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Abstract 

This paper considers the application of loglinear models to claims reserving. The models encompass 

the chain ladder technique and extend the range of the powible analyses. By bringing the methods 

within a statistical framework, a coherent strategy for testing goodness of tit and for forecasting 

outstanding claims is produced. Improvements to the basic chain ladder technique are given which 

use Bay&an methods. 

Key Words Claims Reserving, Linear Models, Bayes and Empirical Bayes Methods, State SF 

Models, The Chain Ladder Technique. 
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1. Introduction 

Forecasting outstandiig claims and setting up suitable reserves to meet these claims is an important 

part of the business of a general insurance company. Indeed, the published profits of these companies 

depend not only on the actual claims paid, but on the forecasts of the claims which will have to he 

paid. It is essential, therefore, that a reliable estimate is available of the reserve to be set aside to 

cover claims, in order to ensure the linen&d stability of the company and its profit and loss 

account. There are a number of methods which have proved useful in practice, one of which is 

extensively used and is known as the chain ladder technique. In recent years, a statistical framework 

for analysing this data has been built up, which encompasses the actuarial method, extending and 

consolidating it. The aim of this paper is to bring together there results and to illustrate how the 

chain ladder technique can be improved and extended, without altering the basic foundations upon 

which it has been built. These improvements are designed to overcome two problems with the cbaia 

ladder technique. Firstly, that not enough connection is made between the accident years, resulting 

in an over-param&sed model and unstable forecasts. Secondly, that the development pattern is 

sssumed to bs the same for all accident years. No allowance is made by the chain ladder technique 

for any change in the speed with which Aims are settled, or for any other factors which may change 

the shape of the run-off pattern. Before describing the methods for overcoming these problems, we 

first define the chain ladder linear model, and show how it can be used to give upper prediction 

bounds on total outstanding claims. 

2. The Data 

It will be aslnuned throughout this paper that the data is in the form of a triangle. It should be 

emphasised that this is for notational convenience only: there are no problems in extending the 

methods to other shapes of data. The year in which the policy is written will be called the 

underwriting year, accident year or year of business. In the years after the policy was written the 

company may receive claims related to that policy, and theac claims are indexed by their business 

year and the delay. The following data set, which is taken from Taylor and Ashe (1983) will be ussd 

for illustrative purposes. The data is given in the form of incremental claims in each delay year. 



357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

352118 884021 933894 1183289445745 320996 527804 266172 425046 

290507 1001799 926219 1016654 750816 146923 495992 280405 

310608 1108250 776189 1562400 272482352053 206286 

443160 693190 991983 769488 504851470639 

396132 937085 947498 805037 705960 

440832 847631 1131398 1063269 

359480 1061648 1443370 

376686 986608 

344014 

The data may take a slightly different shape if one or more of the corners is truncated, but this 

paper will consider trianglea of data (without loss of generality). The first column will be labelled 

delay year 1, rather than delay year 0. 

Sometimes, the rows are standardii by dividing by a measure of the volume of business, such as 

the premium income. Thii is reversed when predictions of outstanding claims are made. For the 

above triangle the exposure factors are: 

610 721 697 621 600 552 543 503 525 420. 

The incremental claims relating to business year i and delay year j will be denoted Zij, so that the 

set of data ohserved is 

{ Zi j : kl,..., t; j=l,..., t-i+l) 

The statistical approach uses the incremental claims, but the chain ladder technique is applied to the 

cumulative claims, which are defined by: 

The problem is to forecast out&anti claims on the basis of past experience. in other words to till 
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in the lower right hand triangle of claims. Sometimes it is also useful to extend the forecasts beyond 

the latest delay year (i.e. to the right of the claims run-off triangle). The standard actuarial 

technique does not attempt to do this. 

3. Linear Models and the Chain Ladder Technique 

This paper will concentrate on the chain ladder technique. It its familiar form, this assumes that the 

cumulative claims for each business year develop similarly by delay year, and estimates development 

factors ss ratios of sums of cumulative claims with the same delay index. Thus the estimate of the 

development factor for column j is 

r-j+1 
is cij 

i-j+l- 
C 'i,j-1 
i=, 

(3.1) 

The model on which this is based is 

E ( Cij I C<, 3 Ci, 7 . . v Ci,j-l ) = Aj Ci,j-l j=2,...,t. (3.8 

and (3.1) is an estimate of Xj . It has the advantage that it is relatively straightforward to calculate, 

but there is no clear b&i on which to examine the properties in greater detail. It can be seen 84 a 

useful %ugh-and-ready” estimation method. 

The expected ultimate Icea, E ( Ci, ) , is estimated by multiplying the latest loss, Ci,t_i+l , by the 

appropriate estimated X-values : 

estimate of E ( Ci, ) = ( fi xj ) Ci,r-i+l . (3.3) 
j=*-i+? 

The chain ladder technique produces forecasts which have a row effect and a column effect. The 

column effect is obviously due to the parameters { Aj ; j=2,...,t f. There is also a row effect since 

the estimates for each row depend not only on the parameters { Aj ; j=2,...,t ), but also on the row 

being considered. The latest cumulative claims, Ci,r-i+lr can be considered as the row effect. Thii 

leads to consideration of other models which have row and column effects, in particular the two-way 
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analysis of variance model. The connection is tirst made with a multiplicative model. This uses the 

non-cumulative data, Zij , and models them according to: 

E ( Zij ) = Uj Sj 

where Ui is a parameter for row i, 

S j is a parameter for column j 

A multiplicative error structure is assumed. 

AlSO &Sj =l 
j=l 

(3.4) 

Sj is the expected proportion of ultimate claims which occur in the jth development year. 

Ui is the expected total ultimate claim amount for business year i (neglecting any tail factor). 

Kremer( 1982) showed that the following relationships between the parameters hold: 

A. - 1 sj = +- cil2) 
I-I 4 kj 

s, = 
j$ 

and Ui = E( Cit ). (3.8) 

(3.6) 

(3.7) 

Estimators of { Si ; izl,..., t } and { Uj ; j=l,..., t ] can be obtained by applying a linear model to 

the logged incremental claims data. Taking logs of both sides of equation (3.4), and assuming that 

the incremental claims are positive: 

E ( Yij ) = B + ai + Bj (3.9) 

where Yij = log zij 

and the errors now have an additive structure and are assumed to have mean zero. 



The errors will also be assumsd to be identically distributed with variance os, although this 

distributional assumption can be relaxed. 

The usual rmtriction is placed on the parameters to ensure a non-singular design matrix, in thii case 

‘I1 = p1 = 0. 

Now equation (3.9) can be written in the form of a linear model. Suppose, for example, there are 

three years of data. 

Then 

Yll 1 

Yll = Yll = 

Y,l Y,l 

_ _ 

10000’ 10000’ 

1 1 0 0 0 0 1 1 0 0 

YlS YlS 

1 1 1 1 0 0 0 0 0 0 

YPZ YPZ 1 1 0 0 0 0 0 0 1 1 

YSI YSI - - I I 1 1 0 0 1 1 0 0 

1 1 0 1 0 0 

(3.10) 

Kremer (1982) derived the normal equations for the chain ladder linear model and also examined the 

relationship between the linear model and the crude chain ladder kchnique. By reversing the 

transformation it can he shown that 

Ui = e”’ ec 2 e pi 
j=1 

Kramer showed that if the estimak of Ui is obtained by “hatting” the paramekre in the above 

identity, the remit is very sio&u to that obtained &om the chain ladder technique. The resuiting 

estiiak of Ui ia not the maximum likelihcmd estiiak, neither is it unbiased, but it does serve the 

purpcms of illustrating the similarity bstween the chain ladder kchnique and the two-way analysis of 

variance. 

Furthermore, if alI the geometric means are replaced by arithmetic means the estimators of the 

paramekre of the models are equivalent. Thus the two estimation methods, the chain ladder method 

and the linear model, will produce identical results. The structure of the models is identical and the 

only difference is the &ii kebniqua. It can ha argued that the line.ar model estimates are beat 
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in a statistical sense, but it should be emphasised that in using the linear model instead of the crude 

chain ladder technique, there are no radical changes. 

In general, a loglinear model applied to this data takes the form 

where 

Y=xp+e 

y is the vector of logged incremental claims, 

X is the design matrix, 

fl is the parameter vector and 

g is a vector of errors. 

Apart from the chain ladder linear model, other models which have been suggested as suitable for 

ciaims data include a gamma curve (suggested by Zehnwirth (1985)) 

and an exponential tail (suggested by Ajne (1989)) in which the first few delay years follow the 

chain ladder model and the later delay years follow an exponential curve. 

The statistical treatment facilitates the production of standard errors 88 well as point forecasts. This 

is a considerable advantage over the ad hoc methods, and allows ‘safe’ upper limits on ouktanding 

claims to be set. The statistical analysis is more comprehensive and allows a greater study of the 

models, their tit to the data and any unusual features in the data. Also, Bayesian methodology can 

be incorporated to allow the structured input of other information, and to extend the range of the 

analysis by including empirical Bayee and state space methods. Thii has beneficial consequences for 

the stability of the predictions. 

With reference to the computing aspects, Renshaw (1989) has shown how these models can be 

implemented in GLIM, and Christofidea (1990) has used the spread-sheet package SuperCafc.5. 
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4. Estimation of Reserves, and Variances of Reserves. 

It has been shown that  the chain ladder model can be considered as a two-way analysis of variance. 

This linear model, and other linear models, can be used effectively for analysing claims data  and 

producing estimates of expected total outstanding claims for each year of business. The methods 

have in common the assumption that  the data  is Iognormally distributed, and the linear models are 

therefore applied to the logged incremental claims rather than the raw incremental claims data.  The 

problem therefore arises of reversing the log transformation to produce estimates on the original 

scale. It is this problem which is addressed in this section; in particular the unbiasedness of the 

estimates is considered. This problem was first addressed in Verrall(1991a), in which the following 

analysis was given. 

4.1. Identically Distributed Data 

Before considering the claims run-off triangle, consider n independently, identically distributed 

observations which are lognormally distributed. 

i.e. Z 1 , ... , Zn are independent 

and Zi ~ lognormal. 

Suppose also that  E ( Z i ) : 0. (4.1) 

The aim is to est imate 0 and to find the mean square error (or variance, if the est imate is unbiased) 

of the estimate. One way of proceeding towards the estimation of 0 is to take logs of the da ta  and 

analyse the resulting sample using normal distribution theory. This is an approach which can be 

generalisod to da ta  which is not identically distributed and so is the mint  appropriate for claims 

data.  

Let Yi = log Zi (i=l, . . . ,n).  (4.2) 

Since Z i has a Iognormal distribution, Yi has a normal distribution. 

Suppose Yi ~ N ( p ,  o r ). 

Then 0 = exp ( p + Jo 2 ). (4.3) 
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The maximum likelihood estimates of p and o "2 are 

i = l  

1 n )2 6.2 ~ E ( 7 , - ~  
i=l 

and the maximum likelihood estimate of 0 can be obtained by substituting ~s and 6 .2 into equation 

(4.3): 

= exp ( is + 16. 2 ) (4.4) 

Finney (1941) showed that the maximum likelihood estimate of 0 is biased. In order to correct for 

the bias, Finney introduced the function 8m ( t ) , where 

co m k ( m + 2k ) t k 

g m ( t ) =  ~'~ m ( m  + 2 ) . . . ( m + 2 k )  ~. 
k=0 

(4.5) 

and m is the degrees of freedom eusaociated with b 2. In this case m = n -  1. 

It can be shown that an unbiased estimate of 0 is 0 where 

= e x p ( ~ ) g m (  t ( 1 - ~ ) s ~ )  (4.6) 

and a= = n ~r= is an unbiased estimate of ¢~. 
n - 1  

One advantage of the use of linear models is that standard errom of the parameter estimates can be 

produced. These can be used to find standard errors on the original unlogged scale. The variance of 

is ~= , where 

~2 = z(~2)_ (z(~)?. 

An unbiased ~ t ims te  of E ( @= ) is obviously ~2 (since the expectation of this is E ( 0= ) ) and 

(z(°)) ~ =(~P(~ + i"))= 
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= e x p ( 2 p  + ~2).  

By analogy with the unbiased estimation of 0, an unbiased estimate of 

exp ( 2p + c, 2 ) 

e x p ( 2 7 ) g m  ( ( 1 - 3 )  s 2). 

Thus an unbiased estimate of ~.2 is 

72 =exp(27)E  ( g m ( ~ ( 1 - ~ )  s 2 ) )2  _gm ( ( 1 - 3 )  s 2 ) ] .  (4.7) 

For comparison purposes, the corresponding maximum likelihood estimates are also found. The 

maximum likelihood estimate of the variance of the maximum likelihood estimate of 0, 0, is 

+ o,,,. _ [ , _  ] - (n- , )  . (4.g) 

4.2" Unbiased Estimation for Claims Runoff Triangles 

A claims runoff triangle consisting of incremental claims (assumed positive) is now considered. It is 

assumed that the data have been adjusted for inflation and expoeure. Zij is incremental claims in 

row i, column j. 

Let 01j = E ( Zij ). (4.9) 

Estimates of 01j are required along with standard errors of these estimates. In particular, estimates 

of { 0ij : i=l,.. . ,t  ; j=t-i+2,... ,t  } ate required, as these are the estimates of the expected 

outstanding claims. The row totals of the estimates also have to be considered, as these ate the 

estimates of the expected totai outstanding claims for each year of business. 

{ Zij : i=l, . . . , t~=l, . . . , t- i+l } are assumed to be independently, lognormaily distributed. 
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Let Yij = log Z~j. (4.10) 

Then Yij are independently normally distributed. 

Suppose tha t  { Yij : i=l, . . . , t ;  j= l , . . . , t - i+ l  } are modelled by 

E ( Y~i ) = X q (4.11) 

Var ( Yq  = o.2 (4.12) 

where ~ij m a row vector of explanatory variables and ~ is a column vector of parameters, both of 

length p. 

The linear model for the whole triangle is 

E ( X )  = X a  (4.13) 

where X is an (axp) matrix whaee rows are Xij  

and Y is the vector of observations. 

n is the number of ol~ervations ( for a triangular array n=~ t ( t+ l )  ), and the errors are assumed to 

be independently, identically normally distributed. 

The expected value of the lognormally distributed data,  0~j , is related to the mean and variance of 

the normally distributed data  by 

01j = exp ( Xi j  ..~ + ~ o .2 ) (4-141 

Thus  the m a x i m u m  likelihood estimate of 0~i is 

Oij = exp ( ~i j  ~ + ~ b2 ) (4-151 

where ~ _ ( XlX ) - t  Xtv 

and ~2 = ~ ( z - x~ 1'( z - x~ ) 

The general theory of estimation from linear models when the data  is Iognormally distributed wad 
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considered by Bradu and Mundlak (1970). It can be shown that  an unbiased estimate of 

exp ( Z ~  + a~r2 ) 

for any row vector ~t of length p and scalar a, is 

~ p  ( z ~ ) gm ~ ( a - ~ a ( x ' x ) - '  ~' ) . '  (4.16) 

where s ~ is an unbiased estimate of ~2 and m is the number of degrees of freedom associated with 

B y . 

i . e .  s 2 = n h~ n - p  

and m 

1 ( z - x ~  ) ' (  z - x~_ ) n - - p  

- - - -n - -p .  

Thus  an unbiased estimate of Oij is 0ii  , where 

0, j  = e x p ( ~ - i ~ ) g m E  ~ ( 1  --~.~j  (X'X) -x~.~j ) s  ~ 2 .  (4.17) 

Note tha t  Vat ( ~ ) = (X'X) - I  e 2 

and heave Vat ( X~j ~ ) ---- ~ j  (X'X) - l  ~ . j  ~2. 

It can therefore be seen that  ~ j  (XIX) -1 ~ j  s ~ is an estimate of Var ( X i  / ~ ). 

" • 2 where The  variance of the unbiased estimate of 01j ,  0 , j ,  m r~i, 

~2j = v ~  ( ° , i  ) 

(4 .18)  : E ( 0 ~ j ) - ( E ( 0 q ) )  2. 
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An unbiased estimate of E ( 8~/ ) is 8~i and 

( E ( #,~ ) )~ = 0,~ 

= exp(2Xi  i ~  + o 2). 

Hence an unbiased estimate of ri~ i is rrli-2 , where 

-2 = exp(2..:_iih)~(g m (~ ( l - -~ i j  (XtX) - l  ~ i  )s2))2--gm((l--2X~'j (X'X) -I .--~j )s2)]" r , j  

(4.19) 

4.3. Unbiased Estimates of Total Outstanding Claims 

The purpose of the analysis of the claims data is to produce estimates of the expected total 

outstanding claims, R, , for each year of business, and the total outstanding claims, R, for the whole 

triangle. 

An unbiased estimate of R i is B-i , where 

R'~ : £ Oii • (4.20) 
j=t-i+2 

The variance of Ri can be calculated as follows: 

* Oii 1 Vat ( Ri ) = Vat ~-~+2 
i= 

= .i--,-i+2 £ I Var(''')'k2 ,../+t£ Coy( " J ' ' " ) l  (4.21) 

Now 

Coy(  B ¢ i ' 0 ¢ k ) =  E ( 0 ~ i 0 ~ ) -  E ( 9 ~ i ) E ( 0 ¢ j ) ,  

and an unbiased estimate of this can be obta.med using the same method as Lhat which was used to 

find ~ j  in section 4.2. 

It can be showu thag if 
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r , i  k = Cov( 0 , i , 0 ,* ) '  

an unbiased est imate of r l i  ~ is "~ii~ , where 

~-o~=exp((X,j +.X,k)/~) [ gm(~(l-.~.,j (X'X)-' X[j )s2)gm(~(I--.~.,k (XtX) -t ~[~ ) s2) 

-gm((l-- ~(~'i + X--'n(X'X)-'(~'J +~'~))s~) I 

(4.22) 

Hence an unbiased estimate of Var ( Ri ) is 

j=l--i+2 l=/+l 

By extending the limits of the summat ions ,  the total outs tanding claims for the whole tr iangle can 

also be considered. 

4.4 Prediction Intervals 

Having found an unbiased est imate of total  ou ts tanding  claims, it is now possible to produce a 

prediction interval for total ou ts tanding  claims. The purpose of the analysis  so far h ~  been to 

produce an est imate of total ou ts tanding  claims and an estimate of the variance of this est imate.  It 

is often desirable to find a 'safe '  value which is unlikely to be exceeded by the total ac tual  claims. 

Let R = total ou ts tanding  claims for the whole triangle 

and R. be an unbiased est imate of E ( R ) .  

Suppose tha t  a 95% upper confidence bound on R. is required, i.e. it is required to find a value, k, 

such tha t  

p ( I t  _< ft + k ) = 0.95 (4.24) 

i.e. find k s,lch that 

P (  It -- ft < k ) = 0.95. (4.25) 
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Since R is an unbiased estimate of E(R),  

E(R.) = E(R) 

and hence 

(4.26) 

Z(R- R ) = 0. (4.2Z) 

Also, B. is based on past data and is thus independent of R under the assumptions of the model. 

Thus 

Vat(R- R ) = Vat(R) + Vat(R). (4.28) 

In section 4.3, an unbiased estimate of Vat ( I 3. ) was derived and it is possible to derive an unbiased 

estimate of Vat (R)  using the theory which was used in that section. By independence, 

V a r ( R ) =  ~ ~ Var(Zij ) (4.29) 
i=2 j = ¢ - i + 2  

and an unbiased estimate of Vat(Zij ) is required. This can be derived as follows, using the method 

of section 4.2. 

Zij has a Iognormal distribution, and the variance of this distribution is given by: 

Var(Zij)  = e x p ( 2 ~ i j ~  + o'a)(exp(¢3) - I)  

= e x p ( 2 X q ~  + 2a a) -- exp(2~, , j~ + ¢2) (4.30) 

Hence, applying equation (4.16), an unbiased estimate of Var(Z~ ) is 

exp(2~j  ~ g  m ( 2 ( l - - ~ j  (X'X)- '  ~-j  ) s 2 ) - g m ( ( l - 2 ~ j  (XrX) -! ~ j  )s~)~. (4.31) 

It is not ~napproprlate to use a Normal approximation since K and R are, typicMiy, combinations of 

a reasonably large number of lognormaUy distributed random vmriables. Thus a 95% upper bound on 

total outstanding claims can be found: 
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+ 1.645 ~ V a r ( R )  + Vax(R)  (4.32) 

~ V a r ( R )  + Var( R ) is the root mean square error of prediction. 

4.5 Bayesian Estimation for Claims Runoff Triangles 

When a method is used which is based on Bayes theory, Bayesian estimators should be used. The 

Bayesian estimators have a sightly simpler form than the unbiased estimators and so a r e  sometimes 

used in their place in a classical analysis. When used in a classical analysis, no prior information is 

assumed. 

Suppose that Zkl has a Iognormal distribution with parameters 0 and q, and that  the posterior 

distribution of 0, given D, is normal with mean m and variance ~'a. 

i.e. l o g Z ~ l l 0  ~ N ( 0 , o  "2) 

0 1 D  ~ N ( m , v  ~ ) 

Suppose also that ~2 and r 2 are known. Then 

E ( Z k l l D )  = e m+~2+~1"2 

and Var(Zkl I D)= e 2m+¢2+r3(e °':2+~2- I) 

Similar methods can be used to calculate the eovariances, total outstanding claims and the variance 

of the total outstanding claims. 

The Bayes estimate of outstanding claims for year of business i is 

Z E ( Z,j I D ) (4.33) 
$>n- i÷!  

and the Bayes estimate of the variance is 

E I D) + 2 E  I 
j>n--i÷l h ) j  
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4.6. Example 

This example illustrates and compares the two most basic methods of claims reserving considered in 

this thesis: the chain ladder method and the two-way analysis of variance. This gives an 

opportunity to compare the two. For the analysis of variance model, both the unbiased and 

maximum likelihood estimates of outstanding claims are given. The data used is taken from Taylor 

and Ashe (1983), and wv.s given in section 2. 

The estimates of the parameters in the chain ladder linear model and their standard errors are 

shown in table 4.1. 

Table 4.1 

Overall mean 

Row parameters 

Column parameters 

Estimate Standard error 

6.106 0.165 

0.194 0.161 

0.149 0.168 

0.153 0.176 

0.299 0.186 

0.412 0.198 

0.508 0.214 

0.673 0.239 

0.495 0.281 

0.602 0.379 

0.911 0.161 

0.939 0.168 

0.965 0.176 

0.383 0.186 

-0.005 0.198 

-0.118 0.214 

-0.439 0.239 

-0.054 0.281 

- 1.393 0.379 

The standard errors are obtained from the estimates of the variance-covariance matrix of the 

parameter estimates: 

( XrX )-x ~2 

where 6 .2 is the estimate of the residual variance. For this example, ~.2 = 0.116. 

Since the data  is in the form of a triangle (there are the same number of rows and columns) and the 

matrix X is based solely on the design, the standard errors are the same for each row and column 
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parameter .  The row parameters  are contained within a much smaller range th~.u the column 

parameters :  (0.149, 0.673) compared with (-1.393, 0.965). It can also be seen tha t  there is an 

indication tha t  the row parameters  follow an increasing trend. It is to be expected tha t  the row 

parameters  should be contained within a fairly small range, since the row8 are expected to be 

similar.  Any pat te rn  in the row parameters  gives an insight into, and  depends upon, the par t icular  

claims experience. It is thus quite common to observe tha t  the row parameters  lie in a small  range, 

but  not  typical tha t  they follow a trend. 
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Table  4.2 

286170 711785 731359 750301 418911 283724 252756 182559 266237 67948 

357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

410587 1021245 1049329 1076506 601040 407078 362646 261930 381987 

352118 884021 933894 1183289 445745 320996 527804 266172 425046 

379337 943516 969461 994572 555294 376094 335044 241994 

290507 1001799 9262L9 1016654 750816 146923 495992 280405 

339233 843767 866971 889425 496588 336334 299624 

310608 1108250 776189 1562400 272482 352053 206286 

378676 941872 967773 992840 554327 375439 

443160 693190 991983 769488 504851 470639 

389421 968599 995234 1021012 570056 

396132 937085 847498 805037 705960 

420963 1047052 1075844 1103710 

440832 847631 1131398 1063269 

457887 1138894 1170213 

359480 1061648 1443370 

396651 986582 

376686 986608 

344014 

344014 

The  fitted values for the analysis of variance model are shown in table 4.2. These are the unbiased 

est imates  and  are shown with the actual  observations for comparison,  in this figure, and  in all 

s imilar  ones in future, the top entries are the est imates and  those underneath  are the ac tua l  

observations.  

Table  4.3 shows a plot of residuals (fitted value - actual  value) agains t  fitted value. 
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There is no discernible pat tern  in the residuals, and  they seem to be randomly  scattered,  so there is 

no cause to question the model on the basis of this plot. Of  course, it is possible to look further  into 

a residual analysis and  s tudy the plots of residuals against  year of business and delay. This  is 

considered further  using the GLIM system, by Renshaw (1989). The main purpose of this paper  is to 

extend the possible range of analyses and  to consider rigorous statist ical  est imation,  ra ther  than to 

find the most  appropr ia te  linear model to fit, and so the residual analysis will not be commented  on 

further.  

Of  most  interest to pract i t ioners  are the predicted outs tanding  claims for each year  of business, 

which are the row totals of predicted values. Table 4.4 shows the m a x i m u m  likelihood predictions of 

the ou t s tand ing  claims in the lower triangle, and table 4.5 shows the unbiased predictions. The 

method does not produce any  predictions for the first row, and  each row contains  one more predict~ed 

value, 

Table  4.4 

888831 

101269 

357398 93599 

217465 319835 83761 

335047 243001 357392 93597 

386433 345088 250283 368102 96402 

617309 418743 373941 271209 398880 104462 

1206369 674243 457364 408430 296223 435668 114097 

1026594 1053911 589034 399564 356813 258787 380610 99678 

913640 937951 524224 355600 317554 230313 338732 88710 
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Table 4.5 

96238 

350362 88841 

215218 313105 79394 

332848 240075 349268 88564 

384305 342028 246696 358900 91006 

613257 415031 369373 266419 387593 08281 

1193906 666126 450811 401216 289387 421005 106752 

1006382 1031734 575643 389575 346716 250077 363813 92248 

844677 867203 889047 496032 335695 298762 215487 313486 79483 

It can be seen that the ataximum likelihood estimates are all higher than the unbiased estimates, as 

was to be expected. 

Table 4.6 

Analysis of Variance Chain Ladder 

Ro__w MaximumLikelihoed Unbiased 

2 101269 96238 94630 

3 459997 439203 464668 

4 621061 607717 702101 

5 1029037 1010755 965576 

6 1446307 1422934 1412202 

7 2184544 2149953 2176089 

8 3592393 3529202 3897142 

9 4164990 4056189 4289473 

10 4595556 4339873 4618035 

The total predicted outstanding claims for each year of business (the row totals of the predicted 

outstanding claims) are shown in table 4.6. There are three estimates given, the maximum likelihood 

and unbiased estimates from the analysis of variance model, and the chain ladder estimate. 

It can be seen that the maximum likelihood estimates differ most significantly from the unbiased 
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which is where the number of observations used in the estimation is the greatest. The maximum 

likelihood estimate is asymptotical ly unbiased, and the greater the number of ohservatlons used to 

estimate ~he parameters,  the closer are the two. The chain ladder estimates are sometimes higher 

and sometimes lower than the analysis of variance estimates. There is nothing significant tha t  can 

be inferred from the differences. This confirms that  the crude chain ladder method is a reasonable 

' rough-and-ready '  method for calculating outstanding claims, al though the more proper method, 

statistically, is the analysis of variance method (using unbiased estimation). 

The total predicted outstanding claims are: 

Analysis of Maximum Likelihood 18186154 

Variance Unbiased 17652064 

Chain Ladder 18619916 

The following table shows the unbiased estimates of the total outs tanding claims for each year of 

business, the s tandard errors of these estimates and the root mean square error of prediction. This 

table can be used in setting safe reserves, and gives an idea of the likely variation of outs tanding 

. claims. 

Table 4.7 

~pbiasqc~ Standard Mean Square Error 

Estimat© Erro¢ Of  Prediction 

96238 35105 47202 

439203 108804 163217 

607717 127616 182847 

1010755 195739 269224 

1422934 273082 357593 

2149953 429669 538533 

3529202 775256 942851 

4056189 1052049 1197009 

4339873 1534943 1631306 
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The unbiased estimate of total outs tanding claims is 17652064 and the root mean square error of 

prediction is 2759258. Thus a 95% upper bound on total outstanding claims is 

17652064 + 1.645 x 2759258 = 22191043 

This could be regarded as a "safe* reserve for this triangle according to the chain ladder linear 

model using unbiased estimation. 

5. Estimation of the Development Factors 

When considering outstanding claims, it is important  to use unbiased estimators. However, when 

comparing several sets of runoff patterns it is simpler to use maximum likelihood theory since 

unbinsedness is not critical. There are two sets of parameters whose distributions can usefully be 

found: the development factors, { Aj : j = 2 . . . .  , t }, and the proportions of ul t imate claims, { Sj 

: j = 1 . . . .  , t ; ~ Sj = I }. It has already been shown tha t  the following relationship between 
j=l  

the proportions of ult imate claims and the development factors holds: 

(5.1) 

1=2 

Sj ~i - 1 = , ( j > 2 ) (5.2) 
,Xz 

I= j  

It was also shown by Kremer tha t  the proportions of ult imate claims are related to the column 

parameters  off the linear model as follows 

S.i = " ~ e  I 

i=! 

j = 1 . . . . .  t ( 5 . 3 )  

where t~l = 0 by definition. 
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Finally, the relationship between the parameters of the chain ladder and linear models waa proved in 

Ver rail ( 1991 b): 

Ai = I + i - Z e ~  ~ (5.4) 

I=1 

The parameters of the additive model can be estimated using maximum likelihood estimation. The 

variance-covariance matrix of the parameter estimates can be obtained from the Fisher information 

matr ix  by differentiating the Iog-llkelihood a second time. Further details of the theory of maximum 

likelihood which is used in this section can be found in Cox and Hinkley (19774). 

Since maximum likelihood estimates are invariant under parameter transformations, the maximum 

likelihood estimates of the development factors and the proportions of ul t imate claims can be 

obtained by substi tut ing the estimates of { /~j : j ---- 1 , ... , t ; /~t = 0 } into equations (5.3) and 

(5.4). In addition to the parameter estimates, it is useful to have standard errors of the parameter 

est imates which can be obtained by maximum likelihood theory. The particular advantage of using 

maximum likelihood estimation is that  the second moments are relatively straightforward to obtain. 

Denoting the variance-covariance matrix of { flj : j = 1 . . . . .  t ; 81 = 0 } by V ( ~ ) , the 

variance-covariance matr ix  of { ~tj : j  ---- 2 . . . . .  t } and { Sj : j  = 1 . . . . .  t ; ~ Sj = 1 } are 
j= l  

given by 

(5.5) 

It  is thus necessary to obtain the matrices of the first derivatives of the respective parameter vectors. 

The (j,k)th element of ~ - ~ )  be obtained from equation (5.4) and is given by: 
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0 k > j  

- -  = k - - - - j  

0.8 t ~x e.Si 

e~e~t k < j  

0 k > j  

~j - x k = j (5.7) 

- ( x j -  1 ) ( ~ t -  1)  k < j  

Similarly, the (j,k)th element of ( ~ / c a n  be obtained from equation (5.3)and is given by: 
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0 S.__.2 = 

a r k  

e~Je~k k ~ j  

k = j  

- S i Sk k ~ j 

s j  ( 1 - s j  ) k = j  

(s .8)  

Estimates of the variance-covariance matrices can be obtained by substi tut ing est imates of the 

parameters  into equations (5.7) and (5.8). 

A technical note is that  the parameter El (which is defined to be zero) has to be included in the 

matr ix  of partial  derivatives in equation (5.8) since there are a parameters in the vector ~.. The 

variance-covariance matr ix  of the parameters of the additive model which is obtained from a 

standard least squares analysis has to augmented to include an extra row and column, all of whose 

entries are zero. This is not necessary for equation (5.7). 

420 



5.1 Example 

The method described in section 5 is of use when comparing several different sets of da t a  and 

therefore a different example will be used than in other sections for illustration purposes. The 

method is applied to six sets of employers'  liability da ta  which have been obtained from the DTi 

returns. The names of the companies to which the da ta  apply have been suppressed, and it should be 

commented tha t  this mathematical  analysis is only one part  of the process by which reserves are set. 

In particular,  the DTI da ta  are graza of reinsurance. The results here should therefore be regarded as 

a statistical analysis which would give further information to the claims reserver who would use the 

other information available. 

We now consider the parameter estimates for each of the three models in turn. Beginning with the 

additive model the estimates of the column parameters { ~ i  : j -- 2 . . . . .  t } and their s tandard 

errors are given in the following figure: 

COMPANY: 

1 2 3 4 5 6 

1.796 0.121 1.748 0.148 2.230 0.249 1.840 0.248 1.941 0.201 2.010 0.082 

1.848 0.126 1.857 0.155 2.080 0.261 2.200 0.260 2.248 0.211 2.246 0.086 

1.669 0.133 1.654 0.163 1.978 0.273 2.159 0.272 2.204 0.221 2.129 0.091 

1.413 0.139 1.400 0.171 1.725 0.287 1.986 0.286 1.981 0.232 1.863 0.095 

0.994 0.147 1.200 0.180 1.535 0.303 1.535 0.302 1.514 0.245 1.485 0.100 

0.015 0.155 0.705 0.190 1.057 0.320 1.235 0.319 0.788 0.259 1.050 0.106 

0.415 0.164 0.339 0.201 0.667 0.338 0.644 0.337 0.227 0.274 0.?82 0.112 

0.038 0.175 0.025 0.215 -0.099 0.360 0.222 0.359 -0.540 0.291 0.234 0.120 

-0.812 0.189 -0.407 0.232 -0.300 0.390 0.047 0.388 -0.993 0.315 0.155 0.129 

-0.915 0.212 -1.821 0.200 -0.715 0.437 0.382 0.435 -1.311 0.353 -0.324 0.145 

-2.513 0.264 -1.492 0.323 -1.708 0.543 -0.896 0.541 -3.206 0.430 -0.304 0.180 

Before going on to the parametem which have a physical interpretation, it should be noticed tha t  it 

is already pomible to see some differences between the companies. In part icuar,  the s tandard  errors 
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of the parameters are larger for some companies (3 and 4) than for others (6). This will be mirrored 

in the parameter estimates and standard errors of the other models. 

Next, consider the chain ladder model. The estimates of the development factors {A j: j = 2 , ... , t} 

and their standard errors are given in following table: 

COMPANY: 

I 2 3 4 5 6 

7.027 0.727 6.742 0.850 10 .36  2.327 7.332 1 .569  7.963 1.401 8.466 0.616 

1.904 0. I01 1.950 0.130 1 .773 0.181 2.307 0.300 2.189 0.222 2.117 0.086 

1.397 0.041 1.398 0.050 1.394 0.084 1.512 0.109 1 .520 0.090 1.469 0.033 

1.220 0.022 1.221 0.027 1.219 0.046 1.285 0.059 1.274 0.046 1.245 0.017 

1.119 0.012 1.148 0.019 1 .149 0.032 1.141 0.030 1 .135  0.023 1.135 0.009 

1.073 0.008 1.079 0.010 1.080 0.018 1.092 0.020 1.057 0.010 1.077 0.006 

1.055 0.006 1.051 0.007 1.050 0.012 1.047 0.011 1.031 0.006 1.055 0.004 

1.036 0.005 1.035 0.006 1.022 0.006 1.029 0.008 1.014 0.003 1.030 0.003 

1.015 0.002 1.022 0.004 1.018 0.005 1.024 0.007 1.009 0.002 1.027 0.003 

1.013 0.002 1.005 0.001 1.012 0.004 1.032 0.011 1.006 0.002 1.016 0.002 

1.003 0.001 1.007 0.002 1.004 0.002 1.009 0.004 1.001 0.000 1.016 0.003 

Finally, consider the multiplicative model. The estimates of the proportions of ul t imate  claims in 

each development year { Sj : j - -  1 . . . .  , t ; ~ Sj = 1 } and their standard errors are given in the 
j=l  

following table: 
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COMPANY:  

I 2 3 4 5 6 

0.032 0.003 0.032 0.004 0.023 0.005 0.021 0.005 0.023 0.004 0.022 0.002 

0.196 0.016 0.184 0.019 0.218 0.036 0.135 0.025 0.162 0.023 0.162 0.010 

0.206 0.015 0.205 0.019 0.186 0.029 0.204 0.032 0.220 0.027 0.205 0.011 

0.172 0.013 0.167 0.015 0.168 0.026 0.184 0.028 0.211 0.025 0.182 0.000 

0.133 0.011 0.130 0.013 0.131 0.021 0.155 0.024 0.169 0.022 0.140 0.0077 

0.088 0.008 0.106 0.011 0.108 0.019 0.099 0.017 0.106 0.015 0.096 0.006 

0.060 0.006 0.065 0.0077 0.0677 0.013 0.073 0.014 0.051 0.008 0.062 0.004 

0.049 0.005 0.045 0.006 0.045 0.010 0.040 0.009 0.029 0.005 0.047 0.003 

0.034 0.004 0.033 0.005 0.021 0.005 0.027 0.007 0.014 0.003 0.027 0.002 

0.014 0.002 0.021 0.004 0.017 0.005 0.022 0.006 0.009 0.002 0.025 0.002 

0.013 0.002 0.005 0.001 0.011 0.004 0.031 0.011 0.006 0.002 0.016 0.002 

0.003 0.001 0.007 0.002 0.004 0.002 0.009 0.004 0.001 0.000 0.016 0.002 

The runoff  pa t te rns  of the companies  can be compared  using the two tables above. For example,  1 

and  2 seem quite similar,  and  some of the companies  have more runoff  in later development  years 

than  others.  The s t anda rd  errors can also be compared,  with the same conclusions a8 above. 
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6. Bayesian Linear Models and Credibility Theory 

Bayes estimates for the linear model were investigated by Lindley and Smith 0972)  and also 

Smith (1973). In the actuarial literature, the recent paper by Klugman (1989) has studied the use of 

hierarchical linear models in a rating context. It has already been seen that  many of the models 

commonly used to analyse claims runoff triangles can be regarded as linear models, and we now 

analyse these models from a Bayesian point of view. This analysis has two purposes: firstly the 

practitioner may have some information, from other data  for example, which can be used to specify 

a prior distribution for the parameters in the model and secondly the Bayesian analysis gives rise in 

a natural way to estimators which have a credibility theory interpretation. 

In the first case the prior distribution is set by the practitioner and the usual prior-posterior analysis 

can be carried out. The models which we are using assume normal (really log-normal) distributions, 

and so it is only necessary to specify the mean and variance of the prior distribution (which is also 

normal). For example, if there is a lot of evidence to suggest that  the row parameters are all 0.1, a 

normal distribution with mean 0.1 and small variance can be used as prior. If there is not much 

prior information, the prior variance can be set larger. Indeed, in the limit, as the prior variance 

becomes large, we revert back to ordinary least-squares estimation of the parameters. 

In the second case, we will be using empirical priors. Thus the estimation will be empirical Bayes 

and we will assume tha t  certain of the parameters are exchangeable. The historical requirement that  

credibility estimators be linear will also be considered and we could claim to have credibility 

formulae. The situation has some similarities with credibility estimators of risk premiums in that  we 

can regard the rows in a runoff triangle as a set of risks and proceed as Buhlmann (1967) - see 

Goovacrts and Hoogstad (1987) for a full description of Buhlmann's  method, in the case of claims 

runoff triangles the rows contain different numbers of elements, and there are also the column 

parameters to contend with. This approach, start ing from credibility premiums and working through 

to a credibility theory for Ices runoff triangles was suggested by De Vylder (1982) - again see 

Goovaerts and Hoogstad (1987) for an exposition of the method. The present method starts from 

runoff triangles and proceeds to credibility formulae via the linear models. One of the major 

advantages of the linear model approach is that  standard errors of the estimates are also produced. 

For consistency, the constraints 

424 



on the first stage distribution have been retained. This also facilitates the comparison with the 

recursive approaches such as tha t  based on the Kalrnan filter. It does, however, introduce a slight 

degree of b.~symmetry into the prior distribution and it might  be considered more appropriate  to use 

a constraint  such as 

~a~ = ~ f l i = O "  

It is also possible to apply the constraint a t  the second stage and use the following prior distribution: 

a i ~  N ( 0 , ~ )  i = l  . . . . .  t. 

The affect of the exchangeability a~umpt ion  is similar whichever constraint  is used: the estimates 

are shrunk towards a central value and stability is introduced. The amount  of shrinkage is greatest 

where the number of observations is small. 

6.1 Bayes Estimates for the Analysis of Variance Model 

In this section the use of two-stage Bayesian linear models which assume tha t  there is 

some prior information is described. A prior distribution can be written down using the prior 

knowledge. It was shown earlier that  the chain ladder linear model can be written as a linear model 

in the form: 

z la  ~ N( X l ,  E) 

and the prior information is quantified in the prior distribution on 

A situation which may occur is tha t  there are similar sets of da t a  a v ~ a b l e  which give information 

on the individual parameters.  [n this case A I can be taken as an identity matr ix ,  the prior estimates 

can be put  into ~-I and their variances into Cl.  |n  many cases C I will be a diagonal  matr ix  of 

variances, a l though it is not nece~ary tha t  the covarianees are zero. In this ease, the prior 

distribution becomes: 
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a l ~  ~ N(_Ot, C~ ) (6.1) 

Amuming that  the errors are independent, E = #2I n. I n is a square identity matrix of dimension 

(n~). 

The Bayes estimate of the parameter vector is the solution, ~ ,  of 

(~-~x'x + c 7 ' ) ~  = , , -2x'xh+ c7'£, (6.2) 

and the variance-covariance matrix of the estimates is 

var(~) = [ a-' x'x + c7' l-' (6.3) 

The equation for ~ (3.4.2) can be written as a credibility formula: 

= ~ a  + ( ] - z ) 0 ,  (6.4) 

wherez = (o '-~XlX + C ~ ' l ) - t o ' - 2 X t X  is the credibility factor. 

It is interesting to note that  the credibility factor has been generalised into a credibility matrix, 

since z is a (pxp) matrix. There will be a subtle dependence of the elements in the Bayes estimator 

on each of the elements in the least squares estimator. It is not possible to write a credibility 

formula separately for each factor in the form 

6i = z , i  i + ( l - z ) O  i 

To estimate the variance ~ ,  the modal procedure described is used. The estimate of ~2 is s 2, where 

~ = (z- x~)'(z- x~)/(n+2) (e.s) 

Thus the equations which give the Bayes estimates are (6.2), with a2 replaced by s 2, and (6.5). 
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The procedure begins with s ~ = 0 and iterates between the solutions of 

(s-:X'X + C71)~ = s-~X'X~ + C~-I~, 

and s2 = (Z -- X~_)t(X -- X ~ ) / ( n + 2 )  

6.2 Empirical Bayes Estimates for the Chain Ladder Linear Model 

The previous section described the use of a two-stage conventionai Bayesian model to analyse claims 

data .  This section u ~ s  a three-stage Bayesian model described in Verrail (1990) to derive empirical 

Bayes estimates for the chain ladder model. This method uses an improper prior distribution a t  the 

third stage for the row parameters and improper priors a t  the second stage for the overall mean and 

the column parametem. This means tha t  for the overall mean and the column parameters the same 

~mumptious are made as for the maximum likelihood estimators. 

The row parameters are assumed to be independent samples from a common distribution - of course, 

they are unobeervable, but  this is the underlying assumption. A similar assumption is made in 

credibility theory. When premiums are calculated using credibility theory, a risk parameter  is 

amigned to each risk and these are assumed to be independently, identically distributed. The set of 

risks is known as n collective, and the distribution from which the risk parameters  is drawn is known 

as the structure of the collective. The situation in the claims reserving case is similar for the row 

parameters,  but  is complicated by the column parameters.  

The est imators produced will combine information from each row with information from the triangle 

as a whole. The prior distribution (i.e. the second stage distribution) is estimated from the da ta ,  and 

hence the est imators have an empirical l~,yes interpretation. 

The linear model for the chain ladder method is 

via ~ N ( X ~ , # h )  (s.0) 

and  the constraint  ~** = ~: = 0 will be used. 

The errors have been assumed to be independently, identically distributed. X is as defined in the 

first section. 

As in credibility theory, a structure is put  onto the row parameters o2, a s ,  ... , a  t : they are 
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assumed to be independent  observations from a common distribution. For the overall mean,  p, and 

the column pa ramete r s  .8~, Ba . . . . .  fit  ' the same distributional assumptions as for ordinary 

m a x i m u m  likelihood es t imat ion will be used. Thus  at  the second stage 

/ 

al,,,,,#,J£ ~ N 
1 0 . . .  

0 1 0 

i i : 
0 l 0 

i 0 I 

0 ...... 0 

0 w 

: 
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and take #~2 _ 0 and a~ ~ O. (6.7) 

g' is t he  m e a n  of  the common  distribution of  the row parameters  a 2, ... , a t .  

Al though the assumptions  on the est imation of F and 0 2 . . . . .  .0t are the same as for the m a x a m u m  

likelihood est imat ion,  the es t imators  produced will not be the same because of the t r ea tmen t  of  the 

row parameters. 

A vague prior distr ibution (a third-stage distribution) is used for tb. Since e ~  2 ~ 0 and ~ 

0, a third-stage distr ibution is not needed for w and ~2 , . . . .  ~t ' Hence a combinat ion of  two-stage 

and three-stage models  is used. 

The  Bayes es t imate  of  ..~, ~_, is given by 

~= ~-2 x'x+L[ "~2o 
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t 
whoreS. = ,~ ~ 

i=2 

and has a credibility interprctat ion.  

- I  

2xx  [° lo o 
O / 
6.  

6r. 
0 

6 

(o.8) 

428 



It can be seen tha t  the empirical Bayes estimates of the row parameters are in the general form of 

credibility estimates: they are the weighted average of the maximum likelihood estimates and the 

(weighted) average of the estimates from all the rows. The situation is complicated by the fact that  

X;X is not a diagonal or blot:k-diagonal matrix,  so that  the estimation of p, f12, "" , ~'t involves the 

estimates of a 2, ... , a ,  and vice versa. This is entirely natural  since changing the estimates of the 

row parameters obviously forces changes in the other estimates. However, it can be seen that  the 

form of the estimates is the same as the form of credibility estimates. They are the weighted average 

of the maximum likelihood estimates and the (weighted) average of the estimates to which the 

credibility theory type a~umpt ious  have been applied. The weights depend on the precision of the 

estimates. 

As before, the variances #2 and #2 a are replaced by modal estimates s 2 and s~ , which are given by 

s~ v~+(x-  x ~ ) ' ( x - x ~ )  (6.9) 
= n + u + 2  

I 
U a ~ a +  E ( 6 , -  6 .  )2 

s~ = ,=2 (6.10) 
t + v a - I - I  

where v, ~, v a and h a are set by the prior distribution of the variances. The derivation of these 

formulae~ and the diacusion of the prior parameter  values is given in Lindley and Smith (1972). 

Again, the estimates are obtained by iterating between (6.8) and (6.9),(6.10). This is illustrated in 

the example. 

The empirical Bayes assumptions could also be applied to the column parameters,  a l though this is of 

little practicaJ use. 

6.3. Example 

To illustrate the effect of the assumptions made in the empirical Bayes theory, namely tha t  the row 

parameters  eure independent oheervatious from a common distribution, the Taylor  and  Aahe da t a  is 

rcaaalyaed in this example. 

The estimates of the parameters and their s tandard errors are shown in table 6.1: 
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Overall Mean 

Row Parameters 

Column Parameters  

Table 6. I 

Empi~'ica~ 

Bayes No Prior Standard Error 

Estimate Estimate Of  Bayes Estimate 

6.157 6.106 0.131 

0.225 0.194 0.124 

0.193 0.149 0.129 

0.198 0.153 0.133 

0.300 0.299 0.138 

0.371 0.412 0.144 

0.421 0.508 0.150 

0.493 0.673 0.159 

0.383 0.495 0.170 

0.391 0.602 0.105 

0.893 0.9 ! 1 0.128 

0.911 0.939 0.133 

0.915 0.965 0.139 

0.319 0.383 0.147 

-0.080 -0.005 0.156 

-0.199 -0.118 0.170 

-0.515 -0.439 0.190 

-0.120 -0.054 0.224 

- 1.444 - 1.393 0.306 

The estimate of the variance of the row parameter distribution is 0.0289. 

The empirical Bayes assumptions have been applied to the row parameters only. The effect of these 

Msumptions is tha t  the row parameters have been drawn towards a central point (a weighted 

average). The lower row pars~neter esthnates have increased, while the higher ones have decreased. 

This  can be seen more dear ly  from the ~raph given in section 7.3 which shows a plot of the 

max imum likelihood and empirical Bayes estimat¢~ of the row parameters,  togther with the 

estimates from the dynamic model discussed in section 7. 

430 



Table 6.2 shows the row totals and their s tandard errors. For comparison purposes, the Bayes 

estimates with no prior assumptions are also given. 

Table 6.2 

Empirical Bayes Bayes Empirical Bayea 

Estimates No Prior Standard Error 

109448 110927 46963 

479568 482157 148617 

655656 660810 162104 

1033109 1090752 220459 

1388261 1530532 270730 

2002772 2310959 374041 

3018896 3806976 572899 

3780759 4452398 720836 

3811869 5066116 752593 

The empirical Bayes est imate of total outs tanding claims is 16280338 and the est imate of the 

s tandard  error of total outs tanding claims is 1313997. 

The empirical Bnyes s tandard errors are lower than the estimates with no prior information. The 

estimates of  total outs tanding claims for the later rows have benn quite considerably reduced, 

reflecting the reduction in the estimates of the row parameters.  The empirical Bayes procedure has 

thus given less weight to the estimates of the parameters from the later years: it has allowed tha t  

the rise in the maximum likelihood parameter  estimaten from row to row may be due to random 

variation. As more da t a  becomes available, and there is more evidence in favour of either o f  these 

possibilities, this may,  or may not, be revised. 
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7. State Space Models 

The previous section described the empirical Bayes framework in which it is assumed that  the row 

parameters  have the same prior mean. The advantage of this assumption is the connection made 

between the accident years. The chain ladder technique suffers from over-parameterisation which is a 

result of the accident years being regarded as cimpleteiy separate. The empirical Bayes a~umpt ion  is 

one way of overcoming this. Another way of tackling this problem, and in some ways a superior 

way, is to use a state space approach. This method assumes a recursive connection between the rows, 

rather than the static assumption made by the empirical Bayes method that  all the rows are similar. 

The state space model assumes tha t  each accident year is similar to the previous one. Jus t  how 

similar can be governed by the choice of a parameter variance. Section 7.1 de~,cribes the s tate  space 

approach to the chain ladder linear model. 

Another problem with the chain ladder technique is, paradoxically, tha t  it makes too much 

connection between the accident years. It does this by assuming that  the shape of the run-off is the 

same for all accident years: the same development parameters are used. It is also possible to relax 

this assumption,  and details of this are given in section 7.2. 

7.1 A state  space representation of the chain ladder linear model. 

In order to consider the state space model and dynamic estimation methods, it is necesaacy to set up 

the two-way analysis of variance model in a recursive form. This takes advantage of the natural  

causality of the data .  The da ta  which makes up the claims runoff triangle are received in the form : 

iz,21 rz,, l , , /z : , : / , . . . ,  
LZ:,'J LZs,'J 

and  in year t the d a t a  which are received are 

(7.1) 

I Zl's 1 Z2,!,-i I (7.2) 

Zt,l J 
The set of d a t a  vectors which together make up the whole triangle form a t ime series: 

432 



Zx , ] 2 ,  . . . .  Zt , ..- 

In this t ime series, the da ta  vector expands with t: for a tr iangular set of da ta ,  dim ( ~t ) = t. 

If the da ta  are in the shape of a rhombus, which occurs when the early years of business are fully 

run off, then ~,  will reach a point when its dimension does not increase. 

The analysis can be approached from in the context of multivariate t ime series. However, the special 

relationships between the elements of consecutive da t a  vectors mean tha t  it is simpler to generalise 

the theory of clemaical and Bayesian time series to two-dimensional processes. For n fuller discussion 

of the use of classical time series, the reader is referred to Verrall (1989). 

There are two methods for calculating the forecast values and their s tandard errors. The simplest is 

to use the final parameter  estimates and variance-covariance matr ix  as would be the case in a 

s tandard  least-squares analysis. The more proper method calculates one-step-ahead , two-step-ahead 

, ... , ( t-l)-steps-ahead forecasts at  time t and their variance-covariance matrices. However, since the 

recureive approaches do not store covariances between, for example, the one-step-ahead and the 

(t-l)-step-ahend forecasts, the calculation of the variances of  the forecasts causes problems. For this 

reason the first method will be used. 

The chain ladder linear model takes the following form when three years '  da t a  have been received: 

Ytx 

Yx2 

Y~t 

Y:s  

Y~2 

Ysl 

where Yij = log Zij .  

l ooo ] 
1 0 1 0  ~ 
1 1  O 0  
1 0 0 0  
1 1 1 0  

= 1 O 0 1  

/J 

~2 

~3  

#s 

• e l l  1 

el2 

e21 

e l3  

e22 

. e31 J 

When the da ta  are handled recursively, the model becomm: 
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Yt,1 = P + et,l 

[~,,,j ~ I o ~, o,,, 

iYi31 IlOOOljlil i 12  e3 IY2,1  = , , ,  o o + e~,~ 
L~,, j  , o o l o  e3,, 

(7.3) 

etc. 

In general, the state vector at t ime t is defined by: 

o, = 

P 

ot 2 

~2 

# ,  

(7.4) 

and equation (7.3) is called the observation equation. The state vector at  t ime t is relsted to the 

state vector s t  time t-I by the system equation. A recursive version of the chain ladder method is 

achieved by defining the system equation matrices as 

1 

1 

! 

0 . . . . . .  0 

0 . . . . . .  0 

0 0 

i : 

0 0 P.t 

1 0 

0 1 

(7.5) 

where u, contains the prior distribution of J~'+~I. 
LP J t÷ l  

The new parameters at  t ime t + l  are I , '+~I and equati°n (7'5) 'mp|ies that the existing Parameters , . !  

are unchanged, while the new parameters  a te  treated as stochastic inputs. 
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If the variance of the errors, eij , is known and vague priors are used for the parameters, this 

method gives exactly the same results as ordinary least-squares estimation. It has the advantage that 

the data can be handled recursively. Also, it gives a method of implementing Bayesian estimation on 

some or all of the parameters. It has been assumed that the prior estimates of the parameters are 

uncorrelated: in other words that the stochastic input vector, u~ , and the state vector, 0_t , are 

independent. 

The equations above are an example of a state spare system; a more general form is now considered. 

The models for --YI , -Y.-2 , "-" , ~ t  . . . .  , which together make up the triangle can be written as 

--Yt = Ft-Ol + £t 

~2 = F ~ 2  + ~.~ 

~ t  = Ft£t + t ,  (7.6) 

where Y, = log Z t 

Equation (7.6) is an observation equation and forms one part of a state system to which the Kaiman 

filter can be applied in order to obtain recursive estimates of the parameters. ~, is known as the 

state vector and is related to _0t_ t by the system equation. The observation equation and the system 

equation together make up the state spare representation of the analysis of variance model. 

The system equation relates ~t to 0_l_ I and defines how the state vector evolves with time. Thus, 

the time evolution of the system is declined on the state vector and the obeervation vector is then 

related to the state vector by the observation equation. There axe many choices of system equation, 

the most general being: 

_0t+l = G t ~ t  + H ~ t  + w--t (7.7) 

where 1!z is a stochastic input vector 

and w, is a disturbance vector 

and the distributions of ~ and w~ are: 
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~, ~ N(~,,U,) 

_w, ~ N(~,W,) 

The choices of G, , W t and the distribution of l!t govern the dynamics of the system. 

S u p p o ~  _o, I ( ~t~, ~t2 . . . . .  ~ , _ ,  ) ~ N ( ~',l ,-t ' C, ). (7.8) 

i .e.  the distribution of the parameters, based on the data up to time t - 1  is normal with mean _0it_ I 

and variance-covariance matrix C t. 

From equations (7.6) and (7.7), the distribution of ~ l  given information up to time t - -  1 is 

~,I,-, ~ N ( F, ~-,I,-, ' F, C, F~ + V, ) (7.9) 

When the observed value of --Yi is received, the state estimate can be updated to ~tlt and the 

distribution of the state vector at  time t forecast using equation (7.8). 

The recursion is given by the following equations, a proof of which can be found in (for example) 

Davis & Vinter (1985). If the system and observation equations are given by equations (7.6) and 

(7.7), and the distribution of~t  given information at time t-I is given by (7.9), then the distribution 

of the state vector can be updated when ~ ,  is received using the following recursion: 

~-,+iI, = o, °-,I,-, + H, .~, + K, ( X, - ~, ) (7.X0) 

where K, : G, C t F ~ ( F t C ,  F~ + V t ) - t  (7.11) 

i--" )-~ C , G ~  + C,+z: GtC, G~ + at U, a~- G, C, F~ ( F, C, F, + V, F, W, (7.12) 

and ~, ---- F, ~,l,-z (7.13) 
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7.3 Dynamic Estimation of the Row Parameters 

A model which applies dynamic estimation to the row parameters has the following system 

equation: 

~ , + j  = 

1 

1 

1 

0 ... | 0 

0 . . . . . .  0 l 
O 

O_~ + 0 

0 

1 

IOJ 
u , +  0 w t 

1 

0 

where ut has the prior distribution of/5't+ t 

and w~ is a disturbance term. 

Thus the new row parameter, at+ t , is related to a t  by: 

a t +  I = a t + w ,  ( 7 . 1 4 )  

and a sophisticated smoothing method is produced. 

The row parameters are related recursively and the column parameters are left as they were if their 

• prior distribution is vague (although the estimates change because of the change in the estimation of 

the row parameters). The state variance is set as 0.0289, in order to compare with the empirical 

Bayes procedure. The practitioner is free to chocee this variance as he sees fit: the larger the 

variance, the less connection is made between the rows. It is also possible to let this variance depend 

on t, and thus allow the amount of smoothing to be controlled by the perceived changes in the 

claims experience. It is also possible to obtain an estimate of this variance from the data, using 

maximum likelihood estimation. In the case in which the variance is set as 0.0289, the parameter 

estimates are as follows: 
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~aramete I Estimate 

Table 

~taq~ard 

Erroc¢ 

p 6.119 0.163 

a 2 0.187 0.151 

a 3 O.170 0.148 

o 4 0.196 0.152 

o 5 0.296 0.158 

o e 0.396 0.164 

o 7 0.482 0.171 

o s 0.550 0.183 

o 9 0.536 0.202 

or0 0.546 0.238 

f12 0.906 0.158 

~3 0.940 0.165 

~4 0.951 0.173 

~5 0.364 0.183 

8 e -0.028 0.195 

~7 -0.145 0.212 

~s -0.457 0.236 

~9 -0.062 0.278 

~lo -1.406 0.378 

The row totals and their standard errors are given in the following table: 
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l o w  

Table 7.2 

Predicted Standarcl 

Outs tandinf  Error 

Clairn~ 

2 109955 59278 

3 491787 187134 

4 686441 206954 

5 1076957 277762 

6 1486991 347441 

7 2217311 491998 

8 3309887 744931 

9 4545466 1048855 

10 4591188 1189469 

The predicted overall total outs tanding claims is 18515984 and the s tandard error of this estimate is 

2660211. The s tandard error is lower than that  when no prior knowledge is assumed because of the 

recursive relationship between the parameters.  The effect of the Kalman filter on the parameter  

estimates will be illustrated by a graph1 but  it is interesting to compare the results with the 

empirical Bayes approach.  

The following graph shows the parameter estimates for three c a N :  the model with no prior 

knowledge, the empirical Bayes model and the state space model. It can be eeea from the graph that  

the s tate  space model and empirical Bayes estimates have both smoothed the estimates of the row 

parameters  to a certain degree. The empirical Bayes estimates have been drawn towards the overall 

est imate I with the amount  of change depending on the da ta  through the variation in each row and 

between the rows. The differences in the estimates of the row parameters has affected the estimates 

of outs tanding claims. The s tandard  errors have been reduced because the estimation has involved 

more of the da t a  for each parameter.  This is a beneficial effect of any of the Bayesian methods. 
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7.4 Dynamic estimation of the development factors 

It is well-known that  the chain ladder technique assumes that  the shape of the run-off curve is the 

same for each accident year, since the same development factors are used. However, it is doubtful 

whether this is justified in practice. It is likely that  there will be a similarity between the run-offs in 

successive accident years, and it is possible to formulate a state space model to allow this without 

imposing an identical shape for each year. The basic chain ladder linear model is 

E ( Y , ~ )  = p + a~ + ~1 (7.15) 

Allowing the devolpment factors to be completely separate for each accident year would lead to the 

following model: 

E ( Yli ) = P + el  + f l l i  (7.16) 

We would expect the parameters ~ i i  to be similar for succesive values of i and so we impose the 

model 

//~+1,i = /~ii + stochastie disturbance (7.16) 

The variance of the stochastic disturbance can be treated in much the same way ~s for the row 

parameters  in section 7.3. We can now allow the shape of the run-off to vary from accident year to 

accident year by the choice of the variance of this stochastic disturbance. If it is zero, the run-off 

pat tern is the same in each accident year and as it increases, the connection becomes less significant. 

We can allow the variance to depend on t and input a large value for one time point if it is believed 

that  there has been a sudden change in the run-off pattern. 

To illustrate the effect of this model, we analyse the da ta  given in section 2, with the variance in 

equation (7.16) taken as 0.01. The main interest in this case is the effect on the run-off pattern,  and 

so table 7.3 gives jus t  the column parameters,  ~ j .  
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Table 7.3 

Column parameters from model with the same run-off in each row (from table 7.1): 

0.906 0.940 0.951 0.364 -0.028 -0.145 -0.457 -0.062 -1.406 

Column 

0.925 0.886 0.914 

0.917 0.895 0.945 

0.920 0.907 0.964 

0.918 0.920 0.980 

0.895 0.942 0.951 

0.894 0.960 0.940 

0.890 0.990 0.944 

0.898 1.014 

0.897 

parameters from model with the same dynamic run-off pattern: 

0.383 0.025 

0.361 -0.035 

0.361 -0.080 

0.332 -0.050 

0.352 -0.026 

0.375 

-0.175 -0.479 -0.074 -1.413 

-0.135 -0.460 -0.063 

-0.130 -0.447 

-0.161 

This illustration shows how change~ in the run-off pat tern can be observed. For example, the first 

column parameter  is generally decreasing and the second one is increasing. 
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8. Conclusions 

This paper has explored the various models which are available within the framework of the chain 

ladder linear" model. It is envisaged that  the practitioner will find all of these of use. The following 

points are of particular note. 

Firstly, any of the Bayesian methods will improve upon the least squares (or uninformative prior) 

approach on the basis of parameter stability. This is because more information is used in est imating 

each parameter.  For example, in the least squares case, there is only one da ta  point from which to 

estimate the last row parameter;  the Bayesian methods use the da ta  from the other rows as well. To 

illustrate the affect of this consider a change in the da ta  point in the last row from its present value 

of 344014 to 544014. The following table shows the predicted outstanding claims for each row from 

the different models. The first column shows the original results with no prior information. 

Table 

Original Results Revised Results 

prior Dypamic Emvirical ~ prior Dynamic Empiric.a[ 

Information Est:imation Bayes Information Estimation Bayes 

2 II0927 109955 109448 110927 I09958 110094 

3 482157 491787 479568 482157 491822 481329 

4 660810 686441 655656 660810 686637 657998 

5 1090752 1076957 1033109 1090752 1078058 1039692 

6 1530532 1486991 1388261 1530532 1491978 1400466 

7 2310959 2217311 2002772 2310959 2239482 2024720 

8 3806976 3309887 3018896 3806976 3399256 3063229 

9 4452396 4545466 3780759 4452396 4847221 3819051 

I0 5066116 4591188 3811869 8011412 5261069 4411270 

The last row prediction using no prior information has changed in proportion with the change in the 

da t a  point. The other methods have dampened down this.change because they use more information 

in the estimation of the parameter.  They therefore exhibit greater predictor stability. 

443 



It is important to realise that the results must be used correctly. For example, it is often not 

necessary to produce a 95% upper confidence bound (a 'safe' reserve) on oustnanding claims 

for each row, hut only for the whole triangle, although the 'safe' reserve for the whole triangle may 

be allocated among the rows. This is important since it can be seen that the standard errors for each 

row are, in general, relatively large. The standard error of the overall total is more reasonable. To 

extend this further, the practitioner may be required to set a 'safe' reserve for the whole company, 

rather than for each triangle; this would reduce the relative size of the standard error still further. 

There are now a number of Bayesian methods which are available to the claims reserver, all of 

which have particular advantages over the classical estimation method. The chain ladder linear 

model represents a great step forward from the crude chain ladder technique and has opened the way 

to more sophisticated estimation methods. 
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