Portfolio Optimization and the Capital Asset Pricing Model:
A Matrix Approach
by Leigh J. Halliwell

355



Portfolio Optimization and the Capital Asset Pricing Model: A Matrix Approach

Leigh J. Halliwell
Abstract

Actuaries are acquainted with the basic ideas of Modern Portfolio Theory and the
Capital Asset Pricing Model (CAPM). Briefly, portfolios are formed by weighting risky
assets with varying means, variances, and covariances. Each portfolio can be plotted in
the X-Y plane by its total return, with the standard deviation as the x-coordinate and the
mean as the y-coordinate. It is plausibly asserted -that the resulting subspace of returns
has an envelope, which is called the efficient frontier. The efficient frontier contains the
returns which offer the greatest mean for a given standard deviation, or the least
standard deviation for a given mean, and therefore would correspond to portfolios
chosen by perfectly informed and rational investors. However, when a riskless asset is

introduced, represented by R, = (0, H ,), one point on the efficient frontier becomes
preferable 1o the others, the point at which a line through Ry becomes tangent to the
efficient frontier. Since this point is optimal, it will be chosen by all informed and

rational investors, which'is to say that it will correspond to the portfolio of an efficient

market. This market point, Ry, , is the point (o, u.,); and the CAPM equation for the

ith t is readily derived: u,=u, + - where =M—IQ. This
i" asset is readily H=H, ﬂi(ﬂ,., .Uf), : ﬁ, Var(R,,.)

article shows how the aforementioned argument can be made rigorous through fairly
simple matrix algebra, which will foster a deeper understanding of and appreciation for
the theory. Moreover, the article offers an easy method for determining the optimal, or
market, portfolio. Finally, there will be a few remarks as to why CAPM theory may falter

under empirical testing.
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1. Portfoiio Optimization and the CAPM in Theory

P T T S S TSI Y- T I ¢ ST ST 1, SISO SR
LOnsiaer a umverse or n risKy asseis. 1ne€ réwurm oI tne 1*** assel, aenoica K, 1§ a ranaom
variable with E(R;) = p;j and Var(Rj) = o;2, fori=1, 2, ..., n. Let Cov(R;, Rj) = gjj,
which implies that o-: = ¢:2, Now, instead of re indi

which implies that 6j; = ;2. Now, instead of re

scalars, consider the (n x 1) column vector whose elements are the R's. Let us call this
random vector R, using bold type for vectors and matrices; and let us represent it by

writing a typical element within matrix brackets. So R=[Rj; ], orjust [Rj]. 1

Define the expectation of a matrix as the matrix of the expectations, or E(X) = [ E(Xij) 1.
Therefore, E(RR) ={ ER;) ]=[ nj ] =M. Also, if X and Y are two column veétors, define
Cov(X, ¥) = E( (X-E(X)) (Y-E(Y))') = [ E{ (X; - E(X)) ) (Yj - E(Y}) ) } ], where the
prime (') is the operator for matrix transposition. If X is (n x 1) and Y is (m x 1), then
their covariance is an (n x m) matrix. So Var(R) =[ E( (R; - i;) ®;- wI1=I gjj1=L.
Obviously, variances of column vectors are symmetric matrices. We will write R ~ [M, Z]

as shorthand for saying that R is distributed witl’mean M and variance X.

If A is a non-stochastic matrix conformable with X, so that Y = AX is defined, then E(Y)
= [E(Yj )= [E( Z aj Xkj)1=1 Z gy E(Xki) 1= A E(X). Similarly, if XA is defined,

the;i E(XA) =E(X) A. Therefore, given the meaning of Cov(X, Y) above, if AX and BY
are defined, then Cov(AX, BY) = E( (AX-E(AX)) (BY-E(BY))')

= A B/ IV_LC/WV\ VUV TV Dt
A LA a1y ) o
=A Cov(X, Y) B’

Therefore, if a non-stochastic matrix € is conformable with R, then O'R has mean O'M

and variance Q'Var(R)(QY') = Q'ZQ, or QR ~ [Q'M, Q'ZQ].
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The goal of portfolio optimization is to find an (n x 1) vector Q*, given R ~ [M, X], such
that Q*'R offers the greatest ratio of expected return in excess of the risk-free return g
to its standard deviation. Let Rg ~ [Zg = 0, Mg] denote the risk-free return, which is a
trivial (1 x 1) random vector. g =0=[0] and Mg = [g] are (1 x 1) matrices. To be
precise, a (1 x 1) matrix is not the same as a scalar, since a scalar can multiply any matrix,
whereas a (1 x 1) matrix can only premultiply a (1 x-n) matnix or postmultiply an (n x 1)

matnix.
Vot Thatbo e 1) vantac 11 o
Letopene(NX 1) veCior au o

thus to maximize (F(O'n\ 0'mn) ( ar. (0 R)-1/2 ni\‘/a!gnt!y, E(Q_'(R - JRAN

—— TENI
Var(Q'(R - JRq))"!/2, for some Q = Q*. To simplify further calculations, we may
relativize pq as 0, which is in effect to substitute R + JRq for R. This will not affect the

maximization, and later we can convert our results back into absolute form by substituting

R-JRg for R.

So, in relative form, we wish to maximize E(Q'R) (Var(QYR))"1/2, Now Var(Q'R) =
Q'EQ s a (1 x 1) matrix, whose only element must be nonnegative since it represents the
variance of a scalar random variable. In matrix theory, Z is said to be nonnegative
definite. A symmetric matrix E such that Q'EQ > [0] for any non-zero column vector Q is
said to be positive definite. We make the assumption that X is positive definite; otherwise,
our universe of risky assets would not be risky in some combination. Texts in elementary
matrix theory show the proof that if T is positive definite, then -1 exists and is also
positive definite. The other assumption which we will make is that (£-1M)' J is non-zero,
which implies that M is non-zero. The purpose of the second assumption will become

apparent below.
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Therefore, for all non-zero Q, Var(QX'R) > [0], and (Var(Q'R))-1/2 exists. We will make
one more modification by seeking optimize the square: E(Q'R)2 (Var(QR))-1. One
might think that this would lead to the worst Q* if E(Q2*'R) < [0]; however, it will turn
out that in such a case the optimal investment will be negative, or a disinvestment. Hence,
the goal is to maximize some function of Q, Q) = E(Q'R)2 (Var(Q'R))! = (Q'M)?2
Q).

Although the derivation is too involved to be presented here, an optimal Q* is Z-IM,
Now Z-1 must exist since I is positive definite. Furthermore, E(Q*R) = (Z-IM)' M =
M(Z1YM=MZ-'M. And Var(Q*R) = (Z-'M)Z(Z M) = (MZ-HZE M) = MZ-IM =
E(Q*R). Since M'ZIM > [0] for our non-zero M, Var(Q*R)"! exists. Therefore, &(Q*)
= MZ-IM. Also note that E(Q*'R) > [0], irresp.ective of how many negative elements M
contains. However, negative elements in M are likely to produce negative investment

elements in Q*.

Now consider: ®(Q) = (QM)? (QTQ)!
= (@M (QEQ)! (ME-IM)! (MZ-IM)
= (Q'M)2 Var(Q'R)"! Var(Q*R)-! &(Q*)
=(QZE-IM)? Var(QR)"1 Var(Q*R)! ®(Q*)
= (QTQ*)2 Var(QR)'! Var(Q*'R)"1 &(Q*)
= Cov(Q'R, Q*R)? Var(Q'R)"! Var(Q*R)-! &(Q*)
= p(QR, Q*R)? H(QY),
which is less than or equal to ®(Q*), since [0] <= p2 <= [1]. Thus there is no investment

strategy superior to Q¥*,
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Z-IMis not the only optimal value, since ®(kQ) = ®(Q) for any non-zero scalar k. This
shows that the optimization is not affected by the total amount of the investment, which in
matrix terms is kQ*'J = kM'E-1J. Since a return is relative to the initial investment, we
may define the optimal return R* as Q*R (Q*J)-1. By our second 'assumption, Q*]J =

£-IM)' J is nonsingular, so the inverse exists.
gu

Before investigating the properties of R* we should ask about the practicality of a
singular Q*'J, i.e., what if M'E1J = [0]? If this were the case, then the optimal return
would be attained by a total investment of zero (dollars, or other units of money), whether
this meant that zero would be invested in every asset or that positive and negative
investments would net to zero. Either way, each investor would have a net position in the
market of zero, which means that the value of the whole market of risky assets would be

zero. Because this is unrealistic, we may assume Q*'J to be nonsingular.

Since R* = Q*R (Q*J)-], R* ~ [M'ZIM(Q*J)], M'E-IM(Q*J)-2]. Notice that
Var(R*) = E(R*) (Q*J)-. Also, Cov(R, R*) = Cov(R, Q*R (Q*J)1) =

Cov(R, R) Q* (Q*J)1 = £ Q* (Q*J)] = £ Z-IM (Q*J)! = M (Q*J)! =

E(R) (Q*J)1.

As an (n x1) vector we may write the CAPM beta as follows:
B = Cov(R, R*) (Var(R*))!
=E(R) (@*))! ER*) (@* D))
= E(R) (@*3)" (Q*3)))! ER*))'L
= E(R) E(R*)"L.
Therefore, E(R) = B E(R*), which is the CAPM equation in relative form. As mentioned

earlier, the absolute form of the equation is obtained by substituting R - JRq for R. So
E(R - JRg) = BE(Q*(R - JRo}(Q*3)1) = B (E(R*) - Q*TRy(Q*Y)")
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=B (E(R*) - Rgy). Therefore, E(R) =JRj + B (E(R*) - Ro).'

Although R* hxi's been called the optimal return, it is also represents the markef return,
The argument for this is theoretical: namely, that if every investor is fully informed and
rational, then every’investor will combine assets proportionately to 2*. This means that
the whole market itself of risky assets will allocate value according to %, and will have
the return characteristics of R*. Reasons why this may not happen in practice will be

presented later.

In concluding this section, let us derive the familiar theorem that the beta of a portfolio is
the weighted average of the betas of the portfolio's assets. Letting £ be the asset
allocation, the portfolio's beta is Cov(Q2R, R*)}(Var(R*))-! = Q'Cov(R, R¥) (Var(R*))-!
=QB.

II. An Illustration of the Theory

If the author’s argument has not been clear enough, perhaps an example will be of help.
Consider the simple case of a two-asset universe. Suppose asset A to be priced so as to

have an expected return of 0.08, or 8 percent. We regard return as a dimensionless

number: Xi_ 1, where x and y, represent initial and terminal wealth respectively.

Xo
Rate of return is return per time, and has units of (time)-!. It makes no difference to the
example whether we deal with returns or with rates of return; however, actuaries should
ensure the dimensional consistency of their formulae. Suppose that the variance of asset

A's retumn is 0.10. Next, let asset B have an expected return of 0.02 and a variance of
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0.04. And let the covariance of A and B be -0.06. Finally, suppose the risk-free return to
be 0.04.

The returns in excess of the risk-free return are 0.04 and -0.02 respectively. One might

wonder why asset B with its substandard return would exist in the market. The answer
lies in the negative covariance. Asset B has value not in itself, but in its tendency to cancel

out the variance of asset A. Using notation from above, we write:

0.04 0.10 -0.06
R~|M= I= )
-0.02 -0.06 0.04
M is expressed in relative form; I is a positive definite matrix. The numbers were chosen

so that the example would not be cluttered with fractions or repeating decimals:

g 100 1507
“l1s0 250[ 2"

e

Therefore, the market, in order to obtain the optimal return, will allocate value among

assets A and B in equal proportions. Hence, the optimal return is:

R*=[0.5 05]R

~[[o.5 0.5]M,[0.5 O'S]E[g::]]

~[{0.01],[0.005]].
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Also, cov(R,R*)=cov(R,[0.5 0.5]R)

0.5
=cov(R, R)[O.S]
_Jos
o)
0.02
B [-o. o1 ]

0.02

Therefore, B = cov(R, R*) var(R*)"! = [ 0.01

][0.005]'l = [_::3}. So, the CAPM

0.04 4.0
equation in relative form is true: E(R) = [—O 02] =,: ’ O][O.Ol] =BE(R*), as well as the

equation in absolute form:

[0.08
ER)= 002

[g:g:]*[_:ig]([o. osj- (0.04])
[i}[o.mp[_ig]([o.os]-[o. 04])
JR, + B(E(R*)-R,).

4.0
Also, note that the market-weighted beta is [0.5 0. 5][ 2 0] = [l~0]. as expected.

The econometric material in the CAS part 10 exam induced the author to study matrix

theory from an econometric perspective.3 This effort has repaid me with a generous
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dividend, and I hope that many readers will have their appetites whetted to undertake
similar studies. In my first draft of this article I had not seen the matrix application, and

was tediously proving just ihe two-asset case of the CAPM by considering the efficient

frontier as a parametric equation in one parameter.4 I am convinced that matrix theory is

III. Portfolio Optimization and the CAPM in Practice

Throughout the article we have been speaking of a perfectly informed and rational
investor. However, we know that no two investors have the same beliefs about the future,
and no two have the same utilities. For example, a socially conscious investor who refuses
to purchase tobacco stocks, or South African gold stocks, is undoubtedly shaving from the
optimal return. However, the loss is compensated by his perceived loyalty to virtue. No
two investors are alike; and perhaps the perfectly informed and rational investor is a far-

away ideal.

Furthermore, we cannot obtain the needed M and Z matrices. Indeed, the first problem is
to define what belongs to the universe of assets. In the standard applications of the
CAPM "the market" is proxied by the S&P 500 index. Granted that the S&P 500 makes
up about two-thirds of the market vaiue of US. stocks, what about the stocks of the rest

of the world? And what about the other risky assets of the world, which is just about

one really knows its extent. Anything that can traded, perhaps even insurance loss
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partly responsible for the mixed results of CAPM tests.

And even with a limited universe of say 500 stocks, there remains a problem in estimating

500 betas and one equity risk premium ( rg,-r¢). The problem is well known to actuaries
as the dilemma between stability and responsiveness, viz., that by the time you have
enough observations to perform a good estimation, the underlying parameters have more
or less drifted. So the CAPM might be perfectly corroborated, if only we knew the
current parameters, rather than the outdated ones. Perhaps "the market" has some great
collective intuition, which transcends the knowledge of individual investors. The logical
positivist would balk at such a statement, which is more or less the capitalist's credo.
However, the notion that there really is an “invisible hand" in human affairs which directs

toward the greatest good is somewhat reasonable, even if difficult to verify -- as difficult

to verify as the CAPM itself.

The CAPM is of one piece with the efficient market hypothesis. It is of no help in the
selection of stocks or of any other asset. In fact, it dictates that every investo;"s portfolio
be a microcosm of the whole market. If the market really were the S&P 500, for example,
then the CAPM would have everyone invested in a mutual fund indexed to the S&P 500,
which is calied passive investing. Herein lies a parting conundrum: aithough passive

investing should be optimal, the market needs to be winnowed and sifted by active
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Notes

! It is presumed that the reader has some familiarity with matrix algebra. Therefore,
some of the steps in the derivations may involve the application of multiple matrix
theorems. Some of the basic properties of matricies are stated here, and may be of help if
the reader is puzzled by a derivation:

A. Matrix multiplication is associative: A(BC)=(AB)C. )

B. Matrix multiplication is not commutative; however, (1 x 1) matrices commute.

C. Matrix multiplication is distributive: A(B+C)=AB+AC.

D. Transposition of a product behaves thus: (AB) = B'A".

E. Similarly, with matrix inversion, (AB)-1=B-1A-1, if A and B are nonsingular.

F. By definition, A is symmetric if and only if A'=A.

G. Every (1 x 1) matrix is symmetric.

H. If A is nonsingular, then (A-1)"1 = A, Also, (A-1)=(A")"1.

2 For those who wonder if the example might be contrived in that the optimal
combination of assets was 50/50, we modify the example by changing the risk-free return
from 0.04 to 0.03. The reader can verify:

0.05 0.10 —0.06
R~[M= z= .
-0.01 -0.06 004
; 351 [ 717
Q="M= «
50| {1017

R*=[7/17 10/17]R
~[[1/68),[1/578]]

cov(R,R*) =cov(R,[7/17 10/17]R)

— coW®.R) 7117
R FTYIT
7/17

>
[10/17]

[ 1170
“[-1/850]
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So B = cov(R, R*) var(R*)-! = [_:;;Zg][l/ 57 8]' = [_ms] The CAPM equation

in relative form checks: E(R)=| = >|=| 13 [1/68]= BE(R*). Also, th
in relative form checks: E(R) = —001|%|-17/25 =BE(R*). Also, the

market-weighted beta is [7/17 10/17][ 17/25] [1 ]

3 For those interested in studying economemcs the author recommends Introduction to

the Theory and Practice of Econometrics, 21 edition, by G. G. Judge, R. C. Hill, et al.
(New York: John Wiley & Sons, 1988). The seventy-five page appendix on matnx theory

alone makes the book worth reading.

4 See the following Appendix for a speadsheet of the two-asset example.
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APPENDIX
CAPM lllustration showing Optimal Mix at 50/50

Mu Sigma“2 Cov(A,B)
Asset A 0.08 0.1 -0.06 . .
Asset B 0.02 0.04 Efficient Frontier
Risk-free 0.04
0.08
{Mu-0.04)/ 0.07
Wat(A) Wgt(B) Sigma Mu Sigma
- 0% 100% 0.2 0.02 -0.1 0.06
Jo 10% 90% 0.150333 0.026 -0.09313 0.05
oo 20% 80% 0.10198 0.032 -0.07845 2 004
30% 70%  0.05831 0.038  -0.0343
40% 60% 0.04 0.044 0.1 0.03
50% 50% 0.070711 0.05[ 0.141421] 0.02
60% 40% 0.116619 0.056 0.137199 0.01
70% 30% 0.165529 0.062 0.132907 :
80% 20% 0.215407 0.068 0.129987 0
90% 10% 0.265707 0.074 0.127961 ) 0.1 0.2 0.3 0.4
100% 0% 0.316228 0.08 0.126491 Sigma

Mu = Wgt(A)*Mu(A) + Wgt(B) *Mu(B)
Sigma =SQRT{Wgt(A) “2*SigmalA} "2 + 2*Wgt(A) *Wgt(B) *Cov(A, B) +Wgt(B}"2*Sigma(B) "2}



