
Correlation and the Measurement of 
Loss Reserve Variability 

by Randall D. Holmberg 

247 



CORRELATION AND THE MEASUREMENT OF 
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Randall D. Holmberg, FCAS 

Loss reserves are the largest liability on the balance sheet of an insurance company, yet 
they are only estimates. Even the actuary responsible for making the estimates is often 
unable to quantify the inherent uncertainty. This is partly a consequence of the complexity 
of estimating the variability of the reserve estimates. Correlation across several 
dimensions makes statistical measurement of uncertainty difficult. Most insurers have only 
a limited number of historical data points available with which to make estimates of the 
multiple correlations, making estimation of correlation problematic. This paper presents a 
mathematically simple model of loss development variability which allows the inclusion of 
several types of correlation, It can also be adapted to deal with other complexities which 
may arise in the analysis of reserves. The paper also presents methods which make it 
easier to estimate correlations in practical applications. 
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CORRELATION AND THE MEASUREMENT OF 

LOSS RESERVE VARIABILITY 

Loss reserves, generally the largest liability on the balance sheet of an insurer, are only 

estimates of ultimate loss payments. Even if these estimates as carried on the balance 

sheet are unbiased, neither deliberately redundant nor inadequate, they are subject to 

uncertainty. Furthermore, the magnitude of the uncertainty of these estimates is generally 

unknown, even to the actuary who reviews reserves and certifies their adequacy in 

statutory financial statements. Considering the importance of reserve estimates to an 

insurer’s reported net worth, it is important to quantify the uncertainty of these estimates. 

Attempts to quantify the uncertainty of loss reserve estimates can easily get stymied by the 

complexity of reserve issues. There is potential for substantial correlation across many 

dimensions. There are usually relatively few historical data points from which to estimate 

the multiple correlations that are possible. Yet it is unlikely that correlation is insignificant 

in the variability of the total reserve estimate. Therefore, actuaries need a model which 

can deal with correlation but which allows reasonable estimation of the correlations 

involved. 

This paper presents a model for measuring the uncertainty of loss reserve estimates. Its 

main virtue is the directness and simplicity of the approach. It includes adjustments to 

account for many of the kinds of correlation effects which arise in analyzing reserves. The 

data for this measurement will be available in one form or another at any insurance 

company. The relevance of the items used in the measurement to the question being asked 

is easy to see. The model is simpie enough that it is relatively easy to add features to cope 

with complications that the model as presented herein does not consider. 
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While estimation of the correlations involved is difficult in practice, this paper presents 

several approaches which have proved helpful in making such estimates. 

Even when the parameters required by the model are difficult to estimate, the model may 

be used in sensitivity testing to get a greater appreciation of the importance (or lack of 

importance) of correlation to the accuracy of reserve estimates. The parameters have 

clear-cut intuitive interpretations, so sensitivity testing should prove fruitful to a 

knowledgeable reserve actuary. 

The paper will present the model in a relatively simple form and then suggest adaptations 

to deal with situations of greater complexity. An example of applying the approach is 

integrated into the description of the model. 

BASIC APPROACH 

In the property-casualty insurance industry in the United States, actuaries generally rely on 

a link ratio loss development approach to determine their estimates of accident-year 

ultimates and hence the adequacy of carried loss reserves. It seems natural to consider the 

way reserve adequacy is estimated in determining the variance of the resulting estimate. 

We take a very direct approach. We measure the variance of historical link ratios which 

the actuary examines when determining projections of future development patterns. From 

these variances, the variance of the resulting estimate of ultimate is computed. The 

variance of the estimated ultimate for a single exposure period is equal to the variance of 

the estimate of reserve shortage or redundancy for that period. The exposure period 

variance for a single period is then combined with those of other periods to arrive at the 

variance of total reserve need at a valuation date. 
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Variance of Link Ratios 

In this description of the model, we phrase all discussion in terms of incurred loss 

development methods. However, this same approach works in a paid loss development 

context, Similarly, although all references are to “accident year” this model can be used 

with other exposure periods such as report years or accident quarters. 

We will first establish some notation. Let R denote the total IBNR reserve need as of the 

valuation date in question. In our formulation, R includes provision for adverse or 

favorable development on known cases. Case reserves are treated as a constant. 

Therefore, the variability of R is equal to the variability of total reserve need. Let n be 

the number of accident years and the maximum number of valuations included in our 

development triangle. Define {,j as the incurred loss for accident year i as valued j 

years after the beginning of the accident year. Both i and j are numbered sequentially 

beginning with 1. Let L, be the ultimate loss for accident year i Let d,,j be the link ratio 

for accident year i between valuations j and j + 1. Finally, define Q, as the 

development factor for accident year i from age j to ultimate. In this formulation, 

di,” = D,,. is the tail factor for accident year i The latest available historical valuation of 

year i is l,,n-,+,. Note the following: 

4.j = fi4.k (2) 
k, 

Di.j = di., ’ Di.j+, for j <n (3) 

4 = L+, L-i+, (4) 

W-G I= -w2pi+l) ’ &I-i+, (5) 
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R = c 4 - c (n-t+, I 
E(R) = c EC4 > -CL+, (7) 

I 

In the traditional link ratio approach, 

E(Q,,)=fiE(4,,), and k?, 
E(d,,,) = E(d,,,) for all i , k for which j > n -i and j > n - k 

We will not require that these two relationships hold in our model. 

E(L,) is the estimated ultimate loss. The variance of L, around this mean is what we will 

measure to arrive at the variability of loss reserve estimates for a single accident year. 

The first step in calculating the variance of accident year ultimates is to calculate the 

variance of the historical link ratios for each stage of development. Exhibit 1 shows the 

triangle of incurred losses we will use in our examples. Exhibit 2 is the resulting triangle 

of link ratios. This is a ten-year triangle, so from it we calculate the variance of all d,,, for 

a fixed j , for values of i 2 10 - j These variances, as well as average link ratios and 

standard deviations, are also displayed in Exhibit 2. Note that since the variance of the 

link ratio at age j, Var(d,,,), is calculated across all i 5 10-j for a fixed j, we have 

Var(~‘,,,) = Vur (d,,,) even if i f k so the first subscript is not needed. In our example, the 

same is true of the mean at age j, E(d,,,) However, we will carry the first subscript 

throughout for consistency with other notation 

The model treats historical link ratios at a given stage of development as a sample from 

independent identically distributed random variables. The sample variance calculated from 

this sample is used as an estimator of the variance of the random variable’s distribution. 
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The actuary’s chosen projection of loss development may not match historical averages. 

Even in such instances, the sample variance is used to estimate the variance of future 

development, as it represents our best estimate of the variability of future development. 

However, the chosen development factor is treated as the expected value of that 

development. The example used in this paper includes some selected link ratios which are 

not equal to the historical average, in order to illustrate how these selections are treated in 

this method. 

An issue that arises is what variance to assign to the link ratios where there are few 

historical points, and to the tail development factor. Unless there is reason to do 

otherwise, in practice we usually rely on the sample variance for all ages where there are 

two or more historical link ratios. In many cases, assigning zero variance to the last one- 

year link ratio and to the tail factor is reasonable. In other cases, regressing the standard 

deviation of link ratios against the quantity (1 - E(d,,)( gives a fitted line which can be 

used to read off the standard deviation of the link ratio or tail factor (limiting standard 

deviations to non-negative values, of course). Alternate approaches could be used, such 

as using a parallelogram of link ratios rather than a triangle, or regressing standard 

deviations against the stage of development j , or simply judgmentally choosing a number 

for these stages of development. If the data used produce standard deviations which are 

sufficiently “bumpy” some of these techniques might be required even for stages of 

development with relatively many historical link ratios available. In the example used 

here, we have used sample variances where available and have assumed zero variance for 

the last stage of development seen in the experience and for the tail factor. This is seen in 

Exhibits 2 and 3. 

253 



Following equation (4), since Ir,rr-,+, is a known constant, we have: 

VW-4) = v~m.“-i+l>* Lt+l)*. (8) 

Therefore, determining Var(D,,,,+,) f or each i will determine the variance of each 

accident year ultimate. VU~(D~.~-~+,) is a function of the Vur(d,.j) for all j > n - i + 1. 

However, VU~(D~.,~+,) also depends in part on the correlation between link ratios at 

different stages of development within a single accident year. 

Correlation Between Stages of Development 

There are different reasons we might expect development at different stages to be 

correlated. For instance, if unusually high loss development in one period were the result 

of accelerated reporting, subsequent development would be lower than average as the 

losses that would ordinarily be reported in those later periods would have already been 

reported. In this instance, correlation between one stage and subsequent stages would be 

negative. Positive correlation would occur if there were a tendency for weaker-than- 

average initial reserving to be corrected over a period of several years. In that case, an 

unusually high degree of development in one period would be a warning of more to come. 

These examples do not exhaust the possible reasons for correlation. 

The usual link ratio approach, constructing development factors to ultimate as 

E(D~,,) = fiE(&), implicitly assumes the stages of development are uncorrelated. If 
k=, 

the d,,, were independent for dierent values of j within a fixed i , we would have the 

following: 
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Since for the tail factor (d,,,, in our example) d,,* = D,,,, we could start with the tail factor 

and use equation (9) with our variances of link ratios to chain backward and build 

Vur (D,,++,) for all i Here we generalize to a situation where correlation among stages 

of development may exist 

Hayne approached the problem of correlated link ratios using an assumption of 

multivariate lognormality. We propose an approach which is perhaps more intuitive and 

which is certainly simpler. As a consequence, our approach lacks much of the elegance of 

Hayne’s, but it provides a model which can yield significant insights into the effects of 

correlation between link ratios. 

Our mathematically convenient model for correlation treats a single link ratio, dZ,, , and the 

following age-to-ultimate factor, Dl,i+,, as correlated. We postulate a distribution for 4, 

and a relationship between d,.,, and Q,+, which allow relatively easy calculation of means 

and variances while still permitting the inclusion of various correlation effects. For 

mathematical tractability, we assume di j is uniformly distributed with known mean and 

variance. Assume a uniformly distributed random variable Xi,,, stochasticaliy independent 

of dr., with a relation as follows: 

4.,+, =u.d,, +b. X ‘.I (10) 

whereu+b=l (11) 

If the correlation coefficient between 4., and D!,,+,, p, is knowni, we have enough 

information to solve for u and b, and for the lower and upper bounds of the range of 

Xi .,,, which we will call A,J and Bx,., We can then calculate E( Di,, ) and Vur( D,,, ) 

1 We will discuss the estimation of p later. For the moment, assume the value of p is known. 
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The derivation of these results follows. We have the following as a consequence of (10). 

E(D,,,+,)=a.E(d;,,)+b.E(X,,,) (12) 

Yur(D,,j+,)=a”.Yur(d~~,)+bZ.Yur(y,,) (13) 

As a consequence of (lo), we have the following for the correlation coefficient between 

d,., and L?.,+, (see e.g. Sachs): 

Having determined a we can further calculate: 

b=l-a 

From (12): 

(15) 

W-q,) = 
E(Da,,+, I- a EC%) 

b 
(16) 

From (13): 

Var(X;,,> = 
Var(D,,,+,)-a’,Var(g,,) 

b= 
(17) 

We want to know E(d$,, .D,,j+,) = E(D,.,), and Yar (d,,, Da,,+, ) = Var (D,,, ). We will 

calculate these by specifying the distributions of X,,, and d;,, and integrating the 

appropriate expressions over the relevant domains. First we determine these domains. 

For a random variable Y, uniformly distributed on the interval between A, and Br, 

(1% 
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So we can derive Ax,J ,B, ,,,, A,$, , and B,,,, For notational convenience, we will use 

A, to denote A,,, , B, to denote B,,, , A, to denote A,J, and Bd to denote Bd,, in what 

follows. We can determine the bounds of Xi,, using formulae following from (18) and 

(19): 

B 
x 

= E(X 
1.) 

)+ [12.var(Xi.,)lk 
2 

(20) 

(21) 

Analogous formulae give the values of Ad and Bd. Now we can set up integrals and 

calculate E(Di,j) and V~Y(L$~). 

E(D,,)=E(d,,,.D,.,+‘)=(Bx_Ax~,(B,_A,) -I, I, 
” B*di,j+~d,,, -tb~X,,,)dX,,,dd,, d x 

= 
+-(B,A,,s(B’-A’)+$(B;-A:)@-A;) 

(Bx-AxW,-4) 
(22) 

= 
$(Bx-A,)(B:-A~)+$(B:,--A:)(~;-~;)+$B;-/1:)(B,’-~;) 

(4 -Ax).@, - 4) 
(23) 

VWDi,,) = W:,) - E’(Q,,). (24) 

We chain backward to calculate E(Dj,,_,+l) and V~T(D~,~_,+,) for all i , allowing us to 

calculate VW(&). The way we do this is as follows. Start with the tail factor D,,, so that 

E(D+) = E(d,,“) and Var(DJ =Var(d,,,), quantities we have estimated or assumed. 

We also know E(d$.,,) and Vur(di,-,). Use (14) and (15) to calculate a and b Use 

(16) and (17) to compute E(X,,“-,) and Vm(Xi,_,). Calculate A,, B,, Ad, andB, 
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using (20) and (21) and the analogous equations for A,, and Bd Finally, calculate 

E(D,,“-,) and Vur(D,,,-,) using (22), (23), and (24). We can repeat this process, using 

E(D ,,“-,) and Vur(D, ,“-,) to estimate E(D ,,“- 2) and Vur(Dr,,..,). We continue backward 

in this fashion until we reach E(D,,“-,+,) and Vur(D,,,_,+,), allowing us to calculate 

Vur(L,). 

Correlation affects both E(D,,,) and Vur(D,,,). Beyond this, there are important 

conditional expectations and variances, E(D,,,Id,,,-,) and Vur(Q,,Id, .,-, > for 

1 i j $n-i+l. If we believe that link ratios and the following age-to-ultimate 

development factors are correlated, then knowledge of the last historical link ratio for each 

accident year should affect both our expectation of future development on that year and 

the variance of our estimated ultimate. It is internally consistent if in projecting ultimate 

losses and in estimating the variance of those ultimates we use conditional expectations 

and variances per the following: 

from (5): 

from (8): 

from (5): 

from (8): 

Note that for i < n 

from (12): 

from (13): 

E(4) =I i.n-,-, ‘E(D ,.“- ,+,14,n-,), ifi <n (25) 

Vur(L,) =(4 .“-, +,>* .Vur(D ,+, +,14.,-,L if i <n (26) 

E(4) = 4, . W’n,,) (27) 

J’4-L) = K.,)’ .VNDn.,> (28) 

WL,+,IL) = a.4.,-r +b.E(X ,.“--I 1 

Vur(D,,,-,+,I4 .n-, > =b2.VW-L) 

(29) 

(30) 

Exhibit 3 shows a calculation of conditional expectations and variances. For informational 

purposes, it also shows unconditional expectations and variances including correlation, 

and expectations and variances excluding correlation. Exhibit 3 uses the same value of p 

for all i and all j, but this is not a requirement of the model. However, when the 
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question of estimating p arises, there is a benefit to having a single value to estimate, and 

there may be some intuitive appeal to having a single value of p 

At this point it is helpful to go through Exhibit 3 step by step to clarify how the model is 

used in practice. At the top of the exhibit, we show for each stage of development j the 

expected link ratio E(d,,j) and the variance of that link ratio Vur(d,.,) E(d,,,) is equal 

to our selected link ratio. Vur(d,,,) is estimated using the sample variance as shown in 

Exhibit 2. In this example, neither E(d,,,) nor Vur(d,,j) vary with i , as has been noted 

previously. However, the model could cope with different E(d,,,) and Var(di,,) for 

different i 

The next item in Exhibit 3 is our value of p, which in this example is the same for all i, j 

From this point on, the exhibit is easier to interpret if we start on the right of the exhibit 

and work our way to the left. At each j, we determine a using equation (14) and b 

using (15). For j 2 8, we have a = 0, since Vur(D,,,+,) = 0. For lesser j, we use the 

value of Var(D,,j+,) from the next column to the right,to calculate a and b E(X,,,) and 

Vur (X,,, ), calculated using (16) and (17) respectively, are shown next, followed by 

A,, B,, which follow using (20) and (21). The values of E(d,,,) and Vur (d,,,) from the 

top of the exhibit similarly allow us to calculate A,, and B, which are the next values 

shown in Exhibit 3. Then, using (22) and (23), we can calculate E(D,,, ) and Var (D,,, ) 

These values flow into the calculation for the next cohnnn to the left. For each j, once 

we have completed the column to this point we have enough information to proceed with 

the calculations for the column for j - 1, 

Below these unconditional means and variances, we calculate the conditional values 

E(Dn-j+l., ldn-j+l.j-1) and fir@,-,+,,,Id,,+ ,.,-, ) using equations (25) through (28) which 

will be used to project the ultimate and the variance of that ultimate for accident year 
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n-j + 1. These calculations require some parameters from the column for i - 1, namely 

a, b, E(Xn-j+l,j-l), and V~r(x,-,+,,,-t). 

Note that there are no conditional expectation and variance for j = 1 or equivalently for 

i = n. This is of course because there is no d,,. 

The effect of correlation on unconditional E(Q,,,_,) is relatively small, but the effect on 

unconditional Var(D,,,,-,) is significant, when compared to the values ignoring correlation. 

When conditional expectations and variances are used, both expectations and variances are 

significantly affected by correlation. 

The assumption of a uniformly distributed X,.j and 4,, is primarily for mathematical 

convenience in determining variances of the product of correlated random variables. It is 

not intended to represent a realistic model of the probability distribution of the link ratios 

or age-to-ultimate development factors. Thus, the actuary may decide that using 

conditional probabilities and variances is putting too much reliance on a model which was 

chosen largely for convenience. In such a case, the actuary might base estimated ultimates 

on the traditional age-to-ultimate factor as the product of projected link ratios (implicitly 

ignoring correlation for the purpose of projecting ultimates), but use the variances 

including correlation, either conditional or unconditional. Alternatively, he or she might 

use the unconditional E(D,,,) including correlation (recognizing correlation among fUture 

development, but ignoring the correlation to historical link ratios) instead of relying on 

conditional E(Di,,Id,,j-,) from this model. Note that as a consequence of (13) and (30) 

Var(Q, Id,,_,) < Var(D,,,). Hence, the use of the correlated unconditional Var(D,,,) 

would be conservative. The correlated E(D,,j) is greater than the age-to-ultimate 

excluding correlation if correlation is positive, less than the uncorrelated age-to-ultimate if 

correlation is negative (assuming that loss development is positive). E(D,,,Jd;,,-,) may be 
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greater or smaller than E(D,,,) depending on whether 4 ,-, is greater or smaller than the 

average link ratio at that stage, and whether correlation is positive or negative 

Exhibit 4 shows a calculation where E(D I.“- i+,ld ,,“-,) and Vur(Dn_,+,Idi,,_,) are used for 

calculating expected ultimates and the variance of those ultimates, based on equations (25) 

through (28). In our example we use conditional expectations and variances in the interest 

of internal consistency, as discussed earlier. For convenience in later calculations, Exhibit 

4 shows variances converted to standard deviations. 

Following from equation (6) we have I’,,(R) = Vur c L, 
L 1 

If the Li for different i 

were independent, we could calculate the variance of the estimated total reserve need R as 

VW(R) = cVar(L,) (3 1) 

However, the model does not require this assumption of independence, as will be seen 

below. 

Correlation Between Accident Years 

There are reasons that the estimated ultimates for different accident years as of a given 

valuation date might be positively correlated. If current case reserves are stronger (or 

weaker) at the valuation date than assumed implicitly in the projected development pattern 

for one accident year, it is likely to be true for all accident years. If claim processing has 

been disrupted in some way, that may very well affect all accident years. If a judicial 

decision changes the likelihood of paying out on certain types of claims, that could affect 

all accident years. There are doubtless other examples of contingencies which could cause 

positive correlation. It is less clear, at least to us, what realistic contingencies in property- 
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casualty insurance could result in negative correlation, although hypothetical examples can 

be created. 

One concern which must be noted at this point is that some of the situations which can 

cause correlation between accident years can also cause correlation between stages of 

development within an accident year. The prior section dealt with measuring the 

correlation between stages of development within an accident year. It is important in 

adding consideration of correlation between accident years that we avoid “double- 

counting” the correlation which results from the same cause as the correlation within an 

accident year. A method we propose to avoid (or at least ameliorate) the potential 

double-counting, without going into the complexities of multivariate analysis, is described 

in the next section on estimating correlation coefficients. The current section describes the 

mechanics of including correlation between accident years in our measure of the variability 

of total reserves. 

We start with a formula for the variance of the sum of generalized random variables & 

Note that Cov(Y,,Y,) = Vur(U,), and that each term Cov Yk, , Ykl), fork, * k2 appears ( 

twice in this sum. Thus, for example, this formula would agree with the familiar formula 

for the variance of the sum of two random variables, 

var(Y+z)=Var(Y)+vur(Z)+2~Cov(Y,Z). 

We approach the calculation of the variance of R through use of a correlation matrix. 

Since Cov(L,,L,)=p,,, ~Var(L,)x~V~r(Lm)x, where pk., is the correlation coefficient 
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between Lb and L,, defining a matrix of the values of A,, is the first step to calculating 

the variance of R . 

Set up an n x n matrix C, with c, = c, = pk,, for all k; m .2 Var (L,) is known for each 

k based on the work done in the previous section. Therefore, we calculate 

Var(R)=k ~Cov(L,,L,,,)=~ ~p,.,.Var(L,)ii.Var(L,)X (32) 
h-1 nr-, k=I ml 

Exhibit 5 shows the calculation of Vur(R) in this manner. The exhibit shows the matrix of 

correlation coefficients first, i.e. the matrix of ,D~ m. It then illustrates the calculation of the 

matrix of covariances using the accident year standard deviations calculated in Exhibit 4. 

Each element in the second matrix is a term from equation (32). The sum of all elements 

in the second matrix is equal to the displayed “Variance of Estimated Reserve Need” at the 

bottom of Exhibit 5. This is converted to a standard deviation for the reader’s 

convenience. 

Estimating Correlation Coeffkients 

The inclusion of correlation has significant effects on both estimated lBNR reserve need 

and the variance of that estimate. Exhibits 4 and 5 show an estimated needed IBNR of 

$69,879 and a standard deviation of that estimate of $21,492. If we had used zero 

correlation everywhere in the model, the corresponding numbers would have been 

$68,325 estimated IBNR need with a standard deviation of $14,717. Clearly, the 

existence of correlation is an important factor in measuring the variability of reserve 

estimates. 

‘A@n, t&e h,, as given. The problem of estimating these correlations is treated later. 
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How do we determine the correlation p within each accident year and the correlations 

,Q,, between accident years at a given valuation point? HOW do we account for the fact 

that some of the correlation captured in p is caused by the same factors that result in 

correlation measured in the pk.,,? The first step in our recommended approach is to 

estimate p, without any consideration of collinearity, as described below. 

One approach which can be used to estimate p is an iterative approach based on the 

incurred loss triangle being analyzed. In our experience convergence is usually pretty 

rapid, taking 3 to 5 iterations. 

On the first pass, treat p as if it were zero. Take the resulting estimated ultimates 

E(-4)=4,,-,+,’ fiE(d,,,) d an use them to calculate implied D,‘, = E( L, ) / ‘;,, forj -< n -i 
k=n-,+, 

(that is for all j with at least one historical link ratio in addition to the projected 

development). Transform all D:, and all d,,,_, to random variables with mean zero and 

standard deviation one using these formulae: 

D,, = u?:, - WA:, )) 
‘,’ (Var(D,~,))~ 

(33) 

4-I = M.,-, - E(d,,,-,)I 
Vdd,,,-,)I % 

where expectations and variances are calculated across varying i within a fixed j, 

Calculate the sample correlation coefficient between these d,:;-, and 0,‘; for ail 

i, j such that 2 I j 5 n-i Use this sample correlation coefficient as p for all i, j in all 

calculations. If the ultimates are being projected using E(L,) = I,,,_,+, . k$E(d,,k)l t&s is 
a 

the final estimate of p. If ultimates are being projected using E(D,,,/d,,,m,), or using 
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E(Qj) including the effect of correlation, as seen in Exhibits 3 and 4, we must go 

through the calculation of new ultimates E(L,) since these ultimates depend on p. For 

the second iteration, base Dl, on the new estimate of E(L,) and calculate new DL; using 

(33). Calculate a new sample correlation coefficient between d,::-, and 0,::. Repeat this 

process until it converges on a value for p. This iterative approach maximizes use of the 

most relevant data for the determination of p, by putting all available data points into the 

determination. 

Other methods which would determine a different p for each j would require 

substantially more historical points than are usually available to an insurer. We have tried 

using accident quarter by calendar quarter triangles to expand the number of historical 

points, but the data are so variable when cut this fine that the approach did not work well. 

The question of determining the elements of the accident year correlation matrix C 

presents similar challenges to the determination of p. There are additional complexities 

due to the need to avoid the effects of collinearity. 

In practice, we have found it difficult to determine values for the non-diagonal elements of 

this matrix from company data. When we look at homogeneous lines of insurance, 

calculated correlation coefficients are often not significant if a reasonable standard is used. 

This is particularly true for stages of development where there are relatively few data 

points. An approach we have used with some success is similar in respects to that 

outlined above for estimating p, 

Start with our incurred loss triangle and estimated ultimates E(L,) In this instance, the 

E( L,) include whatever correlation effects based on p the actuary has decided to include. 

Calculate implied D,', = E(L, ) / [,, forj < n-i Transform all Da', to random variables 
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0:; with mean zero and standard deviation one using the formula: 

(D(j -‘(D(j)) 
9yI = (var(D;,))% (34) 

Calculate the sample correlation coefficient between D:.‘, and D,Y,,,+, for all values i, j 

where j In-i and both 0,: and Dt’I,,j+, exist, This represents the correlation between 

age-to-ultimate development at a given valuation date for accident years which are 

separated by one year. Use this sample correlation coefficient for all c, where Ik - m( = 1. 

Use an analogous approach for lk -ml = 2, basing c*, on the sample correlation between 

D;;. and D,“,,,,, Continue in this fashion for Ik -ml = 3,4, . . . . until correlation is 

negligible or until there are too few points with the proper spacing to calculate a sample 

correlation coefficient. 

The adjustment to this procedure to remove collinearity is to restate (34) as: 

D .,,. = (OlI, -EN;, 14.,-3) 
I” WWD;, Pi.,-,>)” 

(35) 

Thus, the correlation between D,,, and 4,-, is considered and is “reduced out” of the 

measure of correlation between accident years. This way, any factor which contributes to 

correlation both between accident years and within accident years is not double-counted. 

In practice, we can estimate the correlation between accident years using both (34) and 

(35). If the results flowing from using (34) without eliminating collinearity and ignoring 

correlation within accident years show a stronger correlation than the combination of 

using (35) with correlation within accident year, we can use (34) and ignore the 

correlation within accident years. Otherwise, we use the combination of correlation within 

accident years and the correlation between accident years measured using the results of 

(35). 
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We have found that it is often helpful to restrict these calculations to relatively low values 

of j, for instance, look only at pairs 0,'; and D,Y,,,+, for which j < 3. It appears that in 

many cases the correlation between accident years becomes insignificant for accident years 

which are beyond the earliest few stages of development at the valuation date under 

consideration. 

Another approach which has proved useful is looking at higher levels of aggregation for 

determination of this correlation, rather than looking at a homogeneous line of insurance. 

Combinations of lines often show more correlation between accident years than can be 

seen through the “noise” at a finer level of detail. If correlations From aggregated data are 

to be applied at a finer level of detail, the actuary should make sure that the lines combined 

to reach the aggregate are expected to behave similarly in terms of loss development, so 

that the correlations might be reasonable for use at the detail level. A further 

consideration is that the collinearity adjustment described above must then be done at the 

aggregated level. While this adjustment is possible, the description of the calculation is 

not given here. In practice, when we have used aggregated data to determine correlation 

between accident years, we have not included correlation within accident years in our 

variance measure. Then we can rely on equation (34) in making our estimate of the 

correlation, 

Exhibit 5 shows a situation where correlation was believed to be significant only between 

years falling in the last 4 accident years as of a given valuation date, and where correlation 

was negligible for lk - ml > 2. 
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OTHER ISSUES AND ADDITIONAL COMPLICATIONS 

The model as described above deals with the variability of reserve estimates including 

assumptions of two varieties of correlation. This section discusses additional concerns 

that arise in estimating reserve need and in some cases describes how the model could be 

adapted to address those concerns. 

Homogeneity of Data 

The model as presented depends on the data in the loss development triangle being 

homogeneous. If the data are not homogeneous, but the mix is constant through time, the 

model may still provide useful information. If the data are not homogeneous and the mix 

is not constant through time, the model as presented will not give representative results. 

Correlation Between Lines of Insurance 

The model as described above deals with one homogeneous line of insurance. When 

analyzing reserves for an insurer, we are usually concerned with the variability of the 

estimated reserve need for the insurer as a whole as well as on a line-by-line basis. If the 

R, are independent, the formula for the variability of the total reserve estimate is 

where R, is the reserve estimate for line s , and r is the number of lines of insurance. 

Intuitively, it would be expected that some of the R, are not independent, However, with 

measurement of the correlation within accident years and between accident years as 

described earlier in this paper, we have generally felt comfortable that the great majority of 
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the effects which in practical application cause correlation between lines of insurance are 

already captured in the measures of correlation already described. Therefore, we have 

used (36) to estimate the variance of reserve estimates for combinations of lines of 

insurance. The substantial enhancements to this model to accommodate a further measure 

of correlation are beyond the scope of this paper. 

Effect of Inflation 

Variability in loss development could be the result of changes in inflation rates. If the 

actuary feels the effect of inflation on the loss development triangle would distort the 

measurement of reserve variability described in this paper, the triangle should be adjusted 

to a constant dollar basis before this variability model is used. It must be noted that in 

order for the resulting variability measure to be complete, consideration of the variability 

of estimates of future inflation would have to be included separately. Such consideration 

is beyond the scope of this paper. Failing to remove the effects of inflation from the 

triangle before applying our model of variability implicitly assumes that future variability 

of inflation will have the same effects on reserve estimates that the historical triangle 

shows. The actuary may feel this assumption is justified, but at any rate the choice of such 

an assumption should be a conscious decision. 

Varying Volume of Data Through Time 

In practice, the triangle of loss development data we are analyzing may have significant 

changes in the volume of business through the period of time covered. In such a situation, 

the calculation of sample Yar(d,,j) in the manner shown in Exhibit 2 could be distorted by 

points showing unusual development but backed by very little data. To cope with such 

situations, we have used a “dollar-weighted variance“ approach which is shown in 
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Appendix A. The essence of this approach is defined by: 

for l<jsn-land (37) 

2 “-I 
c :( I 1’“‘~E,(d,,,) 

Var, (4,, ) = I=’ 
I’ 1. ‘.I 

“-I for l<jln-1 (38). 

g”., 

We use the weighted variance Var,(a’,,,) in exactly the same way we used Var((i,,) in the 

earlier description of the model. Appendix A shows a revised version of Exhibits 1 

through 5 (renumbered as 1A through SA) substituting this weighted approach. In this 

particular example the effect is not large because the triangle used in our examples does 

not have extreme volume changes. In practice we have encountered many situations 

where the volume adjustment is important. In fact, we almost always use the weighted 

variance approach in practice since in situations where it is unimportant it has little effect, 

and in situations where it is important it gives a better representation of the variability of 

loss development. 

Paid Versus Incurred Development 

The model has been described in terms of incurred loss development and lBNR estimates. 

However, there is nothing in the formulation which requires that it be used in this way. 

All formulae and relationships would hold equally well for paid loss development analysis. 

Interpretation of correlation coefficients might vary, however. Depending on the reason 

for correlation between accident years on an incurred development basis, it might be 
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expected that on a paid development basis there would be no correlation at all. 

Correlation between link ratios within a given accident year might also be zero when 

viewed in a paid loss development context. The actuary should consider these issues, and 

where possible test to see if correlation does exist. If correlation is eliminated by using 

paid development data, the actuary could rely on equations (8), (9) and (31) and greatly 

simplify the calculation of variability of reserve estimates. 

Trends in Loss Development Patterns 

As presented in the example in this paper, the model included no consideration of changes 

through time in loss development patterns. Some simple kinds of changes could be 

included relatively easily. For example, if a regression curve were fitted to historical 

values of d,,, and projected values were read off that curve, the appropriate adaptation of 

the model would be to substitute the curve values for all projected E(d,,,) and substitute 

historical variance around the fitted curve for all V~r(d,,~> in the formulae describing the 

model. A volume-weighting scheme would be possible in this context if desired. The 

complications for using fitted curves in the analysis of correlation should also be 

considered. When normalizing the variables to arrive at d,I;-, and 0,‘; the expected 

values and variances should be measured considering the fitted curves rather than “raw” 

means and variances. 

CONCLUSIONS 

The model presented in this paper uses the variance of link ratios to estimate the variance 

of reserve estimates, It allows the inclusion of correlation effects of several varieties. It 

can be elaborated to cope with a number of concerns which may be important in specific 

situations. 
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While the estimation of correlation is often diicuh in practice, we have presented some 

approaches which maximize the use of historical data in making such estimates. If 

estimates prove impractical, this model can be applied in a sensitivity-testing manner to 

demonstrate that the effects of correlation can be important as regards both the estimated 

reserve need and the variance of that estimate. Whether or not correlations can be 

estimated with much accuracy, this model gives actuaries an approach to better 

quantifying the uncertainty of reserve estimates. 
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Exhibit IA Triangle of Incurred Loss Valunlions 

Accident 
Year 

1 
2 
3 
4 

i 5 
6 
7 
8 
3 

10 

1 

32,223 
42,588 
44,360 
33,145 
30,754 
33>94 
31,064 
33,831 
44,172 
48,307 

2 

48,439 
65239 
69,989 
56,088 
46,587 
41,516 
54,187 
48,453 
72,814 

Stage of DcvelOpnlcnl (Years) -I 
3 4 5 6 

54,284 58,146 GlJOS 63,739 
17,329 82,064 8SpO 85,226 
75,140 79,019 80,548 80,864 
60,132 66,ss 1 66,857 68,395 
54,855 51,645 56,249 54,560 
52,870 59,598 58,715 
63,529 73,791 
62,742 

7 8 

63,604 
80,944 
7934 1 
66,806 

62,721 
79571 
79,525 

9 10 

63,247 62,159 
80,614 

Wcighlcd Avcragc I)cvclopnml nnd Wcighlcd Varinncc 

2 

I ,,,.(~-w,,,) 

Accident j 

Year 1 2 3 4 5 6 

1 97 38 13 91 64 34 
2 29 87 so 48 5 53 
3 0 39s 93 2 1 3 
4 i 591 244 5 7 16 0 
5 51 39 71 87 18 
6 616 61 87 52 
I 1078 30 35s 
8 536 1035 
9 209 

6, Cd,., 1 1.558 1.149 1.087 1.015 1.007 0.975 
~arw(d,.,) 0.0 10029 '0.004433 0.001536 0.000713 O.ooO472 o.ooo3os 
~Qr.(d,,)" O.lcQ14S O.O&ml 0.039193 0.026699 0.021719 0.0174634 

Sclccwd Link Ratios 
_,I . __^ 

I 

1 
5 

11 

0.991 1.011 
0.00007s 0.000005 
0.008638 0.002306 

Exhibit 2A 

9 

0 

0.983 



Modcling Correlalion Within an Accident Ycnr 
j 

Exhibit 3A 

stage: 1 2 3 4 5 6 7 8 9 10 

1.120 1.015 1.007 0.915 0.991 1.011 0.983 1.000 
0.001536 0.000713 0.000472 0.000305 o.ooMJ75 0.000005 0.000300 0.000000 

1 S58 1.180 
0.010029 0.004433 

P 0.100 

;: 
0.110096 0.095952 0.107745 0.114186 0.092599 0.0520322 0.026238 0 
0.889904 0.904048 0.892255 0.885814 0.907401 0.9479678 0.973762 1 

0.964 0.960 0.955 0.985 0.994 0.983 
0.0022 18 0.001173 0.000486 0.000091 0.000005 0.000000 

0.883 0.901 0.917 0.968 0.990 0.983 
1.046 1.020 0.993 1.001 0.998 0.933 

0 0 
1 1 

1.000 1.000 
0.000000 o.oocMloo 

1 .OOO 1.000 
1.000 1.000 

QT.,) 1.265 1.090 
~flrvc,,) 0.015197 0.004944 
Ax 1.051 0.968 

11, 1.478 1.212 

4 1.385 1.065 
I!, 1.731 1.295 

Unconditional, including corrclntion: 
We,,,) 2.022 1.291 
“WD,., 1 0.050964 0.012156 
W-J;,) 4.139 1.694 

Conditional Expectation and Variance: 
wt,,l~ ,,,-I 1 2.022 1.305 
1’~ CD,., Id,,,., ) 0.050964 0.012035 

If no corrclalion: 
W4.,) 2.020 1.296 
‘+aJ,.,) 0.04 1337 0.010046 

1.052 0.968 0.970 0.945 0.976 1.007 0.983 1.000 
1.188 1.061 1.045 I.005 1.006 1.015 0.983 1 .ooo 

1.099 0.981 0.967 0.960 0.954 
0.004081 0.001783 0.000929 0.000404 0.000083 

1.211 0.964 0.935 0.92 1 0.969 

0.994 0.983 1.000 
0.00000s 0.000000 0.000000 

1.110 0.985 0.963 0.956 0.985 0.994 0.983 1.000 
0.004041 0.001765 0.000920 0.000400 O.OOM382 0.000005 0.000000 0.000000 

1.098 0.981 0.967 0.960 0.984 0.994 0.983 1 .ooo 
0.003363 0.001501 0.000810 0.000370 0.000079 0.000005 0.000000 0.000000 



Projected Ultimates and Standard Deviations 
By Accident Year, Including Correlation 

Accident Current Expected Variance Expected Needed Variance Std. Dev. 
Year Valuation LDF of LDF Ultimate IBNR of Ult of wt. 

1 62,159 1.000 0.000000 62,159 0 0 0 
2 80,614 0.983 0.000000 79,227 - 1,387 0 0 
3 79,525 0.994 0.000005 79,040 -485 32163 179 
4 66,806 0.9‘9 0.000082 65,773 - 1,033 364808 604 
5 54,560 0.956 0.000400 52,166 -2,394 1191987 1,092 
6 58,715 0.963 0.000920 56,560 -2,155 3172039 1,781 
7 73,79 1 0.985 0.001765 72,713 - 1,078 9613035 3,100 
8 62,742 1.110 0.00404 1 69,632 6,890 15905997 3,988 
9 72,814 1.305 0.012035 94,987 22,173 63806418 7,988 

10 48,307 2.022 0.050964 97,671 49,364 118928464 10,905 

Total 660,033 729,929 69,896 

Exhibit 4A 
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Projcclcd Rcscrve Need - - All Years Combined 
Including Correlation Bc~ecn Accident Years 

Exhibit SA 

Matrix oFcorrchtion cocfkicnts pk.,, 
n2 

Year 

k ; 

7 
8 
9 

10 

1 2 3 4 5 6 I 8 9 10 

1 0 0 -5 0 0 0 0 0 0’ 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0.5 0.2 0 
0 0 0 0 0 0 0.5 1 0.5 0.2 
0 0 0 0 0 0 0.2 0.5 1 0.5 
0 0 0 0 0 0 0 0.2 0.5 1 

c: 
4 Malrix ol Covnrinnccs (= Corrclarion Coclkicnt X Sld Dcv for Ycnr (I-lorizj X Sld Dcv [or Year (Vcrt)) 

pt,,.Var(L,)X.y,,(L-)K 

ni - ,.. ..--~-- 
3 4 5 G 7 8 9 -_ lo] 

- 179 604 1,092 1,781 3,103 3,988 7,988 -------- -- ------------'--' ---- 10,9OSl __.- 
0 0 0 0 0 0 0 -0 
0 0 0 0 0 0 0 0 

32163 0 0 0 0 0 0 0 
0 364808 0 0 0 0 0 0 
0 0 .1191987 0 0 0 0 0 
0 0 0 3172039 0 0 0 0 
0 0 0 0 9613035 6182736 4953215 0 
0 0 0 0 6182736 15905997 15928784 86P8680 
0 0 0 0 4953275 15928781 63806418 4355SlOP 
0 0 0 0 0 -___ 8G98680 435557m 118P2a464J 

Varinncc ol Estimaicd Rcscrvc Need: 3716.53280 
.%tndard Dcvinlion of Eshnntcd Rescrvc Need: 19,278 




