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I B N R  R E S E R V E  U N D E R  A L O G L I N E A R  
L O C A T I O N - S C A L E  R E G R E S S I O N  M O D E L  

A b s t r a c t  

In this paper ,  we develop models for known claims, when the data are grouped into the 
usual triangle and the goal is to predict IBNR claims. We assume that  the payment for 
a certain accident and development year is composed of a deterministic part and a multi- 
plicative random error. We use aloglinear location-scale regression model for the amount 
of claims. The parameters  are estimated by maximum likelihood methods,  so that their 
asymptot ic  properties are well known. The regression model presents many advantages 
over the chain ladder method: it has fewer parameters ,  and does not underestimate the 
reserve. Moreover, it will he possible with a simulation to establish a reserve with a certain 
level of confidence (for example 80%). 

The logari thm of the error is assumed to follow certain known distributions (normal, 
extreme value, generalized loggamma, logistic and log inverse gaussian).  We derive certain 
theoretical propert ies of these distributions and prove that the MLE's of the regression 
and scale parameters  exist and are unique, when the error has a log-concave density. 

In conclusion, we advocate the use of regression models over the chain ladder method, 
since they take into account both the error involved in the estimation of the parameters 
and the statistical error inherent in the prediction of future claims, the fit of the model 
can be tested statistically and confidence intervals for the reserve can be derived. 

Keywords: Chain-ladder method; Weibull-extreme value regression; maximum like- 
lihood; prediction; generalized loggamma; logistic; inverse gaussian; consistency. 
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1 I n t r o d u c t i o n  

1.1 IBNI:t claims 

All insurance companies registered to do business in Canada  are required by the 

regulatory authorities to set up reserves for claims which have been incurred but have not 

yet been reported as of their financial s ta tement  date, usually December 31. In determining 

the liabilities of the insurance company, the valuation actuary must  also estimate the 

liabilities generated by claims incurred but not enough reserved (IBNER),  (also called 

reported but not settled (RBNS)). 

The distinction between these two parts of the loss reserve, the IBNR part and the 

IBNER part,  is not always made in practice, especially when the data are aggregated. In 

this paper,  by IBNR. reserve, we will refer to both types of claims. 

The pri'mary purpose of those reserves is to ensure the protection of the policyholders: 

when the insurance company is notified of these claims, it will have the reserves, backed 

by sufficient assets, to pay those claims. 

The delay in reporting the claim may depend on the type of claim (for example, asbesto- 

sis may take more than 10 years to manifest itself in a worker). The long delay observed 

in the settlement of certain claims is sometimes due to the fact that  some of them are 

resisted by the insurance compauy, put t ing into motion a long judiciary process. In other 

cases, there will be a long delay before the ultimate cost of a claim can be determined 

exactly (in workers'  compensation for example, the insurance company will have to wait 
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for an annu i ty  to te rminate) .  

T h e  1987 Loss Deve lopment  Study,  under taken  by the  Reinsurance  Associat ion of 

Amer ica ,  compares  the development  of losses for various lines of  business.  Automobi le  

liability was the  line where the claims got developed the fas tes t ,  while Workers '  Compen-  

sa t ion  was slower to develop. General  liability, excluding asbes tos  claims,  had a develop- 

m e n t  pa t t e rn  similar  to Workers '  Compensa t ion ,  bu t  a lit t le bit slower initially. Medical 

malprac t ice  experienced the  slowest development  among  those  lines of business.  

Due to this long repor t ing  and se t t l ement  lag, it will be extremely i m p o r t a n t  for the 

va lua t ion  ac tuary  to develop adequate  s tat is t ical  models  to project  known losses to u l t imate  

losses. 

1.2 T h e  chain  l adder  m e t h o d  and its deficiencies 

By grouping the  claims by accident year (year  in which the accident  giving rise to the 

claim occurred)  and development  year  (number  of  years elapsed since this accident  year), 

the  d a t a  can be presented in a trapezoidal array. 

In this paper ,  to i l lustrate  the various models  proposed,  we will use the  da ta  in table I 

( taken from CIA Proceedings,  Volume 20 no 1, p.183), which represents  the  liability claims 

in t h o u s a n d s  of dollars incurred by a Canadian  insurance  company  over the ten-year  period 

1978-1987. We will do the  analysis  with the  incrementa l  claims (in table 2), obta ined by 

differencing successive cumula t ive  amoun t s .  

The  problem of e s t ima t ing  IBNR claims consists in predict ing,  for each accident  year, 
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Table h Claims Incurred 

Development year 
Accident year 1 2 [ 3 4 5 

1978 8489 9785 110709 11289 
1979 12970 14766 16201 17060 
1980 17522 20305 21774 22797 

1981 21754 24338 25501 26284 
1982 "19208 21549 22769 23388 

1983 19604 22073 23296 24543 

1984 21922 24233 25374 26882 

1985 25038 28401 30545 
1986 ~ 32532 37006 
1987 139862 

11535 11661 

17714 17979 
23220 23872 
27171 27526 
24229 24932 

25155 

the ult imate amount  of claims incurred. The amount  paid by the insurance company 

for those claims is then subtracted, leaving the reserve the insurer should hold for future 

payments .  To calculate the reserve, all methods or models usually assume that the pattern 

of cumulative or incremental claims incurred or paid is stable across the development 

years, for each accident year. Since for the last accident year, only one amount  will be 

available, the reserve will be highly sensitive to this amount .  Moreover, because of growth 

experienced by the company, it will be bigger than any other amoun t  in the data set, hence 

the importance of verifying that the development pattern of the claims has not changed 

over the years. 

One of the earliest methods, and now most commonly used in the actuarial profession, 

is the chain ladder method. Assuming that for each accident year, the development pattern 

remains stable, development factors are calculated by dividing cumulative paid or incurred 
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Table 2: Incremental claims incurred 

Development year 

Accident year 1 2 3 4 5 

1978 8489 1296 924 580 246 
1979 12970 1796 1435 859 654 

1980 17522 2783 1469 1023 423 
1981 21754 2584 1163 783 ~887 

1982 19208 2341 1220 619 '841 
1983 19604 2469 1223 1247 612 

1984 21922 2311 1 1 4 1  1508 

1985 25038 3363 2144 
i 

1986 32532 4474 I 
l 

1987 39862 I 

126 
265 

652 
355 
703 

claims after j periods since incurral by the cumulative amount  after j - 1 periods. These 

factors can be weighted by the amount  each year. The year-to.year development factors 

are then applied to the most recent amount  for each accident year, i.e. the amounts  on 

the right-most diagonal. 

Using the weighted approach with the cumulative claims of table 1, we obtain the 

development factors of table 3. Projecting the claims incurred to ult imate amounts  with 

those development factors, we obtain a reserve estimate of 23,919. 

Table 3: Loss Development Factors 

Year I Development factors 

1-2 1.13079 
2-3 1.06479 
3-4 1.04545 
4-5 1.02922 
5-6 1.02023 
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Many variations have been presented for the basic chain ladder method just  introduced; 

a linear trend or an exponential growth may be assumed to be present among the devel- 

opment  factors. Instead of taking their weighted average, they would be extrapolated into 

the future. The chain ladder method can also be adjusted for inflation. 

However, the chain ladder method suffers from the following deficiencies: 

1- it implicitly assumes too many parameters (one for each column). 

2- it does not give any idea of the variability of the reserve estimate,  or a confidence 

interval for the reserve. 

3- as will be shown in section 2, it is negatively biased, which could lead to serious 

underreserving, a threat  t o  the insurer 's solvency. 

We will therefore develop a stochastic model, which involves only 5 parameters.  With 

this model, we will be able to calculate an amount  such that  there is an 80% probability 

that the reserve will be sufficient to cover the liabilities generated by the current block of 

business. 

1.3 The general model 

In this paper,  we will consider loglinear location-scale regression models of the form 

Z i = l n Y i =  X i B + a ~ i ,  I."~> 0 
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where 

and 

Yi is the  ith e lement  of vector Y (the da ta ) ,  of d imens ion  n, 

X is the  regression mat r ix ,  whose first co lumn conta ins  l ' s ,  

and whose ith row is the vector denoted  by Xi 

and ( i , j )  e lement  is denoted Xij, 

is the vector of unknown pa ramete r s  to be e s t ima ted ,  

of d imension p, 

Xi~ is the location pa ramete r  for Z~, 

a is the scale paramete r ,  

ci is a r andom error with known dens i ty  f(~).  

The  loglinear location-scale model  has  been used extens ively  in reliability theory and in 

survival  analysis  (see for example ,  Kalbfleisch and Prent ice  (1980), Lawless (1982), Cohen 

and W h i t t e n  (1988), Bain and Engelhard t  (1991)). It is easily shown tha t  the random 

variable Zi will have densi ty  

l _ f (  ~ - x,~o ), - o o  < z~ < co .  
a a 

As in Zenwir th  (1990), for the location parameter ,  we will use a + .0In j + 7J + t ( i +  j - 2 ) ,  

where i is the accident  year  and j ,  the deve lopment  year.  Taylor (1986) caut ions not 

to use cumula t ive  claims a m o u n t s ,  but  incremental  c laims in the analysis;  otherwise,  the 

e s t ima te s  obta ined would be biased, because  of the  non- independance  of the  cumulat ive  

amounts. 

We will assume that Y', > 0. To model negative values of Yi, Cohen and Whitten (1988) 
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use modified momen t  es t ima tors  and Cohen (1988), local m a x i m u m  likelihood methods .  

1.4 Outline of the paper 

Section 2 considers the lognormal  linear regression model  and presents  the  results 

of  a s imula t ion  s tudy  showing tha t  the  chain ladder e s t ima te  of the  reserve is negatively 

biased. Other choices possible for the distribution of the random error are the extreme 

value distribution, leading to the Weibull-extreme value regression model (section 3), the 

generalized loggamma (section 4), the logistic (section 5), and the log inverse gaussian 

distribution (section 6). We derive certain theoretical properties of these distributions, 

such as their moment generating function and moments. We show how the actuary can 

establish a reserve with a certain level of confidence (for example 80%), with a simulation. 

In section 7, we show that the MLE's of the regression and scale parameters exist and 

are unique when the error c in the logUnear location-scale regression model has a log- 

concave density. Under misspecification of the error distribution in a linear location-scale 

model, the M LE's of the regression parameters are shown to be consistent (section 8), while 

we present a su~ncient condition for the consistency of the ML]~ of the scale parameter, 

when the postulated model has lognormal errors. Finally, we present some remarks. 

2 L o g n o r m a l  l i n e a r  r e g r e s s i o n  m o d e l  

When  it is assumed tha t  ~i are independen t  and identically d is t r ibuted  N(0,  I) random 

variables,  we obtain the lognormal  linear regression model.  Doray (1992) has  studied 
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Table  4: Frequency d is t r ibut ion  of the IBNR 

A mount  

< 13000 

13000-14000 
14000-16000 
15000-16000 
16000.17000 
17000.18000 
18000.19000 
|9000-20000 

20000-21000 
21000-22000 

22000.23000 
23000-24000 
24000-25000 

25000-26000 

26000.27000 
27000-28000 
28000.29000 
29000-30000 

reserve under  the normal error assumpt ion  

M LE C L E  Amount M LE C L E  
0 0 30000-31000 165 152 

4 2 31000-32000 150 126 
12 11 32000-33000 103 80 
33 30 33000-34000 96 68 
62 72 34000-35000 76 47 

126 131 35000-36000 50 40 
191 199 36000-37000 36 26 
253 301 37000-38000 28 16 

323 376 38000-39000 20 5 

372 391 39000-40000 14 2 

449 441 40000-41000 13 10 
449 498 41000-42000 8 2 
393 443 42000.43000 7 3 

366 436 43000.44000 7 0 
342 375 44000-45000 2 2 

334 274 45000-46000 2 1 
285 231 46000-47000 6 0 
214 207 > 47000 9 2 

extens ively  this model ,  t ak ing  into account  the e s t ima t ion  error on the parameters  and 

the s ta t i s t i ca l  predict ion error in the model,  lie has derived various es t imators  for the 

IBNR reserve, among them the max imum likelihood e s t ima to r  and the uniformly min imum 

variance unbiased e s t ima to r  (UMVUE),  as well as an expression for the variance of the 

l a t t e r  es t imator .  The variance of the IBN R reserve is also calculated.  The joint  d i s t r ibu t ion  

of the amounts  in each cell of the lower t r iangle  is shown to follow a mul t ivar ia te  Iognormal 

( M L N )  d i s t r ibu t ion .  

To compare the t rad i t iona l  chain ladder e s t ima to r  of the reserve with the MLE, a 

s imula t ion  was performed,  assuming the model In Y;j = o,  + 3j + e0 is the true model. 
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Five thousand sets of realizations of Yij in the trapezium were randomly generated, 

where each Yq is independent LN(~i+~j,~2), where the values o f f  and 72 are the MLE's 

of the parameters.  For each set, we calculated the chain ladder estimate (CLE) and the 

MLE of the predicted value of IBNR. claims using the multivariate Iognormal distribution 

(see appendix 10.1 for the algorithm used for the simulation).  The results of the simulation 

are summarized in table 4 and figure 1. We see from those results that  the reserve has 

a distribution skewed to the right, which comes from the Iognormal assumption.  The 

reason why the chain ladder estimate, generally used by actuaries to determine insurance 

company reserves, underestimates the expected liability, is that  it does not capture this 

long.tail behaviour, as is apparent  from table 4. 

The MLE of the reserve gives 25,262, while the CLE gives 23,919. The reserve for IBNR 

claims the insurance company will hold could be set at, for example, the 8O-th percentile of 

the predicted distribution of IBNR claims, that  is at 29,019 in our example. The actuary 

could then state, that  in his or her opinion, there is an 80% probability that the reserve 

will be sufficient to meet the liabilities of the current block of business. 

Asymptotically (i.e. as the upper trapezium of data gets larger), the various variables 

to be predicted will become independent, and from that  perspective, we can consider an 

asymptot ic  confidence interval for the reserve, using the central limit theorem. The lower 

bound for the 80% asymptotic confidence interval of the reserve is 29,514, which can be 

compared with the amount  of 29,019 obtained in the simulation. 

A provision for adverse deviation could also be defined as equal to the 80-th percentile 
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of the predicted distribution of IBNR claims minus the UMVUE of the reserve (24,403). 

This gives 4616 as the PAD for the claims of section 1.2. 

3 W e i b u l l - e x t r e m e  v a l u e  r e g r e s s i o n  m o d e l  

In this section, we examine the Weibull-extreme value regression model. Let us assume 

that  ~ follows a standard type I extreme value (or Gumbel)  distribution with 

probability density function (pdf) 

cumulative distribution function (cdf) 

moment  generating function (mgf) 

mean 

and variance 

f(¢)  = exp (~ - - e  c) , --oo < ~ < co , 

FF(ee) = I - exp(-eC),  

Me(t) = I'(1 + t), t > -1,  

EE(c) = - 7  = -0..5772156649015329... ,  

where 7 is Euler's constant  

V a r ( ~ )  = a'~/6. 

The extreme value density is skewed to the left. The probability that  a s tandard normal 

random variable take a value greater than 1.96 is 0.025, while the corresponding probability 

for the s tandard extreme value is only 0.0008256. Lawless (1982, p. 17-19) and Johnson 

and Kotz (1970) discuss the properties of the extreme value distribution. 

Under this assumption for the density of ~, ¥~ has the pdf 

oeX,!O \e~,~j exp - ~ - ~  , yl > 0, 

which wil l be recognized as that o fa Weibull random variable (Hogg and Klugman (1984)). 

Under this parametrization, the shape parameter is equal to 1/a and the scale parameter 
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to • x 'O.  The hazard rate will be increasing if o < 1, decreasing if o > 1 and constant if 

o = 1, in which case the Weibull distribution reduces to the exponential  distribution. The 

mean and variance of Yi are: 

E(Y+) = eX'ar(i + o) 

Var(Yd = e2X'a[r(1 + 20) - r ( l  + a)2].  

A proof of those results is contained in Lawless (1982). 

The likelihood function based on the data z, = In Yi, is 

1;(~,o)  ; r l - e x p  .z~ . .  
i = t  0 0 

and the log likelihood is 

- -  ° 

i=1 ff 

Let us define w l  = ( z l  - X i ~ )  / 0 .  

The first and second partial derivatives of I with respect to ~i and o are 

- -  = ----  X i i  + X i j e  w+, j = I . . . .  , p .  
Off i o +=l a i=l 

at . , " t ~ 
- -  ---- -- E Wi ~ - -~ .~  Uliewi" 
8 0 '  o o i=1 O i = l  

821 1 " 
= -- X i j X i k e  , j , k  = , , . . . , p .  

821 n 2 " v .  2 " . ..1_, 
- -  = - -  / 

. .2£ - . ,  8o, ~2 + ~ ~ w, - ~ ~ ~,e +' wpe '+' 
= i=1 0 i - - t  

821 , n ' " I " 

8 B j 8 0  02 X i j  02 g'Jeta - " ~  Z X i i  wietgi' J = l . . . . .  P" 
. ~  o i=1  

In appendix ,0.2, we have listed some asymptotic properties of MLE's. The terms in 

the observed information matrix can be simplified by using the fact that  the MLE's for 
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and o satisfy the equa t ions  ~ ,  = ~ = 0. T he  observed informat ion mat r ix  Io then  

becomes  

1 
#2 

n Z l n j  ~ j  ~ i + j - 2  a+~tbl 

~ l n j  ~(Inj)Ze ~' ~ j ( l n j ) e  ¢' ~(i+j-2)(Inj)e ¢' ~(In ../) d.,,e '6. 

E J  E J( In j)e~' E j2e'' E J( i ' t ' j -  2)e~' E J  tbi'*" 

~ i + j - 2  ~ ( i + j - 2 ) ( I n j ) e  ~' ~ j ( i + j - 2 ) e  °' ~ ( i + + j - 2 ) ~ e  ~" ~ ( i + j - 2 ) ~ e  ~" 

. + E w ,  E ( InJ ) ,~  ~' E J ~ J  e~' E C i + J - 2 ) ~ ,  e~' " + E , ~ * "  

where  ~ = (zl - X i~) /b .  

The asymptotic variance-covariance matrix of the parameters is equal to the inverse of 

/o, and could be found using a symbolic computational language like MAPLE, or evaluated 

numerically. The expected information matrix can also easily be obtained (ref. Lawless 

(1982),  p. 301-302). 

Maximizing  the log likelihood with the da t a  of section 1.2 by us ing the Newton-Raphson  

a lgor i thm or the SAS (1985) LIFEREG procedure,  we find the  MLE's ,  es t imated  s t anda rd  

errors and correlation mat r ix  appear ing  in table 5. In sect ion 7, we show that  for certain 

locat ion-scale models,  the MLE's  exist and are unique;  this  is t rue in part icular  for the  

Weibul l -ex t reme value regression model. 

All pa ramete rs  are highly significant (at the  0.0001 level). It should also be noticed tha t  

the  scale pa ramete r  e s t ima to r  b is not independen t  of the  location parameter  es t imator ,  as 

is the  case in normal  regression. This  complicates  s o m e w h a t  the  es t imat ion of the  IBNR 

reserve, 
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Table 5: Weibu l l . ex t reme value regression 

p a r a m e t e r  MLE i s t d .  error 
a 9.02897 0.11505 

- 3 . 2 6 6 3 7  0.25407 
7 0.40378 0.10372 

i 

0.10811 i 0.01641 
a 0.02459 0.00642 

correlat ion mat r ix  
I 0.429 -0.515 -0.461 -0.017 

0.429 I -0.972 0.214 0.0004 

-0.515 -0.972 l -0.280 -0.006 

-0.461 0.214 -0.280 I 0.011 

-0.017 0.0004 -0.006 0.011 l 

A Q-Q plot of the residuals appears in figure 2. It shows no evident departure from 

the extreme value distribution. It should be noted that the above standard errors and 

correlat ion ma t r i x  of the  paramete rs  are based on the  jo int  a sympto t i c  mul t ivar ia te  normal  

d is t r ibut ion  of the  MLE's .  This  approx imat ion  will be appropr ia te  only when the number  

of ceils in the  t r apez ium of da ta  is large enough  (in our example ,  we have  45 cells). 

How large is large enough?  Bain and Enge lhard t  (1991) considered this problem for 

the  Weibul l  d i s t r ibu t ion ,  bu t  wi thout  covariates in the  location pa ramete r .  They  provide 

a table giving the  bias of the MLE of the  shape  pa r ame te r  of the Weibull  dis t r ibut ion 

for different sample  sizes. With  a sample  size of 40, the  MLE overes t imates  the  shape  

pa rame te r  by only 3.5%. If the sample  size is only 10, care should be taken,  since the 

bias is then  a round  15%. Those  factors were obta ined by a s imulat ion s tudy.  We will not 

correct for the  bias in our  analysis ,  but  we should r emember  tha t  this  might  be a good 

idea for smal l  sample  sizes. 

To test  for a = 1 ( test  o fexponen t i a l i t y  of Yi), we can use the asympto t i c  normali ty  

of  the  MLE's ;  unless the  sample  size is large, Lawless (1982) caut ions  tha t  the normal  

approx ima t ion  migh t  not  be very good. A likelihood ratio test  can also be performed 
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using the test stat ist ic 

,x  : -2log ~(~,~), 

where ~ is the M L E  of  ~ under  He : a = 1:, the l ike l ihood ra t io  stat ist ic A has an asymptot ic  

X~I) d is t r ibu t ion .  Per forming a simple normal  test leads us to reject the hypothesis H0 : a = 

1. A Weibul l  d is t r ibu t ion  is therefore more appropr ia te  for the da ta  than an exponent ia l  

d i s t r i bu t ion .  

We now turn our  a t ten t ion  to the problem o f  pred ic t ing the I B N R  reserve. [n a l o g -  

l inear  locat ion-scale model ,  the total  er ror  in the log predicted amount  Z~l is composed 

o f  two parts:  an est imat ion error  on the parameters  and a stat is t ica l  predict ion error.  

We saw ear l ier  that  in the Weibul l -ext reme value regression model,  the est imators of  the 

parameters  have an asympto t ic  mul t ivar ia te  normal  d is t r ibu t ion ,  whi le the process er ror  

has an independent  ex t reme value d is t r ibu t ion.  

Let Yk~ denote the random variable for the amount  to be predicted in accident year k 

and development year I, and let us define Z&i = In Ykl. The random variable Z&i being 

equal to Zkl = ~ + ~ In k + ~,k + i(k + I - 2) + 6'e, we can appreciate the difficulty involved 

in trying to get its exact distribution. For this, we would need to find the distribution of 

the product  of a normal and an extreme value random variable (b and ~) and convolute 

this with a non-independent normal random variable. To get the distribution of Yti, the 

distribution of Z&l is then exponentiated. It is highly doubtful that  such a distribution 

would have a simple density. Instead of trying to accomplish this task, we will perform a 

simulation study to evaluate IBNR reserves. This will make it possible to find a confidence 
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interval for the reserve. 

Table 6: 
sumption 

Frequency distribution of the IBNR reserve under the extreme value error as- 

Amount  Frequency 

< 15000 0 
15000-16000 1 
16000-17000 12 
17000-18000 54 
18000-19000 144 
19000-20000 357 
20000-21000 664 
21000-22000 904 
22000-23000 982 
23000-24000 791 
24000-25000 605 
25000-26000 285 
26000-27000 142 
27000-28000 46 
28000-29000 8 
29000-30000 4 
30000-31000 1 

> 31000 0 

In appendix 10.1, we show how to generate a multivariate normal distribution, using 

the Choleski decomposition method. To be able to simulate the random variable Ykto we 

just  need to show how to generate a standard extreme value random variable ~, with cdf 

P[~ <- ~0] = 1 - exp( -e '* ) ,  - o o  < ~o < oo. 

This cdf is easily inverted, yielding 

~ = l n ( - I n ( l - U ) ) ,  0 <  U < 1, 
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Figure 3: IBNR reserve for Weibull-extreme value regression 
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where U is a uniform random variable on the interval [0, I.]. Note that I - U  is also uniform 

on [0, 1], simplifying the algorithm. 

Table 6 and figure 3 contain the results of a simulation of ,5000 values for the IBNR 

reserve. The mean of the IBNR claims is 22,402 and the s tandard deviation of this est imate 

is 2011. The 80-th percentile for the simulated distribution of the IBNR reserve is 23,980. 

Comparison of the extreme value and the normal distr ibutions shows that  the former 

has a heavier left tail and a lighter right tail than the latter. The est imation error on the 

regression parameters  is of the same order in both models, while the stochastic error is 

smaller in the extreme value case. 

4 Generalized loggamma regression model 

The regression model used in this section will be the following 

where ci has a loggamma distribution with pdf 

f (¢ ;q)  = ~ q  exp[q ( q c -  )1, - o o <  c < cx~, 

and the shape parameter  q can take any non-zero value (ref. Lawless (1982), p. 322-328). 

Under this parametrization,  as q tends to O, we obtain the normal distribution with pdf 

1 
f(¢) = - ~ e x p ( - ¢  / 2 ) ,  - o o  < ~ < oo.  

The following special cases for the random variable Yi can be obtained for certain 

values of the parameters  q and a: Weibul] (q = 1), exponential (q = ~ = 1), lognormal 
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(q = 0) and reciprocal Weibull (q = - I ) .  The  densi ty  is negat ively skewed for q > 0, 

with abso lu te  skewness  and kurtosis  increasing as q increases;  it is posit ively skewed for 

q > 0. A likelihood ratio test can be performed to test  for the  appropr ia teness  of  a certain 

m e m b e r  of the  family. 

Prent ice  (1974) and Farewell and Prent ice  (1977) have s tudied  the  proper t ies  of this 

general ized d is t r ibut ion .  If we define the  pa ramete r  k = q-2, then  it has  m o m e n t  gener- 

a t ing funct ion  F(k + t), t > - k ,  mean tb(k) and var iance tb'(k), where tb(.) and ~'(.) are 

respect ively  the  d i g a m m a  and t r i g a m m a  funct ions,  the  first and second derivatives of the 

g a m m a  funct ion.  The  series expans ion for these two funct ions  are: 

n- t  1 
tb(n) = - 7 +  ~ ,  for an integer  n > 2  

= 

~ ' (z )  = ~ ( z + k )  -2, z ~ 0 , - l , - 2  . . . .  
k=O 

T h e  log likelihood function gives 

l (13,a ,q)  = ~ l n f ( w , ; q ) - - l n a ,  
i = l  

where wi = (zi  - X d ~ ) / a  and 

In f ( w i ; q )  = In ] q I --2q -2In q - In r(q -2) + q - 2 ( q w  i - eq~) .  

The  first and  second partial  derivat ives of I with respect  to /3 and a gives 

- -  = e x p ( q w , ) -  1], j = 1 . . . . .  p. 
O#j .= qa I 1 

al V"I__" wi I } 
= Z . . , t - - [ e x p ( q w i ) -  1 ] -  -- 

i = 1 0 f f q  0 
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n - 1  
021 = ~ XijXi~,(-~-)exp(qwi) 

OBiO#~ ~:~ 

0o.---- ~ = [1 -- wy e x p ( q t o l ) ] -  ~ [ e x p ( q w l )  -- 11 
.= 

n _ 1  
OZl = ~ Xi , (~)[wlexp(qwi )  + -l ( exp(qwl ) -  1]. 

O~jOa i=1 q 

Again,  using the fact t ha t  the  MLE's  sat isfy ot ot = 5~" = 0, we can simplify the  last two 

par t ia l  derivatives and obtain  

and 

021 
~ ' ~  ~.bl = - ~ [ n  + ~ t b i : e x p C q ~ , ) l  

0~1 (~,~) 1 
Ol~jOa = - ~  ~ Xijtblexp(qtbl). 

To find the  MLE's  of the  pa ramete rs ,  we can use the  approach  sugges ted  by Farewell 

and Prentice (1977). The  pa r ame t e r  q is fixed at a value q0 and  the profile log likelihood is 

maximized using the Newton.  Raphson a lgor i thm over the  regression pa rame te r s  ~ and the  

scale pa ramete r  a.  This  gives the es t ima tes  (~(q0), O(qo)). Th i s  procedure  of maximiz ing  

the  profile log likelihood is repeated for many  values of  q0, unti l  an overall m a x i m u m  of 

the  log likelihood over qo is a t ta ined.  Th i s  value gives the  MLE ~. 

The  SAS package fits generalized l o g g a m m a  regression models .  Using the SAS LIFEREG 

procedure for complete  da ta ,  we find the  results  appear ing  in Table 7. 

The  default  convergence criterion used by SAS is tha t  a m a x i m u m  is a s sumed  to have 

occurred if the relative change in the paramete rs  is less than  0.001. However, as can be 

seen from table 8, the likelihood keeps increasing beyond this value of ~. The  convergence 

criterion we used is tha t  the  score s ta t is t ic  with respect  to each pa r ame te r  should be of 
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paramete r  

Table 7: Generalized l o g g a m m a  regression (SAS program)  

MLE std.  error correlation mat r ix  
a 9.32243 0.02789 1 0.469 -0.521 -0.160 -0.497 0.497 

-3.12566 0.07028 0.469 1 -0.991 0.645 -0.150 0.150 
7 0.35670 0.02969 -0.521 -0.991 I -0.626 0.124 -0.123 

0.10058 0.00357 -0.160 0.645 -0.626 1 -0.087 0.086 
0.04035 0.03187 .0.497 -0.150 0.124 -0.087 1 -0.981 

q 9.99342 7.63421 0.497 0.150 -0.123 0.086 -0.981 1 

the order of 10 -s .  Past  the  value ofqo = 31.623 (corresponding to k = q~.2 = 0.001), some 

e lements  of the  informat ion mat r ix  become so large tha t  it cannot  be inverted and the 

s t anda rd  Newton-Raphson  algori thm fails. 

Table 8: Generalized Ioggamma  regression for various values of q0 

qo ~(qo) 9(qo) ~(qo) i(qo) 
0 8.97986 -3.14641 0.30881 0.12298 
I 9.02897 -3.26637 0.40378 0.10811 
2 9,15105 -3.19165 0.38375 0.10369 
3 9.24020 -3,13178 0.35787 0.10264 
4 9.27974 -3.12132 0.35336 0.10188 
6 9.30818 -3.12572 0.35608 0.10088 
8 9.31835 -3.12611 0.35666 0.10061 
10 9.32308 -3.12419 0.35609 0.10063 
20 9.33019 -3.11565 0.35"2296 0.10088 
30 9.33340 -3.11023 0.35061 0.10092 

~(qo) t(qo) 
0.31380 -11.70862 
0.24588 -8.66845 
0.17552 -7.82173 
0.12742 -7.23110 
0.09803 -6.64823 
0.06590 -5.68347 
0.04950 -5.03186 
0.03964 -4.62194 
0.01986 -3.87515 
0.01324 -3.68571 

A few remarks  should be made  here. 

1- the  likelihood is so flat t ha t  it makes  the s t andard  error of ~ (7.63421), calculated 

a s suming  asympto t ic  normali ty ,  totally unreliable. Bain and Enge lhard t  (1991, p. 

393) report  tha t  the asympto t i c  normal  dis t r ibut ion for k will not  be very accurate  
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unless the sample size is greater than 200 or 400. Farewell and Prentice (1977) note 

that  the skewness in the ~ distribution is related to an asymptotic variance that  

i ncreases  rapidly as Iql increases. To get a confidence interval for ~, a likelihood ratio 

test would be preferable. This interval for ~ would include all the values q0 satisfying 

-2[In t(#,/~, O) - In t(qo,/~(qo),b(qo)] LS 3.841. 

2- the correlation between b and ~ almost equal to -1  should be noted. From table 8, 

we can see that as q0 increases, b(q0) decreases. Cox and H'inkley (1968) have shown 

that  in the general regression model Z = a + X ~  + at(q) ,  (&,b,~)  are asymptotically 

independent of ~, if the columns of X add to zero. 

3- The regression parameters (c~,~,'7,t) for any fixed value of q0 are very close to those 

obtained in the normal and extreme value regression, and so is their s tandard error 

and their correlation matrix. 

It should be remembered however that ,  although the MLE q cannot be found accu- 

rately, we know that it exists and is unique, because of the log-concavity of the loggamma 

distr ibution (see section 7). 

If the exact value of ~,, was available, this would make the estimation of E(IBNR 

claims) much more complicated than in the normal or extreme value cases, because of the 

non-independence of ~ with /~ and b. In this model, Ykt is equal to 

Ykl = e ~+~lntt÷Sk+g(~+t-2)÷#~(#), 
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and we can see tha t  the est imation error on the  pa r ame te r s  is not  i ndependen t  of the 

process error c(~), since ~, b are e s t ima ted  using the same  set of past da t a  which is used 

in e s t ima t ing  ~. 

To assess the  adequacy of the l o g g a m m a  regression model ,  we fitted tha t  model  with 

a fixed q value,  q = 10. Figure 4 presents  the cor responding  Q-Q plot. Since the left tail 

of the  d is t r ibut ion is too short ,  we will not s imula te  the  IBNR reserve; however,  Devroye 

(1986) presents  many  algor i thms to genera te  g a m m a  r andom variables. 

5 Logistic regression model 

The  logistic linear model is 

Zi = In Yi = XiB + eel,  

where c has a s t andard  logistic d is t r ibut ion with (see Lawless (L982), p. 46) 

pdf f(~) = e' 

cdf F ( E ) =  1 - ( l + e ' )  - l ,  

mgf  F(I + t)F(L - t ) ,  I t 1< L, 

mean E(~) = 0, 

variance Var(e) = rr2/3. 

The  dens i ty  of the  logistic d is t r ibut ion somewha t  looks like the s t andard  normal  density.  

The  s y m m e t r y  of the pdf  around ¢ = 0 implies tha t  there is probabil i ty 1/2 tha t  the  amoun t  

Yi be unde r s t a t ed  or overstated.  T he  probabil i ty tha t  a s t anda rd  logistic r andom variable 
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exceeds 1.96 is 0.12347. The  logistic d is t r ibut ion  has thick tails, which behave  like tha t  

of  the  exponen t ia l  distr ibution.  The  loglogistic is a special  case of the Burr  d is t r ibu t ion ,  

with the  pa rame te r  a equal to 1 (ref. Panjer  and Wi l lmot  (1992), p. 120). 

T h e  random variable Zi has densi ty  

1 exp[ zi -ox'° ] 
lz ,(zi)  = - [I + e x p ( " - x ' ~ ) ] 2 '  - o o  < z~ < oo, 

and Y~ has  the Ioglogistic density 

~ex,~ ~ ,~Z~/  1 + ~ , ~ > 0, (S . l )  

where again  e x'~ is the scale pa ramete r  and l/~r the  shape  parameter .  In proposi t ion 5.1, 

we derive the  momen t s  of order k of a Ioglogistic r andom variable with densi ty  5.1 and 

show tha t  its m o m e n t  generat ing funct ion does not exist .  

P r o p o s i t i o n  5.1: If Y has densi ty 

61/~ yl/¢,-i 

fY(tt) = ~ [1 +~l/°yl/°]2' y > O, 

then  

E(Y k) = 6~-('+IJ{I - cr(k + l)]Tr cosec[xa(k  + I)], 

for all k such tha t  ~ - I < k < ~ - I, and the  m o m e n t  genera t ing  funct ion of Y does not  

exist .  

P r o o f :  E ( y k )  = f~o Y~61t'Til~TrT7~] . 

By le t t ing It I/¢ = u, we obtain 

E(Yk)  = 6 lh' [oo 
;j~{k+ll-I 

[1 + 611~v] zdv" JO 
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Using the formula 

~oo zu;'z)2dz = l--"Tr c o s e c . . ,  
(l + fl , '  

the result is easily obtained. The integral will have a finite value iff 

o r  

- I  < ( k +  1 ) ¢ - 3  < I 

2 4 
- - l < k <  - - - 1 .  
ff a 

The moments of all positive orders do not exist; therefore, the moment generating 

function of Y does not exist. D 

The likelihood function is 

'~ 1 exp(w l )  
{z e x p ( ~ i ) 1 2 1  + m 

where w ,  = '1-o x~p, from which we get the log l ike l ihood 

n 
l(fl ,  a )  = ~ { ~  - 21n(Z + e ~') - I n  o]. 

i = l  

For first and second order partial derivatives with respect to the parameters,  see 

Kalbfleisch and Prentice (1980; p. 54-57). The SAS procedure LIFEREG was used to 

fit a logistic regression model to the data of section 1.3. The MLE's of the parameters,  

their estimated standard error and the estimated correlation matr ix appear in table 3.5. 

A Q-Q plot of the residuals in figure 5 shows that the logistic distribution does not 

provide a very good fit for the right tail. We will therefore not a t t empt  to predict the IBNR 

reserve, but just indicate how it could easily be done by simulation, if it was appropriate 

to do so. 
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paramete r  M LE 
a 8.94023 

-3.31681 

7 0.38904 
t 0.11789 

a 0.17957 

Table 9: Logistic regression 

std.  error correlat ion mat r ix  

0.13799 1 0.437 -0.516 -0.540 0.039 
0.30143 0.437 l -0.964 0.078 0.072 
0.12058 -0.516 -0.964 l -0.169 -0.083 
0.02004 -0.540 0.078 -0.169 l 0.025 
0.02203 0.039 0.072 -0.083 0.025 1 

T h e  loglogistJc model for V~l is Ykl = e ~+~l"~+~k+q~+l-2)+~'. The  joint asymptot ic  

d i s t r ibu t ion  for (~,6") is mul t ivar ia te  normal  with pa ramete r  e s t ima te s  given in table 9 

and  can be easily s imula ted  (see  Appendix  10.1). Invert ing the edf of the  logistic random 

variable  ~ yields 

I - U  
r = l n ( - - ~ - - - ) ,  where U is uniform [0,1]. 

T h e  value of is then exponen t ia ted  to give Fkl. 

6 Log Inverse Gaussian regression model 

The  inverse gauss ian  regression model  for ¥, is Y~ -- e xm+'~, where the multiplicative 

error  e c is a s sumed  to have a s t anda rd  inverse gauss ian (IG),  or Wald dis t r ibut ion,  with 

dens i ty  

(v - 1)2~ 
fv(v) = (2~'Av3)-t/2exp -----~--- , {  u > O, A > O. 

This  long-tail positively skewed dis t r ibut ion with exponent ia l  tails has a shape similar 

to t ha t  of the lognormal  d is t r ibut ion (ref. Cohen and Whi t t en  (1988), p. 77) and is 

located between the g a m m a  and lognormal  in Pearson 's  sys tem of dis t r ibut ions ,  which 
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shows  possible regions of variation of the skewness and kur tos ls  ( Jorgensen  (1982) ,p .  19). 

To learn more  about  the inverse gaussian d is t r ibu t ion ,  see Chh ika ra  and Folks (1989) and 

Jo rgensen  (1982). Here are some of its i m p o r t a n t  proper t ies .  The  m e a n  equals I and the  

var iance  A. It is un imoda l  and a member  of the exponen t i a l  family. If V is IG(1,A) ,  and 

a > 0 is a cons tan t ,  aV is IG(a ,aA) .  The sum o f n  i ndependen t  /G(1 ,A)  is IG(n ,A) .  

Taking  the log of'Vi, we obtain  the loglinear model  

Zi = InYi = Xi~ + ~i, 

where  ¢ has a log inverse gauss ian  (LIG) d is t r ibut ion.  The  pdf  of ¢ is now derived. 

Let ¢ = InV,  where V is IG(1,A) .  Then  V = e' and d V [ d ¢ =  e ~. It follows that  

(e' - I)21 

= (2~Ae , )_ l /2exp [_ (e '  - 2 + e-~)] 
2A 

= (27rA)-1/2e-C/2e I/'x e x p [ - - ~  cosh (], (6 . t )  

where cosh ~ = (e'  + e - ' ) / 2 .  

In the next  two proposi t ions ,  we derive the m o m e n t  genera t ing  funct ion and the mean 

of  the  LIG dis t r ibut ion .  

P r o p o s i t i o n  6.1: The  mgf  of the LIG dis t r ibut ion with pdf  (6.1) is 

M,( t )  = (27rA)-112etl~2Kii2_t(1/A). 

Proof: Let the constant C = (27rA)-ll:e ]/~. Then 

/5 Me(t) = E ( e U ) =  et ' f ( ( )d~ 
~ o  

= C e '{ - cosh ~ . 
oo 
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Using the formula  

/~oo exp[-az  - = 2Ko(I/A), £cosh~ld~ 
A 

on page 309 of Gradsh t eyn  and Kyzhik (1980), we get  

Me(t) = (2rA)-1/2et/~2Kt/2_t(l/A), 

for t c [ -oo ,  1/2], where Ko(-) denotes  the Bessel funct ion of the  third kind of order  a .  

P r o p o s i t i o n  6 .2  

E(~) = e m { - - r  - In(2/a) - ~ (-1)'~(2/a)~ 
~=t n . n !  } 

P r o o f :  We know tha t  E(c) = M~'(t) It=0. 

The  reader  will apprecia te  the d imcul ty  involved in tak ing  the  der ivat ive  of M, ( t )  with 

respect  to t, since we need to differentiate with respect  to the  order  of the  Bessel funct ion.  

From Abramowi t z  and Stegun (1972), p. 445, we get 

0 
~ K a ( z )  la=l/2= -V~Ei(-2z)e~: ,  

e- !  where - E i ( - z )  = E l ( z )  = f~O.Tdt" So 

E(~) = (2x~)-112ellX. 2v[~El (2 /~ )e l lX  

= e21~Et(2/A), 

where the  series expans ion for E l ( z )  is 

El(z) = -3, - In z - 
n'n! 

n--I 
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Let us now consider the estimation of the parameters A and /3. Yi has an inverse 

gaussian distr ibution with parameters  (e x~, AeX'~). The likelihood function is 

{ (yi--eX'~) ~} 
L(# ,  ~) = I I  ex'~(2~eX'~Y~) -'/~ . e x p  7~x,~~ ' 

i =1  

and the log likelihood is 

i = l  

(Yi --  e X ; ~ )  2 

2AeX~y i " 

The partial derivatives are 

so that  A nex~a~; • 

OI n - -1  f :X,0)2 

: ~.: 5i" + .~,%, ' 

OI ~ Xii e_X~O eX~O] 
= -~i-[~ + y, - O # i  i = l  

021 ~ .  I (lli - eX~°); 
= 2.., OA 2 2A 2 A3eX,~y i i=! 

021 = ~- -X i j r  .e_X, ~ eX,O/yl] 
OAO~i i=l 2A2 [Y, - 

X~jXik, ,e_X, ~ _ eX,O/y~] = - - ~ - - t - r  

To find the MLE's of/3 and A, one could use the Newton-Raphson algorithm. The 

log-concavity of the LIG distribution will guarantee the existence of unique MLE's (see 

section 7). 

The quantiles of this distribution could be obtained from the IG distr ibution,  since 

P[~ <_ col = p [ e '  < e"]  = p [ v  _< e~'l, 

640 



where Y ~ I G .  Therefore the q quantile of the LIG distribution is equal to the log of 

the q quaati le of the IG distribution. Those can be calculated or obtained from a table, 

e.g. Koziol (1989). If an inverse gaussian regression model was found to be appropriate,  

to simulate Y~l = e '~+$h~+~+z{~+t-2)+', we would need to simulate e ' ,  which is IG( I ,A) .  

Michael, Schucany and Haas (1976) developed an algorithm to simulate such a distribution. 

7 Exis t ence  and  uniqueness  of M L E ' s  

In this section, we show that  all the distributions used in this chapter  for the error 

e are log-concave. A consequence of this fact is that the NILE's will exist and be unique, 

al though they need not be finite (ref. Burridge (1981)). When convergence is achieved in 

the Newton-Raphson algorithm, this implies that  we found a global maximum,  not just a 

local maximum.  

Let us consider the loglinear location-scale model 

Z~ = In Y~ = X ~  + aci. 

If we reparametrize to ¢ = l ] a ,  the log-likelihood of the data  becomes 

l ( a , ~ )  = nlnq5 + ~ l n  f(w~) 
i=1 

where w~ = (z~-  X~/3)$ and f ( - )  is the density function of the error ¢~. Since wl is a linear 

function of each of the parameters  // and ¢ and is therefore concave, and the function 

In is concave, I will be concave provided lnff(.) is concave (ref. Burride (1981)). We 

have therefore shown the remarkable property that,  in a Ioglinear location-scale regression 
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model, the existence of the MLE's does not depend on the data but only on the log- 

concavity of the density of the error ~. We now show this is indeed the case for the five 

distributions used so far. 

1- I f ~ , , - N ( O , l ) , f ( ~ ) =  exp(-~/2),andlnf(Q= K-~/2;so~Tslnf(Q=-I < 

0 V~. 

8z 2 .  I f  ~ ~ ext reme value, [ ( Q  = exp( ,~  - e ' ) ,  and In f ( Q  = ~.~- eC; so ~ . ] n . f ( Q  = - e  c < 

0 Vc. 

3- If c ~ generalized loggamma, 

l q] -2q .... ~, .f(~;q) = F(~q exp[q t~q-eqe)], 

az 
and In/(~;q) = K + q-2(~q _ eqC); then ~irln f(~:q) = -e qc < O, V¢. 

logistic, er . f(~) -- -r 4- If E ~ f(~) = ~'rp', then In = c-21n(I+e c) and ~In/(~) = ~f~ 

0 W. 

5- If c ~ LIG, f(~) (27r.Se')-½ '-(~'/=-'-'/=~=' c {~'/=-'-'/=)= = exp[ 2a , j; so In f(~) = K - ~ - 2a , 

Oln f(Q I e' - - e - '  

2~ 2 2~ 

and ~ln f(e) = _(~.~Z~) < 0 Ve. 

An example of a distribution for ~ which does not have the property of log-concavity 

for all ~ is the Student ' s  t distribution with n degrees of freedom, and density 

(I + ~2/2n) -(~+1)/2 
f(~) = v'~(I/~,~/2) 
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T h e n  In f(~) = K - ~(n + l ) ln(1  + ~2/n),  

a 
In f(~) = - ( n  + l )e / (c  2 + . ) ,  

I ~ " - "  which is positive for e > ,~/n" or c < - v / ~ -  and  ~ In f(~) = - ( n  + q%//V.~,r, 

8 Cons i s t ency  of the  p a r a m e t e r s  u n d e r  e r r o r  misspecificati~ 

Gould and  Lawless (1988) invest igated the consis tency of the m a x i m u m  likelihood 

e s t ima to r s  of the  regression pa ramete r s  under  misspecif icat ion of the  error d is t r ibut ion in 

a linear locat ion.scale  model.  

The  pos tu la ted  model is 

Z =a+X~+c,~, -oo< ~< oo, (8.1) 

where a is a scale pa ramete r  and ~ has a specified d is t r ibut ion with densi ty  f(~) .  They  

a s sume  tha t  the true unknown model is given by 

Z = # 0 + X # + ~ w ,  - o o <  w <  co, (8.2) 

where tu has  densi ty  g(w). The  location-scale s t ruc tu re  of the  pos tu la ted  model  has the  

correct form; only the error dis t r ibut ion is misspecified. 

If the  following three a s sumpt ions  are satisfied, 

I- the  covariates are centered; 

2- all the  expec ta t ions  below exist  and 
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3- n - I ( X ' X )  is bounded as n ~ co, 

White (1982) proves that the MLE's of ( a , ~ , a )  converge in probability to a unique limit 

(a ' ,~3" ,o ' ) .  Gould and Lawless (1988) then show that  ~ = p" and /J is therefore a consis- 

tent est imator of #. In addition, for & and 8 to be consistent est imators  of go and r ,  they 

must  satisfy the two equations 

ET(~-~-W log W ) = O 

and 

0 
E T ( W  - ~ - I o g ( W )  "4" 1) = 0 (8.3) 

where W = ( r w  + po - a ' ) / a "  and ET indicates that  the expectation is taken with respect 

to the true error distribution g(w) .  

Gould and Lawless (1988) also analyze the asymptot ic  efficiency of the MLE based on 

the correct model. We will derive conditions that g(w)  must  satisfy in order for d and b 

to be consistent estimators of#0  and r ,  when the error e in the postulated model (8.1) has 

a normal N(0,  1) distribution. 

L e m r n a  8.1: Under the assumption of standard normal errors in model (8.1), a sufficient 

condition for 5 and & to be consistent estimators of #o and v is that  E ( w )  = 0 and 

V a t ( w )  = 1. 

1 e-(2/2 P r o o f :  If f(ee) = ~7~ , then ~ |ogf (ee)  = - ( ,  and the equations (8.3) become 

ET(W) ~- 0 and E T ( W  2) = 1. 

Since W = ( r w + p o - a ° ) / a  °, the condition E T ( W )  = 0 implies that  #o = a ° i.e. df is a 

consistent estimator ofpo.  I f E T ( W )  = 0, then E T ( W  2) = V a r T ( W )  = ( r / a ' ) ~ V a r ( w )  = 

J 
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I. The condition Var(w) = I will imply that  r = a ' ,  i.e. that b is a consistent es t imator  

of r .  O 

The consistency of ~ and 0 therefore depends only on the first two moments  of the 

distribution of w, when the postulated model is lognormal linear. 

We must point out here that one of the assumptions  for the above development to be 

valid is that n-1(X'X) be bounded as n ~ or. This condition is not verified in the model 

Y;j = a + j 3 1 n j + T j + t ( i + j - 2 ) + ¢ , / .  

The covariate i would need to be removed from the model, for example by normalizing the 

amounts  Y~j, in order for n-I(X'X) to be bounded as n ~ oo. 

9 Conclusion 

In this paper, we have presented an anthology of models differing between them only 

in the distribution assumed for the error ¢. To discriminate between the normal, extreme 

value, logistic and Ioggamma distribution for ¢, we can assume that ¢ belongs to the 

generalized log_F distribution (Prentice (19774)), with pdf 

.f(~) = (ml/mT)"~'e~'[l + rule'°/m2] -{'~'/'~). 
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After  finding the  MLE's  (ml , rh2) ,  we can perform a l ikelihood ratio tes t  for 

( m , , m 2 ) =  ( 1 , 1 ) :  

(ml ,m2)  = (1 ,oo)  : 

logistic d is t r ibut ion  

ex t reme value d i s t r ibu t ion  

generalized I o g g a m m a  dis t r ibut ion  

(ml ,m2)  --. (oo, oo) : normal  d i s t r ibu t ion ,  

to select one part icular  member  of the  family. Gould (1986) did an ex tens ive  s tudy  of the  

locat ion-scale  model with the error ~ following the log F d is t r ibu t ion .  Her conclusions are 

t ha t  if one tries to es t imate  two shape  pa rame te r s  as in the  log F family,  the precision of 

the  e s t ima t e s  may be so low as to make  them vir tual ly un in fo rmat ive .  However, as we 

have also observed,  the MLE ~ of the  regression pa r ame te r s  is qui te  robus t  with respect 

to misspecif icat ion of the d is t r ibut ion of ~. 

N u m e r o u s  other  researchers have in the  past  also encoun te red  d imcul ty  when trying to 

e s t ima t e  the  shape  pa ramete r  of the  generalized l o g g a m m a  dis t r ibu t ion .  Lawless (1982, 

p. 237), observed tha t ,  even with sample  sizes of 200 or 300, it is not  uncommon  for the 

N e w t o n - R a p h s o n  algori thm not to converge to the MLE ' s .  Because  in usual  insurance 

s i tua t ions ,  the t rapezium of da ta  conta ins  a small  n u m b e r  of  cells (in our case, 45 obser- 

va t ions  with 5 parameters  to es t imate ) ,  the ac tua ry  migh t  encoun te r  problems with this 

d i s t r ibu t ion .  According to Prent ice  ( t974) ,  two d i s t r ibu t ions  in the  i o g g a m m a  family with 

very different values of the shape  pa r ame t e r  k, will look very similar ,  creat ing est imation 

problems.  The  ext reme value d is t r ibut ion  (q = t) is difficult to d iscr iminate  from the 

normal  dis t r ibut ion (q = 0), when the sample  size is small .  

In view of these facts,  we therefore r ecommend  t ha t  a s imple d is t r ibut ion  be assumed 
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for ~, like the extreme value or the normal. After comparing the log likelihood, fit can 

be assessed by a Q.Q plot. If a symmetric  distribution is needed, the normal distribution 

should be assumed for ~, since it is the only symmetric  member  of the generalized loggamma 

family. Fitting the normal model is useful for finding initial parameter  estimates for the 

extreme value model. The estimated IBNR reserve can then be easily calculated under 

both assumptions.  

The assumption of a normal distribution for ~ presents one advantage over that  of the 

extreme value distribution. When reserves are to be discounted for interest, we can still 

find the distribution of the present value of the future payments .  If the force of interest 6 is 

constant  over a year, it follows from a property of the Iognormal distribution that the joint 

distribution of the discounted value of the future payments  is also multivariate Iognormal. 

Stochastic interest rates could also be built into the model and the reserve estimated by 

simulation. 

In conclusion, regression models present many advantages over the chain ladder method: 

they have fewer parameters  and do not underest imate the reserve; the properties of the 

est imators  of the parameters  have been well studied; they take into account both the 

error involved in the estimation of the parameters  and the statistical error inherent in the 

prediction of future claims; the fit of the model can be tested statistically by a Q - Q  plot; 

and confidence intervals for the reserve can be calculated with a simulation. We therefore 

strongly advocate the use of regression models. 
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10 A p p e n d i c e s  

10.1 Algorithm to generate a multinormal random variable 

To s imulate  the distribution of the IBNR reserve, we need to generate a M L N ( I ~ , ~  ) 

random variable. The following algorithm was used. 

1. Generate Z .,. M N ( O , [ ) ,  using the Box-Muller t ransformation 

ZI = ( - 2 1 n  Ui)cos(27rU2) 

Z2 = (--2 In U2) cos(27rU~), 

where Ut and U2 are i.i.d., uniform on (0, 1). 

2. Transform Z to Y, a M N ( p , ~ )  distr ibution: 

Y = I ~ + C Z ,  

where ~ = C C '  and C is calculated from the Choleski factorization algorithm (ref. 

ell -~ V / ~  
j - I  

Cij kfi 

Cii = ¢Yii -- C,~L 
] k=l 

Kellison (1975)): 

3. Exponent ia te  each component  of Y 

648 



lO.2 A s y m p t o t i c  p r o p e r t i e s  of  M L E ' s  

If Xi . . . . .  X,~ is a random sample of size n from the density /(z;0_), where 0 = 

(01 , . . . , 0p+ i )  contains the regression parameter  vector /J and the scale parameter  a,  then 

under certain regularity conditions, the following results hold. 

I- The  MLE ~ = (01 . . . . .  0k) exists. 

2- It is a consistent estimator of 0. 

3- 0t . . . .  ,0~,+l are asymptotically efficient, 

i.e. lim Var(Oj) = 1, 
.-oo C RLB(Oj) 

where CRLB(0i) is the Cram~r-Rao lower bound,  obtained as l /nE[°0~o,  ] 2. 

4- vfn '(0--0) has an asymptotically multivariate normal MN(~.,I~ "t) distribution where 

I0 is the observed information matrix,  with element  

02 
l~j = -00,00-----~ log L(0; zl . . . . .  z.) [0=~. 
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