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Portfolio ODtimizntion nnd the Caoitrl Asset Pricinp: Model: A Matrix ADaroach 

Leigh J. Halliwell 

A bstract 

Actuaries are acquainted with lhe basic ideas of Modem Porlfolio í’heory and the 

Capital Asset Pricing Model (CAPM). Briejly, porljolios are formed by weighting rishy 

assets with va@ng means, variances. and covariances. fich porlfolio can be plotled in 

the X-Yplane by its total return, with the standard devialion as the x-coordinate and lhe 

mean CLF the y-coordinate. II is plausibly verted that lhe resulting subspace of relums 

has an envelope, which is called lhe eljcicientfiontier. í%e efficientfrontier contains the 

retums which offer the grealesl mean for a given standard deviation, or the least 

standard deviation for a given mean, and lherefore would correspond to portfolios 

chosen by perfectly informed and rational investors. However, when a riskless asset is 

introduced, represenled by R, = (0, pII), one point on lhe efficient frontier becomes 

preferable IO the others, lhe point at which a Iine through Rf becomes tangent lo lhe 

ejjìcient frontier. Since this point is optimal, it will be chosen by all informed and 

rational investors. which is lo say that it will correspond IO lhe portfolio of an efjícient 

market. íSs markel point, R, , is the point (a, ,p;); and lhe CAPM equation for the 

ith asset is readily derived: p, = p, +flb, - p,), where fl= cov(R, 1 RJ 
WR,) . 

fiis 

article shows how lhe aforemenlioned argument can be made rigorous through fairly 

simple malrix algebra, which willfosler a deeper underslanding,of and appreciation for 

the theory. Moreover, lhe article offers an easy methodfor delermining the optimal, or 

market, portfolio, Finally, there will be a few rema& as to why CAPM theory may falter 

under empirical lesting. 
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1. Portfolio Optimization and the CAPM in Theory 

Consider a universe of n risky assets. The retum of the ith asset, denoted Rt, is a random 

variable with E(Ri) = ui and Var(Ri) = o$, for i = 1, 2, , n. Let Cov& Rj) = uij, 

which implies that ti,¡ = oi2. Now, instead of regarding the Rjls individually as random 

scalars, consider the (n x 1) column vector whose elements are the R$. Let LIS call this 

random vector R, using bold type for vectors and matrices; and let us represent it by 

writing a typical element within matrix brackets. So R = [ R,t 1, or just [ R, 1. t 

Define the expectation of a matrix as the matrix of the expectations, or E(X) = [ E(&j) 1. 

Therefore, E(R) = [ E&) ] = [ ui ] = M. Also, if X and Y are two column vectors, define 

CO+, Y) = E( (X-E(X)) (Y-E(Y))’ ) = [ E( (Xi - E(Xi) ) (Yj - E(Yj) ) } 1, where the 

prime ( ’ ) is the operator for matrix transposition. IfX is (n x 1) and Y is (m x l), then 

their covariance is an (n x m) matrix. SO Var(R) = [ E( (Ri - ui) (Rj - uj) ) ] = [ oi ] = C. 

Obviously, variances of column vectors are symrnetric matrices. We will write R - [M, E] 

as shorthand for saying that R is distributed witlftiiean M and variance L. 

IfA is a non-stochastic matrix conformable with X, so that Y = AX is defined, then E(Y) 

= [ E(Y$ ] = [ E( c aik xkj ) ] = [ 2 aik EO ] = A E(X). Similarly, if XA is defined, 

then E(XA) = E(X) A. Therefore, given the meaning of Cov(X, Y) above, if AX and BY 

are defined, then Cov(AX, BY) = E( (AX-E(AX)) (BY-E(BY))’ ) 

= Et N+(X)) (WY-E(Y))’ 1 

= E( A(X-E(X)) (Y-E(Y))’ B’) 

= A E( (X-E(X)) (Y-E(Y))’ ) B 

=A Cov(X,Y) B’. 

Therefore. if a non-stochastic matrix 0’ is conformable with R then R’R has mean R’M 

and variance fiVar(R)(fI’)’ = nLf.I, or a'R - [NM, C!‘T.Q]. 
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The goal of portfolio optimization is to find an (n x 1) vector fi*, given R - [w L] , such 

that f2*‘R offers the greatest ratio of expected retum in excess of the risk-free retum u0 

to its standard deviation. Let RO - [q = 0, MO] denote the risk-free retum, which is a 

trivial (1 x 1) random vector. XO = 0 = [0] and MO = [uO] are (1 x 1) matrices. To be 

precise, a (1 x 1) matrii is not the same as a scalar. since a scalar can multiply any matrix, 

whereas a (1 x 1) matrix can only premultiply a (1 x n) matrix or postmultiply an (n x 1) 

matrix. 

Let J be the (n x 1) vector all of whose elements are ones. Then R - JRo = [ Ri - uO 1, 

which represents the retum in excess of the risk-fiee retum. The optimization problem is 

thus to maximize (E(C!‘R) - NJR.0) (Var(Q’R))-1’2, or equivalently, E(CI’(R - JRO)) 

Var(R’(R - JRo))-‘/~, for some R = C!*. To simplify fbrther calculations, we may 

relativize uO as 0, which is in effect to substitute R + JRo for R. This will not affect the 

maximization, and later we can convert our results back into absolute form by substituting 

R - JRO for R. 

So, in relative form, we wish to maximize E(Q’R) (Var(NR))-“2. Now Var(!ZR) = 

Cl”CR is a (1 x 1) matrix, whose only element must be nonnegative since it represents the 

variance of a scalar random variable. In matrix theory, C is said to be nonnegative 

definite. A symmetric matrix C such that f2’XI > [0] for any non-zero column vector n is 

said to be positive definite. We make the assumption that C is positive definite; otherwise, 

our universe of risky assets would not be risky in some combination. Texts in elementary 

matrix theory show the proof that if C is positive definite,.then C-l exists and is also 

positive definite. The other assumption which we will make is that (C-tA4)’ J is non-zero, 

which implies that M is non-zero. The purpose of the second assumption will become 

apparent below. 
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Therefore, for all non-zero CI, Var(R’R) > [O], and (Var(S2’R))-1/2 exists. We will make 

one more modification by seeking optimize the square: E(f2’R)2 (Var(S2’R))-1. One 

might think that this would lead to the worst Q* if E(Q*‘R) < [O]; however, it will tum 

out that in such a case the optima1 investment will be negative, or a disinvestment. Hence, 

the goal is to maximize some tünction of Q @(SYZ) = E(CI’R)2 (Var(fZR))-t = (f2’M)2 

(am)-‘. 

Although the derivation is too involved to be presented here, an optimala* is C-lM. 

Now ~-1 must exist since Z is positive definite. Futtherrnore, E(n*‘R) = @M)’ M = 

M’(X-t)‘M = ME-tM. And Var(CI*‘R) = (GQvf)‘~(c-t~) = @I’L-~)z(x-~M) = MX--1M = 

E(C?*‘R). Since M’CtM > [0] for our non-zero M, Var(fi*‘R)-1 exists. Therefore, @((n*) 

= M”L-1M. Also note that E(LPR) 5 [O], h-respective of how many negative elements M 
w 

contains. However, negative elements in Mare likely to produce negative investment 

elements in R+. 

Now consider: U)(Q) = (CI’M)2 (fXX2)-t 

= (i2My (nm)-l (MwMy’ @fc-w) 

= (X2%4)2 Var(SZ’R)-t Var(fP’R)-t @(II*) 

= (C¿‘z’cZ-‘h4)2 Var(NR)-1 Var(C2*‘R)-1 @(a*) 

= @‘X2*)2 Var(fI’R)-1 Var(CI*‘R)-1 U@Z*) 

= Cov(CI’R, S3*‘R)2 Var(R’R)-t Var(Q*‘R)-l @(fi*) 

= p(Q’Ft, n*‘R)2 @(a*), 

which is less than or equal to @@2*), since [0] <= ti,<= [ 11. Thus there is no investment 

strategy superior to fl*. 
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2IM is not the only optimal value, since @(ka) = @((sz) for any non-zero scalar k. This 

shows that the optimization is not affected by the total amount of the investment, which in 

matrix terms is kn*‘J = kM’2tJ. Since a retum is relative to the initial investment, we 

may define the optimal retum R* as CP’R (CI*‘J)-t. By our second assumption, C!*‘J = 

(Z%) J is nonsin&lar, so the inverse exists. 

Before investigating the properties of R* we should ask about the practicality of a 

singular CI*‘J, i.e., what if M’ZIJ = [O]? Ifthis were the case, then the optima1 retum 

would be attained by a total investment of zero (dollars, or other units of money), whether 

this meant that zero would be invested in every asset or that positive and negative 

investments would net to zero. Either way, each investor would have a net position in the 

market of zero, which means that the value of the whole market of risky assets would be 

zero. Because this is unrealistic, we may assume f2*‘J to be nonsingular. 

Since R* = Q*‘R (SZ¿*‘J)-*, R* - [M’B-tM(IZ*‘J)-1, M’L-lM(n*‘J)-2]. Notice that 

Var(R*) = E(R*) (n*‘J)-1. Also, Co@, R’) = Co+, n*!R (Q*‘J)-‘) = 

Cov(& R) nL (a*‘J)-’ = z Q* (a+‘J-)-1 = z j=‘M (n*‘J)-1 = M (a*‘J)-1 = 

E(R) (fl*‘J)-l. 

As an (n x1) vector we may write the CAPM beta as follows: 

B = Cov(R, R*) (Var(R*))-t 

= E(R) (Q*‘J-)-l (E(R*) (a*‘J)-‘)-’ 

= E(R) (f2*‘J)-’ ((Q*‘J)-‘)-’ (E(R*))-’ 

= E(R) E(R*)-‘. 

Therefore, yR) = B E(R+). which is the CAPM equation in relative form. As mentioned 

earlier, the absolute form of the equation is obtained by substitutiig R - JRO for R. So 

E(R - JRu) = B E(!A*‘(R - JR,-,}(f2*3)-‘) = B (B(R*) - f.Z*‘JR,-,(.n*‘J-)-‘) 
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= B (E(R*) - Ro). Therefore, E(R) = JRO + B (E(R*) - Re).’ 

Although R* has been called the optimal return, it is also represents the m&er retum. 

The argument for this is theoretical: namely, that if every investor is fully informed and 

rational, then everylnvestor will combine assets propottionately to R*. This means that 

the whole market itself of risky assets will allocate value according to n*, and will have 

the retum characteristics of R*. Reasons why this may not happen in practice will be 

presentad later. 

In concluding this section, let us derive the familiar theorem that the beta of a portfolio is 

the weighted average of the betas of the portfolio’s assets. Letting R be the asset 

allocation, the portfolio’s beta is Cov(KZR, R*)(Var(R*))-l = PCov(R, R*) (Varol*))-I 

= C!‘B. 

II. An Illustration of the Theory 

If the authoh argument has not been clear enough, perhaps an example will be of help. 

Consider the simple case of a two-asset universe. Suppose asset A to be priced so as to 

have an expected retum of 0.08, or 8 percent. We regard retum as a dimensionless 

number: XI- 1, where 
x0 

Xoand J-, represent initial and terminal wealth respectively. 

Rute of retum is retum per time, and has units of (time)-‘. It makes no diierence to the 

example whether we deal with retums or with rates of retum; however, actuaries should 

ensure the dimensional consistency of their formulae. Suppose that the variance of asset 

A’s retum is 0.10. Next, let asset B have an expected retum of 0.02 and a variance of 
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0.04. And let the covariance of A and B be -0.06. Finally, suppose the risk-free retum to 

be 0.04. 

The retums in excess of the risk-free retum are 0.04 and -0.02 respectively. One might 

wonder why asset I3 with its substandard retum would exist in the market. The answer 

lies in the negative covariance. Asset B has value not in itself, but in its tendency to cancel 

out the variance of asset A. Using notation fiom above, we write: 

M is expressed in relative form; Z is a positive definite matrix. The numbers were chosen 

so that the example would not be cluttered with fractions or repeating decimals: 

z-1 = 
100 150 [ 1 150 250 

, and 

Therefore, the market, in order to obtain the optima1 retum, will allocate value among 

assets A and B in equal proportions. Hence, the optima1 retum is: 

R*=[O.S O.S]R 

-[[0.5 O.S]M,[O.5 0.5]E[;:;]] 

- [[0.01],[0.005]]. 
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Also, cov(R,R*) = cov(R,[O.S O.S]R) 

= cov(R,R) 

=L 
0.5 [ 1 0.5 

0.02 

= -0.01 i 1 
Therefore, B = cov(R, R*) var(R*)-1 = [_~:~~][o.oo~~‘=[_~:~]. So, the CAPM 

equation in relative forrn is true: E(R) = [l:ii]=[-~:~][O.Ol]=BE(R*),aswellaathe 

equation in absolute form: 

= JR,, +B(E(R*) - R,). 

Also, note that the market-weighted beta is [0.5 0.51 [ 1 -21: =[l.O], as expected.2 

The econometric material in the CAS part 10 exam induced the author to study matrix 

theory from an econometric perspective. 3 This effort has repaid me with a generous 
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dividend, and 1 hope that many readers will have their appetites whetted to undertake 

similar studies. In my first draft of this atticle 1 had not seen the matrix application, and 

was tediously proving just the two-asset case of the CAPM by considering the efficient 

6ontier as a parametric equation in one parameter. 4 1 am convinced that matrix theory is 

a powerful tool in its’ own right, rather than just a convenient shorthand, and that in 

statistics the econometricians are far aheád of us actuaries precisely because of their 

matrix approach to this subject. 

III. Portfolio Optimization and the CAPM in Practice 

Throughout the article we have been speaking of a perfectly informed and rational 

investor. However, we know that no two investors have the same beliefs about the future, 

and no hvo have the same utilities. For example, a socially conscious investor who refuses 

to purchase tobacco stocks, or South Afiican gold stocks, is undoubtedly shaving from the 

optimal retum. However, the loss is compensated by his perceived loyahy to virtue. No 

two investors are alike; and perhaps the perfectly tnformed and rational investor is a far- 

away ideal. 

Furthermore, we cannot obtain the needed M and Z matrices. Indeed, the first problem is 

to deline what belongs to the universe of assets. In the standard applications of the 

CAPM “the market” is proxied by the S&P 500 index. Granted that the S&P 500 makes 

up about two-thirds of the market value of US. stocks, what about the stocks of the rest 

of the world? And what about the other risky assets of the world. which is just about 

everything except US. treasury securities? What about real estate? And perhaps 

commodities, such as wheat, oil, and gold, should be included -- perhaps even collectibles, 

such as rare coins and art. In other words, although we speak glibly of “the market,” no 

one really knows its extent. Anything that can traded, perhaps even insurance loss 
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portfolios, might be part of the market. So probably our proxies are rather bad ones, and 

partly responsible for the mixed results of CAPM tests. 

And even with a limited universe of say 500 stocks, there remains a problem in estimating 

500 betas and one e$tity risk premium ( r,-rf). The problem is well known to actuaries 

as the dilemma between stability and responsiveness, viz., that by the time you have 

enough observations to perform a good estimatiort, the underlying parameters have more 

or less drifted. So the CAPM might be perfectly corroborated, ifonly we knew the 

current parameters, rather than the outdated ones. Perhaps “the market” has some great 

collective intuition, which transcends the knowledge of individual investors. The logical 

positivist would balk at such a statement, which is more or less the capitalist’s credo. 

However, the notion that there really is an “invisible hand” in human affairs which directs 

toward the greatest good is somewhat reasonable, even ifdifficult to verify -- as difficult 

to verify as the CAPM itself. 

The CAPM is qf one piece with the efficient market hypothesis. It is of no help in the 

selection of stocks or of any other asset. In fact, it dictates that evety investor’s portfolio 

be a microcosm of the whole market. If the market really were the S&P 500, for example, 

then the CAPM would have everyone invested in a mutual fimd indexed to the S&P 500, 

which is called passive investing. Herein lies a parting conundrum: although passive 

investing should be optimal, the market needs to be winnowed and sifted by active 

investors endeavoring to outperform it. 
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Notes 

t It is presumed that the reader has some familiarity with matrix algebra. Therefore, 
some of the steps in the derivations may involve the application of multiple matrix 
theorems. Some of the basic properties of matricies are stated here, and may be of help if 
the reader is puzzled by a derivation: 

A. Matrix multiplication is associative: A(BC)=(AB)C. 
B. Matrix multiplication is not commutative; however, (1 x 1) matrices commute. 
C. Matrix multiplication is distributive: A(B+C)=AB+AC. 
D. Transposition of a product behaves thus: (AB)’ = B’A’. 
E. Similarly, with matrix inversion, (AB)-l=B-‘A-1, if A and B are nonsingular. 
F. By defmition, A is symmetric if and only if A’=A. 
G. Every (1 x 1) matrix is symmetric. 
H. If A is nonsingular. then (A1)-t = A. Also, (A-l)‘=(A)-1. 

2 For those who wonder if the example might be contrived in that the optima1 
combination of assets was 50/50, we modify the example by changing the risk-free retum 
from 0.04 to 0.03. The reader can verify: 

R*=[7/17 10/17]R 

-[[1/68],[1/578]] 

cov(R,R*)=cov(R,[7/17 10/17]R) 

7117 
= cov(RR) [ 1 1o,l7 

7117 
= z [ 1 lOll 

11170 

= [ 1 -11850 
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So R=cov(R R*) var(R*)-t = [-~~~:~][1/578~ = [-::;i,]. The CAPMequation 

in relative form checks: E(R) = [~:B:]=[-~:::s][l,6*~=BE(R*). Also, the 

market-weighted beta is [7/17 

3 For those interested in studying econometrics, the author recommends Introduction to 
the Theorv and Practice of Econometrics, 2nd edition, by G. G. Judge. R. C. Hill, er al. 
(New York: John Wiey Br Sons, 1988). The seventy-five page appendix on matrix theory 
alone makes the book Worth reading. 

4 See the following Appendii for a speadsheet of the two-asset example. 
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APPENDIX 
CAPM Illustraäon showina Optima1 Mix at 50/50 

Asset A 
Asset 8 
Risk-free 

Mu Sigma*2 Cov(A,B) 
0.08 0.1 -0.06 
0.02 0.04 
0.04 

(Mu-0.04)/ 
Wgt(A) wgm Sigma MU Sigma 

0% 100% 0.2 0.02 -0.1 
10% 90% 0.150333 0.026 -0.09313 
20% 80% 0.10198 0.032 -0.07645 
30% 70% 0.05831 0.038 -0.0343 
40% 60% 0.04 0.044 0.1 
50% 50% 0.070711 0.05(0.1414211 
60% 40% 0.116619 0.056 0.137199 
70% 30% 0.165529 0.062 0.132907 
80% 20% 0.215407 0.068 0.129987 
90% 10% 0.285707 0.074 0.127961 

100% 0% 0.316228 0.08 0.126491 

0.08 - 

0.07 -. 

0.06 .. 

0.05 .. 

g 0.04 -. 

0.03 .’ 

0.02 .. 

Efficient Frontier 

O.O:, t 
0 0.1 0.2 0.3 0.4 

Sigma 

Mu = Wgt(Al’MuIA) +Wgt(B)‘Mu(B) 
Sigma=SQRT{Wgt(A)^2*SigmalAl~2+2*Wgt(A)*Wgt(B)*Cov(A, B)+Wgt(B)^2*Sigma(B)-2) 


