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Hiawatha Designs An Experimeot 

by Maurice G. Kendall 

1. Hiawatha, mighty hunter 
He could shoot ten arrows upwards 
Shoot them with such strength and swiftaess 
That the last had left the bowstring 
Ere the first to earth descended. 
This was commonly regarded 
As a fea1 of skill and cunning. 

2. One or two sarcastic spirits 
Pointed out to him, however, 
That it might be much more useful 
If he sometimes hit the target. 
Why not shoot a little straighter 
And employ a smaller sample? 

3. Hiawatha, who at college 
Majored in applied statistics 
Consequently felt entitled 
To instruct his fellow mea on 
Any subject whatsoever 
Waxed exceedingly indignan1 
Talkcd about the law of error, 
Talked about truncated normals, 
Talked about loss of information, 
Talked about his lack of bias 
Pointed out that in the long run 
Independent observations 
Even though they missed the target 
Had an average point of impact 
Very near the spot he aimed at 
(With the possiblc. exception 
Of a set of measure zero.) 

4. This, they said, was ratber doubtful. 
Anyway, it didn’t matter 
What resulted in the long run; 
Either he must hit the target 
Mucb more often than at present 
Or himself would have to pay for 
Al1 the arrows that he wasted. 
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5. Hiawatha, in a temper 
Ouoted parts of R.A. Fisher 
Ouoted Yates and quoted Finney 
Ouoted yards of Oscar Kcmpthornc 
Ouoted reams of Cox and Cochran 
Ouoted Andersen and Bancroft 
Practically in extenso 
Trying to impress upon them 
That what really mattered 
Was to estimate the error. 

6. One or two of them admitted 
Such a thing might have its uses 
Still, tbey said. he might do better 
ff he shot a little straighter. 

7. Hiawatba, to convince them, 
Organized a shooting contest 
Laid out in proper manner 
Of designs experimental 
Recommended in the textbooks 
(Mainly used for tasting tea, but 
Sometimes uscd in other cases) 
Randomized bis shooting arder 
In factoral arrangements 
Used in tbe tbeory of Galois 
Fields of ideal polynomials 
Got a nicely balanced layout 
And successfully confounded 
Second-arder interaction. 

8. All the other tribal marksmen 
fgnorant, benighted creatures, 
Of experimental set-ups 
Spent their time of preparation 
Putting in a lot of practice 
Merely shooting at a target. 



9. Tbus it happeoed in tbe contest 
That thc scorcs werc most imprcssivc 
With onc solitary exccption. 
This (1 hate to havc to say it) 
Was thc scorc of Hiawatha, 
Who, as usual. shot his arrows 
Shot thcm with great strength and swiftncss 
Managing to be unbiascd 
Not. howcvcr, with his salvo 
Managing to hit thc target. 

10. Thcrc, they said to Hiawatha, 
That is what we all cxpectcd. 

11. Hiawatha, nothing daunted, 
Callcd for pcn and callcd for papcr 
Did analyscs of variancc 
Finally produccd the figures 
Showing bcyond prcadventure 
Everybody clsc was biased 
And the variancc componeats 
Did not diffcr from cach other 
Or from Hiawatha’s 
(This last point, one should acknowlcdgc 
Might have beca much more convincing 
If hc hada? bcen compellcd to 
Estimatc his own component 
From experimental plots in 
Which the values all were missing. 
Still, they didn’t understand it 
So thcy couldn’t raisc objcctions. 
This is what oftcn happcns 
With analyscs of variance.) 

12. All the same, his fellow tribesmeo 
Ignorant, henightcd heatheos, 
Took away his bow and arrows, 
Said that though my Hiawatha 
Was a brilliant statistician 
He was useless as a bowman, 
As for variance components 
Severa1 of thc more outspoken 
Made primeva1 observatioos 
Hurtful to thc fincr feeliogs 
Even of a statistician. 

13. In a corncr of thc forest 
Dwells alone my Hiawatha 
Permanently cogitating 
On thc normal law of error 
Wonderiog io idle momeots 
Whctbcr an iocreased precision 
Might perhaps be rather better 
Even at the risk of bias 
If thcreby one, now and then, could 
Registcr upon the targct. 

Rcprintcd with permission from The Americen Srofisficion. Copyright 1959 by the Ameritan 
Statistical Association. Al1 rights reservcd. 
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Introduction 

c 

This paper is called credihility for Hiawatha hecause it is ahout 

expected tJalne ratemaking. Like Hiawatha. and unlike users of 

“classical” credibility. we are concerned todav with makins good estimates. 

that is. minimum variance unbiased estimates of the espected value of the 

outcome of a stochastic process. Our first point is that Bayesian credihility 

is alumnos hetter than classical credihility if the goal is to estimate future 

loss costs. 

Nonetheless. like Hiawatha. we must consider that: “... an increased 

precision / Might perhaps he rather better / Even at the risk of bias / ff 

therehy one. now and then. could / Register upon the target.” Our second 

point is that there are tricks you can use to make Bayesian credihility 

computations easily. Each trick introduces a little bias. but the tricks 

improve the precision of your estimates as well as making them easy to 

calculate. 

Definition of the Problem 
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Consider a hig urn with an 

unknown number of red and 

white balls. Each red hall has 

a number on it (called a “loss 

amount”). 



_-. - --- - 

A sprite has drawn balls atrandom from the big urn and put them 

into four small urns. The sprite mav have put a greater proportion of red 

balls into some urns. and a lesser proportion into others. 

The small urns correspond to various classes, various territories, 

various years. or any other way the universe of risks is divided into 

experience groups. 

Problem 1: 

Examine the entire contents of each of the four small urns. 

Estimate i?, , the expected rate of loss per draw, for each small 

Urn 1 Urn 2 Urn 3 Urn 4 

Number of balls Ni 10 20 30 40 

Total losses Li 10 40 90 160 

g=Li 
Ni 

1 2 3 4 
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Problem 2: 

Examine the entire contents of each of the four small urns. Estimate 

R. . the expected rate of draw for the big urn. 

Big Urn 

Number of balls CN, 100 

Total losses CLi 

3.0 

ZiNi 
This is equivalent to cN, . That is, the various Ri’s are 

weighted according to their number of balls (their sample sizes). 

Problem 3: 

Sample the contents of each small urn N, times with replacement. 

Estimate E1 , the expected rate of loss per draw from each small 

urn, as a linear combination of the observed rates of loss. 

This is the Bayesian formulation of the insurance rating problem. 

It represents the insurance rating problem because the observed accidents 

are a random sample of the accidents that might have happened. 
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We use a linear combination of the observed rates of loss because 

this is the simplest way to reflect the information about the means of the 

various classes. Graphically. the process is as follows: 

Historically. the general results have been in use since they were first 

published in 1914. 

Hans Bühlmann showed that the best linear unbiased estimate of 

gi is a weighted average of: 

1. The observed average. Xi. with weight: 

ei 
var[ SI 

(the reciprocal of the process variance for the urn) 

where: 

e, = number of units of exposure in the observed average 

var[S] = variance of the claims process for one unit of exposure 
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2. The estimated grand average. Iî. . with weight 

(the reciprocal of the variance of the distribution of means ümong 

the urns). 

These weights correspond to the “number of balls” in Problem 2 

because the number of balls is proportional to the reciprocal of the 

estimated variance of the estimate of I?, . 

Bühlmann showed this result in terms of credihility: 

BAY.ESIAN ESTIMATES OF LOSS RATES 

c- ^i x, 
Iî.= 

ei+K 

gL 
ei+K 

The constant K is the expected value of the process variance for one 

draw divided by the variance of the means among the small urns. 

The quantity -& is called the credibility of X,. It is often 
1 

denoted Z,. 
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The expected loss rate for the average of all classes for Problem 3 

is the expected loss rate for the big urn. The formula says that when we 

only observe a sample from each small urn, the best estimate of the IOSS 

rate for the big urn is a weighted average of the observed averages of the 

small urns. with weights equal to the credibility of each urn’s average IOSS 

cate. The complement of the credibility goes to the credibility-weighted 

average of the observed average loss rates. 

Bayesian, or expected-value, credibility says that K depends on the 

expected value of the process variance for one unit of exposure and the 

variance of unknown class means. 

“Classical” credibility says that K is a function of the process 

variance. the choice of a tolerable percentage error, such as 2 5%, and the 

choice of a tolerable probability of unacceptable error. 

Therefore classical credibility theory will only be correct when the 

percentage error and probability of error are chosen to yield the same 

credibility value as expected-value credibility. In all other cases, classical 

credibility theory will give the wrong credibility weight, if the objective is 

l to estimate the expected loss rates. 

Implicit Assumptions: 

1. All classes have some process variance per unit of exposure. 

That is. all classes have measures of process variance and 

exposure, and process variance decreases as exposure 

increases. 

2. The underlyìng mean for any particular class is a random 

variable from a certain process, and that process is applicable 

to all classes. (Le., don? credibility-weight malpractice loss 

rates with homeowners loss rates.) 
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A Practica1 Understandiag of K 

1. The Three Components of K 

The “credibility constant”, K, is the number of times we must sample 

from a small urn to have enough experience to give the observed average, 

X,, a credibility of 50%. That is, when 

E[R,IXJ =+xi+. , 

then: 

and: 

e. 1 1=- 
ei+K 2 

K=ei 

The purpose of this presentation is to show that K is the product of 

the average exposure per claim and two dimensionless quantities that 

reflect the predictability of claim sizes and the relevance of the grand 

mean to the prediction of individual means. 

K= var[N (E[YI )2+J!zml var[Yl 
var [pl 

var[Nl + var[ Yl 

.E[JJl 1 - (E[fl)" 
ENI var [pl 

(E[Jd E[Yl 1’ 

290 



1 =-* 
1+p+cv; 

E[Nl cv2 
P 

= dvg Exposureper Claim. Dispersion of the Loss Pzocess 
Dispersion of the Vnknowa Means 

For a Poisson frequency distribution: 

The credibility of frequency relativities is: 

Notation: 

ElNI. varIN/: Claim frequencv process 

El Y 1, var/ Y /: Claim severitv process 

EIN/EIYI = Expected value of class means 

1 
E[Nl 

P 

CV 2 " 

= Average exposure per claim 

= Dispersion of the claim frequencies among 

risks within the classes. (The coefficient of 

variation, or CV. of a probability 

distribution is the ratio of its standard 

deviation to its mean.) 

= Dispersion of claim si& 
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CV,’ = Dispersion of mean loss rates 

This result is exact only if frequency and severity are independent. In 

practice. a lack of indepcndence is usually a negative correlation between 

frequency and severity and can he reflected by increasing K slightly. 

2. Averaee Exoosure Der Claim 

The starting point for determining K is the average exposure per 

claim. This could be: 

Auto Insurance 60 car-years in a given class 

Worker’s Compensation %; 120.000 of pavroll in a given class. 

Property. wind exposure. 100 billion dollar-years 
claims over % 10 million of insured value. 

The average exposure per claim is defined hy the prohlem. It is 

easily determined from loss experience. and it is known with considerable 

accuracy. evcn if the expected claim frequency is small. 

One quality of a good choice of exposure unit is that hoth expected 

IOSS costs and expected process variance increase in proportion to rhe 

number of units of exposure. Alternatively. the average loss rate is 

unaffected by the volume of exposure. and the variance of the ohserved 

IOSS ratc decreases in proportion to the exposure. 

3. Estimatin p the Dhrsion of Claim Sizes 

The next point is the determination of the dimensionless quality 

reflecting the volatility of the claims process. The dispersion of 

P 
frequencies. . is usually small and can usually he ignored. The qunntity 

(I+ CVvï) can be computed from claim size data. For a group of claims 

valued at Y,. i = I... II. and n sufficiently large. this can be estimated from: 
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CY,” 

=n(CYi)’ 

Another estimate, more stable for claim size distributions that are 

highly skewed (including but not limited to the lognormal) is eO’ , where 

o2 is the variance of the logs of the claim sizes. The value of (I + CV,‘) 

may be any number greater than .l, but it is usually between 5 (for claims 

that are not widely dispersed) and 35 (for claims that are very widely 

dispersed). 

The following table shows values from my experience. It also shows 

the effect on K of truncatingvarious claim sizes. Truncating really unusual 

claims sizes reduces (I+ CV,*) and K, but truncating more common 

values, such as worker’s compensation claims between $25,000 and 

$100,000, has little effect. 
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Examples of Dispersion of Claim Sizes 

Line of Business Approximate Value (I + CV,‘) 

California School District 

Worker’s Compensation 

Unlimited 40 

Limited to S 100.000 15 

Limited to $25.000 10 

Private Passenger Automobile Collision 3 

Commercial Truck Liability 

Limited to $250.000 15 

Limited to $600,000 25 

Limited to %l,OOO.OOO 35 

Hospital Professional Liability 

Unlimited 45 

California Municipal Liability 

24 mm. Excess of 1 mm. 5 

Physician Medical Malpractice 

Limited to $250.000 3 

Limited to $2.500,000 10 

Automobile Products Liability 

Unlimited 80 
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4. Estimatinp CV,! 

Estimatinp CV..’ from Data 

One way to estimate CV, ’ is to use the data from the problem at 

hand. If there are enough “urns” (classes. regions. etc.). and a sufficient 

number of them have a credible volume of experience, then a value of 

CV,> can be found by trial and error which gives estimates of 2;. J?. , and 

When these simultaneous equations are solved, the credibilities are 

underestimated because of the dependence upon data for estimates of 

unkown intermediate quantities. For k classes, the unbiased estimates of 

the zi are: 

zi - l-- kk3 (1 -zi) 

Often in practice the Xi are by chance close to J?. and this formula 

gives an unreliable estimate of CV,‘. This is particularly a problem if 

there are few classes or the classes have low credibility. 

Estimatinp CV,p 

In most cases of actuarial interest, the various class means must be 

greater than zero. As a result, the mean class mean, or grand average, is 

greater than the modal class mean, or most common class average. The 
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greater the variance of the distribution, the greater the ratio of the mean 

to the mode. 

CV,’ = .06 

lAll 

Although your understanding of the classification process and the 

resulting means might be sketchy, you might be able to make your estimate 

of the CV,’ consistent with your understanding of the extent by which the 

mean class mean exceeds the mode. 

For example, for a gamma distribution of unknown class means, the 

results are as follows. A gamma is a reasonable choice because of its 

genesis as mixture of exponentials. 

Gamma Distribution 
of Unknown Means 

Ratio of Mean 
to Mode 

2.00 

1.50 

1.25 

1.11 

1.06 

1.03 

CV,’ 

SO 

.33 

.2 

.l 

.06 

.03 

2 

3 

5 

10 

18 

34 
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The reciprocal of CV,’ is usually between 2 and 25. A tabulation of 

data that divides good risks from bad will lead to a high ratio of the mean 

to the mode and a CV,’ of as much as 0.50. A tabulation that does not 

meaningfully distinguish one group from another (such as tabulation by 

accident year of on-level premiums and losses) will lead to a low ratio of 

mean to mode and a low CV,' of 0.03 or less. 

5. mtion of B& 

These estimates of loss rates are biased (in statistical terms) because 

they rely on outside data. This is unimportant. In practice, the gain in 

accuracy more than makes up for the bias that is introduced. Like 

Hiawatha’s tribesmen, we are introducing some bias in order to hit the 

target more often. Even more important, we are aiming our arrows at the 

target of expected-value estimation. 

Credibility of Claim-Free Experience 

A simple example of the usefulness of Bayesian credibility is the 

calculation of the credit for claim-free experience for a particular risk. 

One such credit is offered by reinsurers whose risks present seven years of 

claim-free experience. Another such credit is offered by auto insurers who 

give lower rates to claim-free drivers. 

E[loss rate,O 

where rî. = a priori estimate of expected rate 

= 1.0, for determining a credit for claim-free experience. 
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Charge = 

Credit = 
ei 

ei+K 

We define our exposure period to be 1.0 units. Then: 

Credit = ‘1 

= E[IV] CV; 

l+P+E[N] *CV; 

Where: 

E[N) = The expected number of claims in the exposure period,. 

CV,2 = The dispersion of means of claim frequencies from risk 

to risk. 

&i.!q& 

The credit is: 

If the risks are believed to be different from one another the credit 

is more than if the risks are believed to be similar to one another. The 

greater the number of expected claims, the greater the creditfor claim-free 

experience. 
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