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Absiracr; The required Joss reserve for  recent time period is
estimated by using the recent loss experience plus two proba-
bility distributions. One distribution is of ultimate losses for
the recent period. based on prior experience and rate ade-
quacy changes. The other distribution 15 of the ratio of the
estimator buased on recent experience to the true ultimate
loss.
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1. Introduction

This paper presrnts a method of using ex-
pected loss ratios. together with prior and poste-
rior distributions. in order 1o estimate loss re-
scrves. This Bayesian method is especially uscful
for recent accident years and for lines of business
with slow development. It incorporates. in a rig-
orous way. the degree of reliability of the ex-
pected loss ratio and of the loss development
fuctors. Estimates of ultimate loss ratios for re-
cent accident years can bc important factors in
underwriting decisions.

A mecthod of using expected loss ratios which
is now well-known was presented by Bornhuetter
and Ferguson (1972). The ultimate losses of an
accident year are estimated by using the prior
expectation of ultimate losses (expected losses) as
well as the reported lusses and the selected devel-
opmcnt factor to ultimate. The ultimate losses
are estimated as

reported losses + (1 ~ 2 )( expected lows),

(1)
where :z is the reciprocal of the development
factor to ultimate.
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ratios in reserving

Itis implicit in this method of cstimation that
the cxpecred development for an accident year in
cach future year is independent of the reported
losses.

If ‘developed losses’ is defined as the product
of the reported losses and the development factor
to ultimate. then formula (1) can bc expressed as

z( developed losses) + (I — z }(expected losses).
(2)

Bornhuetter~Ferguson and Bayesian estimates
of loss reserves will be compared in an example
later in this paper.

2. The model

In a Bayesian approach, the prior cxpectation
of ultimate losses for an exposure period £ may
bc an estimate made several ycars after rhc be-
ginning of E.If ultimate loss ratios are estimated
for the same line of business for the insurer for
previous periods, and industry-wide data as well
as the insurer's changes in premium adequacy are
taken into account, an estimate of the ultimate
loss ratio for the period £ can be made prior to
considering the reported losses for E.

The following direct application of Bayes’ the-
“rem is basic to this discussion. Let f(x) be the
probability density function of the distribution of
ultimate losses for exposure period E prior to
considering the losses for £. Let g(y|.x) be the
probability density function of the distribution of
v, the developed losses defined previously, for E
as of I months, given that the ultimate losses are
x. Assume that this distribution has mean x. Let
h(x | ¥) be the probability density function of the
distribution of the ultimate losses given that the
developed losses arc y. Then

h(xly) =g (10 £/ 2510 f(x) dx. (3)

In order to use the above proposition. it is
necessary to estimate g{y | x) and f(x). The mean
of the distribution given by a(x | y) will be the
estimate of ultimate losses.
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The variance of the distribution given by
g(ylx) can be estimated from a study of the
historical variability of developed loss ratios at
different stages of development. The variance of
the distribution given by f(x) can be estimated
from the differences between prior expectations
of ultimate losses for previous periods, based on
the current method of predicting, and the latest
developed losses for those periods. The estimated
variances between the latest developed losses and
the ultimate losses for those periods will also be
considered. Historical data of the above types
should be supplemented by judgement, experi-
ence, and related data.

If a method other than development factors is
used for projecting the loss data to ultimate,
Bayes' theorem can still be applied as above with
g(y | x) defined as necessary.

In order to apply Bayes’ theorem to a set of
accident years, a single development factor to
ultimate for the period can be selected as follows.
Estimate the ratios between the ultimate losses
for each accident year by using the premium and
the estimated relative rate adequacy for each
year. Then use the reciprocal of the development
factor for each year to estimate the ratio of the
total ultimate losses for the period to the ex-
pected losses for the period at the stage of devel-
opment. See Biihlmann’s Cape Cod method
[Schnieper (1991), Straub (1988)].

Biihimann's (1967) formula for the least
squares line estimate of the Bayesian estimates
could be used to estimate the credibility of the
actual developed losses. [This credibility approxi-
mation is exact Bayesian in certain useful cases.
In the proof of formula (4), below, we use a
special case of Jewell's result that credible means
are exact Bayesian for exponential families. See
Jewell (1974, 1975).] This method has the advan-
tage of simplicity since ‘it does not require the
choice of particular distributions.

3. Lognormal distributions

Let f(x), g(y | x), and h(x|y) be defined as
for formula (3). For certain choices of f(x) and
g(y | x), an explicit formula for the mean of
h(x | y)is known. An important example is the
case in which f(x) and g{y | x) represent lognor-
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mal distributions. This is a reasonably good fit in
many cases.

Suppose that the prior probability distribution
of logs of ultimate losses has mean u and vari-
ance v2. Suppose that for all x, the distribution,
given ultimate losses x, of logs of actual devel-
oped losses has variance o 2. Note that if x is the
mean of a lognormal distribution and m and s?
are the mean and variance of the distribution of
the logs, then log x = m + s2/2. Therefore, for
all x the distribution of logs of actual developed
losses has mean log x — o2/2. Then the mean of
the distribution given by A(x|y) (and thus the
estimate of ultimate losses) is

exp(u, + v1/2), )
where

py=(1—-2z)p +2z(log y +6?/2), (5)
vli=0?z, (6)
z=v/(at+ ). @

The derivation is given in the appendix.

Example. Assume that, based on historical ex-
perience as described previously, the prior distri-
bution for an insurer’s overall ultimate loss ratio
for 1987-91 for medical malpractice has a mean
of 0.90 (i.e. 90%) and a variance of 0.16. Suppose
the selected development factor to ultimate for
1987-91 reported losses as of 12/31/91 is 2.065
and the probability distribution for the ratio of
the developed losses to the ultimate losses has a
variance of 0.075.

If both of the above distributions are lognor-
mal, then g, »? and o2 in equations (5) and (6)
can be found by solving the following equations
for the mean and variance of lognormal distribu-
tions:

0.90 = exp( u + v*/2), (8)
0.16 = exp(2p + v?)(exp(¥?) —1), 9
1.00=exp(m+a?/2), (10)
0.075 = exp(2m + o?)(exp(o?) ~1). (11)

By squaring both sides of equation (8) and
then dividing by the corresponding sides of equa-
tion (9), we get

(0.90)%/0.16 = 1/(exp(¥?) - 1). (12)
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Table 1
Comparison of methods of estimation,

Actual Bayesian estimate  Bornhuetter-Ferguson
developed  of ultimate estimate of
loss ratio loss ratio ultimate loss ratio
20% 32% 56%
40% 52% 66%
80% 85% 85%
160% 139% 124%
320% 229% 201%

Solving for »?and u is then immediate. The
same method can be used for ¢2 and m. The
solutions are 0.180, -0.195, and 0.072, respec-
tively, for v%, u, and o2, so formula 4 becomes
exp(—0.004 + 0.714 log y). So, if y = 20%. for
example, the estimated ultimate loss ratio is 32%.
Table 1 compares three methods of estimation.

Appendix: Derivation of formula (4)
Tbe following lemma will be used.

Lemma. Suppose that an element is chosen at
random from a normal distribution for which the
value of the mean 8 is unknown ( — o < 8 < ) and
the value of the variance o? is known (a2 > 0).
Suppose also that the prior distribution of 8 is a
normal distribution with given values of the mean
4 and the variance v2 Then the posterior distribu-
tion of 8, given that the element chosen equals x,,
is a normal distribution for which the mean u, and
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the variance v} are as follows:

me= (0l vix)/ (0 +07), (A1)
vi=(0W?) /(e +v?). (A2)
See DeGroot (1986) for the-proof of the above.

Proof of formula {4). The mean and variance of
the distribution, given ultimate losses x, of az/z
+ log{developed losses). are log x and o2, re-
spectively. The prior distribution of log(ultimate
losses) has mean p and variance v2. Therefore,
the posterior distribution of log(ultimate losses),
given o2/2 + log(developed losses) = x,, has
mean u, and variance v given in the Lemma,
where x, = ¢2/2 + log(developed losses). There-
fore, the distribution of ultimate losses has mean
explp, + v2/2).
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