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ABSTRACT 

The application of utility theory to insurance is incomplete without the inclusion of 
the structure of risk sharing; to limit the use of utility to accept or reject decisions misses 
its power to explain the real world of excess insurance and reinsurance. The fine 
subdivision of risk which is routinely achieved bv insurance institutions can be explained 
on this basis. Practica1 methods of evaluating and pricing excess layers are given. This 
model appears to be in broad agreement with the behavior of experienced underwriters 
and thus can form the decision basis of a reinsurer’s assumption of risk. 

Dr. John M. Cozzolino is Director of The Underwriting Education Institute and 
Associate Professor of Management at Pace University. He is former director of The 
Ameritan Risk and Insurance Association and an Academic Correspondent of the Casualty 
Actuarial Society. He currently serves on the Publications Committee of the Society of 
Insurance Research. 

Dr. Peter J. Mikolaj is Associate Professor of Insurance at Indiana State Unit:ïrsity. 
He is a Trustee of Gamma lota Sigma, the national professional insurance fraternity and an 
Academic Correspondent of the Casualty Actuarial Society. Prior to teaching he spent 
severa1 years in the insurance industry. As an officer, he represented his company on state 
and national industry committees. 

108 



INTRODUCTION 

The inherent nature of the world of underwriting involves the selection of shares of 

all the risks available for participation. It appears that the objective is to maximize the 

utility of the portfolio of all retained risks. In this paper we show that utility and risk 

sharing go together, that the best share structure is ideal for representing reinsurance. and 

that risk retention is limited by choice. In other words both vertical (proportionall and 

layered (sharing) can improve the risk characteristics of the risk retained. 

In insurance applications, utility never indicates a direct limit to the number of risks 

an insurer ought to accept. In reaction to this realization, Richard G. Wall Il 9821 wrote 

“The implication of exponential utility flies directly in the face of the historical and intuitive 

notion that there is always some limit to the amount of business one is willing to write 

with a given amount of capital”. He fails to recognize that the problem would be still 

worse with a utility function whose local absolute risk aversion function declines with 

wealth. We choose to use the only form of utility function which provides additivity of 

certainty equivalents of independents risks. 

There is a literature on best share in insurance: Borch Il 9681 and severa1 others 

have sought Pareto optima1 (jointly optimal) share solutions where the objective function is 

based on utility. Indeed, the idea of best share has a broader literature than insurance. 

However both the insurance and the other applications are all oriented toward Pareto 

optima1 solutions. For example, see Raviv Il9921 and Howard Raiffa’s book “Decision 

Analysis: Introductory Lectures on Choices under Uncertainty”, [19681. Ming Yeh Il 9851, 

also provides many referentes on Pareto Optimality. 

The problem with joint optimalit) for the buyer and seller is that it is not a realistic 

description of a market situation in which there are many parties. Pareto optimality 

suggests that there are only two parties to the potential treaty; the two parties must either 

reach agreement on the terms of the treacy or there will be no treaty. In reality, the 

market for reinsurance is well developed. Furthermore, the reinsurer have the institution of 

retrocession available to them so that if one found a good risk which is too large, then he 

would be able to retrocede out part of it. Consequently, in such a realistic market, a party 

who wants to share risk need only decide how much of it to retain. 

The condition of Pareto optimality often makes the analysis impractical because it 
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requires the knowledge of the party’s risk aversion level. The determination of the best 

share to retain of a risk is easier without the constraint of Pareto optimality and is a more 

useful tool for underwriters. Cozzolino Il9741 gives a formulation of the risk sharing 

problem for general concave utility functions where conditions for existence and 

uniqueness of a best share are shown. Dionne Il 9901 also gives an analysis of the share 

and hcw it depends upon the risk characteristics. 

An optimum share must exist in the interior or at the boundaries. Cozzolino 119741 

proves that the optimum cannot be at zero when the expected profit is positive. This 

means that some share, however small, will exist in spite of the degree of riskiness. See 

Samuelson in Il 9571. 

Searching for the optimum share is straightforward because it is a single variable 

search. Without the additivity property of exponential utility, the result for one policy 

would depend upon the answers for all other policies. Leaving a difficult joint optimization 

problem to solve with the assumption of exponential utility and independent risks, all that 

is needed is the to evaluate the function. 

Another characteristic of the optimum share, seen in Gupta and Cozzolino Il 9741, 

is that the certainty equivalent generally has a shallow peak at the optimum share. This 

suggests that the best share may be insensitive to variation within a few points of the 

optimum. Human judgment may therefore be quite good at finding good solutions in many 

customary situations. In both reinsurance and in oil exploration situations the decisions 

are made within the “experienced operator” type of decision making; no formal analysis is 

performed. 

Best share is a useful model of reinsurance, whether or not it exactly represents the 

actual forms of reinsurance. It can also be formulated with a constraint to limit the total 

capacity underwritten. James M. Stone [19831. stated that risk is not reduced by 

“vertical” (proportionall sharing of risk. He suggests that “exposure ratio” is so important 

a charactenzation of risk that vertical sharing, which does not change the exposure ratio of 

one risk. must not be very important. Only the “excess of loss” form of sharing, also 

known as layering produces coverages with different exposure ratios. On a utility basis. 

proportional sharing possesses all of the benefits of reinsurance. 

Recalling Woll’s [19821 objection that utility ought to limit the number of risks 

accepted by an insurer, although intuitively appealing, the existence of unlimited numbers 
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of good risks, is not available. This is an aspect of “parameter risk” which explains the 

existence of limited portfolios. What is clearly provided by the combination of risk sharing 

and utility is a reduction in the amount of risk retained net of reinsurance. 

OPTIMUM SHARES OF EXCESS LAYERS 

Under CAPM, the suggestion is often made that all corporations, including 

insurance corporations, ought to be neutral toward risk, see Mayers and Smith 

I1982.19871. This idea, usually associated with the theory of finance, further suggests 

that expected value pricing ought to be the effective basis of insurance pricing. It is 

possíble that the elaborate sharing mechanisms practiced in the real world of insurance are 

so effective that the resulting premium structure is close to the expected value limit. See 

Mayers and Smith 119821. Clearly insurance companies do not behave as thaugh they are 

risk neutral but their efforts to subdivide risk, as evidente by the structure of the industry, 

may result in the naive appearance that they are. 

Adopting our proposed model may actually enable the industry to increase its 

efficiency in achieving optima1 levels of retained risk. The opportunity stream seen by a 

reinsursr usually includes many layers of risk on an excess basis. In the Lloyds market, 

the underwriter is invited to participate by signing up for a share, of one or more layers. 

Many of the “slips” one observes contain shares in the magnitude of one or two percent. 

Thus many insurance institutions illustrate the need for a methodology for finding the best 

share. 

The same model is useful as the basis of pricing and as a basis for pricing and 

underwriting, depending only upon whether you assume that the price is exogenously 

determined or is the subject of determination. The actuary determines the appropriate 

price and risk-load of a given risk. For example, if a 5% load is recommended for primary 

coverage, what is an “appropriate” size of risk load for an excess layer of $1 million 

excess of $5 million? Underwriting differs in the respect that underwriting decisions are 

usually about whether to accept the proposed risk at a given price. The share is often up 

to the underwriter, as in the case of Lloyds, but the price is not his main decision variable. 
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ILLUSTRATION EXAMPLE 

The probability framework used here is the piecewise constant Pareto for severity 

and the Poisson distribution for frequency. Choices of these distributions raflect current 

practice. as reported by Bear and Nemlick Il 9901. and Eear, Englander, and Hess [19921. 

The value system used is Risk Adjusted Cost, (RAC), in Cozzolino, 119781, based upon 

utility theory and the complete family of exponential utility functions for the method of risk 

measurement. We take a perspective of large commercial lines rather than either personal 

lines or small commercial accounts. On the insurer side, this represents the perspective of 

the reinsurer or excess carrier. In this context we seek to evaluate the best share to 

underwrite of an excess layer. 

Table 1 gives the example probability distribution of loss severity for each of the 

size layers and the Poisson frequencies for each layer. It is useful to define some notation 

for the layers and their aggregate loss amounts. Let the ith layer start at loss size L+,, and 

end at loss size L. Let a, be the sum of all losses whose size is in that layer. It is the 

aggregate loss for layer i. 

TABLE 1 

PROBABILITY DISTRIBUTION DF SEVERITY 

(1) (2) (3) (4) 
LOSS LAYER DEFINITIONS FREQUENCY EXPECTED 
FROM TO IN LOSS IN 

LAYER LOW END HIGH END LAYER LAYER 

1 $0 
2 $500 
3 $1,000 
4 $5,000 
5 s 10,000 
6 ~50,000 
7 t 100,000 
8 s500.000 
9 5 1 .ooo,ooo 

$500 18.528 
$1,000 10.703 
$5.000 12.364 

$10,000 4.301 
$50,000 4.970 

$100,000 2.495 
$500,000 2.878 

s 1 ,ooo,ooo 1.001 
~2.000.000 0.760 

$4,632 
$8,027 

$37.092 
$32.258 

$149,100 
$187,125 
$863.400 
$750,750 

~1.140.000 

TOTALS: 58.000 $3.172,384 

The set of aggregate losses, a,, for each layer, i, are independent random variables 

when the frequency within each layer has a Poisson distribution. The aggregate excess 

loss for layer I, is e,. This is not a set of independent random variables, but the a’s help to 
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compute both the variance and Risk Adjusted Cost of the e,‘s. This “piecewise constant 

Pareto distribution” is chosen to be useful because people naturally think of the layer’s 

properties as constant within the layer. A fortuitous analytical property of this distribution 

is the additivity of layer variances so that the variance of the aggregate loss for all layers is 

the sum of the layer variances. This additivity is true also for the contributions to Risk 

Adjusted Cost. 

For the piecewise constant Pareto we set the height of the density function for 

every layer as that which the best fitting Pareto has at the point which is the center of the 

layer. The mean aggregete loss for the ith layer, between lower point L., and upper point, 

L,, is EL as given by equation (1). where F, is the mean frequency, in Iayer i, multiplied 

times the mean size of a rectangular distribution. 

EL (L+,.L,) = F,(L,., + L,}/2 (1) 

When discussing policy limits, it is useful fo know the mean aggregate loss when the layer 

has zero width because the lower and upper end points are identical. Then the mean 

aggregate Ioss is the severity times the mean frequency. 

The RAC formula for the piecewise Pareto with Poisson frequency is given by Cozzolino 

I19781, and is shown by equation (21. The symbol r stands for the (local absolute) risk 

aversion level, as defined by Pratt Il 9641. For operational ease, we will later replace r by its 

reciprocal, S which will stand for “Surplus”, sometimes called “risk tolerance” in the literature 

of exponential utility. When the loss interval is degenerate, having zero width, 

bxa!r L,)-ex& L+,u 
RAC (L,,,L,l = (F,/r) [ -11 (2) 

r (L,-L,., 1 

The Risk Adjusted Cost of that layer is given by equation (3). 

RAC (L ,.,, L,) = (F,lr) {exp(r L,) - 11 (3) 
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Expected value rates for excess layers are often computed in practice by subtraction of rates 

for the corresponding “ground-up” layers. But subtraction is not correct when risk load is 

present. Miccolis 119771 gives a correction formula for when the risk load is based upon 

variance. Cozzolino 119891 gives the similar correction formula based upon exponential utility, 

as shown in equation (4). 

RACfx.v) - RAC(x,zl 
RAC Lz,y) = (4) 

e’lz”l 

When x is zero, equation (41 gives the risk loaded premium for the layer from z to y, 

in terms of the rate from zero to y less the rate for the layer from zero to x. The denominator 

represents a correction relative to pure subtraction. This formula will be used to compute the 

Risk Adjusted Cost (premium) for an excess layer. 

RISK SHARING 

The taskis to compute the best share of an excess layer and to examine its properties. 

Once you have the risk adjusted cost formula for a layer, you can easily compute the RAC for 

any share of the same layer. We assume that you get equal shares of both the loss and of 

the premium. 

Miccolis 119771 has shown that there is a positive correlation between the aggregate 

loss from any two layers of the same risk. 

The correlation has some important implications: 

1) Reinsurer need to be distinct from primary carriers so that the risk is spread among 

many independent companies. 

2) Risk retention from a insured’s perspective is logically in the form of ground-up 

retentions. 

3) We will compute the risk-loaded premium for all ground-up retentions. From the 

insurer’s view, it is necessary to decide which of one or more excess layers to accept. 

Because of the dependence between any two layers, evaluation of accepting two layers is 

more complicated than the separate evaluations of the two layers. 
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41 Dueto positive correlation between any pair of layers the excess carrier might prefer 

to insure just one layer rather than any combination of layers. All that can be stated in 

general is that all combinations or available layers must be evaluated. 

5) For the case where the insurer is considering layers of two separate (unique) risks, 

the presente of parameter risk results in a positive correlation. Thus the value of insuring any 

pair of layers is less than the value obtained when computing layer values separately, because 

of the positive correlation. The greater the separation between the two layers, the lower the 

expected correlation. 

THE BEST SHARE 

The best share cannot be determined from the RAC alone because that just measures 

the cost of risk. The profit of underwriting the risk is the premium for the share underwritten 

less the RAC of the share underwritten. This is the objective to be maximized. The RAV (Risk 

Adjusted Value) of share “a” is given by (5): 

RAV(a) = Pa - RAC( (5) 

where P is the Premium for retaining the whole risk. 

Illustrative market premiums for all the ground-up policies are given in Table 2. They 

are 150% of expected loss; the risk-load is 33% of premium. Since different layers have 

different risk characteristics, this may be unrealistic pricing. 

TABLE 2 

MARKET PREMIUMS 

LAYER POLICY LIMIT 

$500 
$1,000 
$5.000 

$10,000 
$50,000 

5 100,000 
$500,000 

$1 .ooo.ooo 
52.000.000 

PREMIUM 

636,552 
$62,142 

$197,664 
$304.574 
$881,714 

$1.323.201 
$3.243.201 
$4.188.522 
$4.758.570 
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Since the premiums were based on the expected loss for each ground-up policy, their 

calculations were preceded by the calculations of expected losses, whose results are shown 

in columns 5 through 9 of Table 3. 

TABLE 3 

EXPECTED LOSSES FOR GROUND-UP COMBINATIONS OF LOSS LAYERS 

(51 (6) (7) (8) (91 
EXPECTED FREQUENCY EXP LOSS EXP LOSS EXP LOSS 
LOSS IN ABOVE THE BELOW & AT THIS FOR THIS 

LAYER LAYER LAYER INCL LAYER DEDUCTIBLE DEDUCTIBLE 

1 54.632 39.4720 
2 $8,027 28.7690 
3 $37,092 16.4050 
4 532,258 12.1040 
5 $149,100 7.1340 
6 $187,125 4.6390 
7 $863.400 1.7610 
8 $750.750 0.7600 
9 5 1 .140,000 0.0000 

$4.632 
$12,659 
$49,751 
$82.009 

$231,109 
$418,234 

$1,281,634 
$2.032.384 
$3.172,384 

$19,736 
$28,769 
$82.025 

$121,040 
$356,700 
5463.900 
$880.500 
$760.000 

$0 

$24,368 
$41,428 

$131,776 
$203,049 
5587.809 
$882,134 

$2.162.134 
$2.792.384 
$3.172.384 

Total 53.172.384 

The formulas, in terms of spreadsheet columns, are as follows: 

Column (5) is the aggregate expected Ioss in the layer found by multiplying the 

midpoint loss size by the frequency in the layer. 

Column (61 is the total frequency less the sum of layer frequencies in the rows up to 

the current row. 

Column (7) is the cumulative sum of layer expected losses up to the current row. 

Column (8) is the product of (71 multiplied by the top size of the current layer. This 

represents losses that penetrate the current layer and so the policy pays the policy limit. 

Column (9) is the sum of (7) and (8); the sum of losses below the policy limit and those 

losses which penetrate the policy limit and the insured receives exactly the policy limit. 

This type of analysis was first published by Allen and Duvall 

in 119711. 
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TABLE 4 

SPREADSHEET FOR RAC CALCULATION 

(1) 
LOSS LAYER 
FROM 

LAYER LOW END 

1 SO 
2 $500 
3 $1,000 
4 $5.000 
5 $10,000 
6 $50.000 

(2) 
DEFINITIONS 
TO 
HIGH END 

$500 
s 1,000 
55.000 

$10,000 
550,000 

s 100,000 

(3) 
LOSS 
LAYER 
MIDPOINT 

(4) 
FREQUENCY 
IN 
LAYER 

(5) 
RAC 
LOSS IN 
LAYER 

$250 18.528 4,633 
$750 10.703 8,030 

$3,000 12.364 37.156 
$7,500 4.301 32,383 

530,000 4.970 151,700 
$75,000 2.495 194,601 

7 s 1 @O.OOO $500,000 $300,000 2.878 1.032.845 
8 8500.000 $1 ,ooo.ooo $750.000 1 .OOl 1 ,140,260 
9 $1 .ooo.ooo $2,000,000 $1.500.000 0.760 2.789.788 

Totals 58.000 5.39 1,397 

The calculation of the Risk Adjusted Cost use-s equations (3). and (41, shown earlier. 

It is also organized into a spreadsheet. The first five columns are like those of Table 1 except 

the last column on the top part is RAC instead of expected loss. The last three columns of 

the new Table 4 are like those of Table 3 except that they are about RAC rather than 

expected loss. 

TABLE 4 (CONTINUED) 

LAYER 

(6) (7) (8) (91 
FREOUENCY RAC RAC RAC 
ABOVE THE BELOW & AT THIS FOR THIS 
LAYER INCL LAYER DEDUCTIBLE DEDUCTIBLE 

1 39.4720 4,633 19,741 24,374 
2 28.7690 12.663 28,783 41,447 
3 16.4050 49,819 82,230 132,050 
4 12.1040 82,202 121.647 203,850 
5 7.1340 233.903 365,768 599,671 
6 4.6390 428,504 487,888 916,392 
7 1.7610 1,461,349 1.142.398 2.603,747 
8 0.7600 2,601,609 1.305.894 3,907,503 
9 0.0000 5,391,397 0 5,391,397 



The Risk Adjusted Cost values in Table 4 were computed for a risk aversion level which 

is the reciprocal of one million dollars. 

The exponential utility implied by this statement can be described herein as the one 

representing a surplus (mentioned earlier) of one million dollars. The use, in insurance 

applications, of the reciprocal of the risk aversion level was popularized by Van Slyke [ 19851 

who relates the idea to that of capacity. 

The underwriter’s decision here is how high to set the limit of the “primary policy”, 

given that the use of reinsurance will reduce the risk retained. Clearly the risk aversion of the 

insurers explains the structure that some write primary business while others write excess 

business. 

The best shares are computed ior each of the nine ground-up policies and shown in 

Table 5 below. The best shares were found by simple searching in the share domain for the 

share giving the largest Risk Adjusted Value. Often the best share is 100% which is simply 

found by determining that the share 99% has a lesser risk adjusted value than does 100%. 

The concavity of the RAV as a function of share, as proven in 131, allows this conclusion. 

Table 5 is based upon a surplus value of $2 million. We see in the results that only the full 

risk (coverage to $2 milliont is risky enough that less than 100% is preferred. If these surplus 

values are the same as those we are accustomed to for real property/casualty insurers, the 

results seem to suggest that this company is more like $20 to $50 million in terms of the 

surplus we are used to dealing with. As we gain experience with the use of utility theory, 

these judgments will become easier. 

Another aspect of the results in Table 5 is that our insurer would prefer to insure a 

primary layer to limits of $1 million rather than any other of the limits considered, since this 

choice gives the largest RAV in the column. The fact that this insurer also prefers to retain 

100% of that policy is just further evidente that its risk is not considered exceptionally large 

bv this insurer. 
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TABLE 5 

BEST SHARES AND THEIR RAV’S FOR GROUND-UP POLICIES 

LAYER 
POLICY EXPECTED BEST RAV OF 
LIMIT LOSS @ 100% SHARE BEST SHARE 

$500 $24.368 100.00% $12,181 
s 1,000 $41,428 100.00% $21,705 
$5.000 $131,776 100.00% $65,751 

s 10,000 5203.049 100.00% $102,125 
$50,000 $587,809 100.00% $288,020 

s 100,000 $882.134 100.00% $424,197 
~500,000 $2.162.134 100.00% 5876.884 

5 1 .ooo.ooo $2.792.384 100.00% $915,002 
52.000.000 $3.172.384 87.50% $761,894 

EVALUATION OF EXCESS LAYERS 

An excess layer is any layer that attaches at a loss size greater than zero. whereas any 

layer that attaches at zero loss size is a so-called “ground-up”, or “primary” layer. The excess 

layer has an aggregate loss with at least some positive correlation with every other layer of 

the same risk. Miccolis 119771 showed how to compute these correlations and how to 

compute the risk reduction gained from splitting one layer into two. Whereas his work was 

limited to variance as a measure of risk, Cozzolino. [ 19891 extended it to exponential utility 

as the risk measure. The application of this concept for evaluating layer pricing utilizes 

equation (4). 

Thus the RAC’s for the ground-up coverages wíll now be directly useful in computing 

the RAC’s for the excess layers. Subtraction is correct for the expected monetary value of 

the excess layers while corrected subtraction is used for the RAC values. 

Table 6 shows the RAC calculations of excess layers. With this spreadsheet, we can 

compute the RAV as a function of the share retained and then search for the best share for 

every layer separately. First, we need to know the premiums for each layer. They are given 

in Table 7 above. Again the premiums have been determined as 150% of the expected loss 

for that laver. 
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LAYER 

TABLE 6 

EVALUATION OF EXCESS LAYERS FOR SURPLUS OF $1 MILLION 

LOSS LAYER 
FROM 
LOW END 

$0 
$500 

$1,000 
$5,000 

$10.000 
$50.000 

s 100.000 
$500,000 

s 1 .ooo.ooo 

DEFINITIONS 
TO 
HIGH END 

$500 18.528 
$1,000 10.703 
65.000 12.364 

$10,000 4.301 
~50.000 4.970 

$100,000 2.495 
$500.000 2.878 

5 1 .ooo,ooo 1 .OOl 
$2,000.000 0.760 

FREQUENCY 
IN 
LAYER 

Total 58.000 

TABLE 6 (CONTINUED) 

EVALUATION OF EXCESS LAYERS FOR SURPLUS OF $1 MILLION 

RAC EXPECT LOSS RAC % 
GRND UP TO GRND UP TO FOR THIS FOR THIS RISK 
THIS LIMIT THIS LIMIT EXCESS LAYR EXCESS LAYR LOAD 

$24.368 524.371 $24.368 $24.371 0.01% 
$41,428 $41,437 S 17,060 $17,062 0.01% 

$131,776 $131,913 $90.348 $90,430 0.09% 
$203,049 5203.449 $71,273 571,357 0.12% 
$587.809 5593,694 5384,760 $388.299 0.92% 
5882.134 $899,004 5294.325 $297.772 1.17% 

$2.162.134 $2,366,317 $1.280.000 51.395.752 9.04% 
$2.792.384 53.270.520 5630.250 $704.194 ll .73% 
53.172.384 $4,015,928 $380.000 $452.1 13 18.98% 

For these eight excess layers, and the first also, we have determined the best share 

for an insurer whose surplus is $1 .OOO,OOO. The answers are in Table 8. 
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TABLE 7 

PREMIUM FOR EXCESS LAYERS f’) 

LAYER POLICY LAYER COMMON NAME PREMIUM 

1 0 TO $500 $500 EX $0 $36,552 
2 500 TO $1000 5500 EXS $25,590 
3 lTO5K $4K EX SlK $135,522 
4 5T0 10K $5K EX $5K $106,909 
5 10TO 50K 540K EX $lOK $577.140 
6 50T0 100 K $50K EX $50K $441,488 
7 100 TO 500K $.4M EX $.lM $1.920.000 
8 $.5M TO SlM $.5M EX $.5M $945.375 
9 SlM TO $2M SlM EX SlM $570.000 

(‘1 K = Thousand and M = Millíon 

TABLE 8 

RISK ADJUSTED VALUES OF EXCESS LAYERS (‘1 

LAYER 

PREMIUM FOR RAV OF BEST SHARE RAV OF 
THIS SHARE THIS SHARE FOR THIS BEST SHARE 
EXCS LAYER EXCS LAYER EXCS LAYER EXCS LAYER 

$36,552 512,178 100.000% $12,178 
$25.590 $8,526 100.000% $8,526 

$135,522 $45,010 100.000% $45,010 
5106,909 $35.467 100.000% $35.467 
$577.140 $185,257 100.000% $188,257 
$441,488 $140,213 100.000% $143,213 

s1.920.000 $393,218 100.000% $393,218 
$945.375 $154,607 92.400% $155,855 
5570.000 $24.106 59.000% $60,655 

(‘1 SHARE = 100.000% and SURPLUS = $1.000.000 

If the positive correlation between any two layers prevents the underwriter from taking 

two or more layers, then the layer with the best value should be selected by the underwriter. 

This is Layer 7. The top two layers are the only ones whose best shares are less than 100%. 

This may result from their high risk or from their inadequate price. In order to convey a better 

understanding of the best share idea, the Risk Adjusted Values of the layers are computed for 

severa1 shares retained so that a graph can be made. Table 9 gives the results. 
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TABLE 9 

RISK ADJUSTED VALUES OF SHARES 

SHARE LAYER 7 LAYER 8 LAYER 9 

0.00% 
10.00% 
20.00% 
30.00% 
40.00% 
50.00% 
59.10% 
60.00% 
70.00% 
80.00% 
90.00% 
92.40% 

100.00% 

SO 
$61,707 

$1 19,079 
$171,679 
$219,421 
$262.124 
$296,447 
$299,601 
$331,656 
$358.085 
5378.679 
$382.729 
5393,218 

$0 
$30.124 
$57,384 
$81,645 

$102.763 
$120,590 
$133,821 
s 134,970 
$145.738 
$152,722 
$155,741 
$155,855 
S 154,607 

$0 
$17,701 
832.670 
$44,691 
553.533 
$58,944 
560,655 
$60,650 
$58,354 
$51,736 
$40,446 
$37.000 
$24,106 

Figure 1 shows the RAV’s of these top three layers (see Table 9) as functions of the 

share variable in order to show the two main shapes. Layer 7 has an RAV which increases 

everywhere within the zero to 100% range, offering no interior optimum. Layer 8 attains its 

optimum at 92.4% while layer 9 has its maximum at 59.1% for our insurer. Therefore. the 

best share is the largest possible one which is 100%. The curves for layer 8 and layer 9 peak 

within the same interval. In other words, layers 8 and 9 have the best shares. 
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Figure 1 
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Recall that the set of possible primary layers were evaluated at a surplus level or $2 

million and the set of possible excess layers at a surplus level of $1 million. That only means 

that the results for the two groups of possible policies are not directly comparable. Eut if 

comparability is desired, the analysis can be repeated at many different surplus levels and 

presented in terms of risk profile curves. This gives one graph for each layer which shows 

the Risk Adjusted Value at all possible surplus levels. Some broad comparisons are possible. 

This technique was presented by Cozzolino 119781. 
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The analysis was repeated at a surplus level of 5370,370 and the values were 

compared to the values of primary layers 6 and 7 at the first surplus level used. The shares 

from zero to 100% were evaluated. These results are displayed in Figure 2. Layer 7, having 

more risk than layer 6, has a best share in the interior, while layer 6 has a best share the 

boundary of 100%. The decision making implications are evident. 

Figure 2 
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In order to evaluate the retention of two non-adjacent layers of one risk, it is necessary 

to evaluate the Risk Adjusted Value of the probability distribution found in Table 10. This 

illustrates that the probability distribution for any possible pair is easy to write. This simply 

sets to zero the frequency in the layers not covered and the spreadsheet formulas are 

unchanged. 
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TAELE 10 

NON-ADJACENT LAYER EVALUATION ILLUSTRATION 

L& LAYER DEFIN&NS: 
(3) (4) 

FREClUENCY EXPECTED 
FROM TO IN LOSS IN 

LAYER LOW END HIGH EN0 LAYER LAYER 

1 $0 5500 0.000 $0 
2 5500 $1,000 10.703 $8,027 
3 $1,000 $5,000 0.000 $0 
4 $5,000 t10,000 4.301 $32.258 
5 5 10.000 $50.000 0.000 $0 

Totals 15.004 $40.285 

CONCLUSIONS 

The application of utility theory to insurancb is incomplete without including the 

structure of risk sharing; to limit the use of utility fo accept or reject decisions misses its 

power fo explain the real world of excess insurance and reinsurance. The fine subdivision of 

risk which is routinely achieved by insurance institutions can be explained on this basis. This 

paper shows practica1 methods of evaluating and pricing excess layers. We find that there 

are many cases where a share between zero and 100% of an excess layer is preferred. In 

other situations, 100% is the best share. The size of the best share is a function of the 

insurer’s risk aversion level and of the risk characteristics of the layer. We find, as predicted 

by Samuelson in 1957. that there exists a positive best share if the expected profit from 

underwriting a layar is positive. Our model appears to be in broad agreement with the 

behavior of experienced underwriters, and thus can form the decision basis for a reinsurer’s 

assumption of risk. 
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