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ABSTUACT 

The Bailey and Simon (1960) and Bailey (1963) papers on class and 
merit rating discuss models and estimation criteria in a non-probabilistic 
framework. lt has been shown, for example, Van Eeghen et al (1983), 
that the Bailey and Simon criterion of class balance is equivalent to 
maximum likelihood estimation of a claim frequency modal with Poisson 
distributed ctajm numbers. It tums out that the Poisson based model 
is part of a large body of recently developed statistical methodology 
known as Generalised Linear Regression fvlodelling. 

Indeed, the Bailey and Simon papers provide the motivation for 
generalised linear regression models. By applying the regression 
framework some results are developed that relate the various estimation 
criteria and a number of extensions are given for the case where the 
condition of class balance is not appropriate as a result of lack of 
credibility for some of the classes. The regression framework moreover 
facilitates the consideration of a much wider family of models than that 
considered by Bailey and Simon. Generalised regression models are 
also motivated and indeed introduced as an extension to the classical 
normal based regression models. Many of the benefits afforded by 
regression modelling are discussed. 
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1. INTRODUCTION AND SUMMARY 

The present paper has two important objectives. 

. Relate the work of Bailey and Simon [ll and subsequently Btiley [2] to 

some modern statistical technology that falls under the heading of 

Generalised linear Regression Models. 

. Demonstrate that Regression modelling is very powerful and 

accordingly facilitates a number of significant extensions of the works 

of Bailey and Simon. 

There are two prfnciples in insurance that play an important role in ratemaking. 

(Pl): Each individual risk should pay for its own claims. 

But, on the other hand, the basic quintessential idea of insurance is that 

(P2): A given portfolio forms a collective of risks %ith equal rights’, each of 

them paying the same pure (collective) premium. 

Both principles (Pl) and (P2) are in agreement for an homogeneous collective. 

The pure premium differentials should be directly related to the ‘type and 

degree’ of heterogeneity. How do we measure the heterogeneity in the 

experience? 

Consider the following example. Suppose we have a portfolio of motor car 

policyholders each having a claim rate A. ll-te parameter A is the true claim 

intensity and is unobservable. Since A is different for each policyholder we 

could assume that A has a distrfbution f(A) depicted below. 
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The mean of A, viz., A,, = E[A], is the pure premium for the collective (or 

portfolio). However, if we consider a sub-population of the collective that has 

A- values in the intetval 1, then A, is biased downwards for the sub-population. 

The pure premium for the sub-population (or sub-class) is the mean of the A- 

values that lie in the interval 1. 

Quoting from Bailey [2]: 

“The more we sub-divide the data, the less biased are the 
resulting rates for each class’. 

But we add, that the finer the sub-divisions the ‘less credible’ may be the 

individuai experier Ice for tha2 individu& sub-clãss. 

By “less credible” is meant, that an appropriate model, only based on the 

individual experience, leads to much uncertainty. We discuss a similar 

example in Section 2 that provides some compelling reasons for regression. 

The paper is organised as follows. 

Section 2 examines a ratemaking example involving only one risk (tariff) 

variable. The power and usefulness of a regression model is illustrated, 

especially in the contexl of lack of credibility for each level (subclass) of the 
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tariff variable. Regression is not a single method. Regression is a modelling 

approach. 

Regression has been used as the scientific method in scientific fields ranging 

from physics, engineering to psychology. We use regression to extrad 

information from data We use regression to determine whether the data we 

have supports our hypotheses. 

Section 3 presents well known discrete distributions and their relationships that 

prove useful in the analysis of categorical data 

In Section 4 we visit a ratemaking example involving two rísk variables 

discussed by Bailey and Simon [l] and Bailey [2]. 

It is shown that the Bailey and Simon criterion of ‘class balance’ is equivalent 

to the ‘criterion of average bias = o’, which in tum is equivalent to ‘maximum 

likelihood estimation assuming Poisson counts’, which is equivalent to 

‘maximum likelihood estimation for the multinomial distribution’. 

Moreover, the multiplicative model (or hypothesis) is equivalent to the 

hypothesis of “independence of the two tariff variables”, aftematively. ‘no 

interaction’ or ‘no association”. 

By applying the regression concepts of Section 2 we extend the Bailey and 

Simon multiplicative model to situations where “class balance” is inappropriate 

as some classes possess loss experience that is not sufficiently credible for the 

corresponding class risk parameter. 

Brown [3] also introduces a number of models within the Generalised 

Regression Modelling framework. 

Section 5 revisits the well known Normal based regression model as a lead up 

ta the Poisson based regression models of Section 6. 

619 



The foregoing sections set up the ground work for the introduction of 

Generalised Linear Regression Models. 

The generalisations from the Normal based regression are in three directions 

* distributions other than the Normal including Poisson, Binomial and 

Gamma: 

1 the response variable Y need to be continuous; 

* link functions that are not the identity link functions. 

Sedion 8 dìscusses inference and hypothesis testing in the context of 

generalised linear models and demonstrates, using an example, that the 

difference in scaled deviance is the generalisation of the F-ratio statistic from 

Normal-based regression models to generalised regression models. 

Section 9 provides a summary of conclusions. 

The paper is, by and large, pedagogical and is only intended to give the 

reader a glimpse of the current available statistical technology in the belief that 

with the advent of fast computers actuaries should be cognisant of it. 

There are a number of statistical packages that the reader will find useful for 

Generalised Linear Regression Modelling, for example, BMDP (Biomedical 

Computer Programs, UCIA), SAS (SAS Institute, Rayleigh, North Carolina) and 

GLIM (Numerical Algorithms Group, Oxford, U.K.). 
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REGRESSION - A RATEMAKING EXAMPLE INVOLVING LACK OF SUB- 
CIASS BALANCE 

Bailey and Simon [l] argue that a necessary condition to be satisfied by a 

satisfactory rating system is that for large groups of insureds, (total) premium 

is approximately equal to (total) observed losses. (This condition is related to 

the Law of Large numbers). The condition is known as the criterion of class 

balance. 

For the ratemaking example formulated below we have lack of sub-class 

balance as a result of some sub-cl-es loss experiences being non-credible. 

We solve this problem by relating the sub-classes through a regression model. 

Suppose X is a tariff or risk variable, e.g. X is age. 

Aim: Determination (or estimation and uncertainty) of loss size 

distributions for ten levels (values) of X, viz., x,, s,, . . . . x,,. 

Question: Is there any heterogeneity between the sub-classes x,, s, . . . . x,,,? 

If the answer is in the affirmative, what is its nature? 

Data: Losses Y,, , 

XI 

y,, 

Y 
‘“1 

Yani corresponding to sub-class (or risk level) x,. 

Y 
'90 

Y 
-2 
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Problem: For some sub-classes x,, the sample size n, IS too small to be 

able to fit or estimate a loss slze distribution wlth reasonable 

accuracy, (e.g. n, 5 2) to that sub-class independently. 

The sub-classes cannot be analysed separately as for some sub-classes there 

is insufficient loss experience. Equivalently, some sub-classes are not 

sufficiently credible. SO, WE NEED A MODEL 

Based on some preliminary diagnostic analyses of the data the following 

model may suggest itself. 

Yii = exp (0 f j?x,) 6, (2.1) 

Let u,¡ = log P,J and E, = log E/, then 

U,=a+Bx,+e, (2.2) 

We also assume that E, - N(0, d), so that E/ is lognormally disttibuted 

Fig 2.1 
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m Normal 

U 

> 
X, x, XIO X 

Flg 2.2 

Fig 2.1 represents a display of equation (2.1) and Fig 2.2 a display of equation 

(2.2). Fig 2.1 depicts the regression model on a $ scale whereas Fig 2.2 

depicts the same model on a log scale. 

Every regression model contains assumptions or information. 

Assumotions 

(Al): Loss distributions are lognormal (equivalently, normal on a log scale) 

(A2): Constant variance (on log scale) of Normal distributions. 

(A3): Mean of U=log Y is linear in x. 

The model relates the loss distributions of the different sub-classes. It is a 

probabilistic, equivalently, a stochastic model. 

The model parameters (a, ,9 c?) are estimated using maximum likelihood 

estimation theory. We emphasise that THE ASSUMPTIONS (Al), (A2) AND 

(A3) MUST BE TESTED. 
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The assumptions that apply to the model must also apply to the data. 

Otherwlse, all our subsequent computations are meaningless. If none of the 

assumptions are violated by the data then we have extracted much 

information. Let’s see now. We have an estimate of the loss size distribution 

for sub-class x,, for example. even though we only have two observed losses 

(n, = 2) corresponding to this sub-class. This information is extracted from 

the model. since it relates the loss size distributions of the different sub- 

classes. 

Note that the regression model comprises the lognormal distributions whose 

median is related by exp(a + &). So regression modelling is much more than 

just estimating th? curve exp(a + &). 

REGRESSION IS THE ESTIMATION OF DISTRIBUTIONS AND THEIR 

RELATIONSHIPS. 

Suppose assumptions (Al), (A2) and (A3) are not violated by the data and 

when we test the hypothesis H:B=O we find that we do not have sufficient 

evidente to reject it. We can therefore conclude that the sub-classes are 

indeed homogeneous in terms of loss size distributions. 

WE ALSO USE REGRESSION MODELLING TO DETERMINE WHICH 

HYPOTHESESTHEDATASUPPORT 

In the case of Normal distributions, maximum likelihood estimation theory is 

equivalent to least squares estimation theory. 

Indeed, the Normal based regression has been the basis of much of statistical 

modelling until the early 1970’s when regression modelling was extended to 

what is now called: 

GENERALISED REGRESSION MODELLING 

There are essentially two extensions in the generalisation. 
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1 From Normal distrlbutions to other distributions Including Gamma, 

Po~sson. Pareto and Binomial. 

2. From a continuous response variable Y to categorical response 

variables. 

GENERALEED REGRESSION 

NORMAL KNSSON PAiEro BINOMIAL 
-IlxxmmR GAMMA -LaGImc 

REGRBSSON -0N 

We will show in subsequent sections that the models and estimation criteria 

of Bailey and Simon [l] and Bailey [2] are related to log-linear regression. 

REGRESSION IS A VERY POWERFUL TOOL IN RATEMAKING. 

In a way, what we did in the ratemaking example, when faced with insufficient 

loss experience for each sub-class, is to employ a type of credibility analysis. 

Indeed, regression may be viewed as a type of credibility analysis. See the 

Zehnwirth notes on credibility presented at the CAS Ratemaking Seminar held 

in Chicago in 1991. 
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3. PRELIMINARIES ON DISTRIEUTIONS 

In the present section we develop some basic distributional theory that will 

prove useful in relating a number of ratemaking criteria discussed by Bailey 

and Simon. 

3.1 BINOMIAL 

We say that Y has a Binomial distribution with index n and parameter B, 

equivalently, Y -Bin(n,e), if Y represents the total number of ‘successes’ in n 

independent Bernoulli trials where the probability of success at each trial is 0. 

A Bernoulli trial has only two possible outcomes ‘Success’ or ‘Failure’ = ‘Not 

Success’. 

3.2 MULTINOMIAL 

The Multinomial distribution is an ex-tension of the Binomial where at each trial 

there are k possible outcomes, where k 2 2. 

Prob (jth outcome) = 0, : 10, = 1. 

Let Y, denote the total number of outcomes “j” in n independent trials. 

We write (v,, .., YJ - Multi(n; e,, _.. e,). 

Note IY, = n and IB, = 1. 

Prub [v, = y,, . . . . Y,=yJ = L $‘...‘$ . 
YJ-YkJ 

Note Y, - Bin(n, e$ so that 

EPIJ = ne, and Var[YJ = n(q(l-f?J. 
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3.3 POISSON 

The Poisson can be thought of as a limiting form of the Binomial distribution. 

It represents the distribution of the number of events in a fixed time interval if 

it is assumed that (i) each ‘small’ time interval may be regarded as a Bernoulli 

trial - either one event occurs in the time interval or it doesn’t, (ii) the 

probability that an event occurs in a small time interval is proportional to the 

length of the interval and (iii) non-overlapping time intervals are independent. 

We say Y - Po(A) if 

p(Y=v) = e-’ 5 , y=O,1,2... 

We have, 

E[v = VarM = A 

We now state two results and only prove the second 

(RI): If Y,, Y,, __. Y, are independent such that Y, - Po&) then 

IYj - Po(LIJ. 

(R2): If Y,, Y,, . . . Y, are independent such that Y, - Po&) then 

(v,, . ..I y, I IYJ - Multi(IY,; O,, . . . . 0,) 

where el = 2, * 

So, if we know the sum of Poisson counts, then the distribution of the 

individual counts is Multinomial where the probabilities are equal to the relative 

Poisson means. This result is almost intuitive if we bear in mind that the 
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Poisson is a limit of Binomial that comprises independent Bernoulli triak. 

Procf: Prr(,=y,, . . . . Y,=y, ) IY,=n) 

Bearing in mind that IY, is Poisson from (Rl), we have the conditional 

probability 

k-l 

where ykzn-Cfi arId 0, = A . 
1 CA/ 

The proof is now complete. 
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4. BAILEY [2] - MOTIVATION FOR LOG-LINEAR REGRESSION 
MODELS 

4.1 INTRODUCTION 

Let us take out an excerpt from Bailey’s [2] paper. 

“ín making rares for insurance we are faced with the problem that 
there are many different classes of risks with a different rate for 
each ciass, and that no one class by itself has a sufficient volume 
of premium and losses to give a reliable basis for the rate of fhat 
class”. 

Is this not the kind of problem we considered in Section 2? And we solved it 

by using an appropriate regression model. Indeed, Bailey and Simon also 

solve this problem by indirectly applying regression because class balance is 

equivalent to Poisson regression. The following cross-classification example 

is considered by Bailey and Simon [ll. 
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4.2 CROSSClASSIFICATION EXAMPLE 

Consider two categotical tanff variables A and B. Vanable A is at 1 levels 

whereas B is at J levels. 

We can construct the following two-way table. 

B 1 2 3 j J 

Y 

We denote by Y,¡ a count representing the total number of claims 

corresponding to level i of variable A and level j of variable B. 

&=CY, = TOTAL OF ROW i 
: 

= TOTAL FOR “CIASS” i OF 1 

Y, = c YJ = TOTAL OF COLUMN j 
/ 

= TOTAL FOR “CLASS” j OF J 

Y’. =~~Y~=~Yi =Cy, =GRANDTOTAL 
I i I 

Let’s assume that the counts Y,¡ - Po@,,) and are independent. Wlthout loss 

of generality, we also assume the exposure n,, = 1, for ail cells (i,j). 
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The parameter A,, represents the mean claim rate for cell (i,l) 

Now, most of the cells (subclasses) are not sufficiently credible in the sense 

that the individual “loss” experience Y,, is not a reliable estimate of the 

corresponding risk parameter A,;. 

Our assumed model currently has 1 X J parameters (,4$, too many to be 

estimated from the ‘sparse’ data. Let’s postulate a model that has fewer 

parameters. 

H: Aij = A,’ ,4:’ 

This is called a multiplicative model. It appears that this model has 1 + J 

parameters. Actually, it only has 1 + J - 1 parameters. This will be explained 

later. 

Now, Bailey and Simon [l] and Bailey [2] argued that the “rate should be 

balanced in each class and in total’. 

That is, each class experience is sufficiently credible to estimate the 

corresponding class parameter. 

The class parameter for level i of variable 1 is 

The class parameter represents the mean (total) number of claims for the 

class. It’s estimate is the sample total Y,,, also called the marginal row total. 
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So, for class i of 1 we have 

yi = c #! = $ c y . 
I i 

Similarly. for class j of J we have 

(4.2.1) 

(4.2.2) 

The * above the parameter denotes an estimate. 

See Section 4.6 for a discussion of the situation where Y, is not credible for the 

corresponding class mean parameter. That is, we cannot apply “class 

balance”. 

Equations (4.2.1) and (4.2.2) are the equations of “class balance”. They can 

be solved iteratively for ,i{ and $ . It is straightforward to see that a 

solution is 

(4.2.3) 

Incidentaliy. if ,i’, and îy are solticns to (4.2.1) and (4.2.2.) then so are ait 

and iflja for any constant a 
/ 

From equations (4.2.1) and (4.2.2) we also have total balance, viz., 

y, = cc î; iy . (4.2.4) 
’ / 
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We now re-wnte the equations of “class balance” as follows: 

and 

(4.2.5) 

(4.2.6) 

So, the criterion of “class balance’ is equivalen1 to the criterion of “Average 

bias = 0’. 
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4.3 THE CROSS CLASSIFICATION EXAMPLE AS A RETROSPECTIVE 
STUDY 

Suppose the preceding cross-classification example is regarded as a 

retrospective study. That is, on our books we have Y clarms that we segment 

(equivalently, cross-classify) according to the levels of the two risk variables 

AandB. 

so if Y ‘I - Po(A,J then (Y,,, Y,,, . . . . Y,,, . . . Y,, 1 Y ) has a Multinomial 

disttibution with cell probabilities e1 = See (R2) of Section 3.3. 

Assume the hypothesis: 

H: B = B’.B” is valid. 1, 1, 

That is, the probability of a claim being in cell (i,j) is the product of two 

probabilities. 

The hypothesis is equivalent to (i) independence of the two tariff variables A 

and B, (ii) no association between the tariff variables A and B and (iii) no 

interaction between the tariff variables A and 8. 

So under H 

e,, = e,‘Jy 

:¿$,=E#=l . 
1 

The MultinomiaJ likelihood funCtiOn is L(y,,, ,.., ; 8,,, @,? . ..) 

Y.1 e 
Yl, YU 

= Y,,! . . . Y” I ” ..- 
0L.l * 

(4.3.1) 

(4.3.2) 
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So, the log-likelihood 1 is given by 

f = constant + XIY,, l0g[e,‘.ef] (4.3.3) 

The “consfant” is a function of the Y’s but not of the 8’s. 

To determine the maximum likelihood estimators subject to the constraints, 

(4.3. l), we set up the Lagrangian. 

s=i-(,(CeI-l)-C,(C~-1) (4.3.4) 

To maximise the Lagrangian, we set the partial derivatives to zero. 

New, 

Similafiy, ty = y, I c2 . 

But x$=x$=1 ,Wh8nCe 

c, = c2 = Y . 
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(almost obvious!) 

Equations (4.3.5) can be recast 

Equivalently, 

(4.3.5) 

(4.3.6) 

(4.3.7) 

(4.3.8) 

(4.3.9) 

Equations (4.3.6) and (4.3.7) are the “equations of class balance”. They are 

equivalent to equations (4.23). So, maximum likelihood estimation for the 

Multinomial is equivalent ta the criterion of “class balance” (under the 

hypothesis of no interaction). 
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4.4 THE CROSSClASSIFICATION EXAMPLE AS A PROSPECTIVE (POISSON) 
MODEL 

Consider the multiplicative model (Bailey and Simon [l]) hypothesis again, 

ViZ.. 

H: Aii = Ai’ Ai”. 

The study here is regarded as an observational study where we begin 

recording the claims at the beginning of the year and conduct the analysis at 

the end of the year. Accordingly, we do not condition on the total count Y 

The likelihood function is given by 

L (Yii ; Ai’,$“, i=l. . . . . 1; j=l, . . . . J) 

Therefore, the log-likelihood 1 is given by 

so, g = , 7 YJ I 1: - c # = 0, which implies that 
I 

v, = i: c i:’ . 
I 

Similafly, we obtain 

(4.4.1) 

(4.4.2) 
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Observe that (4.4.1) and (4.4.2) are equivaient to (4.2.1) and (4.2.2) 

respectively. 

So, maximum likelihood estimation for the multiplicative Poisson prospective 

model is also equivalent to the Bailey and Simon [l] criterion of class balance. 

The maximum likelihood estimation criterion is also equivalent to what is 

sometimes termed ‘Yhe method of marginal totals’. 

It is also important to recognise that maximum likelihood for the MutGnomial 

retrospective multiplicative model yields the same results as maximum 

likelihood for the Poisson prospective multiplicative model. This is because 

both likelihoods only depend on the observed cell frequencies and the 

expected cell frequencies. One conclusion here is the interpretation of the 

Bailey and Simon [l] multiplicative model: 

H: A,, = A,’ A;’ 

The assumption is equivalent to the assumption of “no interaction between 

rating variables A and B” = “independence of rating variables A and B’ 3 “no 

association between variables A and 8’. 

In the more recent statistical literature, the method of estimation based on 

equatlons (4.4.1) ana (4.4.2) is caiied iterative propofiionai fiffing procedure. 

The iterative proportional fitfing procedure involves adjusting the expected cell 

frequencies until they add up to the required marginal totals (at least to within 

some specified accuracy). We begin with some initial estimates of 

i” . i// 
,I . .1 J I say, adjust the estimates of i{, . . . . i: using equation (4.4.1) 

so that the row margins are the sum of the cell frequencies in the 

corresponding row. Then using equation (4.4.2), adjust the estimates of 

Á:‘, .*,, i’: , so that the column margins are the sum of the cell frequencies 
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in the corresponding column, and so on. 

Summatv 

ITERATIVE PROPORTIONAL FIllING 

s MAXIMUM LIKEUHOOD PROSPECTIVE MULTIPUCATIVE POISSON 

3 MAXIMUM LIKEUHOOD RETROSPECTIVE MULTINOMIAL 

5 CRITERION OF CL4SS BALANCE 

m AVERAGE BIAS = 0 

AND the multiplicative hypothesis is 

si INDEPENDENCE (OF THE TWO RATING VARIABLES) 

m NO INTERACTION 

m NO ASSOCIATION 

4.5 NON-CONSTANT EXPOSURES 

Suppose that for the cross-classification of the two categorical rating variables 

A and B. the exposures ny corresponding to cell (i,j) are not constant. 

We have 

Y, = COUNT IN CELL (iJ) 

nr = MPOSURE (e.g. number of policyholders) 

Ali = CWM RATE 

= MEAN ClAlM/EXPOSURE UNIT. 

The count Yii - Po (ni+,,), where ns is known and we also assume the 

hypothesis H: A,i = A; . Ay. 

Equations (4.4.1) and (4.4.2) are now 
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and 

So, these equations provide the maximum likelihood solutions for A( and Ay. 

Here, there is not a close solution for the estimates i’, and iy 

The summary of results given in the foregoing section stll apply. 

4.6 UCTENSIONS TO SITUATIONS WHERE CIASS BALANCE IS NOT 
APPROPRIATE 

Hitherto we have assumed, as Bailey and Simon do, the condition of class 

balance. That is, the loss experience of a class is sufficiently credible for the 

corresponding risk parameter for that class. 

Suppose instead that some of the classes j of variable B are not credible in the 

sense that Yj is not a reliable estimator of the corresponding class pure 

pEmiUm, 

Furthermore, let us assume that variable B (e.g. age) can also be regarded as 

a continuous variable. In place of having an ‘independent’ parameter Ay for 

each class j, we could relate the parameters thus: 

log$ = a+fU, . (4.6.1) 

640 



Our multiplicative Poisson model now contains only 1 - 1 + 2 parameters 

Of course, all the assumptions of this model would have to be tested to ensure 

they are supported by the data. 

By way of summary, we have used regression to circumvent the problem of 

lack of balance. 

We make the additional remark the even when class balance is appropriate, 

the model involving the relation (4.6.1) is better than the model involving J 

“independent’ Ay parameters, provided it is not violated by the data. 

Parsimony is an important principie in modelling. 
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5. NORMAL BASED REGRESSION MODEL 

The model: 

Y = vm + 5 : 5 - N(O, dI), (5. ‘1 
has formed the basis of most statistical analyses of continuous data. Models 

ranging from “straight line” regression to analysis of variance and analysis of 

covariance possess the formulation (5.1). 

The model can be written as follows: 

1 = Cr,, . ..< ‘f,J, 6 = (B,, . . . . BJ’md 5 = (E,, ._., 3’. The zero mean error 

terms E,, .., c, are independent from N(0, $). The Normal distribution is an 

integral part of the model. See Section 2. 

We can write 

Y, = P, + c,, where U, = EV,], and 

PI, =$$ 

The vectorx’, = (q,, ,.., x,J is the “design” corresponding to Y,. The deslgn 

matrix X is given by 

The mean of Y,, p, is linear in the parameters ,9,, . . . . B,, hence the term “linear” 

in linear regression. 

Example 

Consider the example of Section 2. 
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u,, = 0 + b’$ + 6, : E,, - N(O,d) 

i=l. .,.~ 10 

j=l. _.,, ni 

Using the notation of the cunent section, 

[ = (u, 8)’ and the designx,; corresponding to U, is 

X’,¡ = (1, 4. 

In order to find the least squares estimates of D and B and other statistics 

using a statistical package the user typically has to specify me design matrix 

X. 

Just a brief comment about the link function 

We can write g@,3 =x’, j where g a function of the mean p, of Y,, that links 

p, with a linear function of parameters,x’, B, Here g is the identity function. 

So, the link function for the Normal based regression is the identity function. 

643 



6. LOG-LINEAR (REGRESSION) MODEL 

Consider the model 

y,, - Po (AJ with 

(6.1) 

This suggests the log as the natural link function. 

The link function relates A,, (= Ev,J), the mean of Y,,, to a linear combination 

of parameters. 

The above hypothesis regarding multiplicativity may be re-cast, 

log A,, = fl + 0, + B, , (6.2) 

= x’,,& (6.3) 

So, the log of the mean is related linearly to a set of pararneters p, 0, and B,. 

The parameter vector 8, = b, a,, a,, . . . . a,. /3,, & . . . . ,8,)‘, and the design 

I-1 l-l-i+ i-1 
2’;; = ( 1, 02 , 1, 0 ,.__, 0 , 0 ,.<., 0 , 1, 03 ) 

The Poisson based regression model is called log-linear regression because 

the link function is the logarithm function. 

We return to thìs log-linear regression model in Section 7. 

The log-linear regression model of Section 4.6 is formulated as follows: 

y,, - Po NJ (6.4) 



with 

log Aii = fl + a, + j3xj (‘3.5) 

The design corresponding to Y, is 

i-l 
x/,¡ = (1,0T;i,1,0~,xJ 

and the parameter vector & iS 

For those readers who have not used a statistical package to conduct log- 

linear analysis it is important to recognise that the design matrix is specified 

indirectly by just specifying the variables. 
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7. GENERALISED LINEAR REGRESSION MODELS 

7.1 EXPONENTIAL FAMILY OF DISTRIBUTIONS 

Recent advances in statistical theory and computer software allows us to 

use methods other for those developed for Normal based linear regression 

models (5.1). 

There have been a number of generalisations or extensions: 

(1) response variable Y has a disttibution other than the Normal; 

(2) response variable Y can be categorical; 

(3) the link function is not necessarily the identity function. 

It turns out that some of the ‘nice’ properties of the normal distribution are 

shared by a wider class of distributions called the exponential familv of 

distributions. 

Consider a random variable Y that is discrete or continuous whose 

distribution depends on a single parameter of interest 0. 

The distribution belongs to the exponential family if it is of the form 

where a, b, s and T are known functions 

So, f(y;e) can be written 

(7.1.1) 

(7.1.2) 

where s(y) = exp [d(y)] and r(e) = exp [c(e)] 
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If in equation (7.1.2) a(y) = y, then (7.1.2) is said to be the canonical form 

and b(B) is called the natural parameter. 

Any other parameters apar? from B are regarded as nuisance parameters 

ExamDle 1: Poisson 

43-w 
Suppose Iúse) = - 

uc 
; y = 0,1,2... 

We can express f in exponential form as follows: 

f(y;e) = exp (yi0ge - e - logy!). 

So, here a(y) = y, b(8) = loge, c(e) = 4 and d(y) = -logy!. Since f is 

expressed in canonical form, IogO is the natural parameter for the Poisson 

distribution. 

Examole 2: Binomial 

Suppose fke) = 
0 

B” ev(1 -e)“-< Y=O.l,..., n. 

Therefore. 

f(y;e) = ex 
P( 

jioge +(n-y)log(l -0) +lo 
9( 1) 

i 

= ex+i0g(&)+d0g(i -e) +10(t)) 



So, here a(y) = y, 46) =iog& , c(e) = nlog(l-0) and d(v) =log 
0 

i 

The quantity fog& is called IogiW and is the natural parameter for the 

Binomial. Logite is the log “odds ratio”. In Binomial regression the link 

function is the logit so that we have 

logite, =x’,& where 

Y - Bin (ni , e,), 

1 is a vector of parameters and J’, is the “design” corresponding to Y,. 

Binomial regression is more populatiy known as logistic regression. 

Examole 3: Normal 

The parameter of interest is /I, so that o is a nuisance parameter. The 

exponential expression shows that p is the natural parameter. That’s the 

principal reason why in Normal based regression the link function is the 

identity function. See Sections 5 and 6. 
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7.2 GENERALISED LINEAR REGRESSION MODELS 

We are now in a position to generalise the Normal based linear regression 

model. 

1. Y, has probability density (mass) function f(yi ; 83 such that 

f(y, ; e3 = exp [yi b(eJ + c(eJ + d(y)] 

g is called the link function; 

$, is a vector of explanatory variables; 

fi is a vector of parameters. 

Let’s reconsider the example of Section 6. 

y,, - Po@,,), where 

log Ai, = /J + ai + Bi 

This model is equivalent to the multiplicative model. We also require the 

side conditions c ,z,=C p,=O. 
/ i 

In Sections 4.3 and 4.4 we developed the maximum likelihood estimators of 

Aj’ and Ai/ (also 0; and &‘) I I . 

Let the total number of counts Y,, be denoted by n. 

YI We had #=: and $=I;- . 
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v, Y, So, the fitted (expected) cell frequency i/,$ = n . 

But, log i: î:’ = ri + “, + j$ . 

so, log Y, + log Yi - log n = i + “, + 0, . (7 2.1) 

Summing (7.2.1) over i and j and setting 1 á, = c fij = 0 , we have 
/ i 

+ 3 ElogY, - logn . (7.2.2) 
1 

Summing (7.2.1) only over j and using (7.2.2) we have 

ã, = IogY, - f =QogY, . (7.2.3) 
i 

Similarly. fi, = log Y, - 3 C log Y, . (7 2.4) 
I 

For this ‘simple’ generalised regression model we are able to compute the 

maximum likelihood estimates by ‘hand’. A statistical package facilitates the 

computation of maximum likelihood estimates and associated statistics for 

any generalised linear regression model. 

We remark again that the model 

IogA,, = P + 0; + Bi , (7.2.5) 

is equivalent to 

A,,= A,'A; (7.2.6) 

The parameter p represents the overall mean effect. The parameter a, 
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represents the differential effect of row i beyond the average p and slmilarly 

the parameter ,9, represents the differential effect of column j beyond the 

average effect p. 

As with analysis of variance models, model (7.2.5) has too many 

parameters, so that the consttaints 1 CC, = c p, = 0 are needed. 
/ I 
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8. INFERENCE BASED ON GENERALISED LINEAR REGRESSION MODELS 

Inferences invalving Normal based regression models are based on F-ratio 

statistics (and T-ratio statistics). 

In the present section we define the scaled deviance and show that it 

represents the generalisation of the F-ratio statktic to generalised 

regression models. 

Statistical modelling inVOlVeS an iterative cycle containing three or four 

steps. 

l Preliminary diagnostic analysi 
l Specifying a model 
l Testing assumptions 
l MAKING INFERENCES 

If any of the assumptions possessed by the model are not supported by the 

data (equivalently. are violated by the data), then a new model has to be 

specified and tested. 

The identified probabilistic (stochastic) model is not intended to represent 

the generating process of the data. Rather, it explains the salient featiies 

in the data and the residual variation resides in the error term (or 

distribution). 

The observed data may be regarded as a semple (path) from the identified 

model. 

In order to draw inferences based on the identified (or assumed) model, we 

can proceed in two altemative ways. 

For the generalised linear regression model it can be shown that 
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where 8 is the Fisher information matrix. So we can use the sampling 

distribution of the maximum likelihood estimator fiMU of a. Alternatively, 

we can test hypotheses about 1 by specifying each hypothesis in terms of 

the correspondíng model and comparing goodness of fit. 

Consider the “maximal’ model where the number of paremeters = number 

of observations; 

&u = [B,, . ..I Lu 

Suppose for the hypothesised modelJ= [8,, ___, &]‘, P < N. 

The parameter would be regarded as a “peor” description if and only if 

That is, if the likelihood ati is ‘much’ less than the likelihood at& 

Equivalently, 4b ; H c < 4êU ; fi , where fi denotes maximum 

likelihood estimator of Ji and CM denotes the maximum likelihood 

estimator of PM . 

Let h= 4fL ; r) 

Ybir) ’ 

Large values of IogA (log likelihood ratio) provide evidente that the model 

is poor. It tums out that if the hypothesis assumption about B is valid then 

D = 2logh - &z , 

where ,$,, is a chi-square distribution with N-P degrees of freedom 
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That is, if model is good under 

H:j= @,, . . . . B,,)’ 8 

then D - ,$,+,. D is called the scaied deviance. So if the hypothesised 

model describes the data as well as the maximal model then D - y,+, and 

so it is unlíkely that we would observe “large’ values of D. 

Consider the hypothesis testing situation: 

Ho:&= (j?,, . . . . EJ’ =lo 

versus the altemative 

H,: &= (&, _.., &.)’ = &, such that Q < P c N. 

If D, is the scaled deviance under H, and D, is the called deviance under 

H,, then if both models give a ‘good’ description of the data then 

D = D, - 0, - J,, 

If the value of D is not in the tail of the $p, distribution then we prefer the 

model corresponding to H, since it is more parsimonious. 

Example 

Consider two random samples: 

We want to test the null hypothesis; 



H,: /I, = p, versus the akmative. 

4:~ # ~2. 

Ho 

MAXIMUM E5 
LIKEUHOOD I; = Ji - J-1 i-1 

. . 
"1 + “2 

ESTIMATES 

Now, the log (likelihood) for $ is 

The log (likelihood) for j$ is 

so 

= ‘Total sum of squares” - “Wkhin group sum of squares” 

= “Between group sum of squares” 

= “,& - T)’ + qq - q>’ 

Straightfotward algebra shows that 
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02G’, - DI) = .-!!?- (q - q’ 
5+ “2 

Now under H, 

Do -D,=m,n, 
(n,+ 4) 

(q - g2 / o2 

is - 2,. 

We cannot test H, directly since the quantity d is unknown. We can 

estimate C? by the pooled sample vafiance 

s* = (n,-1) $ + (I - 1) s,’ 
P n, + “2 - 2 

The statistic (II, + n2 -2) $ / 0’ - X:,*3-z . 

So, if H, is correct 

f = (Do - 01) 1 1 _ F 

s,’ 
1. n,-85-2 ’ 

here F,. n,.1-2 is the F-distribution. 

The quantity f is the F-ratio statistic for testing equality of population means. 

“1 (q, - q2 
Now, f = 

%+ “2 
Si 



= f where t is the T-ratio statistic with n, + n2 -2 

degrees of freedom. 

The one-way ANOVA model can be cast in regression form as follows 

Y,, = g + E;, : E,¡ - N(0. 2) , and 

K =& 

The link function is the identity function. The parameter vector! is given by 

l = (JJ,, pz) and the corresponding design is 

2’) = (1.0) if i=l 

and x’, = (1,O) if i=2. 

So, for Normal based regression models hypothesis testing based on 

differences of scaled deviances is equivalent to hypothesis testing based on 

F-ratio statistics. 

Scaled deviances are generalisations of F-ratio statistics to generalised 

regression models. 
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9. CONCLUSIONS 

We discussed a number of relationships between the seminal works of 

Bailey and Simon [l] and Bailey [2] and the modern statistical body of 

methodology known as Generalised Linear Regression Modelling. 

The relationships facilitate the consideration of a broad family of ratemaking 

models in a probabilistic framework. In particular, it was shown how to 

apply regression concepts in the case where the condition of class balance 

may be inappropriate as a result of the class experience being insufficiently 

credible for the corresponding class risk parameter. 

Regression models are employed to extract maximum information from the 

data and to draw inferences from the data. They also afford the principie 

advantage of being testable. 

The advent of statistical software packages that run on PCs has made 

interactive regression modelling possible. 
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