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Correction

The paper “A Quantification of Snader's Deductible Safety Factor,” by John Rol-
lins and Monty J. Washburn, which appeared in the 1994 edition of the Forum, Includ-
ing the 1994 Ratemaking Call Papers, is a copyrighted paper. The copyright notice
was inadvertently deleted in printing the Forum.

The copyright notice should have read as follows:

Copyright 1993, National Council on Compensation Insurance.
Allrights reserved.

The material contained in this paper represents the ideas of the au-
thors and not necessarily those of the National Council on Com-
pensation Insurance.

We regret the error, and apologize to all affected parties.
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4. Estimation of Reserves, and Variances of Reserves.

It has been shown that the chain ladder model can be considered as a two-way analysis of variance.
This linear model, and other linear models, can be used effectively for analysing claims data and
producing estimates of expected total outstanding claims for each year of business. The methods
have in common the assumption that the data is lognormally disiributed, and the linear models are
therefore applied to the logged incremental claims rather than the raw incremental claims data. The
problem therefore arises of reversing the log transformation to produce estimates on the original
scale. It is this problem which is addressed in this section; in particular the unbiasedness of the
estimates is considered. This problem was first addressed in Verrall(1991a), in which the following
analysis was given.

4.1. Identically Distributed Data

Before considering the claims run-off triangle, consider o independently, identically distributed

observations which are lognormally distributed.

i.e. Z,,..,2Z, areindependent

aod Z; ~ lognormal.

Suppose also that E ( Z; ) = 6. (4.1)

The aim is to estimate 8 and to find the mean square error (or variance, if the estimate is unbiased)
of the estimate. One way of proceeding towards the estimation of # is to take logs of the data and
analyse the resulting sample using normal distribution theory. This is an approach which can be
generalised to data which is not identically distributed and so is the most appropriate for claims

data.

Let Y; = log Z; (i=1,...,n). (4.2)
Since Z; has a lognormal distribution, Y; has a normal distribution.

Suppose Y;~N(p,o").

Then O=exp(p+}o*) (4.3)
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The maximum likelihood estimates of 4 and o are

Y
1

B=4

P =iE (Yi—a)

and the maximum likelihood estimate of @ can be obtained by substituting i and &? into equation

(4.3):
b =exp(p+307) (4.4)

Finney (1941) showed that the maximum likelihood estimate of @ is biased. In order to correct for

the bias, Finney introduced the function gy (t ), where

& mE (m + 2% k
gm(t)=k§om(m+2()...7m-)i-m£ﬂ (45)

and m is the degrees of freedom associated with 2. In this case m = n—1.
It can be shown that an unbiased estimate of 8 is § where

f=exp(it)am ( §2=R)8") (4.6)

and 8 = ﬁ &% is an unbiased estimate of o,

One advantage of the use of linear models is that standard errors of the parameter estimates can be

produced. These can be used to find standard errors on the original unlogged scale. The variance of

0 is 72, where

P=E(§)-(E(8))

An unbiased estimate of E ( 5 ) is obviously 57 (since the expectation of thisis E ( 8% ) ) and

(E(8)) =(exp(p+}o®))
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=exp (2 +o?).
By analogy with the unbiased estimation of 8, an unbiased estimate of
exp (24 + 0%)
is exp ( 2js ) gm ((1-3) 7).
Thus an unbiased estimate of 77 is
= ep (20)[ (em (0= 8")) —gm (1= ") . @

For comparison purposes, the corresponding maximum likelihood estimates are also found. The

maximum likelihood estimate of the variance of the maximum likelihood estimate of 6, 8, is
R -2 -2 -2 7—L(n-1 =2 1—(n-1
exp(2p+%)[exp(%)[l—g%] a( )—[l—%] ( )] (4.8)

4.2 Unbiased Estimation for Claims Runoff Triangles

A claims runoff triangle consisting of incremental claims (assumed positive) is now considered. It is

assumed that the data have been adjusted for inflation and exposure. Z,; is incremental claims in

row i, column j.

Let 6 = E(Z;) (4.9)

i
Estimates of §;; are required along with standard errors of these estimates. In particular, estimates

of { 0;; ¢ i=lgb g =it } are required, as these are the estimates of the expected
outstanding claims. The row totals of the estimates also have to be considered, as these are the

estimates of the expected total outstanding claims for each year of business.

{ Z;;  i=1,..,j=L,...t-i+1 } are assumed to be independently, lognormally distributed.
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ij = lOg Z.‘j- (410)
Then Y, ; are independently normally distributed.
Suppose that { Y;; i=L.t; j=1,...,t-i+1 } are modelled by

E(Yi;) =X;; 8 (4.11)
Var (Y;;) =o? (4.12)
where X,; is 8 row vector of explanatory variables and £ is a column vector of parameters, both of

length p.

The linear model for the whole triangle is

E(XY) = X8 (4.13)
where X is an (nxp) matrix whose rows are X, ;
and Y is the vector of observaiions.

n is the number of observations ( for a triangular array n=}t(t-+1) ), and the errors are assumed to

be independently, identically normally distributed.

The expected value of the lognormally distributed data, 6; joi8 related to the mean and variance of

the normally distributed data by

ij =exp(X;;8+}0") (4.149)

Thus the maximum likelihood estimate of 6, ; is

b;; =exp(X;; B+567) (4.15)
where B=(X'Xx)'x'y
and *=4(y—-XB)Y(yx-X8)

The general theory of estimation from linear models when the data is lognormally distributed was
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considered by Bradu and Mundlak (1970). It can be shown that an unbiased estimate of
exp (Z 8+ ac?)
for any row vector Z of length p and scalar a, is

exp(ZB)em[ (a-}32(X%)"2 )6 ] (4.16)

where s? is an unbiased estimate of ¢ and m is the number of degrees of freedom associated with

i.e.a? =n—55&’
= gip(x-X2)(x-X3)
and m =n—p.

Thus an unbiased estimate of §,; is §;; , where

5.',' = exp( K.-,' ﬁ ) 8m [ i (1- x-‘j (x'x)_l X_Z,- ) o’ ] (4.17)
Note that var(8)= (X'x)" o
and hence Var ( X;; 8) = Xi; (xlx)_l Xf,- o’

It can therefore be seen that X,; (x'x)"! g,- 8% is an estimate of Var ( X;; B).

The variance of the unbiased estimate of 6,; , 5‘ i is r,?,- , where

.,
I

3 Vu(;ij)

E(éu?j) - (E(éi)‘ ) ) (4.18)
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Au unbiased estimate of E ( #7; ) is 6}, and

(E(aij))z =0.?,'

exp (2X;; 8 + a?).

Hence an unbiased estimate of 73, is #7; , where

7= exP(%‘.&jﬁ)[(Sm (3 -X; (x'x)" L‘j ﬁ’))"&m((l—2§.’j (x'xy! Lé,‘ )32)]-
(4.19)

4.3. Unbiascd Estimates of Total Qutstanding Claims

The purpose of the analysis of the claims data is to produce estimates of the expected total
outstanding claims, R, , for each year of business, and the total outstanding claims, R, for the whole
triangle.

An unbiased estimate of R, is R; , where

R. = ¥y &,. (4.20)
J=t=i42

The variance of R; can be calculated as follows:

Var(R;) = Va.r[ Y ]
j=t-i+3
= ,-=,i..-+z [ Var ( 5-‘,‘ )+ 2 u{:;ﬂCov ( 6, By )] (4.21)

Now

Cov ( D,,,é,,):E(b,.,.é,.,)—s(ﬁ_.,)ﬁ(é,.,),

and an unbiased estimate of this can be obtained using the same method as that which was used to
find #7; in section 4.2.

It can be shown that if
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Tijk = Cov ( t'),-,- s 6“ ) '

an unbiased estimate of 7 is 7,;, , where

‘T-l.jkzexp((_)&,-,-+2(_.-g)ﬁ)[ Em(%(l—.xﬂ',' (x'x)7! 2(.5,' )sz)Sm(%(l‘Lu (X'x)"' xL)sY)

Hence an unbiased estimate of Var ( R; ) is

—gm((1— 3K+ X)X X) ™ &Ky + X D)e?) |

(4.22)

(4.23)

By extending the limits of the summations, the total outstanding claims for the whole triangle can

also be considered.

4.4 Prediction Intervals

Having found an unbiased estimate of total outstanding claims, it is now possible to produce a

prediction interval for total outstanding claims. The purpose of the analysis so far has been to

produce an estimate of total outstanding claims and an estimate of the variance of this estimate. It

is often desirable to find a ’safe’ value which is unlikely to be exceeded by the total actual claims.

Let R = total outstanding claims for the whole triangle

and R be an unbiased estimate of E(R).

Suppose that a 95% upper confidence bound on R is required. i.c. it is required to find a value, k,

such that

i.e. find k such that

P{R—I<k)=095.
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Since R is an unbiased estimate of E(R),
E(R) = E(R) (4.26)
and hence

E(R-R)=0. (4.27)
Also, R is based on past data and is thus independent of R under the assumptions of the model.

Thus
Var(R— R ) = Var(R) + Var(R). (4.28)

In section 4.3, an unbiased estimate of Var (R ) was derived and it is possible to derive an unbiased

estimate of Var( R) using the theory which was used in that section. By independence,

var(R)= ¥, 3 Var(Z;) (4.29)

i3 j=ti42

and an unbiased estimate of Var(Z,; ) is required. This can be derived as follows, using the method
of section 4.2.

Z;; has a lognormal distribution, and the variance of this distribution is given by:
Var(Z;) = exp(2Kiy8 + o*)(exp(0?)—1)
=exp(2X;;8 + 20%) — exp(2X;;8 + 0?) (4.30)
Hence, applying equation (4.18), an unbiased estimate of Var(Z; ,-) is
exp(2Ks; BY sm (201X (X'X)™ X, o) —gm((1 - 2K, (X'%)™ X )o%) } (4.31)
It is not inappropriate to use a Norma! approximation since R and R are, typically, combinations of

a reasonably large numbet of lognormally distributed random variables. Thus a 95% upper bound on

total outstanding claims can be found:
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R + 1.645 | Var(R) + Var(R) (4.32)
d Var(R) + Var(R) is the root mean square error of prediction.

4.5 Bayesian Estimation for Claims Runoff Triangles

When a method is used which is based on Bayes theory, Bayesian estimators should be used. The
Bayesian estimators have a slghtly simpler form than the unbiased estimators and 8o are sometimes
used in their place in a classical analysis. When used in a classical analysis, no prior information is
assumed.

Suppose that Z,, has a lognormal distribution with parameters § and o, and that the posterior

distribution of 8, given D, is normal with mean m and variance r2

i.e. logZ, |8 ~ N(8,0%)

8|D ~ N(m,?)

Suppose also that ¢? and 72 are known. Then

1,2,1.2
E(Z, (D) L L 1
3,2 3, .2
and Var(Z,,|D)= 2meoter (ef’”'—l)

Similar methods can be used to calculate the covariances, total outstanding claims and the variance

of the total outstanding claims.

The Bayes estimate of outstanding claims for year of business i is

Y E(z;|D) (4.33)

i>n-i+l

and the Bayes estimate of the variance is

>j

. [vu(z_.,.|n)+22cov(z,.,.z,.,|D)] (4.33)
i>n-i+l
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4.6. Example

This example illustrates and compares the two most basic methods of claims reserving considered in
this thesis: the chain ladder method and the two-way analysis of variance. This gives an
opportunity to compare the two. For the analysis of variance model, both the unbiased and
maximum likelihood estimates of outstanding claims are given. The data used is taken from Taylor
and Ashe (1983), and was given in section 2.

The estimates of the parameters in the chain ladder linear model and their standard etrors are

shown in table 4.1.

Table 4.1
Estimate Standard error
Overall mean 6.106 0.165
Row parameters 0.194 0.161
0.149 0.168
0.153 0.176
0.299 0.186
0.412 0.198
0.508 0.214
0.673 0.239
0.495 0.281
0.602 0.379
Column parameters 0.911 0.161
0.939 0.168
0.965 0.176
0.383 0.186
-0.005 0.198
-0.118 0.214
-0.439 0.239
-0.054 0.281
-1.393 0.379

The standard errors are obtained from the estimates of the variance-covariance matrix of the
parameter estimates:
(X'x)1ts?
where 67 is the estimate of the residual variance. For this example, &2 = 0.116.
Since the data is in the form of a triangle (there are the same number of rows and columns) and the

matrix X is based solely on the design, the standard errors are the same for each row and column
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parameter. The row parameters are contained within a much smaller range th=n the column
parameters: (0.149, 0.673) compared with (-1.393, 0.965). It can also be seen that there is an
indication that the row parameters follow an increasing trend. It is to be expected that the row
parameters should be contained within a fairly small range, since the rows are expected to be
similar. Any pattern in the row parameters gives an insight into, and depends upon, the particular
claims experience. It is thus quite common to observe that the row parameters lie in a small range,

but not typical that they follow a trend.
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286170
357848

410587
352118

379337
290507

339233
310608

378676
443160

389421
396132

420963
440832

457887
359480

396651
376686

344014
344014

The fitted values for the analysis of variance model are shown in table 4.2. These are the unbiased

estimates and are shown with the actual observations for comparison. In this figure, and in all

similar

Table 4.2

711785 731359 750301 418911 283724 252756 182559 266237 67948
766940 610542 482940 527326 574398 146342 139950 227229 67948

1021245 1049329 1076506 601040 407078 362646 261930 381987
884021 933894 1183289 445745 320996 527804 266172 425046

943516 969461 994572 555294 376094 335044 241994
1001799 926219 1016654 750816 146923 495092 280405

843767 866971 889425 496588 336334 299624
1108250 776189 1562400 272482 352053 206286

941872 967773 992840 554327 375439
693190 991983 769488 504851 470639

968599 995234 1021012 570056
937085 847498 805037 705960

1047052 1075844 1103710
847631 1131398 1063269

1138894 1170213
1061648 1443370

986582
986608

ones in future, the top entries are the estimates and those underneath are the actual

observations.

Table 4.3 shows a plot of residuals (fitted value — actual value) against fitted value.
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Table 4.3

X

4
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There is no discernible pattern in the residuals, and they seem to be randomly scattered, so there is
no cause to question the model on the basis of this plot. Of course, it is possible to look further into
a residual analysis and study the plots of residuals against year of business and delay. This is
considered further using the GLIM system, by Renshaw (1989). The main purpose of this paper is to
extend the possible range of analyses and to consider rigorous statistical estimation, rather than to
find the most appropriate linear model to fit, and so the residual analysis will not be commented on
further.

Of most interest to practitioners are the predicted outstanding claims for each year of business,
which are the row totals of predicted values. Table 4.4 shows the maximum likelihood predictions of
the outstanding claims in the lower triangle, and table 4.5 shows the unbiased predictions. The
method does not produce any predictions for the first row, and each row contains one more predicted

value,

Table 4.4

101269

357398 93599

217465 319835 83761

335047 243001 357392 93597

386433 345088 250283 368102 96402

617309 418743 373941 271209 3988380 104462

1206369 674243 457364 408430 296223 435668 114097
1026594 1053911 589034 399564 356813 258787 380610 99678

888831 913640 937951 524224 355600 317554 230313 338732 88710
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Table 4.5
96238
350362 88841
215218 313105 79394
332848 240075 349268 88564
384305 342028 246696 358900 91006
613257 415031 369373 266419 387593 98281
1193906 666126 450811 401216 289387 421005 106752
1006382 1031734 575643 389575 346716 250077 363813 92248

844677 867203 889047 496032 335695 298762 215487 313486 79483

It can be seen that the maximum likelihood estimates are all higher than the unbiased estimates, as

was to be expected.

Table 4.6
Analysis of Variance Chain Ladder

Row Maximum Likelihood Unbiased

2 101269 96238 94630
3 450997 439203 464668
4 621061 607717 702101
5 1029037 1010755 965576
6 1446307 1422934 1412202
7 2184544 2149953 2176089
8 3592393 3529202 3897142
9 1164990 4056189 4289473
10 4595556 4339873 4618035

The total predicted outstanding claims for each year of business (the row totals of the predicted
outstanding claims) are shown in table 4.6. There are three estimates given, the maximum likelihood
and unbiased estimates from the analysis of variance model, and the chain ladder estimate.

It can be seen that tbe maximum likelihood estimates differ most significantly from the unbiased
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which is where the number of observations used in the estimation is the greatest. The maximum
likelihood estimate is asymptotically unbiased, and the greater the number of observations used to
estimate the parameters, the closer are the two. The chain ladder estimates are sometimes higher
and sometimes lower than the analysis of variance estimates. There is nothing significant that can
be inferred from the differences. This confirms that the crude chain ladder method is a reasonable
'rough-and-ready’ method for calculating outstanding claims, although the more proper method,

statistically, is the analysis of variance method (using unbiased estimation).

The total predicted outstanding claims are:

Analysis of Maximum Likelibood 18186154
Variance Unbiased 17652064
Chain Ladder 18619916

The following table shows the unbiased estimates of the total outstanding claims for each year of
business, the standard errors of these estimates and the root mean square error of prediction. This

table can be used in setting safe reserves, and gives an idea of the likely variation of outstanding

. claims.
Table 4.7

Unbiased tand. Mean Square Error

Estimate Error Of Prediction

96238 35105 47202
439203 108804 163217
607717 127616 182847
1010755 195739 269224
1422934 273082 357593
2149953 429669 538533
3529202 775256 942851
4056189 1052049 1197009
4339873 1534943 1631308

416




The unbiased estimate of total outstanding claims is 17652064 and the root mean squate error of

prediction is 2759258. Thus a 95% upper bound on total outstanding claims is
17652064 + 1.645 x 2759258 = 22191043

This could be regarded as a “safe” reserve for this triangle according to the chain ladder linear

model using unbiased estimation.

5. Estimation of the Development Factors

When considering outstanding claims, it is important to use unbiased estimators. However, when
comparing several sets of runoff patterns it is simpler to use maximum likelihood theory since

unbiasedness is not critical. There are two sets of parameters whose distributions can usefully be

found: the development factors, { Ajrj =2, }, and the proportions of ultimate claims, { S;
1
tj=1,...,t;3 §; =1} It has already been shown that the following relationship between
=)

the proportions of ultimate claims and the development factors holds:

S, = - (5.1)
PO
=2
s, = *-,-'A—‘ (i22) (5.2
H

]
.

It was also shown by Kremer that the proportions of ultimate claims are related to the column

parameters of the linear model as follows

al
)
-

[2]
-
Il
=2
1
—
-

(5.3)

-~
[}

where B, = 0 by definition.
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Finally, the relationship between the parameters of the chain ladder and linear models was proved in

Verrall (1991b):

A, = 14+ =2 (5.4)

The parameters of the additive model can be estimated using maximum likelihood estimation. The
variance-covariance matrix of the parameter estimates can be obtained from the Fisher information
matrix by differentiating the log-likelihood a second time. Further details of the theory of maximum
likelihood which is used in this section can be found in Cox and Hiokley (1974).

Since maximum likelihood estimates are invariant under parameter transformations, the maximum
likelihood estimates of the development factors and the proportions of ultimate claims can be
obtained by substituting the estimatesof { 8;:j =1, ...,t; f; = 0 } into equations (5.3) and
(5.4). In addition to the parameter estimates, it is useful to have standard errors of the parameter
estimates which can be obtained by maximum likelihood theory. The particular advantage of using

maximum likelihood estimation is that the second moments are relatively straightforward to obtain.

Denoting the variance-covariance matrix of { #; :j=1,...,t; 8, =0} by V(2), the
variance-covariance matrix of { X; : ) =2....,t}a.nd{Sj:j=l,.”,t.;i S; =1} are
i=
given by
V(A)=(g—2)"(ﬁ)(¢%) (5.5)
and v<§)=(%)v(g>(g%) (5.6)

It is thus necessary to obtain the matrices of the first derivatives of the respective parameter vectors.

The (j,k)th element of (g—é) can be obtained from equation (5.4) and is given by:
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3, B

.
|
o
»
I
L

Q|
™
»~

|

o
L
=

I
-

: k<j
it B,

[
=1

= A~ 1 k=j (5.7

— (A —1)( M -1) k<i

Similarly, the (j,k)th element of 95 | can be obtained from equation (5.3) and is given by:
Jd
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~ele k #j

98; _
9B, ~
J’f(i i _J’:)
=1
k=j
(%)
=1
-, 8, k#j
= (5.8)
S, (1-5,) k=j

Estimates of the variance-covariance matrices can be obtained by substituting estimates of the
parameters into equations (5.7) and (5.8).

A technical note is that the parameter 3, (which is defined to be zero) has to be included in the
matrix of partial derivatives in equation (5.8) since there are n parameters in the vector S. The
variance-covariance matrix of the parameters of the additive model which is obtained from a
standard least squares analysis has to augmented to include an extra row and column, all of whose

entries are zero. This is not necessary for equation (5.7).
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5.1 Example

The method described in section 5 is of use when comparing several different sets of data and
therefore a different example will be used than in other sections for illustration purposes. The
method is applied to six sets of employers’ liability data which have been obtained from the DTI
returns. The names of the companies to which the data apply have been suppressed, and it should be
commented that this mathematical analysis is only one part of the process by which reserves are set.
In particular, the DTI data are gross of reinsurance. The results here should therefore be regarded as
a statistical analysis which would give further information to the claims reserver who would use the

other information available.

We now consider the parameter estimates for each of the three models in turn. Beginning with the
additive model the estimates of the column parameters { B;:3=2,..,t) and their standard

errors are given in the following figure:

COMPANY:

1 2 3 4 5 6

1.796 0.121 1.748 0.148  2.236 0.249  1.846 0.248 1.941 0.201 2.010 0.082
1.848 0.126 1.857 0.155  2.080 0.261  2.260 0.260  2.248 0.211 2.246 0.086
1.669 0.133 1.854 0.163  1.978 0.273  2.159 0.272  2.204 0.221 2.129 0.091
1.413 0.139 1.400 0.171 1.725 0.287  1.986 0.286  1.981 0.232 1.863 0.095
0.994 0.147 1.200 0.180  1.535 0.303  1.535 0.302 1.514 0.245 1.485 0.100
0.615 0.155  0.705 0.190 1.057 0.320  1.235 0.319  0.788 0.259 1.050 0.106
0.415 0.164  0.339 0.201  0.667 0.338 0.644 0.337  0.227 0.274 0.782 0.112
0.038 0.175  0.025 0.215  -0.099 0.360  0.222 0.359  -0.540 0.291 0.234 0.120
-0.812 0.189  -0.407 0.232  -0.300 0.390  0.047 0.388  -0.993 0.315  0.155 0.129
-0.915 0.212  -1.821 0.260  -0.715 0.437  0.382 0.435 -1.311 0.353  -0.324 0.145

-2.5613 0.284  -1.492 0323  -1.708 0.543  -0.896 0.541  -3.206 0.439  -0.304 0.180

Before going on to the parameters which have a physical interpretation, it should be noticed that it

in already possible to see some differences between the companies. In particuar, the standard errors
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of the parameters are larger for some companies (3 and 4) than for others (6). This will be mirrored

in the parameter estimates and standard errors of the other models.

Next, consider the chain ladder model. The estimates of the development factors {Api=2,..,1}

and their standard errors are given in following table:

COMPANY:

1

7.027

1.904

1.397

1.220

1.119

1.073

1.055

1.036

1.015

1.013

1.003

0.727

0.101

0.041

0.022

0.012

0.008

0.006

0.005

0.002

0.002

0.001

6.742

1.950

1.398

1.221

1.148

1.079

1.051

1.035

1.022

1.005

1.007

3
0.850 10.36
0.130 1.773
0.050 1.394
0.027 1.219
0.019 1.149
0.010 1.080
0.007 1.050
0.006 1.022
0.004 1.018
0.001 1.012
0.002 1.004

2.327

0.181

0.084

0.046

0.032

0.018

0.012

0.006

0.005

0.004

0.002

7.332
2.307
1.512
1.285
1.141
1.092
1.047
1.029
1.024
1.032

1.009

1.569

0.300

0.109

0.059

0.030

0.020

0.011

0.008

0.007

0.011

0.004

7.963

2.189

1.520

1.2714

1.135

1.057

1.031

1.014

1.009

1.006

1.001

1.401

0.222

0.090

0.046

0.023

0.010

0.006

0.003

0.002

0.002

0.000

8.466

2117

1.469

1.245

1.135

1.077

1.055

1.030

1.027

1.016

1.016

0.616

0.086

0.033

0.017

0.009

0.006

0.004

0.003

0.003

0.002

0.003

Finally, consider the muitiplicative model. The estimates of the proportions of ultimate claims in

t
each development year { S; :j=1,...,t; 3 S; = 1} and their standard errors are given in the
=

following table:
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COMPANY:

0.032
0.196
0.206
0.172
0.133
0.088
0.060
0.049
0.034
0.014
0.013

0.003

0.003

0.016

0.015

0.013

0.011

0.008

0.006

0.005

0.004

0.002

0.002

0.001

0.032 0.004
0.184 0.019
0.205 0.019
0.167 0.015
0.130 0.013
0.106 0.011
0.065 0.007
0.045 0.006
0.033 0.005
0.021 0.004
0.005 0.001

0.007 0.002

0.023 0.005
0.218 0.036
0.186 0.029
0.168 0.026
0.131 0.021
0.108 0.019
0.067 0.013
0.045 0.010
0.021 0.005
0.017 0.005
0.011 0.004

0.004 0.002

0.021
0.135
0.204
0.184
0.155
0.099
0.073
0.040
0.027
0.022
0.031

0.009

0.005
0.025
0.032
0.028
0.024
0.017
0.014
0.009
0.007
0.006
0.011

0.004

0.023
0.162
0.220
0.211
0.169
0.106
0.051
0.029
0.014
0.009
0.006

0.001

0.004
0.023
0.027
0.025
0.022
0.015
0.008
0.005
0.003
0.002
0.002

0.000

0.022
0.162
0.205
0.182
0.140
0.096
0.062
0.047
0.027
0.025
0.016

0.016

0.002
0.010
0.011
0.009
0.007
0.006
0.004
0.003
0.002
0.002
0.002

0.002

The runoff patterns of the companies can be compared using the two tables above. For example, 1

and 2 seem quite similar, and some of the companies have more runoff in later development years

than others. The standard errors can also be compared, with the same conclusions as above.

423



6. Bayesian Linear Models and Credibility Theory

Bayes estimates for the linecar model were investigated by Lindley and Smith (1972) and also
Smith (1973). In the actuarial literature, the recent paper by Klugman (1989) has studied the use of
hierarchical linear models in a rating context. It has already been seen that many of the models
commonly used to analyse claims runoff triangles can be regarded as linear models, and we now
analyse these models from a Bayesian point of view. This analysis has two purposes: firstly the
practitioner may have some information, from other data for example, which can be used to specify
a prior distribution for the parameters in the model and secondly the Bayesian analysis gives rise in
a natural way to estimators which have a credibility theory interpretation.

In the first case the prior distribution is set by the practitioner and the usual prior-posterior analysis
can be carried out. The models which we are using assume normal (really log-normal) distributions,
and so it is only necessaty to specify the mean and variance of the prior distribution (which is also
pormal). For example, if there is a lot of evidence to suggest that the row parameters are all 0.1, a
normal distribution with mean 0.1 and small variance can be used as prior. If there is not much
prior information, the prior variance can be set larger. Indeed, in the limit, as the prior variance
becomes large, we revert back to ordinary least-squares estimation of the parameters.

In the second case, we will be using empirical priors. Thus the estimation will be empirical Bayes
and we will assume that certain of the parameters are exchangeable. The historical requirement that
credibility estimators be linear will also be considered and we could claim to have credibility
formulae. The situation has some similarities with credibility estimators of risk premiums in that we
can regard the rows in a runoff triangle as a set of risks and proceed as Buhlmann (1967) - see
Goovaerts and Hoogstad (1987) for a full description of Buhimann's method. In the case of claims
runoff triangles the rows contain different numbers of elements, and there are also the column
parameters to contend with. This approach, starting from credibility premiums and working through
to a credibility theory for loss runoff triangles was suggested by De Vylder (1982) - again see
Goovaerts and Hoogstad (1987) for an exposition of the method. The present method starts from
runoff triangles and proceeds to credibility formulae via the linear models. One of the major
advantages of the linear model approach is that standard errors of the estimates are also produced.
For consistency, the constraints

o =8 =10
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on the first stage distribution have been retained. This also facilitates the comparison with the
recursive approaches such as that based on the Kalman filter. It does, however, introduce a slight
degree of assymmetry into the prior distribution and it might be considered more appropriate to use

a constraint such as
a=3p8=0
It is also possible to apply the constraint at the second stage and use the following prior distribution:
a.-~N(0.af,) i=1,.,t
The affect of the exchangeability assumption is similar whichever constraint is used: the estimates
are shrunk towards a central value and stability is introduced. The amount of shrinkage is greatest

where the number of observations is small.

6.1 Bayes Estimates for the Analysis of Variance Model

In this section the use of two-stage Bayesian linear models which assume that there is
some prior information is described. A prior distribution can be written down using the prior
knowledge. It was shown earlier that the chain ladder linear model can be written as a linear model

in the form:

)] ~ N(Xg,I)

and the prior information is quantified in the prior distribution on £

88, ~ N(A8;.C;)
A situation which may occur is that there are similar sets of data available which give information
on the individual parameters. In this case A, can be taken as an identity matrix, the prior estimates
can be put into 8, and their variances into C,. In many cases C, will bc a diagonal matrix of
variances, although it is not necessary that the covariances are zero. In this case, the prior

distribution becomes:
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818, ~ N(4&,C) (6.1)

Assuming that the errors are independent, £ = o¢?l,. Iy is a square identity matrix of dimension

(nxn).

The Bayes estimate of the parameter vector is the solution, 3 , of

(672X'X + Ci')8 = o *X'XB+C' Y, (6.2)

and the variance-covariance matrix of the estimates is

Var(3) = [o7?X'Xx +C]' ! (6.3)

The equation for 8 (3.4.2) can be written as a credibility formula:

Jii = z8 + (1-3)8 (6-9)

wherez = (0~ 7X'X + C7')'o~?X'X s the credibility factor.

It is interesting to mote that the credibility factor has been generalised into a credibility matrix,

since z is a (pxp) matrix. There will be a subtle depend of the el ts in the Bayes estimator B
on each of the elements in the least squares estimator. It is not possible to write a credibility

formula separately for each factor in the form
&, = za; + (1-132)8,
To estimate the variance o2, the modal procedure described is used. The estimate of o is 8%, where

s = (y-XB)(x—X3)/(n+2) (6.5)

Thus the equations which give the Bayes estimates are (6.2), with o replaced by s?, and (6.5).
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The procedure begins with s> = 0 and iterates between the solutions of

(s73XX + o713 = &7X'X3 + CTly,

and o (x— X8) (x — XB)/(a+2)

6.2 Empirical Bayes Estimates for the Chain Ladder Linear Model

The previous section described the use of a two-stage conventional Bayesian model to analyse claims
data. This section uses a three-stage Bayesian model described in Verrall (1990) to derive empirical
Bayes estimates for the chain ladder model. This method uses an improper prior distribution at the
third stage for the row parameters and improper priors at the second stage for the overall mean and
the column parameters. This means that for the overall mean and the column parameters the same
assumptions are made as for the maximum likelihood estimators.

The row parameters are assumed to be independent samples from a common distribution - of course,
they are unobeervable, but this is the underlying assumption. A similar assumption is made in
credibility theory. When premiums are calculated using credibility theory, a risk parameter is
assigned to each risk and these are assumed to be independently, identically distributed. The set of
risks is known as a collective, and the distribution from which the risk parameters is drawn is known
as the structure of the collective. The situation in the claims reserving case is similar for the row
p;runetera, but is complicated by the column parameters.

The estimators produced will combine information from each row with information from the triangle
as a whole. The prior distribution (i.e. the second stage distribution) is estimated from the data, and
hence the estimators have an empirical Bayes interpretation.

The linear model for the chain ladder method is

|8 ~  N(Xg,o'l) (6.6)

and the constraint oy = #, = 0 will be used.
The errors have been assumed to be independently, identically distributed. X is as defined in the
firat section.

As in credibility theory, a structure is put onto the row parameters ay, aj, .. ,a; : they are
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assumed to be independent observations from a common distribution. For the overall mean, u, and
the column parameters 8,, f8;, ... 8, , the same distributional assumptions as for ordinary

maximum likelihood estimation will be used. Thus at the second stage

(10 .. 0w o,
Blw, v,£ ~ N 0 1 0 : v af,.

.y 2
$3 ¢7:::¢r2
: B .

010 £, a%

0 1 o
0
0 ... ... 01

and take al‘f — 0 and a;,z — 0. (6.7)

¢ is the mean of the common distribution of the row parameters aj, ... ,ét.
Although the assumptions on the estimation of g and 8, ... ,5, are the same as for the maximum

likelihood estimation, the estimators produced will not be the same because of the treatment of the

row parameters.

A vague prior distribution (a third-stage distribution) is used for . Since a‘_" — 0 and 0;32 -

0, a third-stage distribution is not needed for w and £, , ... , §; . Hencea combination of two-stage

and three-stage models is used.

The Bayes estimate of 8, 8 , is given by

(6.8)
where a. = ‘—l——l t&.—
i=2

and has a credibility interpretation.
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It can be seen that the empirical Bayes estimates of the row parameters are in the general form of
credibility estimates: they are the weighted average of the maximum likelihood estimates and the
(weighted) average of the estimates from all the rows. The situation is complicated by the fact that
X'X is not a diagonal or block-diagonal matrix, so that the estimation of g, 84, ... , 3, involves the
estimates of aj, ... ,a, and vice versa. This is entirely natural since changing the estimates of the
row parameters obviously forces changes in the other estimates. However, it can be seen that the
form of the estimates is the same as the form of credibility estimates. They are the weighted average
of the maximum likelihood estimates and the (weighted) average of the estimates to which the
credibility theory type assumptions have been applied. The weights depend on the precision of the
estimates.

As before, the variances o2 and o2 are replaced by modal estimates s? and 83 , which are given by
a

.y N
g = w\+(1—ni%lgx—xé) (6.9)

1]
vara+ __Z:z(&,- - a.)
t+vgtl

8y = (6.10)

where v, A, vq and A, are set by the prior distribution of the variances. The derivation of these
formulae, and the discusion of the prior parameter values is given in Lindley and Smith (1972).
Again, the estimates are obtained by iterating between (6.8) and (6.9),(6.10). This is illustrated in
the example. .

The empirical Bayes assumptions could also be applied to the column parameters, although this is of

little practical use.

6.3. Example
To illustrate the effect of the assumptions made in the empirical Bayes theory, namely that the row
parameters are independent observations from a common distribution, the Taylor and Ashe data is

reanalysed in this example.

The estimates of the parameters and their standard errors are shown in table 6.1:
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Table 6.1

Empirjcal
Bayes No Prior Standard Error
Estimate Estimate Of Bayes Estimate
Overall Mean 6.157 6.106 0.131
Row Parameters 0.225 0.194 0.124
0.193 0.149 0.129
0.198 0.153 0.133
0.300 0.299 0.138
0.371 0.412 0.144
0.421 0.508 0.150
0.493 0.673 0.159
0.383 0.495 0.170
0.391 0.602 0.185
Column Parameters 0.893 0.911 0.128
0.911 0.939 0.133
0.915 0.965 0.139
0.319 0.383 0.147
-0.080 -0.005 0.156
-0.199 -0.118 0.170
-0.515 -0.439 0.190
-0.120 -0.054 0.224
-1.444 -1.393 0.306

The estimate of the variance of the row parameter distribution is 0.0289.
The empirical Bayes assumptions have been applied to the row parameters only. The effect of these

assumptions is that the row parameters have been drawn towards a central point (a weighted

average). The lower row p ter estimates have i d, while the higher ones have decreased.
This can be seen more clearly from the graph given in section 7.3 which shows a plot of the
maximum likelihood and empirical Bayes estimates of the row parameters, togther with the

estimates from the dynamic model discussed in section 7.
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Table 6.2 shows the row totals and their standard errors. For comparison purposes, the Bayes

estimates with no prior assumptions are also given.

Table 6.2
Empirical Bayes Bayes Empirical Bayes

Estimates No Prior Standard Error

109448 110927 46963

479568 482157 148617

655656 660810 162104
1033109 1090752 220459
1388261 1530532 270730
2002772 2310959 374041
3018896 3806976 572899
3780759 4452396 720836
3811869 5066116 752593

The empirical Bayes estimate of total outstanding claims is 16280338 and the estimate of the
standard error of total outstanding claims is 1313997.

The empirical Bayes standard errors are lower.than the estimates with no prior information. The
estimates of total outstanding claims for the later rowa have benn quite considerably reduced,
reflecting the reduction in the estimates of the row parameters. The empirical Bayes procedure has
thus given less weight to the estimates of the parameters from the later years: it has allowed that
the rise in the maximum likelihood parameter estimates from row to row may be due to random
variation. As more data becomes available, and there is more evidence in favour of either of these

possibilities, this may, or may not, be revised.
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7. State Space Models

The previous section described the empirical Bayes framework in which it is assumed that the row
parameters have the same prior mean. The advantage of this assumption is the connection made
between the accident years. The chain ladder technique suffers from over-parameterisation which is a
result of the accident years being regarded as cimpletely separate. The empirical Bayes assumption is
one way of ovcrcomi'ng this. Another way of tackling this problem, and in some ways a superior
way, is to use a state space approach. This method assumes a tecursive connection between the rows,
rather than the static assumption made by the empirical Bayes method that all the rows are similar.
‘The state space model assumes that each accident year is similar to the previous one. Just how
similar can be governed by the choice of a parameter variance. Section 7.1 describes the state space
approach to the chain ladder linear model.

Another problem with the chain ladder technique is, paradoxically, that it makes too much
connection between the accident years. It does this by assuming that the shape of the run-off is the
same for all accident years: the same development parameters are used. It is also possible to relax

this assumption, and details of this are given in section 7.2.

7.1 A state space representation of the chain ladder linear model.

In order to consider the state space model and dynamic estimation methods, it is necessary to set up
the two-way analysis of variance model in a recursive form. This takes advantage of the natural

causality of the data. The data which makes up the claims runoff triangle are received in the form :

2,3
zl,i )
zl.]_ * + zl,l [ ) (7'1)
Z1,l 7
3,1

and in year t the data which are received are

! (7.2)

The set of data vectors which together make up the whole triangle form a time series:
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z.llz2v"-v zt»-..

In this time series, the data vector expands with t: for a triangular set of data, dim ( Z, ) = t.

If the data are in the shape of a rhombus, which occurs when the early years of business are fully

run off, then Z, will reach a point when its dimension does not increase.

The analysis can be approached from in the context of multivariate time series. However, the special
relationshipe between the elements of consecutive data vectors mean that it is simpler to generalise
the theory of classical and Bayesian time series to two-dimensional processes. For a fuller discussion

of the use of classical time series, the reader is referred to Verrall (1989).

There are two methods for calculating the forecast values and their standard ertors. The simplest is
to use the final parameter estimates and variance-covariance matrix as would be the case in a
standard least-oquares analysis. The more proper method calculates one-step-ahead , two-step-ahead
s -y (t-1)-8tepe-ahead forecasts at time t and their variance-covariance matrices. However, since the
recursive approaches do not store covariances between, for example, the one-step-ahead and the

(t-1)-step-ahead forecasts, the calculation of the varitances of the forecasts causes problems. For this

reason the first method will be used.

The chain ladder linear model takes the following form when three years’ data have been received:

ron 100007 [ W S
Yu 10100 e e
v 11000 .
Y” 10001 at 1
2 11100 €
= Ba| +
Y5 10010 s
Yaz s €13
YSIJ ﬂaJ € |

where Y, = log Z;;.

When the data are handled recursively, the model becomes:

433



Y2 1 0 1 : . e 5
= 3
Ya, 11 8, eg,
\ 1 0 0 0 1 :’ eLs
Yz3| = 1 1. 1 0 0 [{B]+ [e22 (7.3)
a
Y I 0 0 1 0 3
L3 B3 c3.1
etc.

In general, the state vector at time t is defined by:

r“w
a3

-

)
I

(7.4)

oy

7]

and equation (7.3) is called the observation equation. The state vector at time t is related to the
state vector at time t-1 by the system equation. A recursive version of the chain ladder method is

achieved by defining the system equation matrices as

[ 1
0 0
1 .
81 = 1 8 + 0 0 [u (7.5)
1 0
0 .0 0 1
0 0
L 4

where u, contains the prior distribution of [;‘“].
4+l

The new parameters at time t-+1 are [;'“] and equation {7.5) implies that the existing parameters
41

are unchanged, while the new parameters are treated as stochastic inputs.

434




If the variance of the errors, €;; » is koown and vague priors are used for the parameters, this
method gives exactly the same results as ordinary least-squares estimation. It has the advantage that
the data can be handled recursively. Also, it gives a method of implementing Bayesian estimation on
some or all of the parameters. It has been assumed that the prior estimates of the parameters are
uncorrelated: in other words that the stochastic input vector, u, , and the state vector, g, , are

independent.

The equations above are an example of a state space system; a more general form is now considered.

The models for Y, , Y3, ..., X, .., which together make up the triangle can be written as
Y = Fé + g
Y, = Fifl; + e
Y. = Fb, + & (7.6)
where Y, = logZ,

Equation (7.6) is an observation equation and forms one part of a state system to which the Kaiman
filter can be applied in order to obtain recursive estimates of the parameters. §, is known as the
state vector and is related to #,_, by the system equation. The observation equation and the system
equation together make up the state space representation of the analysis of variance model.

The system equation relates §, to §,_; and defines how the state vector evolves with time. Thus,
the time evolution of the system is defined on the state vector and the obeervation vector is then
related to the state vector by the observation equation. There are many choices of system equation,

the most general being:

1= G by + Hyu + % (1.7
where u, is a stochastic input vector
and w, is a disturbance vector

and the distributions of u, and w, are:
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u ~ N(&,U,)

w ~ N(Q,W,)
The choices of G, , W, and the distribution of u, govern the dynamics of the system.

Suppose gt | (Xl * Xz L | X:-: ) ~ N (é‘l“l 1 Cl ) (7'8)
i.e. the distribution of the parameters, based on the data up to time t —1 is normal with mean Ql'!-l

and variance-covariance matrix C,.

From equations (7.6) and (7.7), the distribution of Y, given information up to time t—1 is

Y ~ N(F 8, Fi G Fi+ V,) (1.9)

When the observed value of Y, is received, the state estimate can be updated to Q‘ll and the
distribution of the state vector at time ¢ forecast using equation (7.8).

The recursion is given by the following equations, a proof of which can be found in (for example)
Davis & Vinter (1985). If the system and obeervation equations are given by equations (7.6) and
(7.7), and the distribution of #, given information at time t-1 is given by (7.9), then the distribution
of the state vector can be updated when Y, is received using the following recursion:

G, 8 + H i, + K (Y- 1) (7.10)

‘Qld»lll = Zt|e-1

where K, = G,C,F{(F,C,F, + v,)* (7.11)
Cis1=G¢Ci Gy + H, U, H, — G, C, F{ (F, C,F{¢ V, )" F, C, G| + W, (7.12)

ad Y, = F,§ (7.13)

t|1-1
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7.3 Dynamic Estimation of the Row Parameters

A model which applies dynamic estimation to the row parameters has the following system

equation:

. .

0 0
1
8y = . I 8 +| 0 fu,+ 0 |w,

0

0 I 0
1 []

0 0 J

where u, has the prior distribution of £,
and w, is a disturbance term.

Thus the new row parameter, a,,, , is related to a; by:
Ay = ap + W, (7.14)

and a sophisticated smoothing method is produced.

The row parameters are related recursively and the column parameters are left as they were if their
+ prior distribution is vague (although the estimates change because of the change in the estimation of
the row parameters). The state variance is set as 0.0289, in order to compare with the empirical
Bayes procedure. The practitioner is free to choose this variance as he sees fit: the larger the
variance, the less connection is8 made between the rows. It is also possible to let this variance depend
on t, and thus allow the amount of smoothing to be controlled by the perceived changes in the
claims experience. It is also possible to obtain an estimate of this variance from the data, using
maximum likelihood estimation. In the case in which the variance is set as 0.0289, the parameter

estimates are as follows:
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-3
o
a
-1

Parameter Estimate Standard
Error
p 6.119 0.163
ag 0.187 0.151
as 0.170 0.148
a, 0.196 0.152
ag 0.296 0.158
ag 0.396 0.164
a; 0.482 0.171
ag 0.550 0.183
ag 0.536 0.202
@, 0.546 0.238
B, 0.906 0.158
B3 0.940 0.165
B 0.951 0.173
Bs 0.364 0.183
Be -0.028 0.195
B8, -0.145 0.212
Bs -0.457 0.236
B -0.062 0.278
Bio -1.406 0.378

The row totals and their standard errors are given in the following table:
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Table 7.2

Row Predicted Standard
ts in, Errot
Claims
2 109955 59278
3 491787 187134
4 686441 206954
5 1076957 277762
8 1486991 347441
7 2217311 491998
8 3309887 744931
9 4545466 1048855
10 4591188 1169469

The predicted overall total outstanding claims is 18515984 and the standard error of this estimate is
2660211. The standard error is lower than that when no prior knowledge is assumed because of the
recursive relationship between the parameters. The effect of the Kalman filter on the parameter
estimates will be illustrated by a graph, but it is interesting to compare the results with the
empirical Bayes approach.

The following graph shows the parameter estimates for three cases: the model with no prior
knoi’vledge, the empirical Bayes model and the state space model. It can be seen from the graph that
the state space model and empirical Bayes estimates have both smoothed the estimates of the row
parameters to a certain degree. The empirical Bayes estimates have been drawn towards the overall
estimate, with the amount of change depending on the data through the variation in each row and
between the rows. The differences in the estimates of the row parameters has affected the estimates
of outstanding claims. The standard errors have been reduced because the estimation has involved

more of the data for each parameter. This is a beneficial affect of any of the Bayesian methods.
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7.4 Dynamic estimation of the development factors

It is well-known that the chain ladder technique assumes that the shape of the run-off curve is the
same for each accident year, since the same development factors are used. However, it is doubtful
whether this is justified in practice. It is likely that there will be a similarity between the run-offs in
successive accident years, and it is possible to formulate a state space model to allow this without

imposing an identical shape for each year. The basic chain ladder linear model is

E(Yy)=p4+o; + 5 (7.15)

Allowing the devolpment factors to be completely separate for each accident year would lead to the

following model:

E(Yj )=p+oa, +8;; (7.16)

We would expect the parameters 3, to be similar for succesive values of i and s0 we impose the

model

Bisi,j = Bi; + stochastic disturbance (7.16)

The variance of the stochastic disturbance can be treated in much the same way as for the row
parameters in section 7.3. We can now allow the shape of the run-off to vary from accident year to
accident year by the choice of the variance of this stochastic disturbance. If it is zero, the run-off
pattern is the same in each accident year and as it increases, the connection becomes less significant.
We can allow the variance to depend on ¢ and input a large value for one time point if it is believed
that there has been a sudden change in the run-off pattern.

To illustrate the effect of this model, we analyse the data given in section 2, with the variance in
equation (7.16) taken as 0.01. The main interest in this case is the effect on the run-off pattern, and

so table 7.3 gives just the column parameters, Bij



Table 7.3

Column parameters from model with the same run-off in each row (from table 7.1):
0.906 0.940 0.951 0.364 -0.028 -0.145 -0.457 -0.062 -1.406

Columa parameters from model with the same dynamic run-off pattern:
0.925 0.886 0914 0.383 0.025 -0.175 -0.479 -0.074 -1.413
0.917 0.895 0945 0.361 -0.035 -0.135 -0.460 -0.063

0.920 0.907 0.964 0.361 -0.080 -0.130 -0.447

0.918 0920 0.980 0.332 -0.050 -0.161

0.895 0.942 0951 0.352 -0.026

0.894 0.960 0.940 0.375

0.890 0.990 0.944

0.898 1.014

0.897

This illustration shows how changes in the run-off pattern can be observed. For example, the first

column parameter is generally decreasing and the second one is increasing.
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8. Conclusions

This paper has explored the various models which are available within the framework of the chain
ladder linear' model. It is envisaged that the practitioner will find all of these of use. The following
points are of particular note.

Firstly, any of the Bayesian methods will improve upon the least squates (or uninformative prior)
approach on the basis of parameter stability. This is because more information is used in estimating
each parameter. For example, in the least squares case, there is only one data point from which to
estimate the last row parameter; the Bayesian methods use the data from the other rows as well. To
illustrate the affect of this consider a change in the data point in the last row from its present value
of 344014 to 544014. The following table shows the predicted outstanding claims for each row from

the different models. The first column shows the original results with no prior information.

Table 8.1
Row Qriginal Results Revised Results

No prior  Dynamic  Empitical ~ No prior Dynamic  Empirical

Information Estimation Bayes Information Estimation Bayes
2 110927 109955 109448 110927 109958 110094
3 482157 491787 479568 482157 491822 481329
4 660810 686441 655656 660810 686637 657998
5 1090752 1076957 1033109 1090752 1078058 1039692
6 1530532 1486991 1388261 1530532 1491978 1400466
7 2310959 2217311 2002772 2310959 2239482 2024720
8 3806976 3309887 3018896 3806976 3399256 3063229
9 4452396 4545466 3780759 4452396 4847221 3819051
10 5066116 4591188 3811869 8011412 5261069 4411270

The last row prediction using no prior information has changed in proportion with the change in the
data point. The other methods have dampened down this-change because they use more information

in the estimation of the parameter. They therefore exhibit greater predictor stability.

443



It is important to realise that the results must be used correctly. For example, it is often not
necessary to produce a 95% upper confidence bound (a ’safe’ reserve) on oustnanding claims
for each row, but only for the whole triangle, although the 'safe’ reserve for the whole triangle may
be allocated among the rows. This is important since it can be seen that the standard errors for each
row are, in general, relatively large. The standard error of the overall total is more reasonable. To
extend this further, the practitioner may be required to set a ’safe’ reserve for the whole company,
rather than for each triangle; this would reduce the relative size of the standard etror still further.

There are now a number of Bayesian methods which are available to the claims reserver, all of
which have particular advantages over the classical estimation method. The chain ladder linear
model represents a great step forward from the crude chain ladder technique and has opened the way

to more sophisticated estimation methods.
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Probabilistic Development Factor Models
with Applications to
Loss Reserve Variability,
Prediction Intervals, and
Risk Based Capital

by Ben Zehnwirth
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1.0 INTRODUCTION AND SUMMARY

The present paper aims to present a statistical modelling framework and environment
for conducting loss reserving analysis. The modelling framework and approach
affords numerous advantages including increased accuracy of estimates and
modelling of loss reserve variability. Since the loss reserve is likely to be the largest
item in the insurer's balance sheet and is subject to much uncertainty, modelling of
loss reserve variability is an integral component of assessing insurer solvency and

assessment of risk based capital.

The paper is organised as follows:

Forecasting and some modelling concepts are introduced in Section 2. The salient
features of the data that ought to be captured by a model are discussed and
arguments in favour of probabilistic models are presented. It is emphasised that the
only way to assess loss reserve variability is through probabilistic models. The
statistical MODELLING FRAMEWORK is introduced where each model in the
tramework has four components of interest. The first three involve trends in the three
directions, development year, payment/calendar year and accident year and the
fourth component is the random fluctuations (distributions) about the trends.

In Section 3 we begin by discussing trend adjustments to a univariate time series and
illustrate how analogous adjustments to loss reserving data cannot be handled by
graph and ruler, mainly as a consequence of the projection of the payment/calendar
year trends onto the development year and accident year directions. Two
deterministic. models Cape Cod (CC) and Cape Cod with constant inflation (CCl) are
discussed. Age-to-age development factors are defined as trend parameters.

A rich class of deterministic development factor models is introduced in Section 4
where each model in the framewocrk contains the three trend components of interest.

It is shown how as a result of the projection of calender year (trends), a very simple
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trend model causes very different development year trends (development factors) for
different accident years. Standard actuarial techniques based on age-to-age link
ratios of the cumulative payments cannot capture the payment/calendar year trends

in the payments.

In Section 5 the class (or family) of deterministic development factor models that only
contain trend components in the three directions is extended to include random
fluctuations. The resulting modaels in the rich Development Factor Family (DFF) are
probabilistic models that relate the distributions of ‘payments’ in the various cells in
the triangle by trend parameters. It is emphasised that one of the principal uses of
regression is the estimation (or fitting) of distributions. Estimation of a model
belonging to the DFF involves the fitting of distributions to the cells in the loss
development array. Data based on a simple DFF model are generated (simulated)
and it is demonstrated how the development year patterns are invariably complex.
The trends cannot be determined from the age-to-age link ratios nor from graphs.
For readers who are sceptics and may argue "But this is simulated data” should read
Section 12 where we analyse real life data involving a line written by a larger insurer
for which the age-to-age link ratios on the cumulative payments are relatively smooth.
HOWEVER, there are major shifts in payment/calendar year trends in the payments
that are quite alarming.

We use regression for a number of purposes:

* Estimation of trends.

* Estimation or fitting of distributions.

In Section 6 we demonstrate how regression can also be employed to adjust data for
trends. We state as a THEOREM that the only way to separate payment/calendar
year trends from development year trends is by application of regression. Practical
applications of regressions involving real life data sets are given in Sections 12 and
13.

In Section 6 we aiso present a number of tests that we believe any sound loss
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reserving statistical framework should pass. It is shown that standard actuarial
techniques based on age-to-age link ratios fail these minimum tests.

As a result of the dependence of the payment/calendar year direction on the other
two directions, many of the models in the DFF that contain many parameters cannot
be estimated in a spreadsheet or statistical package and some that can be estimated
may contain much parameter uncertainty. This phenomenon, known as
muiticollinearity, is discussed in Section 7 and motivates the introduction of varying
parameter, dynamic or credibility models. Varying parameters or stochastic
parameters can also be regarded as proxies for the myriad of variables that affect the

complex claims generating process.

In Section 8 we show how the (fixed) parameter regression models may be estimated
in a spreadsheet or statistical package and how an estimated model may be
employed in producing forecast distributions of (incremental) payments. The forecast
(estimated) distributions provide information required for the assessment of risk based

capital and solvency.

Additional modelling concepts including parsimony, Akaike Information Criterion and
distributional assumptions are discussed in Section 9. Moreover, we describe the
importance of the twin concepts of stability and validation analysis and show how
data with unstable trends (in the payments) are less predictable (subject to greater
uncertainty) than data with stable trend (and some random fluctuations). Parameter
uncertainty (or instability) can reduce predictability much more than process

uncertainty.

Accuracy of forecast distributions is also discussed. We emphasise that the *optimal"
statistical model, when trends are unstable, may not be the best for producing
forecasts and discuss what assumptions may be appropriate for the future, especially
in the light of analysing other data types. Instability in trends in the more recent

payment years in the incremental payments requires more actuarial judgment about
future trends.
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The model building strategy and selection of appropniate assumptions about the
future are discussed in Section 10. [tis stressed that the model building strategy 1s
necessarily an iterative cycle of model specification, estimation and testing. if trends
in the more recent payment/calendar years are unstable, the nature of the instability
and possible explanation for the instability is relevant information in deciding on
assumptions for the future. This typically may require analysis of other data types
employing the advocated modelling framework. We conclude in Section 10 with a
discussion of time series models versus explanatory (or casual) models and offer

arguments for the supericrity of the former over the latter.

Section 11 discusses how prediction intervals may be derived from the forecast
distributions and how they are relevant to the assessment of risk based capital and
solvency. Prediction intervals computed from the forecast distributions are

conditional on the assumptions made about the future remaining true.

The preliminary diagnostic analysis and the model building strategy are illustrated
with two real life examples. Project 1 of Section 12 is concerned with real data of a
large company. In terms of standard age-to-age link ratio techniques the data and
ratios are relatively smooth and it does not appear that there are any problems.
HOWEVER, there are major shifts in payment/calendar year trends in the payments
that are alarming especially since the new high trend cannot be explained by a
corresponding increase in speed of closure of claims. Project 2 of Section 13 also
involves real data. Here the link ratios are relatively irregular, yet trends are stable,
so that three years earfier estimation of the same model would have forecast the
distributions of payments in the cells of the last three payment/calendar years and

moreover would Have produced the same outstanding reserve estimates.

In Section 14 we remark about an important extension of the DFF MODELLING
FRAMEWORK that makes the family of models infinitely richer.

The paper concludes with summary remarks in Section 15.

Throughout the paper we also hope to dispel a number of pervasive loss reserving
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myths regarding data, age-to-age link ratios, volume, credibility, sources of
information, actuarial judgment (when and where required), business knowledge,

statstical probabilistic modelling and forecasting.
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2.0 STATISTICAL FORECASTING

The best way to suppose what may come, is to remember what is past.

George Savile, Marquis of Halifax.

In this section we discuss a number of fundamental statistical forecasting concepts

including which salient features of the data should be "remember what is past".

2.1 FORECASTING

Indeed it (forecasting) has been likened to driving a car blindfolded while following
directions given by a person looking out the back window. Nevertheless, if this is the
best we could do, it is important that it should be done properly, with the appreciation
of the potential errors involved. In this way it should at least be possible to negotiate

straight stretches of road without a major disaster.

Andrew C. Harvey (9]

In the loss reserving context the ‘straight stretches’ are the stable trends in the
(incremental) payments. |If the trends have been stable in past years, we are

confident in supposing the same trends in the future.
2.2 WHY A PROBABILISTIC OR STOCHASTIC MODEL?

There are extremely compelling reasons as tp why we should be using probabilistic
models to model insurance data, whether for the purpose of loss reserving, rate
making or any other purpose.

According to Arthur Bailey's (2] paper Sampling Theory in Casualty Insurance,
any insurance data can only be regarded as "an isolated sample ...". See top of page
8 of the text book Foundations of Casualty Actuarial Science ([5]. Bailey is
basically saying that any insurance data can only be regarded as a sample (path)
from perhaps a very complex process.
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If a fair coin is tossed 100 times. the mean number of heads is 50, but the probability
ot observing 50 heads is only 0.08. If a fair dice numbered 1 to 6 is rolied, the mean
is 3.5, yet the probability of observing 3.5 15 zero. (The variability inherent in coin

tossing in known as process uncertainty).

So, the probability »f observing the mean in most, if not all, insurance processes is
zero. Given, that we do not observe the mean, we need to compute more than just
the mean. The mean on its own is not terribly informative. We need to also compute
the standard deviation, so that we have some idea of how ‘far’ our (future)
observations will be from the mean. The best, of course, is to compute the whole
distribution. From the computed distribution we can derive the moments, percentiles
and prediction (confidence (sic)) intervals.

Returning to the text book Foundations of Casualty Actuarial Science (S},
the introductory chapter 1, top of page 2, says "The mention of probabilities reminds
us to state the obvious, that probability theory (whether classical or Bayesian) forms
the basis of actuarial science. If the actuaries hadn't probability theory, they would
have to invent it." Indeed, the author also believes that statistical probabilistic
methods are essential to actuarial studies, and it is principally by the aid of such
methods that these studies may be raised to the rank of sciences.

2.3 MODELLING FRAMEWORK

The models considered in the present paper are relatively simple. They have four
components of interest that have a straightforward interpretation.

The first three components are the trends in the three directions, development
year, accident year and payment/calendar year. The fourth component is
the random fluctuations about the trends. The random fluctuations component is just
as impontant as the three trend components and is necessarily an integral part of the

model. The data or transform thereof are decomposed thus:
DATA = TRENDS + RANDOM FLUCTUATIONS
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The concept of trends and random fluctuations about trends is aover two
hundred years old. These concepts have been widely used in analysing (and
forecasting) any univariate time series such as sales, stock market prices, interest

rates. consumption, energy and so on.

The principal aim of analysing a loss development array is to obtain a sensible
description of the data. The trends in the past, especially in the payment/calendar
year direction, are determined and the random fluctuations about the trends are
quantified, so that it can be best judged which assumptions should be used for future
trends (and random fluctuations). The models are probabilistic (equivalently,
stochastic) since the probability distributions of the random fluctuations 'about’ the
trends are identified. Probabilistic models are testable and can also be validated.
They also afford numerous other advantages including computation of risk margins

required for the assessment of risk based capital.

IF THE TRENDS ARE STABLE THEN THE MODEL WILL VALIDATE WELL AND BE
STABLE. If the trends are unstable then the decision about future trends is no longer
straightforward. Instability in trends with little random variation about the trends makes
data (ess predictable then stable trends with much random fluctuation. See Sections
9.6, 10.2 and 10.3. The same principles apply to the modelling of a univariate time
series.

The 'best’ identified model contains assumptions (equivalently, information). All the
assumptions must be tested to ensure they are supported by the data (experience).

As we proceed through the model identification strategy we are extracting information
(about trends and stability thereof and the amount of random variation) and we ‘hope’
that the ‘'best’ identified model tells us that the calendar year trend is stable
(especially more recently). If trends are not stable then we may not necessarily use

the optimal statistical model for forecasting. See Section 9.6.

None of the numerous models contained in the MODELLING FRAMEWORK actualily

represent explicitly the underlying claims generating processes. The multitude of
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variables involved in generating the claims are invariably complex. What we attempt
to achieve is the identification of a parsimonious model in terms of the simplie
components of interest for which all the assumptions inherent in the (probabilistic)
model are supported by the data. It is subsequently argued that the experience (data)
can be regarded as a sample (path) from the identified probabilisuic model. The
muititude of variables that are the determinants of the claims processes are proxied
by the TRENDS and the (residual) variance of the RANDOM FLUCTUATIONS.
Another classical modelling example in insurance where the same kind of modelling
concepts are used is when a Pareto distribution, say, is fitted to loss sizes. It is not
assumed that the Pareto distribution represents the underlying generating process.
Whatever is driving the claims is very complex and depends on many variables. All
that is assumed is that the experience (sample) can be regarded as a realisation from
the estimated Pareto distribution. Subsequently the estimated Pareto distribution is
used to estimate probabilities of very large claims including those exceeding the
maximum observed claim in our sample and most importantly it is used to quantify

probabilistically the variability in loss sizes.
The principal advantage of an explicit statistical model is that it makes the

assumptions clear. Other advantages include improved accuracy and quantification

of variability required for assessment of risk based capital and testing of solvency.

456




3.0 THE GEOMETRY OF TRENDS AND AGE-TO-AGE DEVELOPMENT FACTORS

In this section we show that 10ss development arrays possess only two independent
directions. not three, and define age-to-age development factors as development year

trends.
3.1 TREND ADJUSTMENTS TO A UNIVARIATE SERIES

In one dimension, or equivalently for any univariate series, trend concepts are intuitive

and natural.

Consider the series log P, where P, is the price of gasaline in year t. Figure 3.1.1
below depicts the log P, series (dark line segments) over a 20 year period.

TRENDS ADJUSTMENTS

. ; . ; PO
L L e e e R T N TR PR o
—— Log prices (in nomins! velues) —— Adjusted log prices (in $ value of year 20)
¢ Figure 3.1.1

It appears that there is a constant average trend .in the nominal prices. The least
squares estimate of the trend is 0.23, say. So prices have been growing at an
average rate of 23%. However, 23% is the nominal growth, since there has been
economic inflation over the 20 year period. Suppose economic inflation has been 8%
continuous rate for the whole 20 year period. The light line segments represent the

log prices adjusted to the $ value of year 20.
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The trend in the adjusted prices is 23% - 8% = 15%. [f instead, one was only given
the nominal prices and the adjusted prices (without knowing the adjustment), the 8%
adjustment could be determined by estimating the difference in trends in the two

series. Trends (on a log scale) are additive.

So, REGRESSION as an approach to estimating trends and adjusting data,
immediately suggests itself.

3.2 TREND PROPERTIES OF LOSS DEVELOPMENT ARRAYS
Since a model is suppose to capture the trends in the data, it behoves us to discuss
the geometry of trends in the three directions, viz., development year (or delay),

accident year and payment (or calendar) year.

Development years are denoted by d. d=0,12...s-1; accident years by w;

w=12 .5, and payment years by t; t=1,...,s.

Figure 3.2.1




The payment year variable t can be expressed as t = w + d. This relationship

between the three directions implies that there are only two ‘'independent’ directions.

The two directions, delay and accident year, are orthogonal, equivaiently, they have
zero correlaton. That is, trends in either direction are not projected onto the other.
The payment year direction t however, is not orthogonal to either the delay or
accident year directions. That is, a trend in the payment year direction is also
projected onto the detay and accident year directions. Similarly, accident year trends

are projected onto payment year trends.

in order to aid the exposition we shall assume, without loss of generality, that the
numbers in the loss development array are incremental payments. It is emphasised
that all the arguments and concepts presented apply to all loss development

arrays including incurreds, counts, averages and so on.

We now illustrate the geometric properties of trends of a loss development array with

some data.
Consider the following triangle of incremental paid losses:

Triangle One

100 200 150 100 80 60 40 20
100 200 150 100 80 &0 40
100 200 150 100 80 60"

100 200 1S0 100 80

100 200 150 100

100 200 150

100 200

100

This triangle will be said to satisty the Cape Cod assumptions, viz., homogeneity of

age-to-age development factors across accident years and homogeneity of levels
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across accident years. Each accident year has the same initial starting value, that is.

same value in delay 0.

Suppose we subject the payments to a 10% yearly inflation across the payment
years. We obtain the next triangle:

Triangle Two

100 220 182 133 117 97 71 39
110 242 200 146 129 106 78

121 266 220 161 142 117

133 293 242 177 156

146 322 266 195

161 354 292

177 390

195

To obtain the t* diagonal of the second triangle, we multiply each payment in the "
diagonal of triangle one by (1.1)"".

We observe the following:

1. For triangle two, age-to-age development factors are homogeneous across

accident years but are 10% higher than in triangle one.
2. In triangle two there is a 10% accident year trend.
Observations 1 and 2 imply that triangle two could be obtained from one by the two

successive (and commutative) operations: subject triangle one to 10% per year trend
in accident year direction to obtain:
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Triangle Three

100 200 150 100 80 60 40 20
110 220 165 110 88 66 44
121 242 182 121 97 73

133 266 200 133 106

146 293 220 146

161 322 242

177 354

195

and then subject triangle three to 10% trend in the development year direction to

obtain:

Triangle Four

100 220 182 133 117 97 71 39
110 242 200 146 129 106 78

121 266 220 161 142 117

133 283 242 177 156

146 322 266 195

161 354 292

177 390

195

Triangle four is the same as triangle two. A loss development array depicted by
triangle two (or four) is said to satisfy the Cape Cod with constant payment year

inflation assumptions.
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The following displays demonstrate the equivalence of trends in general.

! 1y,
1, 1,

-1

- ~ ’ 2

)3 2 1,

The above equivalence relations are exemplified by the relationships between the four

triangies. We aiso have,
[ — 1,

1, 1, 1, *1,

1+,

462




It is important that the reader understands the relationship and difference between
Cape Cod (CC) data and Cape Cod with constant inflation (CCl) data.

CC datahave accident years that are completely homogeneous (homogeneity of level
or values at development year zero and homogeneity of age-to-age factors). CCI
data can be obtained from CC data by subjecting the payment years to a constant

trend. If we remove the constant payment year trend from the CCl data we will have
CC data.

So, the difference between CCl data and CC data is a calendar year trend
adjustment. If we did not know how the CCl data were created from the CC data,
how would we determine the (simple) difference?

With the univariate series considered in Section 3.1 the difference between the
nominal prices and adjusted prices can be determined by estimating the trend, using
eye and ruler, for each series. Estimating trend using eye and ruler can be regarded
as a form of crude regression. With the loss reserving data CC and CCI, it also
makes sense to estimate the payment year trends and subsequently conclude that
the difference in the two loss development arrays resides in the difference in the two
trends. But how do we estimate the trends? Given the dimensionality of the data,
eye and ruler are not useful. Moreover, given the geometry of trends, we need to
separate the trends in the three directions. Equivalently, we need to determine the

payment year trends after adjusting for development year trends.
Accordingly, formal regression is suggested as the only way of separating the trends.

A number of words of caution. In actual fact the "true” trends in the three directions

are non-identifiable. It is only the resuitant trends that are identifiable.

Here is an example. Consider a CC triangle for which the (continuous) trend across
development years is constant and is -0.25. Suppose to this CC triangle we
introduce a continuous calendar year trend of 0.2 and a continuous accident year

trend of 0.1. The adjusted triangle can be represented thus:
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-0.25

0.2
0.1
Alternatively, it can be represented as:
-0.05
0
0.3
or,
-0.35
0.3
0
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All three trend triangles are the same and would produce the same projections for the
completion of the rectangle. We have three directions (or variables) but only two
independent equations.

3.3 DETERMINISTIC AGE-TO-AGE DEVELOPMENT FACTORS

Consider, at first, only one accident year (say, the first) that takes the value p(d) at
development year d and let y(d) = log p(d).

Define: a

log p(o)

and

-
]

y()-y{-1)

Figure 3.3.1

The parameter a (alpha), denotes the initial value, or intercept, or level whereas the

parameter Y; represents the trend, on a logarithmic scale, from development year

j-1 to development year j.

The parameter Y, is a difference on a log scale and since the length of PR in Figure
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33.1 is 1, Y, is the slope of the line PQ, and hence is the trend between

development years j-1 and |.

Now,

y(d) = y(o} + y(1) - y(o) + ... + y(d) -y(d-1)
=a+ Yy . 3.3.1)

That is, y(d) can be expressed as the initial value plus the sum of the differences to
development year d. The differences can also be regarded as trends. Indeed,

Y;

y() -y(-1)

= log pfj) - log p{-1)

SN

Y (3.3.2)

One of the principal reasons for taking logarithms of the data is because the
difference of two logarithms is equivalent to analysing trends and approximately
equivalent to analysing percentage changes.

The trend parameter Y, is the log of the ratio p(j)/p(j-1). The latter ratio is an age-to-

age development factor. So, Y; can also be interpreted as a log of a development

factor. Indeed, in what follows we shall refer to it as a development factor (on a log
scale).
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Consider the following monotonically increasing series {p(j)} for which the trends are

depicted in the Figure 3.3.2 below.

y(d)
\(}
Y
Y, Ys
Y,
~
a |l
1 2 3 4 5 d ?
Figure 3.3.2

The Y's represent bath the differences in y values and the trends depicted by the

straight tine segments.

Accordingly, development factors on a log scale form a curve comprising of straight

line segments (trends).
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4.0 DETERMINISTIC DEVELOPMENT FACTOR MODELS

in this section we develop the mathematical description of the two modeis

corresponding to triangles one and two respectively of Section 32

Let p(w.d) denote the value in the loss development array corresponding to accident

year w and development year d and set y{w,d)=logp(w.d).

4.1 CAPE COD (CC)

Consider triangle one of Section 3.2. Each accident year has the same a value, viz,,
a =log100 and each accident year has the same developmentfactors Y, Y, ..., Y,

(Y,). For example, Y ,=10g(100/150).

So, we can write

d
y(w,d)=a«-z1: Y, - (4.1.1)
-

Equation (4.1.1) describes the deterministic CC model.
4.2 CAPE COD WITH CONSTANT INFLATION (CCl)

Consider now triangle two of Section 3.2. It was obtained from triangle one by

subjecting it to a constant trend in the payment year direction.

Let's denote the payment year trend on a logarithmic scale by the Greek letter, 1

(called iota). For triangle two  =log 1.1.
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The value y{w,d) that lies in payment year w + d is inflated by * (w + d - 1).

So, for triangle two,

d
ywo = a -~ E Y+ viw - d - 1) . (4.2.1)
f=1

The last equation may be re-cast.

d
YW =a + 1w -1+ IZ: (v; + v . 4.2.2)

The two foregoing equations are identical and represent the CCl deterministic model.

The latter equation tells us that the level parameter for accident year w is

@+ v+ W-1 gothatthereis an 1 trend along the accident years and that the
development factor from delay j-1 to jis Y, + 1. This is just a mathematical

verification that the payment year trend ' projects on the other two directions.
4.3 CC FAMILY AND CCi FAMILY

There are other CC models for which the CC assumptions viz., homogeneity of
accident years, apply.
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For example, itmay bethat Y ;=Y ,=.. =7, sothat the trends from development year

two to eight are constant as depicted below:

y(d)

Y2
Yy

Figure 4.31

Another possibility is that all development factors Y, ¥, .. are equalto Y say, so

that we could write:

y(wd)=c+vd (4.3.1)

This model we call the single develcpment factor (SDF) model. 1t is a straight line

curve on a log scale and exponential curve on the $ scale. It is the same curve for
each accident year.

So, we can construct many variants of the CC madel (4.1.1.). In the sequel, anytime

we refer to CC without an added qualification we shall mean model (4.1.1) with

470




distinct Y's.

Similarly, depending on the ‘relationships” in the Y's in the CCl model, we can

construct many variants of the CCl model.

44 A CC MODEL WITH THREE INFLATION PARAMETERS

The data in Appendix A1 to Appendix A4 are generated as follows.

First we create payments based on formula:

p(w,d)= exp(alpha- 0.2*d).

So this is deterministic SOF data (where the accident years are homogeneous). See
Appendix A1,

On alog scale we introduce a 10% trend from 1978-82, 30% trend from 1982-83 and
15% trend from 1983-81. See Appendix A2.

Development year trends

s -

105 b Accidert year 1978 Accident year 1979

" L i I n " L L n L " P L
10

] 1 2 3 4 s 6 7 ) 9 10 11 12 13

Figure 4.4.1

471



Figure 4.4.1 displays the graph of the log data versus development year for the first

six accident years. The reader can reproduce this graph in a spreadsheet.

Observe how calendar year trends project ontc development years and accident
years.

Consider the first accident year 1978. The 10% calendar year trend projects ontc the
development year, so that the resultant trend from develcpment year O to
development year 4 is -0.2 (the gamma) + .1 (the iota)= -.1. The 30% trend between
calendar years 1982 and 1983 also projects onto the development year so that the
trend between development year 4 and S is +.1=-0.2+.3. Thereafter the trend is

-2+ 15=-05. Since .15 is larger than 1, the decay in the tail is less rapid {(-.05>-.1).

Consider the next accident year 1979. First up to development year 3, this accident
year is 10% higher than the previous one since the 10% calendar year trend also
projects onto the accident years. The 10% upward trend is one development year

earlier than in previous accident year since the 30% trend is a calendar year change.

So, changing calendar year trends can cause some interesting development year
patterns. The pattern is different for each accident year. The calendar year trends
cannot be determined by the link ratios (Appendix A4).

The patterns became much more complicated in the presence of random fluctuations
superimpased on the trends. See Section 5 for a discussion of the current example

including random fluctuations

The model describing the data we have constructed can be represented pictorially
thus:
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Figure 4.4.2

where ¥=-02, 1 ,=0.1, v ,=03and  ,=0.15.

Writing the equations explicitly is not necessary. Indeed, it is too complicated.

We note that the resuitant trend (age-to-age development factor) between
development years j-1 and j is the (base) development factor Y between the two

development years plus the payment year trend 1 (iota) between the two
corresponding payment years.

The above model can be described succinctly in terms of the five parameters, «, v,

1 v\, and 1, We could create a slightly more involved model by adding

tr

accident year trends (more a's).
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4.5 CHAIN LADDER (CL)

The chain ladder (CL) statistical model is described in Christofides [4]. It is a two-
way ANOVA model where accident years and development years are two factors at
various levels. The CL statistical model is the direct statistical extension of the
standard age-to-age development factor technique. See Christofides (4] for detalls.

It is written (omitting the random fluctuations).

d

ywa = a,+ Y v - 4.5.1)

i

The parameter @ corresponding to accident year w represents the effect of accident

year w and the parameter Y .Y | (difference in trends) represents the effect of

development year . The number of parameters in the model is 2s-1.

The CC model assumes complete accident year homogeneity, that is, same « and

same Y's. For the CL model we assume homogeneity of development factors (Y 's),

but heterogeneity of levels (a's).

The principal deficiency of the CL model is that it does not relate the caiendar years
in terms of trends.

If we do not have an estimate of trends in the past, how do we know what
assumptions we can make about the future trends? See comments by George Savile
at beginning of Section 2.0 and the discussion in Section 9.6.

HOWEVER, the CL model is an extremely powerful interpretive tool as we shall see
in Section 6 and more impressively in an application to a real life example in Section
t2.
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4.6 THE SEPARATION MODEL (SM)

The separation method separates the base systematic run-off pattern (assumed
homogeneous across accident years) from exogenous influences, viz., payment year
inflation (or effects). The deterministic model is usually expressed (parametrizeq) as

plwd) = e(Wb, A, ., .

where the { e {w) } are the exposures, proportional to number of claims incurred.
{ by} are the development factors and the parameter i, ., expresses the ‘effect’

of payment yeart = w + d.

The corresponding model in our framework is written (parametrized) as

d
ywa =a + ¥ v ¥ oy, (461

where the parameters { y;} are the base systematic development factors and 1, is

the force of inflation from payment year t - 1 to payment year t.

The model has 2s - 1 parameters.

Note that this model necessarily assumes that there are significant changes in
inflation rates (trends) between every two contiguous payment years and, moreover
that there are significant changes in base development factors between every two

development years.

Refer to the discussion of Section 9.6 where we show that if trends are indeed

unstable then the payments are not terribly well predictable.
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4.7 DETERMINISTIC DEVELOPMENT FACTOR FAMILY

Let's reconsider the model of Section 4.4. It can be described succinctly as a version
of CC (viz.. SDF) subjected to three payment year trends. (f we remove the three

paym'ent year trends, we are back to SOF. On this mode! we could also superimpose
(add) accident year trends.

So. any determistic development factor model (DFF) can be described as some

version of CC subject to payment year trends and accident year trends.

Mathematically, the family of development factor models is

d

we d
W) = ay+ Y vt ,):z Yoo @.7.1)

i

A model has a level parameter a , for accident year w - it represents the effect or
level or exposure of the accident year. Between every two development years, we
have a development factor or trend parameter v, (the factor from delay j-1 to j) and

between every two payment years we have a trend (or inflation) parameter ., the

inflation from payment year t-1 to t

All models considered thus far belong to the development factor family. For exampie,
CC is written as:

d
ywa =a- Yy, . (4.7.2)

ji

So for CC type model a - a (for each w) and 1, =0 for each t.

There is no need to memorise the equation representing the family of models. All
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that needs to be understood s that the parameters of a model comprise (i) trends

(development factors) in the development year direction (the y's), (i) levels
(exposures) for each accident year (the o's) and (ii) trends (inflation) in the payment

year direction ( 1+ 's). Furthermore, any payment year trend projects on the other two

directions.
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5.0 STOCHASTIC DEVELOPMENT FACTOR MODELS

In this section the class of deterministic DFF models (4.7.1) that only contain trend

components is extended to include random fluctuations.

Consider one accident year only for which the deterministic model is

d
AD =a+y v, - (5.1)
P

This model says that at delay o we can only observe one (log) value, viz . Similarly,
for the other delays. Between any two delays we can only observe one trend, the

trend corresponding to the development factor.

We now assume that around the trends there are random fluctuations. We write
d
AD =a Yy, +c (5.2)
I3

where ¢ the error term, has a normal distribution with mean 0 and variance ¢. In
actuarial parlance o* is known as the process uncertainty. Given that the errors are
random variables, the dependent variable y is also a random variable.
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The probabilistic (stochastic or regression) model is depicted below.

y(a}

normal

For the stochastic model, « is no longer the value of y observed at delay 0. Itis the

mean of y(o). Indeed, y(o) has a normal distribution with mean « and variance o*.

Similarly, Y, is not the observed trend between delay j-1 and j, but rather it is the

mean trend.
The parameters of the stochastic model represent means of random variables.

Indeed, the model (on a log scale) comprises a normal distribution for each

development year where the means of the normal distributions are related by the

parameter a and the trend parameters Y, Y, .., Y,

From equation (5.2) we have

y(d) -y(@d-1) = yg4+ €4- €4, (5.3)

where ¢ . is the 'error’ at delay d.
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Accordingly,

oL,
Elo 5105 e &

That 1s, the development factor y, is the mean of the log of the ratio on the $

scale. A development factor is a parameter.
Based on model (5.2), the random variable p(d) has a lognormal distribution with,

d

Median = expla - Z‘ vl (5.5)
s

Mean = mean - exp [0.5 0?] (56)

and

Standard

Deviation = mean - vexp [0 - 1. (58.7)

since, y(d) - y(d-1) ~  N(¥a. 209 e have

El;g‘%—)' = exply, + 9%,

so that the development factor on the $ scale (the mean of a ratio) is given by the last
equation.

The stochastic model for p(d) comprises a lognormal distribution for each

development year where the medians of the lognormal distributions are related by

480




equation {5.5) and the means are related by equaton (5.6). So. in fitung or

estimating the model (Section 8) we are essentially fitting a lognarmal distribution 1
each developmentyear. The curve (on a log scale) comprising straignt line segments
is only one component of the model. The principal component comprises the

distributions.

As another example, we consider the stochastic CC model. viz..

d
YW =a -3y - . (5.9)

i

In this model we assume, for example, that y(1,0),....y(s,0) are observations from a

normal distribution with mean « and variance ¢*.

The assumptions contained in the model must be tested to ensure that they are not
violated by the data.

The stochastic development factor family (DFF) is written as:

d w-d
YW = e, -3 ¥, - Yoy e (5.10)
jot =2

Note that the mean trend between cells (w.d-1) and (wd)is Y, +  ,_, and the

mean trend between cells (w.d) and (w+1d)is @ S+

we w we=l+d

A model belonging to the DFF of (stochastic) models relates the lognormal
distributions of the cells in the triangle On a log scale the distribution for each cell
is normal where the means of the normal distributions are related by the "trends”

equation belonging to the family (4.7.1).



Another deficiency of the CL probabilistic model is that it contains the explicit
assumption that the errors for the youngest accident year and the last development

year are both zero. The chance of that, is zero!
We now return to the deterministic development factor model of Section 4.4.

To all the log "payments” in the triangle we add random numbers from a normal
distribution with mean zero. Equivalently, to the trends depicted in Figure 4.4.1, we
add random numbers from a normal distribution displayed in Appendix AS. The sum
of trends (Appendix A2) plus random fluctuations (Appendix AS) is displayed in
Appendix AB6.

The graph of the first six accident years of the data in Appendix A6 is given in the
Figure 5.2 below.

Trends plus random fluctuations

12s -

s .
103 Impossible to detect changing trends by eye

10 " A 2 i N i i A i A M- a

[} | 2 3 4 b § 7 ] 9 10 1 12 13

Figure 5.2

NOTE that it is impossible to determine the trends and/or change in trends by eye
or from the age-to-age link ratios of the cumulative payments {Appendix A9). See
Appendices A7 - A9. THE TRENDS CAN ONLY BE DETERMINED BY USING
REGRESSION.
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Notwithstanding the fact that the DFF modelling framework can be applied to any loss
development array, much of the remainder of the discussion will involve analysis of

the incremental payments for the following reasons:

" the geometry of trends;

* simplicity and parsimony;

* distributions of future payments is relevant information for financial
statements

Other reasons are given in Sections 10.3 and 10.4,
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6.0 REGRESSION AS A FORM OF ADJUSTMENT AND MINIMUM TESTS
Hitherto we have applied regression for two related purposes. Estimation of trends
in the ‘payments’ and estimation of the distribution of payments in each cell. The

estimated trends relate the means of the distributions on a log scale.

For example, if the CC model is an appropriate model, then the 'payments’ come

from lognormal distributions and the means of the log ‘payments’ lie on the surface:

6.1 REGRESSION AS A FORM OF ADJUSTMENT

Regression is also a very powerful approach to adjusting data, especially in the (0ss
reserving context.

In view of the fact that payment/calendar year trends project onto the other two
directions, a graph of the data in one direction gives no indication of the trends. See
for example, the simulated data with three payment year trends discussed in Section

5, and in particular, Figure 5.2.

We define a residual by

That is, a residual is an observed value minus its fitted value.

Residuals can be interpreted as the data adjusted for what has been fitted. Let's

consider a number of examples.
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Suppose we simulate (generate) a triangle based on a CC model. The model

generating the data can be written

CC DATA = CC TRENDS + ERROR (randomness)

If to the data we estimate the CC model, then the residual is

residual CCDATA - FITTED CC TRENDS

estimate of error,

that is, the residuals represent the data after we take away (subtract) what we fitted,
aiternatively, the residuals represent the data adjusted for what we fit. Here we
subtract the estimates of the trends we used to create the data, so residuals should
represent what is left, which is "randomness” in the three directions. "Random"”

residuals versus payment years are depicted in Figure 6.1.1.

Residuals versus pay

ment years

3 . L E
1970 197 19%0 1988 1990 199% 2000

Figure 6.1.1

Suppose we now generate,

DATA

CC data + 10% calendar year trend



If we fit the CC model to this data the residual is

residual DATA - fitted CC TRENDS

it

u

estimate of error + 10% calendar year trend

So here residuals versus payment/calendar years will exhibit a straight upward trend
(+ randomness) as depicted in Figure 6.1.2. After removing the CC trends from the
data, there still remains the 10% calendar year trend plus the random fiuctuation.

Residuals versus payment years

Indication of positive ‘constant' trend

"y

1970 1975 15t0 1985 19%0 1993 2000

Figure 6.1.2

It you estimate the average trend in these residuals in a spreadshest you would
obtain an estimate of approximately 10% (the trend introduced into the data).

It we estimate the CCl model to the data, we are essentially estimating a trend

parameter through the payment year residuals (Figure 6.1.2) of the previous CC
model.
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Now the residuals versus payment years should be random as we have removed

(subtracted) all the {estimated) trends we introduced into the data.

Consider now data created as follows

DATA = CC data + 10% trend (calendar years 1978-85)
+ 20% trend (calendar years 1985-91)

If we fit the CC model to this data the residual is
residual = DATA - fited CC TRENDS
= estimate of error + 10% (78-85)+15% (85-91)

The residuals versus payment/calendar years exhibit two trends, one from 1978-85
and sharper trend from 1985-91. See Figure 6.1.3 below.

Residuals versus payment years

Two distinct trends

1970 1973 19%0 1983 1990 1993 2000

Figure 6.1.3

In now estimating the CCI model to the data, we are essentially estimating a trend
parameter through the payment year residuals of Figure 6.1.3. The average trend is
between 10% and 20%. The residuals versus payment years are now ‘v-shaped’. See

Figure 6.1.4 below.
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Residuals versus payment years

After adjusting for average trend

1970 1978 1920 198s 1990 199¢ 2000
Figure 6.1.4

We are now led to estimate the two trends.

In view of the fact that calendar year trends project onto the other two directions, we
can only obtain an indication of payment year trends, after we first remove the

development year trends from the data (and vice versa).

REGRESSION IS A VERY POWERFUL TECHNIQUE FOR SEPARATING THE
TRENDS IN THE THREE DIRECTIONS FROM RANDOM FLUCTUATIONS

In Section 12 we analyse a real life example that possesses relatively smooth age-to-
age link ratios, yet there are major shifts in calendar year trends that are quite

alarming.

6.2 MINIMUM TESTS

The author believes that a sound loss reserving statistical modelling framework

should pass a number of very simple basic fundamental tests.

Turning to the univariate {log price) series of Section 3.1, if the (average) trend in the
nominal prices is zero, that is, the prices are random about a zero trend then this
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feature in the data could be determined informally by examining the graph with eye
and ruler and formally in a spreadsheet by estimating the trend, showing that it is
insignificant and testing the residuals for randomness. Hence,

Test 1. If the (incremental) payments in a loss development array are random
observations (from a lognormal distribution), and accordingly there are no trends in
each of the three directions, then a sound loss reserving methodology should
determine this.

We illustrate with an example. Appendix B1 contains incremental payments drawn
at random from the same lognormal distribution. Note the variability. The mean

torecast or fitted value for each cell is the same. Indeed, estimation of the CC model,

for example, to the data would yield insignificant Y's, as they should be. Application

of the DFF modelling framework will allow us to identify the salient features of the
data extremely fast.

The age-to-age link ratios are displayed in Appendix B3 and do not appear to convey
much relevant information. (Compare with age-to-age link ratios in Appendix BS.
What can you tell?)

For those readers who feel that random data (no trends) represents a pathological
case, should analyse a number of Lloyd's Syndicates data.

Returning to the univariate series of Section 3.1, itis rather straightforward to identify
both informally and formally the difference between the nominal prices and the

adjusted prices. A second loss reserving test is suggested.

Test 2: Consider any real life incremental paid loss development array. Create from
this array a second array by subjecting it to a number of trends, for example, a 10%
trend (say) in the first five calendar years (say), and a 15% trend (say) in the
subsequent calendar years, then a sound loss reserving methodology will allow for

a quick determination of the simple difference between the two loss development
arrays.



The DFF modelling framework passes Test 2 with flying colors. The reader will find
that by applying Test 2 to standard age-to-age link ratio techniques they fail it. That
is because standard techniques do not satisfy the necessary and simple property of
additivity of trends.

in order to dispel the myth that smooth age-to-age link ratios imply stability of trends
we analyse in Section 12 a real life array with smooth factors and find major trend
instability that is quite alarming and in order to dispel the converse myth that rough
age-to-age link ratios imply trend instability, we analyse in Section 13 a real life array
with rough ratios and find stability so that had we used the same model estimated
three years earlier; it would have accurately predicted the distributions for the last

three calendar years and would have given the 'same’ outstanding estimates.

To further iliustrate the impact of randomness of payments on age-to-age link ratios,
Appendix B4 contains an array generated by an SDF probabilistic model with
constant 20% calendar year trend. The link ratios are presented in Appendix BS and
appear relatively rough. Yet, the same mode! estimated four years earlier would have
predicted the distributions of the payments of the last four years and would have

produced the ‘'same’ completion of the rectangle!

it is interesting to also observe that even though the data in Appendix B4 has a 20%
calendar year {and accident year) trend, as you step down a column (development

year), sometimes the numbers decrease rather than increase (by 20%).

For example, (1989, 1) to (1991, 1) the .payment reduces from 767664 to 350789.
This is explained by the random fluctuations component of the model. Examine now
Figure 3.1.1 and note that even though the mean trend in nominal prices is 23%.
prices from one year to the next do not necessarily increase. This is due to the

random fluctuations. So, the same phenomenon applies to loss reserving data.

Consider now the unusual large value of 1317425 corresponding to (1985.6). itis not
unusual. It comes from the tail of the lognormal distribution. Given that the

lognarmal is skewed to the right, values greater than the median tend to be ‘far’ from

490




the median, whereas values less than the median tend to be relatively close to the

median.
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7.0 VARYING PARAMETER, DYNAMIC OR CREDIBILITY MODELS

7.1 MULTICOLLINEARITY

Many of the models within the family (5.10) cannot be estimated in a spreadsheet or
any statistical package. Models that contain "many" iotas, alphas and gammas suffer

from a problem known as multicollinearity. This problem is explained as follows.

To estimate the Ordinary Least Squares line for the simple linear regression:

yraBxre (7.1.1)

we estimate the intercept « and slope 8 by minimising the error sum of squares,

SS=E (yi-a-px)?

Taking partial derivatives of the last equation with respect to « and g, and setting

them to zero we obtain:

-2y (yre-px)  _ 0 (7.12)
and

-2} x(y,-a-px) _ 0 (7.1.3)
Equivalently,

y-a-px = 0 (7.1.4)
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and

Y. % y-nax-pY X = 0 . (7.1.5)
The two linear homogeneous equations are known as the normal equations and their

solution yields the least squares estimates of « and .

For a model having P parameters in the DFF family, a spreadsheet (or a statistical
package) sets up P linear homogeneous equations in-order to solve for P unknowns.
However, as a resuit of the non-orthogonality of the payment year direction with the

other two directions, some of the equations in the normal equations are redundant,
eg..

a-p = 2

and

2a-28 = 4

So, there is no unique solution.

If there are some equations that are almost redundant, e.g.,

a-p = 2
and

20-2p 4.00001,

then the estimates wiil have high standard errors, so that the resuiting model will be

unstable.



7.2 OVERCOMING MULTICOLLINEARITY

The phenamenon of multicallinearity associated with fixed parameter models can be
interpreted in terms of information. There is not sufficient information in one loss
development array to estimate many payment year parameters and accident year
parameters (especially, for more recent accident years). Another interpretation is that
the independent variables in the regression are not realty independent. We showed
in Section 3 that calendar year trends are related to development year trends and

accident year trends.

If we include another a parameter for the last accident in our model we are using
one single datum to estimate that parameter. That is, we assign full credibility to the
last accident year's datum and zero credibility to previous years in respect of the
estimation of the additional ¢ parameter. A better approach may be to assign some

credibility to the previous years data and less than full credibility to the last year's
datum.

We are motivated to introduce exponential smoothing/varying parameter/credibility
models, as a result of multicollinearity. Multicollinearity can lead to fixed parameter
regression models that (i) are unstable and (i) have large prediction errors.

The technique of exponential smoothing has received widespread use in the context
of forecasting a time series. it originated more than 40 years ago without any

reference to an underlying model that makes the technique optimal.
We first present heuristic arguments tor exponential smoothing and varying parameter
models. The following illustrations and arguments may be viewed from two different

perspectives. The data may be regarded as either

(1) sales data over time, or

(2) incremental paid losses for delay O across accident years.
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(i) Constant mean |evel (one parameter)

Suppose we have a sequence of time series observations y,. y,....y, such that

Yeare, =10

where a is a constant mean level and '; is a sequence of uncorellated errors with

constant variance. Figure 7.2.1 below depicts such a series.

Yo

The model describing the data is the simplest regression model.

Our model has only one parameter. so that the years are completely homogeneous
{stable!).

If @ is known, the best forecast of a future observation y,,. based on information

up to time n, 1s

9(n)u =4a.
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If the parameter g is unknown, we estimate it from the past data (y, ...y,) by its
ordinary least squares estimate.

a = Xy/n

so that the one-step-ahead forecast of y, ., is now

9 (n)+1 =Y.
We can now write,

Wnot = Vi . 1)

v, =h >
Yooy -1 = Vi o n -1

The last equatian indicates how a forecast from time origin n+1 can be expressed
as a linear combination of the forecast from time origin n and the most recent
aobservation. This is the simplest credibility formula, due to Gauss [8], used when
updating sample averages. Since the mean level g is assumed constant, each

observation contributes equally to the forecast.

The above formula for updating sample averages is an experience rating (credibility)
formuta in the context of adjusting a premitum, assuming the risk (parameter) does
not change from year to year.

incomputing  a ( =;) we assign the same weight to each observation. From the
loss reserving perspective, we are assuming that the accident years are completely
homogeneous. In order to estimate the next years premium, we use all the accident

years' data!

We now turn 1o another example.




(i) Unstable mean level (each year its own parameter)

Here,
Yima,re,
where the mean level &, changes dramatically in successive time periods. Each year

t has its own parameter &,. Figure 7.2.2 depicts a series of y, values that may be

generated by this model.

+
(a4

Figure 7.2.2
Here, the best we could do, is forecast y,,., by
P oer = Ya -
We are assigning zero weight to the past and full weight to the current observation.
From the loss reserving perspective, accident years are completely heterogeneous.

so that each accident year's individual parameter is estimated by that year's individual

experience.
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(i)  Locally constant mean level exponential smoothing and credibility

Often situations present themselves where the mean is approximately constant locally.
Assigning equal weights to the past would be too restrictive and assigning zero
weight would resuit in loss of information. It would be more reasonable to choose

weights that decrease (geometrically} with the age of the cbservations,

We could have
y(n) oy =Ky, ¢ KO-K)y, ., ~ KOO ‘K)zyn-z * o

For n sufficiently large this may be written

V(n;n = ?(n-uu + Ky, - V(n-|)~|)

(1-K) 9 gy + KYa (7.2.1)
This is also a credibiiity formula.

Muth [12] showed that the exponential smoothing formula (7.2.1) is an optimal

forecast for the following model:

y, = @+ & Varfe] - o?

e, = @t :Varn] = o} (7.2.2)

. 2
Here the mean level % process is a random walk. If 97 = 0, then we have the
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. . . : 2
constant mean level situation (i) and if 9 s large we have the unstable mean level

2
situation (ii). The parameter %n should be chosen as small as possible at the same

ume ensuring that the trend in the data is captured.

) 2 . 2 o .
Choosing “n (relative to %) that minimises the SSPE vyields the maximum

2
liketihood estimates of %n.

4
-

Figure 7.2.3
The exponential smoothing formula (7.2.1) formally credibility weights all the
observations. It is an experience rating formula for a risk (parameter) that changes.
If in the situation depicted in Figure 7.2.3, one were to assign zero weight to the past
in place of using formula (7.2.1), then much information would be potentially lost.

We illustrate the methodology of formula (7.2.1) in the loss reserving context.

Suppose, for the sake of argument, there are only two accident years {but more than

three development years), and the y and . parameters are zefo.
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We have,

y(1.d) = @, + ¢(1.d); d=0,1,2....n,-1(say) (7.23)
and
y(2d) = T, + ¢(2.d); d=0,1.2....n,-1(say) (7.2.4)

The first accident year has n, observations and the second n, observations. Denote

the sigma-squared assigned to observations by o2 Accordingly, Var[ ¢ (1.d)] =

Var[ ¢ (2,d)] = 0%
The relation between g, and a, is given by

2

& =% + q:Varance(n)= 1. (7.2.5)

Substituting equation (4.4) for ® into (4.3) yields:

yd) = ¢, + n + e2d) . {7.28)

Combining the last equation with (4.2) we have,

y(1,d) = &, + ¢ (1.9)
with (7.2.7)

y(2d) = ® + n + ¢ {(2.9)

500




Since, conditional on «, the observations y(2,0), y(2.1). . . . . are correlated. we

reduce by sufficiency to obtain:

and
;’2 S ay ey
where Varle,] = o%n, , Varle,] = o¥ni, + o3
n -1 _ n - 1
and yn=Y yQ.ain, ., y,= Y ydIn,.
d=90 d=0

The estimate of «, minimises the weighted error sum of squares

Wq(;'1 - az)z M wz(;z - “1)2 '

where

w,} = Varle,] = o?/n, ,

and

w,"' = Varfe,] = o%/n, - °2n
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Similarly. the estimate of @, is obtained by minimising,

W1(;’2 - “2)2 + Wz(;ﬁ - “2)2 '

w, ! 1

where now

The estimates of &, and &, are given by respectively,

o = (1- z|);’2 * 21;'1

and

a; = (1 - 22);/' * 22;2

where,

Zis—— 4 Z&-

Both &, and &, are credibility estimators.
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2. . . L .
The smaller 9y is (relative to ). the more information is being pooled across the

two years in estimating %y and 2. We are credibility weighting the two years’ data.

For a description of general recursive credibility formulae, see Zehnwirth {14].

We conclude this section by remarking that even in the absence of multicollinearity,
varying parameter models are more stable and validate better than the
‘corresponding’ fixed parameter regression models.” Moreover, according to A.C.
Harvey's [9] modern book on forecasting, explanatory variables are "proxied by a

stochastic trend".
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8.0 PARAMETER ESTIMATION AND FORECASTING OF DISTRIBUTIONS

In the present section we describe how the (fixed parameter) regression models may
be set up In a spreadsheet (or a statistical package) for the twofold purpose of
estimating the model parameters and forecasting the distributions of future

(incremental) payments.

A practical illustration of this procedure for the chain ladder statisticat model is given
by Christofies [4] in the second volume of the Institute of Actuaries Loss Reserving
Manual [11].

8.1 ESTIMATION

In order to estimate a regressicn model in a spreadsheet we need to create.

corresponding to each dependant observation y, the values of the (row) design vector

containing the values of the independent variables.

/
Let y(w.d) = log p{w,d) and let B be a row vector holding the parameters of the

model, that is,

B/=(a,,a2,...,ak, Yy ¥p bpeeearln)

The model has (i) k distinct & parameters where ® | represents the level for accident

years 1,2. ., w, (say); ®, represents the level of accident years w, + 1. ... w, (say),
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and so on, (i) | distinct Y parameters where Y | is trend along development years C.

1, ...d,; Y,is trend along development years d,, d, + 1, ... d, and so on and (i) m
distinct iota parameters where Y represents the trend along payment years

0,1,2,...;t,; ‘2 represents the trend along payment years t,, ..., t,, and so on.

The arguments k, | and m may take the value 0.

The corresponding design vector is

X-/(W-d) = (841842081 k0 Bpny 08500 B3y )

where each § is a variable defined as follows

8, = 1itw,+1 sws=sw(w, =1)
= 0, otherwise
S, = 1
and 4, = dd, fd=zd,+1( =2
= 0 , otherwise
and
s, = w+d-, itwtd = t,
= 0 , otherwise.
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We now stack the y observations to form a column vector

¥ = ({10}, .. y{(1.5:1), ¥(2.1), ..y (25-2), .., . y(s.0)

and correspanding design vectors to form a design matrix,
X = (X/1.0),.....x/(5.0))
The observation equation can now be written

¥ = XB-e ,

where € contains independent errors from a normal distribution with mean zero and

variance ag2.

To estimate a DFF model in a spreadsheet. one needs to specify the column vectory

and the columns of X as the independent variables.

The spreadsheet will create Il the ordinary least squares estimator of f and some

other statistics including R®*, S° and standard errors of parameters.

The estimate of the variance - covariance matrix of § is given by
Vi) = 33X

Some statistical packages such as MINITAB will produce the variance - covariance
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matrix as explicit output. Residuals and standardised residuals are straightforward

to compute.

A lucid exposition of multivariate regression theory is given in Chatterjee and Price
(3]

8.2 FORECASTING (PREDICTION) OF DISTRIBUTIONS
We have stressed repeatedly that a regression model is a probabilistic model and
that the models contained in our rich DFF framework relate the normal distributions

of the log payments of the celis in the loss development array by (trend) parameters.

We now would like to obtain estimates of normal distributions for payment years

exceeding s.

That is, for calendar years beyond the evaluation year.

Consider a cell (w,d) for which w+d>s and dss-1.
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Suppose we assume that the mean trend along payment years = § is ls. tne
estimate of trend from payment year s-1 to s. (If 1, is not a parameter in the model
then i, = 0). We also assume that the standard deviation of the trend is se (is). the
standard deviation of the estimate. We stress emphatically that the larger se (1s) is.

the mean trend iy being the same, the larger the (mean) payments.

. . R o/ .
The vector of parameter estimates now contains the &’s, Y's but only one iota

estimate, viz, is.

The (design) independent value in the design vector (w9 corresponding to t s is
rnow (w+d-s) = number of payment years from s to w+d. The other parameters

contain the same design elements as in the estimation stage. The forecast y of y

corresponding to cell (w,d) is given by:

We can now stack all forecasts y into avector ¥ and design vectors £ \nto a matrix

X.

The estimate of the variance - covariance matrix of 4 is

v = X V@) x-61

where | is the identity matrix.
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The guantity 42 is the estimate of the process variance (uncertainty), whereas

X' v ()X

is a function of the variance of ﬁ , representing the parameter uncertainty.

2

Since V(B) is a function of &2 , the estimates of parameter uncertainty and

process uncertainty are related. Quite often the smaller o2 is (relatively speaking),

the smaller the parameter uncertainty.

Using Fisher's fiducial approach we can argue that our forecast for the distribution

of y(w,d) is normal with mean y(w,d) and variance V (¥ (w,d) ), the diagonal slement

of V () corresponding to y(w,d).

indeed, ¥ has a multivariate hormal distribution with mean ¥ and variance

covariance V ().

So, by applying standard regression theory we can compute our estimate of the

muitivariate normal distribution of the y values in the lower right of the rectangle.

Each estimate y of the corresponding y variable is best in the sense that it minimises

the mean square error.
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EL(yfW)1E].

over all statistics f(.), where f(.) 15 a function of the data y

in order to obtain the distributions (multivanate) of the (incrementai) payments and
accident year and payment year sums, we employ the relationship between the
multivariate lognormal and the multivariate normal distributions and standard
statistical theory involving variances of sums. The means of the lognormal

distributions are best estimates of the corresponding incremental payments.

We remark that our forecast distributions can also be argued for from a Bayesian

viewpoint. The forecasts are Bayes with respect to a noninformative prior.
The reader will appreciate that to write a macro in a spreadsheet for a particular
model in the modelling framework would be extremely prohibitive in terms of time. It

alone writing a macro for each model

For readers that are interested. the author can make available a Lotus worksheet

containing some of the models discussed in the real life study of Section 13.
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9.0 MODELLING CONCEPTS
9.1 INTRODUCTION

The mechanisms by which claim severities, frequencies and delays are generated are
invariably complex. When a model is constructed, it is notintended to be an accurate
description of every aspect of the claims processes. The aim is to simplify the
underlying processes in such a way that the essential features are brought out.
According to Milton Friedman (7). ‘A hypothesis is important if it 'explains' much by
little...". Similar views are expressed by Popper [13]: 'Simple statements... are to be
prized more highly than less simple ones because they tell us more, because their

empirical content is greater, and because they are better testable.’

The "essential features” of the data in the loss reserving context are the trends and

the random fluctuations about the trends. We decompose the data thus:
Log '‘payments’ = Trends + Random Fluctuations

Anocther way of thinking of this statistical model is to regard the Trends as a
mathematical description of the main features of the data and the Random
Fluctuations (or error or noise component) as all those characteristics not ‘explained’
by the Trends. All the complex mechanisms involved in generating the data are
implicitly included in the model as creating the Trends plus the residual variance in
the Random Fluctuations. See also Section.7 on varying parameter models.

The final identified model that ‘explains' the data does not represent explicitly the
underlying generating process. The model has probabilistic properties for which the
data may be regarded as a sample (path) from it. Another classical modelling
example in insurance where the same kind of modelling concepts are used is when
we fit a Pareto distribution, say, to loss sizes. We do not assume that the Pareto
distribution represents the underlying generating process. Whatever is driving the
claims is very complex and depends on many factors. Ali we are saying is that our

experience (sample) can be regarded as a random sample from the estimated Pareto
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distribution. The estimated Pareto distribution describes the vanability in the loss

sizes.
By way of summary, in order to take account of variables (or factors) not included in
the Trends, we consider probabilistic models. See also Section 7 on varying

parameter models.

There are a number of criteria for a good model with high predictive power:

* Ockham's Razor - parsimony;
* goodness of ‘fit’;
v validation and stability.

9.2 OCKHAM'S RAZOR - PARSIMONY

Ockham's razor, also known as the principle of parsimony, says that in a choice
among competing models, other things being equal, the simplest is preferable.
Accordingly, a parsimonious model that provides a description of the salient features
of the data may be preferable to a complicated one for which the residual variance

in the error is smaller (and so R-squared is larger). See also Section 10.4.

We stress R-squared (or adjusted R-squared) does not measure the predictive power

of a model.

Consider two data generating models, Model 1 is,

yewse (9.2.1)

where €, N (0, 9% and the signal to noise ratio 1/o? is large. Here, R-squared =

0 and since ©? is "small" predictions based on samples from this model will be

relatively accurate.
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For Model 2,

YirasBlee, (9.2.2)

where ¢, ~ N(O, o?). Suppose o? is relatively large and R-squared is 85%.

Predictions based on samples from this mode! will have larger errors than predictions

in the first model. The forecasting errors are not a function of R-squared.

The consequences of adopting an inappropriate model will depend on its relationship
to the ‘true’ model.

Underparametrisation - it imposes invalid constraints on the ‘true’ model.

Overparametrisation - the model is more general than is necessary.

Overparametrisation has different consequences to underparametrisation.
Overparametrisation leads to high errors of prediction. The forecasts are extremely
sensitive to the random compaonent (in contrast to the trends) in the observations.
Indeed, overfitting can be disastrous in certain circumstances. Overfitting a model is
equivalent to including randomness as part of the (systematic) trend (component).
Underparametrisation, on the other hand, tends to lead to bias rather than instability.

The dangers of overparametrisation are illustrated with a simple example. Imagine we

have some yearly sales figures, as depicted below in Figure 9.2.1, and generated by

Y=1+2t+3t2+ ¢, ,

say, where the ¢,'s are random from N(0,0?%), and Y, represents the number of sales

in yeart.
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Sales versus years

Thousands
8

1980 1981 1902 1983 1984 1913 1985 1917

Figure 9.2.1

We wish to forecast sales for 1987. We could estimate a straight line model:
Y, = Po * By=t+ e, . {9.2.3)

This model produces residuals that are not random and is therefore rejected. The
quadratic model,

Y, = Bo + Byt « Porf v e, (9.2.4)

on the other hand, produces residuals that appear random. Moreover, R-squared is
higher and parameters are significant.

We could try a fifth degree polynomial, viz.,
Y, = Boop“f+ Bz‘lz‘---- ’Bs‘ﬁ‘t, . (9.2.5)

This model will produce zero residuals, that is, it will go through every data point and

the R? = 100%. Howaever, it is useless from the paint of view of forecasting. Why? If




we change only one data point marginally, the forecast will change to a very large
degree. Moreover, if we use the modet at year end 1986 to forecast sales for 1988,
re-estimate the model at year end 1987 to update our forecast for 1988, the two
forecasts would be completely different. The data are NOT unstabie. 1T IS THE
MODEL THAT IS UNSTABLE. The model is incredibly sensitive to the random
component in the data. It should only be sensitive to the systematic trend.
Incidentally, standard techniques based on calculation of age-to-age link ratios suffer
from the same defect.

9.3 AKAIKE INFORMATION CRITERION AND INFORMATION

It has been emphasised that in comparing the goodness of 'fit’ of various models, an
approgpriate allowance shoutd be made for parsimony. This has a good deal of
appeal, especially where the model may be based primarily on pragmatic
considerations.

Akaike Information Criterion (AIC) is both a function of S* and the number of
parameters in the model. it is an information theoretic criterion that can be used for
discriminating between any two models, even if they are non-nested. it originated with
the work of Akaike.

In general the AIC is given by

AIC = -2log(likelihood) + 2P

For DFF models it reduces to

AIC = Niog{2[] S*(MLE)] - N ~2P,



where
(1) N = Number of observations,

2

(iy S (MLE) is the maximum likelihood estimator of o2,

and (i) P denotes the number of parameters.

The aim is to select a model with a minimum (reiative) AIC. Note that the AIC can be
used to discriminate between any two models, irrespective of whether they have any
parameters in common.

9.4 RECURSIVE RESIDUALS AND SSPE

Consider a time series 2,, 2,, . . ., Z, where 2 _ (t) denoctes a forecast of z,,, based

onthe data z,, z,, . .., 2. That s, the forecast is based on the information up to time
t only. The one-step-ahead forecast (prediction) error is given by

E01)=Z.1-24(0

The notation £41) expresses the fact that it is the one-step-ahead prediction error that

is calculated from past data up to and including time t. The estimates of the

parameters of the model are only based on the data Z,, Z,, ..., Z,.

In order to compute the errors {£41)} the model has to be estimated many times.

The sum of the squared one-step-ahead prediction errors, denoted by SSPE, is given
by
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The time t, is chosen so that it exceeds the maximum number of parameters amongst

the models being considered; by at least one.

Computation of the SSPE may take much time even with a good spreadsheet
program, as the model has to be estimated for sub-samples, {Z,...., Z), t=t,
t,+1,..n-1,

Readers familiar with exponential smoothing will note that the optimal smoothing
constant of exponential smoothing is determined by minimising the SSPE. See

Abraham and Ledholter [1] for a lucid exposition of exponential smoothing.

By way of summary of the quality of 'fit’ statistics, consider the quadratic polynomial
example of Section 9.2, and suppose there are at least twenty data points. The
relative magnitudes of R?, AIC and SSPE as we fit polynomials of order one to six
(say) are:

R? increases with more parameters;

AIC decreases from polynomial of order one to polynomial of order two,
subsequently increasing as degree of polynomial increases (for most

samples);

SSPE behaves in much the same way as AIC.

Accordingly, a polynomial of degree exceeding two would have performed worse in
a forecasting context than a polynomial of degree two, had we used them each year.

A relatively 'low’ SSPE is preferable to a high SSPE. Naturally, there are other aspects
of testing, including significance of parameters, distributional assumptions, residual

displays and the number of parameters.

The ‘tests’ should be seen as complementary rather than competitive.

517



9.5 OUTLIERS, SYMMETRIC DISTRIBUTIONS AND NORMALITY

Outliers are data points with large standardised residuals. Observations classified as
outliers have residuals that are large relative to the residuals for the remainder of the
observations.

Estimates of parameters and supporting summary statistics may be sensitive to
outliers. Residual displays provide information on outliers. Moreover, if omission of
outliers from the regression affects the output. then that provides more evidence that

the omitted observations are in fact outliers.

An outlier may be a result of a coding error, in which case it should be assigned zero
weight, or it may be a genuine observation that is unusual and accbrdingly has a
large influence on the estimates, unless it is assigned reduced weight.

To detect outliers routinely, we need a rule of thumb that can be used to identify
them. A Box plot is a schematic plot devised by J W. Tukey. The following steps

summarise the general procedure for constructing a Box plot.

Order the data.

Find the median (M), lower quartiie (LQ), upper quartile (UQ) and mid-spread
(MS), where MS = UQ - LQ."'

Find the upper and lower boundaries defined by
LB = LQ-1.5*MS

UB = LQ + 1.5*MS.

' Footnote: LQ and UQ are actually the lower and upper

hinges. They are only approximately the
quartiles.
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List all outliers. An outlier is defined as any observation above the upper

boundary or below the lower boundary.

Construct a Box plot as follows:

(@)

(0)

()

(@

(e)

Draw a horizontal scale;

Mark the position of the median using “ | *;

Draw a rectangular box around the median, with the right side of the box
corresponding to the UQ and the left side corresponding to the LQ. The
length of the box is equal to the MS. The median divides the box into two
boxes;

Find the largest and smallest observations between the boundaries and
draw straight horizontal lines from the UQ to the largest observation below
the upper boundary and from the LQ to the smallest observation above the

fower boundary;

Mark all observations (outliers) outside th= coundaries with hollow circles
(o). If an outlier is repeated, mark the nurr:2r of times it is repeated.

Bax Plot

Clower boundary Supper boundary
0 ————q 0

LQ MEDIAN uQ
}— MIDSPREAD —

outlier outlier

519



We can also conclude (diagnostically) that a distribution is symmetric if the median
is approximately half way between the LQ and the UQ.

A DFF model assumes that the weighted standardised residuals come from a normal
distribution. Accordingly a normal probability plot should appear approximately linear.
That is, the plot of weighted residuals against normal scores should have points that

fall close to a straight line. This means that the correlation should be close to unity.

9.6 VALIDATION AND STABILITY

The important question is whether the estimated model can predict outside the
sample. It is therefore important to retain a subset (the most recent one or two
payment years) of observations for post-sample predictive testing. This post-sample
prediction testing is called VALIDATION.

VALIDATION of the last payment year, or any payment year, is also related to the
concept of STABILITY. If we don't use the last payment years' data to estimate the
model, the ultimate losses should not differ from that obtained by using the last years’
data by more than one standard error. We would like to identify a model that delivers
STABILITY of reserves from year to year (only if trends are stable).

9.6.1 VALIDATION

Consider the triangle of incremental paid losses depicted below.

[¢] 15

> d
1876

1989
1890
1991

Figure 9.6.1.1
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We have model that has been identified and estimated using all the data, up to 1991.

If the same model were estimated at year end 1988, would it predict accurately the
incremental payments for 1989, 1990 and 1991? And what do we mean by 'predict
accurately'?

Let's illustrate with a fair coin. If a fair coin is to be tossed 100 times we can ‘predict
accurately’ the distribution of the number of heads. The exact distribution is Binomial
(100, 0.5). The distribution details the probabilities of all the possible outcomes. If
instead, we had.a mutilated coin and we required a future prediction based on a
sample data then our predicted distribution is-Binomial (100, p) where g is an

optimal estimate of the true probability p of a head occurring, based on the sample,

We now return to our triangle. At year end 1988, we would estimate the parameters
of the same model using the smaller sample and we would predict a distribution for
each of the log 'payments’ in 1989, 1330 and 1991. See Section 8.2 on forecasting
of distributions.

So, one of the most important validation tests is to determine whether the observed

log 'payments’ in 1988, 1990 and 1991 can be regarded as a sample from the
predicted distributions.

More specifically, let ¥ be a prediction of a log ‘payment’ y for a cell in payment year

1989, 1990 or 1991. We call,

the validated residual or the prediction error,

We test the validated residuals for (i) randomness in the three directions delay,

accident year and payment year; (ii) randomness versus predicted values y and {iii)
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most importantly, normality.

9.6.2 STABILITY

Returning to our example of the foregoing section, we ask the question whether at
year end 1988 our completion of the rectangle should be materially different to our
completion at year end 1991. The answer is in the negative if trends (especially in

the payment year direction) are stable.

We illustrate with four examples. (There are numerous others that occur in practice.)

Example 1: Suppose payment year trends (after adjusting for trends in the other two
directions) are as depicted in Figure 9.6.2.1 below. The trend is stable and suppose
its estimate is 10% + 2%. How do we know that the trend is stable? Well, as we
remove the mere recent payment years from the estimation, the estimates of trends
do not change (significantly). For example, after removing 1990 and 1991, the
estimate of trend is 9.5% + 2.1%, say. Alternatively, we could estimate a new trend
parameter from 1989-1991 and examine whether the trend has changed significantly.

Stable trends

' l; - i P |

1976 1977 1978 1979 (980 1981 1982 1993 19584 1983 1986 1987 1988 1989 1990 1991

Figure 9.6.2.1
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Typically, if the payment/calendar year trend is stable, the model! will also validate
well. Here our estimates of outstanding payments do not change significantly as we

omit recent years.

Example 2: Consider the payment year trends depicted in Figure 9.6.2.2 below.

Instability in trends

12.5

115

105

9.5

1976 1977 1978 1979 981 19%2 | 1984 1985 1906 1987 1993 1919 19%0 1991

Figure 9.6.2.2

The trend in the years 1976 to 1989 is relatively stable. its estimate is 10% + 2%,
say. However, the trend from 1989 to 1990 is higher at 15% (+ 1%) and from 1990
to 1991 it is -4%.(+ 1.3%), say. This information is extracted from the "optimal”
statistical model. The shifts in trends is a property of the data (determined through
the model). A question now emerges as to which trend assumption do we make for
the future, first in the absence of any other information. It would be foolhardy to
assume the estimate between the last two years of -4% + 1.3%. The most
reasonable assumption (for the future) is a mean trend of 10% with a standard
deviation of 2%, that which was estimated for the years 1976-198S.

Suppose we also have access to another data type, the number of closed claims

development array. See Sections 10.2 and 10.3. We find utilising our DFF modelling
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framework that the additional 5% above the 10% betwesn 1989 and 1990 can be
explained by a corresponding increase in speed of closures of claims and the -15%
from 1990 'to 1991 below the 10% from 1976-1989 can be explained by a
corresponding decrease in the speed of closures of claims. What assumption about
future trends in payments should we adopt then? | would still recommend 10% + 2%
for the future. That's a decision based on my judgement and experience. The
instability in trends in the last few years means that the model will not validate well.

Atyear end 1990, we would not have forecast the distributions for 1991, for example.

Example 3: It is possible to have a transient change in trend. Consider Figure
9.6.2.3. The business has been moving along 10% + 2% but between the last two
calendar years 1990 and 1991 the trend increases to 20% + 3%. What do we
assume for the future? Well, that depends on the explanation for the increase in
trend. Suppose its a “transient” change that can be explained by a new level of
benefits that apply retrospectively. Then it is reasonable to assume 10% + 2% for
the future. Suppose instead that subsequent to analysis of claims closed triangle, the
trend change is explained by increase in severities. That's a problem, because this

means that it is now more likely that the new trend will continue.

Transient change in trends

s

105

93 — e, o "

1976 1977 1978 1979 1930 1981 1982 1983 1984 1985 1986 1987 1588 1989 1990 1991

Figure 9.6.2.3
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So the decision making process about the future becomes more complicated when
trends are unstable. We are talking about trends in the (incremental) payments not
age-to-age link ratios.

The last example illustrates an ‘unpredictable’ loss development array.

Example 4: The payment year trends are depicted in Figure 9.6.2.4 below,

Maijor instability in trends
108 T Ty 28

106

105

10.4

103

1976 1977 1978 1979 1980 1981 1982 1913 1984 1985 1986 19T 1588 1989 1990 1991

Figure 9.6.2.4

Note instability in trends. At year end 1989, would anyone be able to predict a flat
trend for the next year and a downward trend for the following year?

Here, maybe, one could calculatea 1, a weighted average of trends estimated in

the past with a weighted variance G2 and assur—= for the future a mean trend of 1

with standard deviation of trend 6. Since § will be relatively large, mean forecasts

will be well above the median forecasts and the standard deviation of the distributions
relatively large. See Section 8.2



It is instructive to relate the foregoing discussion with the quote from A.C. Harvey {9]

given at the beginning of Section 2.1
9.7 POST-SAMPLE PREDICTIVE TESTING AND MODEL MAINTENANCE

Once a model has been identified for year end 1991, and assumptions about the

future are made, the model is stored.

One year later, in 1992, on receipt of additional information (diagonal), there is no
need to analyse the (augmented) triangle from the start. We already have a model
for which we now conduct post-sample predictive testing and model updating and

maintenance.

Has the model at year end 1991, predicted the distributions for 19927 This question
is answered by restoring the model, assigning zero weight to "payments” in 1992 and
validating the year. We also test for stability of parameters. If the model estimated
at year end 1991 does not predict 1892 accurately, we know which parameter is the
culprit and accordingly may have to amend the model (slightly).

For example, consider Example 2 of the preceding sub-section. If the 1992 data do
not lie on the 10% + 2% trend, then we have more evidence of changes in trends

and our assumgption of 10% + 2% becomes pretty suspect.

Typically, once a modei is identified for an incremental paid loss development array,
the same model (with occasional minor amendments) is used in every subsequent
year.
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There is no way that a statistical method can automatically determine the "best"
model and assumptions to be adopted for the future Rather. this decision is based
on the model identification strategy (that may include analysis of other data types)
and considerable judgment, especially if irends in the incremental payments are

unstable.

Of course, any information about the nature of the business (especially change in
business) may be critical in determining the assumptions for the future.

For example, in a number of loss development arrays of Lloyd's Syndicates analysed
by the author, asbestos and pollution claims are not covered by policies written after
1978, say. This means that the calendar year effects of asbestos and. pollution claims
only apply to accident years prior to-1978. So, the iota estimates applying to
accident years prior to 1878, do not apply to accident years post 1978.

For loss development arrays where the forecast uncertainties are relatively large,
analysis of "similar" arrays within the company or analysis of industry wide arrays, for
the purpose of formally credibility adjusting the parameter (estimates) coutld prove
very useful. Incidentally, credibility is not just a function of volume. it is a myth that
if claim numbers are “small* or incremental paids are small, or the triangle dimensions
are small, then random fluctuations necessarily swamp the pattern (trends). The
noise to signal ratio, equivalently, process uncertainty, may be very small even with
small volume. Of course large volume and little process uncertainty does not mean
that standard actuarial techniques will pick Up the changing trend. See Section 12
for a study of a real life example involving (very) large volume and alarming calendar

year shifts that cannot be detected using standard actuarial techniqués.

On every subsequent evaluation date post-sample predictive testing is conducted and
the model is updated. Since data are recorded sequentially over time, updating
procedures that can be applied routinely and that avoid re-analysis of the history are
very desirable. See Section 9.6.2.
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Step 7

criterion is not satisfied, the model may have to be re-specified and tha

identification cycle repeated.

Assumptions about the future based on Step S involving possibly analysis
of other data types (Sections 10.2 and 10.3), are decided and forecasts and

standard errors are produced. The final model is stored.

Finished.
STEPS IN MODELLING
DATA PRELIMINARY
ANALYSIS

MODEL F—T
SPECIFICATION| &

—

-

- o e

MODEL
ESTIMATION
NO
‘ TESTING }—-
YES

I FORECASTING 1

VALIDATICN NO
AND
STABILITY J

YES

r FINISHED
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10. MODEL IDENTIFICATION AND ASSUMPTIONS ABOUT THE FUTURE
The aim is to identity a parsimonious model that separates the (systematic) trends
from the random fluctuations and moreover determine whether the trend in the

payment/calendar year direction is stable.

Recall that models contain information and accordingly the 'best’ identified modei
conveys information about the loss development array being analysed.

For example, CCI (with constant development in the tail) indicates that the calendar

year trend has been stable. This model should validate well and produce 'stable’

outstanding estimates as recent calendar years are added or removed from the

estimation. See preceding Sections 9.6.1 and 9.6.2.

10.1 MODEL IDENTIFICATION

The identification of the ‘optimal’ statistical model involves a number of iterative steps.

Step 1; Preliminary analysis facilitates the diagnostic identification of the
heterogeneity in the data. The types of heterogeneity are also
diagnostically identified.

Step 2; Based on step 1 a (preliminary) model is specified.

Step 3: The specified model is estimated.

Step 4. The mode! is checked to ensure that all assumptions contained in the
model are satisfied by the data. If the model is inadequate, it has to be re-
specified (step 2), and the iterative cycle of model specification - estimation

- checking must be repeated.

Step 5. The best identified model is validated and tested for stability. If either
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10.2 ASSUMPTIONS ABOUT THE FUTURE

We demonstrated in Section 9.6 that if payment/calendar year trend has been stable,
especially in the more recent years, then the assumption about the future trend is
relatively straightforward. For example, if the estimate in the last five years has

been T + s.e. ( 1), then we assums for the future a mean trend of T with a

standard deviation of trend of s.e. { T ). We do not assume that trend in the future
is constant. Our model does include the variability (uncertainty) in trend in the future.

If on the other hand, payment/calendar year trend has been unstable as is illustrated
in examples 2 and 3 of Section 9.6, assumptions about future trends are not so

obvious and may depend on analysis of other data types.

In Section 10.1 we also cited a practical example where special knowledge about the
business is a contributory factor in making decisions about the future. But, that
special knowledge is combined with what we found in the past experience.

103 OTHER DATA TYPES AND METHODS

Hitherto much emphasis has been placed on the importance of analysing and

predicting distributions for (incremental) paid loss development arrays. Reasons
given include:

¢ the geometry of trends;

+ simplicity and parsimony;

e distributions of future payments is relevant information for financial
statements.

We now discuss other data types and methods.

10.3.1 PAYMENTS PER CLAIM CLOSED

Let the “series” {p,} denote the payments ioss development array and the series {n,}
denote the closed claims development array.
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We shall say that {n,} causes {p,}, if taking account of past values of n, leads to

improved predictions of future values of p,. (This is know as Granger causality.)

Typically, an actuary analyses z, = p,/n, and obtains predictions 2: of future vaiues

of z. The analysis of {n} leads to predictions 2. of future values of n,.

The future values of p, are then predicted by 5. = f: 2. .

So, is the foracast P: better than the forecast 7. that only depends on past

values of p,. A forecast is better if its mean square error is less. Thatis, P: is

better than 7. if

E[(B.-pc)?) < sug - p)3l

The author believes that 7. is better than D . That is, there is no reduction in

forecast error with respect to the given information set { 2.. f.. 5. }. However,

this does not rule out the possibility that when there is an instability in calendar year
trends in {p,} as described in Section 9.6, analysis of {n,} will not lead to improved
accuracy of predicting future values of {p,}. The information extracted from the
analysis of {n,} may improve the actuary's judgment in respect of which assumptions
to use for future trends of p,.



10.3.2 INCURRED LOSSES AND CASE RESERVES

Analysis of incurred losses (paid to date plus case reserves) does not provide
information about what is still to be paid. We have given sufficient reasons why any
analysis of cumulative data is unsound. And adding case reserves to cumulative
paids reduces the information (not increases the information).

Incremental paid losses and case reserves should be analysed separately. That is
the best way to determine the information contained in each data type and any

relationships that may exist between the two data types.

For example, if there is a trend shift in the incremental paids between calendar years
1984 and 1985 and a corresponding shift in the case reserves one year later,
between 1985 and 1986, then we know that the case reserves are lagging the

payments.

If instead we found that case reserves are leading the payments then a change in
trend in the case reserves between the last two calendar years, for example, may
suggest an increase in trend in payments one year later (in the future). See Sections
10.1 and 10.2.

For a small dimensional triangle of a long tail line, case reserves for the early accident

years will be helpful in determining the development year trend (Y) in the future.

There are ways of determining whether case reserves have been "accurate" in

forecasting subsequent payments. See the paper by Fisher and Lange [6).

Perhaps we should also remark that case reserves vary between and within ctaims

personnel and due to changing reserving philosophy of the company.




104 TIME SERIES MODELS VERSUS EXPLANATORY (OR CAUSAL)
MODELS

The rich modelling framework advocated by the author contains essentially ume
series models. The only “causal” variable is time, equivalently payment year, accident
year and development year. The past values of the incremental payments are used

to forecast future values of the payments.

There is an alternative approach to forecasting in statistics called explanatory or
causal mcdels. These models make an attempt to discover the factors (or variables)

affecting the behaviour of the claims process.
There are many reasons for preferring time series models to explanatory models.

*  Causality based on the definition given in Section 10.3.1 is hard to prove,
especially since the causal variables need to also be forecast.

* Simplicity and parsimony discussed in Sections 9.1 and 9.2.

. The claims process is complex and is unlikely to be understood and even
it it were understood, it may be extremely difficult to determine the
relationships that govern the behaviour of claims. Moreover, its likely the
relationship changes with time. This last reason is part motivation for
varying parameter models. (See Section 7).

s  Explanatory models are difficult to validate and test for stability and when
they don't work it may be hard to determine the reason.

By way of summary, we advocate the use of the DFF of models applied primarily to

the incremental payments and applied to "related" data types, especially for the case

in which calendar year trend instabilities are found in the incremental payments.

533



11.0 PREDICTION INTERVALS, RISK BASED CAPITAL AND RELATED ISSUES
11.1 INTRODUCTION

Loss reserves often constitute the largest single item in an insurer's balance sheet.
An upward or downward 10% movement of loss reserves could change the whole

financial picture of the company.

The current paper is not meant to focus on risk based capital and solvency issues,
but mainly to stress that these are necessarily probabilistic concepts. The paper's
principal intention is to show how the distributions (or variability) of loss reserves may
be derived from sample data. It is the variability or uncertairity of loss reserves that
is relevant to risk based capital and solvency considerations.

11.2 PREDICTION INTERVALS

We have given persuasive arguments for the use of probabilistic models, especially
in assessing the variability or uncertainty inherent in loss reserves. The probability
that the loss reserve, carried in the balance sheet, will be realised in the future, is
necessarily zero, even if the loss reserve is the best estimate. See Sections 8.0 and
10.3 for definition of best.

Future (incremental) paids may be regarded as a sample path from the forecast
(estimated) lognormal distributions. The estimated distributions include both process
risk and parameter risk.

The forecast distributions are accurate provided the assumptions made about the
future will remain true. For example, if.it is assumed that future calendar year trend
(inflation) has a mean of 10% and a standard deviation of 2%, and in two years time
it turns out that inflation is 20%, then the forecast distributions are far from accurate.

Accordingly, any prediction interval computed from the forecast distributions is

conditional on the assumptions about the future remaining true.
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Suppose P is a mean of a forecast lognormal distribution corresponding to payment

p. Both P and p are random variables.

Letu=logp. B =E[u]and ¢® = Var ful. A 100 (1-a)% prediction interval for

u (a random variable) is given by

b x0Z (a/2)

where Z (a/2) is the 1-a /2 percentage point of the standard unit normal distribution.

A 100 (1-a)% prediction interval for p (=log u) is

exp (b + 0 Z(a/2)]

The iatter interval is non-symmetric about P since the lognormal distribution is

skewed (to the right). The parameters u and o are computed from the mean and

standard deviation of p, and the relationship between the lognormal and normal
distributions.

The limits of the interval can be interpreted as follows. Suppose repeated samples
of the rectangle are taken (from the estimated probabilistic model), then the

proportion of times the cbserved p value will lie in the observed interval (in the long

run) is 1-. Bear in mind that p is a random variable.

The distribution of sums, for example, accident year outstanding payments, is the
distribution of a sum of lognormal variables that are correlated. The exact distribution
of the sum can be obtained by generating (simulating) samples from the estimated

multivariate lognormal distributions.  Alternatively, one can approximate the
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distribution of the sum by a lognormal. Indeed. the lognormal would be the riskiest.

If there are ‘'many’ components in the sum, then the Central Limit Theorem could be
invoked, especially if the lognormal distributions of the paids are not terribly skewed.

See Section 13 for a real life example.

insurer’s risk can be defined in many different ways. Most definitions are related to

the standard deviation of the risk, in particular a multiple of the standard deviation.

If an insurer writes more than one long tail line and aims for a 100(1- & }% secunty
level on all the lines combined, then the risk margin per line decreases the more lines
the company writes. This is always true, even if there exists some dependence

(correlation) between the various lines.

Consider a company that writes n independent long tail lines. Suppose that the
standard error of loss reserve L(j) of line j is se(j). That is, se(j) is the standard error
of the loss reserve variable L()). The standard error for the combined lines
L(M)+...+L(n) is

se(Total) = [se*(1)+.. +se?(n)] °°

If the risk margin for all lines combined is k*se(Total), where k is determined by the

level of security required, then the risk margin for line j is
k*se(Total)*se(j)/[se(1)+... +se(n)]
<kse(j).
The last inequality is true even when se(Total) is not given by the above expression.
If as a result of analysing each line using the DFF modeiling framework we find that

for some lines trends change in same years and the changes are of the same order

of magnitudes, then the paid losses are not independent. (There may also be some
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probabilistic model, derived from the company'’s experience, that describes the
particular line for that company. In the hundreds of arrays that the author has

analysed, no one mode! described more than gne loss development array.

The approach the author is advocating allows the actuary to determine the
relationships within and between companies experiences and their relationships to

the industry in terms of simple well understood features of the data.

In establishing the loss reserve, recognition is often given to the time value of money
by discounting. The absence of discounting implies that the (median) estimate
contains an implicit risk margin. But this implicit margin may bear no reiationship to
the security margin sought. The risk should be computed before discounting (at a
zero rate of return).
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correlations between the residuals).

In that situation, line i and j are correlated, say, then one should use se(i) +se(j) as

the upper bound of the standard error of L(i)+L().

We now return to an important modelling concept or ‘law of payments'.

Suppose we assume for the future payment/calendar years a mean trend of (i) with
a standard deviation (standard error) se (1). Specifically we are saying that the trend
v, arandom variable, has a normal distribution with mean 1 and standard deviation
se (i). Recognition of the relationship between the lognormal and normal

distributions tells us that the mean payment increases as se (i) increases (and1i

remains constant). The greater the uncertainty in a parameter (the mean remaining

constant), the more money is paid out.

The foregoing arguments apply to each parameter in the model.

11.3 RISK BASED CAPITAL

The author understands that the NAIC is drafting regulations where part of the risk

based capital requirements will be based on loss reserves. In the article by

Laurenzano [10], page SO, the loss reserve component of the risk based capital

formula "selects the worst reserve development ...".

The approach advocated by the NAIC is flawed for many reasons including:

* The uncertainty in loss reserves (for the future) should be based on a
probabilistic model (for the future) that may bear no relationship to reserves

carried in the past;

* The uncertainty for each line for each company should be based on a
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12.0 ANALYSIS OF PROJECT 1

12.1 INTRODUCTION AND SUMMARY

The principal objectives of the analysis of real life data in this section are to
demonstrate that:

i. Age-to-ags link ratios based on the cumulative paid losses give no indication

about the trends and random fluctuations in the (incremental) payments.

2. Smoocth data may have major shifts in calendar year trends.

3. Regression as an approach to adjusting data and determining trends and
changes thereof is very powerful.

4, Large company’s run-off payments are not necessarily stable in respect of
calendar year trends, even though the payments may be extremely smooth

(with very little random fluctuations about the trends).

12.2 DATA AND AGE-TO-AGE LINK RATIOS

The data (save a multiplicate factor in order to preserve confidentiality) come from a
large insurer and are given in Appendix C1. Accident year exposures, (from
memory), represent earned premium {relativities). As we shall see in the next section,

the exposures are not that important.
The age-to-age link ratics presented in Appendix C2 are relatively smooth. For the

early development years they tend to decreass slightly in the middle accident years
and then increase in the latter payment years.
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12.3 ANALYSES

We define a normalised payment as the (incremental) paid divided by the
corresponding accident year exposure and apply the MODELLING FRAMEWORK to
the normalised payments.

If p(wd) is the incremental payment corresponding to accident year w and
development year d, and e(w) is the accident year exposure, then the normalised

payment is p(w,d)/e(w) and we define,
y(w.d) = log [p{w.d)/e(w)]

Figure C3 (in Appendix C3) represents a graph of the normalised payments versus
delay for the first two accident years in the triangle. Observe that the run-off

development faor both years is remarkably smooth.

The chain ladder (CL) statistical model is given by,

y(w.d) = o, “ Y e

Since the exposures e(w) are absorbed into the parameters a , the estimates of the

development trends y ,do not depend on the exposure base used. Indeed, there are

other statistics that are invariant (for CL) with respect to exposure base including, AIC,

residuals, S-squared, normality testing and forecasts. The chain ladder model adjusts

for the different levels (« 's) of each accident year.

The estimates of the CL parameters and associated regression table are presented

in Appendix C4. R-squared is high and S-squared is small. Hence, the random
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fluctuations are small. Now, the CL model adjusts the data for development year
trends and accident year trends (or levels). Many parameter differences are
insignificant but that is not important since we are not trying to identify a
parsimonious model here but rather show how some of the models in the
FRAMEWORK may be used for fast identification of payment/calendar year trend
changes.

So, the residuals represent the data adjusted (after removing) for the average

development year trends and the average accident year trends.

Residuals versus development years (Figure C5.1) and accident years (Figure C5.2)
are the "best® we can obtain since we have removed the trends in these two
directions. In Figure C5.1, the sum of residuals for any one development year is zero
and in Figure C5.2, the sum of residuals for any one accident year is zero.
HOWEVER, residuals versus payment years (Figure C5.3) exhibit a very strong V
shape AND THIS IS FOR SMOOTH DATA OF A LARGE COMPANY. So, after
removing accident year and development year trends from the data we observe major
shifts in calendar year trends. (Compare this with the simulated data of Sections 4.4
and 5). There appears to be a change in trend in 1984 and definitely a change in
trend in 1985,

We now estimate the CC model. it adjusts the data for the average development year
trends. Appendix C6 presents the regression output and Figure C7 is a graph of
residuals versus payment years that indicates an upward trend (positive inflation).
It is hard to tell fram this graph whether there is a major shift in trends.

In order to estimate a trend parameter through the residuals of Figure C7, we
estimate the CCl model to the data. The regression output is presented in Appendix
C8 and the residuals versus payment years are displayed in Figure C9. The average
payment year trend is 12.1% (+ 0.53%). The V shape in residuals is distinct,
suggesting very strongly the change in trends.

Our final model introduces another two payment year trend parameters. One from
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1984-1985 and one from 1985-1987. Theregression outputis given in Appendix C10.
Note shift in trend from 9.85% to 19.52%. This is quite alarming, especially if it
cannot be explained by an increase in speed of finalisations of claims. See Section

10.2, for a discussion of assumptions to be applied for the future.

We now graph in Appendix C11 the lognormalised payments versus deiay for the first
two accident years. Since 19.52% is much higher than 9.85%, observe that the trend
in the tail increases for both accident years, and for accident year 1978 the change
is one development year earlier than in accident year 1977. That is because the

trend change is a calender year change.

So there is overwhelming statistical evidence of a ajor shiftin calendar year trends
in the last two calendar years. What assumptions do we make about the future
trends? We could analyse the number’ of claims closed development array and
determine whether the substantial increase in trend in the payments is due to a
corresponding increase in trend in the number of closed claims. If the answer is in
the negative, then the trend increase must be due to increase in severities which
would then be a major concern for the company. See Section 10.2.

In this section we have not identified a parsimonious model for the data. Instead the
objective was to demonstrate how some of the models in the MODELLING
FRAMEWORK may be used for quick determination of major calendar year shifts {in
data that are relatively smooth and do not appear problematic if we are to employ the
standard actuarial approaches based on link ratios).

The reader will appreciate that our modelling approach is interactive and terribly
computer intensive. In order to identify the calendar year trend changes we have had
to estimate four models. To set up each model in a spreadsheet is extremely time
consuming. See Section 8.
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13.0 ANALYSIS OF PROJECT 2

13.1 INTRODUCTION AND SUMMARY

In the present section we analyse a real life loss development array for which the age-
to-age link ratios of the cumulative paids are relatively unstable, yet the trends in the
paids are stable.

The "best" identified model is essentially a version of CC with two additional ictas
(payment year trend parameters) that are used-to adjust for ‘low" payments in one
payment year. The model (and so the trend in the data) is stable and validates very
well. Had the mode! been employed three years earlier, it would have yielded the
"same" outstanding payments and would have forecast the distributions of

(incremental) payments for the last three years extremely accurately.
13.2 DATA AND PRELIMINARY ANALYSIS

The incremental paid loss development array and accident year exposures are
displayed in Appendix D1. The exposures are estimates of the number of ultimate
claims incurred in each accident year. We define a normalised payment as the paid
divided by the corresponding accident year exposure and identify a DFF model for

the normalised payments.

The first step in tha preliminary (diagnostic) analysis is to graph the data. Figure D21
displays a graph of normalised payments versus development year for all accident
years combined. It exhibits a band whose width (variability) increases as the

nomalised payments get larger.

On the other hand, the graph of the lognormalised payments depicted in Figure D2.2
exhibits a band whose width is relatively constant. That is, % variability is constant
with development year suggesting a lognormal distributions for the normalised

payments.
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The graph in Figure D2.2 also gives us a preliminary idea of a parsimonious numper

of Y's (development year trend parameters) that may be required in the model.

It appears we require one Y from delay 0-1, one from delay 1-2 (that turns out to be

insignificant to zero), one from delay 2-4 and one from delay 4-8.

13.3 MODEL IDENTIFICATION

In this sub-section we implement the model selection strategy discussed in Section
10.

Model 0 and 1: Estimate a CC model with the four ¥ parameters suggested by the
preliminary diagnostic analysis. It turns out that the parameter Y, is insignificant from

zero, as was anticipated from the graphs. Set Y, to zero and re-estimate the model.

Regression tables and residual displays are given in Appendix D3 and Appendix D4.

respectively.

Residuals versus delay and accident years suggest that the trends in these two
directions have been captured well. This diagnostic test can be formalised by adding

more parameters and testing for significance of parameters and their differences.

Since we have estimated a CC model. the residuals may be interpreted as the data

adjusted for the development year trends.

Residuais versus payment years (Figure D4.3) suggest (i) zero trend from 1975-1979,
(i) iow payments in 1974 and (iii) perhaps zero trend from 1969-1973. So we next

estimate.

Model 2. This model is the previous CC model with four icta parameters. The first

iota represents the trend from 1969-1973, the second iota the trend from 1973-1974
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the third iota represents the trend from 1974-1975 and the fourth iota represents the
trend from 1975-1979. We find that beth the first and fourth iota are insignificant, and
the first being less significant than the fourth.

Mode!l 3: Previous model with first iota set to zero. We find that fourth iota is stll
insignificant.

Madel 4: Previous mode! with fourth iota set to zero. We find all parameters and
their differences are significant. Moreover, SSPE and AIC are the lowest amongst the
four models. Qutlier analysis indicates that the observation in accident year 1972,
delay 7 is an outlier.

So our final identified model (before conducting validation and stability analysis) has
three gammas (0-1, 2-4 and 4-8), two iotas (1973-1974 and 1974-1975) and one
alpha, and it also assigns zero weight to (1972,7).

The regression tables and various statistical displays are given in Appendices DS to
D7.

Figure D7.5 of Appendix D7 displays a normal probability plot where r* (correlation
squared) between the normal scores and ordered residuals is 0.993. The P-value is
in excess of 0.5.

So we have shown that the log incremertal payments in the cells of the loss
development array can be regarded as observations from normal distributions whose

means are related by the (trend) parameters given in Appendix D5.

Forecasts, standard errors and % errors based on the model are presented in

Appendices D8 and D9, respectively.

Appendix D8

This appendix presents:
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()
0)

(i)

(iv)
v)

(vi)

(vii)

each observed payment (OBS);

each expected model payment (EXP), that is @ mean of a lognormal
distribution;

forecasts for each accident year subdivided according to development
year (right side of stair-case corresponding to EXP row);

standard errors of each individual forecast (below each forecast),
total forecast (outstanding) for each accident year and associated
standard error {right hand cotlumny;

total forecast (payment) to be made in each future payment year in
respect of all the accident years and associated standard errors (bottom
row). This is the future liability stream with corresponding uncertainties
that may prove useful for asset/liability matching;

total outstanding with associated standard error (boftom right hand

corner).

Expected values and forecasts are estimates of means of lognormal distributions.

Standard errors are estimates of standard deviations of lognormal distributions.

Appendix D9

Here we present a quality of fit table comparing the original observed payments with

the model expected payments. For each accident year and for each payment year

we compute the ratio of the difference in total observed and total expected to the total

observed. The quality of fit is high.

13.4 VALIDATION AND STABILITY ANALYSIS

We now re-estimate the same model and assign zero weight to the last three

calender years (1979, 1978 and 1977). We aim to determine (i) whether the model

estimated at year end 1976, would have forecast the distributions of payments in
years 1977-1979 and (i) are the parameter estimates of the model and the forecasts
based on the model stable.
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Appendix D10 presents the parameter estimates as of year end 1976. Compare
these estimates with those obtained at year end 1979 (Appendix DS). Note that none
df the parameter estimates have changed significantly. The estimate of the tail.
-0.5544 (+ 0.0753) at year end 1976, is slightly higher than the estimate -0.6749 (+
0.0390), at year end 1979, hence the higher forecasts in the tail. The estimates of
iotas 1973-1974 and 1974-1975 are very close (and so stable).

Appendix D11 represents "All" residuals displays. All residuals include those
corresponding to observations used in the estimation (1969-1976), and the validated
residuals (1977-1979) corresponding to observations not inciuded in the estimation.
All displays are great.

In particular, Figure D11.3 shows the distribution of the validated residuals (prediction
errors) for 1977-1979 relative to residuals corresponding to years used in the

estimation.

Appendix D12 presents displays of the validated residuals (only those corresponding
to years 1977-1979). All displays are in good shape.

Most importantly, Appendix D12.4 presents a test whether the lognormalised
payments in 1977-1979 come from the forecasted distributions as at year end 1976,
The squared correlation between normal scores and validated residuals is 0.959 with
a P-value of 0.313.

By way of summary, there is very strong statistical evidence that the model at year
end 1976 would have predicted accurately the distributions of ‘payments’ for 1977-
1979.

Let's now compare the forecasts, Appendix D13 (validation model) with Appendix 08.

Total outstanding beyond 1979, based on estimated model at year end 1976 is
12,620,833 + 1,072,089 compared with estimated model at year end 1979 of

12,948,473 + 1,030,808. No difference.
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So, we could have obtained the same answers three years ago (that is, without the

last three years information). All other forecasts compare extremely favourably.

Note that in Appendix D13 the expected values corresponding to payment years
1977-1979 actually represent mean forecasts based on estimated mode! at year end
1976.

From Appendix D14 we see that had we reserved mean forecasts at year end 1976
(for years 1977-1979) we would have underforecast 1977 and 1978 by 13% and 1%
respectively, and overforecast 1979 by 5%.

Our findings using probabilistic models have shown that:

* calendar year trends are essentially stable, save the dip in the year 1974;

* the mode! used three years earlier would have predicted accurately the
distributions of payments for the last three years;

and

* rough (irregular) age-to-age link ratos, especially in the early development
years, give no indication of stability of trends.

The author has analysed numerous data sets with rough (or irregular) age-to-age link

ratios for which the payment/calendar year trends are stable. Conversely, smooth

age-to-age link ratios does not mean stability of trends.

We conclude this section by showing how to compute a prediction interval for the

total outstanding payments, using the discussion of Section 11.2.

From Appendix D8, the mean outstanding is given by

m = mean = 12,948,473

and the standard deviation (or standard error) by
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sd = 1,030,808

We assume that the total reserve (or liability} L is a random variable with mean m ang

standard deviation sd and moreover the distribution of L is lognormal.

Puty = log L, then y has a normal distnbution withmean ¥ and standard deviation

o, say.
Therefore,

m = exp [p + 05 o?]
and

sd = m [exp (g2} -1} °?

Solving the last two equations for g and o we obtain,

h
i

16.37332

and

a
]

0.079482

Employing Section 11.2, a 100 (1- e )% prediction interval for the random variable L

is given by

exp [16.37648 + 0.079482Z (a/2)]
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where Z (¢ /2) isthe 1 - a /2 percentage point of the standard unit normat distribution

The median of the distribution of L is exp [#] = 12,907,636 which is very close to the

mean of 12,948,473. Since o? is small the lognormal distribution is not terribly

skewed, so that were we to assume that the distribution of L is normal (rather than

lognormal), the prediction intervals would be almost the same.
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14, EXTENSION OF THE DFF MODELLING FRAMEWORK

We observed that a frutful extension of the DFF modelling framework was the

introduction of varying parameter (dynamic) models in Section 7.

Another imponant extension is related to the distributional assumption of normality.

Hitherto, we have assumed that the variances of the y values, denoted by o are

identical (constant)

The variance on a log scale can be interpreted as % variability. So constant a?

implies constant % variability. For many loss development arrays this assumption is
not valid. For some arrays, % variability increases in the tail, for some others, %

variability is higher in the early development years. When 0? is not constant and

varies with development years we need to also model the a%'s. Thatis, we introduce

a secondary equation.

This is outside the scope of the present paper.



15. CONCLUSIONS

We have argued that the four components of interest regarding a loss development
array are the trends in the three directions and the distributions (randem fluctuations)
about the trends.

A MODELLING FRAMEWORK was introduced where each model contained therein
possesses the four components of interest. The modelling approach offers the
actuary a way of fitting (estimating) distributions to the cells in a loss development
array and predicting ({forecasting) distributions for future years that affords numerous

advantages includi'ng:

. simplicity;

. clarity of assumptions;

. testing of assumptions;

o assessment of loss reserve variability;
. asset/liability matching;

. model maintenance and updating.

We showed how the identified optimal statistical model for the (incremental) payments
conveys information about the loss experience to date. In applying the model to
predicting distributions of future payments the actuary may (need to) adjust some of
the parameters to reflect knowledge about the business and to incorporate his view
of the future. View of the future may be based on analysis of other data types,

especially if there are instabilities in the payments in the recent calendar years.

A prediction interval computed from the forecast distributions is conditional on the

assumptions made about the future remaining true.

In passing we have debunked a number of pervasive loss reserving perceptions
concerning data types, age-to-age link ratios, stability, forecasting and regression.

Methods based on age-to-age link ratios do not (and cannot) separate trends from
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random fluctuations and moreover do not satisfy the basic fundamental property of

additivity of trends.
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Appendix A1l

Year/delay
0

1978 100000
1979 100000
1980 100000
1981 100000
1982 100000
1983 100000
1984 100000
1985 100000
1986 100000
1987 100000
1988 100000
1989 100000
1990 100000

1991

100000

1
81873
81873
81873
81873
81873
81873
81873
81873
81873
81873
81873
81873
81873

2
67032
67032
67032
67032
67032
67032
67032
67032
67032
67032
67032
67032

3
54881
54881
54881
54881
54881
54881
54881
54881
54881
54881
54861

Model Is p
alpha
4 5

44933 36788
44933 36788
44933 36768
44933 36788
44933 36788
44933 367688
44933 36788
44933 36788
44933 36788
44933

exp(alpha-.2d) wlith no error or randomness

11.51293

6 7
30119 24660
30119 24660
30119 24660
30119 24660
30119 24660
30119 24660
30119 24660
30119

8
20190
20190
20190
20190
20190
20180

9
16530
16530
16530
16530
16530

10
13534
13534
13534
13534

1
11080
11080
11080

12
9072
9072

13
7927
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Appendix A2

Year\delay

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

[}
11.5129
11,6129
11.7128
11.8129
11.9129
12.2129
12,3629
125129
12.6629
12.8129
12.9629
13.1129
13.2629
13.4129

1 2
11.4129 11.3129
11.51298 11.4129
11.6129 11.5129
11.7129 11.8129
12.0129 11.9629
12.1629 12.1129
12.3129 12.2629
12,4629 12.4129
12.6129 12.5629
12.7629 12.7129
12.9129 12.8629
13.0629 13.0129
13.2129

y=log(p) plus ;1 Inf. from 1978-82, .3 Inf. from 1982-83 and .15 Int. from 1983-91

3
11.2129
11.3129
11.6129
11,7629
11.9129
12.0629
12.2129
12.3629
12.5129
12.6629
12.8129

4
11.1129
11.4129
11.5629
11.7129
11.8629
12.0129
12,1629
12.3129
12.4629
12.6129

5 6
11.2129 11.1629
11.3629 11.3129
11.5129 11.4629
11.6629 11.6129
11.8129 11.7629
11.8629 11.9129
12.1129 12.0629
12.2629 12.2129
12.4129

7
11.1129
11.2629
11.4129
11.5629
11.7129
11.8629
12.0129

8 9
11.0629 11.0129
11.2129 11.1629
11.3629 11.3129
11.5129 11.4629
11.6629 11.6129
11.8129

10
10.9629
11.1129
11.2629
11.4129

11
10.9129
11.0629
11.2129

12
10.8629
11.0129

13
10.8129
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Appendix A3

100000
110517
122140
134986
149182
201375
233965
271828
315819
366930
426311
495303
575460
668589

190484
210517
232657
257126
314055
392929
456519
530399
616236
715964
831831
966450
1122855

272357
301001
332657
392112
470886
575141
668219
776359
902001
1047976
1217573
1414619

346439
382874
443174
520515
620068
748467
869594
1010324
1173829
1363795
1584504

Cumuiative data (on a $ acale) derived from Appendix A2

413471
473358
548302
642655
761975
913339
1061148
1232878
1432400
1664212

487552
559428
648302
756838
896961
1070170
1243360
1444578
1678360

558021
641302
743425
869355
1025363
1219352
1416685
1645954

625053
719182
833908
974482
1147504
1361259
1581557

688816 749469 807164 862045 914250 963908
793263 863732 930764 994527 055180

919978 001852 1079732 1153814

1074482 1169605 1260089

1263687 1374204

1496245
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Appendix A4

1.904837
1.904837
1.904837
1.904837
2.105170
ly 951229
1.951229
1.951229
1.951229
1.951220
1.951229
1.951229
.951229

1.429816
1.429816
1.429816
1.524979
1.499375
1.463726
1.463726
1.463726
1.463726
1.463726
1.463726
1.463726

1.272002
1.272002
1.332224
1.327463
1.316812
1.301361
1.301361
1.301361
1.301361
1.301361
1.301361

Age-to- age link ratlos of the cumulative losses of Appendix A3

1.193488
1.236327
1.237213
1.234652
1.228858
1.220279
1.220279
1.220279
1.220279
1.220279

[ O G G Y

179170
.181830
182381
.180786
177152
A71712
A71712
A71712
A71712

1.144535
1.146351
1.146726
1.145639
1.143152
1.139400
1.139400
1.139400

[ G Y

.120124
.121440
121712
.120925
119119
.116378
.116378

1.102011
1.103008
1.103213
1.102618
1.101248
1.099162

1.088054
1.088834
1.088994
1.088529
1.087456

1.076981 1.067992 1.060558
1.077607 1.068505 1.060986
1.077736 1.068611

1.077362

1.054316
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Appendix AS

Year\delay
0

1978 0.083
1979 -0.113
1980 0.086
1981 -0.071
1982 0.081
1983 0.117
1984 -0.024
1985 0.022
1986 -0.043
1987 0.07
1988 0.056
1989 0.145
1990 0.001
199t -0.142

1
0.075
-0.049
-0.007
0.147
0.059
0.059
-0.026
0.015
0.181
0.106
-0.195
0.187
-0.153

2
-0.076
-0.086
-0.037

0.067
0.073
-0.017
0.134
0.076
0.184
0.144
0.032
-0.159

3
-0.065
-0.123

0.17
-0.028
0.048
-0.081
0.214
-0.028
-0.192
0.032
0.041

4

-0.188
0.148
0.071
-0.132
0.025
-0.051
0.071
-0.004
-0.16
-0.102

Random error random from Norma! with mean 0

5 6 7 8 9 10 1 12
-0.164 -0.101 0.078 0.021  0.029 0.005 0.03 -0.073
0.09 -0.06 -0.099 -0032 0.096 0.028 0.1 -0.331
-0.138  0.047 0.022 0.036 0.003 0.004 0.058
0.049 0o -0.117 -0.042 0.026 -0.078
0.029 -0.023 -0.133 -0.044  0.066
-0.024 -0.048 0.124 0.033
0.193 -0.022 0.012
0.155 0.032
-0.048

13
-0.241
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Appendix A6

Year\dalay

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

0
11.5959
11.4999
11.7989
11.7419
11,9939
12.3299
12.3389
12.5349
12.6199
12.8829
13.0189
13.2579
13.2639
13.2709

1 2
11.4879 11.2369
11.4639 11.3269
11.6059 11.4759
11.8599 11.8799
12.0719 12.0359
12.2219 12.0959
12,2869 12.3969
12.4779 12.4889
12.7939 12.7469
12.8689 12.8569
12.7179 12.8949
13.2499 12.8539
13.0599

Sum of data in Appendices A2 and AS to produce trends + randomness

3
11.1479
11.1899
11.7829

11.7349-

11.9609
11.9819
12.4269
12.3349
12.3209
12.6949
12.8539

4
10.9249
11.5609
11.6339
11.5809
118879
11.9619
12.2339
12.3089
12.3029
12,5109

5 6
11.0489 11.0619
11.4529 11.2529
11.3749 11.5099
11.7119 11.6129
11.8419 11.7399
11.9389 11.8649
12.3059 12.0409
12.4179 12.2449
12.3649

7
11.1909
11.1639
11.4349
11.4459
11.5799
11.9869
12.0249

8 9
11.0839 11.0419
11.1809 11.2589
11.3989 11.3159
11.4709 11.4889
11.6189 11.6789
11.8459

10
10.9679
11.1409
11.2669
11.3349

1
10.9429
11.1629
11.2709

12
10.7899
10.6819

13
10.5719
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Appendix A7

1978
1979
1980
1981
1982
1983
1984
1985
1966
1987
1988
1989
1990
1991

108651

98706
33106
125731
161765
226364
228411
277868
302519
393525
450855
572576
576021
580068

97529

95216
109743
141478
174888
203191
216837
262472
360015
388054
333667
568013
469724

75879

83025

96365
144336
168704
179136
242050
265375
343485
383425
398276
382277

69418

72396
130993
124854
156514
159835
249422
227499
224336
326081
362277

55542
104914
112860
107034
145495
156670
205644
221660
220334
271278

Incremental paids derived from Appendix A6

62875
94174
87108
122015
138954
153108
220996
247187
234427

63697 72468 65114
77103 70538 71747
99698 92494 89224
110514 93517 95885
125480 106927 111179
142187 160637 139511
169549 166858

207918

62436
77567
82117
97626
118054

57983
68934
78190
83692

56551 48528 39023
70467 43560
78504
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Appendix A8

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

108651

98706
133106
125731
161765
226364
228411
277868
302519
393525
450855
572576
576021
580068

206180

282059

193922 2769473

242849
267209
336653
429555
445248
540340

1045745

339214
411545
505357
608691
687298

351477

49343
470207
536399
661871
768526

407019
454257
583067
643433
807366
925196

936720 1142364
805715 1033214 1254874
662534 1006019 1230355 1450689
781579 1165004 1491085 1762363
784522 1182798 1565075
1140589 1522866

Cumulative palds from Appendix A7

469894
548431
670175
765448

533591
625534
769873
875962

946320 1071800
1078304 1220491
1363360 1532909
1502061 1709979

1685116

606059
696072
862367
969479
1178727
1381128
1699767

671173 733609
767819 845386
951591 1033708
1065364 1162990
12689906 1407960
1520639

791592
914320
1111898
1246682

848143 896671
9847687 1028347
- 1190402

935694
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Appendix A9

1.897635
1.964642
1.824478
2.125243
2.081123
1.897629
1.949328
1.944592
2.180057
1.986097
1.740076
1.992030
1.815463

1.368023
1.428136
1.396810
1.540161
1.501121
1.417026
1.543629
1.491125
1.518441
1.490577
1.507667
1.335157

Age-to-age factors (link ratlos) of the cumulative payments

1.246111 1.158024 1.154476
1.261407 1.300318 1.207314
1.386166 1.240021 1.1493%6
1.303378 1.199541 1.189631
1.309709 1.219823 1.172107
1.262588 1.203857 1.165487
1.362902 1.219538 1.193454
1.282356 1.214534 1.196981
1.222993 1.179081 1.161597
1.279896 1.181933

1.323197

1

.135556

1.135811 1.1074381.093025 1.079038 1.071439 1.057216 1.043519

1.140588 1.112764 1.1030741.101022 1.081541 1.077070 1.044232
.148764 1.120141 1.1034641.086294 1.075640 1.070603

144378 1.106759 1.0989031.091636 1.071962

.132597 1.099763 1.0943211.091521

1

1
1
1
1
1

.131861
124361
.138421

1.131616 1.101012
1.108850

One cannot determine changing calendar year trends from the age-to-age link ratios.



APPENDIX B1

Random incremental paids from (same) lognormal distribution

DELAY

0 1 2 3 4 5 6 7 8
ACC. YEAR
1976 10266 3419 3724 9606 8152 8175 3958 3030 1733
1977 1767 2454 6580 2819 1957 2150 3677 4751 2832
1978 6232 5143 2667 4278 2289 6215 6273 4905
1979 4597 3591 5909 5156 4013 3557 1961
1980 2483 3805 3995 6315 3480 3486
1981 1643 2077 5101 1807 3274
1982 3270 7230 1853 4158
1983 3161 2065 5890
1984 5305 6078
1985 6127

565

30

n



APPENDIX B2

Cumulative payments

DELAY
o 1 2 3 4 s 6 7 8

ACC. YEAR

1976 10266 13685 17409 27015 35167 43342 47300 50330 52063
1977 1767 4221 10801 13620 15577 17727 21404 26155 28987
1978 6232 11375 14042 18320 20609 26824 33097 38002

1879 4597 8188 14097 19253 23266 26823 28784

1980 4248 8053 12048 18363 21843 25329

1981 1643 3720 8821 10728 14002

1982 3270 10500 12353 16511

1983 3161 5226 11116

1984 5305 11383

1985 6127

566




APPENDIX B3

on
ACC. YEAR
1976 1.333041
1977 2.388794
1978 1.825256
1979 1.781161
1980 1.895715
1981 2.2684150
1982 3.211009
1983 1.853274
1984 2.145711
1985

1/2

1.272122
2.558872
1.224461
1.721665
1.496088
2.371238
1.1764768
2.127057

2/3

1.581783
1.260994
1.304657
1.365751
1.524153
1.216188
1.336598

Age-to-Age Link Ratios

DELAY

3/4 4/

1.301758 1.232482
1.143685 1.138024
1.124945 1.301567
1.208435 1.152084
1.189511 1,159593
1.305182

567

5/8

1.091320
1.207423
1.233857
1.073108

6/7

1.084059
1.221967
1.148200

7/8

1.034432
1.108277

8/9

1.067437
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APPENDIX B4

0
YEAR
1978 53275
1979 31912
1980 24964
1981 82867
1982 41268
1983 32190
1984 231651
1985 31273
1986 92728
1987 147772
1988 146151
1989 81526
1990 206885
1991 559279

Incremental paids generated by SDF model with 20% calendar year trend

DELAY
1 2 3 4 S 6 7 8 9 10
66971 121278 292065 86300 79271 240147 86269 73645 225638 218708
85884 42106 150200 88290 82798 230017 346594 169950 113715 48703

96951 208159 697227 213581 251802 489886 387322 524382 133462 206570
117837 279958 469997 577054 378084 438640 556884 38201 173980 161958
252181 101806 219303 283631 352082 748704 727854 147742 299994
491133 239252 228226 375903 494626 323417 482001 157137
401780 626068 496230 388360 395640 653268 5358755
409563 433997 831822 572787 468844 1317425
342040 246087 530327 837381 694392
208578 389162 602683 743423
209854 1827296 1391050
767664 1042474
350789

72438
82441
76440

n

a6
16891
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APPENDIX BS

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

on

2.26
3.69
4.88
2.42
7.11
16.26
2.73
14.10
4.69
2.41

10.42
2.70

112
2.01

2.71
2.39
1.35
1.46
1.99
1.98
1.57
2.09
6.13
2.23

2/3

2.2t
1.94
an
1.98
155
1.30
1.39
1.95
1.78
1.81
1.64

Note that link ratios do not tell us that we have a constant stable calendar year trend

3/4

1.16
1.28
1.21
1.61
1.46
1.38
1.22
1.34
1.69
1.55

4/5

1.13
.21
1.20
1.25
1.39
1.36
1.18
.21
1.94

DELAY

5/6

1.34
1.48
1.33
1.23
1.60
117
1.26
1.48

Age-to-age link ratios

6/7

1.09
1.49
1.20
1.24
1.36
1.22
1.17

.78

1.07
1.16
1.22
1.12
1.05
1.06

8/9

1.21
1.09
1.05
1.05
1.10

9/10

1.17
1.04
1.07
1.05

10/11

1.058
1.06
1.02

1112

1.05
1.11
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APPENDIX C1

ACC. YEAR

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

153638
178536
210172

11448
219810
205654
197716
239764

420778
496200

188412
226412
259168
253482
266304
252746
255408
329242
471744
590400

134534
158894

183370
194650
177506
194648
264802
375400

87456

123074
131040

12952
142328
190400

60348
71448

78994
87582
96786
105600

DELAY

42404
47990

60232
62750
82400

31238
35576

45568
51000

ACCl EXPOSURES

YEAR

1977
1978
1979
1980
1981
1982
1983
1964
1985
1986
1987

2.20

2.20
2.00
1.90
1.60
1.60
1.80
2.20
2.50
2.60

21252
24818
33768
38000

16622
22662
27400

14440
18000

10

12200



ILs

APPENDIX C2

1977
1978
1979
19680
1981
1982
1983
1984
1985
1986

o

2.226337
2.268158
2233123
2.198791
2.211519
2.228986
1.291792
2.373077
2.445719
2403115

1/2

1.393316
1.392381
1.401389
1.394403
1.400420
1.387229
1.429568
1.465360
1.470397

AGE LINK RATIOS OF CUMULATIVE PAYMENTS

2/3

1.183505
1.185665
1.187119
1.202128
1.176416
1.203681
1.219719
1.228344

- b A ot s

3/4

106992
106873
106787
101360
109359
126446

.133653

DELAYS

4/5

1.067912
1.064853
1.064900
1.070173
1.070629
1.095567

5/6

1.046848
1.045149
1.041831
1.049607
1.053616

6/7

1.030445
1.030135
1.035220
1.039413

7/8 B/9
1.023109 1.019622
1.026712 1.020665
1.027606

9/10

1.016259



APPENDIX €3

100

Normalised payments versus delay

—— Accidentt vear 1977 —— Accident year 1978

Figure C3
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APPENDIX Ca4 - (Statistical Chain Ladder)

DEV.
YEAR

CO® YOG &N -

ACCI
YEAR

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

GAMMA

0.2511
-0.3069
-0.3928
-0.3803
-0.3402
-0.3384
-0.2908
-0.2248
-0.2152
-0.1893

ALPHA

11.0484
11.1402
11.3935
11,5218
11.8001
11.7938
11.7979
11.9085
12.0116
12.0774
12,1592

REGRESSION TABLE

PARAMETER ESTIMATES

DIFFERENCE

S.E. T-RATIO IN GAMMA S.E.
0.0370 6.79
0.0388 -7.97 -0.5580 0.0650
0.0408 9.68 -0.0859 0.0682
0.0432 -8.81 0.0124 0.0723
0.0464 -7.34 0.0401 0.0773
0.0505 -8.71 0.0018 0.0835
0.0559 -5.20 0.0476 0.0917
0.0637 -3.53 0.0660 0.1030
0.0763 -2.82 0.0095 0.1202
0.1030 -1.84 0.0259 0.1526

NOT ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE

S.E. T-RATIO IN ALPHA S.E
0.0380 290.75
0.0380 293.17 0.0918 0.0370
0.0385 295.97 0.2533 0.0385
0.0393 283.10 0.1283 0.0406
0.0405 286.71 0.0783 0.0432
0.0420 280.55 0.1938 0.0464
0.0442 266.67 0.0040 0.0505
0.0474 251.04 0.1115 0.0559
0.0524 229.08 0.1022 0.0637
0.0613 196.88 0.0857 0.0763
0.0827 147.00 0.0818 0.1030

ALL PARAMETERS ARE SIGNIFICANT
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T-RATIO

-8.59
-1.26
0.7
0.52
0.02
0.52
0.64
0.08
017

T-RATIO

2.48
6.58
3.16
1.81
418
0.08
1.99
1.60
0.86
0.79



APPENDIX C4

(REGRESSION QUTPUT CONTINUED)
s

00827 S-SQUARED = 0.0068
s(B)

0.0827 $(B)-SQUARED =

S-SQUARED(SCI) = 0.0449

0.0068 DELTA = 0.0000
R-SQUARED = 99.5 PERCENT N = 66
SSPE = 0.948 WSSPE =

P =210
0.948

AIC = -124.97 AIC(SCl) = -52.18
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APPENDIX C5

Residuals versus development years

Figure C5.1

Residuals versus accident years

Figure C5.2
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APPENDIX CS5

s

Residuals versus payment years

Figure CS.3
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APPENDIX C6 - Cape Cod

DEV.
YEAR

- OOV VR WO -

o

ACCI
YEAR

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

GAMMA

0.2029
-0.3567
-0.4468
-0.4352
-0.3947
-0.4139
-0.3556
-0.3067
-0.3150
-0.2352

ALPHA

11.6776
11.6776
11.6776
11.6776
11.6776
11.8776
11.6778
11.6776
11.6776
11.6778
11.6776

REGRESSION TABLE

PARAMETER ESTIMATES

DIFFERENCE

S.E T-RATIO IN GAMMA SE.
0.1416 143
0.1489 -2.40 -0.5586 0.2514
0.1574 -2.84 -0.0901 0.2651
0.1677 .2.59 0.0116 0.2814
0.1803 -2.19 0.0404 0.3010
0.1962 -2.11 -0.0192 0.3256
0.2174 -1.64 0.0583 0.3574
0.2475 -1.24 .0.0489 0.4012
0.2958 -1.06 -0.0083 0.4677
0.3968 -0.58 0.0797 0.5916

NOT ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE

S.E. T-RATIO IN ALPHA S.E.
0.0977 119.53
0.0977 119.53 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.83 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.53 0.0000 0.0000
0.0977 119.83 0.0000 0.0000

ALL PARAMETERS ARE SIGNIFICANT
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T-RATIO

-2.23
-0.34
0.04
0.13
-0.06
0.18
0.12
-0.02
0.13

T-RATIO .

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00



APPENDIX C8

(REGRESSION OUTPUT CONTINUED)

S = 03240 S-SQUARED = 0.1050  S-SQUARED(SCI) = 0.0449
S(B) = 03240  S(B)-SQUARED = 0.1050 DELTA = 0.0000
R-SQUARED = 91.1 PERCENT N = 66 P= 110

SSPE = 7433 WSSPE= 7.433 AIC= 4d851 AIC(SC)) = -52.18




APPENDIX C7

Residuals versus payment years

1974 1982 19%4 1986 1943 1990

Figure C7
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APPENDIX C8 - Cape Cod with canstant inflation

DEv.
YEAR

S DN N W=

ACCI
YEAR

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

PMNT
YEAR

1978
1979
1980
1981
1982
1983
1984
1985
1986
1387

GAMMA

0.1424
{04172
-0.5072
-0.4956
-0.4552
-0.4744
-0.4161
-0.3672
-0.3754
-0.29587

ALPHA

11.0728
11.0728
11.0728
11.0728
11.0728
11,0728
11,0728
11.0728
11.0728
11.0728
11.0728

I0TA

0.1210
0.1210
0.1210
0.1210
0.1210
Q.1210
0.1210
0.1210
0.1210
0.1210

REGRESSION TABLE

PARAMETER ESTIMATES

DIFFERENCE
S.E. T-RATIO IN GAMMA
0.0439 3.24
0.0462 -9.03 -0.5596
0.0488 -10.39 -0.0901
0.0520 -9.53 0.0116
0.0559 -8.14 0.0404
0.0608 -7.80 -0.0192
0.06874 -6.18 0.0583
0.0767 -4.79 0.0489
0.0917 -4.10 -0.0083
0.1230 -2.41 0.0797

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE
S.E. T-RATIO IN ALPHA
0.0403 275.09
0.0403 275.09 0.0000
0.0403 275.09 0.0000
0.0403 275.09 0.0000
0.0403 275.09 0.0000
0.0403 275.09 0.0000
0.0403 275.09 0.0000
0.0403 275.09 0.0000
0.0403 275.09 0.0C00
0.0403 275.09 0.0000
0.0403 275.09 0.0000

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE
SE. T-RATIO INIOTA
0.0053 22.79
0.0053 22.79 0.0000
0.0053 22.79 0.0000
0.0053 22.79 0.0000
0.0053 22.79 0.0000
0.0053 22.79 0.0000
0.0053 22.79 0.0000
0.0053 2279 0.0000
0.0053 22.7% $.0000
0.0053 22.79 0.0000

ALL PARAMETERS ARE SIGNIFICANT
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S.E.

0.0779
0.0821
0.0871
0.0932
0.1008
0.1107
0.1243
0.1449
0.1832

S.E.

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

SE

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-RATIO

-7.13
-1.10

0.13
043

-0.19

0.53
0.39

-0.06

0.44

T-RATIO

0.0
0.co
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

T-RATIO

0.00
Q.00
0.00
0.00
[sely]
0.00
0.00
0.00
000




APPENDIX C8

(REGRESSION OUTPUT CONTINUED)

S = 01004 S-SQUARED = 02101  S-SQUARED(SCI) = 0.0449

S(B) = 0.1004  S(B)-SQUARED = 0.0101 DELTA = 0.0000
R-SQUARED = 99.2 PERCENT N= 66

SSPE =

P= 120
1.176 WSSPE =

1.176  AIC = -105.40 AIC(SC!) = -52.18



APPENDIX C9

Residuals versus payment years

After adjusting for average payment vear trend

-2 ;
1974 197 1978 1980 1582 1984 19% 1583 1990

Figure C9




APPENDIX C10 - Cape Cod with three payment year parameters

DEV.
YEAR

- VN U L QN -

o

ACCi
YEAR

1977
1978
1979
1980
1981
1982
1983
1984
19865
1986
1987

PMNT
YEAR

1978
1979
1980
1981
1982
1983
1084
1985
1986
1987

GAMMA

-0.1505
-0.4098
-0.5008
-0.4906
-0.4522
-0.4748
-0.4222
-0.3849
-0.4126
-0.3329

ALPHA

11.1536
11.1536
11.1536
11.1536
11.1536
11.1536
11.1536
11.1536
11.1536
11.1536
11.1836

I0TA

0.0985
0.0985
0.0988
0.0985
0.0985
0.0985
0.0985
0.1174
0.1952
0.1952

(1977-84, 1984-1985 and 1985-1987)

S.E.

0.0371
0.03%0
0.0412
0.0439
0.0472
0.0514
0.0569
0.0651
0.0780
0.1042

ALL PARAMETERS ARE SIGNIFICANT

SE.

0.0400
0.0400
0.0400
0.0400
0.0400
0.0400
0.0400
0.0400
0.0400
0.0400
0.0400

ALL PARAMETERS ARE SIGNIFICANT

SE

0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0077
0.0343
0.0197
0.0197

REGRESSION TABLE

PARAMETER ESTIMATES

T-RATIO

4.05
-10.50
-12.14
-11.17

-9.58

-9.24

-7.414

-5.91

-5.29

-3.19

DIFFERENCE
IN GAMMA

-0.5603
-0.0910
0.0102
0.0384
0.0225
0.0526
'0.0373
-0.0277
0.0797

PARAMETER ESTIMATES

T-RATIO

278.91
278.91
278.91
278.91
278.91
278.91
278.91
278.91
278.91
278.91
278.91

DIFFERENCE
IN ALPHA

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

PARAMETER ESTIMATES

T-RATIO

12.74
12.74
12.74
12.74
12.74
12.74
12.74

3.42

9.91%

9.91
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DIFFERENCE
IN IOTA

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0189
0.0778
0.0000

S.E.

0.0657
0.0693
0.0736
0.0787
0.0851
0.0935
0.1050
0.1229
0.1547

S.E.

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

S.E.

0.0000
0.0000
0.0000
0.0090
0.0000
0.0000
0.0385
0.0484
0.0000

T-RATIO

-8.52
-1.31
0.1¢
0.48
-0.26
0.56
0.36
-0.23
0.52

T-RATIO

0.00
0.00
0.00
0.00
0.00
Q.00
0.00
0.00
0.00
0.00

T-RATIO

0.00
0.00
000
0.00
0.00
0.00
0.49
1.61
0.00



APPENDIX C10

(REGRESSION OUTPUT CONTINUED)

S = 00847 SSQUARED = 0.0072  S.SQUARED(SCI) = 0.0449
S(B) = 0.0847  $(B)-SQUARED = 0.0072 DELTA = 0.0000
R-SQUARED = 99.4 PERCENT N= 66 P= 140

SSPE = 1.000 WSSPE = 1.000

AIC = -126.26 AIC(SCl) = .52.18
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APPENDIX C11

Log normalised payments versus delay
N Both vears exhﬂ.::t uncrease wn trend 1n tail
s P
nE
105 p= -
10 p= =
s F e
MR 3 ncroase for 1677 pegins romiely 78
T T

e Accidern year 1977 ——— Accident year 1978

Figure C11
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APPENDIX D1

ACCL YR

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

0

193013

376473

568891
428753
458252
355229
282419
267600
560307
360171
445545

1

1584331
1541950
1579158
970640
989072
948807
688332
1044790
940002
1011773

2

1151882
1719509
1277822

955898
1417606
1292900
1158793
1216437
1185899

INCREMENTAL PAID LOSSES

3

778980
1032570
734670
1095771
953222
748003
903450
527644

ACCI YR

1969
1970
1971
1872
1973
1974
1975
1976
1977
1978
1979

DELAY
4 -]
475203 143352
289305 382508
680369 217221
510072 491853
881133 278778
547288 274367
629983
EXPOSURES
523.00
643.00
676.00
673.00
809.00
669.00
513.00
543.00
622.00
703.00
743.00

128612
270087
147800
242995
197156

70845
108354
57099
299845

8

25077
23133
64829



APPENDIX D2

Normalised payments versus delay
Figure D2.1
Log normalised payments versus delay

03

Figure D2.2
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APPENDIX D3

DEV.
YEAR

@~ H O

ACCI
YEAR

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

PMNT
YEAR

1970
1971
1972
1873
1974
197S
1976
1977
1978
1979

GAMMA

1.1647

0.0000
-0.3768
-0.3769
-0.6226
-0.6226
-0.6226
-0.6226

ALPHA

6.3672
6.3672
6.3672
6.3672
6.3672
6.3672
6.3672
6.3672
6.3672
6.3672
6.3672

10TA

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

REGRESSION TABLE

PARAMETER ESTIMATES

DIFFERENCE
S.E. T-RATIO IN GAMMA
0.1234 9.44
0.0000 0.00 -1.1647
0.0631 -5.98 -0.3769
0.0631 -5.98 0.0000
0.0466 -13.35 -0.2457
0.0466 -13.35 0.0000
0.0466 -13.35 0.0000
0.0466 -13.35 0.0000

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE
S.E. T-RATIO IN ALPHA
0.0997 63.84
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000
0.0997 63.84 0.0000

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE
S.E. T-RATIO IN IOTA
0.0000 0.00
0.0000 0.00 0.0000
0.0000 0.00 0.0000
0.0000 0.00 0.0000
0.0000 0.00 0.0000
0.0000 0.00 0.0000
0.00C0 0.00 0.0000
0.0000 0.00 0.0000
0.0000 0.00 0.0000
0.0000 0.00 0.0000

ALL PARAMETERS ARE SIGNIFICANT
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S.E.

0.1234
0.0631
0.0000
0.0985
0.0000
0.0000
0.0000

S.E.

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

S.E.

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

T-RATIO

-9.44
-5.98
0.00
-2.49
0.00
0.00
0.00

T-RATIO

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

T-RATIO

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00




APPENDIX D

4

Residuals versus delay
Figure D4.1
Residuals versus accident years

Flgure D4.2
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APPENDIX D4

Residuals versus payment years

Figure D4.3
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APPENDIX D5

REGRESSION TABLE

PARAMETER ESTIMATES

DEV. DIFFERENCE

YEAR GAMMA S.E. T-RATIO IN GAMMA S.E. T-RATIO
1 1.1777 0.0993 11.86
2 0.0000 0.0000 0.00 11777 0.0993 -11.86
3 -0.3478 0.0513 -6.70 -0.3478 0.0519 -6.7C
4 -0.3478 0.0519 -6.70 0.0000 0.0000 0.00
S -0.6749 0.0390 -17.32 -0.3270 0.0803 -4.07
6 -0.6749 0.0390 -17.32 0.0000 0.0000 0.00
7 -0.6749 0.0390 -17.32 0.0000 0.0000 0.00
8 -0.6749 0.0390 -17.32 0.0000 0.0000 0.00

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

ACCI DIFFERENCE

YEAR ALPHA S.E. T-RATIO iN ALPHA S.E. T-RATIO
1969 6.4594 0.0927 69.68

1970 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1971 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1972 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1973 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1974 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1975 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1978 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1977 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1978 6.4594 0.0927 69.68 0.0000 0.0000 0.00
1979 6.4594 0.0927 69.68 0.0000 0.0000 0.00

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

PMNT DIFFERENCE

YEAR I0TA S.E. T-RATIO IN [OTA S.E. T-RATIO
1970 0.0000 0.0000 0.00

1971 0.0000 0.0000 0.00 0.0000 0.0000 0.00
1972 0.0000 0.0000 0.00 0.0000 0.0000 0.00
1973 0.0000 0.0000 0.00 0.0000 0.0000 0.00
1974 -0.4792 0.1308 -3.67 -0.4792 0.1306 -3.67
1975 0.3723 0.1182 3.1§ 0.851S 0.2330 3.65
1978 0.0000 0.0000 0.00 -0.3723 0.1182 -3.15
1977 0.0000 0.0000 0.00 0.0000 0.0000 0.00
1978 0.0000 0.0000 0.00 0.0000 0.0000 000
1979 0.0000 0.0000 0.00 0.0000 0.0000 0.00

ALL PARAMETERS ARE SIGNIFICANT
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APPENDIX D6
(REGRESSION OUTPUT CONTINUED)

S = 02654 S-SQUARED = 0.0704 S-SQUARED(SCY) = 0.5469

S(B) = 0.2654 S(B)-SQUARED = 0.0704 DELTA = 0.0000
R-SQUARED = 93.5 PERCENT N = 62 P= 6.0

SSPE = 7360 WSSPE= 7360 AIC= 17.13 AIC(SCl) = 43.81




APPENDIX D7

Residuals versus dela

Figure D7.1

Residuals versus accident years

1982

Filgure D7.2
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APPENDIX D7

b
ety

RaFSEAL,

Figure D7.3

Residuals versus fitted values

Ffjufe D7. 4
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APPENDIX D7

Normal scores versus residuals

Flgure D7.5
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965

FORECASTING OUTPUTY

ASSUMED FUTURE INFLATION = 0.0000
STANDARD EARROR = 0.0000

EXPECTED PAYMENTS/OBSERVED PAYMENTS e FORECAST MEAN PAYMENTS/STANDARD ERRORS
{PAYMENTS IN $1 )
EXP: 346295 1123112 1123112 799172 561671 177321 130329 66469 33951 0
0OBS: 193013 1584331 1151882 778980 475203 143352 128612 70845 25077 0
EXP: 425750 1380806 1380806 975161 428440 314654 160233 81720 41741 0
0B8S: 376473 1541950 1719509 1032570 289305 382508 270087 108354 23133 0
EXP: 447601 1451671 1451671 636733 650585 330803 168456 85914 43883 0
0BS: 568891 1579158 1277822 734670 680369 217221 147800 57099 64829 0
LT
EXP: 445614 1445229 898519 915576 647708 329335 167709 85533 43689 43689
0BS: 428753 970640 955898 1095771 510072 491853 242995 299845 12280 12280
- +
EXP: 535664 1080091 1559962 1100596 778597 395887 201599 102817 52517 155334
oBs: 458252 989072 1417606 953222 8681133 278778 197156 27673 14762 32822
F— +
XP: 275565 1290006 1290006 910134 643858 327378 166712 85024 43429 295165
l88s: 355229 948807 1292900 748003 547288 274367 43841 22884 12207 53323
[ E—
=XP: 305191 989197 989197 697906 493721 251038 127837 65198 33302 477376
IBS: 282419 688332 1158793 903450 629983 65999 33618 17548 9361 79132
[ +
IXP: 323039 1047045 1047045 738719 522593 265719 135313 69011 35249 1027886
)BS: 267600 1044790 1216437 527644 140549 69858 35584 18574 9908 167258
P +
IXP: 370037 1199377 1199377 846194 598624 304378 155000 79051 40378 2023625
)BS: 560307 940002 1185899 221766 160997 80022 40761 21276 11350 300456
JEREREEEEE o
XP: 418225 1355566 1355566 956389 676580 344016 175185 89345 45636 3642717
)BS: 360171 1011773 360708 250646 181963 90443 46069 24047 12827 502218
e +

XP: 442022 1432697 1432697 1010807 715077 363590 185152 94429 48233 5282681
)8S: 445545 381231 381231 264907 192317 95589 48690 25415 13557 674135
PAYMENT YRS: 4721306 3518808 2235705 1316405 653075 314876 140065 12948473
57849 29752 13557 1030808

10 ERAORS: 623018 504462 345451 223516 111688
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APPENDIX D39

ACC.
YEAR EXPECTED OBSERVED
(PAYMENTS IN $1'S)
69 4355433 4551295
70 5189312 5743889
m 5267328 5327859
72 4849669 4695982
73 5652397 5175219
74 4736946 4166594
75 3475212 3662977
76 3155847 3056471
77 2768792 2686208
78 1773792 1371944

79 442022 445545

TABLE OF OBSERVED AND EXPECTED BY YEAR

DIFFERENCE

195862
554577
60531
-153707
-477178
-570352
187765
-99376
-82584
-401848
3523

%ERROR

N oS,
CVLOLLLO L=

PMNT
YEAR

69
70
7
72
73
74
75
76
77
78
79

EXPECTED

346295
1548863
2951519
4071263
4969396
3496670
5166314
4908050
4708472
4697662
4802265

OBSERVED DIFFERENCE
(PAYMENTS IN $1°s)

193013
1960804
3262723
4506400
4214487
3467526
4936092
4270279
5166110
4568353
4337196

-153282

411941
311204
435137

-754809

-29144

-230222
-637771

457638

-128309
-465069

%ERROR
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DD

FORECASTING OUTPUT

ASSUMED FUTURE INFLATION = 0.0000
STANDARD ERROR = 0.0000

EXPECTED PAYMENTS/OBSERVED PAYMENTS b b

AR (PAYMENTS IN $1S)
169  EXP: 346295 1123112 1123112 793172 561671 177321
OBS: 193013 1584331 1151882 778980 475203 143352
170 EXP: 425750 1380806 1380806 975161 428440 314654
OBS: 376473 1541950 1719509 1032570 289305 382508
171 EXP: 447601 1451671 1461671 636733 650595 330803
08S: 568891 1579158 1277822 734670 680369 217221
172 EXP: 445614 1445229 898519 915576 647708 329335
0BS: 42875; 970640 955898 1095771 510072 491853
173 EXP: 535664 1080091 1559962 1100596 778597 395887
OBS: 458252 985072 1417606 953222 881133 278778
t74 EXP: 275565 1290006 1290006 910134 643858 327378
OBS: 355229 Q48807 1292900 748003 547288 274367
--------- +
1S EXP: 305191 989197 989197 697906 493721 251038
0BS: 282419 688332 1158793 903450 629983 65999

O +
176 EXP: 323039 1047045 1047045 738719 522593 265719
0BS: 267600 1044790 1216437 527644 140549 69858
4oencnnen +
177 EXP; 370037 1198377 1199377 846194 598624 304378
0BS: 560307 940002 1185899 221766 160997 80022
- +
178 EXP: 418225 1355566 1355566 956389 676580 344016
0OBS: 360171 1011773 360708 250646 181963 90443
[
‘79 EXP: 442022 1432697 1432697 1010807 715077 363590
08s: 445545 381231 381231 264907 192317 95589
.......................................... .

)T.FOR PAYMENT YRS: 4721306 3516808 2235705 1316405 653075
TANDARD ERRORS: 623018 504462 345451 223516 111688

FORECAST MEAN PAYMENTS/STANDARD ERROF

130329
128612

160233
270087

168456
147800

167709
242996

201599
197156

166712
43841

127837
33618

135313
35584

155000
40761

175185
46069

185152
48690

............. S PR GRLY RS

314876
57849

102817
27673

85024
22884

65198
17548

69011
18574

73051
21276

89345
24047

94429
25415

140065
29752

33951
25077

41741
23133

43883
64829

4368
1228

15533
3282.

29516'
5332

47737
7913:

102786+
16725t

202362!
30045

364271,
50221

5282681
67413
129484/
10350801



APPENDIX D10

VALIDATION
DEV.

YEAR GAMMA
1 1.2468
2 0.0000
3 -0.4024
4 -0.4024
5 -0.5544
6 -0.5544
7 -0.5544
8 -0.5544
ACC1
YEAR ALPHA

1969 6.4278
1970 6.4278
1971 6.4278
1972 6.4278
1973 6.4278
1974 6.4278

1975 6.4278
1976 6.4278
1977 6.4278

1978 6.4278
1979 6.4278

PMNT
YEAR I0TA
1970 0.0000

1971 0.0000
1972 0.0000
1973 0.0000
1974 -0.4798
1975 0.3087
1976 0.0000
1877 0.0000
1978 0.0000
1979 0.0000

S.E.

0.1076
0.0000
0.0639
0.0639
0.0753
0.0753
0.0753
0.0753

S.E.

0.0922
0.0922
0.0922
0.0922
0.0922
0.0922
0.0922
0.0922
0.0922
0.0922
0.0922

REGRESSION TABLE

PARAMETER ESTIMATES

DIFFERENCE
T-RATIO IN GAMMA
11.58
0.00 -1.2468
-6.29 -0.4024
-6.29 0.0000
-7.37 -0.1520
-7.37 0.0000
:7.37 0.0000
-7.37 0.0000

S.E.

0.1076
0.0639
0.0000
0.1213
0.0000
0.0000
0.0000

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE
T-RATIO IN ALPHA
69.72
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000
69.72 0.0000

S.E.

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

ALL PARAMETERS ARE SIGNIFICANT

PARAMETER ESTIMATES

DIFFERENCE
T-RATIO IN IOTA
0.00
0.00 0.0000
0.00 0.0000
0.00 0.0000
-3.97 -0.4798
2.57 0.7886
0.00 -0.3087
0.00 0.0000
0.00 0.0000

S.E.

0.0000
0.0000
0.0000
0.1208
0.2196
0.1203
0.0000
0.0000

0.00 0.0000 . 0.0000
ALL PARAMETERS ARE SIGNiFjcANT
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T-RATIO

-11.58
-6.29
0.00
-1.25
0.00
0.00
0.00

T-RATIO

0.00
0.00
0.00
0.00
0.00
0.00°
0.00
0.00
0.00
0.00

T-RATIO

Q.00
0.00
0.00
-3.97
3.59
-2.57
0.00
0.00
0.00
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Figure D11.1

1982

F!gure 0112
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APPENDIX D11

Figure D11.3

Ay

Figure D11.4
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APPENDIX D12

Validated residuals versus delay

Validated residual =prediction error

0.5

05

Figure D12.1

Validated residuals versus accident years

1582
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APPENDIX D12

13

Figure D12.3

Norma

| scores versus residuals

R A T e %

Figure D12.4
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IDATION MODEL

ASSUMED FUTURE INFLATION = 0.0000
STANDARD ERROR = 0.0000

EXPECTED PAYMENTS/OBSERVED PAYMENTS

FORECASTING OUTPUT

Bt

FORECAST MEAN PAYMENTS/STANDARD ERROR:

R (PAYMENTS IN $1 S)
9 EXP: 333078 1157384 1157384 774069 519825 184730 144344
oBs: 193013 1584331 1151882 778980 475203 143352 128612
) EXP: 409501 1422941 1422941 951676 395746 308064 177464
0BS: 376473 1541850 1719509 1032570 289305 382508 270087
EXP: 430518 1495969 1495969 620480 565416 323874 186571
08S: 568891 1579158 1277822 734670 680369 217224 147800
EXP: 428607 1489330 925009 839313 562907 322437 185743
08s: 428753 970640 955898 1095771 510072 491853 242995
o EXP: 515220 1111935 1510497 1008922 676660 387595 223278
£ OBS: 582529 989072 1417606 953222 881133 278778 197156
EXP: 264794 1249101 1243101 834325 559561 320521 184639
0BS: 355229 948807 1292900 748003 547288 274367 46231

-------- +
EXP: 275840 957831 957831 639774 429081 245780 141584
0BS: 282419 688332 1158793 903450 629983 58502 35451

onemee b
EXP: 291971 1013844 1013844 677187 454173 260153 149864
0BS: 267600 1044790 1216437 527644 113657 61923 "37524
A +
EXP: 334450 1161346 1161346 775710 520250 298003 171668
0BS: 560307 940002 1185899 184214 130192 70932 42983
E—— +
EXP: 378003 1312583 1312583 876727 588000 336810 194023
OBS: 360171 1011773 318349 208204 147147 80169 48581
[P +
EXP: 399511 1387267 1387267 Q26612 621456 355974 205063
0BS: 445545 336463 336463 220050 155519 84731 51345
............... +. . JRS, .

FOR PAYMENT YRS: 4552200 3368314 2106825 1264545 700034 375411
LIDARD ERRORS: 578766 453677 299060 193348 117101 77112

83624
70845

102811
108354

108087
57099

107607
299845

129353
36802

106968
30433

82025
23336

184289
47562

48721
25077

0
0

62695
20985

20477
52836

353929
72ny

517179
85810

1001596
147670

1923027
262653

3486036
452821

5071655
625691
12620833
1072089




S09

A DY

ACC.
YEAR

69
70
kA
72
73
74
75
76
77
78
79

4403160
7251043
5289859
4753347
5434107
4477402
3260356
2996847
2657142
1690586

399511

EXPECTED OBSERVED DIFFERENCE
(PAYMENTS [N $1°S)

TABLE OF OBSERVED AND EXPECTED BY YEAR

PMNT
%ER YEAR EXPECTED OBSERVED DIFFERENCE
(PAYMENTS IN $1's)

4551295 148135 3 69 333078 193013 -140065
5743869 492846 8 70 1566886 1960804 393918
5327859 38000 0 7t 3010843 3262723 251880
4695982 -57365 -1 72 4121587 4506400 384813
5175219 -258888 -5 73 4972020 4214487 -757533
4166594 -310808 7 74 3502693 3467526 -35167
3662977 402621 10 75 4892575 4936092 43517
3056471 59624 1 76 4655693 4270279 -385414
2686208 29066 1 77 4477648 5166110 688462
1371944 -318642 -23 78 4493854 4569353 75499
445545 46034 10 79 4586481 4337196 -249285

%ER
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IBNR Reserve Under a Loglinear
Location-Scale Regression Model

by Louis Doray
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IBNR RESERVE UNDER A LOGLINEAR
LOCATION-SCALE REGRESSION MODEL

Abstract

In this paper, we develop models for known claims, when the data are grouped into the
usual triangle and the goal is to predict IBNR claims. We assume that the payment for
a certain accident and development year is composed of a deterministic part and a multi-
plicative random error. We use a loglinear location-scale regression model for the amount
of claims. The parameters are estimated by maximum likelihood methods, so that their
asymptotic properties are well known. The regression model presents many advantages
over the chain ladder method: it has fewer parameters, and does not underestimate the
reserve. Moreover, it will be possible with a simulation to establish a reserve with a certain
level of confidence (for example 80%).

The logarithm of the error is assumed to follow certain known distributions (normal,
extreme value, generalized loggamma, logistic and log inverse gaussian). We derive certain
theoretical properties of these distributions and prove that the MLE’s of the regression
and scale parameters exist and are unique, when the error has a log-concave density.

In conclusion, we advocate the use of regression models over the chain ladder method,
since they take into account both the error involved in the estimation of the parameters
and the statistical error inherent in the prediction of future claims, the fit of the model
can be tested statistically and confidence intervals for the reserve can be derived.

Keywords: Chain-ladder method; Weibull-extreme value regression; maximum like-
lihood; prediction; generalized loggamma; logistic: inverse gaussian; consistency.

!'The author gratefully acknowledges the financial support of the CAFIR research fund and of the Natural
Sciences and Engineering Research Council of Canada.
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1 Introduction

1.1 IBNR claims

All insurance companies registered to do business in Canada are required by the
regulatory authorities to set up reserves for claims which have been incurred but have not
yet been reported as of their financial statement date, usually December 31. In determining
the liabilities of the insurance company, the valuation actuary must also estimate the
liabilities generated by claims incurred but not enough reserved (IBNER), (also called
reported but not settled (RBNS)).

The distinction between these two parts of the loss reserve, the IBNR part and the
IBNER part, is not always made in practice, especially when the data are aggregated. In
this paper, by IBNR reserve, we will refer to both types of claims.

The primary purpose of those reserves is to ensure the protection of the policyholders:
when the insurance company is notified of these claims, it will have the reserves, backed
by sufficient assets, to pay those claims.

The delay in reporting the claim may depend on the type of claim (for example, asbesto-
sis may take more than 10 years to manifest itself in a worker). The long delay observed
in the settlement of certain claims is sometimes due to the fact that some of them are
resisted by the insurance company, putting into motion a long judiciary process. In other
cases, there will be a long delay before the ultimate cost of a claim can be determined

exactly (in workers’ compensation for example, the insurance company will have to wait
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for an annuity to terminate).

The 1987 Loss Development Study, undertaken by the Reinsurance Association of
America, compares the development of losses for various lines of business. Automobile
liability was the line where the claims got developed the fastest, while Workers' Compen-
sation was slower to develop. General liability, excluding asbestos claims, had a develop-
ment pattern similar to Workers” Compensation, but a little bit slower initially. Medical
malpractice experienced the slowest development among those lines of business.

Due to this long reporting and settlement lag, it will be extremely important for the
valuation actuary to develop adequate statistical models to project known losses to ultimate

losses.

1.2 The chain ladder method and its deficiencies

By grouping the claims by accident year (year in which the accident giving rise to the
claim occurred) and development year (number of years elapsed since this accident year),
the data can be presented in a trapezoidal array.

In this paper, to illustrate the various models proposed, we will use the data in table |
(taken from CIA Proceedings, Volume 20 no 1, p.183), which represents the liability claims
in thousands of dollars incurred by a Canadian insurance company over the ten-year period
1978-1987. We will do the analysis with the incremental claims (in table 2), obtained by
differencing successive cumulative amounts.

The problem of estimating IBNR claims consists in predicting, for each accident year,
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Table 1: Claims Incurred

Development year

Accident year 1 2 3 4 § 6
1978 8489 | 9785 | 10709 | 11289 | 11535 | 11661
1979 12970 | 14766 | 16201 } 17060 | 17714 | 17979
1980 17522 | 20305 | 21774 | 22797 | 23220 | 23872
1981 21754 | 24338 | 25501 | 26284 | 27171 | 27526
1982 19208 | 21549 | 22769 | 23388 | 24229 | 24932
1983 19604 | 22073 | 23296 | 24543 | 25155
1984 21922 | 24233 | 25374 | 26882
1985 25038 | 28401 | 30545
1986 32532 ] 37006
1987 39862

the ultimate amount of claims incurred. The amount paid by the insurance company
for those claims is then subtracted, leaving the reserve the insurer should hold for future
payments. To calculate the reserve, all methods or models usually assume that the pattern
of cumulative or incremental claims inrcurred or paid is stable across the development
years, for each accident year. Since for the last accident year, only ore amount will be
available, the reserve will be highly sensitive to this amount. Moreover, because of growth
experienced by the company, it will be bigger than any other amount in the data set, hence
the importance of verifying that the development pattern of the claims has not changed
over the years.

One of the earliest methods, and now most commonly used in the actuarial profession,
is the chain ladder method. Assuming that for each accident year, the development pattern

remains stable, development factors are calculated by dividing cumulative paid or incurred
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Table 2: Incremental claims incurred

Development year

Accident year 1 2 3 4 5 6
1978 8489 | 1296 | 924 | 580 | 246 | 126
1979 12970 | 1796 | 1435 | 859 [ 654 | 265
1980 17522 {1 2783 | 1469 | 1023 | 423 | 652
1981 21754 | 2584 | 1163 | 783 | 887 | 355
1982 19208 | 2341 | 1220 | 619 | 841 | 703
1983 19604 | 2469 | 1223 | 1247 | 612
1984 21922 | 2311 | 1141 | 1508
1985 25038 | 3363 | 2144
1986 32532 | 4474
1987 39862

claims after j periods since incurral by the cumulative amount after j — | periods. These
factors can be weighted by the amount each year. The year-to-year development factors
are then applied to the most recent amount for each accident year, i.e. the amounts on
the right-most diagonal.

Using the weighted approach with the cumulative claims of table 1, we obtain the
development factors of table 3. Projecting the claims incurred to ultimate amounts with

those development factors, we obtain a reserve estimate of 23,919.

Table 3: Loss Development Factors

Year | Development factors
1.2 1.13079
2-3 1.06479
3.4 1.04545
4-5 1.02922
5-6 1.02023
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Many variations have been presented for the basic chain ladder method just introduced;
a linear trend or an exponential growth may be assumed to be present among the devel-
opment factors. Instead of taking their weighted average, they w-ould be extrapolated into
the future. The chain ladder method can also be adjusted for inflation.

However, the chain ladder method suffers from the following deficiencies:
1- it implicitly assumes too many parameters (one for each column).

2- it does not give any idea of the variability of the reserve estimate, or a confidence

interval for the reserve.

3- as will be shown in section 2, it is negatively biased, which could lead to serious

underreserving, a threat to the insurer’s solvency.

We will therefore develop a stochastic model, which involves only 5 parameters. With
this model, we will be able to calculate an amount such that there is an 80% probability
that the reserve will be sufficient to cover the liabilities generated by the current block of

business.

1.3 The general model

In this paper, we will consider loglinear location-scale regression models of the form

Zi=lnY;=X;f+o0€¢, Y>>0
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where Y; is the ith element of vector Y (the data), of dimension n,

X is the regression matrix, whose first column contains 1's,
and whose ith row is the vector denoted by X
and (i, 7) element is denoted X,

Jel is the vector of unknown parameters to be estimated,
of dimension p,

X8 is the location parameter for Z;,

o is the scale parameter,

and € is a random error with known density f(e).

The loglinear location-scale model has been used extensively in reliability theory and in
survival analysis (see for example, Kalbfleisch and Prentice (1980), Lawless (1982), Cohen
and Whitten (1988), Bain and Engelhardt (1991)). It is easily shown that the random

variable Z; will have density

lI(Z.‘—X.ﬂ
a

)y, —o0 < 2 < oo.
4

As in Zenwirth (1990), for the location parameter, we willuse a + Slnj+vj+ i+ j—-2),
where ¥ is the accident year and j, the development year. Taylor (1986) cautions not
to use cumulative claims amounts, but incremental claims in the analysis; otherwise, the
estimates obtained would be biased, because of the non-independance of the cumulative
amounts.

We will assume that Y; > 0. To model negative values of Y;, Cohen and W hitten (1988)
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use modified moment estimators and Cohen (1988), local maximum likelihood methods.

1.4 OQutline of the paper

Section 2 considers the lognormal linear regression model and presents the results
of a simulation study showing that the chain ladder estimate of the reserve is negatively
biased. Other choices possible far the distribution of the random error are the extreme
value distribution, leading to the Weibull-extreme value regression model (section 3), the
generalized loggamma (section 4), the logistic (section 5), and the log inverse gaussian
distribution (section 6). We derive certain theoretical properties of these distributions,
such as their moment generating function and moments. We show how the actuary can
establish a reserve with a certain level of confidence (for example 80%), with a simulation.

In section 7, we show that the MLE’s of the regression and scale parameters exist and
are unique when the error € in the loglinear location-scale regression model has a log-
concave density. Under misspecification of the error distribution in a linear location-scale
model, the MLE's of the regression parameters are shown to be consistent (section 8), while
we present a sufficient condition for the consistency of the MLE of the scale parameter,

when the postulated model has lognormal errors. Finally, we present some remarks.

2 Lognormal linear regression model

When it is assumed that ¢; are independent and identically distributed N (0, 1) random

variables, we obtain the lognormal linear regression model. Doray (1992) has studied
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Table 4: Frequency distribution of the IBNR reserve under the normal error assumption

Amount | MLE | CLE Amount ([ MLE |CLE

< 13000 0 0 | 30000-31000 165 152
13000-14000 4 2 | 31000-32000 150 126
14000-15000 12 i1 | 32000-33000 103 80
15000-16000 33 30 | 33000-34000 96 68
16000-17000 62 72 | 34000-35000 76 47
17000-18000 126 131 | 35000-36000 50 40
18000-19000 191 199 | 36000-37000 36 26
19000-20000 253 301 | 37000-38000 28 16
20000-21000 323 376 | 38000-39000 20 5
21000-22000 372 391 | 39000-40000 14 2
22000-23000 149 441 | 40000-41000 13 10
23000-24000 449 498 | 41000-42000 8 2
24000-25000 393 443 | 42000-43000 7 3
25000-26000 366 436 | 43000-44000 7 0
26000-27000 342 375 | 44000-45000 2 2
27000-28000 334 274 | 45000-46000 2 1
28000-29000 285 231 | 46000-47000 6 0
29000-30000 214 207 > 47000 9 2

extensively this model, taking into account the estimation error on the parameters and
the statistical prediction error in the model. He has derived various estimators for the
IBNR reserve, among them the maximum likelihood estimator and the uniformly minimum
variance unbiased estimator (UMVUE), as well as an expression for the variance of the
latter estimator. The variance of the IBNR reserve is also calculated. The joint distribution
of the amounts in each cell of the lower triangle is shown to follow a multivariate lognormal
(M LN) distribution.

To compare the traditional chain ladder estimator of the reserve with the MLE, a

simulation was performed, assuming the model InY¥;; = a, + 8, + ¢, is the true model.
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Figure 1

IBNR reserve for log-normal regression
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Five thousand sets of realizations of Y;; in the trapezium were randomly generated.
where each Y;; is independent LN (&; + ﬁj,z';’), where the values of 3 and 0?2 are the MLE’s
of the parameters. For each set, we calculated the chain ladder estimate (CLE) and the
MLE of the predicted value of IBNR claims using the multivariate lognormal distribution
(see appendix 10.1 for the algorithm used for the simulation). The results of the simulation
are summarized in table 4 and figure 1. We see from those results that the reserve has
a distribution skewed to the right, which comes from the lognormal assumption. The
reason why the chain ladder estimate. generally used by actuaries to determine insurance
company reserves, underestimates the expected liability, is that it does not capture this
long-tail behaviour, as is apparent from table 4.

The MLE of the reserve gives 25,262, while the CLE gives 23,919. The reserve for IBNR
claims the insurance company will hold could be set at, for example, the 80-th percentile of
the predicted distribution of IBNR claims, that is at 29,019 in our example. The actuary
could then state, that in his or her opinion, there is an 80% probability that the reserve
will be sufficient to meet the liabilities of the current block of business.

Asymptotically (i.e. as the upper trapezium of data gets larger), the various variables
to be predicted will become independent, and from that perspective, we can consider an
asymptotic confidence interval for the reserve, using the central limit theorem. The lower
bound for the 80% asymptotic confidence interval of the reserve is 29,514, which can be
compared with the amount of 29,019 obtained in the simulation.

A provision for adverse deviation could also be defined as equal to the 80-th percentile
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of the predicted distribution of IBNR claims minus the UMV UE of the reserve (24,403).

This gives 4616 as the PAD for the claims of section 1.2.

3 Weibull-extreme value regression model

In this section, we examine the Weibull-extreme value regression model. Let us assume
that ¢ follows a standard type I extreme value (or Gumbel) distribution with
probability density function (pdf) J(€) = exp(e —ef), -0 < €< 00,
cumulative distribution function (cdf) F(€) =1 — exp(—e®),
moment generating function (mgf) M (t)=T(1+1¢), t> —1,
mean E(e) = —y = -0.5772156649015329... .,
where vy is Euler’s constant

and variance Var(e) = x2/6.

The extreme value density is skewed to the left. The probability that a standard normal
random variable take a value greater than 1.96 is 0.025, while the corresponding probability
for the standard extreme value is only 0.0008256. Lawless (1982, p. 17-19) and Johnson
and Kotz {(1970) discuss the properties of the extreme value distribution.

Under this assumption for the density of ¢, Y; has the pdf

AR vi \*
aeXd (cx'”) exe 1= (CX.-B) v vi> 0,

which will be recognized as that of a Weibull random variable (Hogg and Klugman (1984)).

-

Under this parametrization, the shape parameter is equal to 1/0 and the scale parameter
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to eX'?, The hazard rate will be increasing if ¢ < 1, decreasing if ¢ > 1 and constant if
o =1, in which case the Weibull distribution reduces to the exponential distribution. The

mean and variance of Y; are:

E(Y) *Pr(1 + 0)

Il

Var(Y;) e P[P(1 4+ 20) =T (1 +0)}.

A proof of those results is contained in Lawless (1982).

The likelihood function based on the data z, = lny;, is

L(B,0) = ﬁ%exp [ﬁ%m — exp (Z'—aﬂ)] ,

=l

and the log likelihood is

I(ﬂ.d) = i [— Ine 4+ z'__axﬁ —exp (Z.“'X.'ﬂ)] )

i=1 L4

Let us define w; = (z; — X;8) /o.

The first and second partial derivatives of / with respect to §; and o are

o _ 1f:x--+li‘x--e'"- =1
ap; - 9 =1 N 9 =1 e IE Dk
al L 1 &
— = ———=) wit =) we™
de o ag g
%l 1 & w
W = —;—,m/\.,’(ut , hk=1,...,p
az, n 72 B 2 1 - 1 & 2w
257 = ;—5+?§w;—a—;§w;e '—;iz:;w;e ',
3 . 1 & [
— = =) Xij-=)_ Xje"-— gwie™, j=1,...,
800 o2 Y a,g:"(,: a’EX’we i=1 p

In appendix 10.2, we have listed some asymptotic properties of MLE's. The terms in

the observed information matrix can be simplified by using the fact that the MLE’s for

620




B; and o satisfy the equations 3‘%’- = % = 0. The observed information matrix [o then

becomes
n Tlnj i Yiti-2 LR
Tlnj Z(in j)Fe Tillnjled  T(i+j-2(0njle?  T(lnj)ies
;,—lz i 3 (In e > il i+ )= 2)e™ et
Ti+ji-2 Sl+j-2nie® Tili+j-2e®  F(i+j-%%  T(i+j—-2ige®
n+ 3ty T(In j)ise Tjwje” T(i4 ) = 2bie™ n+ T wfe

where w; = (2; - X.-ﬁ)/&.

The asymptotic variance.covariance matrix of the parameters is equal to the inverse of
Iq, and could be found using a symbolic computational language like MAPLE, or evaluated
numerically. The expected information matrix can also easily be obtained (ref. Lawless
(1982), p. 301-302).

Maximizing the log likelihood with the data of section 1.2 by using the Newton-Raphson
algorithm or the SAS (1985) LIFEREG procedure, we find the MLE’s, estimated standard
errors and correlation matrix appearing in table 5. In section 7, we show that for certain
location-scale models, the MLE's exist and are unique; this is true in particular for the
Weibull-extreme value regression model.

All parameters are highly significant (at the 0.0001 level). It should also be noticed that
the scale parameter estimator & is not independent of the location parameter estimator, as
is the case in normal regression. This complicates somewhat the estimation of the [BNR

reserve.
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Table 5: Weibull-extreme value regression

parameter MLE std. error correlation matrix
a 9.02897 | 0.11505 1 0.429 -0.515 -0.461 -0.017
Jil -3.26637 | 0.25407 | 0.429 1 -0.972 0.214 0.0004
b 0.40378 0.10372 |-0.515 -0.972 1 -0.280 -0.006
L 0.10811 | 0.01641 |-0.461 0.214 -0.280 1 0.011
o 0.02459 0.00642 | -0.017 0.0004 -0.006 0.011 1

A Q-Q plot of the residuals appears in figure 2. [t shows no evident departure from
the extreme value distribution. It should be noted that the above standard errors and
correlation matrix of the parameters are based on the joint asymptotic multivariate normal
distribution of the MLE’s. This approximation will be appropriate only when the aumber
of cells in the trapezium of data is large enough {in our example, we have 45 cells).

How large is large enough? Bain and Engelhardt (1991) considered this problem for
the Weibull distribution, but without covariates in the location parameter. They provide
a table giving the bias of the MLE of the shape parameter of the Weibull distribution
for different sample sizes. With a sample size of 40, the MLE overestimates the shape
parameter by only 3.5%. If the sample size is only 10, care should be taken, since the
bias is then around 15%. Those factors were obtained by a simulation study. We will not
correct for the bias in our analysis, but we should remember that this might be a good
idea for small sample sizes.

To test for o = 1 (test of exponentiality of Y;), we can use the asymptotic normality
of the MLE’s; unless the sample size is large, Lawless (1982) cautions that the normal

approximation might not be very good. A likelihood ratio test can also be performed
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Figure 2: Extreme value Q-Q plot of residuals
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using the test statistic

L(4.1)

A T v
L(8,5)

—2log

where 3 is the MLE of # under Hg: ¢ = 1; the likelihood ratio statistic A has an asymptotic
x(zl) distribution. Performing a simple normal test leads us to reject the hypothesis Hg:0 =
1. A Weibull distribution is therefore more appropriate for the data than an exponential
distribution.

We now turn our attention to the problem of predicting the IBNR reserve. In a log-
linear location-scale model, the total error in the log predicted amount Zy is composed
of two parts: an estimation error on the parameters and a statistical prediction error.
We saw earlier that in the Weibull-extreme value regression model, the estimators of the
parameters have an asymptotic multivariate normal distribution, while the process error
has an independent extreme value distribution.

Let Yy denote the random variable for the amount to be predicted in accident year k
and development year I, and let us define Zy = In Yi. The random variable Zy being
equal to Zy = a + Blnk + ¥k + i(k+1—2)+ ¢, we can appreciate the difficulty involved
in trying to get its exact distribution. For this, we would need to find the distribution of
the product of a normal and an extreme value random variable (¢ and ¢) and convolute
this with a non-independent normal random variable. To get the distribution of Yy, the
distribution of Zy is then exponentiated. It is highly doubtful that such a distribution
would have a simple density. [nstead of trying to accomplish this task, we will perform a

simulation study to evaluate IBNR reserves. This will make it possible to find a confidence
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interval for the reserve.

Table 6: Frequency distribution of the IBNR reserve under the extreme value error as-

sumption

Amount Frequency

< 15000 0
15000-16000 1
16000-17000 12
17000-18000 54
18000-19000 144
19000-20000 357
20000-21000 664
21000-22000 904
22000-23000 982
23000-24000 791
24000-25000 605
25000-26000 285
26000-27000 142
27000-28000 46
28000-29000 8
29000-30000 4
30000-31000 1

> 31000 0

In appendix 10.1, we show how to generate a multivariate normal distribution, using
the Choleski decomposition method. To be able to simulate the random variable Yy, we

just need to show how to generate a standard extreme value random variable ¢, with cdf

Ple <) = 1 —exp(—e®), —00 < ¢g < 0.

This cdf is easily inverted, yielding

e=In(~-In(1-V)), 0<VU <1,

625



frequency

1000

800

600

400

200

Figure 3: IBNR reserve for Weibull-extreme value regression

15000

20000 25000

reserve

626

30000




where U is a uniform random variable on the interval [0,1]. Note that 1 — {/ is also uniform
on [0,1], simplifying the algorithm.

Table 6 and figure 3 contain the results of a simulation of 5000 values for the IBNR
reserve. The mean of the IBNR claims is 22,402 and the standard deviation of this estimate
is 2011. The 80-th percentile for the simulated distribution of the IBNR reserve is 23,980.

Comparison of the extreme value and the normal distributions shows that the former
has a heavier left tail and a lighter right tail than the latter. The estimation error on the
regression parameters is of the same order in both models, while the stochastic error is

smaller in the extreme value case.

4 Generalized loggamma regression model

The regression model used in this section will be the following
Zi=hY;, = X0+ o0¢,

where ¢; has a loggamma distribution with pdf

Jg)
F(¢~)

07 explg~}(ge — e™)], —co < € < oo,

fleiq) =
and the shape parameter g can take any non-zero value (ref. Lawless (1982), p. 322-328).

Under this parametrization, as ¢ tends to 0, we obtain the normal distribution with pdf

exp(—e€?/2), —00 < € < co.

1
€) =
"= 7=
The following special cases for the random variable V; can be obtained for certain

values of the parameters ¢ and a: Weibull (¢ = 1), exponential (¢ = ¢ = 1), lognormal
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(¢ = 0) and reciprocal Weibull (¢ = —1). The density is negatively skewed for ¢ > 0,
with absolute skewness and kurtosis increasing as ¢ increases; it is positively skewed for
g > 0. A likelihood ratio test can be performed to test for the appropriateness of a certain
member of the family.

Prentice (1974) and Farewell and Prentice (1977) have studied the properties of this
generalized distribution. If we define the parameter £ = ¢~7, then it has moment gener-
ating function [(k + ), ¢t > —k, mean ¥(k) and variance ¢'(k), where ¥(-) and ¥'(-) are
respectively the digamma and trigamma functions, the first and second derivatives of the

gamma function. The series expansion for these two functions are:

n-1
1
P(n) = —v+ -, for an integer n > 2
(n) Elk g
o o]
viz) = d(z+R7 2 #£0,—1,-2,...
k=0

The log likelihood function gives

1(B,0,9) = Y_In f(wi;q) ~Ino,
=1

where w; = (2; — X.8)/o and

In f(wirg) =In | q ] —2¢ % Ing = InT(¢™?) + ¢"}(qu; — e™).

The first and second partial derivatives of [ with respect to § and o gives

ol N

25 - Z;;’[exp(qw,)-—l]. j=1l....p.
J i=l

al W, 1

7 - g{;{ew(qw.—)—l]—;}
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ol n -1
= ZX.','X.'k(;,—)exP(qwi)

aﬂjaﬂ" =l
311 ~ 1 2 2uw;
9a7 E ;5[1 —w{ exp(quw;)] - F[exp(qw‘) ~1]
o o 1
90 § X.';(F)[w;exp(qw.-) + ;I'(exp(qw'-) —1).

Again, using the fact that the MLE’s satisfy g—; = %—’ = 0, we can simplify the last two
partial derivatives and obtain

a

1 . .
a7 |8 = ~aln+ 3 o exp(qwi)]

and
2
5[%% I(;},a) = _%inﬂi’i exp(qu;).

To find the MLE's of the parameters, we can use the approach suggested by Farewell
and Prentice (1977). The parameter q is fixed at a value go and the profile log likelihood is
maximized using the Newton-Raphson algorithm over the regression parameters J and the
scale parameter o. This gives the estimates (ﬁ(qo), (g0)). This procedure of maximizing
the profile log likelihood is repeated for many values of go, until an overall maximum of
the log likelihood over gq is attained. This value gives the MLE §.

The SAS package fits generalized loggamma regression models. Using the SAS LIFEREG
procedure for complete data, we find the results appearing in Table 7.

The default convergence criterion used by SAS is that 2 maximum is assumed to have
occurred if the relative change in the parameters is less than 0.001. However, as can be
seen from table 8, the likelihood keeps increasing beyond this value of §. The convergence

criterion we used is that the score statistic with respect to each parameter should be of
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Table 7: Generalized loggamma regression (SAS program)

parameter { MLE | std. error correlation matrix
a 9.32243 0.02789 1 0.469 -0.521 -0.160 -0.497 0.497
8 -3.12566 | 0.07028 0.469 1 -0.991 0.645 -0.150 0.150
~ 0.35670 0.02969 | -0.521 -0.991 1 -0.626 0.124 -0.123
¢ 0.10058 0.00357 | -0.160 0.645 -0.626 1 -0.087 0.086
4 0.04035 0.03187 | -0.497 -0.150 0.124 -0.087 1 -0.981
q 9.99342 7.63421 0.497 0.150 -0.123 0.086 -0.981 1

the order of 10~%. Past the value of g = 31.623 (corresponding to k = g5 = 0.001), some
elements of the information matrix become so large that it cannot be inverted and the

standard Newton-Raphson algorithm fails.

Table 8: Generalized loggamma regression for various values of qq

a(qo) B(g0) 7(q0) i(g0) a(qo) {(g0)
8.97986 | -3.14641 | 0.30881 | 0.12298 | 0.31380 | -11.70862
9.02897 | -3.26637 | 0.40378 | 0.10811 | 0.24588 | -8.66845
9.15105 | -3.19165 | 0.38375 | 0.10369 { 0.17552 | -7.82173
9.24020 | -3.13178 { 0.35787 | 0.10264 | 0.12742 | -7.23110
9.27974 | -3.12132 | 0.35336 | 0.10188 | 0.09803 | -6.64823
9.30818 | -3.12572 | 0.35608 | 0.10088 | 0.06590 | -5.68347
9.31835 | -3.12611 | 0.35666 | 0.10061 | 0.04950 | -5.03186
9.32308 | -3.12419 | 0.35609 | 0.10063 | 0.03964 | -4.62194
9.33019 | -3.11565 | 0.35296 | 0.10088 | 0.01986 | -3.87515
9.33340 | -3.11023 | 0.35061 | 0.10092 | 0.01324 | -3.68571

@ N =
S S S s wN e~ o8

A few remarks should be made here.

1- the likelihood is so flat that it makes the standard error of § (7.63421), calculated
assuming asymptotic normality, totally unreliable. Bain and Engelhardt (1991, p.

393) report that the asymptotic normal distribution for k& will not be very accurate
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unless the sample size is greater than 200 or 400. Farewell and Prentice (1977) note
that the skewness in the § distribution is related to an asymptotic variance that
increases rapidly as || increases. To get a confidence interval for ¢, a likelihood ratio

test would be preferable. This interval for ¢ would include all the values gq satisfying

-2(1nl(4,5.4) — Ini(go, B(g0). 5(g0)] < 3.841.

2- the correlation between & and § almost equal to —1 should be noted. From table 8,
we can see that as gp increases, d(qo) decreases. Cox and Hinkley (1968} have shown
that in the general regression model Z = a + X8+ 0¢(q), (&, 7, §) are asymptotically

independent of 8, if the columns of X add to zero.

3- The regression parameters (a, 3, v,t) for any fixed value of go are very close to those
obtained in the normal and extreme value regression, and so is their standard error

and their correlation matrix,

It should be remembered however that, although the MLE § cannot be found accu-
rately, we know that it exists and is unique, because of the log-concavity of the loggamma
distribution (see section 7).

If the exact value of §, was available, this would make the estimation of E(IBNR
claims) much more complicated than in the normal or extreme value cases, because of the

non-independence of ¢ with 5 and &. In this model, Yy is equal to

Yu = eam Ink 44k i(ksi~2)+2e(d)
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and we can see that the estimation error on the parameters is not independent of the
process error €(§), since f, & are estimated using the same set of past data which is used
in estimating ¢.

To assess the adequacy of the loggamma regression model, we fitted that model with
a fixed q value, ¢ = 10. Figure 4 presents the corresponding Q-Q plot. Since the left tail
of the distribution is too short, we will not simulate the IBNR reserve; however, Devroye

(1986) presents many algorithms to generate gamma random variables.

5 Logistic regression model
The logistic linear model is
Zi=InY; = X8+ o¢;,

where ¢ has a standard logistic distribution with (see Lawless (1982), p. 46)

pdf Je) = qhar » —0< €<,
cdf Fle)=1-(1+e97?,
mgf  T(1+0T(1-1),[t]<,

mean E(¢)=0,
variance Var(e) = x2/3.
The density of the logistic distribution somewhat looks like the standard normal density.
The symmetry of the pdf around € = 0 implies that there is probability 1/2 that the amount

Y; be understated or overstated. The probability that a standard logistic random variable
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exceeds 1.96 is 0.12347. The logistic distribution has thick tails, which behave like that
of the exponential distribution. The loglogistic is a special case of the Burr distribution,
with the parameter a equal to 1 (ref. Panjer and Willmot (1992), p. 120).

The random variable Z; has density

1 exp[-'—-‘—"'ax 2]

fz(zi) = oLt exp(iXy’ ~® < 7 < o0,

4

and Y; has the loglogistic density

it 1-?
1 Vi )v ( Yi )v
—  —— 1 + e , P > 0‘ 5.1
ceXiB (ex.u [ Py v (5.1)

%8 is the scale parameter and 1/o the shape parameter. In proposition 5.1,

where again e
we derive the moments of order k of a loglogistic random variable with density 5.1 and
show that its moment generating function does not exist.

Proposition 5.1: If Y has density

61/0 yl/a-l

frly) = TW.

y>0,

then
E(Y*) = 6+=+D[y — g(k + 1)}x cosec[ro(k + 1)},

for all k£ such that % —-l<k< f — 1, and the moment generating function of Y does not

exist.

1/e=1

Proof: E(Y*) = [3* y* &2 by,

By letting y1/° = v, we obtain

o golk+1)=1
ky _ g1/0 v
.y / L du
EYD b L7 aveopi
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Using the formula

00 Prtal) d 1—-p
'[) (l+ﬁz)’ T = 5n X cosec uw,

the result is easily obtained. The integral will have a finite value iff
-l1<(k+1l)e—-3<1

or
; -l<k< ; -1
The moments of all positive orders do not exist; therefore, the moment generating
function of Y does not exist. [w]

The likelihood function is

L3y < T L _oxelo)

—_——————— . =0 i < 00,
i o [T exp(w]? v

where w; = 5'—‘,&2. from which we get the log likelihood

i(B,0)= 3 [wi—2In(1 +e*) —Ino].

i=1
For first and second order partial derivatives with respect to the parameters, see
Kalbfleisch and Prentice (1980; p. 54-57). The SAS procedure LIFEREG was used to
fit a logistic regression model to the data of section 1.3. The MLE's of the parameters,
their estimated standard error and the estimated correlation matrix appear in table 3.5.
A Q-Q plot of the residuals in figure 5 shows that the logistic distribution does not
provide a very good fit for the right tail. We will therefore not attempt to predict the IBNR
reserve, but just indicate how it could easily be done by simulation, if it was appropriate

to do so.
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Figure 5: Logistic Q-Q plot of residuals
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Table 9: Logistic regression

parameter MLE std. error correlation matrix
a 8.94023 | 0.13799 1 0.437 -0.516 -0.540 0.039
B -3.31681 | 0.30143 | 0.437 1 -0.964 0.078 0.072
b 0.38904 0.12058 -0.516 -0.964 1 -0.169 -0.083
L 0.11789 | 0.02004 | -0.540 0.078 -0.169 1 0.025
-4 0.17957 | 0.02203 | 0.039 0.072 -0.083 0.025 1

The loglogistic model for Yy is Yy = eS+0Inktiktilkil-2)+0e

The joint asymptotic
distribution for (B,&) is multivariate normal with parameter estimates given in table 9

and can be easily simulated (see Appendix 10.1). Inverting the cdf of the logistic random

variable ¢ yields

1-U

€ = In( ), where U is uniform [0,1].

The value of is then exponentiated to give Y.

6 Log Inverse Gaussian regression model

The inverse gaussian regression model for Y, is ¥; = eX8+4  where the multiplicative
error e° is assumed to have a standard inverse gaussian (IG}, or Wald distribution, with

density

(v-1)°
2Mv

fr(v) = (2rav®)"Y2exp{- }, v>0, A>0.

This long-tail positively skewed distribution with exponential tails has a shape similar
to that of the lognormal distribution (ref. Cohen and Whitten (1988), p. 77) and is

located between the gamma and lognormal in Pearson’s system of distributions, which
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shows possible regions of variation of the skewness and kurtosis (Jorgensen (1982), p. 19).
To learn more about the inverse gaussian distribution, see Chhikara and Folks (1989) and
Jorgensen {1982). Here are some of its important properties. The mean equals 1 and the
variance A. It is unimodal and a member of the exponential family. If V is /G(1, A), and
a > 0 is a constant, aV is IG(a,a}). The sum of n independent /G(1,A)is IG(n,A).

Taking the log of Y;, we obtain the loglinear model
Z;=hnhY, = X8 + ¢,

where ¢ has a log inverse gaussian (LIG) distribution. The pdf of ¢ is now derived.
Let e = InV, where V is IG(1,A). Then V = e° and dV/de = ‘. It follows that

(e = 1)’]
2Xet

(e -2+ €7

22

f(€) e‘(2rAe®) "2 exp[—

(2x2e)"1? exp[—

]

1
(2#:\)“'“8"”21/'\exp[—:\-cosh €], (6.1)

where coshe = (e + e7%)/2.
In the next two propositions, we derive the moment generating function and the mean
of the LIG distribution.

Proposition 6.1: The mgf of the LIG distribution with pdf (6.1) is
M (t) = (202)7 e P2K (1)),
Proof: Let the constant C = (2rA)""/2¢}/* Then

M.(1)

E(e*) = /m ¢ fe)de

*° t~-1/2 1
C/ =" exp[— = cosh €]d.
-00 A
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Using the formula

/ exp[—az — -}cosh zldz = 2K,(1/2),

on page 309 of Gradshteyn and Ryzhik (1980), we get
M (t) = (272) "3 P2k, (1/0),

for te[—00,1/2], where K,(-) denotes the Bessel function of the third kind of order a. O
Proposition 6.2

1)m(2/A)"

E(e) = e {—=y = 1n(2/2) - f: = }
n=1

n-n!
Proof: We know that E{e) = M(t) |=o-

The reader will appreciate the difficulty involved in taking the derivative of M (t) with
respect to ¢, since we need to differentiate with respect to the order of the Bessel function.

From Abramowitz and Stegun (1972), p. 445, we get

a [=

a_aKa(z) |a=1/2== - E;E.‘(—2I)C‘,
where —Ei(—z) = Ey(z) = [ dt. So

E(¢) (2x2)" 12N 2 fxnj2 Eq(2/ )M

e E(2/2),

where the series expansion for E(z) is

_ o0 (=1)"z"
E(z) = _7—lnz—,§|—-—n~n!

639




Let us now consider the estimation of the parameters A and 4. Y, has an inverse

gaussian distribution with parameters (eX# xe%#). The likelihood function is

. . oXiBy2
L(B,)) = He"“’(ﬂr»\e""’y?)-'“-exp{__(y-_ *¥) }

i=1 QACXiﬁyi
and the log likelihood is
n 1 3 (vi - ex.-B)z
= B—-—-lnd-X,8/2—-=lay, - ———5
I(B,A) '_;X.ﬂ oI 812 = Flyi = S
The partial derivatives are
a 2o-1 . Xidy2
RPN
. _eXih
so that A = ) 1”;—:,‘%;)1
al = X X0 X0
—_— = ey i B _ i
35, ; N [A + yie e
o Z": 1 (yi=eXif)?
9N T an A3eXiBy;
il =X, _x8_ X0
81\00; - E 2,\2 [yne - /.'/l]
321 il X,'I'X.'k

-X0 X.8
—_— = —-yie —e i
35,95, ‘_;l TRRL 19
To find the MLE’s of § and A, one could use the Newton-Raphson algorithm. The
log-concavity of the LIG distribution will guarantee the existence of unique MLE's (see

section 7).

The quantiles of this distribution could be obtained from the IG distribution, since

Ple < e = Plet S ] = PIY < e),
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where Y ~ [G. Therefore the ¢ quantile of the LIG distribution is equal to the log of
the ¢ quantile of the IG distribution. Those can be calculated or obtained from a table,
e.g. Koziol (1989). If an inverse gaussian regression model was found to be appropriate,
to simulate Yy = ef+fnk+sktilkti-D4e o would need to simulate e, which is IG(1,A).

Michael, Schucany and Haas (1976) developed an algorithm to simulate such a distribution.

7 Existence and uniqueness of MLE’s

In this section, we show that all the distributions used in this chapter for the error
€ are log-concave. A consequence of this fact is that the MLE's will exist and be unique,
although they need not be finite (ref. Burridge (1981)). When convergence is achieved in
the Newton-Raphson algorithm, this implies that we found a global maximum, not just a
local maximum.

Let us consider the loglinear location-scale model
Z.‘ = ln Y.' = X.B + agE;.
If we reparametrize to ¢ = 1/a, the log-likelihood of the data becomes

{{og,8)=nlng + Z":ln Fwd)

i=1
where w; = (2;— X,;0)¢ and f(-) is the density function of the error ¢;. Since w; is a linear
function of each of the parameters 8 and ¢ and is therefore concave, and the function
In is concave, ! will be concave provided In f(-) is concave (ref. Burride (1981)). We

have therefore shown the remarkable property that, in a loglinear location-scale regression



model, the existence of the MLE's does not depend on the data but only on the log-
concavity of the density of the error . We now show this is indeed the case for the five

distributions used so far.

1- If e~ N(0,1), f(e) = #exp(—e’/Q), and In f(¢) = K — €/2; so a%’,—ln fle)=-1<

0 Ve.
2- If € ~ extreme value, f(€) = exp{e —e*), and In f(€) = ¢ - €*; s0 %’,ln fle) = —et <
0 Ve.

3. If € ~ generalized loggamma,

| q | =29~

r(q_z)q ’exP[q-z(Cq_eqt)]»

fleiq) =

and In f(&9) = K + ¢~ (eq — e™); then :%zyln fleiq) = —e?* < 0, Ve

4- If € ~ logistic, f(€) = (Hf;,) ithenln f(€¢) = e—2In(1+¢°) and b%ln f(e) = Z%‘F <

0 Ve.

5- If e~ LIG, f(e) = (2nfe*)~d exp(ZEZZ L), 50 In f(e) = K — § — 250

8 ’
aln f(¢) _ 1 e —e™¢
2 2 28

and Zin f(e) = —(£457) < 0 Ve,

An example of a distribution for ¢ which does not have the property of log-concavity
for all ¢ is the Student’s ¢ distribution with n degrees of freedom, and density

_a+ 62/‘271)‘("“)/2
1= = 75072.772)
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Then In f(e) = K — }(n + 1)In(1 + €*/n),

2 1o g0 = ~(n 4 Vel + ),

and a—ft’yln fle)=—(n+ l)ﬁ&’v, which is positive for ¢ > \/n or e < —\/n.

8 Consistency of the parameters under error misspecificatic

Gould and Lawless (1988) investigated the consistency of the maximum likelihood
estimators of the regression parameters under misspecification of the error distribution in
a linear location-scale model.

The postulated model is
Z=a+Xf+oe, —00<e€<o00, (8.1)

where ¢ is a scale parameter and ¢ has a specified distribution with density f(¢). They

assume that the true unknown model is given by
Z=po+ Xp+ 1w, —00< w< oo, (8.2)

where w has density g(w). The location-scale structure of the postulated model has the
correct form; only the error distribution is misspecified.

If the following three assumptions are satisfied,

1- the covariates are centered;

2- all the expectations below exist and



3- n~!(X’'X) is bounded as n — oo,

White (1982) proves that the MLE's of (a,3,0) converge in probability to a unique limit
(a*,8°,0%). Gould and Lawless (1988) then show that B = p* and § is therefore a consis-
tent estimator of u. In addition, for & and & to be consistent estimators of up and r, they

must satisly the two equations
Ex( 9 logW)=10
oW og =

and
ET(W-—a—log(W)+ 1)=0 (8.3)
aw
where W = (rw + o —a')-/a' and Er indicates that the expectation is taken with respect
to the true error distribution g(w).

Gould and Lawless (1988) also analyze the asymptotic efficiency of the MLE based on
the correct model. We will derive conditions that g(w) must satisfy in order for @ and &
to be consistent estimators of ug and 7, when the error ¢ in the postulated model (8.1) has
a normal N (0,1) distribution.

Lemma 8.1: Under the assumption of standard normal errors in model (8.1), a sufficient
condition for & and & to be consistent estimators of up and 7 is that E(w) = 0 and
Var(w) = 1.

-a
lezlﬁ

Proof: If f(e) = T , then a%-log f(¢) = —e¢, and the equatiors (8.3) become
Er(W) =0and Ef(W?) = 1.
Since W = (rw+ po—a®)/o°, the condition Ex(W) = O implies that uo = a”ie. aisa

consistent estimator of uo. If Er(W) = 0, then Ex{W?) = Varr(W) = (r/c*)*Var(w) =




1. The condition Var(w) = 1 will imply that 7 = o*, i.e. that & is a consistent estimator
of r. =]
The consistency of & and & therefore depends only on the first two moments of the
distribution of w, when the postulated model is lognormal linear.
We must point out here that one of the assumptions for the above development to be

valid is that n~'(.X'Y) be bounded as n — o0o. This condition is not verified in the model
Viza+Blnj+vj+(i+5—-2)+¢;.

The covariate i would need to be removed from the model, for example by normalizing the

amounts Y;;, in order for n='(X'X) to be bounded as n — oo,

9 Conclusion

In this paper, we have presented an anthology of models differing between them only
in the distribution assumed for the error €. To discriminate between the normal, extreme
value, logistic and loggamma distribution for e, we can assume that ¢ belongs to the

generalized log F distribution (Prentice (1974)), with pdf

F(&) = (my/ma)™e ™ (1 + mye* [ mg]~(m/mD),
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After finding the MLE's (rit;, m3), we can perform a likelihood ratio test for

(my,mq) = (1,1): logistic distribution
(my,mq) = (1,00): extreme value distribution
mg = 00: generalized loggamma distribution

(my, my) — (00, 00) : normal distribution,

to select one particular member of the family. Gould (1986) did an extensive study of the
location-scale model with the error ¢ following the log £ distribution. Her conclusions are
that if one tries to estimate two shape parameters as in the log F family, the precision of
the estimates may be so low as to make them virtually uninformative. However, as we
have also observed, the MLE 4 of the regression parameters is quite robust with respect
to misspecification of the distribution of «.

Numerous other researchers have in the past also encountered difficulty when trying to
estimate the shape parameter of the generalized loggamma distribution. Lawless (1982,
p. 237), observed that, even with sample sizes of 200 or 300, it is not uncommonr for the
Newton-Raphson algorithm not to converge to the MLE's. Because in usual insurance
situations, the trapezium of data contains a small number of cells (in our case, 45 obser-
vations with 5 parameters to estimate), the actuary might encounter problems with this
distributian. According to Prentice (1974}, two distributions in the loggamma family with
very diflerent values of the shape parameter k, will look very similar, creating estimation
problems. The extreme value distribution (g = 1)} is difficult to discriminate from the
normal distribution (¢ = 0), when the sample size is small.

In view of these facts, we therefore recommend that a simple distribution be assumed
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for €, like the extreme value or the normal. After comparing the log likelihood, fit can
be assessed by a Q-Q plot. If a symmetric distribution is needed, the normal distribation
should be assumed for ¢, since it is tile only symmetric member of the generalized loggamma
family. Fitting the normal model is useful for finding initial parameter estimates for the
extreme value model. The estimated IBNR reserve can then be easily calculated under
both assumptions.

The assumption of 2 normal distribution for € presents one advantage over that of the
extreme value distribution. When reserves are to be discounted for interest, we can still
find the distribution of the present value of the future payments. If the force of interest § is
constant over a year, it follows from a property of the lognormal distribution that the joint
distribution of the discounted value of the future payments is also multivariate lognormal.
Stochastic interest rates could also be built into the model and the reserve estimated by
simulation.

In conclusion, regression models present many advantages over the chain ladder method:
they have fewer parameters and do not underestimate the reserve; the properties of the
estimators of the parameters have been well studied; they take into account both the
error involved in the estimation of the parameters and the statistical error inherent in the
prediction of future claims; the fit of the model can be tested statistically by a Q — @ plot;
and confidence intervals for the reserve can be calculated with a simulation. We therefore

strongly advocate the use of regression models.



10 Appendices

10.1 Algorithm to generate a multinormal random variable

To simulate the distribution of the IBNR reserve, we need to generate a MLN(u,Y)

random variable. The following algorithm was used.
1. Generate Z ~ M N(0,[), using the Box-Muller transformation
Zy = (-21nU,)cos(22U,)
Z3 = (=2InU3)cos(27U3),
where U; and U; are i.i.d., uniform on (0,1).
2. Transform Z to Y, a MN(u,Y) distribution:
Y=upup+C2Z,

where 3~ = CC’' and C is calculated from the Choleski factorization algorithm (ref.

Kellison (1975)):

cn = on
i=1

i = —(0y = ) cikckj)
Cii k=1

-1
i = ,'0.-.-—26?;‘
k=1

3. Exponentiate each componentof Y

e’ = (™)~ MLN(u, Y)).
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10.2 Asymptotic properties of MLE’s

If Xi,...,X, is a random sample of size n from the density f(z;8), where § =
(81, ...,0,41) contains the regression parameter vector 8 and the scale parameter o, then

under certain regularity conditions, the following results hold.
1- The MLE § = (,.....6:) exists.

2- It is a consistent estimator of 8.

3- él, - ,é,“ are asymptotically efficient,
. Var(d;)
te. lim —————— =
"~ CRLB(%;)

where CRLB(4;) is the Cramér-Rao lower bound, obtained as l/nE[%Fl]z.
?

4- \/5(0.—0) has an asymptotically multivariate normal M N (0, I;!) distribution where

Ip is the observed information matrix, with element

2

/]
I =~
) 36,08;

log L(8;z1,...,2a) lg:g .
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A GENERALIZED FRAMEWORK
FOR THE STOCHASTIC LOSS RESERVING

The traditional actuarial methods like loss (paid and incurred) development methods,
Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long
as point estimates are concerned. Since they are not stochastic approaches, they do not
provide confidence intervals which are getting more attention connected to the risk-based
capital requirements, explicit discounting the future liabilities, etc. So far, most of the
stochastic reserving models which are either in the developing stage or are being used by
some companies or organizations, have been explanatory models. The Hoerl curve fitting
is their basic formulation. These types of models are fundamentally deficient, because
they fit the Hoerl curve to the loss history data. Hoerl curve fitting may be fine, as
long as it fits a simple, one dimensional, small series of data to obtain a fitted curve
without any statistical implications. If the Hoerl curve fitting method is used with some
statistical perspectives in mind, it may produce inconsistent estimtates which may not
make any sense. In this article, the author suggests a generalized framework which starts
by understanding the unique data characteristics of the insurance data. By expanding a
Box-Jenkins type time-series model, we developed a generalized framework for modelizing
a stochastic process on the loss history data. It turned out that some lines require more
complex specifications than the others. We may presume that some lines are more sensitive
to the insurance business cycle than the others. Our contributions will be to provide a
generalized framework to derive confidence intervals in which the business cycle was taken
mto account as well as to provide future estimates for the planning process. This paper is
the first step to that direction.
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- I. INTRODUCTION

Insurance data arranged to evaluate future liabilities takes a unique form which is
different from ordinary non-insurance data. The ordinary non-insurance data usually takes
a one-dimensional time-series form. For example, monthly unemployment figures for the
period January 1948 — October 1977 was used to forecast November 1977 and onward
monthly unemployment rate. On the while, the insurance data has to be arranged either
by accident year, policy year or report year and development year in order to figure out the
future liabilities of each of those years separately. Because of this, the typical insurance

data takes an upper triangular form.

The traditional actuarial methods like loss (paid and incurred) development methods,
Bornheutter-Ferguson method, or Berquist-Sherman method have been served well as long
as point estimates are concerned. Since they are not stochastic approaches, they do not
prévide confidence intervals which are getting more attention connected to the risk-based

capital requirements, explicit discounting the future liabilities, etec.

There have been hundreds of methods which were contended to provide confidence
intervals. The fundamental problems of these methods are they are lacking in theoretical
backgrounds because these methods are intended to apply to the one-dimensional data
array. Minor adjusiments are added to solve the problems. However, they have never been

successful.

In this article, the author suggests a generalized framework which starts by under-
standing the unique data characteristics of the insurance data. In the next chapter, we
provide the critics regarding the problems of those suggested stochastic methods. In chap-
ter TII, we articulate the characteristics of the insurance data. We also state how these

characteristcs have been incorporated in the traditional actuarial methods. In chapter IV,
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the theoretical framework will be provided. We will show some applicaitons in chapter V

and conclude in chapter VI

II. CRiTICS ON SUGGESTED STOCHASTIC MODELS

Makridakis and Wheelwright (1985) suggested:

If the user wants to increase forecasting accuracy, a time series method

should be used. If the objective is to understanding better the factors

that influence forecasting (prediction) accuracy, then an explanatory

model should be selected.

So far, most of the stochastic reserving models which are either in the developing stage
or are being used by some companies or organizations, have been explanatory models.
The Hoerl curve fitting is their basic formulation. First of all, the explanatory variables
in their models are either the number of development years and its functional variations,
the number of accident years, the number of calendar years or a combination of these.
Because of these formulations, their explanatory variables do not explain the dependent

variable quite well. For example, “increase one unit of log transformed development years

will decrease .3 unit of total loss paid” does not provide any valuable information.

Secondly, normally it is assumed that the time series data consists of four parts of
components. They are trend, seasonality, cycle and ramdom components. If we use time
and its functional variation as only explanatory variables, we are ignoring the seasonal and
cyclical components of data. If the annual data is used, we may ignore the seasonality,
but not the cyclical component. Since some insurance business is sensitive to the busiress

cycle, we may expect that the cyclical movement is a critical component of the data.

Thirdly, since one of the explanatory variables is a functional variation of the other,
these two explanatory variables are highly correlated. This problem is called multicollinear-

ity. If one of these two variables is deleted, there will be an autocorrelation problem because
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the remaining explanatory variables will not fully explain the dependent vanriable. The con-
sequences of these problems include: unstable estimates, spurious predictions, inconsistent

estimation of standard errors and confidence intervals.

Some argue that as long as the autocorrelations between the two explanatory variables
are lower than that bewieen the dependent and explanatory variables, we do not have to
worry about this problem. This may be true if the two explanatory variables are inde-
pendently created. This is why explanatory variables are sometimes called independent
variables. They are supposed to be independent. However, as long as correlations between
these explanatory variables are not high compared to correlations between dependent vari-
able and explanatory variables, the problem may not be that serious. The issue here is
whether we should use models which contain multicollinearity problems due to the model

formulation (one of the explanatory variables is a functional variation of another).

The other problem of these types of explanatory models is what type of indicator we
should use for the accident year trends. Some authors normelized all incremental payments
based on some readily available index of inflation. We cannot simply divide incremental
payments by some indices, because these indices are estimated with their own variances.
Consequently, it requires to assume that these indices are deterministic. However, this
assumption is hardly persuasive at all. Because of this problem, some authors divide the
payments by some types of exposures. The problem of this approach is we need to find
an alternative if there isn’t any exposure data available, which is often the case. Still
others introduce level parameters which are assigned same values to each accident years.
Since the level parameters themselves have to be estimated, this automatically violate the
assumption that explanatory variables are supposedly nonrandom variables which are the
cases of the other two variables. Others create another explanatory variable using the sum
of the accident year and the development year. They chose this as another explanatory

variable because they could not use the number of accident years as their explanatory
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variable due to the perfect linearity with the number of development years. This choice is

as bad as choosing the number of development years as an explanatory variable.

Still another problem of this type of model is that they do not provide any method
that deals with interrelationships between series of incremental payments and incremental
claims reported. Other things being equal, we expect more incremental payments if there
are more claims reported. Therefore, if claims reported data is available, we should utilize
these data assuming that this is also a stochastic process. So far no method has been
suggested to deal with this situation. Some authors apply traditional loss development
approach in obtaining ultimate claims reported. They treat them as a determinstic variable

to divide incremental payments by these estimated ultimate claims reported.

What if we need to analize quarterly data instead of annual data? Quite possibly that
quarterly data may contain seasonal patterns. No methods have been suggested to deal

with this seasonality problem.

These types of models are fundamentally deficient, because they fit the Hoerl curve
to the loss history data. Hoerl curve fitting may be fine, as long as it fits a simple, one
dimensional, small series of data to obtain a fitted curve without any statistical implica-
tions. If the Hoerl curve fitting method is used with some statistical perspectives in mind,

it may produce inconsistent estimtates which may not make any sense.

I11. INSURANCE DATA As A TwWoO-DIMENSIONAL TIME-SERIES

1. Data itself.

Insurance loss or claim history data can be considered as a two dimensional time series
data. Loss or claim development, in which additional losses or claims are paid/reported

in chronological order upon accidents occurred or claims reported is one dimension. A
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chronogical order of claims grouped by date of occurence is another dimension. As a
result, a typical insurance loss or claim history takes an upper triangle form. A prediction
of future loss payments or claims reported corresponds to filling out the bottom lower
triangle area assuming that the first accident or reported year losses or claims are fully

developed.

There are at least two factors which cause loss history data as time-series through the
accident years. The first factor is inflation. Ever increasing price levels (at least prior to
the current recession) is called economic inflation. Increased tendency to file more claims
helped by trial lawyers or increasing amount of jury awards is called social inflation. Some
authors have tried to catch these inflations by either normalizing the incremental payments
or by inserting a level parameter. The indices used were either general price indices or at
most industry-specific indicator. Because of ever increasing tendencies of the loss payment
and these general indices, you may obtain significant t-values for the estimated coefficient
of these indices. These t-values are disguising. Even if you insert any series which is
increasing, you may still obtain significant t-values. Instead of inserting or dividng by an
extraneous series, we should use the data’s own indices! We should look at every trend
and/or cyclical pattern of incremental payment of each development year. Interestingly,
there is an approach which utilizes these trends to estimate ultimate losses. The problem
is it is not a stochastic approach. We cannot obtain confidence intervals based on this

approach. We will present this approach later.

As more consumers or insureds are getting more information on their insurance policy
provisions, and as more trial lawyers are eagerly recruiting their clients, we can expect
more claims to be reported over the accident year horizon. As overall population grows,
there will be more policies written. Other things being equal, consequently there will be
more claims reported. These utilization increase and additional new polcies will be the

main driving force for the consistent upward trend through the accident year horizon.
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For the development horizon, since there is a fixed number of policies written during
the policy effective period, there is a fixed number of occurrence of accidents for each
accident year. There may be some incurred but not reported claims which are reported
later. There may be some cumulative injury claims which take many years to be closed.
Still every claim will be closed eventually. In a mathematical term, total cumulative
loss payments or total reported claims will be converged to certain levels. Because of
this characteristic, all incremental payments and all incremental reported claims will be
automatically satisfied with the stability condition of the time-series analysis. This stability

is a necessary condition in applying Box-Jenkins types time-series framework.

The traditional actuarial method called the “loss or claim development method ", uti-
lizes the development period dimension in a simple manner. The accident period dimension
in this method is partially utilized by taking current cumulative payments as “given”. Re-
cently proposed regressional approaches are lacking in these two dimensional features. As
in the traditional actuarial loss development (LD) method, these new methods reflect the
loss development dimension by using “age” of loss development. However, the other di-
mension is either completely ignored or grouped together by assigning dummy variables or
filled with a so-called level parameter. There is an inherent autocorrelation problem which
may not be significant in some lines due to negligence of the time related features in the
loss history data, especially for long tail lines in which regulators or company’s executives

are most interested.

In the traditional development approach, by multiplying the selected factors for each
development year, some sort of time-series conception was used in a simple fashion. For
instance, assuming that there are no additional payments after ten years of development,
the ultimate factor for the 1982 accident year will be obtained by taking a ratio of the
10th year development to the 9th year of development. Notice that only the accident year

1981 and prior provides .the information required to obtain a factor for the 9th to 10th
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development. The ultimate factor for 1983 is derived through multiplying the selected
factor from the 8th to 9th year of development by the selected factor from the 9th to 10th
year of development. Again the selected factor for 8th to 9th year of development is based
on the factors which are available in 1982 and prior accident years. Although it is a simple
fashion, without a consideration of cyclical patterns, the development method reflects time
series characteristic through development years. In the accident year direction, the LD
method simply takes most current actual payments as selected estimates. If these values
are outliers, the LD method will generate biased estimates. Otherwise, the LD method will
produce reasonable estimates. For the older accident years, the actual values are fairly close
to the estimates which are supposed to be compared to its maturity because the payments
have already been made quite a few times (approximately more than 3 or 4 years for short
tail lines). The problem is most recent immature accident years. Bornheutter-Ferguson
(B-F, 1978) and Berquist-Sherman (B-S, 1979) suggested a couple of methods to get over

these problems.

2. Time-series Reflected in B-F Method.

In the adjusted development method suggested by Bornheutter and Ferguson, a two-
year average of total payment at a particular development adjusted by the increase or
decrease in the second year’s exposure relative to the two-year average exposure was re-
placed for total payment. The ultimate factors derived in the development method is then
applied to these adjusted losses. This method will correct some irregularities of the data.
However, the adjustments contain too short memory (one year backward). The probability
of two data points being outliers is only half of the probability of one data point being an
outlier. Consequently, this does not provide appropriate remedies to correct the problem
in the development method. This may be the reason why this method is seldomly used in

the ordinary actuarial analysis.
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In the well-known B-F approach, the expected losses are first derived. Unpaid fac-
tors are then calculated from the ultimate development factors. The ultimate losses are
estimated as the sum of total payment and indicated reserve, where indicated reserve is ex-
pected loss times the unpaid factor. Two methods are suggested to calculate the expected
loss. The undiscounted loss provisions in the rates multiplied by the units of exposure
is one, trending, or otherwise extrapolating, mw}—%‘#m relationships of
the prior accident years is the other. The author prefers the latter methods based on two
reasons. First, it is very difficlut to obtain the undiscounted loss provision. One of the
major reasons is the differences in line-breakdown between pricing and reserving. Second,
by trending the past history, we can glean the time-series nature of the loss history data.
You may notice that in LD method, only the time-series nature across the development
years was recognized. By applying trending or extrapolating method to %
across the accident years, we are able to utilize the time-series nature in another dimension

at least partially (cosidering only trend factors).

This indicated (B-F) method is one of the most popular methods in the actuarial
analysis because this method can be used to correct the estimated ultimate loss for the

recent accident years produced by the development method.

Although these two methods are a little more advanced than loss development methods
in terms of utilizing the time-series nature across the accident years, the method is not
sophisticated and also performed partially (only trend factors are considered). Instead
of trending a whole loss history across the accident years, only the indicated severity for
each accident year was used. Since the indicated seventy is also estimated, it may be
contaminated with estimating errors. Berquist and Sherman suggested a few methods

which utilize a whole loss history in a simple fashion.

3. Time-series Reflected in B-S Method.
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Berquist and Sherman suggested six methods ( Method I through VI) except for
Method II which is exactly paid loss development method applying weighted average to
loss development factors in order to obtain ultimate development factors, all methods
assume that there are some trends to be utilized across the accident years. Method I
applies a straight linear regression to the loss development factors for each development
years as long as there are at least three factors. For columns with two factors, a straight
average is taken for all future development factors. For columns which only one factor,

that factor is used.

In Method III, the total payments per ultimate claim count (CS; ;) by accident year
(#) and by development year (j) are calculated. By applying a exponential fit to CS; ; for
each j, a growth rate B; for each development year j is estimated. Then by multiplying
eBi by DS, ; where DS; ; is the incremental payment for the accident year i and develop-
ment year j, we obtain a incremental payment on current cost level IS, ;. After applying
appropriate weights to these IS;;, the estimated incremental payments evaluated as of
current date WS; m_iy1, where i = m,m ~ 1,... !, the oldest accident year and m the
latest accident year are calculated. By applying growth rate €55 to WS, m-it1, future
incremental payment per claim is produced. After adding them up across the development
years to obtain ultimate loss per claim, ultimate loss is derived by multiplying the ultimate

claim count.

In Method IV, overall growth rate is calculated by weighting various column growth
rates calculated in Method III, in proportion to the square of number of rows of that
column. The adjusted column growth rate is then calculated by applying the formula
B, = ﬂjﬂﬂ%ll;w where W; is the weight for the particular column, W) is that for the
initial colmun (development year 1) and R; is column growth rate. The same procedure

with the Method III is then applied to produce the ultimate loss.

In Method V, the paid loss development factors minus unity are used instead of total
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payment per claim in Method IV to derive growth factor for the development factors. After
applying the same steps as in Method IV to derive future factors (minus one), adding one
to each of the results and applying resulting factors to total payments, the ultimate losses
are derived. In Method VI, the incremental payments per claim are used to estimate

growth rate. The exact same steps as Method IV are then used.

Notice that in the various Berquist-Sherman methods except for Method II, more
emphases are levied on the trends across the accident years. In Method I and Method 111,
the trend factors (growth rates) are estimated by development years. Each trend factor
for a particular development year is independent of those of the other development years.
On the while, in the Method 1V, V, and VI, the overall trend factor was calculated by
the weighted average of all the trends for each development years. The adjusted trend for
individual development year was then calculated as a weighted average of its own trend
and the overall trend. Since these methods are focused on the time-series nature of the
loss history across the accident years ignoring possible cyclical patterns, by combining the
ultimate loss based on these method and the ultimate loss based on the loss development

method, we can produce relatively reasonable selected ultimate loss.

As we have seen in this chapter, even if the word of time-series has never been spelled
out, one way or the other, every method tried to utilize the time-series concept. The trouble
was that the concept was utilized partially. Except for Berquist-Sherman methods, more
weights were given to the claim development process. Even in one direction, only the trend
component of the time-series was reflected. A cyclical movement and seasonal pattern were
completely ignored. In our approach, the two dimensions are explicitly taken into account.
Today's loss payment is not only a function of losses paid in the past loss development
periods, but also a function of losses paid in the past accident periods. The implication
of various statistics in the time series method are also considered in a two dimensional

perspective. Empirical results based on various lines of industry total are shown.
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IV. A FRAMEWORK OF Two DIMENSIONAL TIME SERIES MODEL

1. The Univariate Model.
1) Assumptions

In this univariate model, we assume that only the payment series is available. There
is no reliable case reserve, exposure or reported claim information available. More often
than not, actuaries, especially consulting actuaries, have to provide ultimate loss payment

based on exclusively loss payment series.

We also assume that the available data is not separable to the individual claim level.
In other words, we treat the incremental payment for a particular accident period and
development period itself as a random variable. This is a realistic assumption because
most loss history data takes an upper triangular form in which the incremental payment

is & minimum unit of counting.

We assume that the tail of the loss payment development is known. This assumption
may not be realistic. However, it is at least practical. Whenever we fit any distributional
curve to the loss payment developments, the estimated curve converges to the ultimate
level a lot more slowly than we ever expect in actual loss developments. Unless we assume

a certain cut-off point, the estimated length of the development will be extremely long.

We assume that any payment in a certain point is affected only orthognally. For
example, total or incremental payment in [accident year 83 — third development year] is
a function of {accident year 83 - second deveopment year] and [accident year 82 - third
development year]. This is a reasonable assumption to simplify the algorithms and also
consistent with the average norm. We can expect the incremental payment at [accident
year 83 — third development year] will be high if the incremental payment at [accident year

83 - first and second development years| due to either volume increase or frequency /severity
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increase. Also we can expect the incremental payment at [accident year 83 - third develop-
ment year] will be high if the incremental payments at [third development year - accident
year 81 or 82] are high. The former tendency may be related to the inflation, exposure,
and frequency/severity change. The latter may be related to the company’s individual line

characteristics - like a liability line develops more slowly than a property line.

Finally, we assume that the selected model is the true model. In others words, spec-
ification error is ignored. This error exits only in a hypothetical sense. Since in reality
the true model is never known, you can never measure the direct error. This assumption
is consistent with most econometric or time-series literatures. By assigning higher proba-
bility confidence intervals than what is necessary, we can eliminate the specifiaction error
problem. For example, if the confidence intervals with 90% probability is required, then by
raising the probability to the 95% level, we may take into consideration the specification

error problem.
2) Model

Parzen suggested a very powerful time-series forecasting model. It extends the Box-
Jenkins methodology and provides a more practical alternative to the time-series forecast-
ing model. Also the theoretical supports of “ARAM A” models are solid and their potential

contribution to good forecasting is excellent.

Contrary to the Box-Jenkins methodology, Parzen’s approach is not as concerned with
parsimony. Parzen’s model is willing to sacrifice the parsimony that would result from
introducing the moving average terms, and simply includes more autoregressive terms.
The M A terms are available but used only for special cases when a scheme cannot be used

to produce random residuals.

We utilize Parzen’s view of Box-Jenkins time-series methodology. The main reason

is the tractability without giving away any theoretical merits. In our application, the
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stability may not be an important issue. In the development period herizon, because any
open claim will be closed eventually, the convergence of the time-series is guranteed. In
the accident period, due to the regulation constraint of premium-surplus ratio, there exists
a limit of maximum expansion. Consequently, as long as there are enough data points, we

expect the stability condition will be met in the average insurance data.

Across the accident year we restrictly use AR terms. However, across the development
year, we first take differencing on the total payments and then take log transformation if
it is possible. After transforming long memory time series across the development years,

the AR terms are used to produce white noise errors.

It is a matter of semantic, whether you need a differencing operation or not across
the development years. If you start with incremental payment data, there is no need of
differencing. However, if you start with the total payment data, you do need differencing

due to the conspicuous cumulative nature of the payment data.

In a general form we can express the model as:

F(IP.;)) =) ¢ F(IPictjo) +eij 1=0,1,2,..,i -1
Lk

and k£=0,1,2,..,7—1 excluding I=0 & k=0 (4-1)

where F(.) notates any functional form {most of the case log operator if it is possible,
otherwise identity operator), IP denotes incremental payment for the accident year i -
development year j. Since we assumed any non-orthogonal lag variables can be ignored,

equation 4.1 can take much simpler form as:

FUIP;) =Y éaF(IPiciji) +eij 1=12,.,i-1 & k=0

Lk

or k=1,2,..,j—-1 & [!=0 excluding /=0 & k=0 (4-2)
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Note that since no nonlinearity is invloved, we can use Ordinary Least Square Method to
estimate ¢; . This is a whole advantage expressing the model with AR terms only. The

most simple case will be:
IP,; = d10IPic1j+ doalPij1 + € (4-3)

where the incremental payment for the accident i — development j is explained the incre-
mental payment of the one year previous accident year and the incremental payment of

the one year previous development year.

For a better understanding, an example will be {ollowed. Say you allow two lags
in each direction as explanatory variables. Then there are eight possible explanatory
variables. They are [No lag in accident year(AY) - lllag in development year(DY)], [No
lag in AY - 2 lagin DY], (1 lag in AY - 1 lag in DY), [1 lag in AY - 2 lag),[2 lag in AY -1
lag in DY],(2 lagin AY - 2 lag in DY}, {1 lag in AY - no lag in DY], (2 lag in AY - no lag
in DY]. Out of these eight combinations, the set of DY lag only is orthogonal to the set of

AY lag only (four cases).

First of all, it does make sense modelizing the fact that the current incremental pay-
ments is explained by previous incremental payment series by accident and development
year-wise because the current payment can be explained or can be a function of prior
payments. Second, it does not have any multicollinearity problem because there is no
functional relationship between the explanatory variables (note that accident year series
are orthognal to the development series). Third, because it does not involve any nonlin-
earity, it is fairly easy to estimate parameters. Even we can use Lotus 1-2-3 to estimate
these parameters. Fourth, most importantly, it provides a reasonable fit and also is also

stable.
3) Interval Forecasts

Since the major contribution of the stochastic method in loss reserving is providing
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the confidence intervals, the variance of the forecast errers should be well defined. In order
to derive the variance of the forecast errors, we first express AR(l, k) process in the error-
shock form by successive substitution for 3 ¢;xfPi_sj—_a. By doing this, we can write the

model in terms of current and past errors only as:
IP,j =eij+oncij-1+&100i-1,5 +Haeimj1 +. - (4-4)

The values of the parameters (§0,1,61,0,£1,1,- . ) depend upon the particular AR(I, k) model

and are called error learning coefficients.

The selected forecast IP; j(g,h) can also be expressed using the equation 4-4 in terms

of current and past errors:
IP; j(g,h) =& nei; + Egprntior,j + Egnprtij—1 +. .. (4-5)
As a result, the (g, k) step ahead forecast error can be expressed as:
ei,j(9,h) = Py j+n — IP; (9, h) (4-6)
Again the equation 4-6 can be written as:
€ij(g,h) = €ipgjtn + E10ig—-1j4b +E0,18i4g.54h-1 FE11Ci4g-1,j40-1 + ... 47

Because the errors are independent, it follows from the equation 4-7 that e, ;(g, h) is an
MA(g ~ 1, — 1) process. From the equation 4-7, the forecast errors e; j(g, h) have mean

0 and variance equal to

9.h
Vieis(9, M) = Ele} j(9, 1)) =02 Y &, excluding (p,q) = (g,h) (4-8)

Pg=0
Based on the model, not only can the future development year forecast be performed, but
also the accident year forecast. However, since our main objective is to obtain confidence

intervals for the future liabilities, we can focus on the development year horizon only.

4) Some Examples
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For example, the one year ahead forecast to the development period horizon of the

AR(1,1) model can be expressed using equation 4-3 as:

1P, j+1 = ¢1,0IPiy ;41 + doa I Py + €iji1 (4-9)
Then the equation 4-9 can be expressed as:
IP; ;1 =é10(b1,0lPica jur + o1 dPicy j + €im1,j41)
o1 P10l Pic1j+ b0 IP;j—y + €ij) + €ijir (4-10)

Since the only errors terms ey j4+1, ei;j and e;;4; are unkown and their variances

are o2, the variace of IP; ;4 can be expressed as:
VP ;)= (¢]0+ $t1 +1)o? (4-11)
The two year ahead forecast to the development period will be:
IPijy2 = 61,0lPicy jaz + G001 IPijs1 + ijar (4-12)
Again, the equation 4-12 can be expressed as:
IP, ;12 =¢1,0(é10lPica juz + donIPisy j41 + izt jy2)
=60,1(¢1,0fPio1 j41000IP;; + € j41) + €42 (4-13)

By applying the equation 4-10, we can obtain a two year ahead forecast variance to the

development period as:

V(IP;j42) = ((¢§,o)(¢¥,o + ¢(2),1 +1)+ (¢g,1)(¢3,o + 4’(21,1 +1) +1)o? (4-14)

Similarly we can obtain an n year ahead forecast variance to the development period by

applying a inductive procedure as:

V{IP;

T an) Dy 4 (g2, LB

——————’*" l))+1) 2 (4-15)

C

V(IP.',H.,.) = ((d’ o)(
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We can also apply the same inductive process to the AR(2,1) or AR(3,1) model. For the
AR(2,1) mode), one year head, two year ahead and n year ahead forecast variances are

given as:

V(IPI',.H'I) =(¢¥_o + ég,, + 1)03 (4-16)
VUP:j+2) =(#0)(610 + 630 + 1D+ (3080 + dha + D+ 82+ Dl (417)
VP, o) =((B o) ittomtly g (g (L Bbiact)y,

V(IPI )+n—2)

(42.2)( ) +1)o? (4-18)

For the AR(3,1) model, one year head, two year ahead, three year ahead and n year

ahead forecast variances are given as:

V(IPij41) =(83 0 + 651 + 1)0? (4-19)
V(IP;js2) =((61 00810 + do.0 + 1) + (65,1 )(#1 0 + 60,0 + 1) + 602 + 1ot (4-20)
VP j49) =((81) T ) + (83, ) F 2424
¢“(%)+¢o,+1)a (+-21)
VUP, ja) (& o)(—”i’e*"—“’) (T Tty
(#ha) L ety a3 PUTPusncaly 4 g2 (+22)

If we expect any seasonality either across the development horizon or across the acci-
dent horizon or both, by inserting do,m or ¢, 0 or both lags, we can take care of seasonality,

where m is the seasonality interval.
2. The Multivariate Model.

By applying either vector autoregressive model or transfer function model, we can
expand the univariate model to the multivariate mode. Either closed counts development

or reported counts development will be a good candidate for the right-hand side variable
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because we can presume that the claim counts will have a impact on the loss development;
not vice versa. It is theoretically possible to derive the formula for the variances. However,

we decided to postpone further articulation of the model due to the time constraint.

V. MODEL SELECTION PROCESS WITH EMPIRICAL DATA

1. Statistics to be used.

In order to find a right (or reasonable) model, we need certain criteria to identify
whether the estimated errors are not correlated. Since we are going to use the AR(!, k)
model, we need to estimate partial autocorrelations (PCAF) of the residuals. We also use
Q-statistic to verify overall randomness of errors. Since these statistics are intended to
serve for the one-dimensional data, we have to apply these statistics to each accident year
and development year separately. Because of this, we may have to be a little lenient when

we reject the null hypothesis.
1). Partial Autocorrelation.

In practice, we never know the population values of autocorrelations and partial au-
tocorrelation of the underlying stochastic process. Consequently, in identifying a tentative
model, we must use the estimated autocorrelation and estimated partial autocorrelation
to see if they are similar to those of typical models for which the parameters are known.
Notice that since we do not have any M A terms in our model, there is no need to calcu-
late estimated autocorrelations. However, partial autocorrelations are ealculated from a
solution of the Yule-Walker equation system, expressing the partial autocorrelation as a

function of the autocorrelation. We need to calculate estimated autocorrelation.

In any time series textbook, an estimate of autocorrelation r(h) is defined as:

Ch
Th= — 5-1
Ve (5-1)
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where cj defined as ¢y = 1/n X Y z¢z¢4a h 2 0, and c, is the estimate of the autocovari-
ance. For our model we can redefine this estimated autocorrelation for the development

year dimension of the accident year n as:

Cn,k
ok = Cno (5 2)

in which cp 4 = 1/m Z;":l Zn,jZnj+k k2 0 where m is the number of development years.
For the accident year dimension of the development year m, the estimated correlation can

be defined as:

Cl,m
Fim = —— 5-3
l.m P ( )
where ¢;m = 1/n ELI Zi mZi+1,m{ 2 0. And n is the number of accident years.
The Yule-Walker equation is expressed as:
=4 + dn + + $pop-1
p= dpr + b2+ + Pppp-2
. ) . Fee (5-4)
: : + : + + N
Pp= $pp-1 + P2pp-2 + + ép
The equation 5-4 can be written as:
1 2 P e Pr-l 28 [
£ 1 A e Pi-2 D2 P2
. . . : . . =1 . (5-5)
Pk-1 Pk-2 Pk~3 ... 1 Pak Pk

Hence, as soon as we calculate these autocorrelation, we can derive the estimated par-
tial autocorrelations by applying Box and Jenkins’s recursive method, which are due to

Durbin(1960):

$p+!.j = ép.i - ‘;p+1,p+l$v.p—i+l J=12,...,p (5-6)

P A . .

Tp+l — Z,‘:x Pp,iTp+1-j
P 4 .
1- Ei:l Bp.iT;

In order to identify the exact form of the model, we need to find out when population

Bpr1pt1 = (5-7)

partial autocorrelations can be considered to be zero. We therefore need to evaluate the
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standard error of the estimated partial autocollreations. Quenouille (1949) showed that

the variance of the estimate of the partial autocorrelations is approximately equal to
V(gna)=1l/n, h>0 (5-8)

where n equals the number of observations after suitable differencing and transformation,
and ¢ represents the partial autocorrelations that are assumed to be zero. Equation 5.8
provides a way, after identifying the tentative model, by calcuating ¢ns on the estimated
residuals, to evaluate if all other estimated partial sutocorrelations are different from zero.
We can also define the variance of the estimate of the partial autocorrelation for the

development year dimension as:

V(énkr) = 1/m, k>0 (5-9)
and for the accident year dimension as:

V(dum) = 1/n, 1>0 (5-10)
2). Q-test.

Box and Pierce (1970) showed that for a purely random process, that is, a model with

all pp = 0, the statistic called Q-statiste:

K
QUE) =n(n +2) Y —— ~ x3(K) (5-11)
k=

n—k
1

where 7} is defined as
n - A
o Steaniéréens
= e
Ex €y

with € is a fitted residual. It should be noted that the Q-test is not a very powerful test for

(512)

detecting specific departures from white noise. However, it is useful to check how a series
of autocorrelations (first order, second order and third order autocorrelations etc.) is white

noise or not in an overall sense. Furthermore, the Q-test is also sensitive to the values of
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K, the number of autocorrelations used to calculate Q-test. For economic data, K = 12
and K = 24 have proven to be useful. Since insurance data have fewer data points, K = 4
may be sufficient. Since the Q-statistic was also designed to apply to the one dimensional

deta points, we performed the Q-test on each accident year and each developmemt year.

2. Creation of Auxiliary Observations.

We first calculate age-to-age factors for each dvelopment years. We then select age-
to-age factor for each development years based on the last 5 years average method. We
assume that payments of the Homeowner/Farmowners (HOMFAM), Private Passenger Au-
tomobile Liability /Medical (PRVAUT), Commercial Auto/Truck Liability/Medical (CO-
MAUT), Commercial Multiple Peril (COMMUL), Workers’ Compensation (WOKCOM),
Medical Malpractice (MEDMAL), Special Liability (SPELIA), Other Liability (OTHLIA)
and Product Liability (PROLIA) are paid off at 10th, 11th, 13th, 13th, 14th, 16th, 11th,
15th and 16th years of development, respectively. With this tail-factor assumption we
create future incremental payments based on the LD method. In other words, we fill out

the lower part of triangles.

There are two purposes in creating these auxiliary observations. The first purpose is
creating initial values of lag variables based on the backward forecasting. Since we started
with small amount of data points, we cannot afford to lose any data elements by the intializ-
ing process. By running Oridnary Least Squares with logarithms of incremental payments
as dependent variables and development years for each accident year as explanatory vari-
ables, we were able to create development year initial lag values. For the accident year
initial lag values we ran OLS on accident years for each development years. The second
purpose was to obtain tentative models. We did not attempt to use upper triangle angle
only because the model utilize the whole data at once, this will put too much emphasis
on the earlier years which contain more data points. This is a major disadvantage of any

stochastic model which fits the entire data at once without filling up the lower triangle
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portion. Even though the development method does not provide confidence intervals, it
does provide at least an approximate estimate. It is also consistent with the NAIC model

act for the liability discount which explicitly specifies the future payout patterns.
3. Model Selection.

We started with AR(1,1) model for all nine lines we used for this analysis. Estimated
coefficients are listed in Table 1. Estimated Q-test on the residuals by accident year and
by development years are listed in Table 2. Due to small data points, we only estimated
up to four years. Estimated partial autocorrelations on the residuals by accident year and
development year are shown in Table 3. The thresholds with 95% confidence level for
Q-tests are 7.81 with K=3, 9.49 with K=4, 11.1 with K=5 and 12.6 with K=6, 14.1 with
K=7. Most of the cases, Q-tests do not reject the Null Hypothesis that the errors are
not white noise. Applying the iz formula, the thresholds with 95% confidence level for
PCAF are 0.653 with n=9, 0.693 with n=8, 0.741 with n=7 and 0.800 with n=6. Except

for few cases, there aren’t any such cases that reject the whiteness of the errors.

Identifying a model as AR(1,1) is equivalent to saying that the loss history can be
explained as a combination of constant trends through accident period and development
period. Since the coefficients of all lines are less than 1, we can say that data satisfies the
stability condition. This is a desirable condition, otherwise, the estimated variances will
be blown up. You may also notice that in every case, the coeflicents for the accident year
are a lot higher than those of development years. This indicates that the trends through

the accident periods are much more important than those through the development years.

You may want to stop here because all the PACF are satisfactory and because the
parsimony dictates the fewer the coefficients are, the better the model is. However, since
the model with more coefficients will provide more stable forecastings, we tried up to

AR(3,2). Except for COMMUL, since the coefficients for development years are already
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small, we didn't bother to try more development lag coefficients except COMMUL. When
we tried AR(3,2) for COMMUL, the second development lag term became very close to
the zero. Hence we selected the AR(3,1) for COMMUL. The second lag term indicates
that there are more than just straight trend. We may interpret this as a simple cycle. If

we require a third lag term, this will indicate that the data contains a complicate cycle.

When we tried AR(2, 1) for HOMFAM, suprisingly the second lag term for the accident
year became bigger than the first term. Consequently, we tried AR(3,1). Even though the
coefficient for the third lag term is still high, we decided to stop here due to the limitation of
the data points. We also didn’t want those artificially generated initial values to dominate

the whole actual data.

For PRVAUT, we tried up to AR(3, 1). Since the third lag term of accident years wasn’t
big enough, we decided to go with AR(2,1). The same was true for PROLIA. For COMAUT
as soon as we tried AR(2,1) the second lag became relatively small. Hence, we selected
AR(1,1) for COMAUT. The same was true for MEDMAL, SPELIA. For WOKCOM, as
soon as we added one more lag term, the first lag term became bigger than 1.0 (which
became unstable). Consequently, we chose AR(1,1) for WOKCOM. Finally, for OTHLIA,
we chose AR(3,1) as a selected model as HOMFAM. Interestingly, the coefficent of the
third lag term was highest. We showed estimated coefficients of the AR(2,1) models,
their Q-statistics and PCAF's on the residuals in Table 4, 5 and 6, respectively. Estimated
coefficents of the AR(3, 1) models, their Q-statistics and PCAF's on the residuals are shown

in Table 7, 8 and 9, respectively.

As you may noticed, the process of personal lines like HOMFAM and PRVAUT ar
either more complicated or as complicated as comercial lines. Secondly, the longer tail

lines like MEDMAL do not necessarily possess a more complicated process.

4. Point Estimates and Confidence Intervals.
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After we selected each model based on the rectangular form of data, we eliminated
auxiliary observations in the lower triangular area. We filled the lower triangle with forcast
values. By adding up row-wise we obtained ultimate loss based on the selected model.
Based on the variance formula mentioned on the prior chapter, we estimated each variance

for the forecast value.

In Table 10, in the first column, the upper limit of the estimated ultimate loss with
95% probability (one-tail test) are shown. This indicates that if we repeatedly estimate
the ultimate loss with different samples, but with same formula, and in each case we
construct confidence intervals, then 95% of all the cases of the interval given will inclcude
the true parameter. Thus, the probability statement is not about population parameter

but estimated parameter.

The distance of the interval is determined by the size of the estimated variance for
the error, the complexity of the model and the size of the tail. In the third column the
relative distance of the confidence interval in terms of the ultimate loss are provided. In
the fifth and seventh column, the upper limit of the estimated future expected liability

and its relative distance of the confidence interval are shown, respectively.

If we look at the relative size of the confidence interval in terms of ultimate loss,
personal lines’ (HOMFAM and PRVAUT) sizes are a lot smaller than commercial lines’.
Among the commercial lines, WOKCOM’s relative size of the confidence interval is the
smallest even though its tail is longer than either COMAUT, COMMUL or SPELIA. The
WOKCOM’s relative size of the confidence interval may be the smallest because its stability
of the exposure growth as well as as its stable payment pattern. SPELIA’s relative size of
the confidence interval is bigger than either COMAUT or COMMUL or WOKCOM, even
though its tail is the shortest among the commercial lines. As we expected, MEDMAL’s
relative size is biggest among all lines, despite of its simplicity of the model. HOMFAM

and SPELIA’s relative size of the confidence interval in terms of the future liability are
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extremely high compared to their size in terms of ultimate loss due to their large estimated

variance of the error terms. Other lines’ relative size are consistent with their counterparts.

Except for the cases of COMMUL and SPELIA whose estimated constant coefficients’
signs are negative, all point estimates based on the models are slightly smaller than those
based on the loss development methods. This does not necesarily indicate that model-
created estimates are understated. One of the evidences are shown column (9) through
column (13). We reserved column (9) of actual paid loss as of 12/91 for the comparison
purpose. In column (10), we provided the estimated paid loss as of 12/91 based on the
models and in column (11) the projected paid loss as of 12/91 are shown based on the
development method. The performances of five lines out of nine lines were better with the

_models rather than the loss development methods. To the contrary of the ultimate loss
comparison cases, where seven out of nine cases, the model estimates were bigger than the
actuals. While five out nine cases, the estimates of loss development methods were bigger

than the actuals.

One of the main advantages of our model is that it provide future estimates for the
future accident years with confidence intervals. Neither ordinary regressional models nor
loss development methods provide these estimates, which are valuable for planning pur-
poses. The last rows of column (10) are future accident year estimates and their confidence
intervals. Compared to the actual values in column (9), the estimates seem to be reason-

able.

By looking at columns (1) through (4), you may notice that every case, the ultimate
losses based on the development method has fallen inside of the confidence intervals. This is
a small evidence showing that our estimated confidence intervals are reasonable. However,
figures on lower rows of the columns (9) and (10) indicate that one out of nine cases, the
actual payment located outside the confidence interval with a probability of 97.5%, and

two out of nine cases the actual payments laying outside the confidence interval with the
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probability of 95%. These appear to show that our confidence intervals for the accident year
may be too narrow because the actual probabilities indicate that 77.8% and 88.9% instead
of the theoretical values of 95% and 97.5%, respectively. This is not the case because the
confidence interval with 95% probability means that there is a 95% chance that the interval
includes the true parameter (true mean) not the actual value. Consequently, the 77.8%
and 88.9% regarding the actual values are reasonable considering that the population
possesses its own distribution. This is the main reason why the theoretical probability

with the normality assumption was larger than the empirical one in Gardner (1988).

In Table 11, the actual cumulative payment triangles, age-to-age factors and ultimate

losses based on the loss development methods are shown.

IV. CoNcCLUSION

By expanding a Box-Jenkins type time-series model, we developed a generalized frame-
work for modelizing a stochastic process on the loss history data. It turned out that some
lines require more complex specifications than the others. We may presume that some lines
are more sensitive to the insurance business cycle than the others. Our contributions will
be to provide a generalized framework to derive confidence intervals in which the business
cycle was taken into account as well as to provide future estimates for the planning process.

This paper is the first step to that direction.

We would like to incorporate claim count estimates into our framework by utilizing
vector autoregressive model in the near future. We may also incorporate outstanding

reserve which is also a valuable information.
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TABLE Y. ESTIMATED COEFFICENTS FOR AR(1,1) MODEL

18T YEAR 1ST YEAR
AY LAG DY LAG CONST

HOMFAN  0.85250 0.134% 0.11621
PRVAUT  0.99250 0.00708 0.11526
COMAUT  0.98074 0.01818 0.09425
COMUL  0.73432 0.27660 -0.218%
WOKCOM  0.99844 0.00328 0.09810
MEDMAL  0.85550 0.14628 -0.07682
OTHLIA  0.97503 0.02445 0.11304
SPELIA  0.97018 0.02990 0.10406
PROLIA  0.97063 0.03365 0.06055
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TABLE 2. ESTIMATED Q-STATISTICS OF THE RESIDUALS FOR AR(1,1) MODEL
Page 1 of 2
ACCIOENT YEAR = 82
Ka3 Ku4 Ka§ K= Ko7

HOMFAM 2.38778 2.6B498 S5.43214 6.40556 7.67962
PRVAUT  6.20165 7.43330 8.03333 9.57421 10.27192
COMAUY  B.02664 9.08966 12.78114 22.70867 27.734ké
COMMUL 15.50455 18.74024 21.77020 24.20164 26.17824
WOKCOM 17.20664 24.02996 24.85543 32.13953 34.81509
MEOMAL 3.63634 4.52361 9.18822 13.88175 14.61208
OTHLIA 4.38933 6.13802 6.52584 6.80700 6.81674
SPELIA 2.00038 2.33159 3.48908 3.51597 3.51782
PROLIA 10.63477 11.35506 11.47956 11.52169 11.52889

ACCIDENT YEAR = 83
Ks3 x4 Ks5 K=6

HOMFAM  2.54875 2.76390 2.93312 3.76485
PRVAUT  3.19666 4.15370 4.68083 5.11533
COMAUT  5.94915  7.45970 7.67292 23.55836
COMMUL  9.28121 12.03609 16.41462 17.97051
WOKCOM  7.81576 14.92529 16.12265 17.08352
MEOMAL 20.22335 25.45722 30.65844 19.76625
OTHLIA 7.81660 7.94727 10.83099 10.87109
SPELIA  1.58167 2.12018 3.56477 3.96429
PROLIA 9.95443 16.92331 18.41628 21.73013

ACCIDENT YEAR = 84 ACCIDENT YEAR = B35
Ke3 =4 Ke$ Ks3 Knd

HONFAM  1.50912 1.84325 2.69574 12.44707 14.18820
PRVAUT  0,90452 1.73380 3.31919 B8.57997 8.92221
COMAUT 11.85483 18.02801 19.35910 23.75158 30.68252
COMWL 19.31421 1980757 20.31336 15.62485 17.12087
WOKCOM 15.00407 16.46119 16.83647 5.94221 6.27584
MEORAL  1.52935 2.50451 13.99429 1.81445 2.17930
OTHLIA  7.44905 B8.13170 9.67102 12.64123 17.46448
SPELIA 8.21914 10.63992 23.36301 4.13378 4.18%4S
PROLIA 19.23100 26.05147 33.40982 9.72884 11.05814
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TABLE 2. ESTIMATED Q-STATISTICS OF THE RESIOUALS FOR AR(1,1) MODEL
Page 2 of 2
DEVELOPMENT YEAR = 1
K=3 K=d K25 K=b K=7

HOMFAM 20.86283 27.43541 29.97995 39.16037 44.28323
PRVAUT 16.45263 24.27383 31.32747 36.31636 38.33991
COMAUT 10.11426 14.08209 19.90366 35.09818 39.43475
comL 17.38610 26.24465 29.21483 32.85728 36.79327
WOKCOM 13.65747 21.10487 22.18290 26.12949 24.29261
MEDMAL 9.07254 11.45357 12.16451 12.43951 12.53369
OTHLIA 14.13229 17.98598 23.45365 24.57243 28.50565
SPELIA 8.23842 8.89819 9.60571 10.40635 10.46272
PROLIA 10.2B675 11.52355 12.65645 14.36266 14.92514

OEVELOPMENT YEAR = 2
K=3 K=4 Ks5 K=6

HOMFAM 15.80416 17,02433 24.92092 34.06265
PRVAUT 14.36262 16.41183 19.37089 24.11920
COMAUT  9.50703 11,75657 14.57927 22.44170
CoMMUL 11.90035 15,55383 16.78860 30.58926
WOKCOM 10.04670 1B.99859 22.83892 25.65263
MEOMAL 17.35611 22.35855 24.53940 26.06088
OTNLIA 14.20316 15.72022 14.72064 16.99232
SPELIA 24.34332 30.12124 36.38168 38.53164
PROLIA  9.35144 13.16147 13.46168 13.71009

- =

DEVELOPMET YEAR = 3 OEVELOPMENT YEAR = 4
Ka3 Kaé Ko5 k=3 K=k

HOMFAM 12.64103 13.35973 13.49182 6.16684 7.02828
PRVAUT 11,42169 13.92889 19.69748 13.35642 15.11712
COMAUT 10.18653 12,17216 17.63906 8.03854 10.13738
COMUL 14.08152 16.70407 17.94427 10.95556 13.88891
WOKCOM  6.13730 7.06503 7.34507 9.18472 9.82891
MEDMAL 5.66534 12.20602 14.21097 $5.38781 7.75356
OTHLIA 14.29288 22.40355 27.73785 10.06279 14.94903
SPELIA 18,25537 21.90669 27.88511 6.28131 4.59398
PROLIA 15.05529 17.17875 18.72870 7.20772 8.26060
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TABLE 3. PCAF OF THE ESTIMATED RESIDUALS FOR AR(1,1) MODEL

HOME AN
PRVAUT
COMAUT
COMMUL
WJOKCON
MEDMAL
OTKLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
CONAUT
coL
WOKCOM
MEDMAL
QTHLIA
SPELIA
PROLIA

MEDMAL
OTHLIA
SPELIA
PROLLA

HOMFAN
PRVAUT
COMAUT
cosuL
WOKCOM
MEDMAL
OTHLIA
SPELIA
PROLIA

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY
1ST LAG 2D LAG 3RD LAG &TH LAG 5TH LAG

-0.37076 -0.03665 -0.07618 0.00852 -0.17023
-0.34487 -0,00366 -0.00112 -0.00223 0.00111
-0.10285 0.00115 -0.00226 -0.00255 -0.00431
0.09514 -0.01340 -0.00179 -0.00324 -0.00126
0.16951 0.00892 -0.00934 -0.00782 -0.00939
-0.14126 -0.10140 -0.11312 -0.12456 0.02052
0.44427 -0.00304 -0.00352 -0.00171 0.00037
-0.22599 -0.03193 -0.00833 -0.01076 -0.044%4
0.25349 -0.0198% -0.00540 0.00476 0.00134

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY
1ST LAG 2ND LAG 3RD LAG 4TH LAG STH LAG

-0.18333 -0.02987 -0.04104 -0.05068 0.08708
-0.02935 0.00670 -0.00169 -0.00649 -0.00482
+0.47491 -0.00447 0.00382 -0.00309 -0.00181
0.25051 -0.01295 -0.01081 -0.00404 -0.00315
0.36364 -0.01617 -0.00188 -0.02261 -0.04645
<0.57419 0.01834 -0.03797 -0.03747 -0.01874
0.30091 -0.00597 -0.00298 0.00018 0.00095
-0.18716 -0.01487 0.01288 -0.01212 -0.01795
-0.70515 0.00688 -0.02618 -0.00267 -0.00430

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY
1ST LAG XD LAG 3RD LAG &4TH LAG 5TH LAG

-0.18377 -0.03396 0.00009 0.01791 -0.00445
-0.45164 -0.00008 -0.00018 0,00010 -0.00002
-0.21997 -0.02538 -0.00589 0.01806 0.00802
-0.10355 -0.03000 -0.00079 0.00355 -0.00545
-0.35143 -0.09390 -0,37586 -0.77899 -1.58942
-0.10960 -0.03756 -0.01395 0.00318 0.02590
-0.13521 -0.01166 -0.00083 0.00683 -0.00041
-0.14748 -0.36557 0.02584 -0.05500 -0.04185
<0.46299 -0.22962 0.09621 -0.01529 -0.04378

RESIDUAL PARTIAL AUTOCORRELATIONS FOR OY
1ST LAG 2D LAG 3RD LAG ATH LAG STN LAG

-0.49241 -0.05105 0.03597 -0.02773 -0.00072
0.12929 0.00019 -0.00200 -0.00348 -0.00112
-0.12691 -0.00915 -0.00679 -0.00327 0.00723
-0.20871 -0.01654 -0.00699 0.00686 0.01078
0.23198 -0.02239 -0.02952 -0.01093 0.00814
0.10842 -0.01020 -0.05544 -0.02723 0.02407
0.05596 -0.01590 0.00112 0.00798 -0.00592
-0.30055 -0.01253 -0.00252 -0.01439 0.01012
-0.20443 -0.08523 0.03853 0.02532 -0.05277

82
ATH LAG

-0.26534
0.00201
-0.00255
-0.00043
-0.00908
0.00782
0.00209
+0.00522
-0.00012

84
6TH LAG

-0.17562
-0.01315

s.o021
-0.00162
-0.0027m
+0.0029¢
-0.00036

0.00782
-0.01450

1
6TH LAG

-0.0127¢
0,00003
-0.01858
-0.0033%
2.35511
-0.00361
-0.00166
0.03707
0.00849

3
6TH LAG

0.02678
-0.00004
-0.02852
-0.00357

0.01704
-0.00287
-0.02045

0.00566

0.00191
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RESIDUAL PARTTAL AUTOCORRELATIONS FOR AY &3
1ST LAG 2ND LAG 3RD LAG 4TH LAG STH LAG 6TH LAG

-0.28725 -0.44010 -2.8894% 2.02737 O0.43195 0.14616
<0.37356 -0.01520 -0.00476 -0.01134 -0.00362 0.00860
-0.30156 0.00355 -0.00414 -0.01290 -0.00372 -0.02474
-0.43576 0.00571 -0.00343 -0.00719 -0.02689 -0.00648
0.12489 0.00450 -0.01047 -0.01656 -0.00316  -0.00483
0.1525¢ -0.27062 -0.19031 -0.04040 -0.09085 -0.08738
0.10988 0.00077 -0.00673 -0.00701 -0.00103  -0.00195
+0.12508 -0.07599 -0.07512 -0.11286 -0.28879  -0.27434
0.03450 -0.01090 -0.01662 -0.05354 -0.00867  0.00463

RESIOUAL PARTIAL AUTOCORRELATIONS FOR AY 85
1ST LAG 2ND LAG 3RD LAG 4TH LAG 5TH LAG OTH LAG

~0. 17577 -0.126k2 0.07477 0.01706 -0.04701 -0.02116
0.02938 -0.00062 -0.00214 0.00043 0.00000 -0.00000
-0.46176 -0.00270 0.00132 -0.00348 0.00029 0.00101
0.06822 0.00182 -0.00738 -0.00228 -0.00159 0.00008
-0.02170 -0.05033 -0.11814 -0.05752 -0.21919  -0.03884
=0.20607 -0.00680 -0.00968 -0.01695 0.01045 0.00267
-0.44420 -0,00020 -0.00140 -0.00011 -0.0000% -0.00016
~0.46475 -0.01362 -0.00260 -0.00066 0.00161 0.00082
0.02055 -0.00099 -0.02622 0.00490 -0.02459 -0.00013

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY 2
1ST LAG 2KD LAG 3RD LAG &TH LAG S5TH LAG 6TH LAG

-0.57390 0.01386 -0.07921 -0.00814 -0.01905 0.04257
0.25633 -0.00027 -0.00065 -0.00004 -0.00105 -0.00041
-0.11445 0.01353 -0.014%4 -0.00924 -0.01754 0.0018%
-0.46323 -0.01015 -0.08047 0.01340 0.00891 0.03430
0,04069 -0.02385 -0.01581 -0.00568 -0.00437 0.00722
-0.06726 -0.03033 -0.08582 0.03129 0.00811 0.01127
-0.03812 -0.00776 -0.00575 0.00938 -0.00156 -0.00708
-0.30293 -0.00657 0.00221 -0.00923 0,00570 0.00422
-0.20689 -0.00140 -0.06373 -0.03099 0.02172 0.00733

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY 4
1ST LAG 2ND LAG 3RD LAG 4TH LAG S5STH LAG 6TR LAG

-0.33917 -0.00705 -0.00676 -0.00166 -0.00732 0.01159
0.31263 -0.00149 -0.00539 -0.00035 -0.00200 0.00086
0.10055 0.00706 -0.02027 -0.0019% -0.02065 -0.00043
-0.25202 -0.01538 -0.01829 0.00486 0.01590 -0.00168
0.2474Y -0.02784 -0.01471 -0.0206% 0.01033  -0.00124
0.03956 -0.04485 -0.02243 0.04137 -0.02612 -0.03618
0.12130 -0.01779 -0.00050 0.00182 0.00055 -0.01890
-0.20675 -0.03803 -0.01484 0.01032 0.00542 -0.00049
-0.05020 -0.12462 -0.04818 0.02097 0.01188 -0.00370



TABLE &. ESTIMATED

HOMFAM
PRVAUT
comaut
coMmMuL
WOKCOM
MEDMAL
OTHLIA
SPELIA
PROL1A

1ST YEAR
AY LAG

0.30030
0.55030
0.96540
0.53940
1.05840
0.94113
0.52058
0.73300
0.76355

COEFFICENTS FOR AR(2,1) MODEL

D YEAR
AY LAG

0.63392
0.44051
0.01553
0.20832
-0.08517
0.05838
0.46175
0.13460
0.20860
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1ST YEAR
DY LAG

0.06093
-0.00025
0.01800
0.26344
0.02632
0.00222
0.01822
0.13427
0.03330

CONST

0.13195
0.17295
0.09608
-0.19622
0.09982
0.10451
0.18178
-0.06073
0.07551




TABLE 5. ESTIMATED Q-STATISTICS OF THE RESIOUALS FOR AR(2,1) MODEL
Page 1 of 2
ACCIDENT YEAR = 82
Ka3 K=k K5 K=6 K7

HOMFAM  1.98996 2.16136 3.38277 3.8997% 3.99259
PRVAUT  5.67318 6.52377 6.88369 B8.01349 B8.49348
COMAUT  8.26154 9.46501 13.10957 23.54066 28.98261
COMMUL 15.91527 19.07583 22.34244 24.80556 27.03102
WOKCOM 17.42113 24.40334 25.35317 32.47001 35.49136
MEDMAL 3.48411 4.34488 8.93030 13.57876 14.25841
OTHLIA £.28978 5.97255 6.34765 6.62106 6.62712
SPELIA 1.91596 2.24384 3.28078 3.30467 3.31895
PROLIA 10.68277 11,42674 11,54250 11.63724 11.65731

ACCIDENT YEAR = 83
Ke3 Kng K=5 Kb

HONFAM  2.76251 2.95369 3.2104 &.180M1
PRVAUT 3.03098 &£.00322 4.50045 4.81416
COMAUT  5.97849 7.44506 7.64307 23.31010
COMMUL  9.54224 12.34727 16.56810 17.93802
WOKCOM  7.98853 15.33981 16.52810 17.33435
MEDMAL 20.13985 25.52529 30.47728 39.19085
OTHLIA B8.1147T1 8.28323 11.36782 11.42579
SPELIA 1.47905 1.97616 3.32353 3.71314
PROLIA 10.47838 17.39252 19.15444 22.12186

ACCIDENT YEAR = 84 ACCIDENT YEAR = 85
K=3 =l KsS Ks3 Knb

HOMFAM  2.05900 6.74390 7.46354 5.50849 $5.96703
PRVAUT  2.83376 5.38306 7.92033 7.48222 8.40334
COMAUT 10.06838 16.17177 16.83B47 24.26775 31.7923
COMML 18.55787 19.17945 19.70395 15.43779 16.71569
WOKCOM 15.31477 16.47673 16.96448 6.42555 6.96612
MEDMAL 1.54353 2.58499 13.71380 1.85397 2.21731
OTHLIA 5.51755 6.19861 7.76043 11.90048 13.22891
SPELIA 8.40713 10.13824 23.01675 3.15066 3.23195
PROLIA 18.54066 25.60754 34.80326 11.18560 13.16175
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TABLE 5. ESTIMATED O-STATISTICS OF TKE RESIDUALS FOR AR(2,1) MODEL
Page 2 of 2
OEVELOPMENT YEAR = 1
K=3 Kok K=5 =4 Ka?

HOMFAM 14.63397 19.64255 20.59734 23.40826 24.88184%
PRVAUT 11.98079 15.66238 21.10133 24.99560 27.26196
COMAUT  8.08051 11.72902 16.20662 31.76165 36.63307
COMMUL 20.63175 26.85026 30.63580 32.90643 37.20489
WOKCOM 1493724 22.40663 23.92360 25.82408 25.96615
MEDMAL 8.96038 11.48971 12,57961 12.90309 13.02912
OTHLIA 17.73336 22.70700 27.48417 29.51769 33.14230
SPELIA 18.02518 18.93740 19.53405 20.26905 20.59254
PROLIA 7.84471 9.180135 9.98272 11.64293 11,87074

=

DEVELOPMENT YEAR = 2
=3 Ksk k=5 K6

HOMFAM 12.67954 15.72676 18.39232 32.04126
PRVAUT 13.09267 16.42352 20.74574 22.55493
COMAUT  7.63526 9.50123 11.62120 18.42212
COMMUL 10.80210 14.60958 14.63837 27.08606
WOKCOM 10.45595 19.07627 23.99037 26.13308
MEDNAL 16.61188 21.45131 23.27465 24.53169
OTHLIA 16.80799 18.60625 19.69520 20.20313
SPELIA 14.71297 15.86508 18.18733 19.24083
PROLIA  9.03563 11.83704 12.33777 12.70747

F

DEVELOPMET YEAR = 3 DEVELOPMENT YEAR = 4
k=3 K=4 K=5 K=3 K4

HOMFAM 12.59476 13.41527 13.83793 6.64678 11.21330
PRVAUT 13.30942 18.24313 20.58350 13.25334 13,34350
COMAUT 11.90572 14.96047 20.73482 7.95809 11.02764
COMIUL 14.98182 18.14605 19.30833 B8.18434 10.32852
WOKCOM  6.89509 7.86649 8.11614 10,03878 10.80485
MEDMAL  6.65933 13.80642 16.30530 6.24661 8.74575
OTHLIA 15.36807 26.11567 28.18779 10.07870 14.35889
SPELIA 7.65181 9.61350 11.73637 6.15198 6.24645
PROLIA 15.55548 18.15833 20.22100 6.75053 7.67302
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TABLE 6. PCAF OF THE ESTIMATED RESIDUALS FOR AR(2,1) MODEL

KEDMAL
QTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
CoMAUT
CoMUL
WOKCOM
MEDMAL
OTHLIA
SPELIA
PROLIA

HOMFAN
PRVAUT
COMAUT
co UL
YoKCoM
HEDMAL
OTHLIA
SPELIA
PROLIA

ROMFAM
PRVAUT
comauT
comsL
WoKcomn
MEDMAL
OTHLIA
SPELIA
PROLIA

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY

18T LAG
-0.29839
-0.35057
-0.10371
0.09390
0.45075
0.16519
-0.21331
-0.12282
0.25919

20D LAG 3RD LAG
-0.0302¢ -0.08139
-0.00372 -0.00093
0.00114 -0.00225
-0.01189 -0.00157
-0.00315 -0.00362
0.00912 -0.00928
-0.03138 -0.00947
-0.09918 -0.11554
-0.01946 -0.00555

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY

1ST LAG 28D LAG 3RD LAG
-0.005058 -0.006 +0.01433
0.0156667 0.003217 -0.00109
-0.46568 -0,00652 0.003445
0.2397241 -0.00472 -0.01994
0.2756712 -0.00533 -0.00256
0.3682351 -0.01603 -0.004S
0.0061007 -0.01844 0.039313
-0.473081 0.041366 -0.07167
-0.601772 0.009743 -0.0404

82

6TH LAG
-0.20061
0.00181
-0.00254
-0.00045
0.00214
-0.00932
-0.01222
0.00631
0.00024

ATH LAG
-0.02566
-0.00169
-0.00254
-0.00268
-0.00178
-0.00782

STH LAG
-0.14819
0.00082
-0.00430
-0.00151
0.00035
-0.00957
-0.01174 -0.04283
-0.11675 0.02340
0.00416 0.00140

&

6TH LAG
-0.01964
-0.00571

ATH LAG 5TH LAG
+0.03493 0.014516
-0.00263 -0.00098
-0.00293 -0.0018 0.001218
-0.00238 -0.00305 -0.00132
0.000319 0.000797 -0.00034
-0.02342 -0.04879 -0.00312
-0.0169% -0.02119 0.003093
-0.05588 -0.03586 -0.00849
0.003948 -0.01829 -0.00817

RESIDUAL PARTIAL AUTOCORRELATIONS FOR OY 1

1ST LAG 23D LAG 3RD tAG
0.10441 -0,05122 -0.00100
-0.12470 -0,00017 -0.00012
-0.21823 -0,02537 -0.00582
-0.01338 -0.03375 -0.00120
-0.15666 -0.01164 -0.00086
-0.30151 -0.02300 -0.37307
0.00015 -0.39626 0.05815
-0.06512 -0,04156 -0.01473
+0.38248 -0.18376 0.07492

&TH LAG STH LAG
0,01980 -0.01004
0.00008 -0.00002
0.01307 0.00780
0.00760 -0.00828
0.00692 -0.00051
-0.68592 -0.84343
-0.11715 -0.05436
0.00451 0.02518
-0.03374 -0.05593

ATH LAG
-0,00983
0.00002
-0.01841
-0.00234
-0.00156
-4 .48305
0.01327
-0.00397
0.01576

RESJDUAL PARTIAL AUTOCORRELATIONS FOR OY 3

18T LAG
-0.18953
0.44993
-0.11604
-0.12782
0.0213
0.25400

20 LAG 3RD LAG
-0.04044 0.00878
-0.00274 -0.00413
-0.00928 -0.00675
-0.01971 -0.00771
-0.0155% 0.00073
-0.02553 -0.03058
0.04945 -0.01640 -0.01122
0.17825 -0.01958 -0.06156
-0.20953 -0.07372 0.03710

4TH LAG 5TH LAG
-0.03115  0.00606
-0.00426 -0.00055
-0.00334 0.00681
0.00835 0.01224 -0.00631
0.00846 -0.00461 -0.02015
-0.01050 0.00958 0.01747
-0.01399 0.01147 0.00525
<0.02226 0.02695 0.00058
0.01521 -0.05075 -0.00047

6TH LAG
0.02137
0.00079
-0.02858
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RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 83

1ST LAG
-0.3133¢9
-0.33088
-0.30283
-0.44897
0.128483
0.11239
-0.13467
0.15227
<0.01047

2ND LAG
-0.21206
-0.00887
0.00347
0.00397
0.00068
0.00401
-0.03399
-0.2270%
-0,00492

3RD LAG
-0.59748
-0.00269
-0.00404
-0.00549
+0.00764
-0.00926
-0.04098
<0.15534
-0.01241

4TH LAG 3TH LAG 6TH LAG
-1.99424  1.94932 0.56558
-0.00790 -0.00272 0.00433
-0.01270 -0.00360 -0.02437
-0.00561 -0.02227 -0.0057%
-0.00770 -0.00093 -0.00190
-0,01538 -0.00271 -0.00427
-0.06096 -0.16086 -0.12339
-0.02243 -0.05877 -0.06188
-0.04244 -0.00831 0.00169

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 85

1ST LAG
-0.11976
0.26675
-0.45725
0.195429
-0.53336

-0.026
-0.41031
-0.17857
0.094585

24D LAG
-0.05905
-0.00133
-0.,00256
-0.00175
~0.00045
-0.04862
-0.00536
-0.00338
-0.00995

3R0 LAG
0.040935
-0.00292
0.001196
=0.00777
-0.00097
-0.11593
-0.00605
-0.01325

-0.00978 0.000482

4TH LAG 5TH LAG 6TH LAG
0.016000 -0.0523 -0.0090964
-0.00016 0.000178 2.210€-06
-0.00344 0.00032 0.0009861
-0.00161 -0.00073  0.000206
-2.4E-05 0.000084 -0.0002153
-0.05448 -0.20505 -0.0372327
-0.00085 0.000995 0.0001095
-0.0101 0.007809 0.0014824
-0.0181 0.0017349

AESIDUAL PARTIAL AUTOCORRELATIONS FOR DY 2

1ST LAG
0,09371
0.44546
-0.09615
-0.30425
-0.04033
0.06494
-0.11248
-0.01628
-0.00534

20D LAG
-0,01559
-0.00104
0.01338
-0.02329
-0.00734
-0.02510
-0.00791
+0.04230
-0.00816

3RD LAG
-0,06582
-0.0008%
-0.01452
-0.07604
-0.00633
-0.01789
-0.00253
-0.08082
~0.06%3

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY &

1ST LAG
0.17352
0.53043
0.11468
-0.11636
0.08589
0.2¢950
0.04172
0.08795
0.05577

28D LAG
-0.00906
-0.00635
0.00666
-0.01955
-0.01757
-0.03012
-0.05498
-0.05177
-0.13833

3RD LAG
-0.01119
-0.00713
«0.02046
+0.02103
-0.00009
-0.01741
-0.01581
-0.01969
-0.04611

4TH LAG 5TH LAG 6TH LAG
-0.01545 -0.0055¢9 0.03722
-0.00055 -0.00123  -0.00032
-0.00935 -0.01747 0.00200
0.01252 0.01284 0.04627
0.00939 -0.00130  -0.00678
-0.00599 -0.002469 0.00850
-0.00697 0.00876 0.00234
0.03488 0.00849 0.01003
-0.02396 0.01872 0.00306
&4TN LAG 5TH LAG OTH LAG
+0.00946 -0.00037 0.00912
-0.00195 -0.00060 0.00190
~0.00220 -0.02066 -0.00040
0.00670 0.01472 -0.00424
0.00203 0.00214 -0.01867
-0.01940 0.01161 -0.00188
0.01260 0.00645 -0.00000
0.04080 -0.03065 -0.04013
0.01823 0.00958 -0.00575



KOMFAM
PRYAUT

MEDMAL
OTHLIA
SPELIA
PROLTA

TABLE 7. ESTIMATED

1ST YEAR
AY LAG

0.02596
0.52211
0.96374
0.57237
1.04169
0.94271
0.32960
0.67767
0.69942

2ND YEAR
AY LAG

0.47760
0.39606
-0.03759
-0.15216
-0,72885
0.06672
0,24380
-0.16442
-0.20058

COEFFICENTS FOR AR(3,1) MODEL

3RD YEAR
AY LAG

0.44232
0.0a301
0.05602
0.35489
0.69056
-0.01021
0.41686
0.39012
0.47181

690

1ST YEAR
DY LAG

0.05052
-0.00161
0.01672
0.23524
-0.00487
0.00256
0.01021
0.09871
0.03426

CONST

0.17460
0.18837
0.10371
-0.14156
0.23127
0.10270
0.2419%
-0,00733
0.11847




TABLE 8. ESTIMATED Q-STATISTICS OF THE RESIOUALS FOR AR(3,1) MODEL
Page 1 of 2
ACCIDENT YEAR » 82
K=3 K=4 =5 K=é Ka7

HOMFAN  1.89961 2.04500 2.97544 3.43541 3.46336
PRVAUT §.56150 6.32262 6.64156 7.64102 8.05960
COMAUT  8.14380 9.2905) 12.72664 22.8771% 28.23228
CoMMUL 16.53650 19.75038 23.49269 25.95561 28.53064
WOKCOM 19.11617 24.39896 25.27048 32.04011 33.54338
MEDMAL 3.49878 4.36072 B.94902 13.59271 14.28146
OTHLIA 4.18413 S5.46641 6.06382 6.31609 6.32329
SPELIA 1.80286 2.09206 2.94262 3.02819 3.02980
PROLIA 10.78075 11.56971 11.72503 11.82286 11.84372

ACCIDENT YEAR = 83
K=3 Kzb Xa5 K=6

HOMFAM 3.00390 3.19140 3.47231 4.55810
PRVAUT 3.02413 4,0260 4.63506 4.84792
COMAUT  6.02254 7.46375 7.86840 23.16026
COMMUL  7.74866 10.0124) 13.87038 15.45627
VOKCOM  8.21531 15.54758 16.70029 16.93862
KEDMAL 20.14428 25,51812 30.48372 39.23301
OTHLIA 7.27898 7.38832 10.29606 10.34080
SPELIA 1.46445 1.97280 3.36048 3.68359
PROLIA 10.85263 17.76777 19.67225 22.63424

ACCIDENT YEAR = 84 ACCIDENT YEAR = 85
K3 k=g K=5 K=3 [ &)

HOMFAN  3.47004 11.40593 12.13779 2.39762 3.26036
PRVAUT 2.77704 5.20330 7.77981 7.33106 8.51191
COMAUT  9.32228 15.07253 15.79316 21.97061 30.34643
CoMUL 18.38219 18.77972 19.25388 9.07117 10.22135
WOKCOM  7.16027 7.49055 7.90569 4.38527 5.2952¢
WEDMAL 1.54678 2.59282 13.74100 1.85422 2.21259
OTHLIA 7.29723 7.87348 9.74389 10.06132 10.63347
SPELIA 10.78656 13.38671 25.73312 6.81150 7.12185
PROLIA 18.87935 26.42670 34.61287 6.16343 6.58304



TADLE 8. ESTIMATED Q-STATISTICS OF TME RESIDUALS FOR AR(3,1) MODEL
Page 2 of 2
DEVELOPMENT YEAR = 1
x=3 X=& Ka5 Xz6 x=7

HOWFAN 17.B2687 21.04413 23.07158 24.98393 27.15608
PRVAUT 11.03701 14.39888 19.89780 23.07583 24.94225
COMAUT  6.57248 8.72126 13.03380 28.91539 35.40280
COMMUL 20.03356 25.71469 31.46851 33.42196 39.33703
WOKCOM  8.08914  9.10004  9.93333 11.51103 11.78411
MEDMAL 8.74491 11.48403 12.35361 12.67248 12.79704
OTHLIA 10.38935 14.33840 17.31645 17.82988 13.070%3
SPELIA 18.52091 19.44997 20.03453 20.46299 20.93029
PROLIA 15.27199 19.91718 21,19592 23.37152 24.59059

DEVELOPMENT YEAR = 2
K=3 Kod K=$ Kz§

HOMFAM 10.88493 11.93953 12.21178 20.84214
PRYAUT 13.52875 17.50895 21.48084 23.50739
COMAUT  7.98087 9.05037 11.05467 17.58706
COMMUL 11.90663 15.01756 16.33284 29.18758
WOKCOM  8.21686 14.10539 24.69604 28.53668
MEDMAL 16.56766 21.43637 23.26615 24.55222
OTHLIA 14.50624 15.88895 17.126B9 17.76154
SPELIA 10.22151 11.52239 14.49992 16.72538
PROLIA 8.03753 9.61459 10.63513 11.23291

OEVELOPMET YEAR = 3 DEVELOPMENT YEAR ® &
k=3 Kb K=5 K3 K=é

HOMFAN  9.64579 1036975 10,58742 11.04662 18.18216
PRVAUT 13.42957 18.21212 20.00778 12.42276 12.60348
COMAUT 11.80267 15.14643 21.79389 6.32948 8.06215
COMMIL 16.69330 17.66878 20.20201 12.39557 15.46746
WOKCOM 12.18456 1946557 22.84906 $5.10041 10.99673
WMEDMAL 6.85049 13.76803 16.19655 6.22434 8.72807
OTHLIA 15.37184 24.13344 26.0687% 8.66626 10.23055
SPELIA 14.85188 18.34796 23.94580 4.27263 4.47297
PROLIA 15.87020 18.06519 19.86379 5.08702 3.69904
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TABLE 9. PCAF OF THE ESTIMATED RESIDUALS FOR AR(3,1) MODEL

HOMFAN
PRVAUT

oML

NEDMAL
OTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
COMAUT
CoMMUL
VOKCOM
MEDRAL
OTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
COMALIT
ComuL
voxcon
MEDMAL
OTHLIA
SPELIA
PROLIA

HOMFAM
PRVAUT
[=¢ o
ConL
WOKCOM
HEDMAL
OTHLIA
SPELIA
PROLIA

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 82
1ST LAG 2ND LAG 3RD LAG A4TH LAG STH LAG &6TH LAG

-0.26716
-0.35392
-0.10556
0.07346
0.42938
0.16511
-0.20786
-0.06205
0.26115

-0.05608
-0.00374

0.00113
-0.00964
-0.00243

0.00910
-0.03110
-0.09696
-0.0189%9

-0.09823
-0.00087
-0.00222
-0.00113
-0.00288
-0.00928
-0.01044
+0.12202
-0.00559

-0.03268
-0.00155
-0.00252
-0.00155
-0.00118
-0.00781
-0.01123
-0.09324

0.00428

-0.15005
0.00078
-0.00424
-0.00185
0.00076
-0.00955
-0.03803
0.03265
0.00163

RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY

18T LAG
0.07795
0.01303
-0.48487
0.25694
0.01346
0.36923
-0.02931
-0.58797
-0.71820

A0 LAG
-0.00494
0.00306
-0.00436
-0.01070
-0.00281
<0.01605
=0.01409
0.01067
0.00228

38D LAG
-0.01208
-0.00103
0.00393
+0.00853
-0.00141
-0.00473
0.01504
-0.02147
-0.01896

&TH LAG
-0.02316
-0.00244
-0.00318
+0.00239

0.00052
-0.02360
-0.01398
-0.02793

0.00097

STH LAG
0.00795
-0.00097
-0.00176
-0.00244
0.00050
-0.04905
-0.01551
-0.01883
-0.00332

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY
1ST LAG 2MD LAG 3RD LAG
0.23170 -0.05298 -0.00917

-0.14311
-0.25192

0.02573
-0.29811
-0.12728
-0.50265

-0.00015
-0.02294
-0.01432
-0.09055
-0.02112
-0.00245

-0.00013
-0.00552
-0.0074%
-0.37332
-0.01534
~0.0007%

0.23052 -0.25837 -0.00921
-0.38036 -0.05829 0.03004

4TH LAG
0.01944
0,00003
0.01620
-0.00118
-0.68566
-0.00478
0.00121
-0.0534k
-0.07761

STN LAG
-0.00427
-0.00002

0.00802
-0.00065
-0.84675

0.01630
<0.00103
-0.06884
-0.06791

RESIOUAL PARTIAL AUTOCORRELATIONS FOR DY

15T LAG
0.10623
0.25605
-0.2697¢
-0.02071
0.19224
0.17799
-0.40906
0.20983
-0.42933

20 LAG
~0.02944
-0.00344
-0.012350
-0.0049%
-0.00518
~0.01470
-0.00249
-0.01628
-0.0191%

3RD LAG
-0.00545
-0.0039%0
-0.01730
-0.00785
-0.01352
-0.02706
0.000%8
-0.01917
0.01781

ATH LAG
-0.00213
-0.00250
-0.00502
-0.00020
-0.003873
-0.00848
-0.00629
-0.01090
-0.00325

3TH LAG
0.00105
0.00136
0.01743
0.00301
0.00337
0.01132
0.00166
0.01290
-0.01107

-0.19583
0.00171
-0.00254
+0.0001¢
0.00140
-0.00930
-0.01716
0.00158
0.00018

84

6TH LAG
-0.00433
-0.00552
0.00115
-0.00148
0.00004
-0.00309
0.00166
+0.00098
-0.01019

1

6TH LAG
-0.01357
0.00002
-0.01801
-0.00504
-b.64384
-0.00126
0.00052
0.01160
0.01103

3
6TH LAG
0.00075
0.00258
<0.00279
0.00026
0.00103
-0.00330
0.00011
0.00292
-0.00225
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RESIDUAL PARTIAL AUTOCORRELATIONS FOR AY 83
1ST LAG 2ND LAG 3RD LAG ATH LAG 5TH LAG

-0.34105 -0.14883
-0.37978 -0.00842
-0.30055 0.00354
-0.43714  0.00220
0.21134 -0.00119
0.11287 0.00404
-0.14054 -0.02174
0.14931 -0.20989
-0.02798 -0.00349

-0.28184 -0.54963
-0.00266 -0.00779
-0.00412 -0.01273
-0.00590 -0.00454
-0.00924 -0.00813
-0.00929 -0.01541
-0.03029 -0.04556
-0.13831 -0.02612
-0.01099 -0.04032

RESIDUAL PARTTAL AUTOCORRELATIONS FOR A

1ST LAG 2ND LAG
-0.17042 -0.03758
0.26761 -0.00172
-0.42019 -0.00234
-0.07603 0.00781
-0.10101 0.00206
-0.02576 -0.04798
<0.04590 -0.00403
0.06009 0.04129
-0.01319 -0.00640

3RD LAG &TN LAG
0.02303 0.01861
-0.00316 -0.00024
0.00080 -0.00406
«0.00963 -0.00349
-0.00480 -0.00246
-0.11721 -0.05509
-0.01476 0.00086
-0.05578 -0.01232
-0.02216 0.00609

RESIDUAL PARTIAL AUTOCORRELATIONS FOR OY 2

18T LAG 2ND LAG
0.10000 -0.01616
0.36253 -0.00109
-0.18645 0.00064
-0.40701 0.01556
0.14061 -0.03839
+0.00312  0.01149
-0.51547 -0.00022
-0.11998 -0.00057
-0.02004 -0.00532

3RD LAG &4TH LAG
-0.10801 -0.00389
-0.00092 -0.00055
-0.00954 -0.00842
-0.08795 0.00264
-0.01055 0.01633
-0.04696 0.0025%
-0.00081 0.00116
-0.0031% -0.00269
-0.06729 -0.04119

RESIDUAL PARTIAL AUTOCORRELATIONS FOR DY &

1ST LAG 2ND LAG
0.49432 -0.00582
0.27579 -0.00612
~0.05468 -0.00942
0.19221 -0.01643
0.01502 -0.01277
0.04140 -0.02958
-0.19410 -0.00397
0.01638 -0.03931
0.21993 -0.02344

3RD LAG 4&TH LAG
-0.00624 -0.00158
-0.00425 0.00164
-0.01159 0.00530
-0.00648 0.0050%
0.00102 -0.01046
-0.02602 0.01337
-0.00276 -0.01209
+0.01341 0.00531
-0.04364 -0.00585

6TH LAG
-1.00750 165.03700
-0.00259 0.00420
-0.00370  -0.02435
-0.02300  -0.00490
<0.00126  -0.000&
-0.00274  -0.00430
-0.12731  -0.08358
-0.06189  -0.04440
-0.00852 0.00083

Y 85

5TH LAG 6TH LAG
-0.04912  -0.01055
0.00028  -0.00001
0.00055 0.00102
-0.00504  -0.00044
-0.00149  -0.00015
-0.20639  -0.03788
+0.00257 -0.00033
-0.03542 0.00085
-0.00750  -0.00051
STH LAG 6TH LAG
-0.00775 0.03960
-0.00025 0.0005%
-0.01235 0.00311
-0.00734 0.04367
0.00467 -0.0057%
+0.01053 0.00084
-0,00069 0.00013
0.00245  -0.00151
0.01474 0.00795
S5TH LAG 6TH LAG
0.00199 0.00023
0.00180  -0.00035
-0.00062  -0.00006
0.00242 -0.00062
-0.00261  -0.00022
-0.00174 0.00002
0.00510 0.00139
0.0059 0.00015
-0.01262 0.00146
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Accident
Year

1982
1983
1984
1985
1986
1987
1988
1989
1990

Total

191

Upper
Lowe:

3

S

Uppe:
Lower

Table 10. HOMFAM Comperison of Estizstes

(1) (2) 3> (%)
Ultimate Loss Comparison

95X Point Loss Dev

Limit Estimate (1-2)/(2) Method
8,227,483 8,222,584 0.06X 8,222,506
8,896,303 8,883,211 0.12X 8,884,462
9,223,736 9,198,101 0.28X 9,195,274
10,440,020 10,376,815 0.61X 10,299,264
9,756,426 9,631,000 1.30X 9,597,963
10,259,092 10,038,562 2.20% 10,008,421
11,486,361 11,100,605 3.48% 11,098,940
14,651,688 13,968,085 4.89% 14,199,606
15,710,658 13,473,811 16.60% 13,819,411
98,649,765 94,892,774 3.96X 95,325,847

Linit with 97.5 X Two-Tefl Test
Limit with 97.5 X Two-Tail Test

Linft with 95 X Two-Tall Test
Limit with 95 X Two-Tail Test

5

95 X
Limit

10,775
28,618
70,010

179,966
354,433
618,497

1,076,049

1,906,785

6,473,740

10,718,873

6)

(44]

(8)

Liability Comparison

Point

Estimate (5-6)/(6)

5,876
17,526
375

116,761
229,009
397,967
690,293
1,223,182
4,236,893

6,961,882

83.37%
63.29%
57.77%
54.13%
S4.7TX
55.41X
55.88%
55.89%

LDF
Method

5,798
18,777
41,548
39,210

195,972
367,826
688,628
1,454,703

52.79% 4,582,493

S3.97x

7,394,955

(§5)
Actual
Paid L
/N

8,224,257
8,883,252
9,183,429
10,314,312
9,497,598
9,789,919
10,656,496
13,254,760
12,358,709

92,162,732

10,670,718

10y 1)
Loss Dev
Method

@12/9

Model
M

8,222,506
8,873,197
9,175,840
10,252,727
9,477,972
9,827,809 9,804,068
10,699,876 10,691,036
13,272,218 13,318,598

8,222,584
8,877,052
9,178,785
10,344,095
9,515,095

12

Page 1 of @

3

€10)-¢(9) (11)-(9)

(1,673)
(6,200)
(4,665)
2,783
17,497
37,890
43,380
17,458

12,249,764 12,403,657 (108,965)

92,187,239 92,224,603
9,411,233

4,766,733
14,075,752

5,044,205
12,878,280

24,507

(1,751
(5,055)
(7,589)
(61,585)
(19,626)
14,149
34,540
63,838
44,948

61,87
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Teble 10. PRVAUT Comparison of Estimates

)
Accident 95X
Year timit

1982 15,782,753
1983 17,927,403
1984 20,670,924
1985 23,488,419
1986 26,412,360
1987 29,571,320
1988 33,027,267
1989 36,606,510
1990 40,625,515

Totsl 244,112,471

1991

[¢)]

95X
Limit

40,393
97,846
198,108
475,428
1,178,061

&)

(£4) 8)

Liabitity Comparison

Point

LOF

Estizate (5-6)/(6) Nethod

35,448
88,364
180,585
436,13
1,083,576

29,531,112 2,737,075 2,519,603
32,925,117 6,020,076 5,542,213
36,497,086 12,477,209 11,484,638
40,181,987 27,283,305 25,119,768

(2) 3 (O]
Ultimete Loss Comperison
point Loss Dev
Estimate (1-2)/(2) Pethod
15,777,808 0.03x 15,776,929
17,917,921 0.05% 17,921,001
20,653,401 0.08x 20,672,629
23,449,125 017X 23,508,711
26,317,875 0.36X 26,419,174
29,353,848 0.74%
32,549,404 14T
35,613,939 2™
38,461,978 5.63x
240,095,299

1.67% 243,433,686 50,507,501 45,490,329

Upper Limit with 97.5 X Two-Tall Test
Lower Limit with 97.5 X Two-Tail Test

Upper Limit Wwith 95 X Two-Tail Test
Lower Limit with 95 X Two-Tail Test

195X X,569
10.73% 91,444
9.70x 199,813
9.01X 495,720
8.72% 1,184,815
8.63% 2,606,867
8.62% 5,917,926
8.64% 12,367,785
8.61X 26,839,777

B.64X 49,828,716

Page 2 of ¢
[$4] (§19] an (12> Qa3
Actual Loss Dev
Paid L Mode Rethod (10)-(?  Q1)-("
812/91 a12/9t a1/

15,779,034 15,765,978 15,765,395 (13,056) (13,639)
17,901,737 17,881,747 17,881,735 €19,990) (20,002)
20,622,934 20,564,722 20,567,14é (58,212) (55,790)
23,320,319 23,264,891 23,281,485 (55,428 (38,834)
25,881,852 25,866,542 25,842,024 (15,310) (19,828)
28,250,991 28,264,057 28,206,733 13,066 (44,258)
20,844,056 30,007,063 29,918,300 163,007 74,244
20,852,941 30,043,508 29,937,138 190,567 8,197
26,102,083 26,936,751 26,565,498 834,668 483,415

217,555,947 218,595,259 217,985,451 1,039,312 429,504
13,340,803 14,876,242

16,270,389
13,482,096

15,994,073
13,758,411
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Table 10. COMAUT Comparison of Estimates

Poge 3 of 9
(4] (2) 3 %) (5 (6) 7 (8) (49 (10) an 12) 13)
Ultimate Loss Comparison Liebility Comparison Actual Loss Dev
Accident % % Point Loss Dev %X Point LDF Paid L Model Method (10)-(9) (11)-(?)
Year Limft Estimate (1-2)/(2) Method Limit Estimate (5-6)/(6) Method 3N2/N a9 212/9N
1982 4,105,218 4,092,216 0.32% 4,058,434 76,713 63,711 20.41% 29,929 4,042,160 4,062,119 4,044,430 19,959 2,270
1983 4,666,126 4,643,961 0.48% 4,813,709 120,39 93,231 22.57% 69,979 4,577,032 4,580,530 4,581,670 3,498 4,638
1984 5,713,126 5,673,248 0.70X 5,673,773 210,465 170,587  23.38% 171,112 5,583,276 5,575,213 5,587,753  (B,063) 4,477
1985 6,606,130 6,524,735 1.25% 6,557,468 432,697 351,302  23.37% 384,035 6,360,828 6,353,997 6,359,705 (6,831) (1,123)
1986 7,325,185 7,161,108 2.29% 7,235,420 870,487 706,410  23.23% 780,722 6,839,937 6,809,762 6,811,681 (30,175) (28,256)
1987 8,188,251 7,850,104 431X 7,933,205 1,797,660 1,459,513  23.97X 1,542,814 7,085,223 7,143,435 7,077,190 58,412 (8,033)
1988 8,982,215 38,334, ™ T7.77X 8,427,419 3,401,045 2,753,621 23.51% 2,846,249 6,815,728 6,878,66h 6,783,705 62,936 (27,023)

1989 10,081,724 8,955,483 12.58X 9,280,319 5,787,786 4,681,545 24.18% 4,984,381 6,220,537 6,215,497 6,146,015  (5,040) (74,522)
1990 10,817,614 9,015,129 19.99% 9,205,528 9,022,573 7,220,088  24.96% 7,410,487 &,195,956 4,386,378 4,259,333 190,422 63,377

Total &6,485,590 62,250,775 6.80X 62,987,274 21,719,823 17,485,008 264.22% 18,221,507 51,720,677 52,005,795 51,656,481 285,118 (64,196)
1991 1,704,288 1,997,109
Upper Limit with 97.5 X Two-Tail Test 2,383,303
Lower Limit with 97.5 X Two-Tail Test 1,610,914
Upper Liait with 95 X Two-Tail Test 2,292,035

Lower Limit with 95 X Two-Tail Test 1,702,182
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Table 10. COMMUL Comperison of Estimstes

Page 4 of 9
(§}] ) ($1] ) (5 (C)] (4] @) [C2] [§1:}] (41 }] Qa2 (13)
Ultimate Loss Comparison Liebility Comparison Actual Loss Dev
Accident X Point Loss Dev 108 3 Point LOF Paid L Rodel Method (10)-(9) (11)-(9)
Year Limit Estimete (1-2)/(2) Method Limjt Estimete (5-6)/(4) Method 12/ N a12/91
1982 5,437,398 5,422,912 0.27TX% 5,417,230 85,087 70,601 20.52% 64,919 5,381,291 5,389,061 5,385,804 7,770 5,513
1983 6,354,958 6,321,652 0.53X 6,315,166 193,894 160,588 20.74X 155,102 6,206,690 6,234,573 6,240,475 27,883 33,785
1984 7,305,313 7,236,856 0.95% 7,225,004 395,729 327,22 20.92X 315,420 7,053,579 7,044,965 7,047,584 (8,614) (5,995
1985 7,999,620 7,864,431 1.72% 7,832,537 777,351 642,162 21.05% 610,268 7,492,393 7,479,635 7,490,595 (12,758) (1,798)
1986 7,681,575 7,434,025 3.33x 7,200,161 1,413,268 1,165,718 21.24% 931,856 6,600,445 6,681,956 6,639,166 21,511 (21,280)
1987 8,505,365 8,078,574 S.28% 7,634,479 2,415,107 1,988,316 21.46% 1,544,221 6,715,892 6,692,439 6,6k5,415 (23,453) (69,47
1988 9,909,739 9,220,743 T.47X 8,619,542 3,864,267 3,173,2M 21.70X 2,574,070 6,914,450 6,884,622 6,876,073 (29,828) (38,377
1989 12,567,415 11,485,820 9.42% 11,191,586 6,031,693 4,950,098 21.85% 4,655,864 7,743,973 7,800,080 7,849,421 36,107 85,448
1990 14,158,039 12,282,635 15.27% 10,497,573 10,517,534 6,642,130 21.70% 6,857,068 6,133,380 6,400,062 6,130,429 266,682 (2,951
Total 79,919,422 75,347,647 6.07X 71,934,279 25,693,930 21,122,155 21.564% 17,708,787 60,322,093 60,607,392 60,305,960 285,299 (15,133)
1994 3,906,185 4,080,413
Upper Limit with 97.5 X Two-Tail Test 4,860,506
Lower Limit with 97.5 X Two-Tail Test 3,300,321
Upper Limlt with 95 X Two-Tafl Test 4,676,217

Lower Linit with 95 X Two-Tail Test 3,484,550
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Accident
Year

1982

Total

w91

Upper

Lower

Upper
Lower

Table 10. WOKCOM Comparison of Estimates

(3]

95 X
Limit

9,213,514
10,598,467
13,069,409
14,643,669
16,006,922
18,214,288
21,159,960
23,809,901
26,395,660

153,111,789

5)

95 %
Limit

466,195

732,055
1,110,585
1,728,692
2,676,469
4,191,669
6,850,868

%)

(¢4 (-}

Liability Comperison

Point

LOF

Estimate (5-6)/(6) Method

399,470
620,570
93,688

1,450,094

2,240,136

3,505,195

$,735,355

23,820,266 11,928,420 10,014,837
26,455,565 21,095,488 17,744,541

@) 3 %)
Ultimate Loss Comparison
Point Loss Dev
Estimste (1-2)/(2) Method
9,146,789 0.73% 8,942,805
10,436,982 1.06X 10,317,945
12,893,512 1.36% 12,879,912
14,365,071 1.94X 14,450,843
15,570,589 2.80x 15,752,839
17,527,014 3.92% 18,033,056
20,044,447 S.STX 21,345,500
21,896,318 8.74%
23,044,713 14.54%
164,976,235 5.61%

Linit with 97.5 X Two-Tail Test
Limit with 97.5 X Two-Tafl Test

Limit with 95 X Two-Tefl Test
Limlt with 95 X Two-Tail Test

149,998,771 50,780,440 42,644,886

18.70x 195,486
17.96x 451,533
18.82% 921,088
19.21% 1,535,906
19.48% 2,422,386
19.58% 4,010,437
19.45% 7,036,408
19.11% 11,938,785
18.88% 19,155,393

19.08X 47,667,622

(L))
Actusl
Paid L
an/on

8,893,778
10,059,841
12,296,335
13,439,155
14,105,048
15,266,334
16,567,748
16,069,736
12,900,611

119,618,586

5,488,466

€10)

Model
a12/9

8,949,043
10,086,206
12,211,112
13,426,764
14,116,942
15,278,500
15,521,593
16,124,360
12,964,768

119,737,287
5,048,709

6,9%7,191
5,145,628

5,737,861
5,355,558

()
Loss Dev
Method
a2/

8,847,496
10,092,399
12,316,262
13,417,449
14,078,555
15,260,031
16,598,396
15,968,068
12,198,366

118,777,022

Page 5 of 9

(12) a3

(10)-(9) (11)-«9)

55,265 (46,282)
26,35 32,558
25,223) 19,927
12,391) (21,706)
9,89 (26,493)
12,166 (6,303)
(66,155) 10,648
54,624 (101,668)
6,157 (702,245)

118,701 (841,564)



Teble 10. MEDMAL Comparison of Estimstes

Page 6 of 9
(§}] (€3] [4.3] L) (5) (6) (12} (8) 9 «10) (1) 2) ayn
Ultimate Loss Comperison Lisbility Comperison Actual Loss Dev
Accident 95 X Point Loss Dev 5 X Point LDF Paid L Mode!{ Method (10)-(%) (11)-(9)
Year Limit Estimeste (1-2)/(2) Method Limit Estimate (5-6)/(6) Hethod /N NN /N

1982 1,996,508 1,873,257  6.56% 1,755,479 365,566 262,313 50.86X 124,535 1,706,316 1,747,222 1,692,177 41,106 (13,939)
1983 2,350,126 2,147,009  9.66% 2,049,968  S7B,607 375,580  S.06X 278,449 1,808,418 1,899,876 1,904,541 1,458 6,123
1984 2,730,153 2,408,021  13.38% 2,336,516 894,527  S72,415  S6.27X 500,910 2,000,148 2,026,658 2,019,146 24,510 18,998
1985 3,062,136 2,573,302  19.00% 2,537,082 1,325,6% 836,850  SB8.41X 800,640 1,923,757 1,988,787 1,993,176 65,030 9,417
1986 3,323,606 2,589,890  28.33% 2,660,406 1,961,478 1,227,672  S9.TTX 1,098,188 1,621,187 1,734,912 1,683,963 113,725 62,776
1987 3,719,757 2,685,266  38.52% 2,568,473 2,690,760 1,656,267  62.46X 1,539,476 1,347,595 1,430,709 1,422,050 83,116 74,457
1988 4,270,137 2,870,635  48.75% 2,991,231 3,536,882 2,137,380  65.48X 2,257,976 1,091,625 1,177,769 1,198,365 86,146 108,742
1989 4,843,472 3,026,259  60.05% 3,665,678 4,447,701 2,630,488  69.0BX 3,260,907 852,508 841,429 898,586 (11,079) 46,078
1990 5,363,128 3,132,196  T71,86% 4,744,960 5,295,116 3,064,186  73.94X 656,948 444,715 443,456 512,297 (1,259) 67,582

Total 31,679,093 23,305,923  3S.93X% 25,109,792 21,096,329 12,723,159  65.81X 14,527,028 12,886,045 13,288,818 13,324,299 402,753 438,234

=)

o

-]
1991 97,729 9,978
Upper Linit with 97.5 X Two-Tall Test 140,418
Lower Liait with 97.5 X Two-Tail Test 59,538
Upper Limit with 95 X Two-Tall Test 130,248

Lower Limit with 95 X Two-Tail Test 69,687
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Table 10. OTHLIA Comperison of Estimates

Page 7 of ¢
(5] ) 3 (%) (5) (O] N (8 (] 10) (1 (12) (13)
Ultimete Loss Comperison Lisbility Comparison Actual Loss Dev
Accident 95 X point Loss Dev L 3 Point LDF Paid L Model Method (10)-(9) (11)-(9)
Year Linit Estieate (1-2)/(2) Method Limit Estimste (5-6)/(6) Methed a9 a12/9% a2z
1982 4,604,844 4,551,164 1.18X 4,545,694 236,338 182,658 29.39% 178,188 4,49 388 4,450,185 4,457,828 (34,203) (36,560)
1983 5,082,057 4,968,894 2.28X 4,966,155 497,989 384,826 29.41% 382,087 5,077,919 4 778,656 4,771,528 (299,263)(306,391)
1984 6,300,135 6,125,941 2.84% 4,261,412 757,147 582,953 29.88% 718,426 5,952,007 5,726,08k 5,779,671 (225,923)(172,336)
1985 7,456,156 7,097,853 $.05% 7,418,525 1,565,652 1,207,349 29.68% 1,526,021 6,568,768 6,486,247 6,565,565 (82,521) (3,203)
1986 7,930,839 7,287,319 B.83% 7,630,093 2,821,185 2,177,665 29.55% 2,520,439 5,983,973 6,083,38 6,060,128 99,411 76,155
1987 8,889,403 7,803,392  13.92X 7,944,806 4,721,624 3,635,613 29.87% 3,777,027 5,317,321 5,473,511 5,320,409 156,190 3,083
1988 10,460,042 8,817,891  18.62% 9,535,151 7,084,123 5,641,972 30.18X 6,160,232 4,917,109 5,124,972 5,002,585 207,863 85,476
1989 11,476,012 9,278,585 23.68% 10,978,423 9,391,578 7,194,151 30.54X 8,893,989 3,770,531 3,858,661 3,886,502 98,130 NM5,971
1990 12,226,490 9,507,210 28.60% 12,404,269 11,480,261 8,760,981 31.04X 11,658,040 2,170,377 2,248,189 2,355,154 77,812 184,777
Totat 74,425,977 65,438,249 13.73% 71,484,526 38,555,896 29,563,158 30.40% 35,814,445 44,252,393 44,249,880 44,199,370 (2,504) (53,023)
1991 745,429 960,584
Upper Limit with 97.5 % Two-Tafl Test 1,231,188
Lower Limit with 97.5 X Two-Tail Test 689,981
Upper Limit with 95 X Two-Tail Test 1,165,511

Lower Limit with 95 X Two-Tail Test 755,657
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Table 10. SPELIA Comparison of Estimstes

Page B8 of 9
) @) 3 %) (5) ) (£4] (£.}] [$2] 10) 1) 12y ay
Ultimote Loss Cosparison Liability Comparison Actual Loss Dev
Accident L point Loas Dev 95X Point LDF Paid L Hodel Method (10)-(9) (11)-(9)
Yesr Limit Estimete (1-2)/{2) Rethod Limit Estimate (5-6)/(6&) Method 12/ agn arm
1982 1,129,276 1,126,763 0.22% 1,124,166 1,876 5,383 46.87x 2,766 1,124,673 1,124,843 1,133,243 175 (1,430)
1983 1,279,849 1,274,976 0.38x 1,272,515 14,624 9,751 49.97% 7,290 1,273,497 1,269,268 1,269,384  {4,229) (4,11))

198 1,370,003 1,358,845  0.82X 1,357,735 33,498 22,340  49.95% 21,230 1,355,886 1,347,930 1,349,957 (7,954) (5,927)
1985 1,382,886 1,357,925 1.84% 1,354,815 74,656 49,695  50.25% 46,585 1,327,123 1,332,671 1,333,631 5,548 6,508
1986 1,381,856 1,332,072 34X 1,313,246 147,088 97,306 S1.16X  TBATB 4,283,582 1,276,620 1,268,090  (6,962) (15,492)
1987 1,580,592 1,490,415  6.05% 1,469,089 262,730 172,553  52.26x 151,227 1,393,829 1,383,098 1,381,298 (10,731) (12,531)
1988 1,883,734 1,716,565  0.87X 1,609,189 492,560 323,391  s2.31x 308,015 1,535,560 1,522,262 1,524,276 (13,298) (11,284)
1989 2,200,011 1,865,627  17.92X% 1,821,966 978,618 64, 2%  S1.90X 600,573 1,479,785 1,501,293 1,491,695 21,508 11,910
1990 2,521,771 1,830,600  37.76X 1,538,000 2,034,359 1,343,138  S1.46X 1,050,588 1,102,659 1,093,583 1,031,030 (4,076) (71,629)

Total 34,729,978 13,351,788 10.32% 12,950,722 4,046,000 2,667,819 51.66X 2,266,753 11,876,592 11,856,573 11,772,604 (20,019)(103,988)

1991 ’ S76,235 541,688
Upper Limit with 97.5 X Two-Tail Test e, 17
Lower Limit with 97.5 X Two-Taf( Test 305,219
Upper Limit with 95 X Two-Tail Test 718,209

Lower Limit with 95 X Two-Tajl Test 365,047
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Table 10. PROLIA Comparison of Estimates

()] () (3) (&) ) é) (18] ®8) ($2] «10)

Ultimate Loss Comparison Liability Comparison Actual
Accident % x Point Loss Dev s X point LOF Paid L Nodel
Year Limit Estimate (1-2)/(2) Method Limit Estimate (5-6)/(6) Method at2/91 M

1982 989,769 966,017  2.46% 967,05 88,316 64,564  36.79% 65,601 93,316 933,372
1983 1,145,164 1,096,816  4.60% 1,101,458 187,046 136,718  36.81X 143,360 1,033,765 1,025,827
1984 1,298,761 1,207,311  7.57% 1,223,989 335,820 244,370  37.42X 261,048 1,097,859 1,061,559
1985 1,640,065 1,291,714  11.48% 1,328,108 537,273 388,922 38.14x 425,316 1,066,652 1,032,31
1986 1,621,608 1,389,740  16.68% 1,431,263 832,621 600,753 38,601 642,276 978,808 976,726
1987 1,770,715 1,418,404  26.84X 1,310,343 1,257,356 905,045  38.93x 796,084 729,495 780,349
1988 2,066,076 1,592,506  29.76% 1,755,785 1,680,121 1,186,551  39.91X 1,349,832 661,341 629,879
1989 2,341,619 1,739,953 34.58% 2,370,755 2,078,041 1,476,375  40.75% 2,107,477 497,061  484,%0
1990 2,582,807 1,849,230  39.67X 2,523,669 2,500,189 1,766,612  41.52% 2,441,051 260,440 282,845

Total 15,256,563 12,549,689  21.5T% 14,012,422 9,476,784 6,769,910  39.98% 8,232,843 7,268,743 7,207,772
1991 102,397 83,792
Upper Limit with 97.5 X Two-Tail Test 132,583
tower Limit ufth 97.5 X Two-Tafl Test 45,000
Uppar Limit with 95 X Two-Teil Test 124,386

tower Limit uith 95 X Two-Tail Test 53,198

«an
Loss Dev

«2)

Page 9 of 9

[QF)]

Method (103-¢(9) (11)-(9)

a/an

933,745
1,026,740
1,064,681
1,044,854

972,913

722,330

687,872

548,140

280,579

7,281,852

(9,944)
(7,938)
(36,310)
(34,338)
{2,080)
50,854
(31,462)
€12,161)
22,405

(60,973)

(9,571
(7,025)

(33,188)
21,798

(5,893)
(7,165)
26,531
51,079
20,139

13,107



Table 11. Cumulative Lose and OLAE Payment Triangie

YEAR 1

10902 5683422
19653 5,564,000
1964 8211008
1085 7150620
1900 0,562 558
19687 6,571,191
1008 7.415240
108 $.102,150
1960 228018

1091 106,718

1T 2

1m0 1.3067

1963 14181

1984 13218

1508 13180

1068 1.300

1067 1.30%

1008 1.3440

10680 1.3854

LAST 5AVGQ 1428

a AGE-TO-WLT v.a0m
8 ESTLASTL
£5T ULT LOSS

HOMEOWNERS/FARMOOWNERS

2 3 .
7.434,110 7,714556 7010504
7000008 G2048% 840100
8213101 80170657  06.040285
0424085 0773028 10017275
8580605 6008577 0248197
BE57,742  S380020  0,840.500
04870108  10,410312 10,601,008
1274003 13318508 10,877,747
12403857 12061082 13311528
12368700 13254780 10.670.406
2703 3T04 4TOS
10377 1.0254 1.0151
1.0450 10273 10t
1.0402 1.02% 10174
1.00% 1.02% 1018
10478 1.0277 1.01808

1040 1.0278

1.0441

10450 1.0270 10170
11141 1.0087 10002
1240057 13018508 10,001,000
13819411 14100000 11,008,940

5

8,029,608
8,053,400
9.003,580
10,160,409
9,401,801
9,804,008
10872322
13,500 878
135377 248

0,780810

5TO8
10118
10100
10111
[:J-- 4

1,008t
1.0208

0,804,068
10,008,421

8122750
68.747.820
103002
10,170,505
0477072

10980,184
14,022,000
13,040,044
9407508
sTQ7

1013
1.00%5

1.0081
10

0477072
0507903

0.861,820
0.15a720
1029727
0554508
©.0,100
11,048,701
14,135,448
13,750,000

10314312
7TO8

1.0044
1.000¢

1.0
1.0045

1w2R727
10,290 204

Nots: Amaurt In AY 1065 — DY 6th adiusted 10 prevent rom being & negative incremena payment in our madel.

tappears tobea

erros in Bests

8,206,128
8,806,005
9,175840
10277400
0.577.878
0.007208
11,075,483
14,180,506
13,700,204

9183420

at09
10014

10014
1000

0.175840
9,106274

0218708
e.a78107
9188780
10,262,001
9,501,105
10,001 363
11,000,114
14,180 583
13,600,008

8.683.252
eTOWLT

1.0007
10007

887107
8,884 482

8224257

6,222 500
8222500



Tadle 11. Cumulative Lose and OLAE Peyment Triangie

1.0011
ao018

PRIVATE PASSENGER AUTO LIABILIT Y/MEDICAL
2 3 4 L] L]

10773841 13072270 14372670 1500154 15432107
12,107,804 145841844 10340205 17147860 1758000
13777.714 10985354 10744230 19.7H08) 202222374
15,404,708 10,180,333 21,318,063 22443382 23012001
172,158 21,583,704 NDL61,700 2B52M200 230020
10421048 24107360 JOSMME SBAE T  WK0.5m
21,7080 27007,191 MWOI800 4058 20837
2410301 22007,138 218000 MBANI05 BTT484
20305490 XRHW710 IS12452 IVINHW  ININ08
28,12.083 20,102,003 20844060 28250001 25881852

2703 3TO4 4TOB 87060 aTO 7?7

1210 1.0008 1.0480 1.0248 10127

1258 11015 1.0458 1.02@ 1.0008

12244 1.1080 1053 1.0251 10124

1248 11115 10628 10254

12475 1@ 10535

12444 1.110¢

1.2400

12407 11078 1061 10240 10117

15128 129 1.1008 1.0470 1.0218
V5400 VLT3 WHILI0 22073 2380024
40,151,067 DAX0M0 RLBI17T  W5N,112 419,114

1.0040
1.0088

D20 485
250711

15,000,425
17.625 557
20,507,144
23388755
20,204 307
20380425
2,772
30,310,854
30,970,953

20,622,834

aTO®
1.000

10029
1.006¢

20,507,144
20,672,620

1.0015
10022

17,881,735
17,821,001

40,1R.011

15,779,004

1.0007
10007

15,766,306
15,778,020

Page20al9



Table 11. Cumuiative Loss and OLAE Peymem Triangle

COMMERCAL AUTO/TRUCK LABILITY/MEDICAL
3 4 s

2y
Jomerz

12104
1810

6,148015
9200319

3,300,005
3713387
4574553
82T M
5, 788301
6300501
6,788 708
7478758
7418810

eR15728

4708
1.0082
1.10%
1.102
1.10685
11104

1.1074
12434

6,788,706
8427419

1.0653
1.12%0

71.077,100
LE st

s 788
47823
530236
0173433
0811081
7,408,001
7933871
arsan2
8080410

083857

1.0902
1.0822

411,081
12365420

7

3,832,860
4480017
5,502,601
6,360,706
707211

105
1.0311

6,350,705
0557 «08

1.007%
1.0154

5.587,753
S587ATTY

4,028,506
4581670
5831632
0500110
11802082
7874701
8388270
0,211,881
0,137,841

4571032
eTO T

1.0040
1.0074

4,581,870
4415700

4044430
4500782
5,854,100
0534841
7210454
7006831

0.248297
9.173784

4042100

1.0020
10035

4,044,430
4058434

o20a87Tr
0,101,897

10010
1.0013

1.0006
1.0005

4,058434
4015700
5673773
a557.408

7533206
0,427,410
0280319
0.208528
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2204710
25mIn

2,060.200
2517583
2532600

12100
12080
1.1

6130420
10497 573

COMMERCAILL MULT! PERIL
3 .
3807011 430420
4506300 Bo482%
6065182 5758158
5510000 025130
40T1444 85000005
8290530 600028
6045472 Gp5TROTY
7540421 0927871
730803 8374230
TTRIOTY  6,014450
3TOs 4708
1.1148 1.0082
112 1.0887
1.1 1.0007
1.130 1.080%
11443 11018
1.1488

1.1374 10013
1429 1230
TM4R421 6.872073
MIN L8 80105842

10682
1147

6,844418
781,470

10372
1006

0.630,104
7200181

7

s 817

1020
1.0488

7,400,508
7832837

6.284.202
6,181,004
7.047.584
7,840,100
700351
7,447,008
6,407877
10.918.781
10.23%,790

7.081579

aT0®
1012

1018
1022

7,047584
7.225,004

6,362311
0240475
7,130.421
7.730874
7.112870
7,542,000
8518248
11,067 480
1031.7
6,200800

eTowr

1.008¢
1011

8240473
8314108

10

5,380,804
0200002
7,184,420
7.780547
risarz
7501801
8571,132
11,128,730
1043815

8301201

1.0082
1.0088

53060,804
B 417230

11,184,500
10,472,251

1.000
1.000¢

1.0008
1.0008

8417220
6318180
7,

7200101
784470

11,191 588
10,447 573
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Table 11. Cumulztive Lows and OLAE Peyment Triangie

LoL

1.34%
200

12,198,308
2445 508

WORKERS' COMPENSATION
3 4
170 7.000277
7008517 8,087,087
6817204 00977587
0833075 11 2R4K
10438582 12210,194
12083204 14028616
14300002  16.568.300
15000008 18822761
16.363,0¢4 10,018,803
180,73 16.587.748
3704 4705
ARE - 1.0812
1.1408 1.0872
1.16% 10011
1.1a8 1.0008
AR F ] 1.0012
11624
11800 1.0882
14917 1200
18900005 10,508,300
DAV NIBE0

7578183

1.0661
11817

15.280,031
18,030,088

258310

14,106,048

10080
1118

14 078,555
18,792 630

1349155

1708
1.0008
1.0

1.0208
1070

13,417 440
14,480 883

6,551,451

0888412
12318262
13,818 484
15,080 484
1720 806
2041370
22,777 48
23842

12208335

atoe
1.0220

1.02%
10458

12318262
12,879,012

a741.310
10,062 390
12508362
14,134,002
15,408,480
17,830,800
20,878,005
2,200 504
p <3 L

1000841
eTOUAT

10115
.02

10,002,200
10317045

10

8647408
10,207 960
12,742,042
14.290,870
15,584 051
17,600,808
21,118,007
23,500,300
24,104 G228

6,004,778

10057
10108

8,847,400
6,042,805

5,808,158
10,208,433
12,015,000
14 378,737
16,074,100
17,900,020
2128 02
2,701 343
2433470

1.00%
1.0050

12

88218
10285828
12882301
14,410,004
16,719,008
17,904,308
21.28,741
2,780,202
24.400,1%

1004
1.0

6,800,400
10,310,585
12,870,800
14,440,547
18.741.672
16,020,158
2130202

24,438,073

1.0007
1.0007

8042806
1017,045
12670012
14,450,683
15,752,600
18,033,058
21,348,500
23,60 .200
24,45 506
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LAST § AVQ
AGE-TO-WLT

ESTLASTL
EST LT LOSS

Table 11. Cumuiutive Lows and OLAE Puymant Trangie

MEDICAL MALPRACRITICE
2 3 .
172063 362,008 75118
21843 487207 800.3%
28416 602,004 a7
253787 200 1,024,538
281420 aanser 1000077
267380 34,881 1028907
337808 7,288 1,108,308
WETTY 808,580 1,480,500
812297 118,185 1,000,954
“4715 852,508 1,001,629
2703 3TO4 ATOS
22005 1.782) 1.4100
22308 16420 1.400
20410 15080 1370
2374 17017 13718
2361 1.808 1.3540
23703 18208
2.1700
22705 18343 1382
[ -] 40704 24081
5122097 808,580 1,190305
4,744 000 3685078 280120

951002
1120576
1337378
1405056
1382218
1422060
1060113
U524
2827075

134750

12382
18082

1,422,050
2508473

1.1678
14811

1,883,060
2,480,408

1.1000
1278

1,080,174
2537082

1,517,034
1771510
2010148
2,102,408
2.120207
2210500
250460
367,707
4,100,448

2,000,148

8109
10751

1.0751
11572

201148
2334518

aTOULT

1.0375
10704

1,004,541
2,040,008

10

1082177
1070047
2445568
2371088
2475855

3531400
4573850

1,708,118

107688
10374

1.682177
1.755470

3
4,650,721

1.000¢
1.018

1.0047
1.0088

1.748201
2041574
2,320950
2520004

2587987
20078084

472553

10023
10041

1752304
2048305
2332410
2532623
2458081
2,301060
2085074

4736820

10012
10018

1 0on
1.0008

4,744 000
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Tabie 11. Cumuintve Loas and OLAE Peyment Triangle

488

471503

a2 T2
007517

&2 190
862,741

634,308
1,14.015
121,50
1,031,630
1,102,050

2703

11082
12470

1224
12213
14817

1,031,030
1,538,000

SPECIAL UABILITY
3 4

008243 1
10702 1,941087
1100448 1208004
1,001,405 1.200.008
1,172340
1183111 131702

101978 1,
1491005 153415
1,250,204 1370000
1470785 1506500
3104 4TOS
1.0081 10402
1,108 1.050¢
1105 106

1.1048

1.0087 1.0481
1224 11148
1601096 1524278
1521908 1800100

10270
1.0030

1381208
1,480,000

1.0104
1.0358

1.264,000
1313248

1,106,001
1254410

t
12
1,448,117
1072820

1.79Q477
1513881

127

7708
10113

1.0100
1019

1333631
1264815

1,003
1.0068

1,340057
1357735

1,121,400
1,200,304
1,354,304
1,361,482
1310018
1485474
1,005,008
1817453
1534218

1273497
eTouLt

10010
1.00%

1200364
1272515

10

1123243
1271470
1350020
1352703
1312108
1.457.082
1,007,794
1420470
1538737

1,124073

100
1.0008

1123243
1,124,100

1"

1,124,108
1272518
1A57,735
1354015
1313248
1,460,000
1,000,180
1521000
1538000
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Tabie 11. Cumuistve Lase and OUAE Paymant Triengle

OTHER UABUTY
2 3
1,027,130 154502
1058764 1AM
1224747 2243819
1452577  254085%
1348006 2003487
1445008 27w
1842748  A37R0W
2084434 3508007
264,184 4301200
2170377 37705
2703 ATo«
.0z 1.430
1.0 1440
15318 1439
17813 1540
10757 1459
18919 148
18350
1.8068 14818
5200 2820
265,154
12401200 1007R4D

1210
1508

6,002585
9808151

8308783
satrax

5700
11747
1ATTA
12064
1.187

1.1880
1450

5,320,400
7544808

11148
1254

4,000,128
7,530,063

1.0427
ARY-

6,508,505
7410525

1040
1.085%

5,770,671
0201412

4,308,508
4I71528
ep1aon
7,125.808
7A31,084
7834444
9,162423
10,548,171
11018137

5077918

eTOWT

1.0204
1.04m

4171528
4908155

4,404,358

101
108

4457828
4548004

4503402
4018050
0.201,7%
7,245008
7,557,442
7.000,1%
9,448.552
10,873,801
12,208,191

1.0061
1.0088

1002
10048

4537991
49058640
0240427
1402320
1818488

0517.006
10957410
12360520

1.0013
1.0019

454701

6,257,411
7411700
7825220

700.7X
0530002
108N .413
12308 348

1.0008
1.0008

4540004
4,000,155
a1412
7414525

7944 500
253151
10578423
12,404 200
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Table 11. Cumuintive Loss and OLAE Peyment Triangle

2T03
21032
2180

2018
23610

19645
20708
6.0048

200579
25n000

PACOUCTS LAILTY
3 4
27,048 arasi¢
202823 431,18
200203 4TS850
308,119 542320
37,108 547,008
7041 812350
ear T2
848 140 920,801
85408 eea T
497,001 an1.344
31O+ 4705
1.0500 13668
1.0408 14418
1.7820 14184
1.7544 1are
1.9 1.4421
15654
10045 1.4071
4325 2588
540,140 87872
2370755 1755785

E]

511223
a21008
674000
748304
788087
T223%0
007880

1308084
1301178
T20405
STOS8
1245
1213

1200
12086

12331
18141

722330
131043

838,491 755,16
754 487 araoes

o0z ra 1,044,854
72013 1,120,000
[ XALs 1,030.578
1,151,500 1381318
1011540 1.806,130
1715488 1,085,430

970,008 1,008,852

aTOY 7708
1.1604 ARRK -]
11572 1.0074
1.120¢

11874 1.9057
141N 1.2

72013 1,044 8654
1431263 1328108

841,187

10718
11468

1,004,681
1223080

001453
1020740
1,140050
1230018
1304172
1221458

2,
2352475
1033705

eTo Ut

10358
1.078

1020740
1,101,458

10
31745
1081520
1,181,830

1,381,005
1205211

2200008
2408743

042318

1017
10357

033745
007,054

950,400
1,082,500
1,202,008
1308331
1,408,718
1,287 872
1725874

2485035

1.0060
10174

1.0045
1.0004

083275
1,007,154
1210208
1322010
1423871
1306224
1748005
201,403
2513000

1002
1.000

2,510,437

10011
10017

10008
1.0008

Puge ool @

087,064
1,101,450
1223080
1.3M108
143120
1310343
1754788

255300
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