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An Alternative to the Parallelogram Method

Abstract

The socalled "parallelogram” method is standard in actuarial
practice for illustrating loss and exposure statistics as a conceptual
and calculational device. Ratemaking is a prime example. In this
article we propose a similar device based on three variable calculus.

Introduction

This article is & result of conclusions drawn trom the following observation. Under the
parallelogram method we plota7/1/92 accident ona 1/1/92 policy at the point, (7/1/92,6
mos. ), in the xy—plane. Thus, for example, the statement: " As of 12/31/94, Accident Year
1991 paid dollars totaled $100 million. All policies annual. " ; is represcnted by the
following illustration.

$100 Miilion

1/1/91 12/31/91
Fig. 0.1: $Paid

It is common practice to use the same picture to illustrate the statement: “ Calendar Year
1991 paid dollars totaled $100 million. All policics annual. “ From the plotting rule given
above, however, use of Figure (.1 would suggest that alf of the calendar year payments were
made on 1991 accidents. Figurc 0.1 does not "fit" the statement. We proposc that the rule
lead, instead, to an illustration such as the following.

$100 Million

12/31/91

Fig. 0.2: $Paid
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In Figure 0.2, $100 million is paid on accidents beginning with those on an unspecified
earliest policy (i.c., the left edge of the figure) through accidents on 12/31/91. We also
suggest the usc of a rectangle that starts with an unspecified carliest accident datc and ends
with accident date 12/31/91. The idea, in general, is that the diagram should allow for
allocation of the $100 million by accident year.

It is common practice to estimate the average accident date for a calendar year at the middle
of the year. Figurc 0.1 appears to support this conclusion. This is not the case using Figure
0.2. According to that figure, some other point appears more likely.

The basis of our conclusions (and solution) was our interpretation of the plotting scheme
underlying the parallelogram method. We believe our interpretation is consistent and that
the traditional illustration of calendar period can be misleading.

In this article we present an alternative to the parallelogram method. The methed is
probably best described as a "rectangle” method. Tt is simply the result of plotting a 7/1/92
accident on a 1/1/92 policy as point, (1/1/92, 6 mos.), in the xy—plane, for example. Thus, a
policy year under our method is a rectangle, whereas it is drawn as a parallelogram under
the parallelogram method. So what is the point of developing a new method? Our reason is
that the rectangle method is simpler to work with for pictures and mathematical
applications using a reclangular coordinate system.

We begin with the basic plotting scheme. We apply the method for the same purposes as the
parallelogram method. We then move to three dimensions where we graphically make the
distinction between accident, policy and calendar periods. With the use of 3D we suggest
that for a calendar year the average valuation date, and not the average accident date, be
estimated at the middle of the year. We review the socalled "overlap" fallacy using

3-D pictures.

Mathematical applications are reserved for the appendix. The plotting method allows for
ready application of basic calculus. We provide mathematical interpretations of the notions
of development, trend, average date and on level factor. We model and test basic reserving
methods.

Plotting Basics

To each accident on an occurrence policy we assign point (x,y) in the xy-plane, where x
cquals the effective date of the policy triggered and y is accident lag. Both axes are scaled
using the same time unit, so that x+y equals accident date. For example, (1/1/92, 6) is the
assignment of a 7/1/92 accident on a 1/1/92 policy. This is a fundamental difference from
the traditional parallelogram method which places the same accident at point (7/1/92, 6).
The basic definitions are as follows:

A loss is a point (x,y) representing all x+y accidents on all policies
with effective date x. (1.0.3)
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A loss region, R, is a collection of points in the plane. (1.0.b)

For example, if our data base shows 100 accidents on 7/1/92, of which 20 are on policies
issued on 1/1/92, then those 20 accidents would be assigned toloss (1/1/92, 6).

Accidents on a policy with effective date x0 are assigned to the vertical line through x0. As
wc are working with occurrence policies, if term is at most 12 months, the line through x0
cuts off at lag 12 months.

The primary loss regions are those representing accident and policy period shown in Figure
1.0, below. For time period x1 to x2, the accident period (A+B) is the diagonal band over the
interval and the policy period (B+C) is the vertical band over the interval.

In applications R is often bounded. R may not extend upward indefinitely as policy term
may be at most 6 months, for example. Also, R may not extend back in time indefinitely as
there is some date at which acompany began writing policies. In later illustrations we may
not always label the axes or the origin, (0,0). Such labels should be clear from the context.

/’ ) s
/

Accident Lag
>
7

/

S =
x2

Policy Date
A+B = Accident Period x1 to x2 B+C =Policy Period x1to x2

B = Policy/Accident Period x1 to x2

Fig. 1.0 : Basic Regions'

t Accident period x1 to x2is all (x,y) such that x+y falls betwecn x1 and x2. Policy period x1 to x2 is all
(x.y) for which x falls between x1 and x2. Finally, Policy / Accident period x1 to x2 is all (x,y) for which
both x+y and x fall between x1 and x2.
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Hlustrations in 2D

We identified losses with points in the plane. In this section we annotate plots of regions to
represent levels of statistics associated with losses. Examples of loss statistics are dollars
paid, number of claims, estimated ultimate losses, loss reserves and number salvage or
subrogation recoveries.

Plotting Valuations in the xy—plane

For a single loss, a level (of a statistic ) is defined as a net change in statistic over some time
period. Level for a region is the sum over levels for its points. We provide instructions for
illustrating valuation (i.e., determination of some statistic level) of R for four particular
types of valuations for its points. The valuations are:

1) all points valued from accident to common datet;

2) all points valued over calendar period tl tot2;

3) all points valued from accident to valuation lag ¢ ; and

4) all points valued from accident to ultimate . (2.0

The instruction for plotting is straight forward as follows.

To illustrate level for R for the four (2.0) vaiuations, draw R,
assign level and indicate the type of valuation.

Optional: Represent valuation of R over calendar period t1 to (2
as two diagrams, one each for valuations as of dates t1 and (2. (2.1.a)

Exhibit 2.1A contains sample plots of the four valuations. Note that we represent valuation
of Accident Year 1991 over Calendar Year 1992 in two ways in the figure. The top two
figures apply the two-diagram option described in (2.1.a), whereas a single diagram is used
in the third figure. Note that for valuation as of date t, we include in our diagrams the
diagonal line through t on the x-axis: t=x +y. Such lines are convenient for reference.

Policy, accident and calendar period arc terms commonly used in practice. Under our
plotting scheme, policy and accident period are two ty pes of loss regions. Calendar period
in this instance, however, is the second type of (2.0) valuation where R equals the entire
plane. Note how we represent the calendar period information in Figure 2.1B.

All losses through 12/31/91 are represented. Given the information, we could illustrate
more detailed distribution of the $35 million. For example, it may be the case that only
accidents after 12/31/81 contribute to level. Figure 2.1B is our rectangle method version of
Figure 0.2 from the introduction.
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Dollars Paid Loss— Annual Policies

@12/31/91

5.148\

As of 12/31/91, Accident
Year 1991 is at level $148
thousand

=
1/1/91

i -
4% 349

12/31/91

As of 12/31/92, Accident
Year 1991 is at level $349
thousand
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1/1/91

12/31/91
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12/31/92

Calendar Year 1992
im pact on Accident Ycar
1991 is +$201 thousand

.
\: $ 444

1/1/91

—

12/31/91

@Lag 3 years

e

For valuation lag 3 ycars,
Accident Year 1991 is at
level $444 thousand

12

1/1/91

12/31/91

For valuation at ultimate,
Accident Year 1991 is at
level $467 thousand

$ 467
t \
1/1/91 12/31/91
Policy Date

Fig. 2.1A: Sample 2-D Valuations
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"Calendar Year 1991 paid dollars totaled $100 million of which
$65 million was paid on 1991 accidents. All policies annual.”

1/1/91 12/31/91

Fig.2.1B: $Paid Losses

Average Value and Average Point of R

In addition to assigning lcvel in a diagram, we can also calculate the average value and plot
the average point. The average value is simply level divided by the area of R. The average
point is intuitively where statistic level is balanced or the "center of mass " to borrow from
another discipline. We assume such points, (x*,y*), exist and are unique. We revisit thesc
concepts in the appendix. We add to instruction (2.1.a) as follows:

Optional: Plot average point, (x*,y*), and determine average
value as level divided by the areca of R. (2.1.b)

In Figure 2.1B, let 144 be the area (in square months) for Accident Year 1991 to which 365
million was assigned. The average value is then 0.451. An estimate of some region on the
level for the accident year is the product of 0.451 and the area of the region. This is, of
course, a very rough estimate.

In ratemaking, one often trends bet ween the average accident date (x*+y*) or policy date (x*)
for two valuations. Points are often sct using the uniformity assumption, which places the
average coordinates x* and y* for typical accident and policy periods at the midpoints of the
respective coordinate ranges. We derive this result in Example F of the appendix. It is
commor practice to place the average accident date for a calendar year at the middle of the
year. By our scheme, however, some other point may actually be more appropriate.
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Consider Figure 2.1B above. Suppose the $65 million is uniformly spread over Accident
Year 1991. Thus, its average point is (1/1/91, 6). Also, let (3/1/90, 9) be the average point
(possibly set through jud gement) for the region of all accidents prior to 1991. The average
point for R is the "weighted average" of average points for its parts. The weighting is
actually done per x and y coordinate using level of statistic per part. The average point for R
equal to the entire plane is therefore, (9/15/90, 7) (e.g., lag 7= (65=6+35+9)/100), so that
4/15/91 is the average accident date.

The average point may vary with the statistic. For example, paid dollars may yield a
different result from number of paid claims. Which point is morc appropriate depends on
how the point is to be used for some analysis or review.

Illustrations in 3-D

So far, valuations have been illustrated by assigning level to R in the xy-plane. GivenR, all
of our illustrations in 2-D were drawn the same. We made clear the type of (2.0) valuation
drawn by adding a heading. Headings indicated the time period over which each point of a
region was valued. Define z (in the same time unit as x and y) as valuation lag, so that
x+y+z is a valuation date. By adding a dimension, we improve on drawings by graphically
representing all variables x, y and z.

Plotting Valuations in xyzspace

In xyzspace, let (x,y,z) represent valuation of loss (x.y) at time x+y+z. WerepresentR in a
natural way as a collection of points, (x,y,0), in the xy-plane. In illustrating valuation we plot
R, however assign level to particular sets V positioned above ' R in xyzspace. Thus: 1) the
distinction between a loss region and a valuation reduces to the difference between R and V;
and 2) an illustration in 2D is the result of collapsing V onto R. Sets V are determined by
(2.0) valuations as follows:

To illustrate valuation for R as of date t, valuation lag c or at
ultimate, assign level to the set Vabove R:

i) between R and plane z=t=-y;
ii) between R and plane z=c; and
iii) between R and planc z=+infinity ,
respectively.

To illustrate valuation for R over calendar period t1 to 12, assign
lcvel to the set V above R between planes z=tl-x-y and z=t2-x—y. (3.1.a)

! Sets projecting onto R in the xy—plane. These are sets of points (x,y.2) such that (x,y0) 1s In R.
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This instruction is analogous to(2.1.a). Plane z= tx—y, for fixed t, is that through points
(1,0.0), (0,t,0) and (0,0,t). Plane z=c sits above and parallel to the xy—plane. We draw the
z=+infinity plane sitting above and parallel o the xy-plane by convention, consistent with
the notion that valuations as of datet and lag ¢ converge at ultimate.

Figure 3.1A is the extended version of Figure 2.1A. Region R (i.c., Accident Year 1991 with 0
and 1 corresponding to dates 1/1/90 and 1/1/91, respectively) sits at the base of the stack
of valuations.
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Fig. 3.1A : 3D Version of Figure 2.1A !

! dollars in thousands
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We have identified additional valuations with Figure 3.1A as follows:

® $148 thousand valuation as of 12/31/91

® 3201 thousand calendar year 1992 development

® 395 thousand development from date 12/31/92 to lag 3 years
® $23 thousand development from lag 3 years to ultimate

Of course, we could have inferred these additional valuations from Figure 2.1A. The
advantage here, is that each level is directly associated with a picture.

In 2-D, Figure 2.1B was the standard way wc rcpresented calendar period valuation. The

standard illustration in 3D is provided with Figurc 3.1B.

"Calendar Year 1991 paid dollars totaled $100 million of which
365 million was paid on 1991 accidents. All policies annual.”

A

191 121314,

Fig. 3.1B: 3-D Version of Figure 2.1B.
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As a conceptual device, we can use 3-D diagrams to show the difference between
development and trending concepts applied in ratemaking. Define development as the
ratio of levels for two valuations of a region R. Define trend as the ratio of levels for
valuations of two distinct regions R1 and R2.

Consider Figure 3.1C below. Ais level of incurred loss for experience period R1 valuated as
of 12/31/92. Additional development to ultimate is B. The ultimate level for the proposed
period, R2, for which new rates will be in effect is given by C. Consider the following
equation.

C = A+ (A+B)/A * C/(A+B).

The equation is certainly valid. Development is given by (A4+B)/ A. Trend is given by ratio
C/{A+B). We can therefore arrive at C by applying two factors 1o A that do not "overlap”.
We have illustrated that there is no overlap or redundancy, but equally important, no
deficiency in development and trend factors in the cquation. It is conceivable, however, that
a method of estimating development and trend factors may yield or allow for redundant

or deficient forecasts.

[

12/31/92

Fig. 3.1C: Statistic Development and Trend

There is another use of 3-D illustrations. In practice one adds lines to diagrams to indicate
incidence of rate, statutory or other changes affecting level in a fundamental way. Wecan
show these highlights or phases of the valuation process itself. more effectively in 3-D.

Let s(x,y,z) be the "rule” for determining level for sets V. Suppose s5(x,y,z) is in three distinct
phases as follows.
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’ s1(x,y,2) for x+y+z <= 1/1/92
s(xy.z) = s2(x,y,z) for 1/1/92 < x+y+zand x <= 12/31/92
| s3(x,y,z) for x>12/31/92

It may be the case that s2 has to do with new management coming on board with a change
in reserving philosophy, for example. Phase s3 covers the impact of a rate change and a law
change that the company has no inkling of at the present time. It is too far off into the
future. Figure 3.1D is an illustration showing how these phases of s partition xyz-space.
Note that it would not be as easy to show st or 52 in 2-dimensions.

Valuation Lag
0] ’7
TUEN

[72]

o

171797
Poli(‘.y Da[c 12/31/92

Fig. 3.1D: An sPartition of xyzspace.

Each set V falls in one or more partitions or domains of phases of s. Denote by, Vs, the
level of V given s. If V falls in s’ s domain the "true” level is V|s1. Consequently, we
interpret V{s2 and V|s3 as V on s2 and s3 level, respectively, provided application of s2
and s3 make sense for V. At the risk of waxing philosophical, we can only make estimates of
s at any point in time. Moreover, it may be difficult to say whether those approximations do
not in fact mix phases s1, s2 and s3 of s.

12
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[llustrations in 2D suffice if the extra detail of 3D is not required. We derive 2-D pictures
from those in 3-D by projecting or collapsing the latter onto the xy-plane. We thus lose the
perspective of the z-dimension. Another useful projection is onto the xz—plane. The
disadvantage in this case is that all of R and V is projected onto the x-axis. Any detail for R
and V is lost.

Average Value and Average Point of V

Similar to the 2-D case, we can determine the average value and point of V. The average
value is level divided by the volume of V. The average point, (x*,y*z%), is interpreted as a
balance point as before. We add to instruction (3.1.a) as follows.

Optional: Plot average point (x*,y*z*) and determine average
value as level divided by the volume of V. (3.1.b)

In Figure 3.1B, let 864 be the volume (in square months) for Accident Year 1991 to which $65
million is assigned. The average value is 0.075. An estimate of some set V on the level for
the accident year is the product of 0.075 and the volume of V.

A 2D diagram is the result of projecting a 3-D diagram ontoR. Consequently the average
point, (x*.y*) of (2.1.b) is the projection of (x*,y*,2*} in (3.1.b), and coordinates match. As was
the case for average accident and policy dates, we might use the average valuation date,
x*+y*+z*, for trending purposes. In fact, we suggest that under uniformity the average
valuation date. and not the average accident date, be at the middle of the year for a calendar
year valuation (se¢ Appendix, Example F).

Consider Figure 3.1B above. Suppose the $§65 million is uniformly spread over the set V for
Accident Year 1991 valuated as of 12/31/91. Using methods of the appendix, we can show
that its average pointis (11/1/90, 6, 4). This point does not project onto the point (1/1/91,

6) estimated earlier under uniformity of level over R. Consequently, uniformity over V and
R may lead to different conclusions when level is not in fact uniform over both V and R.

As in the 22D case, we can select an average point for the set to which the $35 million is
assigned, and estimate (x*,y*,z*) for the entire calendar period. We take averages by
coordinates as before, using levels $35 million and $65 million as weights.

Other Applications

Our plotting method assigns items or "subjects” to points in the plane by letting x equal the
date of Event 1, y equal the lag in Event 2 and z equal valuation lag. This theme can be
applied where the subject is losses on claims made policies, losses by accident and report
date on policies, or losses on a single occurrence or claims—made policy. To this point, our
subject has been losses on a book of occurrence policies.
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Losses on a Book of Claims—Made Policies

Coordinates x and y rcpresent policy date and report lag, respectively. Point
(x.y) is all losses on x—dated policies reported at time x+y. In Figure 1.0 we
have the interpretations (along with new labels for the axes):

A+B Report period x1 to x2
B+C Policy period x1 to x2
B Policy / Report period x1 to x2

Losses on a Book of Claims by Accident and Report Date

Coordinates x and y represent accident date and report lag, respectively. Point
(x,y) is all accidents on date x reported at time x+y, for all policies. In Figure
1.0 we have the interpretations (along with new labels for the axes):

A+B Report period x1 to x2

B+C Accident period x1 to x2

B Accident/Report period x1 to x2

C IBNR losses for accident period x1 to x2 as of date x2

Losses on a Single Occurrence or Claims-Made Policy

Coordinates x and y represent accident date and report lag, respectively. Point
(x,y) is ail losscs on x—dated accidents reported at time x+y. In Figure 1.0 we
have the interpretations (along with new labels for the axes):

A+B Claims-made coverage over period x1 to x2 with
retroactive active date at the origin

B+C Occurrence policy coverage over the period x1 to x2
B Accident/Report period coverage x1 to x2
C Unlimited tail coverage for claims-made coverage

during x1 to x2. Limit tail to d time units after
period with line x+y = x2+d.

14
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The treatment is virtually identical to that provided losses on a book of occurrence policies.
We associate statistics with regions in the planc and illustrate statistic levels in 2D and 3-D.

Conclusions

The goal of our exercise was formal construction and application of a basic plotting scheme.
A similar approach can be used for the traditional parallelogram method. In fact, we made
a "parallel" construction. We still did not arrive at the traditional rectangle for illustrating
calendar period valuation. This was a consistency issue (at least for this author) that led to
the article itself.

We feel the 2-D and 3-D illustrations are effective and consistent ways of picturing
valuations. In addition to pictures, we interpreted standard concepts in the context of our
plotting scheme. We interpreted the notions of average date, trend, development and on
level factor.

We applied the method for the same purpases as the parallelogram method. We feel it is no
more difficult to use for drawing 2-D diagrams than the traditional method. In particular,
we suggest that it may be easier to use tor drawing policy periods with arbitrary policy
terms. The basic plotting scheme can be used in other situations. It can be used to treat
exposure statistics as well.

The rectangular coordinate system is ready-madc for calculus applications. We found it
convenient to use densities (discussed in the appendix) g(x,y,z) and s(x,y,z) for testing and
building basic reserve models, for example. More advanced mathematics regarding gand s
is one area that warrents further investigation. Vector analysis in 3D is one topic. Adding
record lag, for example, we can model valuation using four variables.
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Appendix

To accompany illustrations in 2-D and 3-D, we briefly introduce functions g(x,y,z) and
s(x,y,2). We assume the reader familiar with basic calculus methods. Some familiarity with
double and triple integrals is required.

Valuation of R
Above, we dealt with the illustration of statistic valuations. In this section we provide an
overview of calculus methods used tor calculating valuations. A key feature of our

rectangular plotting schemc is that it is ready —madc for calculus applications.

Let g(x,y,z) be density of statistic lcvel at point (x,y) at time x+y+z. We may think of g(x,y.z)
as "infinitesimal” level per area near the loss at the time of valuation.

Level for a region is the sum over levels for its points. As the reader may have guessed, we

determine level for R using integration. Valuations (2.0) are determined as follows:

Level for R valuated as of date t, over calendar period t1 to t2 or
at valuation lag c, is the double integral over R of the function:

) gxyxy);
i) g(x,y.t2xy)—g(x.y.tl=%y); and
i) g(x,y.c) .

respectively.

Level for R valuated at ultimate is the limit as t {resp., ¢) approaches
infinity in i) ( resp., iii)). (4.1.3)

We require g(x.y,z) equal O for z<0, with 0 and finitc limit as y and z increase, respectively.
These properties of g(x,y,z) reflect the fact that: 1) losses that haven’t occurred have level
zero; 2) after high enough accident lag level becomes insignificant; and 3) after high
enough valuation lag change in level becomes insignificant.

These arc preferred and not exhaustive mathcmatical propertics for g. We assume g and R
sufficiently defined so that the integrations of (4.1) are defined and finite. A simple way to
satisfy 2) and 3) is to set g=0if y is larger than policy term 6 months and set g=0if z is larger
than 10 years, for example, respectively. As an example, set

X +y X+y-z

g(x.y.z) = 100°c - 10-e . (Eq.4.1)

where x is the number of ycars since 1/1/90 and all policics arc annual term. The reader
should verify that this function behaves as required (i.c., as y and z increase) and plot

16
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g(x,y,z) after fixing two of its variables.

One must be careful to check to see where in R a density in (4.1) is zero because the
zcoordinate is negative. R should be partitioned before integrating, accordingly. When
permitted, we derive ultimate level by letting z approach infinity in the formula for g(x,y,z),
then integrate the resulting function, f(x,y), over R.

The instructions for calculating average values and points are provided next, along with a
formal interpretation of uniformity.

The average value of g over R is level divided by the (geometric)
area of R (i.e., the integral of 1 over R). (4.1.b)

Let h(x,y) be a function. The average value of h, with respect to
the valuation, is the integral of product he g divided by the
integral of g over R. (4.1.c)

Let x* and y* be the average value of h=x and h=y, respectively, in
(4.1.c). Then (x*,y*) is the average point of R for the valuation. (4.1.d)

The uniformity assumption is the case the integrand in (4.1.a) is
identically conslant, 8, over R. Level equals B times the area of R. (4.1.e)

Valuation of V

As with the 2-dimensional case, we outline how calculus methods may be used to model
valuation. In this instance. however, we integrate a function describing level over set V
instead of R.

Let s(x,y,z) be density of statistic level at point (x,y,z). We may think of s(x,y.z) as
"infinitesimal” level per volume near the loss at the time of valuation.

Level for a region is the sum over levels for its points. We determine level for R using
integration. Valuations (2.0) are determined as follows.

Level forR valuated as of date t, over calendar period t1 to t2, at
valuation lag ¢ or at ultimate, is the triple integral of s(x,y,z) over
the set V determined by the valuation in (3.1.a). (4.2.a)

This rule for calculating level for V is more straight forward than rule (4.1.a). We do not
need to specify the behavior of the z variable. All such information is contained in V.

We require s(x,y.z) equal zero for z<0 and have limit 0 as both y and z increase. Losses yet
to occur have level zero. Moreover, for sufficiently high accident or valuation lag,
contribution to level becomes insignificant. We assume s and V sufficiently defined so that
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integrations in (4.2) are defined and finite.

We usually integrate s(x,y,z) over the the range for z and then over R '. Note that wecan
integrate s over paths and surfaces in 3-space in addition to sets V associated with (2.0)
valuations that have been the focus of the article. For example, the rate of statistic at time t
applies the integral of s(x,y,z) over the intersection of set V and the planc z = t5y. An
example of s(x,y,z) is the following.

X+y-z

s(x,y,2) = 100°¢ , (Eq.4.2)

where x is the number of years since 1/1/90 and all policies are annual term. The
instructions for calculating avcrage values and points are provided next, along with a
formal interpretation of uniformity.

The average value of s over V is the level divided by the
(geometric) volume of V (i.e., the integral of 1 over V). (4.2.b)

Let w(x,y,z) be a function. The average value of w, with respect
to the valuation, is the integral of product w *s divided by the
integral of s over V. (4.2.c)

Let x*, y* and z* be the average value of w=x, w=y and w=g,
respectively, in (4.2.c). Then (x*.y*z*) is the average point of V
for the valuation. (4.2.d)

The uniformity assumption is the case s(x,y.z) is constant, B, over
V. Level equals B times the volumec of V. ) (4.2.c)

Applications

If we integrate s(x,y,u) over range 0 <u< z, with respect to 4, theresult is a density g(x.y.z)
of the type described earlier. In that case, we can use either g(x.y,z) or 5(x,y,) to determine
(2.0) valuations. The results of the calculations will be the same. In particular, we would
derive average points using (4.1.d) and (4.2.d) so that the average point for V would indeed
project onto the average point derived for R. We do not require, however, that g be the
anti-derative of some s or that s be the derivative of some g, with respect to the zvariable.

Examples follow. As our concern is mainly with (2.0) valuations, the cxamples apply
g(x,y.2) using (4.1). In most cases an cxample can be restated as an application of s(x,y,z).
We use the notation R | g (resp., V| s) to denote valuation of R (resp., V) using integration in

(4.1) (resp., (4.2))-

! For valuation as of date t, over calendar period 11012, al valuation lag c and at ultimalc, the ranges are:
0<z <t—x-y; tl-x—-y < z <12-x—y; 0< z <c; and 0 < z <+infinity, respectively.



An Alternative to the Parallelogram Method

EXAMPLE A
We arc given dollars paid loss density of (Eq.4.1)

X+y X+y-z

gxyz) = 100 e - 100°¢ .

where x is the number of years since 1/1/90 and all policies are annual term. We wish to
determine paid losses for Accident Year 1991:

I)as of 12/31/91,

2)as of 12/31/92;

3)at common lag 3 ycars; and
4) at ultimate ,

as well as illustrate the four valuations in 2D and 3-D.

We set up our solution by noting that Accident Year 1991 is the region:

O<y<l, ly<x<2y ;
which is also the order and limits of integration.

1) Date 12/31/91 corresponds tot=2. Using instruction (4.1.a)(i) we determine
R g(x,y,2%-y). The result is $148 thousand ! as follows.

1 2y
§ {1000 e™ 7= 100+ ™77 grdy
0 v
1
§]00°(e2— el) d
1
g -2 4 2
- 0100-‘/z°e *(e— e ) dy
= 100467 ~ 2360 ¢ - = 148
! For accident pericd R given by D<y<l, ay<x<by:
b a - 2b 2a
Rlg(x,yt%y) =100¢(e ~ ¢ ) ~%e100°*¢c » (e - ¢ )
b a -~

Rig(x,yc) =100 (e — ¢ ) —100( 1 — ¢ )
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2) Date 12/31/92 corresponds to t=3. Using (4.1.a)(i), we determine
R|g(x,y,32y). The result is $349 thousand (i.e., 4672360 exp(3)).

3) Using (4.1.a)(iii), we determine R | g(x,y,3). The result is $444 thousand (ie.,

467 (1exp(=3)).
4) Finally, letting z approach infinity in the formula for g results in the function
x+y
fry) =100+ ¢

Integration over R yields ultimate $467 thousand.

As for illustration, we have alrcady provided a 2D version with Figurc 2.1A and a 3D
version with Figure 3.1A. Of course, the same problem using s(x,y,z) in (Eq.4.2) yields the
same results.

We use this particular density to generate "actual” data for later examples. The following
results are applied.

Accident Periodato b

Val. D- 1991 1992 1993 1994
Datet value 1 2 2 3 3 4 4 5
2 1.00 148

3 1.00 350 401

4 1.00 424 950 1,091

5 800 436 1,082 2,314 2,499
S 1.00 451 1,152 2,583 2,965
5 1.20 459 1,19 2,787 3383
6 1.00 461 1,226 3,132 7,021
At Ultimate 467 1,270 3,451 9,382

Table A : $Paid Losses for g(x,y,z) and Regions R !

x+y x+y-Dz
' Given : glxy.z) = MW0sc — 100 + ¢ where D>0,

and R given by: 0<y<1, ay<x<b-y, valuation as of date tis given by:

b a “D  2b 2a
Rlgxytxy) =100%(e ~ ¢ ) — 100/(1+D)*e (e — ¢ )

First term of right side of equation is ultimate level.
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EXAMPLE B

A model helps to demonstrate ideas in an effective way. Welook at how a change in
payment paitern, with no change to ultimate losses, affects the outcome of a purely
mechanical (i.e.. "selections” are calculations) reserving model. Let g(x.y,z) be the density
determining dollars paid loss as follows:

X+y x+y-z
100*ee - 100 * ¢ for x+y+z<5
g(x.y,2) = x+y x+y-Dz
100*e - 100 ¢ otherwise,

where x is the number of years since 1/1/90. Valuation date t=5 corresponds to date
1/1/95. All policies are annual. The ultimate density does not change with D(>0) and so D
only determines the rate at which ultimate levels are reached.

Using Table A of Example A, we have generated triangles using g(x,y,z) for three choices of
D in constructing Table B below. Our reserving model uses average link ratios as selected
factors and repcats the last ratio to estimate the tail. Only the latest diagonal changes.

A generalization of this example is to let cumulative incurred losses be given by density
i(x.y.z) where,

i(xy.z) = p(xy.2) + t(x.y.2)

and p and r represent densities for cumulative payments and rescrves, respectively. We can
then review the effect on a mechanical reserving model when at some time, t*, thercis a
switch to density

Pxy.z) = p*(xy.2) + (xy.2)

where both p and p* converge! to the same (or different) ultimate function, and both r and
r* converge to the zero function. For example, we might review the effect of reserve
adequacy on an incurred loss model by letting p=p*. Here, we interpret a change in
adequacy as a shift from r to r*. Letting r*(x,y.z) be greater than r(x,y.z) for x+y+z > t*,
provides for the impact of reserve strengthening on the model.

' Let z approach infinity.
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Method may be deficient for Mecthod may be sufficient for Mecthod may be redundant for
slow—down in payment pattern. no change in payment pattern. speed-up in pay ment pattern.
CaseD = 0.80 CaseD = 1.00 CaseD = 1.20
AY 12 24 36 48 12 24 36 48 12 24 36 48
1991 148 350 424 436 148 350 424 451 148 350 424 459
1992 401 950 1,082 401 950 1,152 401 950 1,19
1993 1,091 2314 1,091 2,583 1,091 2,787
1994 2,499 2,965 3,383
237 1.21 1.03 237 1.21 1.06 2.37 1.21 1.08
237 1.14 2.37 1.21 237 1.26
2.12 237 2.55
Tail Tail Tail
Average 2.29 1.18 1.03 1.03 237 1.21 1.06 1.06 243 1.24 1.08 1.08
Cumu. 2.84 1.24 1.06 1.03 325 1.37 1.13 1.06 352 1.45 1.17 1.08
Est. Ultimate 7,105 2,878 1,144 448 9,646 3,549 1,305 480 11,909 4,037 1,402 497
Act. Ul 9,382 3451 1,270 467 9,382 3,451 1,270 467 9,382 3451 1,270 467
Est.-Act. 82,277y  (8574)  (3125) (319) $265 397 836 313 $2,527 $585 3132 330
Percemi Diff. —243% -16.6% 99% —40% 2.8% 2.8% 2.8% 2.8% 269% 17.0%  10.4% 6.4%

Table B: $Paid Loss Projection !

! See Table A of Example A.
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EXAMPLE C

In principle, g(x,y,2) can be used to determine all (2.0) valuations given our basic regions R.
With Figure 3.1C in mind, we wish to estimate ultimate level for a policy period given
estimated ultimate levels from past experience. Recall that for our purposes, we defined
“trend" in the discussion of Figure 3.1C as the ratio of levels for two distinct loss regions.

Assume annual policy term and that we have estimated ultimates losses for Accident Years
1991-1994 (using, for example, development triangles). We wish ta determine ultimate

level for Policy Year 1995. Recall that f(x,y) was the result of letting z in g(x,y,z) approach
infinity. ThusR| f yields ultimate level. Assume f takes the form:

A(x+yHB
fxy) = e

For Accident Year: 0 <y <1, ay <x <b-y, we make the approximation forR | f:

R|f = f((a+b-1)/2,-1/2) * (b-a)
= cxp[ Afatb) / 2+ B * (be) ;

which is the value of f at the average point of R under uniformity times the area of R. This
approximation is the basis for our linear regression model shown in Table C, below.

Note that in Table C, fitted ultimate levels appear in column (4) and levels as integrations
appear in column (5). We estimate Policy Year 1995 ultimate as follows:

PY1995Ult. =  (AY1994 Ult) » (PY1995| f)
(AY 1994 | f)
= 1,802

We could have made a similar calculation using column (4). Our preference is to use level
based on integration when columns (4) and (5) arc close. Note that fitting level using the
model assigns the same result to two different regions that have the same average accident
date and area. In particular, note the entries in columns (4) and (5) for Accident Year Ending
7/1/96 and Policy Year 1995.
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Model t : R]f)/ (b-a) = A ¢ (avg. acc. date of R)+B

An Alternative to the Parallelogram Method

m @ ® ®) @
Accident Arca of Average Ultimate In [Level / R|f 2
Period RegionR  Acc. Date LevelR|[) (b-a} Fitted
| AY 191 1 1.5 1,080 6.98 1,073
| AY 1992 1 25 1,205 7.09 1,199
AY 1993 1 3.5 1,300 717 1,340
AY 1994 1 4.5 1,525 7.33 1,497
AY 1995 i 5.5 - - 1,673
| AY 1996 1 6.5 - - 1,870
| PY95 1 6 - - 1,769
| AYE7/1/96 1 6 - - 1,769
Regression Output:

Constant 6.8114

Std Err of Y Est 0.0257

R Squared 97.9%

No. of Observations 4

Degrees of Freedom 2

X Coefficient(s) 0.1111
Std Err of Coef. 0.0115
! Values Oand 1 correspond to dates 1/1/90and 1/1/91, respectively.
2 @) = exp( 01111 « @ + 6.8114 ) (1)

Rif = cxp(Aa+B) s [exp(A(b-a))—1] / A

3 The integral of f over accident period: 0 <y <1, ay <x <b-y,; is given by:

The integral of f over policy period: 0 <y <1, a<x<b; is given by:

R| f = cxp(Ab+B)e[cxp(A)— 1]/ A? - exp(Aa+B)s[exp(A) ~ 1]/ A2

)

Rjf?
Integral

1,073
1,200
1,340
1,498

1,674
1,871
1,71
1,770

Table C: Trendingat Ultimate
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EXAMPLE D

Given the following data, we wish to fit and project the triangle to 36 months.

Months Development

Accident
Year 12 24 36
1991 148 350 424
1992 401 950
1993 1,091

Let 0 and 1 correspond to dates 1/1/90 and 1/1/91, respectively. Assume that all policies
are effective for one year.

We assume a form for g or its integral, R| g, which is a function of the region and the type of
valuation. As something of a compromise, we select the form of g but estimate R| g as the
product of the integrand at a point in R times the area of R.

Let g(x,y,2) = exp( A*(x+y+2)+ B). We valuate over accident periods: O<y<l, a-y<x<b-y; as
of date t. Integration of g(x,y,t=y) over the region results in the function: (b-a)*exp(At+B).
Qur first regression model is as follows.

() In(Level/(b-a)) = A*t+B .

The integral, R| g, of g(x,y.t2y) over accident period: O<y<l, a-y<x<b-y;is a function of t,
aand b. Weassume R| g takes the following form for our second regression model.

() Level= Aa+Bb+Ct .

Finally, for our third model, we assume g(x,y,2)= exp[Ax+By+C/(1+z)]. We estimate the
integral of g(x,y,txy) = exp[Ax+By+C/(1+t=y)] over the accident period as the product of
its value at a point times the area of the region. The point chosen is theaverage point,
({fa-1+b}/2, 1/2), under uniformity. The third regression model is as follows.

(1)) In(Level /(b)) = A(a1+b)/2+B/2+C/(l+ta/2b/2) .

The results of the regressions are shown with Table D. Model (IIl) gave the best results with
(1) and (I) probably not feasible. A Model (I) strategy has theoretical appeal, but it may be
difficult to apply regression analysis. A type<II) approach takes the focus off of g and may
be too simplistic. We lean toward Model (IIl) with an extra step. Once g(x,y,z) has been
determined. we set level based on direct integrations involving g. We took this approach in
Example C.

25



9z

An Alternative to the Parallelogram Mcthod

on e & e o ® ) ® 9 (10) (1) (12) (13)
Region R:
O<y<l, ay<x<b-y
Accident valuated as of datet In(Level/ 1 Level Level Level Level
Year a b t Level (b)) [al+by/2 1/2  (14ta/2b/2) Actual Modell Modelll Model IlT
1991 1 2 2 148 4.995 1.0 0.5 0.667 148 158 82 148
1991 1 2 3 350 5.857 1.0 0.5 0.400 350 350 302 328
1991 1 2 4 424 6.049 1.0 0.5 0.286 424 777 523 461
1992 2 3 3 401 5.995 2.0 0.5 0.667 401 350 580 406
1992 2 3 4 950 6.857 2.0 0.5 0.400 950 777 800 899
1993 3 4 4 1,001 6.995 3.0 0.5 0.667 1,091 777 1,077 1,115
1992 2 3 S - - 20 0.5 0.286 1,152 1,725 1,020 1,265
1993 3 4 S - - 3.0 0.5 0.400 2,583 1,725 1,297 2,468
1993 3 4 6 - - 3.0 0.5 0.286 3,132 3,828 1,517 3,471
(1) an) (ur)
In(Level/(b-a)) Level In(Level/(b-a)) =
Mode] ! = A*1+B = Aa+Bb+Ct A(a-1+b)/2+B/2 + C/(1+-a/2b/2)
Constant 3.467 0 0
Std Err of YEst 0.369 153.691 0.070
R Squared 79.5% 89.8% 99.4%
No. of Observations 6 6 6
Degrees of Freedom 4 3 3
X Coefficient(sf) 0.7971 912.695 -635.56 22027 1.00955 119506 —2.9817
Std Err of Coef, 0.2023 303.515  287.529  97.2024 0.04404  0.20057  0.20897

Table D : Regression Analysis

! Formula for model determines dependent and independent columns to use inthetable above. For exampie, Model (I) formula requires regression of
column (6) on column (4). Thus, 1991 as of datet=2issct at: 158 = exp( 0.7971+2 +3.467 ) » (2-1). Column (10) from Table A of Example A.
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EXAMPLE E

We give an cxample of on level calculation for uniform and nonuniform level. Given R|gl,
we define the valuation on g2 level as R| g2, with on level factor R| g2/R | g1. Policy Year
1992 valuated as of 12/31/93 is at level R| g. We wish to estimate R| 1.25+p, given

p(x,y,z), forx<10/1/92

g(xy.z) =
1.25°p(x,y,z), otherwise

where 1 and 2 correspond to dates 1/1/91 and 12/31/92, respectively. Assume all policies
are annual. Valuation date 12/31/93 corresponds to t=3. This split for g creates two regions
R1 and R2 for the policy year illustrated in Figure E.1, below. The factor to place R on 125+ p
level is as follows.

1.25+R|p
Rilp + 125°R2|p

= 1.25
100« ®I1|p/RIp) + 125 * (R2| p/R[p)

If we assume p is uniform over R, the distribution by arcas yields factor:

1.25 = 1176
1.00 = 75% + 1.2525%

Figure E2 is the 3-D version Figure E.1. If we assume level R| p uniform over V=V14+V2 in
Figure E2, the distribution by volumes yields factor:

1.25 = 1202
1.00 * 84% + 125+ 16%

Suppose p takes the forms p=1001x+y+z and p=x+y+1001z. Levels R|p,R1|p andR2|p are
provided in Table E.1.

Integral of p(x,y 3=xy)0ver . O<y<lianda<x<b

Figure E.1 p = 1001x+y+z p=x+y+1001z
Region a _to b (b-a)=3 + S00{b2 ~a2) (b-8)22503-500(b2 —a2)
Rl 1 175 1,034 846
R2 175 2 470 157
R 1 2 1,503 1,003

Table E.1: Valuations as of 12/31/93
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If p=1001x+y+2, R| g and R} 125*p equal 1,622 and 1,879 units, respectively. The on level
factor is therefore 1.16. The assum ption that level is uniform over R yields a more accurate
on level factor as p in this case is not as sensitive in the zdirection.

If p=x+y+1001z, R| g and R| 125+ p equal 1,042 and 1,254 units, respectively. The on level
factor is therefore 1.203. The assumption that level is uniform over V yields a more accurate

on level factor as p in this case is sensitive in the zdirection.

Note that for valuation at lag 3 years and over Calendar Year 1994, both uniformity
assumptions would give an on level factor of 1.176.

\

| @12/31/93

R1 R2

1/1/92 12/31/92 12/31/93
10/1/92

1 175 2 3
Fig. E.1: R = R1 + R2 onLevel

_— Volume V1= ,84375

Volume V2 =.15625

(1.75,1,,25)

s

3 T
Fig.E2: V=V1+V2 onLevel !

! Volumes derived using Table F.2 of Example F.
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EXAMPLE F

Recall that for a (2.0) valuation we may apply a uniformity assumption over R as well as
over V. We provide average points, areas and volumes under the two assumptions. Tables
F.1 and F.2 were derived using {4.1.d), (4.1.¢), (4.2.d) and (4.2.e). Both tables were
determined using Figure F, below.

From Table F.1 we have the rule, for policy and accident periods, that x* and y* are at the
middle of their respective coordinates ranges. For a policy/accident period, average
coordinates arc 1/3 the way into coordinate ranges.

As an example, recall Figure 3.1B. Consider Accident Year 1991 (to which the $65 million
level was assigned). We estimated average points of (1/1/91, 6) and (11/1/90, 6, 4) under
uniformity over R and V, respectively, for valuation as of date 12/31/91.

Let 1/1/91 and 12/31/91 correspond to 0 and 1, respectively, so that h=w=t=1 in Figure F.
R is region A+B. Using Table F.1, we derive area 1 square year or 144 square months and
average point, (0, 1/2), which corresponds to (1/1/91, 6). Using Table F.2, we derive
volume 1/2 cubic years or 864 cubic months and point, (-1/6, 1/2, 1/3 ), corresponding to
the average point (11/1/90, 6,4).

We have suggesied that the average valuation date be at the middle of a calendar year.
Suppose that "ultimate” is reached at valuation lag 10 years and the plane z=10 years
intersects the figure in Fig. 3.1B in the shape of region Accident Year 1991. For this
"calendar period", it can be shown that the average valuation date under uniformity is
7/1/91.

LA+B:0<y<h\‘5’<X<W“Y 1 LB+C:0<y<h,0<x<wJ

IS T ¢ |

A
(O WP
B
rB: O<y<w, O:x<w—y J

—h 0 w

Fig.F : Basic Regions Definitions
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Typec(2.0)
Region R Valuation Arca x* y*
A+B all wh (wh)/2 h/2
B+C all wh w/2 h/2
B all w2/2 _w/3 _w/3
Table F.1: Areas and Average Points of R '~ Uniform Level
Type (2.0) Set V
Region R Valuation Volume x> v z
A+B t>w thwhw?/2  tw/2~-th/2-w2/3 +hw/4 h/2 (xy*y/2
1= w/2
2> 1>w  (Xl)wh (wh)/2 h/2 (12+H1) /2%y *
Lage cwh (wh)/2 hi2 c/2
B+C t>h+w thw—hw?/2-h2w/2 iw/2- hw/4 - w?/3 th/2 -hw/4 ~h2/3 (x*—vy*)/2
t—h/2-w/2 t=h/2—-w/2
2>t1>w+h (1241)wh w/2 h/2 (12+11)/ 2x*y*
Lagc cwh w/2 h/2 c/2
B 1>w tw2/2-w3?/3 Iw/6— wi/8 Lw/6 — wi/8  (txy*)/2
1/2—w/3 1/2=-w/3
12>1l>w  (2H)w?/2 w/3 w/3 (12+11) / 2x—y*
Lage cw2/2 w/3 w/3 c/2
Table F.2: Volumes and Average Points of V1 — Uniform Level

! Sec Figure F for the definitions and limits of integration for regions A+B, B+C, and B.

Thearcaof Ris R 1 and the average pointis:
The volume of Vis V|1 and the average point is:

(x5 ¥y =

Thus, use the following results to determine Tables F.1 and F.2.

Region
A+B
B+C

B

Valuation

Datct
tl o2
Lagec

( Rix /R|l, Rjy/R}1 ).
(x*y*2") = (V|x/V|L V|y/V[1, V|z/V]|]).

RIL Rlx Rly R|xy RIx: Rly?
wh w2h/2-wh?/2 wh?/2 w?h?/4~wh'/3 w3h/3w2h?/2+wh*/3 wh'/3
wh w2h/2 whi/2 w?h2/4 w*h/3 wh?/3

wi/2 w6 wh/6 wiw?/24 wiw?/12 wiw?/12

Vit Vix Vly Viz
IR]1R[x-R]y (R]xR[xyR[x* tR]yR|xy~R|y? (V[ 1-V|x=V|y)/2
(1R} (1241 R (x (2= 1)*R]y (2 +t)eVI1-Vix=Vl]y

c*R|1 c*R|x ¢*Rly c/2 V|1
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