated as noted previously for the 

total workers’ compensation process. The resulting CV’s for each distribution are displayed in 

the table below. 

Coefftcients of Variation 

PremOps Products 

Table 
1 
2 
3 

Mean cv 
10,920 10.296 
24,996 13.142 
95 772 7 369 

Table 
A 
0 
c 

Mean cv 
11,372 19.393 
66.356 9.392 

276 632 4.423 
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As with the NCCI distributions, we calculated a limited mean and variance assuming the losses 

were capped at $50 million, where the unlimited variance did not exist. Of interest is the 

observation that the CVs for the Products tables decrease as the hazard increases. 

The estimated ultimate average claim size of the sample data combined with the IS0 products 

table B CV produce the following parameters: 

Distribution 
Lognormal 
Pareto 
Gamma 

Distribution Parameters 
First Parameter 

9.559 
2.011 
0.011 

Second Parameter 
2.119 

135,410 
8.467E-08 

The table below displays the cdf and ILF’s, assuming a $25,000 base limit, for two of the loss 

distributions and the IS0 products table B distribution. 

It appears that the two parameter distributions do not capture the skew or diversity present in 

the IS0 multimodal process. 

In preparing this paper, we noted several random observations about Cv’s. First, it is possible 

for a line which would normally be considered highly skewed lo have a CV which appears 

small. This is partly due to the fact that these lines generally have larger average claim sizes, 

Because the CV is a ratio to the mean, a smaller CV with a larger mean can still produce a 

skewed distribution. 
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Second, some people fall into a normal distribution thought process when considering CV’s. A 

drstribution consistent with the normal distribution would have a 97.5 percentile at 1.96 

standard deviations. Unfortunately, insurance distnbutions, such as the Pareto distribution, 

tend to be skewed. A Pareto distribution with parameters 3 and 10,000 has a 97.5 percentile 

which is 2.8 standard deviations from the mean. 

Third, we have found in other studies of empirical data, support for the statement that inflation 

does not affect claims uniformly. In these studies, lognormal distributions were fit to claims for 

mdividual accident years of common maturities. The distributions were not rejected by various 

goodness of fit statistics and produced reasonable and increasing overall severities. The CV’s 

for these distributions were clearly decreasing. If inflation impacted claims uniformly, the CV’s 

would have been constant, assuming no substantial changes in loss adjustment procedures or 

the mix of business. Finally, care must be taken when trying to examine CV’s behavior 

through simulation. CV’s are ratios and many simulation techniques produce biased results for 

ratios. 

Scaling the Industry Curves 

Given a projected unlimited severity for a risk or book of business, the industry loss 

distributions can be modified to produce a mean equal to the risk’s average claim. This 

process essentially accepts the shape of the industry loss distribution and shrinks or expands 

the industry distribution to match the risks average claim. This adjustment is made to the scale 

parameter of the distribution and basically assumes a uniform inflationary effect to “scale” the 

original distribution. Hence, the name of the method. This procedure can also be applied with 

some modification to a limrted average claim size, if a credible unlimited seventy is unavailable. 

The following table displays the approximate parameters for the NCCI distributions, and our 

estimates of representative probabilities for each injury type. 



Workers’ Compensatio 
Fatal Fatal 

Benefit Type NonEscalating Escalating 
or Limned 

Distribution Type Gamma Gamma 

Alpha .5500 .4450 
Lamda 381,818 471,910 
Gamma N.A. N.A. 
Tau N.A. N.A. 
Mean 210,000 210,000 
Probability .06% .06% 

[ype- 
Minor/lT 

All 

TlZills-Seta 

63.4960 
4nO24.363 

.6410 

.9670 
8,500 

22.64% 

Med Only 
All 

N.A. 
N.A. 
N.A. 
N.A. 
400 

74.60% 

The medical only distribution is not based on the NCCI distributions. The Lamda parameter is 

the scale parameter. The actual Lamda parameters used by the NCCI produce a mean of one 

for each distribution. However, in order for scaling to be feasible, a representative industry 

severity for each injury type is required. We have adjusted the Lamda parameters to produce 

these representative seventies. 

The overall mean for the industry distribution is $7.209. the weighted averages of the industry 

severities. In the following calculations, we will assume limited fatal benefits and non- 

escalating PT/Major benefits. The projected severity for the sample data is 8133.892. Given 

the large difference between the average claim sizes, it is probably inappropriate to scale the 

NCCI distributions in this example. However, we will continue with the process for purposes of 

illustration. Each of the Lamda parameters and distribution means need to be increased by 

18.573 ($133.692/$7,209). The new and original PTlMajor shift points are 25% of the new and 

original means, respectively. The medical only distribution is adjusted by multiplying the upper 

bound by 18.573. The adjusted average seventies by injury type are displayed in the table 

” The PTlMajor distributions are truncated and shifted by 25% of the average claim. Therefore, the 
actual mean of the distribution is $135,000 or 75% of $180,000. 
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Adjusted Severities 
Injury Type 1 Fatal 1 PTlMajor 1 l-T/Minor 1 Med Only ( Total 
Adjusted Seventy I $3,900.423 I %3,343.220 I $157,874 I $7,429 I $133,892 

The resulting LEV’s, ILF’s, and ELF’s are displayed in the table below 

251000 
50,000 L 100,000 

250,000 
1 ,ooo.ooo 

:aled Di 
LEV” 

7,793 
10.685 
14.780 
21,340 
34,656 
66 595 I 

stributio 

1.000 
1.383 
1.997 
3.243 
6.232 

1 1 

ELF 
0.942 
0.920 
0.890 
0.841 
0.741 
0.503 

Establishing a worksheet in Excel or Lotus tihich readily handles the distributions is not an 

insurmountable task. Both software packages contain the functions necessary to construct 

cdf. LEV, and moment functions for each of the distributions used. Even the truncated shifted 

PT/Major distribution can be handled. 

In order to scale the IS0 compound Pareto distribution, the Pareto scale parameters must be 

multiplied by the overall seventy adjustment factor. The overall industry mean for the products 

table B is $66,356. Given the projected seventy for the sample data of $133,892, the B 

” When estimating the PT/Major component of the LEV. if the limit is less than 25% of the average 
claim (the shift point) then the LEV is the limit. If the limit is greater than the shift point then the LEV is 
computed using the iransfoned Beta distribution with the scaled lamda parameter. The actual limit 
used in computing the LEVwith the transformed Beta distribution is the original limit less the shift point, 
After the LEV is calculated via the transformed Beta distribution, the shift point must be added back in to 
obtain the final LEV. 
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parameters need to be multiplied by 2.018 ($133.892/$66.356). The adjusted B parameters 

are displayed in the following table. 

Lag 
1 

Adjusted B Parameters 

I Bl I 82 
13,504 7.367 

2 20,104 10.968 
3 58,482 31,905 
4 104.184 56,838 
5 130.974 71,453 
6 153,230 83,595 
7 150 894 82 321 

The table below displays the adjusted cdf, LEV’s, and ILF’s which result from scaling the IS0 

medium hazard products loss distribution. 

Scaled Products Table B 
Loss I I I 
Limit I F(x) I LEV I ILF 

$ 10.000 0.665 5,268 0.577 
25,000 0.792 9,136 1.000 
50,000 0.860 13,347 1.461 

100,000 0.911 18,861 2.065 
250,000 0.956 28,087 3.074 

1 ,ooo,ooo 0.988 44,448 4.865 

The major assumption made when one scales industry loss distributions is that the shape of 

the industry distribution is appropriate for the individual risk or book of business. If the data 

has an inordinate number of small losses, perhaps due to an incident reporting procedure, the 

overall projected seventy will be reduced. This will distort the accuracy of the adjusted 

distribution. For example, suppose we are given the following risk and industry losses. 
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lndustrv Losses Risk Losses 
Loss Amount Number Loss Amount Number 

8 100 500 $ 110 500 
1,000 50 1,100 50 

10,000 10 11,000 10 
50,000 5 55,000 5 

250,000 1 275,000 1 

Obviously, the risks average severity of $1,360 is 10% higher than the industry average 

severity of $1,237. Scaling the industry distribution up 10% would be appropriate. However, 

assume the risk had an additional 500 claims valued at $25 each. The risk’s total severity is 

now $734. The industry distribution scaled down by 41% (l-734/1,237) would be as follows: 

Scaled Industry Losses 
Loss Amount Number 

$59 500 
594 50 

5,935 10 
29,677 5 

148.383 1 

Now the ELF for a $25,000 limit based on the scaled industry distribution is .35, whereas the 

actual ELF is .51. Problems pertaining to a larger than normal or less than expected number 

of smaller claims can often be discovered by examining the empirical and theoretical cdf and 

LEV’s at smaller loss limits. 
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Developing Empirical CV’s 
The general approach for developing an ultimate CV based on an entity’s individual ground up 

claim detail or a book of business and industry data consists of the following steps: 

1. Using the individual claim detail available, estimate the risk’s CV. This is done by first 

trending the individual claims to the prospective period. The sample CV can then be 

computed by dividing the sample standard deviation by the sample mean. 

2. Estimate an industry CV which is appropriate for the overall maturity of the sample data 

and the inflationary level of the prospective period. 

3. Estimate an ultimate industry CV for the prospective period based on the industry 

distributions. 

4. Develop the ultimate sample CV by multiplying the sample CV from step 1 by the ratio of 

the ultimate industry CV and the undeveloped industry CV. 

5. Use the projected unlimited seventy and the estimated ultimate CV to parametenze a two 

parameter loss distribution as in method 1. 

Unfortunately, attempting this process with NCCI data is problematic. The NCCI curves were 

developed by fitting a distribution for each injury type for a single policy year at 3rd, 4th. and 

5th report. After examining the progression of these parameters, the NCCI selected ultimate 

parameters. In order to estimate an industry CV for a given maturity mix of data, estimates of 

the NCCI distributions would be required at additional maturities. While these distributions 

might be estimable, it is not currently possible to obtain all of the immature total workers 
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compensation distributions. In order to obtain the total claim distribution, weights by injury type 

for each valuation are needed. This would require a claim count distribution for each maturity 

by type of injury, which is unavailable other than on a state by state basis for the first few 

reports, ISO’s current methodology lends itself to this procedure much more readily than the 

NCCI data. 

Section II, Exhibit 2a displays the estimated developed CV based on a portion of the settled 

claims from the sample data. Section II, Exhibit 2b displays the notes to the calculations. 

Estimated “premiums” for each year are combined with a rate change and trend index to 

develop a relative volume index by year in column (5). This volume index is combined with the 

estimated percentage of claims settled to obtain the cumulative lag weights by lag in column 

(8). The relative weights are used as the probabilities in a compound process to obtain the 

overall immature industry standard deviation and mean, columns (9)-(10). The ultimate 

industry CV is divided by the immature industry CV yielding the CV development factor. This is 

applied to the sample data CV to obtain the estimated ultimate CV for the sample data, row 

(14). 

The industry distributions should be trended to the prospective period level before calculating 

the standard deviation and mean for each year. This was accomplished by trending the IS0 

B-parameters, The relative volume weights could be estimated via an ultimate claim count 

projection for each accident year. The settlement pattern might be adjusted based on the 

individual risks data. However, the settlement pattern represents the percentage of claims 

closed for the industry by lag and should be treated accordingly. 

Prior to the most recent IS0 ILF filings, IS0 used the incurred claim data in its ILF estimation 

process. As a result, loss distributions for each valuation of a current diagonal of claims were 
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developed. One might think that these could be used in a fashion similar to the process 

described for Exhibit 2 and the settled data. However, the size of loss distributions by 

valuation age are not independent, Therefore, the CV cannot be estimated without an 

estimate of the covariances for each distribution pair. As incurred data often contains more 

information regarding individual large claims than settlements only, it would be helpful if 

someone developed a process to account for the covariance in the NCCI and IS0 incurred 

distributions by valuation age. 

It has been suggested that one might construct a triangle of CV’s from incurred claims and 

develop these CV’s to ultimate. This procedure would be similar, in its basic nature, to the 

prior approach used by ISO. Before such a procedure could be relied upon, a more complete 

understanding of the underlying statistical assumptions, particularly regarding independence, 

would need to be obtained. Any additional research in this area would certainly be welcome. 

The following table displays the cdf and LEV using the developed CV and the projected 

average claim to parameterize these distributions. Due to the large CV, the gamma 

distribution was not tractable. 

Loss Distributions Via Develo ed CV’s 

~~ 

This section presented three simplified methods of developing loss distributions using minimal 

sample data. Method 1 and method 3 result in a two-parameter loss distribution. Such a 

simple distribution will probably not capture all of the variation in the underlying loss process. 

This is one reason why IS0 and NCCI have developed such robust compound processes. 
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Scaling the industry distributions as in method 2 retains the same diversity as the industry 

distributions but may not correctly address the shape issue. However, all of these methods 

attempt to address development and require only basic summary data for the most part. 

Section Ill introduces a more refined method which requires a minimal amount of extra data 

and a few additional loss distnbution parameters. 
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Section III - A More Refined, Practical Approach 

When considering the problem of development and loss distributions, one is tempted to jump 

to the utopic extreme and begin thinking about what the best procedure would be if there were 

no limitations on the data available. After this perfect method was created, the minimal 

amount of alterations could be made to the assumptions of the method to account for the 

actual data available in a given situation. We decided to approach the problem from another 

direction. The first question we asked was what is the format of the data most likely to be 

available for this type of project. For many practical business applications, this data consists of 

listings of individual claims in excess of a fixed retention and summary loss and claim count 

information. The procedure described in this section is designed to use data in this format. 

A two part loss distribution is developed in order to estimate ILF’s and ELF’s, Because the 

data format does not include individual claim information regarding the smaller claims, the 

distribution developed will not be applicable to smaller deductibles. The first part pertains to 

the smaller claims for which no individual claim detail is available. This part of the distribution 

is estimated using aggregate loss data and more traditional triangular approaches, The 

second part involves fitting a loss distribution based on the individual large claim data. The 

technique employed is somewhat different from more traditional approaches. 

The complete ultimate loss distribution is similar to the old five parameter IS0 distributions. 

The distribution consists of two parts: one for the smaller claims below the loss limit and 

another for the larger claims about which we have more detail. The distributional formula is: 

F(x) = X<L 

X>L 



Where L is the loss limit, p is the ultimate proportion of claims below the loss limit, and G(x) is 

the cdf of a truncated lognonal distribution. 

The function form below the loss limit is essentially immaterial because (1) we are estimating 

ILF’s and ELF’s for limits that are greater than the loss limit and (2) there is no individual loss 

data below the loss limit. The product of the proportion of all claims less than the loss limit (p) 

and the average seventy of these small claims (S) is important. An ILF for a given limit K is 

estimated by the following formula: 

PS+(I-P)E[X;q 
pS+(1-/JW[X;Bl 

Where E[X;Yj is the limited expected value of X limited to Y. B is the basic limit, and S is the 

average seventy of all claims less than the loss limit. One property of this estimator is that it is 

not distorted by the addition of a large number of very small claims. 

Handling the Small Claims 
The quantities that must be estimated for the smaller claims are p and S. By subtracting the 

incurred losses and claim counts for the large claims from the total aggregate information, we 

constructed a small claim loss and count triangle. These are then developed to ultimate to 

produce the estimated historical seventy by accident year. A regression was fit to these to 

both smooth the indications and project the seventy S for the prospective period. 

A total claim count triangle was developed to ultimate. The projected ultimate small claim 

counts divided by the total count projection yields historic p ratios by accident year. A 

regression was fit to these to smooth and project the p value for the prospective period. 
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There are a few points to note here. First, the inclusion or exclusion of a large amount of small 

claims will effect both p and S. However, the product of pS will not be materially effected. 

Therefore, if the historic projections for either p or S are not very smooth, one may wish to 

regress on pS. 

Second, the possibility of error from misestimation is greater if the value of p is very large or 

very small. The final unlimited seventy should be multiplied by the projection of ultimate claim 

counts and checked for reasonableness against an independent projection of the total ultimate 

losses. 

Addressing the Large Claims 
The process used to estimate the parameters of the lognormal distribution consisted of the 

following steps: 

1. For each accident year and valuation, count the cumulative number of claims in each of 8 

fixed layers; 

2. Convert the count distributions to percentage distributions; 

3. Develop a function for each layer which most accurately reflects the changes in the 

percentage distributions as each accident year matures; 

4. For each accident year, estimate an ultimate percentage distribution using the 

development function; 

5. Select an ultimate percentage distribution for the prospective period: and 
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6. Fit a lognormal distribution to the selected ultimate percentage distribution for the 

prospective period. 

In order to determine the shape of the ultimate size of loss distribution, we computed 

“development factors” for selected size of loss ranges. We were provided with individual claim 

amounts in the excess of $25,000 evaluated at 1990, in addition to values evaluated at 1995. 

This information gives us two “snapshots” of the development process separated by five years 

Each of the individual claims greater than or equal to $25,000 were grouped into categories 

The following categories were established: 

$50,00O--claim amount greater than 925,000 but less than $50,000 

9100.00O-claim amount greater than $50,000 but less than $100,000 

f250,OO~laim amount greater than $100,000 but less than $250,000 

$500,00O-claim amount greater than $250,000 but less than $500,000 

$750,00Glaim amount greater than $500,000 but less than S750.000 

$1,000,00~laim amount greater than $750,000 but less than $1 ,OOO,OOO 

$2,500,00~laim amount greater than $1.000,000 but less than 52,500,900 

$6.000,00O-claim amount greater than $2,500,000 but less than 86,000,OOO 

The counts in each category were compared at the 1990 and 1995 evaluations by accident 

year. For example, the number of claims in the %50.000-$100,000 category for the 1985 

accident year as of 1990 was 41, and five years later, the number in that category as of 1995 

was 30. From this information, we wish to determrne a set of development factors which can 

be used to estimate the movement of claims between categories. 
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In Section Ill, Exhibit 1, we have calculated the relative proportions of the large claims at the 

two evaluation dates. For example, the 1985 Accident Year had 31.8% of the large claims with 

an incurred value between $50,000 and $100,000 as of 1990. Five years later, the proportion 

of large claims in this size category had dropped to 25.2%. Conversely, the proportion of large 

claims in excess of $1 ,OOO.OOO had increased from 3.1% to 4.2% over the same time period. 

When there is sufficient claim count experience by layer, the actual claim count development 

factors by layer may be used in the fitting process discussed later to obtain the selected layer 

claim count development factors. However, the sample data included in this analysis was 

sparse in some of the upper layers. In particular, there were problems associated with 

individual cells which had no claims. There were several multimillion dollar claims which 

needed to be reflected in the procedure. Therefore, each of the accident year claim count 

distributions were smoothed by fitting a lognormal loss distribution for each of the two 

valuations. These smoothed distributions are displayed in Section Ill, Exhibit 2. 

The results of the smoothed distributions were employed to obtain the fitted distribution layer 

development factors in Section Ill, Exhibit 3. Continuing to focus on Accident Year 1985. the 

proportion of $100,000 claims as of 1995 is divided by the proportion as of 1990. The 

resulting ratio is 0.904. Similarly , the factor for the $2,500,000 range is 1.934, reflecting the 

fact that a higher proportion of the claims are in this size category at the later evaluation. (It is 

important to keep in mind that the data reflects relative proportions of claims, not the absolute 

number of claims. The absolute number of claims will be discussed later). 

A review of these five-year development factors shows a clear trend. The proportion of claims 

under $250,000 drops steadily over time, faster at early evaluations and slower at later 

evaluations. The proportion of claims in the largest categories grows steadily over time, fast at 
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first and then slower. The larger the size category, the larger the growth. In other words, over 

time we have a migration of claims. At early intervals we have a certain proportion of claims in 

each size category. Over time, there is a tendency to depopulate the smaller size categories. 

Some of these claims become larger, and some become smaller. The larger size categories 

tend to show an overall net increase in the proportion of claims. 

At the same time, a small proportion of claims “drop out,” that is, are settled with a zero 

indemnity amount. However, the remaining claims show a pronounced trend toward higher 

size categories. 

The table in Section Ill, Exhibit 3 essentially has overlapping development factors evaluated at 

a five year interval. We need to convert these to one-year development factors. One 

approach is to approximate the annual development factor by the fifth root of the five year age- 

to-age factor, then calculate the average of the factors with the same “maturities.” However, 

most development factors have the property that the age-to-age factor is not a constant factor 

over a period of time, but rather a decreasing factor. In order to apportion the five year factors 

into annual amounts, we fit the development factors for a given layer to a curve of the form 

EXP[exp(a(x+S)+b)-exp (ax+b)]. where x is the development year of each individual accident 

year. This curve provided a good fit to the factors. 

The curve is used to apportion each five-year development factor into an annual amount. The 

resulting annual factors are accumulated in the normal manner to produce age-to-ultimate 

factors. The resulting factors are then applied to the current proportion of claims in each size 

category, which yields an estimate of the ultimate proportion of claims by size for each 

accident year. Based on the projected distributions for the most recent years, an ultimate 
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distribution is selected for the prospective period in Section Ill, Exhibit 4. It is to this ultimate 

distribution that the lognormal loss distribution is fit. 

The table below displays the resulting ILF’s and ELF’s from this method, as well as some of 

the methods from Section II. 

Section Ill IS0 CV Pareto Scaled IS0 Developed CV 
Lognormal 

Limit ILF ELF ILF ELF ILF ELF ILF ELF 
% 25.000 1.000 0.922 1.000 0.843 1.000 0.932 1.000 0.878 

50,000 1.759 0.863 1.729 0.728 1.461 0.900 1.605 0.804 
100,000 2.973 0.768 2.720 0.572 2.065 0.859 2.414 0.706 
250,000 5.315 0.586 4.146 0.347 3.074 0.790 3.736 0.544 

4 t-m” nnn ” ,)RR A RCiS 0 AAR 5 828 0 289 

There are three aspects of this method which are appealing. First, the data required is 

frequently available. Second, the final loss distribution is fit to data at ultimate. It is possible 

that a particular family of loss distributions may be rejected if fit to immature data, where the 

distribution would have been appropriate for the ultimate distribution. This procedure avoids 

this possibility when the empirical data is not smoothed. 

Finally, one may have noticed that after giving the sermon in Section I on the evils of not 

trending the data, there is no explicit trend adjustment in the method provided in Section Ill 

The method in Section Ill recognizes trend implicitly in the actual percentage claim count 

distribution by layer and its migration. The fact that trend is addressed without making the 

usual unifon assumption is appealing. The method could probably be improved in this 

respect if the layer boundaries were actually indexed to a smoothed average severity by year 

for each age. However, because the individual loss data is provided above a fixed retention, 

indexing would be problematic. 
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There are some problems with this method, which arise primarily from variability and small 

sample sizes. For example, the layer boundaries must be sufficiently refined and still contarn a 

sufficient number of claims by grouping for each accident year. In order to accomplish this one 

might consider grouping accident years together. In addition, the availabilrty of intermediate 

valuations may not provide sufficiently stable information for use. 

Loss distributions are an invaluable tool. However, the actuary should be aware of the 

possible effects of development on loss distributions used for many casualty exposures. We 

attempted to tllustrate the potential problems which may result if development is not 

considered via a simple example in Section I. In Section II, some practical methods for 

reflecting development were discussed. In particular, two methods were provided which did 

not require any individual claim information. Finally, Section III presented a practical method 

for use with aggregate data and individual loss data for losses in excess of a fixed amount. 

There still remains several unanswered questions, such as ‘what is the utopic procedure for 

recognizing loss development?” and “what is the actual impact of trend on claims?” However, 

the concepts presented in the paper do not hinge upon the answers to these questions, so we 

will leave them for another day. 
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Appendix A 

The observation that loss development has a material impact on the size of loss distributions is 

made in Halwayne’s article “Accident Limitations for Retrospective Rating.“” He notes the 

significance of the impact of loss development, yet suggests only that the NCCI use fourth 

reports instead of third reports. While this increases the development age of claims from 42 

months to 54 months, workers compensation claims show a stubborn tendency to continue 

development beyond 20 years 

A paper presented by Dr. Shaw Mong at the 1980 Discussion Paper Program, “Estimating 

Aggregate Loss Probability and Increased Limit Factor”*’ recognized the importance of loss 

development on the size-of-loss distribution but did not feel the need to provide techniques. 

He states, “In our model, we assume that all the losses have already been adjusted to the 

present or ultimate level. That is: losses have been developed to the ultimate; IBNR has been 

adjusted and inflation has been trended to the forecasting year, etc. The reason that we did 

not discuss those in here is because they are rather standard actuarial techniques practiced in 

most areas of rate-making and have been covered extensively elsewhere in the literature.” He 

supplies two references in the literature. However, the Hewitt and Lefkowitz paper referenced 

only deals with inflation adjustments. The Miccolis pape?* referenced discusses the need to 

adjust for development. The author notes, “Lo99 development also poses certain problems in 

working with seventy distributions...It is very likely that this distribution of immature claim values 

*’ Frank Harwayne. “Accident Limitations for Retrospective Rating,’ Proceedings, May, 1976, Vol. UIII. 
Part 1, No. 119. 
” Dr. Shaw Mong. “Estimating Aggregate Loss Probability and Increased Limit Factor,” Pricing Property 
and Casualty Insurance Products, May 11-14.1980. 
z Robert S. Micwlis. “On the Theory of Increased Limits and Excess of Loss Pricing.’ 1977 
Proceedings, Vol. UIV. p. 49. 
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will change considerably as these claims develop...” but when it comes to specific techniques, 

the author notes “Hachemeister describes a technique of estimating such loss development 

distributions conditioned on the age of the claim and its estimated value-The actual procedure 

for adjusting a seventy distribution for loss development using the Hachemeister technique will 

be left to the interested reader...” (The methodology used in Section III of this paper is 

intended to follow the spirit of the Hachemeister proposed technique.) 

Gary Patrik notes in his excellent paper on fitting loss distributions, “I decided to use 

undeveloped and incomplete data for this example so as not to get involved in the question of 

how to develop and complete it...“23 

As recently as 1967, Pinto and Gogel noted that, “There is very little information available 

regarding excess loss development, despite its importance in excess of loss pricing and 

reserving...” and “There is a paucity of published information regarding both reported and paid 

excess loss development...” 24 They went on to explore the impact of loss development on 

various sizes of claims in one of the few papers to address the subject. 

One other paper directly discusses specific techniques. Venter’s paper, “Scale Adjustments to 

Excess Expected Losses “Z illustrates one of the techniques discussed in Section II of this 

paper. 

” Gary Patrik. ‘Estimating Casualty Insurance LOS Amount Di&ibutions,’ PCAS, Vol. LXVll, 1980. 
*’ Emanuel Pinto and Daniel F. Gogol. ‘An Analysis of Excess Loss Developmenl,” Proceedings, 
November 4. 5, 6, 1967, Vol. LXXIV, Part 2, No. 142. 
25 Gary G. Venter, ‘Scale Adjustments to Excess Expected Losses,” Proceedings, May 23, 24, 25, 26, 
1962, Vol. MIX, Part 1. No. 131. 
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Appendix 6 

Combining Distributions 

In the normal course of actuarial work, it is often necessary to combine two or more 

distributions, and calculate relevant statistics (such as the mean and the variance) of the 

composite distribution, There is more than one way to create such a composite distribution, 

and the formulas differ. While the correct calculation of the mean is usually straightforward, 

the calculation of higher moments is trickier. This appendix will clarify the distinction between 

a convolution of two variables, and a mixture of two variables, as well as the appropriate 

formulas for mean and variance of each. The NCCI and IS0 distributions discussed in Section 

II of this paper are mixtures of models. 

Seventy distributions for workers compensation provide a good working example, because an 

overall workers compensation seventy distribution can be viewed as both a mixture and a 

convolution. First consider one injury type, such as PT (Permanent Total). A typical PT claim 

has an indemnity component, and a medical component. Assume that we analyze the seventy 

distribution of indemnity amounts and call this random variable X and its associated distribution 

F.. Similarly, analyze the medical distribution, call the random variable Y and the distribution 

Fv 

Now assume that we are interested in the distribution of a PT claim, including both the 

I indemnity and medical amounts. We can define a new random variable, 

Z=X+Y 

which has distribution F,. F, is the convolution of X and Y. 

285 



\ - 

(One important caution. It is likely that there is some correlation between medical and 

indemnity. Unfortunately, the calculation of the convolution requires independent distributions 

For purposes of this discussion, we will make the simplifying assumption that X and Y are 

Independent.) 

Under convolution, the mean of the resulting distribution is the sum of the means of the two 

distributions being combined. The variance of the resulting distribution is the sum of the 

variances of the two distributions. 

After we calculate a severity disttibution for PT, we might also calculate severity distributions 

for other injury types. Now, we may be interested in an overall workers compensation severity 

distribution. The process of combining the severity distributions of the various injury types into 

an overall distribution is a mixture. The resulting distribution is not formed by adding a death 

amount to a PT amount, but by combining the distributions such that the resulting distribution 

has the appropriate proportion of each injury type. 

For simplicity, assume we have only two injury types, death and PT. Assume the proportion of 

death claims is p and the severity distribution is F,. Assume that the proportion of PT claims is 

q, that is, l-p , and its distribution is F,. We form the composite distribution by mixing the two 

distributions. Using Z to represent the resulting random variable, we can describe Z as: 

Z = X wirh probability p 

Y w/h probabilrfy q 

286 



The formula for the resulting mean is straightforward, but the formula for the variance is slightly 

less intuitive because the exponents on p and q do not allow the usual simplification. The 

formulas for convolution and mixtures are summarized below: 

Convolution Mixture 

(assuming X, Y independent) (assuming X. Y independent) 

i!=X+Y Z = X withprobobiliryp 

Y with pmbabiliry q 

Mean E(Z)= E(.Y)+E(Y) E(Z)=pE(X)+qE(Y) 

Variance var( 2) = vfw( x) + “( Y) i+(Z) = pEfX2]+qE[Y2]-(pE[X]+QEIYJ)I 

It may also be helpful to think of these concepts in terms of an urn model. Assume we can 

represent seventy distributions by values in urns X and Y. We form Z by selecting one value 

from urn X, one value from urn Y. and adding the values together. Each draw selects two 

values which are added together. The resulting random variable Z, has distribution F, which is 

the convolution of F, and F,. 

Alternatively, we could form Z by selecting a value from urn X with probability p. and selecting 

a value from urn Y with probability q. Each draw selects precisely one value. The resulting 

random variable Z has distribution F,, which represents the mixture of F. and F,. 
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INCREASED LIMITS FACTORS 

GENERAL LIABILIM 
SUPPORTING MATERIAL - INDEMNITY 

section II 

Exhibit la 

Lag 61 
1 2515.12 

2 3.744.31 

3 10.892.26 

4 19.40431 

5 24.393.84 

6 28.53896 
7 28.103.97 

Total/Average 

Table of Mixed Pareto Parameters 

Average Accident Date of July I, 1996 

Pmducts/Completed Operations Liability 

La9 81 
1 8.692.52 

2 9.963.28 

3 ,28.983.32 

4 51.633.12 

5 84.909.82 

8 75.939.63 
7 74.782.16 

TotaVAvaraQe 

Lag 61 Ql P 82 cl2 Lag Weight 

1 9.359.41 1.10 0.818306481 3.701.05 3.10 0.304440622 

2 13.933.50 1.10 0.647243074 5.509.81 3.10 0.233816271 

3 40.532.82 1.10 0.524368928 16.028.14 3.10 0.091996387 
4 72.208.31 1.10 0.435059905 28.553.77 3.10 0.073888491 

5 90.775.62 1.10 0.370151099 35,895.95 3.10 0.058990671 

6 106.200.66 1.10 0.322975042 41.995.57 3.10 0.047237281 

7 104.581..98 1.10 0.288687239 41.35547 3.10 0.189848278 

TotaVAvaraQa 1.000000001 

01 P 82 
1.20 0.915991663 2.200.53 

1.20 0.746928275 3.275.96 

1.20 0.624052128 9.529.83 

1.20 0.534745107 18.977.18 

1.20 0.469838301 21.342.82 

1.20 0.422660243 24.989.26 

1.20 0.388372440 24.568.68 

Ql P 92 

1.15 0.921341244 3,651.13 

1.15 0.752277856 5.435.49 

1.15 0.629401709 15.811.95 

1.15 0.540094688 28.16864 

1.15 0.475185881 35.411.79 

1.15 0.428009824 41.429.14 

1.15 0.393722021 40.797.88 

Q2 Lag Weight 
3.20 0.531773315 

3.20 0.288921419 
3.20 0.079310877 

3.20 0.044818820 

3.20 0.025099466 
3.20 0.014119858 

3.20 0.018158245 

1 .ooooooooo 

Q2 Lag Weight 

3.15 0.418536937 

3.15 0.277258043 

3.15 0.094095287 
3.15 0.084990189 

3.15 0.044887711 

3.15 0.031003252 

3.15 0.089228601 

1 .ooooooooo 

$1 miliion 

Limlted 

Expected 

Value * 
1.653.70 

4.301.54 

14.904.08 

28.828.35 

38.599.45 
46.955.28 
48.447.35 

7.09334 

$1 million 

Limited 

Expected 

Value * 

3.419.68 

10.126.17 

34.316.06 

64.650.57 

85.654.41 
103,251.17 

107.070.92 

28.127.78 

01 million 

Limited 

Expected 
Value * 

7.865.08 

18.835.47 
57.430.38 

102.373.05 

132.179.64 

156.65404 
181.900.30 

65,557.43 

* Limited Average Severity at the one million dollar policy limit. 

SECTION2 XLS IS0 
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INCREASEDLIMITSFACTORS 

GENERAL LIABILITY 

SUPPORTINGMATERIAL-INDEMNITY 

Table of Mixed Pareto Parameters 

Average Accident DateofJuly 1. 1996 
Premises/Operations Liability 

Sectionli 

Exhibit lb 

$1 million 

Limited 

Expected 

Lag 81 Ql P B2 a2 Lag Weight Value' 

1 6,723.15 1.70 0829092621 1.990.24 3.70 0.555830405 2.203.36 

2 8.047.56 1.70 0.430495006 2.382.30 3.70 0.294627117 6.643.19 

3 29.432.05 1.70 0.273002096 8.712.70 3.70 0.070332575 28.909.45 

4 45.198.29 1.70 0.204917292 13.37994 3.70 0.037253873 46.656.98 

5 59,490.73 1.70 0.178564133 17.610.89 3.70 0.019732692 81.810.38 

6 72.580.29 1.70 0.164756775 21.485.76 3.70 0.010452045 74.76781 

7 80.979.51 1.70 0.159839732 23.972.17 3.70 0.011771294 82.770.33 

Total/Average 1.000000001 9.928.67 

31 million 

LImited 

Expected 

V&e * 

3,288.70 

9.588.06 

38.265.66 

59,696.20 
77.342.69 

92.054.25 

101,000.47 

16.742.04 

La9 Bl Ql P 82 Q2 Lag Weight 

1 5.033.26 1.30 0.818071267 2.416.55 3.30 0.502090657 

2 6.024.78 1.30 0.425473652 2.892.59 3.30 0.299264855 

3 22.034.19 1.30 0.261980742 10.576.97 3.30 0.080330909 

4 33.837.54 1.30 0.193895938 16.245.95 3.30 0.047845462 

5 44.537.52 1.30 0.165542779 21.383.18 3.30 0.020498979 

6 54.336.96 1.30 0.153735421 28.088.05 3.30 0.016972933 

7 60.625.01 i.30 0.148818378 29.107.04 3.30 0.024998204 

Total/Average 0.999999999 

$1 million 

Limited 

Expected 

Lag Bl Ql P 82 a2 Lag Weight Value. 

1 6.928.10 1.10 0.914873388 3.319.51 3.10 0.481709595 3.764.32 

2 8.292.88 1.10 0.522075773 3,973.43 3.10 0.298779652 16.09835 

3 30.329.25 1.10 0.358582863 14.531.87 3.10 0.083458413 60.279.55 

4 46.576.11 1.10 0.290498059 22.316.34 3.10 0.051727363 91.466.07 

5 61.304.23 1.10 0.262144900 29.373.13 3.10 0.032060519 115.885.35 

6 74.792.81 1.10 0.250337542 35.836.01 3.10 0.019871048 135446.14 

7 83.448.07 1.10 0.245420499 39.983.07 3.10 0.032393410 147.065.78 

Total/Average 1.000000000 27,556.07 

. Limited Average Severity at the one milliDn dollar policy limit. 

SECTIONZ.XLSISO 
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Developing Empirical W’s 

Accident 
Year 

66 27,600 1.210 1.160 36,729 0.1530 
69 29.400 1.210 1131 40.249 0.1590 
90 26,200 1.100 1 104 34.240 0.1352 
91 29,900 1 100 1.077 35.419 0 1399 
92 31,700 1.100 1.051 36,635 0.1447 

93 32,100 1.000 1.025 32,903 0.1300 
94 35.000 1 .ooo 1.000 35,000 0.1362 

Total 213.900 253,175 1 .oooo 

Accident 
Year 

Settlement 

La9 
(6) 

IS0 Lag 
Werght 

(7) 

Cumulative 
Lag Werght 

(‘3) 

Prospective 
Level 

Second 
Moment 

(9) 

Prospective 
Level 
Mean 

(10) 

66 7 0.069229 0.010590 2.105E+12 327,291 
89 6 0 031003 0.009671 2.021E+12 314,712 
90 5 0.044888 0.020073 1.55lE+l2 248,251 
91 4 0.064990 0.036155 l.O48E+l2 174,762 
92 3 0.094095 0 066656 4.366E+ll 60,559 
93 2 0.277258 0.238929 6.569E+lO 19,397 
94 1 0.418537 0.416537 1726E+lO 5,362 

Total 1 .oooooo 0.604814 2.122E+ll 36,005 

Premium 

(1) 

On-Level 
Rate 

Factor 

(2) 

(11) Adjusted Industry Immature CV 

I 
(12) Adjusted Industry Ultimate CV 

1 (13) Sample Data Immature CV 
/ (14) Sample Data Ultimate CV 

Exposure 
Trend 

(3) 

12.0796 
9.1692 
7.8672 
5.9717 

On-Level 
Premium 

(4) 

Secbon II 
Exhibrt 2a 

Relative 
Volume 
Weights 

(5) 

SECTION2.XLS DevCVs 
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Developing Empirlcal W’s 

Notes to Section II, Exhibit 2a 

Section II 
Exhibit 2b 

(l)-(3) These would be based on the individual client or book of business. The 
purpose is to essentially develop an estimate of the ultimate number of 
claims by year, which is column (5). 

(4) (1) x (2) x (3) 

(5) (4) I(4) Total 

(7) From Section II, Exhibit la, Lag Weight Table B 

(6) [Sum (5)] x (7). For example, for lag 2 column (5) is summed for accident years 
66-93. This sum is then multiplied by the lag 2 weight in column (7). 

(9) The second moment from IS0 Table B for the specific lag. The B parameters 
have been trended forward from 711196. the midpoint of the filing, to the 
midpoint of the prospective period. The total second moment is 
sum [(a) x (9)] divided by (6) Total. 

(10) The mean from IS0 Table B for the specific lag. The B parameters 
have been trended forward from 7/l/96, the midpoint of the filing, to the 
midpoint of the prospective period. (10) Total is [sum ( (6) x (10) )]/(a) Total. 

(11) (9) TotaU(10) Total 

(12) Based on IS0 Products Table B using trended B parameters. 

(13) Based on client data for settled claims 

(14) (13) x (12)1(11) 

SECTIONZ.XLS DevCVs 
10116/95 

291 



1’ , . 
\ 

Empwkal Claim Count Diibibution 
Valued 80 of WQO and 3iQ5 

AY 77 AY 76 AY 79 AY-60 
Layer 90 1 95 90 1 95 90 1 95 90 I 95 
50,OQO 25 25 30 30 27 27 45 45 

1w.000 11 11 11 11 20 20 29 26 

Section III 
Exhibit 1 

AY-65 AY 64 AY 67 AY-66 Al 89 
Layer 90 95 90 95 90 95 90 95 90 95 
54l.000 0.225 0.336 0.260 0.272 0.226 0.265 0.205 0.245 0.391 0.254 

106.000 0.316 0.252 0.267 0.202 0.321 0.242 0.396 0.317 0.174 0.266 
250.000 0.310 0.261 0.336 0.333 0.321 0.265 0.352 0.302 0.304 0.317 
500,000 0.062 0.050 0.042 0.140 0.088 0.114 0.034 0.056 0.067 0.046 
750,000 0.039 0.042 0.026 0.026 0.022 0.053 0.011 0.022 O.ooO 0.024 

1.000,000 0.016 0.017 0.014 O.OW 0.022 0.030 O.OW 0.022 O.OCG 0.032 
2.5OO.ooO 0.031 0.017 0.014 0.016 0.000 0.015 0.000 0.036 0.043 0.024 
6.000.000 O.OW 0.025 0.000 0.009 O.WO 0.015 0.000 0.000 0.000 0.016 

- 
w&94- 

95 
0.417 
0.250 
0.250 
0.063 
0.000 
0.000 
0.000 
0.000 - 

REPORT.XLS 
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Fitted Claim Count Distribution Section Ill 
Valued as of 3190 and 3195 Exhbit 2 

I La er 
50,000 

Layer 
50,000 

100.000 
250,000 

L 500.000 
750,000 

1.000.000 
2.500.000 
6.000.000 

Layer 
50,000 

100.000 
250,000 
500,000 
750,000 

1,ooo.ooo 
2.500.000 
6.000.000 

AL 
90 
0.398 
0.251 
0.100 
0.077 
0.029 
0.015 
0.029 
0.012 

78 
95 
0.392 
0.250 
0.190 
0.078 
0.030 
0.016 
0.031 
0.013 

A'I 
90 

0.467 
0.289 
0.176 
0.047 
0.011 
0.004 
0.005 
0.001 

AY-82 AY-03 AY-84 AY-05 AY-86 
90 1 95 90 1 95 90 1 95 90 1 95 90 1 95 

0.33610.335 0.34110.345 0.33010 370 0.246 1 0.340 0.274 1 0.244 
0274 0.248 0.298 
0.287 0.210 0.284 
0.119 0.093 0.099 
0.036 0.036 0.026 
0.016 0.019 0.010 
0.019 0.037 0.010 
0.003 0.015 0.001 

I AY-88 AY-89 AY-90 AY-91 
90 1 95 90 1 95 95 95 

0.209( 0.266 034010.271 0.334 0.203 
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0.281 
0.238 
0.089 
0.027 
0.012 
0.016 
0.003 

0.306 
0.342 
0.112 
0.024 
0.007 
0.006 
0.000 

4y_92 AY 9: IY 94 
95 95 Tr 

0.223 0.185 0.381 
0.277 0.280 0.307 
0.306 0.347 0.224 
0.125 0.129 0.063 
0.036 0.031 0.015 
0.015 0.011 0.005 
0.016 0.009 0.005 
0.002 0.000 0.000 

0.265 
0.281 
0.123 
0.040 
0.018 
0.025 
0.004 

REPORT.XLS 
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Fitted Distribution Layer Development Factors 

Layer 
50,000 

100,000 
250,000 
500.000 
750,000 

1 .ooo.ooo 
2.500.000 
6.000.000 

Layer 
50,000 

100,000 
250,000 
500.000 
750,000 

1.000.000 
2,500.000 
6.000,OOO 

I 
I 
I 
I 

9Y 77 
1.ooo 
1000 
1.000 
1.000 
1.000 
1.000 

1.000 

1.000 

IY 84 
iz 
0.971 
0.691 
0.884 
0.926 
0.974 
1.090 
1.422 

\Y 76 4Y 79 AY 80 AY 81 
i 1022 1.006 1.012 
1.000 0.983 0.993 0.961 
1.000 0.970 0.991 0.974 
1000 0.988 1.004 0.997 
1000 1.021 1.023 1.032 
1 .ooo 1.052 1.039 1.063 
1000 1.111 1.067 1.126 
1.000 1.260 1.136 1.274 

AY 85 
1381 
0.904 
0.734 
0.787 
0.992 
1.239 
1934 
5.423 

4Y 86 AY 87 
0.890 1.113 
0 890 0.833 
0.991 0.613 
1.242 1.095 
I.571 1669 
1.877 2.373 
2.494 4.367 
4.642 17.603 

/ 
Section Ill 

Exhibit 3 

\Y 82 
GE 
0.998 
1.002 
1007 
1.012 
1.015 
1.019 
1.029 

av 
1.013 
1.007 
0.997 
0.982 
0.969 
0.960 
0.946 
0.916 
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Developed Claim Count Distribution Section III 
Exhibit4 

Layer AY 87 
50,000 27.31% 

100,000 26.39% 
250,000 26.34% 
500.000 11.80% 
750,000 3.77% 

1.000,000 1.70% 
2.500.000 2.27% 
6.000.000 0.40% 

AY-88 AY-89 
27.39% 27.18% 
26.07% 23.62% 
26.06% 23.59% 

I 
11.88% 11.86% 
3.86% 4.66% 
1.80% 2.66% 
2.46% 4.70% 
0.48% 1.72% 
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AY 90 
33.14% 
25.03% 
21.36% 
9.03% 
3.74% 
2.38% 
3.80% 
1.53% 

AY 91 
20.36om 
26.96% 
30.50% 
12.85% 
4.47% 
2.58% 
2.03% 
0.26% 

22.46% 
27.24% 
14.32% 
9.71% 
5.12% 
4.92% 
1.07% 

20.70% 
28.62% 
16.98% 
6.94% 
3.62% 
6.09% 
1.58% 
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