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Abstract

The estimation of outstanding claims is one of the important aspects  in the management  of

the insurance business. Various metbods  have been widely dealt with in tie  actuarial literature.

Exploration of the inaccuracies involved is traditionally based on a post-J&to  comparison of the

estimates against the actual outcomes of the settled claims. However, until recent years it has not been

usual to consider the inaccuracies inherent in claims reserving in the context of more comprehensive

(risk theoretical) models, the purpose of which is to analyse the insurer as a whole. Important parts

of the technique which will be outlined in this paper can be incorporated into over-all risk theory

models to introduce the uncertainty involved with technical reserves as one of the componentF  in

solvency and other analyses (PENTWANEN  et al (1989)).

The idea in this paper is to describe a procedure by which one can explore how various

reserving methods react to fictitious variations, fluctuations. trends, etc. which might influence the

claims process, and, what is  most important, how they reflect on the variables indicating the financial

position of the insurer. For this purpose, a claims process is first postulated and claims are simulated

and ordered to correspond to an actual handling of the observed claims of a fictitious insurer. Next,

the simulation program will ‘mime’ an actuary who is calculating the claims reserve on the basis of

these ‘observed’ claims da!a.  Finally, the simulation is further continued thus generating the settlement

of the reserved  claims. The  difference between  reserved amounts and settled  amounts gives the

reserving (run*,Ff)  error in this  particular simulated case By repeating the simularion  numerous times

(Monte Carlo method) the distribution of the error can be estimated as well as its effect on the total

outcome of the insurer:

By varying the assumptions which control the claims process the sensitivity of Ihe  reserving

method visa-a-vis  the assumed phenomena can be tested. By applying the procedure to several

reserving methods in parallel a conception of their properties can be gained, in particular, how robust

they are against various variations and irregularities in the claims process.

It is useful to recognize and classify error sources which give rise to the reserving

inaccuracies (cf. PENTIKAINEN  et al (1989) item 2.4b):

I) Tbe model (often simply called reserving rule or formula or method) can be only a mure

or less idealized description of the real world and of the actual claims settlemems:  the deviations give

rise 10 what can be termed model errors.

2) The parameters used in calculations are subject  to parameter errors owing IO the fact lhar

they are 10 be estimated  from various data statistics or found from other rn,,re  or less uncertain

sources.

3) The actual claims and claims settlements are subject  10 stochastic tluctuations  causing

129



/

deviations from the estimates, sfocbasfic  errors, even in those (theoretical) cases where the model atid

its parameters would be precisely correct.

The above procedure enables us to examine the effects of all these three errors, in fact, it is

very general, not being restricted to any specific reserving model or assumptions on the claims

process. It is intended for studies of the properties of the reserving methods on a general level.

However, it is not meant for post-facto analyses, i.e. in the investigation and estimation of the

inaccuracies in reserveS  in particular concrete cases, for those purposes well-known actuarial and

statistical approaches are needed.

It is still worth noting that the approach can find application to other estimations as well. We

have, for instance, also treated premiunis in an analogous way, although limited to simple examples

in this paper.

Afier having first described our method in general terms a number of numerical examples will

be given to illustrate some of its relevant features.  They are based oh some well-known elementary

reserving rules and simple assumptions on the claims process. Also some conclusions on the

properties of the reserving rules are derived therefrom. They should be understood merely as

examples of the use of our model, not as any real analyses of the reserving methods. Even though

our method is aimed at making such conclusions and comparisons between methods, their pertinent

performance would require quite extensive studies. Such have been fully beyond the possibilities in

this context.
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1. Basic concepts

1.1. References to related works. A summary of the c/aim reserving rechniques  was compiled by

VAN  EEGHEN (1981). Furthermore, the monograph by TAYLOR (1986) is referred to as is the recent

Claims Reserving Manual (1989) of the UK Institute of Actuaries. Enhanced methods for analyses,

among others regarding the above listed sources of errors, have been recently proposed, for example,

by ASHE  (1986),  NOWERG  (1986), SUNDT (1990) and WRIGHT  (1990).

The run-of-errors, as a source of uncertainty in solvency considerations, were dealt with by

the British Solvency Working Party in a series of reports: DAYKIN  & al (1984). . . . . DAYKIN  and

H E Y  ( 1 9 9 0 ) .  STANARII  (1986), R E N S H A W  (1989), V E R R A L L  (1989),  ( 1 9 9 0 )  h a v e  a n a l y s e d  t h e

properties of the chain ladder method.

The stochastic claim run-off error was analysed  by PENT~K~~INEN  and RANTALA  (1986) to

which this paper is a continuation. The results were incorporated as a suhmodel into the application-

orientated risk theoretical over-all model in PENIY~~INEN  et al (1989).

We are going to use, as far as possible, the notations and concepts used in the above-referred

papers. However, the terminology adopted in the Manual of IA (1989) is also taken into account. For
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the convenience of the reader the main features are recapitulated.

1.2. Claims cohorts. In order to clarify the terminology and the notation it is useful to note that the

claim process includes the following elements:

1) the event (accident) which causes a claim in year t.

2) The claim is reoorted  to the insurer in year t or later.
3) The claim is w in year t+s (~20) or possibly in several parts in years t+s,.  t+s2.  . .

4) If the claim is reported by the end of the accounting year but not yet fully settled, it is

called been and a provision is made to meet  the outstanding liability either as a case estimate or by
using some statistical technique.

5) The claims which are incurred  but not yet repotted by the end of the accounting year are

YBNR-claims’.

Following the terminology of Manual of IA (1989) (A 5.1) outstandinp  claims is an umbrella

concept for open and IBNR claims.

It is appropriate to group the claims originating in the same accident year, t, as a “a”.

The year t is also called the year of origin. Fig.1.l  illustrates the structure of a cohort and its

development.

FIG. I. I. The development of a claims cohort.
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The accumulated amount of settled claims from development years t, t+ I,  t+2,...,t$s

supplemented by the provision of the open claims at the end of year t+s is called, still following the

terminology of Manual of IA (1989),  p. A5.2, the incurred loss and is denoted by

(1.1) X(t;O,s) = claims originating from year t and paid in years t,t+ I,...,t+s  on settled or

partially settled claims plus reserve held for the open claims at the end of year t+s.

A notation for the increments of X is also needed:

(1.2) X(t;s,,s,) = X(t;O,d  - X(t;O,s,-I)

and especially

(I.31 X(t;s,s)  = X(t;O,s) - X(t;O,s-1)

which is the increment in the development year t+s (by convention, X(t;O,-l)=O).

It is assumed that after some period s, all claims of the origin year t are settled. The

parameter s, characterizes a feature of the portfolio which is called the length of the run-off tail.

Hence, the development time variable s can have values O.l....,s,.  and,

(I .4) X(t;O,Q  = is the final  total amount of claims of the cohort t.

It is also called the loss related to the cohort

1.3. The reserve for IBNR  claims of the cohort t at the end of year t+s is defined as:

(1.5) C(t,s)=  Estimate for (X(t;s+ 1,s-J).

Various methods, ‘reserving rules’, can be applied in this estimation. The purpose of this paper is to

find methods and measures for the evaluation of the uncenainry  involved with the rules.

Concept (I 5) is in conformity with the “London market” definition presented in the Manual

of IA (1989),  p. A5. I where the IBNR-reserve is defined to be equal to the estimated ultimate loss

on all outstanding claims less  the reserve at the accounting date for open claims. Hence, the

uncertainty in the reserve of open claims is included within that of the IBNR-reserve, as thus defined.

As stated in the next paragraph, this type of definition seems to be convenient in this context, because

it allows the collective handling of all kinds of uncertainties in claims process. Note that this

definition is different from the common accounting practice according to which the provisions for both

the open claims and IBNR’s  are included in the claims reserve. No safety margins are assumed to he

included in the reserve.
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I .4. Claims process. The model lo be employed is based on the facl  that tie increment X(t;s,s)  ‘is

made up of the sum of changes in the  status of individual claims. II is helpful to classify “drange-

causing events” as follows:

I) A claim is reported and added to the paid and/or  open claims.

2) An open claim, k, is fully or partly settled in year t+s, the amount being S,(t,s).  For it

(possibly) a reserve (case estimate) C,(t,s-I)  was made at the end of the  preceding year and now can

be released. Then

(I .6) X,&s) = S,(t,s) - C&-l) (s 2 I)

contributes to the change of the cohort’s aggregate loss X(t;s.s). If C,  were exactly correct, then X,

would, of course, be zero, but in practice it will often be non-zero (+).

3) The provision C, for an open claim is changed (possibly without any payment action), for

instance, if new information has been obtained.

Both 1) the number of evenrs  and 2) the amounf  of the changes involved in, &(t,s) above,

are random variables. Our techniques, both  simulation and others (PEKTIK~~NEN  and RANTALA

(1986)). are based on utilizing probability distributions for both of them. Note that the approach is

analogous to that of risk theory. Thanks to F~LIP  LUNDBERG ,  HARALD  CRAMER  and others the

collecrive  approach replaced the earlier “individual risk theory”. The number of claims and their size

are handled as a “risk process” without reference 10 the tiles of the individual policies which actually

are behind the claims. The philosophy proved enormously fruitful notwithstanding that the theory can

also be built on the individual bases.

As in general collective risk theory and even still more in the context of claims cohort

processes it is crucially important to account for the correlations between the development cells of

the cohorts as well as the correlations hetween consecutive cohorts.

Furthermore, note that the claim size variable X, may also be negative. This can be the case

particularly in classes 2) and 3) ahove. This feature should be kept in mind when the risk theory

formulae and distributions are built up (cf. BEARD et al (1984). Section 1.3 p, 7).

For illustration of the approach numerical examples will be exhibited in section 4, therefore,

some basic features of the claims process need to be specified. This is done in the  Appendix. We

recall that irrespective of which approach is applied in defining the concept of claim development the

technique we are going to present can, with obvious modifications, also be applied to claims processes

defined otherwise than the collective one. For example, the procedure allows for the use of  the

booKtrapping  technique for claims simulation (a$ was remarked by one of the referees of this paper),

1.5. The aggregate loss process related to the whole business of thk insurer cnnsists  of a the

sum of the cohort variables  X.

Following the practice adopted by NORBERG (1986) a diagram of the Lexis type is constructed

in Fig. I .2.  The data array representing a cohort develops az an ascending diagonal. The informarion

which the actuary, or in our simulation the computer, ha5 available for the reserve calculation is in
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the “run-off trapezium” (in the diagram the vertical pillar at the accounting year t and the area l&t

therefrom). The claims to be estimated for the  reserve for outstandings  are inherent in all of the still

open cohorts and are located in the “triangle of outstandings” right from the column at t:

(1.7) C(f) - c C(r-s.s).
,i,

FIG. I .2.  Claims process as a sum of cohorts. The current accounting year is denoted by t and the

cohort originating in the accident year t-s is represented by an ascending diagonal.

NOTE.  The problem in premium rating is basically the same as is the claims reserving. An

estimate for the amount of claims ofbrurc  cohorts is required. The difference in the claims reserving

is that only present and past cohorts are considered and that  a number of the earliest notified claims

are already known and the estimation is focused to the remaining ones only. It is a bit surprising that

the methods developed for premium rating are only little utilized in claims reserving.
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2. Run-off error

2.1. Run-off error, break-up consideration. The run-off error is the remainder (&) which is left

of the reserve C(t) when all the outstanding claims are ultimately settled:

,--I
(2.1) R(f) - C(r)- c X(r-s;s+l,s-).

,-0

In practice, of course, R can be determined only when the settlement of (practically) all of the

outstandings is completed. Our approach is to compute it by continuing the simulation until all of the

terms of the sum in (2.1) are obtained.

2.2. Going-concern consideration. Further, the effect of the runoff error on the  aggregare  loss

X(t) is examined. This  variable is the conventional entry for the total amount of the claims in the

profit and loss accounts of the  standard annual reports. In the terms of the definitions and notations

introduced in item 1.3 it is

(2.2) X(r)  - ‘gx(l-s;s,s)  + C(l)-C(r-1).

As was noted in item 1.3. in our considerations the provision for open claims is included in the X

terms, not in C, notwithstanding that this  does not accord with  the common accounting practice.

2.3. Properties of o good reserving melhod.  For the appreciation of the efficiency of the reserving

methods a great variety of optimality criteria are proposed in actuarial literature. From the point of

view of the company’s management the following features might be the  most important:

(I) Probability of insufficiency of the reserve should be small (E), more exactly

(2 .3 ) Prob(R + L < 0) S E

where L is a safety loading. (In practice it can either  be included in the claims reserve C(t) in addition

to the unbiased estimate (1.5) as an extra margin or e.g. as an equalisation provision or it can be

available otherwise as a part of the insurer’s solvency margin).

(2) The safety loading L should be as small as possible.

(3) The variation of the aggregate claims in the  profit and loss accountshould be as small as possible

(particularly in the going-concern approach).

In the next item some potential measures will be proposed for the comparison of different

reserving methods having regard for the  above criteria (I) - (3).
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2.4. Measures of uncertainty. The runoff error R and its impact on X depend self-evidently on

the reserving method. This  dependence varies with the different claims processes. We shall use as

primary measures in describing these effects both the direct values of R and X and their ratios and

the standard deviations ee and ex of these variables together with the ratios

(2 .4 ) o,lC,  aalP.  ox/P and oxlu,

where P is the premium income corresponding to the relevant X (more in item 3.3). Furthermore,

crO  is the standard deviation of h(t)  which is the incurred aggregate loss from which the runoff error

is removed. This is obtained from the simulated data, in terms of our notations, &d(t)  = X(t;O,sJ

(= the total loss related to the cohort t).  Hence, the difference ux-u,  is to be credited to run-off error.

Let us also recall that indicators based on the distribution of extreme deviations or confidence

intervals, are good candidates as measures (cf. PENTIKAINEN  and FCA~VTALA (1986)). but at this stage

of work we mainly used the standard deviations. They need less simulations, but involve the drawback

that the effect of skewness of the distributions is partly lost.

Note that when we in the following illustrate the comparison of two or more reserving rules,

the very same  cluim  partern X(t;s,s) is used  for all of them. Therefore, it can be expected that the
differences revealed in results can be credited to the differing structures of the rules. This is still

further verified by repeating the test after a change of the seed of the random generator.

3. Reserving methods used in the case studies

3.1. Chnin Ladder method. This well-known method is chosen as the first of our test examples. It

operates auxiliary development coefficients

(3 .1 ) d (s )  =  A , (s ) /&(s ) .

Where the A’s represent the sums of all X(t-u;v,v)  located in the areas marked by the same symbols

in Fig.3. la.
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‘a) A,(s) is the parallelogram shaded in the

diagram, and A,,(s) is obtained by removing the

top-most row from A,.

b) Development of a cohort.

F1c.3.  I. Derivation of the Chain Ladder rule.

The claim sums to be estimated for the remaining parts of the cohorts are now obtained by

assuming that the cohorts grow in the same proportion as the parallelograms A, i.e.

X(t-s;O,s+  I) = X(t-s;O,s)  ad(s)

X(t-s;O,s+Z)  = X(t-s;O,s+  I) .d(s+ 1) = X(t-s;O,s)ad(s).d(s+  1)

etc. Hence. the claims reserve for the cohort t-s is

(3 .2 ) C(t-s,s)  = x(t-s;o,s)~c,.,(s),

where

P”“.l

(3 .3 ) c..,(s)  = II d(s +u)  - I
u-0

and the total claims reserve at the end of the accounting year t is

%..-1

(3 .4 ) c(t) = E qt-s,s)
1-o

Note that c,,(s) should be recalculated in each accounting year t (hence,  a notation c,.,(t,s)  would,

perhaps, be more advisable).

The Chain Ladder rule is at its best in the cases where the so-called structural (also called

mixing) variation is large. This is a well-known feature and is again confirmed by the numerical

example to be set out later as well as also in PENTIK~NEN  and RAKTALA  (1986. Appendix I). This
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is because the Chain Ladder assumes that the structure variation affects the total claims amount of

each cohort but no longer how these claims are distributed during the runoff of the cohort for

consecutive development years.

3.2. A variant. The chain ladder method can be amended by broadening the “runoff triangle” to a

trapezium from which the parallelograms A are cut, if this is available. The dotted line associated

with a “broadening parameter” T, (see Fig. 1.2 and 3. I) refers to this variant. Its effect will be tested

in Section 4.4 below.

3.3. The premium-based method is chosen as the second example for testing:

(3 .5 ) C(t-s,s) = P(t-s)  *c&s)

where P is the unloaded net premium applied for the cohort and the coefficient c, is an estimate for

the ratio of the still outstanding IBNR claims of the cohort to the total amount of the claims. This rule

theoretically is suitable for pure Poisson claims processes (see PEKTIKLINEN  and RANTALA  (1986),

Appendix 1).

The premium income P(t-s) in our simulation example was calculated by a simple formula of

the moving average type, determining P on the basis of the latest settled and open claims which are

known at the year of origin of the cohort t-s:

(3.6) P(f-s) - CX’iTA
1

where the sum stands for all of the simulated claims amounts X’ located in the rectangle A shadd

in Fig.3.2, and the amounts X’ are the claims increment variables X(t;s,s),  (see (1.3)). transformed

to match the value of money and business volume of the accounting year t having regard for the

simulated inflation and presumed growth of the business volume (details in Appendix).

In practice, the coefficients cs can either be fixed in advance or be derived from the pattern

of the known claims. We used a simple rule defining these coefftcients  as the ratios of the simulated

sums of the above X’ located in the rectangles B and A in Fig.3.2:

(3.7) c,(w) - ~x*/~x+.

F1o.3.2.  Derivation of the Premium-based reserving formula.
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3.4. The mixed method is constructed as a combination of the Chain Ladder and the Premium-based

reserves:

The idea is to assign to the coefficients z(t.s) such values that the premium-based C,, is predominant

at the beginning of the runoff of the cohort (s small)  and later, when s is approaching s,, the weight

moves to the chain ladder rule.

The intended purpose can be achieved by taking z to be the same as the premium-based

coefficient in (3.7):

(3 .9 ) Z(Q)  = c&s).

This formula was proposed by BENKTANDER  (1976). The logic is analogous to the BORNHUFITER-

FERGU~ON  (1972) approach, but it is applied to a different variable.

An alternative formula for z(t,s)  could be derived by using credibility considerations (see

PE~v~K~UNEN  and F~ANTALA (1986),  p. 127).

In order to keep the paper within reasonable limits we have restricted the application examples

to these simple rules, the more so because our purpose is to describe the test and comparison method,

not to arrive at any analysis of the reserving rules and their properties.

4. Numerical examples

4.1. Single realisations. We used the same  numerical basic data as in PEKTI~~NEN  and

kANTALA  (1986). For convenience of reading they are recapitulated in the Appendix. The run-off tail

s, is alternatively either 12 (long) or 3 (short) years (cf. Section 3.4 of the referred paper).

The model is programmed to give outputs both in tabular and graphic forms. Table 4.1

provides an example. The long-tailed claims pattern is simulated for 25 consecutive accounting years

t by using, in parallel, the three reserve methods specified above (C-L=Chain Ladder, Pr=Premium-

based, Mix=Mixed  Method, formulae (3.8) and (3.9)).
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TABLE 4. I. Simulated run&f  errors R and the aggregate losses X.

11 p XOJPI x-r-o, C(I) I P(f) I P(C),C(I,X  , X(f)/PI 1
, C-L PC "1" , C-L Pr "i" , C.L PT "i" , C-L PT "I" ,

..I _____.____.___.__.__.,.....................,...................,...................  ! ..'..'...'."'...'...,

0 65.7 81.8 ,756 I.%.L 109.8 ,&a.‘ 8.8 IL.2 12.8 Is.0 7.5 6.0 n.9 9s.1 77.0
I t-30  98.6 187.3  196.1 WI.,  19‘  2 0.8 10 0 6.9 L.5 5 1 3.6 98.6 92.5 90.0
2 71.0 89.6 195.0 186.4 205.2 19J.2 -8.6 10.2 . . .1.8 -‘.6 5.0 .9 65.1 89.9 77.1
3 73.L Pp.2 204.7 183.3 213.1 1 9 8 . 0  ,ZJ.L 6.G .8.6 -12.8 3.0 -‘.& 79.1 PG.0 BP.8

L 75.8 107 6 225.3  209.8 221.0  21L.I  -15.‘ -L., .1o.a -7.3 1 .P -5.0 110.1 93.5 lW.8
5 e-o.&  12O.L 2‘8.9 237.6 230.8  227.1 -11.2 .I.¶.! -21.2 -(.I .7.8 -9.3 125.6 10X.2 107.‘
6 85.0 loL.5 257.5 260.0 2‘1.5 Z‘J.3 2.6 -16.0 -1c.2 1.0 .6.6 -5.8 120.8 107.0 112.7

7 90.~ 117.9 2w.o  2nd 254.1  258.8 .IO.I -29.2 -25.2 .,.I .11.5 .9.7 103.9 103.3 105.8
a 96.6  100.1 2aa.2 271.6 270.1 279.8 3 . 3 -10.1 -1.5 1.1 .6., -3.0 114.I 111.6 117.‘

9 104.6 117.1 ,I,.‘  328.6 2e.s.9 300.0 11.2 .28.6 -17.5 3.h -9.9 .s.a 124.5 107.1 108.4
10 11L.5  11L.1  350.0 560.‘ 311.0 326.0 IO., -30.2 .21.0 2.9' .lZ.J -6.1 113.‘ lOI., 111.0

1'1 l2l.7 95.9 361.1 XL.1 3x.3 349.5 3.1 .25.8 -11.6 .8 -7.7 -3.3 89.9 106.1 10,.6
12 130.2 101.9 380.5 365.11 WI., ,70.9 -22.7 -20.3 .I,.6 -6.2 .,.a -&., 82.1 100.0 97.3

13 !‘S.Z  101.3 ‘15.9 345.9 JW.4 ,a,.& .*0.1 -25.6 -32.5 .1,.7 .6.5 -8.5 a.2 103.2 PO.9
1L 1 5 1 . 2  98.1 435.7 ‘31.‘ L23.8 a2.3 -c., -11.9 -3.‘ .I.0 -2.8 -.a 127.9 107.5 ,I,.,

15 169.2 98.2 ‘61.9 c.9.1 ‘5.9.‘ ‘t4.3 .0.9 -8.6 -3.6 -1.9 .I.9 -.a 95.5 100.2 98.1
16 ,a,., P,.‘ 491.7 ‘29.1 t&9., ‘85.5 -68.6 1.6 .12.2 -16.0 .3 -2.5 60.9 98.9 a.5.I

17 190.0 95.9 512.7 502.2 541.0 s1.7 .,O.L 0.b .P -6.1 1.6 -.2 115.1 99.3 101.5

10 z12.2  96.3 571.‘  577.1  535.0 5a6.a .7 13.6 15.‘ .I 2.1 2.6 113.0 100.8 106.0

19 220.9 1w.7 634.6 631.7 626.7  63J.5 -Z.P -8.0 .,.2 ..I -1.3 Y2 103.1 95.0 97.3
20 2n.9 0.0 652.0 x2.a t&.6 699.8 110 8 x.7 67-a 1L.P 5.2 9.7 136.7 106.3 117.5

21 2CI.P 950 681.3 69,.3 708.3 711.1 12.0 27.0 29.8 1.7 ,.a ‘.2 55.0 92.7 80.‘
22 256.7 89.3 695.8 713.1 7L5.9 7‘2.9 11.3 50.1 47.1 2 L 6.7 L., 91.) 98.3 96.0

73 275.2 100.6 7&L 3 727.9 788.0  75L.7  '16.‘ ‘3.7 10.L. .2.J 5.5 1.‘ ea.3 90.3 87.3
2‘ 284.0 M.G 762.8 7bL.6 828.8 793.8 1.a be.0 31.0 .2 8.0 3.9 94.8 96.2 95.6
25 2pI.J 92.9 786.3  817.0 865.0 822.3 ,0.7 78.7 3&o 3.8 9.1 L.‘ 102.T 91.2 PC.6

.._............___.........___..........._....

The variables P, R, X and C are given in monetary units (= $ million) and the ratios as percentages.

The growth of premium income P and other monetary quantities is due to inflation (average 5%) and

real growth (1%). Claims pattern is long-tailed. X-r-o is the *true”  value of the outstandings, i.e. the

simulated sum term in (2. I).

The loss ratios of columns 3 and 14 are plotted in Fig. 4.1. as well as the ratio R/P

corresponding to col. I I (Chain Ladder method) but expressed as a ratio to premium P.
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-.5 I....*.. .(....I....3 ...I
0 5 I0 I5 20 25

F I G .  4 .  I, The  ra t ios  X,,/P  ( -o - ) ,  X /P  ( - - )  and  R /P .  Cha in  Ladder  ru le .

The ratio R/P and the deviation of X/P from X.JP  are shaded in order to show the strong correlation

between them. When R is increasing, it worsens (increases) the loss ratio and vice versa. Note that

X/P ftuctuates  more than ‘original’ X,JP.

Fig.4.2 depicts the premium income P and the aggregate “no-runoff  affected” loss X, from

which P is derived according to (3.6) as a moving average with the range IO years and with a

necessary time lag. For clarity, the effect of inflation and growth is stripped away from the time

series by operating the variables in the initial value of money and volume (at t=O).
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FIG. 4.2. The premium income P, deflated into the monetary value of the initial time point, as a

(delayed) moving average of the loss X,,.
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All the loss ratios X/P of Tahle 4. I and the ratios R/P  are plotted in Fig.4.3.

-.5(
I

0 5 I0 I5 20 25

FIG. 4.3. Loss ratios X/P and RIP calculated hy using Chain Ladder (marked hy c), Premium-based

(p) and Mixed (m) melhods,  respectively. The thick line represents XJP.

A smoother flow of X/P can be achieved at the expense of larger reserve errors R/P.

Simulations confirm the well-known fact (STANARD  (1986) and ZEHNWIRT’S  article in the

Manual of the IA (1989).  Vol. If) that the Chain Ladder method has a tendency to show a greater

v~olutility than the other rules compared.

4.2. Monle  Carlo simulations. In order IO get hroader insights into the hehaviour of the target

variables  the simulations exemplified  in Figures 4. I and 4.3 were repeated 50 times for each of the

three rules. “A stochastic hundle”  is generated in this way in Fig. 4.4.
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.5 Chain  Ladder

Premium-based

I

t
M i x e d

F1c.4.4. Monte Carlo simulation of loss ratios X/P and run-off errors d/P for the three reserve rules.

Short tail (S,= 3). Premium rule stochastic moving average (3.3 above). Sample size 50.

The breadth of the bundle of the simulated realisations  gives an idea of the volatility involved

with the reserving methods.
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A useful observation, seen in Fig.4.4, is that the bundles are stabilized at about a state of

equilibrium, i.e. the breadth of the bundles is approximately constant. This feature appeared to be

common in those cases we experimented with apart from some extreme situations (premiums defined

deterministically and kept unchanged for a long period), where the bundle could have some tendency

to diverge. If a reasonably satisfactory attainment of the equilibrium state can be achieved, then it is

possible to record the values of the relevant variables, X/P, etc. at each time point t of the run, and

to compute the required standard deviations as “steady-state” characteristics from the set of all of

them. This procedure greatly reduces the number of simulations needed compared with approaches

which might require a new simulation for each variable value.  Table 4.2 is obtained from Fig.4.4

in this way.

TABLE 4.2. Standard deviations of the simulated ratios.
- - - - - - - - - - - _ - - - - - - - - - - - - -- - - - - - - _ _ _ _ _ _ - - - - - - - _ _ _ _ _

Chain Ladder  Premium-based Mixed

0 0 . 1 2 6 0.061 0 . 1 0 2

d% I . 7 4 9 0.851 I . 4 1 4

U,lP 0 . 0 7 9 0.062 0 . 0 6 6

Similar data will be given for a long-tail pattern in the next item. Therein the obviously

characteristic features of the methods are more clearly seen.

4.3. Error distributions. The X/P and R/P values simulated, as shown in Fig.4.4, can he recorded

and plotted, as is exhibited in Fig.4.5a  and in Fig.4.5h  which set out the critical tails of distributions.
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FIG. 4.5a. The cumulative distributions F(x) and F(r) for the ratios x=X/P and r=RIP,  respectively,

are obtained from the simulated patterns of these ratios. For clarity, F is plotted for  the left-hand tail

of the distributions and I-F for the right-hand tails in a semi-logarithmic scale. The number of sample

points is 15600 for each curve. Long tail s,-- 12. Premium method stochastic.

Confidence limits can be directly read from the picture. For instance, the limit which the

Chain Ladder ratio X/P exceeds by I % probability, is 1.57. Similarly, the limit, which the Premium-

based R/P falls  below by 1% probability, is -..58.

FlG.4.5b.  The tails of the distributionsof Fig.4.5a

145



Note that the distributions exhibited in Fig.4.5 are based on the development tail of I2 years

which is rather long and, on the other hand, on the portfolio which is relatively small, the average

number of claims being 10000.

For a comparison of the exemplified reserving methods, the standard deviations derived from

the same simulation as Fig.4.5 are shown in Table 4.3.

TABLE 4.3. The b&sic  characteristics related to the distributions of Fig.4.5

r;=

i=====-=;==------=~===========~=====

Variable “mm Sf .dev Rcl.st.d.

i, . . . . ..-.......~...._._-__._______________~__  6 a/a0

) :yr:;:; 1.003 1.001 .087 ,240 2.7.59 1.000

I

X;pre/P .9&l ,065 .?I,5
X;mixlP .W3 .125 1.631
R;c-I,P -.002 .259 2.979
R;pre/P .039 .267 3.066
R:mixlP ,004 .221 2.53L

The mean values are shown in the table to verify that they are, as they theoretically should

be, close to unity for X/P’s and zero for RIP’s  (in order IO check thar  the simulation variahility and

programming are under control).

In extreme cases the skewness of the distribution may be considerable and might suggest that

it should be seriously regarded in order to avoid the caveat of understating the run-off risk. Some tests

(not set out in this paper) also indicated rather great volatility in the development of the tails. We had

to leave further studies on this problem for later work.

A feature of interest is the smoothing effecr  of rhe premium-based rule. The Premium-based

rule, in fact, reduces the range of flucmation  of the loss ratio X/P compared with the case XJP from

which the run-off error is eliminated. This happens, of course, at the expense of larger run-off errors

R/P,  as seen in Figures 4.3 - 4.5 and Table 4.3 when comparing the premium based rule to the mixed

one. The adverse tops of the fluctuation of X are spread over a lengthy period.

As expected, the performance of the chain ladder in these examples proved to be rather poor

in regard to both the loss ratio and run-off error.

4.4. Stability profiles. The tools developed in the preceding sections  are now readily available  for

the comparison of different reserving melhods.  We exemplify the idea by applying it to the three

methods which were specified in Section 3. For the purpose, the standard  deviations L$.  fla and 0,

are calculated in parallel. Fig.4.6 exhibits an example. The rclrvant indicators are ploued  as

columns in order to provide a clear view of their magnitudes. Varillus  patterns of the claim process

are simulated for all the three reserving methods. They are constructed from the standard data by

allowing options and inserted special variations, as explained in the captions of the figures. The

146



standards are the same as we had in PEKTIK&NEN  and GALA (1986) and a summary is given ‘in

the Appendix below.

The left-hand displays of Fig.4.6 represent the relevant standard deviations as ratios to the

premium income P. In order to show more clearly the role of the run-off inaccuracy the 0,‘s are also

given as ratios to the “no-runoff standard deviation u, in the right-hand section of the figure.

0,/P

3

F IG .  4.6. Stability profiles. The numbered claims process options processed in parallel are as

follows:

1) Short tail, stochastic premium rule (the same as Fig.4.4 and Table 4.2)

2) Short tail, deterministic premium rule

3) Long tail, stochastic premium rule

4) Long tail, deterministic premium rule

5) Long tail, stochastic premium rule. Chain Ladder with trapezium T,,=5  (see Fig.l.2 and 3.la).

Fig. 4.6 gives rise to the following observations and comments:

* As expected, the short-tail portfolios (I and 2) are less vulnerable IO run-off inaccuracies than are

the long-tail patterns.

*The premium-hased rule reduces the fluctuations in the loss ratio below even that level which would

prevail if the run-off errors were stripped away, i.e. from the level which is shown by the “no-ro”

columns in the figure. But this may happen at the expense of the run-off error being buried in the loss

reserve (in particular the option 4 in the figure!).
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* The use of a stochastic premium basis reduces the volatility, especially, for the premium method

as seen in,comparing  the option 1 against 2 and the option 3 against 4 in the left-hand displays. The

remarkable differences in the magnitudes of these outcomes indicate that the premium calculation basis

is likely of primary concern and possibly its effect often outpaces  that of the run-off inaccuracies

inherent in the reserving method itself.

* The extension of the conventional runoff triangle of theChain  Ladder methods to a trapezium,

as expected, improved the stability, as seen by comparing the options 3 and 5 of the Chain Ladder

and Mixed columns.

* Note that in the cases 1, 3 and 5 the stochastic variation of the premium income also is involved.

4.S.Sensitivity  testings. The effects of various impulses, shocks and disturbances on these processes

can be studied by the same model outlined above.

As an example of these kinds of sensitivity testing an extra increment was given to the

structure variable q(t) in accounting years 3 and 4 as shown in Fig.4.7. The outcomes are simulated

as ‘single shots”, first without this extra increment, and then with it. The changes in the relevant

variables are shown by shading the area between the original and changed curves.

Both the ratios X/P and R/P are plotted for the three reserving methods as depicted in Figures

4.7 and 4.8. The effect is channeled in two ways: 1) via the premium income P, which was simulated

to be the moving average (3.6) and 2) via the reserve calculations. The change in &, of course,

wholly arises via the premium channel and the continued effect after the cease of the impulse at t=4

is due to the moving average rule of P which is based on a retroactive account for claims from a

lengthy period preceding the accounting year t.

Note that expectedly the q-impulse has (nearly) no effect on in R(t) in the case of the Chain

Ladder method. This is due to the well-known fact that the changes in both terms of the run-off error

formula (3.1) offset each other, i.e. the Chain Ladder method automatically adjusts for the change

in the level of X.
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Structure variable q(t)

X /P  Cha in  Ladder X /P  Premium-based X / P  M i x e d

R/P  Cha in  Ladder R/P  Premium-based R / P  M i x e d

F1c.4.7. The effects provoked by an impulse of magnitude 0.1 exerted on the structure function q(r)

in years 3 and 4.

Fig.4.8 displays the effects which are brought about when an extra shock is given to the

simulated flow of inflation, represented hy variable l,(t) The technique is the same as in Fig. 4.7.
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\

The rate of inflation index = I.(t)/l,(t-I)-1

X/P Chain Ladder

R/P Chain Ladder

.>
. I I.

X/P Premium-based X / P  M i x e d

R/P  I’remrum-based R / P  M i x e d

F1c.4.8. The effects provoked by an extra impulse of magnitude 0.14 exerted on the simulated rate

of inflation in years 2 and 3.

5 .  D iscuss ion

5.1. Reservation. Let us recall that this paper is intended to dcscrihe a simulation-hased  approach

of how to analyse  the various kinds of unccrtainries which are involved with claims reserving

methods. The numerical examples are only intended to illustrate the method and do not claim IO have

universal validity in the evaluation of the merits and demerits nut even of the exemplified rules,

though some observations can be made on the particular portfolios studied. However, we hope that
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the ideas outlined above might prove useful  and inspire further research efforts in acquiring insights

into the properties of the most common and often sophisticated reserving methods and, perhaps, to

find guidance for their future development.

5 . 2 .  O u r  p r i m a r y  nppraisal of the applicnbility  of the outlined testing procedure is positive.

Here, as quite commonly in many other contexts, the simulation approach seems to be flexible and

susceptible to extension also into the realm of very complex problems and models which otherwise

are beyond the tractability of conventional (rigorous) treatment. Obviously the simulation method can

compliment the conventional practices which are based on the post-facto recording and analyzing of

the observed runoff errors. This approach provides possibilities to separarely  reveal the effects of

specified background factors, such as inflation, catastrophes, changes in the portfolio, claims

handling, legislation, etc. Even circumstantial irregular impulses can easily be examined. These are

useful additional features to the conventional methods which are fully or, at least to a great degree,

restricted to deal with the data of total loss as a bulk, and seldom occurring events or combinations

of events may not appear at all.

5.3. The purpose of the procedure (when further experience on its usefulness is acquired) may

be to test the commonly used or proposed reserving techniques and qualify such on&  which prove

to be reasonably immune against variations in the structures of background factors, for instance, in

claims process, inflation, etc. and against the three sorts of errors referred to above. Possibly a

roughly scaled measure to rate the quality of the reserving methods can be found? Furthermore, the

testings can provide advance knowledge about reactions of the methods to adverse impulses such as,

for example, abruptly increasing inflation.

5.4. Discounting of the fulure claims settlements is another feature to be incorporated into the

analyses. It introduces the effects of the fluctuations and risks related to the investment income, which

can be substantial  particularly if the business is long-tailed (see DAYKIN et al(1987b)).

5.5. Effects to be credited to human bebaviour A comment, sometimes heard, is that the

reserves may have a tendency to excessive growth during the profitable phase of business cycles and,

on the other hand, to be largely reduced in years when the profitability is poor (see for example

Hewitt (1986)). Self-evidently, such kinds of “fluctuations” are beyond the scope of our testing

methods which presume a strict and consequent application of some specified reserving formula.

However, the possibility of the “human behaviour fluctuations” should be kept in mind as one of the

potential determinants of observed phenomena for instance in the cases where actual reserve

inaccuracies have been discovered.
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Appendix: Technical details

Abreviation: P&R = PEKTI~~NEN  and RANTALA  (1986)

1. Definitions and assumplions. We first simulate the “actual” claims in the areas depicted in Fig.

I .2. A random number representing the increment variable (cf. (I .3))  X(t;s.s)  is generated for each

cell, i.e. for all relevant pairs oft and s values.

The random number generator is the same as is represented in BEARD et al (1984). Section

6.8.3, however, using instead of the  NP-generator (BEARD et al (1984).  item 6.8.3b)  the so-called

WH-(WILSON-HILFERTY) generator, which is described in P&R, section 5.6. The generator is built

up on the assumption that the variable X to be simulated is of the (conditional) compound Poisson

type. It requires as input parameters the mean, standard deviation and skewness of X(t;s,s).  They can

be computed when the mean claim number and the lowest moments (not necessarily the whole

specified distribution function) of the individual claims are available, for instance, as estimates from

observed data or being suitably assumed. Though, in the cases where the number of claims is very

small both the number of claims as well as their individual sixes preferably can be directly generated.

For brevity, the formulae of mean  value only are outlined in what follows, because they reveal the

most relevant background factors and their formulation.

The mean of the increment X(t;s,s)  is defined, as in P&R, as the product of mean claim

number and mean claim size:

I (Al) E(X(t;s,s))  = n(t;s,s)  * m(t;s,s)

The first factor on the RHS stands for the expected number of the claims in the target cell:

W) nks,s) = n - I.(t) * q(t)  -g,(s)

where

- n is the mean claim number at the initial time t=O,

- I, is a function representing the growth (k) of the business volume,

- q is the structure (mixing) variable introducing into the model the stochastic fluctuation of the mean

claim number controlled by a (first  order) time series (see (A4) below), and

-g,  distributes n(t) to the development years I, tt I,...,tts-,  n(t) being the mean of the total claim

number of the cohort obtained as the product of the first three factors in (A2).

The mean claim size, the second factor in (Al), is ohtained from

I
( A 3 ) m(t;s,s)  = m * I,(t+s)  * g,(s)

where

- m is the mean claim size at t=O,
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- I, an index representing the changes of the mean claim sizes owing to inflation and possibly also to

other reasons. It is calibrated to be = 1 at t=O.

- Finally, g, allows the possibility to take into account changes in claim sizes which cannot be

explained by the index I,, for instance, if it is observed that the average value of delayed claims (s

large) has a tendency to differ from that of early paid claims.

Note: Instead of employing two development distributors g, and g, an alternative approach

is to build the model on the basis of their product g.=g:g, which represents the distribution of the

total claim swns  betweenthe cohort cells (cf. P&R, Section 1.7).

2.SpecXcations.

Porffolioparamerers:  Expected annual number of claims n= 10000 (see eq.(AZ))

Claim size distribution: the lowest moments about zero a,=0.006, +=O.OOl,  a,=O.OOOl  (Unit

suitably fmitlion,  then the average claim she is $6000).

StrucrurefLncfion  (also called mixing function):

(A4) q(t) = a&-l) + u,c(O

where a,=0.6, u,=O.O5  and E is a normally distributed (0,I)  random number (white noise).

7&e rate of inflation:

6-W i , ( t )  =  l,(t)fl,(t-1)-l  =  & +  a&(t-I)-&)  +  u&t)  2 V&

+ (an optional manually inserted) “shock”

where &,=  0.05, 4=0.7 and u,=O.OlS.

Real growrh  of fhe portfolio L(t)  = (I + i)’ with 4 = 0.0 I.

Developmetu disrriburion  g,(s) for s=O,  I.  2,... (see eq. (AS) and P&R. Section 3.4)

Short tail 0.6, 0.2, 0.15, 0.05

Long tail 0.15, 0.25, 0. IS,  0.15, 0. IO, 0.05, 0.05, 0.02, 0.02. 0.02, 0.02, 0.01. 0.01.

Formulae of the basic characteristics, see P&R, Section 5.1.

Random number generafor  is described in P&R, Section 5.6 and Pentikainen  et al (1989).

Appendix A

77re rransfomwd  amounr of loss (claims) in a development cell s of the cohort of the origin t-s (Item

3.3, eq. (3.6) and (3.7)).
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(A6) X’(t,s)  = X(t-s;s,s) * V(O)/V(t-s)

where V is an auxiliary variable representing the volume of the business with reference to simulated

inflation and assumed real growth of the portfolio:

647)  V(t) = UO~UO.

3. Discussion. The following features of our numerical simulation might be worth some special

comments:

* Parameter n introduces into the model allowance for changes in business volme.

* The structure variable q is stochastic and is generated as a first order time series (see

Appendix). Hence, the n-vahtes obtained for consecutive years are not independent (contrary to what

is mostly the case in the traditional risk theory). This correlation is one of the factors which can

crucially affect the range of fluctuations (cf. PENIX~INEN  et al (1989),  2.2).

* InjIarion  is stochastic and generated by using first order time series (AS).

* Also other backgound processes as the  structure variation and inflation could be assumed

to be srochasric.  in particular, the return ou investments.

* The model can be extended by introducing return on investments and discounting of the

future payments. Then a new component of stochasticity is incorporated into the model probably

having a significant effect in long-tailed business. However, we had to postpone this to later works.

Hence, in what follows, discounting is not performed.

* The portfolio of general insurers mostly consists of numerous lines and sublines,  and

reserves need to be made up for all of them. This feature is not dealt with in this paper, the

approaches, which are described, handle the claims as one single block which can either be any of

the lines separately or two or more of them combined. The multi-line problem is considered in

PENTIK~INEN  et al (1989).  Section 3.1.la,  p.27 and BEARD et al (1984) Section 3.7.
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