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Introduction

by Paul G. O’Connell

The CAS Committee on Reserves is pleased to present a funded research paper titled
"Accounting for Risk Margins", authored by Stephen W. Philbrick. The committee’s charge to
Mr. Philbrick was to explore possible ways to adapt statutory and GAAP accounting to reflect
formal existence of margins for adverse deviations in loss reserves. The focus was not to be on
methods for calculating margins, but rather on proper accounting treatment for the calculated

margin. In his paper he has accomplished this and more.

Mr. Philbrick demonstrates the conflict between profit recognition and the true economic
reality of the insurance transaction under both current accounting principles and in an
environment where losses are discounted at a risk-free rate. Through his research in this area, he
has advanced a theoretical framework that addresses the appropriate accounting technique for
reflecting and amortizing a risk margin, which when used with discounted loss reserves, results

in a more accurate formula for profit recognition.

Mr. Philbrick’s paper is a valuable addition to casualty actuarial literature. It is certain to
prompt debate among actuaries, accountants and others as well as to inspire additional research

on the appropriate method or methods for calculating risk margins.
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Accounting for Risk Margins

By Stephen W. Philbrick

Introduction

The importance of risk margins is growing rapidly. Not long ago, the subject of
risk margins was not considered a burning issue within the actuarial profession, much
less the insurance community at large. The recent insolvencies in the industry and the
attendant search for causes and solutions, however, have led to heightened interest in

risk margins.

Risk margins, whether in pricing or in loss reserves, have always been easy to
understand superficially but difficult to pin down precisely. It is well known that case
reserves and IBNR reserves are estimates of unknown future loss payments. Actual
results will differ from estimated amounts, and the concept of risk margin reflects that

fact.

A risk-averse individual or corporation would prefer a fixed liability of $100 to a
liability whose expected value is $100, but whose actual payout amount is uncertain.
“The greater the uncertainty, the larger the risk margin.” Beyond that statement,
however, there is little universal agreement. Methods vary not only for calculating

uncertainty, but also for determining risk margins from uncertainty measures.



Furthermore, assuming a risk margin has been calculated, it is not obvious how that
risk margin should be incorporated into statutory accounting, and it is arguable whether

it should be incorporated at all.

The purpose of this paper is to explore how such a risk margin should be
incorporated in statutory accounting. Rather than researching methods of calculating
risk, this paper will assume that a satisfactory method for calculating risk margins will

be separately developed.

Nevertheless, a discussion of the accounting treatment of risk margins can hardly
proceed without a clear understanding of what we mean by the term “risk margin”.
Unfortunately, the actuarial profession not only needs to develop methods to calculate
a risk margin, but it also needs to agree on a common definition. There are three
common situations where the term “risk margin” is used: undiscounted loss reserves,
loss portfolio transfers, and self-insurance trust funds. Each of these situations will be

discussed briefly.

Undiscounted Loss Reserves

The term risk margin is commonly used in the observation that stating the loss
reserve at nominal (rather than discounted) values provides an implicit risk margin. It
is clear that the amount of the risk margin in this circumstance is the difference

between undiscounted and discounted reserves. This observation, however, does not



provide much insight into the purpose or definition of a risk margin. Compounding the
problem is the fact that there is no general agreement regarding which discount rate
should be used in such a calculation; thus, the specific value of the implicit risk margin

is not clearly defined.

Loss Portfolio Transfers/Commutations

There is a market (albeit tiny) for loss reserves. A company retiring from business
may sell a portfolio of reserves to another company. In theory, the amount of the
purchase price less the present value of the expected payments represents a risk
margin. Unfortunately, this does not provide a good empirical source for risk margin
data because most of these transactions involve other factors, such as tax
considerations and stop loss agreements. In concept, however, this provides one
measure of a risk margin. Conceptually, a risk margin represents the difference
between the expected (discounted) value of the reserves and the certainty equivalent of
the reserves, where certainty equivalent means the amount certain one would accept (or
pay) now in exchange for a stream of payments in the future whose amount and timing
is uncertain. A lump sum payment in exchange for a portfolio of reserves will
represent a certainty equivalent, if no extraneous items (such as taxes, expenses, side

agreements or default risk) are involved.

A commutation is a special case of a loss portfolio transfer, where the loss

reserves are transferred back to the ceding company. In most cases, one of the parties



to the transaction may be in financial difficulty, which will distort the value agreed
upon. If both parties are financially strong (and the commutation is not simply the
unwinding of a financial reinsurance agreement), the terms of the commutation may

provide insight into the value associated with the riskiness of the loss reserves.

Self-Insurance Trust Funds

The use of risk margins is fairly well developed in the case of Self-Insurance Trust
Funds. From a financial structure standpoint, one notable difference between a
traditional insurance company and a trust fund is that a trust fund typically does not
have a capital or surplus account. Rather, it establishes a funding requirement such that
the available funds correspond to the p™ percentile of the aggregate loss distribution,
where p is typically 75% or 90%. The risk margin is the recommended funding
requirement less the expected present value of the reserves. It is typical for an actuarial
funding study to explicitly show the amount of the risk margin in the report. It is
important to note, however, that this risk margin is not intended to represent the

difference between the expected value of the reserves and the certainty equivalent.

Thus, while an actuary has a tool kit of methods to arrive at a best estimate of loss
reserves, the goal of all such methods is the same. The actuary also has a variety of
methods to calculate risk margins, however, the goals of the various methods are not

all the same although all are termed risk margins,



Risk Margins in Canada

In developing recommendations for the calculation and accounting of risk margins,

it may be helpful to review developments in other countries.

The Canadian Institute of Actuaries (CIA) has adopted a standard of practice which
requires a provision for adverse deviations. The mechanics of the standard are quite
different from the methodology outlined in this paper. The CIA methodology is
heavily judgmental, requiring the actuary to select margins relating to three variables:

-claims development

-reinsurance recovery

-interest rate

Each margin is selected from a range (with options for selecting outside the range)
based on a qualitative list of considerations. The claims development margin range is
0-15%, the reinsurance recovery is 0-25% and the interest rate margin is a downward
adjustment, (which can vary by line of business) to the interest rate used for
discounting. The range is from 50 basis points to 200 basis points.

The overall provision for adverse deviations is added to discounted liabilities.'

'Memorandum to Fellows and Property/Casualty Actuaries of the
Canadian Institute of Actuaries from the Committee on Property and
Casualty Financial Reporting May 5, 1993.

8



Types of Risk Margin

It is critically important to recognize the potential differences in the type of risk
margin that might be proposed in any attempt to standardize risk margin calculations.

At least four different possibilities could occur.

1. A risk margin based on a certainty equivalent concept. Under this concept, a
risk margin would be calculated such that, when added to a present-value reserve, it
produces an estimate of the certainty equivalent value; that is, the amount of cash
immediately payable to transfer the liability. This concept corresponds to loss portfolio

transfers.

2. A risk margin based on a theory of ruin concept Under this concept, a risk
margin would be calculated such that the probability of insolvency or the expected cost
of insolvency is reduced to an acceptable level. This concept corresponds to risk

theoretic discussions of insurance enterprises.

3. A risk margin based on probability intervals. Under this concept, a probability,
such as 75% or 90%, is specified. A risk margin is calculated such that the actual loss
amount is less than or equal to the expected loss plus the risk margin in the specified
proportion of times. These intervals are sometimes referred to as confidence intervals.®

This concept is commonly used in trust fund analyses. A reasonable question is

*Technically, confidence intervals are intervals around parameters, while prediction intervals are
intervals around results.




whether the probability intervals should be applied to discounted or undiscounted
losses. The use of probability intervals is discussed in Loss Reserving for Solvency
(David A. Arata [1983], PCAS LXX, P. 1). Although that article does not explicitly
discuss discounting, it appears that the calculations are performed with undiscounted
losses. This concept is also discussed in a CLRS presentation by Robin Harbage (1989
CLRS Transcripts, p. 1075). Again, it is not explicitly stated whether discounted
values are used, but the context of the discussion implies that undiscounted values are

used.

4. A risk margin intended to simply provide a relative measure of risk. It is
conceivable that the actuarial profession may conclude that the calculation of a risk
margin satisfying the goals of methods 1 or 2 is beyond current capabilities.
Alternatively, the profession may decide that it is possible to design a measure of
relative risk. For example, some fixed percentage of the aggregate loss variance might
be proposed as a risk measure. This value would be higher for companies with more
risk, thereby providing a relative measure. The absolute value of the measure, however,
might not have a precise meaning. This is analogous to the concept of utility functions,
which attempts to rank preferences, but not necessarily to ascribe a meaning to the
absolute level of the utility function value. The implicit margin in undiscounted loss
reserves corresponds to this concept, because the absolute amount of the risk margin
does not result from risk theory, but lines of business considered to be riskier (i.e.,

long-tail) will tend to have relatively larger implicit risk margins.



Relevant Accounting Issues

Accounting for risk margins will be dependent on the concepts underlying the
calculation. The implications for balance sheet and income statement are different for
the different choices. In particular, a measure following the fourth concept of risk
margin may not easily be transferable to a balance sheet and might have to be

accounted for in a separate schedule.

Accounting for risk should be largely coincident with accounting for profit. An
entrepreneur (or group of entrepreneurs) starts an insurance company with the intention
and expectation of earning a profit.’ An entrepreneur wishing to earn a profit without
taking risk will find few opportunities. In order to earn a profit substantially in excess
of rates available in the United States government securities, an entrepreneur must

assume some risk.

*Exceptions arguably exist; there are some nonprofit organizations formed primarily for the
purpose of providing difficult-to-obtain insurance. However, mutual insurance companies do
operate as profit-maximizing firms, despite the blurred distinction between entrepreneurs and
customers.



Types of Risk

An enterprise engaged in the business of insurance faces a wide variety of types of

risks. Some of these risks include:

Underwriting risk—This is often defined as the risk that actual losses and expenses
will exceed premiums. For the purpose of this paper, underwriting risk represents the

possibility that discounted actual losses exceed the loss portion of the premium.

Investment risk—This term encompasses all risks related to the returns on invested
assets. This risk is often subdivided into:
Interest rate risk—Possibility that asset values may drop due to a change in market
yield rates
Default risk—~Possibility of non-payment of interest and/or principal
Reinvestment risk—shortfall in investment income due to lower available yields for
reinvested assets
Market risk—Generally referring to stocks or real estate; possible reductions in asset

values due to changes market prices

Timing risk—the risk that the actual payout pattern of losses will differ from expected.
Reinsurance risk—The risk that reinsurance placed by an enterprise may not be
collectible.

Credit risk—The risk that an insured might not pay all premiums due.



Risks are also classified as process risk or parameter risk. Process risk represents
the possibility that actual results differ from expected results while parameter risk

represents the possibility that the estimated expected differs from the true expected.

This paper will concentrate on underwriting risk. The assumption will be made that
assets are invested in risk-free securities such as T-bills, where the durations are
closely matched to the expected. This is not an optimal investment strategy, nor does it
eliminate all investment risk. Some timing risk remains. However, there is an important
interrelationship between timing risk and underwriting risk (as defined here).
Sometimes a company can settle a claim for a smaller amount by settling it earlier that
“expected”. If the reduction in nominal costs equaled the discount associated with the
length of time, this would produce no net change in underwriting risk calculated on a
discounted basis. Conversely, a settlement for more than the “expected” amount arising
from a protracted settlement might also have no effect on underwriting risk. In reality,
these amounts will not precisely offset, however, it should be clear that at least some
portion of timing risk is mitigated by the possibility that nominal settlements will be
dependent on the timing of settlement. Major changes in timing can still have a
deleterious effect on investment results when a portfolio has been precisely duration-

matched. However, this is beyond the scope of this paper.

This paper will incorporate process risks and some aspects of parameter risks.
Parameter risk, by its very nature, cannot be precisely estimated. Some aspects of the

estimation process, such as model selection, are considered by many to be parameter



risk, but are beyond the scope of this paper. Other significant issues, such as the
possibility of a government takeover of the workers compensation system, might be
considered parameter risk, but are almost certainly not incorporated into the pricing

decision and are excluded from consideration in this paper.*

The largest single source of profit for a typical insurance enterprise is the
assumption of underwriting risk.” Some companies earn income for operations that are
not strictly labeled as underwriting. For instance, companies that provide fronting
services earn profits for the assumption of credit risk. Other companies offer
“unbundled services” and may sell services such as claims-handling and loss

prevention without incurring underwriting risk.

The fact that “underwriting income” has been negative for the industry as a whole
for many years does not mean that companies are not engaging in underwriting risk.
The definition of underwriting income (excess of premium over expenses and losses in
nominal doilars) is an anachronism, determined when the time value of money was a
much smaller component of income (both because interest rates were lower than today
and because the length of time between premium receipt and loss payment was

shorter).

“While it may appear obvious that our pricing mechanism does not formally incorporate
the possibility of a government takeover of some portion of the insurance business, it is not as
obvious as it sounds. To the extent that investors are truly worried about such an event, capital
will be less likely to flow into the industry and the remaining capital may be able to command
a higher rate of return that otherwise.

*Operations such as Berkshire Hathaway may be exceptions because of their large
investment amounts relative to insurance operations.
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To the extent that companies invest in securities with significantly higher risk
characteristics than Treasury bills, they are truly earning income from their assumption
of investment risks. For the purposes of this discussion, underwriting returns will be
defined as the excess of premium over the sum of discounted expenses and losses,
where expenses and losses are discounted at risk-free rates of return, over the time
period between receipt of premium and payment of expenses or losses. Under this
definition, the largest single component of insurance companies' returns will arise from

underwriting returns.

Accounting rules—whether statutory, tax, or GAAP—do not explicitly state how
the accounting for either the profit or risk margin should take place. Rather, accounting
rules specify how to account for the various components of the insurance transaction
(premium, expenses, losses, investment income) that drive the accounting treatment of
the profit component. It should not be inferred, though, that the resulting accounting
treatment of profit is of minor relevance. In fact, with respect to GAAP accounting, the
determination of rules for accounting of the various elements is guided in part by

whether the resulting income statement bears a close resemblance to “reality.”

Accounting is needed whenever the timing of cash flows associated with a
particular transaction occur at different times. In a classic goods manufacturing
company, the initial cash flow is the capital inflow to the company. This is followed
by cash outflow for capital equipment, which is followed by cash outflows for labor

and materials. Finally, there is a cash inflow as the customer buys the product. Because

15



the time frame typically encompasses several years, accounting principles were
developed in order to more closely match revenues and expense. For example, the cash
outflow for capital equipment is not expensed in the year purchased, but capitalized
over some time frame, effectively charging a portion of the total cost to each year it

provides service.

Similarly, an insurance company has an original cash inflow of capital, followed by
cash inflows of premium and the cash outflows of expenses and losses. Accounting
conventions, including such items as loss reserves, exist so that balance sheets and

income statement more accurately reflect the economic reality of the corporation.

In any industry, accounting conventions are not expected to perfectly reproduce
economic reality. Instead, the goal of closely approximating economic reality is
balanced with the desire for reasonable simplicity, consistency and efficiency of
performing the accounting. We might argue therefore that the theoretically correct way
to depreciate an item of capital equipment is to precisely measure its life time and its
yearly contribution to the business. These calculations would be expensive and are
subject to dispute and manipulation, so accounting conventions exist to prorate the
original cost of capital equipment over some fixed length of time which only
approximates the actual useful lifetime. When significant changes occur to the
environment (e.g., new classes of equipment), accounting conventions must be devised

or revised to reflect the new situation. In any such situation, the goal is to promulgate



accounting conventions such that the resulting accounting statements are a reasonable

reflection of economic reality.

In the property-casualty insurance industry, accounting conventions have generally
dictated that loss reserves should be established on a nominal basis, that is, without
any reduction for the time value of money These accounting standards were
established at a time when:

W reserves were smaller (relative to premiums) than today

W interest rates, and therefore the potential amount of discount, were much lower

The decision to carry reserves on a nominal basis was not justified on theoretical
grounds, but rather, pragmatic ones. As additional evidence, it should be noted that life
insurance has always formally incorporated the time value of money in its accounting.
The length of time associated with life contracts has always been long enough that the
simplicity arising from nominal reserves is far overshadowed by the material

distortions which would resuit.

This situation has changed in three significant ways:

®  The property-casualty industry has migrated from a predominantly property (i.e.,
short-tail) to a predominantly casualty (longer tail) book of business

B Individual lines of business have experienced a lengthening of the payment tail

®m Interest rates, while lower today than a decade ago, are still well above rates

prevalent over the first half of this century.



Each of these three changes has combined to increase the financial impact of the
time value of money. Appendix A provides an analysis of the accounting of a single
policy, starting with a low-interest scenario on short-tail business, and gradually
changing assumptions to a level consistent with today's marketplace. The conclusions
of that analysis are:

® if very short-tail business is written in a low interest environment, the timing of

profit recognition arising from accounting rules roughly mirrors the pattern that
corresponds to economic reality.

® if longer-tail business is written in a higher interest rate environment,

accounting conventions significantly delay the recognition of profit. The
accounting of a single policy implies that the business loses money in the year

it is written, and profits are earned in subsequent years.

Pricing and Risk Margins

Before directly addressing the accounting for loss reserve risk margins it will be
helpful to review basic assumptions associated with the pricing of a policy. Risk
margins for loss reserves should not be considered separately from premium pricing
issues, but rather as a different point on a continuum of a policy from inception to

final loss payment.



A block of business is normally priced at a level intended to provide a sufficient
profit after paying expected losses and expenses. Premium levels will be affected by
many external events, but over long periods of time for the industry as a whole, it is
reasonable to assume that the profit margins will be related to the amount of risk

assumed by the company.

An insurance enterprise must be financially able to withstand actual loss payments
in excess of expected payments. There are two ultimate sources of funds to provide for
this contingency:®

1. Surplus’ from investors, and

2. Profit margin from insureds

The term capital is sometimes used to refer to the original amount of assets
provided by the investors (or subsequent infusions) as distinct form retained earnings.
This paper will use the term surplus to refer to the entire amount of policyholders
surplus, including original contributed capital, subsequent capital or surplus infusions

and any retained earnings.

The absence of investment income is deliberate. For the purposes of this paper, we will
assume that investment income does accrue to the insurance enterprise but that the amount is
not under the control of the insurance company. Thus, if an insurance enterprise determines
that it faces higher potential losses than contemplated in its current financial structure, it may
raise capital, raise rates (or some combination) but it cannot choose to raise investment income
rates.

"Theoretically, a third potential source is debt. Because debt is so rarely used in the
insurance industry, it will not be treated in this discussion.
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Appendix B contains a more in-depth discussion of the nature of the surplus and
profit margin components, including a discussion of how the relative amounts are

determined.

In the pricing context, there is little confusion about the term risk margin. While
there are two sources of funds which pay losses in excess of expected losses, one of
these sources, the profit margin, is generally considered to be the risk margin, and the
other source, surplus, is not. When we turn to loss reserves, the situation is not as

clear.

Loss Reserves and Risk Margins

The actuarial profession has not yet settled on a methodology to determine risk
margins for loss reserves. It is possible, however, to consider conceptually what such a
provision means without necessarily specifying the calculation procedure. A loss
reserve margin is an amount needed over and above the expected (discounted) reserves
to reflect the inherent riskiness of the reserves. While this description is obviously
imprecise, it is difficult to refine it without specifying, or implying, a calculation
methodology. For example, if we define loss reserve margin as that amount, which
when added to the reserves, provides a total amount sufficient to pay actual losses with
probability x% (where x might be 99 or 99.5), then we have essentially adopted a ruin

theory approach to loss reserve margins.

20



Despite the vagueness of the definition, there is an important conclusion that can be
drawn. Specifically, the normal use of the term “risk margin” in the context of loss
reserves does not provide for a distinction between the two ultimate sources of
fund—the insured and the investor. Indeed, some actuaries argue that a loss reserve
margin should be merely an earmarked surplus item which is equivalent to implying

that the source of the amount is the investor.

Risk Margin Calculation

For the purpose of this paper, it will be necessary to divide the total risk margin

into two components:

B 3 loss reserve risk margin arising from the original profit margin

B an earmarked surplus amount

To avoid confusion between two distinct terms with the same name, the first of
these two 1tems will be referred to as the “narrow risk margin” (NRM) and the second
of the two items will be referred to as the “surplus risk margin” (SRM)®. The sum of
the two amounts will be referred to as the “broad risk margin” (BRM). The term
NRM will be defined to mean that portion of the total risk margin which belongs
“above the line”, that is, the portion which theoretically should be considered a liability

of the company rather than any part of surplus. The term SRM is defined to be that

®This choice of terminology is deliberately based on the convention used to distinguish
between two overlapping definitions of IBNR.
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portion of the total risk margin which belongs in the surplus section of the balance

sheet.

Calculation of these three elements will probably proceed in one of two ways:
either the NRM and SRM values will be separately calculated directly, or the total
BRM value will be calculated and apportioned into the two components. A
methodology to directly calculate the NRM value might start by exploring what it

would cost to “sell” the liabilities.

Assume that an efficient secondary market exists for loss reserves. The difference
between the sale price and the best estimate reserves on a discounted basis would
represent the narrow risk margin. In this case, this amount would identically be the
amount that a company should carry as a liability (that is, above the line) in the normal

case that it does not sell its reserves.

Several caveats should be noted. First, actual sales of loss reserves typically include
aggregate limits on the amount that the assuming company will pay. The appropriate
narrow risk margin must be calculated without any such limits.® Second, actual
transactions often reflect a different tax situation between the ceding and assuming
company. The narrow risk margin should be calculated exclusive of tax considerations.
Third, this “thought experiment”doesn't specify how such a sales price should be

calculated.

*Obviously, existing policy limits and aggregates should be incorporated into the
calculations.
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Altématively, industry risk margin calculations may, instead, directly calculate the
broad definition, BRM. If the methodology is based on aggregate loss distributions or
ruin theory approaches, it is likely that the resulting amount will be either the total
amount (including loss reserves) needed as available assets to ensure the viability of
the insurance enterprise or the amount needed in excess of the best estimate loss
reserves. It is highly likely that in the second case, the amounts will be relative to
discounted loss reserves, If the resulting margin is to be added to nominal loss

reserves, an additional calculation will be required.

Once the broad risk margin is calculated, then the two components, NRM and

SRM, can be calculated using formulas outlined in a later section.

Another possible approach to risk margin calculations is an adjusted discount rate
calculation where the best estimate loss reserves are discounted at a rate less than
prevailing market rates.'® In this case, the difference between the reserves discounted at
the adjusted rate and discounted at market rates will represent the risk margin. This

calculation normally produces a narrow risk margin.

Many questions still need to be addressed. Subsequent sections will discuss:
B Transition from the current situation to the proposed situation
B Proper handling of the change in risk margin arising from a consistent

application of the methodology

*In the case of property, it is conceivable that the appropriate adjustment to interest
rates may produce “discounted” loss reserves slightly larger than the nominal amount.
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B Proper handling of the change in risk margin arising from a change in the
methodology used to calculate risk margins
However, before we go into those issues, we should discuss specific examples
with a proposed methodology for the calculation of the BRM and its

components, NRM and SRM.

Assume that an insurance company has the opportunity to write a volume of
business with expected nominal losses of $300.00. For simplicity, we will treat the
entire business as if it consists of a single policy. This amount is chosen to keep the
numbers in the exhibits manageable. The reader is invited to think of this as a

surrogate for a more realistic number such as 30,000,000 or 300,000,000."

We will examine three different scenarios, starting with an over-simplified example

and moving toward a more realistic example.

In the first example, only one loss payment is made (at the middle of the policy
period), the premium is paid at the beginning of the policy period, and only a single

policy is written. This will be referred to as the SINGLE PERIOD model.

"It would be preferable to examine a single policy added to an existing company.
However, exploration of this alternative suggests that proper handling of a single policy
requires analysis of the covariance of the individual policy with the remainder of the portfolio.
It was felt that this complication would detract from the central theme of this paper, so the
decision has been made to analyze the company as a whole. The correct treatment of
covariance is important to the issue of pricing an individual contract, but less important to the
accounting of the risk margin of a contract which has already been priced.
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In the second example, loss payments are made at the middle of three calendar

periods following the inception date. The premium is paid at the beginning of the

policy year. Only one policy is issued; this will be referred to as the THREE PERIOD

model.

Finally, we will assume that a policy identical to the one in the second example is

written each year for three years. This allows the company to reach a steady state.

Expected loss reserve reductions from expected payments exactly offset additions from

the new policy. This will be called the STEADY STATE model.

Several assumptions will be common to all models:

Policy period - One year

Policy inception date ~ January 1

Risk-free interest rate - 6%

Company's desired rate of return on equity - 15%
Expenses - none

Taxes (federal and premium) - none

SINGLE PERIOD MODEL

Assume that a policy is issued whose undiscounted expected losses are $300.00.

All losses are paid at the middie of the year, so the present value of expected losses is

$291.39 (300/1.06°). The present value of actual losses may turn out to be less than or
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greater than this amount. This variability will be quantified by assuming that the
aggregate distribution of losses is modeled by a lognormal distribution with mean
$291.39 and coefficient of variation (CV) equal to .128. To put this value in
perspective, the probability that actual losses could 23% higher than expected is
approximately 5%. In other words, there is roughly a 95% probability that actual losses

will be less than $359 (291 x 1.23).

The insurance company must provide for an amount of assets sufficiently large so
that regulators and policyholders will be satisfied that the company is highly likely to
pay any losses which arise under this policy. Obviously, it would be desirable if the
company could be certain that it could pay losses under any scenario. However, with
an unlimited potential for loss, no finite amount of assets can guarantee payment in all
circumstances. Therefore, regulators and policyholders must be satisfied that non-

performance is reduced to an acceptable level.

Non-performance can be measured in two important ways. The most common way
is to measure the probability of non-performance, which is the probability that the
available assets of the company are insufficient to pay the actual losses. This approach
is often referred to as the “probability of ruin” approach. We could specify the
acceptable probability of ruin, for example, 1%, and solve for the amount of assets

necessary to cover the 99th percentile of the aggregate loss distribution.
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Another way to measure non-performance is to measure the total cost of non-
performance, which is the expected losses in excess of available assets. This approach
will be referred to as the “expected deficit” approach. We specify the acceptable deficit
(as a percentage of expected discounted losses) and solve for the amount of assets. If
we specify an expected deficit of 2%, then we need to find the amount of assets such
that the area of the aggregate loss distribution above the asset amount is 2% of
$291.39 or $5.83. This asset amount is $359.42'% . Thus, the insurance company needs

to provide $359.42 in additional assets in order to write this policy.

The company can get some of these assets from the policyholder and some from

the investors in the company.

The policyholder will provide assets by paying a premium. The amount of the
premium will be equal to expected losses plus a risk premium. The risk premium will
be called the narrow risk margin (NRM). The investor will supply surplus, which will
be called the surplus risk margin (SRM). The sum of the NRM and the SRM produces

the broad risk margin (BRM). The BRM is that amount of assets needed in addition to

"*The actual calculation involves solving the equation for expected deficit directly

J‘w

4 (z - A)aF _'003. In this equation, Z is a random variable representing the possible
aggregate losses of the company, F is the cumulative distribution of aggregate losses, and A is
the desired amount of assets required to satisfy the expected deficit criterion. In words find the
value A such that the sum of losses in excess of A is 3% of the total. Alternatively, solve the
following equation which represents the proportion of losses which can be covered by a
company with assets equal to A.

Lz;ﬂ A1-F(A)]=997
In both cases, F is the aggregate distribution of losses incorporating both process and
parameter risks, and in this example, is a lognormal distribution with CV = 128,
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expected losses to satisfy policyholders and regulators that the company is financially
sound. Consequently, the BRM is equal to the total asset need ($359.42), less the

expected losses ($291.39) which produces a BRM value of $68.03.

We now need to determine the relative contributions of the policyholder and the
investor to the BRM. How is the BRM apportioned between NRM and SRM? The
answer is that we solve for a value of NRM sufficiently large to provide the required

rate of return (ROR). The solution (for the single period model) is:

(ROR-1) x BRM

'RM=
N 1+ROR

Although this is the formula we would use in practice for a one-period model, this
formula will be more understandable in a slightly different form. Using the
relationship BRM = SRM + NRM, the formula for NRM can be written in terms of
SRM as follows:

(ROR —i}SRM
1+i

NRM =

In words, the investor will supply the amount SRM and expects to earn a return on
this amount at a rate of ROR. The SRM amount can be invested during the year at
rate 1, so the policyholder must supply the difference ROR-i. This amount is needed at
the end of the year, so the amount required at the beginning of the year is discounted
by ones year's interest (1+1).

Solving, we find in this specific example:

NRM = $5.32
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SRM = $62.71

BRM = $68.03

Now we will examine how to handle the statutory accounting for this policy.
Exhibit 1 contains the suggested handling of this policy in terms of the effect on
existing lines in the balance sheet and income statement pages, as well as required
additional lines. Exhibit 2 contains the identical information as Exhibit 1, as well as
some supplemental information which will be used to better understand how the
process works. This discussion will concentrate on Exhibit 2 for ease of explanation,

but the conclusions apply to Exhibit 1.

In Exhibit 2, the relevant lines of the balance sheet and income statement are
shown. The shaded lines contain the supplemental, explanatory material not intended to
be included in actual financials. (A quick glance at Exhibits 1 and 2 will verify that the
only difference between them is the shaded lines.) The lines in bold print are lines not
currently in statutory financials that would be required if we incorporate discounting
and loss reserve margins into the statement. The annual statement line numbers are
shown on the left side of the exhibits. Four-digit numbers corresponding to write-in
lines are used to indicate where the newly required information should reside if a
current statement format is used. Obviously, if these recommendations are accepted,

the organization and line numbering of these exhibits may change.
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One-Period Model Exhibit 1

An St | Balance Sheet At 12/31/X-1 At 1/1/X At 12/31/X
Line #'s Assets
1. T-Bills $62.71 $359.42 $0.00
Liabilities

1. Undiscounted Loss Reserve $0.00 $0.00

9. UPR O $291.39 $0.00
2101. Reserve for Discount $0.00 $0.00
2101a. Discounted Loss Reserve 0 $0.00 $0.00
2102. Risk Margin 9] $5.32 $0.00
22. Total Liabilities O $298.71 $0.00
26. Surplus $62.71 $62.71 $0.00

Statement of Income Year X

1. Premium $296.71
2. Undiscounted Incurred Loss ($300.00)

8. Investment Income $12.70
0501. Change in Risk Margin $0.00
0502, Change in Reserve for Discount $0.00
16. Net Income $9.41
[ Capital and Surplus Account | 0

17. Surplus, Dec. 31 previous year $62.71

| Gains And (Losses)} in Surplus l
18. Net Income $9.41
25({a). Surplus Adjustments: Paid in ($62.71)
27. Investor Dividend ($9.41)
31. Changes in Surplus for the year ($62.71)
32. Surplus, Dec. 31 current year $0.00
NEWEX.XLS
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One-Period Model Exhibit 2
With Supplemental Information

An St | Balance Sheet At 12/31/X-1 At 1/1/X At 12/31/X
Line #'s Assets
1. T-Bills $62.71  $359.42 $0.00
Liabilities

1. Undiscounted Loss Reserve $0.00 $0.00
9. UPR 0 $291.39 $0.00
2101. Reserve for Discount $0.00 $0.00
2101a. Discounted Loss Reserve [¢] $0.00 $0.00
2102. Risk Margin Q $5.32 $0.00
22, Total Ligbitities 0 $296.71 $0.00
26. Surplus $62.71 $62.71 $0.00

Statement of Income

1. ) i Premium $296.71
Undiscounted | ed Loss {$300.00)
y e

. nvestment Income
0501, Change in Risk Margin $0.00

0502, Change in Reserve for Discount $0.00
186. Net Income $9.41
] Capital and Surplus Account |
17. Surplus, Dec. 371 previous year $62.71
{ Gains And (Losses) in Surplus |
18. Net Income $9.41
25{a).

Surplus Adjustments: Paid in {$62.71)

nt - B3
27. Investor Dividend {$9.41)
31. Changes in Surplus for the year ($62.71)
32. Surplus, Dec. 31 current year $0.00

L 16.00%:

NEWEX.XLS
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Balance Sheet

We presume that the required surplus must be in the company before writing the
new policy. With an effective date of 1/1/X, this means we need to include the $62.71
of required surplus in the company on the previous day, 12/31/X-1. Before the policy

is written, the balance sheet will contain only this surplus amount."

Financial statements are typically calculated at year-ends, but we have shown a
balance sheet on 1/1/X, immediately following the writing of this policy, to help
follow the transactions. The premium of $296.71 is received by the company on
January 1 and invested in Treasury bills. Consequently, the asset side of the balance
sheet shows the surplus as well as the total premium, invested in Treasury bills. This
total is $359.42. Technically, this entire amount of the premium should be established
as an unearned premium reserve on that date. However, it will be difficult to trace the
flow of the narrow risk margin if it is buried in the UPR, so we have placed the
expected loss portion of the premium into the UPR and the narrow risk margin of

$5.32 into a risk margin reserve.

"The mathematics would be slightly “cleaner” if we could assume that the risk margins
are contributed on a discounted basis. However, it is unlikely that regulators would accept such
a concept, so a convention is adopted where expected loss amounts are provided on a
discounted basis while surplus and risk margins are provided on a nominal basis.
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Income Statement

Now let us examine the income statement. The premium line (line 1) contains the
entire premium of $296.71. The shaded lines show that this total is comprised of an
expected loss portion and a narrow risk margin. In the expected case, actual losses of
$300.00 are incurred and paid halfway through the year (line 2). The company eams
investment income of $12.70 during the year (line 8). The shaded lines show that this
total is comprised of two amounts, 4.08 and 8.61. The first value arises from the 6%
rate applied to the narrow risk margin and surplus amounts, which are held for the full
year ((62.71 + 5.32) x .06 = 4.08). The second arises from investment income on

assets supporting loss reserves.

These assets are only held for six months before the loss is paid, so the asset
amount, $291.39, earns 6% for six months or $8.61. Note that the $8.61, added to the
$291.39 precisely provides enough money to pay the $300.00 loss. The net income

(line 16) is the sum of these values, or $9.41 (line 16).
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Capital and Surplus Account

The remaining part of the exhibit shows the reconciliation of the surplus account. It
starts at $62.71 (line 17) at the previous year-end. The net income of $9.41 (line 18) is
an addition. In this example, the policy is now completed so the company can return
the surplus to the investor. This is shown as a negative paid-in amount of $62.71 (line
25(a)). At the end of the year, we would issue a stockholder dividend to the investor in
the amount of the net income of $9.41 (line 27). The shaded lines show that this total
is comprised of the $4.08 investment income earned on the surplus and narrow risk
margin during the year, and the $5.32 provided by the policyholder in the form of a
narrow risk margin. If we then calculate the ratio of the net income to the surplus at
risk, we find that the investor has earned a 15% return on the investment. This exhibit
should help provide an understanding of the rationale behind the formula for
determining the narrow risk margin. The investor can earn a “safe” return of 6% in
Treasury bills. Instead the investor risks the surplus in an insurance enterprise with the
expectaticn of a higher reward. The required return is 15% on the surplus. The surplus
can be invested at rate i, so the remaining requirement (ROR-1) must be provided by

the policyholder.

At the end of the year, all losses are paid and all surplus returned to the investor,

so that balance sheet contains all zeros.
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Of course, actual loss experience might be less than or greater than the expected
loss experience. The excess amount, if actual losses are less than expected, will result
in a higher rate of return. The short-fall, if actual losses exceed expected, will result in
a reduced return or a need to use surplus to pay losses. The risk that the latter may
occur is, of course, the reason that the investor can expect a return in excess of a risk-

free rate.

While this example illustrates some of the dynamics of the situation, note that the
lines for change in risk margin (line 0501) and change in reserve for discount (line
0502) contain zeros. This is correct in this example, because the reserves for these
items are zero before the policy is written and zero after the last loss is paid, so the
year-end changes are zero. We will next examine a policy with payments over a three-

year period so we can better understand the dynamics of these items.

THREE PERIOD MODEL

In this example, assume a single policy is written on 1/1/X. The expected nominal
losses are $600.00. The expected payout of these losses is $300.00, $200.00, and
$100.00, with payments taking place at the middle of years X, X+1, and X+2. The

expected losses, discounted at 6%, are $561.09.

Again assume that the actual nominal losses can be described by a lognormal

model with mean of $561.09 and CV of .128. We will make the simplifying



assumption that the overall amount is variable, but the timing of the payments is fixed.
As calculated before, the total assets required is found by multiplying the expected
losses by 1.233. This produces:

Total Asset Need = $561.09 x 1.233 = $692.09

Arguably, not all of these assets are needed presently because some assets are
needed for payments in the future. It is unrealistic, however, to assume that regulators
would permit surplus to be promised at some future date. We will assume that all

surplus must be supplied prior to the policy inception date.

As before, we expect the policyholder to pay a premium consisting of the expected
losses $561.09 plus the NRM, while the investor will supply the SRM. The total asset
need less the expected losses produces the sum of the NRM and SRM which we call
the BRM:

BRM = $692.09 - $561.09 = $131.00

The calculation of the apportionment between NRM and SRM is now more
complicated. The investor must commit surplus, not simply for the upcoming twelve
month period, but over the entire life of the policy, which extends until the last loss is
paid. Similarly, regulators and policyholders require that assets over and above
expected losses need to remain in the company until the last loss is paid. Denote L,to
be the expected unpaid losses at time 1. The policy inception date will correspond to

t=0, but subsequent values of ¢ will correspond to year-end points in time. Make the
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simplifying assumption that the same aggregate loss distribution can be used to
describe the unpaid losses at any point in time'. Then the total asset need at any time
will be calculated the same way as at the beginning of the policy period:

Asset need at time ¢t = 1.233 x L,

For simplicity we will assume that the evaluation of asset need does not take place
continuously, but at year-end points in time. For each time 7, we can also calculate a
value we denote BRM,, which will be the total asset need, less the expected losses:

BRM, =(1.233x L) - L, =.233L,

Now we have a sequence of future BRM, values, each of which can be
decomposed into an NRM, and SRM, . The formula for calculating the initial, as well
as all subsequent NRM, is:

BRM ,

NRM , = (ROR—i)Zm

In words, the future BRM, values are discounted at rate ROR. The total of the
discounted values is multiplied by (ROR - i), reflecting the fact that the BRM, will
earn investment income at rate i, and the policyholder must supply the remaining

amount in order to pay the investor the required rate of return.

“This assumption will be discussed further in a later section.
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Applying these formulas produces the following values:

BRM, = .233
L, =$131.00
NRM, = $16.14

SRM, = $114.87

Now let us examine the financial statements corresponding to this policy. As
before, two exhibits are provided. Exhibit 3 contains the proposed accounting. Exhibit
4 contains the identical information, as well as supplemental information in the shaded

lines.

Balance Sheet (Year X)

On the day before the policy is issued, (12/31/X-1) the required surplus of $114.87
is supplied (Exhibit 4 Line 1). On the following day, the total premium is paid,
consisting of expected losses of $561.09 and narrow risk margin of $16.14, for a total
premium of $577.23. When added to the surplus, this produces total assets on 1/1/X of
$692.09. On that same day, a UPR reserve is established in the amount of $561.09

(line 9) and a risk margin reserve of $16.14 is established (line 2102).

During the year, a $300.00 loss is paid. By year-end, the premium 1s earned, so the

UPR reserve drops to zero. The remaining unpaid losses, on an undiscounted basis are
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Three-Period Model

Exhibit 3

39

An St | Balance Sheet At 12/31/%-1 AL #/1/X At 12/31/X At 12/31/X+1 At 12/31/X+2
Line #'s Assets
1. T-Bills $114.87 $692.09 $352.64 $119.81 $0.00
Liabilities
1. Undiscounted Loss Reserve $0.00 $300.00 $100.00 $0.00
9. UPR [} $661.09 $0.00 $0.00 $0.00
2101 Reserve for Discount $0.00 ($14.11) {$2.87) $0.00
2101a. Discounted Loss Reserve o $0.00 $285.89 $97.13 $0.00
2102. Risk Margin 0 $16.14 $6.77 $1.77 $0.00
22. Tota! Liabilities 0 $677.23 $292.65 $98.90 $0.00
26. Surpius $114.87 $114.87 $59.98 $20.80 $0.00
l Statement of Income Year X Year X+1  YoarX+2

1. Premium $677.23 $0.00 $0.00
2, Undiscounted Incurred Loss {$600.00} $0.00 $0.00
8. Investment Income $32.66 $15.25 $4.23
0501. Change in Risk Margin 1$6.77) $4.99 $1.77
0502, Change in Reserve for Discount $14.11 {$11.24) {$2.87)
18. Net Income $17.23 $9.00 $3.14

[ Capital and Surplus Account |
17. Surplus, Dec. 31 previous year $114.87 $59.98 $20.90

[ Gains And (Losses) in Surplus |
18, Net Income §$17.23 $9.00 §3.14
25(a). Surplus Adjustments: Paid in {$54.88) {$39.08} ($20.90)
27. Investor Dividend 1%#17.23} ($9.00} 1$3.14)
31. Changes in Surplus for the year {$54.88) {$39.08) ($20.90)
32. Surplus, Dec. 31 current year $59.98 $20.90 $0.00

NEWEX.XLS




Three-Period Model Exhibit 4
With Supplemental Information

An St L Balance Sheet AL 12/31/X-T At 1/1/X At 12/31/X At 12/31/X+1 At 12/31/X+2
Line #'s Assets

1. T-8ills $114.87 $692.09 $362.64 $119.81 $0.00

Liabilities

1. Undiscounted Loss Reserve $0.00 $300.00 $100.00 $0.00

9. UPR 0 $561.09 80.00 $0.00 $0.00

2101, Reserve for Discount $0.00 ($14.11) ($2.87) $0.00

2101a, Discounted Loss Reserve o) $0.00 $285.89 $97.13 $0.00

2102. Risk Margin 0 $16.14 $6.77 $1.77 $0.00

22. Total Liabilities 0 $577.23 $292.65 $98.90 $0.00

26. Surplus $114.87 $114.87 $59.98 $20.90 $0.00

Statement of Income Year X + 1 Year X +2

8. Investment Income $32.66 $15.25 $4.23
0501. Change in Risk Margin ($6.77) $4.99 $1.77
0502. Change In Reserve for Discount $14.11 {§11.24) ($2.87)

16. " Net Income $17.23 $9.00 $3.14

[ Capital and Surplus Account |
17. Surplus, Dec. 31 previous year $114.87 $59.98 $20.90
[ Gains And {Losses} in Surplus |

Net income $17.23 $9.00 $3.14
Surplus Adjustments: Paid in ($54.88)
e

27. Investor Dividend ($17.23) $8.00} ($3.14)
31. Changes in Surplus for the year {$54.88) {$39.08) {620.90)
32. Surplus, Dec. 31 current year $59.98 $20.90 $0.00

NEWEX.XLS



$300.00 (line 1). The present value of these losses at year-end is $285.89, so the
difference between the discounted and undiscounted amounts is established as a reserve
for discount of $ -14.11 (line 2101). The discounted loss reserve is shown as the sum

of line 9 and line 2101 in line 2101a.

The required year-end risk margin and surplus are calculated as before—the

expected losses are now $285.89, so the BRM, is:

BRM, = .233 x $285.89 = $66.75
NRM, = $6.77
SRM, = $59.98

Thus, we need to maintain $6.77 in the risk margin reserve and $59.98 in the

surplus account.

Income Statement (Year X)

Looking at the income statement (Exhibit 4), we see that income includes a’
premium of $577.23 (line 1) comprised of the loss portion of the premium $561.09,
plus the risk margin portion, $16.14. Incurred losses are shown on an discounted basis,
and are equat to the total of payments made during the year, $300.00 and all expected
future payments. This results in a total incurred loss amount of $600.00 (line 2). The
company earns investment income of $32.66 during the year (line 8). This is comprised

of two items, the amount earned on the assets underlying the loss reserves and the
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investment income earned on the risk margin and surplus. These two amounts are

$24.80 and $7.86 (shaded lines).

In our previous example, the investment income associated with loss reserves added
to the loss reserve precisely paid off the loss payment. In this example, the situation is
slightly more complicated. The total discounted losses at policy inception of $561.09 is
comprised of two components: $291.39 for the expected payment of $300.00 in the
first year, and $269.70 for subsequent loss payments. Consequently, $8.61 of the
investment income is combined with the $291.39 to make the midyear loss payment of
$300.00. The remaining investment income, $24.80 - $8.61 = $16.19 1s added to the

$269.70 value to produce the needed loss reserve of $285.89 (line 2101a).

As a check, either confirm that $285.89 represents the correct expected value of the
remaining two payments, or note that the original discounted amount of $269.70 should

be multiplied by 1.06 to bring it forward one year.

The change in risk margin is $-6.77 (line 0501). This amount may appear puzzling
at first. It is important to note the entire effect of the risk margin on the income
statement. The entire risk margin of $16.14 is included in the income because it is a
part of the earned premium (see shaded line above line 1). The $-6.77 ensures that not

all of the original risk margin is included in income in this year. The total of these two
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items, $16.14 - $6.77 = $9.37, represents the portion of the total risk margin that is

included in the first year's income."

The change in reserve for discount is $14.11 (line 0502), representing the fact that
the prior year-end reserve was zero, and the required reserve of $-14.11 (line 2101)
must be established. The sum of all the income items produces the net income for the

year of $17.23 (line 16).

Capital and Surplus Account (Year X)

The previous year-end surplus $114.87 (Exhibit 4, line 17) is carried down from
line 26 of the balance sheet. To this amount we will add the net income for the year,
calculated above to be $17.23 (line 16 as well as line 18). Now that some of the losses
are paid, the remaining obligations require less total assets and less surplus to support
possible fluctuation in actual payments. The new surplus requirement (SRM,) is
$59.98. Thus, the difference between the surplus on hand, and the required surplus, is
returned to the investor as a negative paid-in surplus amount'®. This amount, $114.87 -

$59.98 = $54.88, is shown on line 25(a).

YIf we had assumed that the policy has an effective date of 12/31/X-1, the individual line
entries would be different, although the total effect would be the same. This effective date of
1/1 was deliberately chosen to make sure the accounting treatment for this situation would be
understood. The subsequent years treatment should be reviewed for understanding.

In practice, the investor would leave the surplus in to support a new policy written in the
second year.
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We also paid the entire net income amount out to the investor as a stock dividend"’
(line 27). The shaded lines show that this dividend is comprised of the portion of the
narrow risk margin that has been taken into income $9.37, and the investment income

earned during the year on the surplus and risk margin, $7.86.

The bottom shaded line shows that the investor return, $17.23, divided by the

surplus at risk during the year, $114.87, produces a return on surplus of 15%.

Balance Sheet (Year X+1)

In the second year, the loss payment of $200.00 is made, leaving an undiscounted
loss reserve equal to the single remaining payment of $100.00 (Liabilities, line 1). The
present value of this payment of $97.13 (line 2101a) leaving a reserve for discount of
$-2.87 (line 2101). The total required assets are calculated as before:

Required Assets = 1.233 x $97.13 = $119.81
The BRM, is calculated as before:
BRM, =.233 x $97.13 = 322.68
which is apportioned into its components:

NRM, = $1.77

SRM, = $20.90

Thus, the risk margin on the liability side becomes $1.77 (line 2101) and the

surplus amount becomes $20.90 (line 26).

In practice, this amount, or a portion of this amount would be left in the company as
retained earnings, to support growth in premium writings.
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Income Statement (Year X-+1)

No premium is received in this year, and our estimate of ultimate losses for prior
years does not change, so the incurred losses are zero. Our assets earn a total of $15.25
during the year (line 8). This is comprised of $11.24 earned on assets supporting loss
reserves and $4.00 earned on the surplus and risk margin (shaded lines). Once the
losses are paid, we will need a smaller broad risk margin, hence a smaller narrow risk
margin and a smaller surplus risk margin. Consequently, we can release $4.99 of the
risk margin amount into income (line 0501). This is calculated as the difference
between the required risk margin at the prior year-end, $6.66 and the amount needed at

the current year-end, $1.77.

Similarly, we have to charge against income the need to increase the reserve for
discount from $-14.11 to $-2.87. This increase in reserves of $11.24 is a charge to
income of $-11.24 (line 0502). The net income for the year is the total of these items,

or $9.00 (line 16)

Finally, we reconcile the surplus account. It started with $59.98 (line 17). We
earned $9.00 in net income (line 18), returned the surplus not needed for the next
year's operations, $-39.08 (line 25(a)), and paid an investor dividend equal to total net
income of $9.00 (line 27). This amount is comprised of the $4.99 of the original
narrow risk margin released into earnings this year plus the investment income on the

remaining risk margin and surplus (shaded lines above line 27). The sum of these
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changes is the total change in surplus for the year, $-39.08 (line 31), yielding the year-
end surplus of $20.90 (line 37), which is precisely the amount needed to support the
remaining loss reserves. The investor dividend of $9.00 divided by the surplus
throughout the year of $59.98, provides the investor with a return on invested surplus

of 15%.

Balance Sheet (Year X+2)

In the third year, the final loss is paid, so at the end of the year, there is no need
for reserves or surplus, and therefore no need for assets. Consequently, all values in the

balance sheet are zero.

Income Statement (Year X+2)

There is no premium in this year. Loss payments exactly equal as expected, so
incurred losses are zero. Investment income of $4.23 is earned during the year (line 8).
This is comprised of the $2.87 earned on the assets supporting loss reserves of $97.13,
and the $1.36 earned on the risk margin and surplus (Exhibit 4, shaded lines above line
8). Note that the sum of the investment income on loss reserve assets plus the reserve

of $97.13 provides enough money to pay the loss of $100.00.

The required risk margin at the end of the year is zero, so the change in the risk

margin of $1.77 flows into income (line 0501). The $-2.87 corresponds to the fact that
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the reserve for discount becomes zero (line 0502). The total of the income items is the

net income for the year of $3.14 (line 16).

Finally, we reconcile the surplus account. The beginning surplus is $20.90 (line
17). Net income of $3.14 is added (line 18). All remaining surplus can be returned to
the investor, $-20.90 (line 25(a)), and we pay a stock holder dividend to the investor
equal to the net income (line 27). This dividend is comprised of the release of the
remaining portion of the narrow risk margin $1.77, and the investment income earned
during the year on the risk margin and surplus, $1.36 (shaded lines above line 27). The
total dividend of $3.14, divided by the surplus invested throughout the year $20.90,

provides the investor with a 15% return.

STEADY STATE

In this example, a policy is written every year. Each policy will be identical to the
policy in the three period model. The nominal losses will be $600.00, paid out over
three calendar years with $300.00 in the current year, $200.00 in the second year, and
100.00 in the third year. Because there are no losses outstanding after the third year,
any point in time in the steady state model needs only to consider the current year, the

prior year and the second prior year.

The results are summarized in Exhibit 5, (This exhibit is laid out in the same

format as Exhibits 2 and 4.)
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Three-Period Model Exhibit 5
Steady State

An St I Balance Sheet At 12/31/X-1 At 1/1/X At 12/31/X At 12/31/X+1 At 12/31/X+2
Line #'s Assets
1. T-Bills $603.45 $1,164.54  $603.45 $603.45 $603.45
Liabilities

1. Undiscounted Loss Reserve $400.00  $400.00  $400.00 $400.00 $400.00

9. UPR 0 $561.09 $0.00 $0.00 $0.00

2101. Reserve for Discount {$16.98)  ($16.98) {$16.98) ($16.98) 1$16.98)
2101a. Discounted Loss Reserve $383.02 $383.02 $383.02 $383.02 $383.02
2102. Risk Margin $24.68 $24.68 $24.68 $24.68 $24.68 |

22, Total Liabilities 3407.70 $968.78  3407.70 $407.70 $407.70

26. Surplus $195.76  $195.75  $195.75 $196.75 $196.76

Statement of Income

Year X+ 1 Year X +2
: ' 8

1. i Premium $577.23 §577.23  $677.23
2. Undiscounted Incurred Loss {$600.00) {$600.00) ($600.00)

8. Investment Income $52.13 $62.13 $62.13
0501. Change in Risk Margin $0.00 $0.00 $0.00
0502. Change in Reserve for Discount $0.00 $0.00 $0.00

16. Nat Income $29.36 $29.36 $29.36

[ Capital and Surplus Account ]

17. Surplus, Dec. 31 previous year $195.75 $195.76 $195.75
[ Gains And (Losses) in Surplus |

18. Net Income $29.36 $29.36 $29.36
25(al. Surplus Adjustments: Paid in $0.00 $0.00 $0.00
{ e, ot L ; i 23

27. Investor Dividend {$29.36) {$29.36) ($29.36)
31. Changes in Surplus for the year $0.00 $0.00 $0.00
32. Surplus, Dec. 31 current year $195.75 $195.75 $195.75

favestor Retom: - Hoe 180817 LLUIB00% T ARIG006 L SO0

NEWEX.XLS
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Most of the values in the exhibits can be calculated as the sum of the appropriate
amounts in Exhibit 4 associated with each of the three years. For example, the
undiscounted loss reserve is $400.00 at each year-end. This is the sum of the unpaid
amount of $300.00 on the previous year's policy, and the remaining unpaid of $100.00
on the second prior year's policy. (The current policy does not contribute to loss
reserves, but rather to the UPR account.) The narrow risk margin is $24.68 at each

year end, corresponding to the sum of the three narrow risk margins in Exhibit 4.

Note that surplus adjustments (line 25(a)) are always zero. On December 31, there
is a potential for a return of surplus, arising from the fact that losses have been paid
during the year and therefore do not require surplus to support the loss reserves.
However, a new policy will be written the following day, which will require surplus.
In the steady state model, this return of surplus and the required additional surplus
exactly offset. Of course, a company which is growing would require either additional
surplus paid in, or (more likely) an increase in surplus by paying out to the investor

less than the profit earned in the year (i.e., retained surplus).
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ADVERSE RESULTS

To this point, the assumption has been made that actual loss emergence follows
expected loss emergence. If actual experience always matched expected, there would
be no need for risk margins (or, for that matter, insurance). It will be helpful to
analyze what happens if actual experience deviated from the expected. This paper will
only analyze adverse departures from expected. Positive deviations can, and do, occur
but the proper accounting should be obvious from the following discussion. The

discussion will focus on two types of deviation:

1. Actual payments not equal to expected payments

2. A change in the estimated outstanding reserve

Of course, these two types of changes often occur simultaneously, but they will be

separated for the purposes of discussion.

Actual paid not equal to expected paid

This is the easiest type of deviation to handle. In the three-period model (Exhibit

4), expected payments are $300, $200, and $100 for the three calendar periods. If
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actual paid losses differ from that amount, but this does not affect the estimate of

oulstanding, the only adjustments are that:

¥ Actual incurred (line 2) will be different, which will flow dollar for dollar
through to

®  Net Income (line 16), which will flow through to

R Investor Dividend (line 27) and will change the

® Investor Return (bottom line)

If the adverse results are large enough, i.e, greater than income, then it would

require a surplus contribution (line 25(a)).

Risk margins are unaffected whenever the loss reserves are unchanged. It might
seem reasonable that investment income should be affected, but note that assets are not
reduced because investor dividends are reduced by the excess payments dollar for
dollar. (Technically, there is a small impact, if loss payments are made mid-year and

investor dividends and surplus replenishments are made at year-end.)
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Change in estimated outstanding reserves

The more complicated situation occurs when there is a change in the estimate of
outstanding reserves'®. As noted above, the expected payments for the three-period
model are $300, $200, and $100. Let us suppose that, sometime during the second
year, we determine that the best estimate of third year payments is $200, rather than
$100. Exhibit 6 summarizes how this change flows through accounting statements. A
comparison of Exhibits 4 and 6 will reveal that some items are different. Each entry in

Exhibit 6 which differs from its counterpart in Exhibit 4 has a box around it.

Not surprisingly, there are no changes in any of the values up through 12/31/X.
During year X + 1, the determination is made that nominal loss reserves should be set
at $200. This creates a change in the Undiscounted Loss Reserve (line 1). The Reserve
for Discount and Discounted Loss reserves (line 2101 and 2010a) are similarly
affected. The formula for risk margin is applied to the revised amounts. In this
simplified situation (only one remaining payment), the required risk margin (line 2102)
increases directly in proportion to the loss reserve change. The required surplus (line
26) is also increased. Changes in the loss reserve and required risk margin also change

the total liability entry (line 22)).

8 Of course, this does not include reductions in reserves due to the payment of losses

originally as expected, or reserve changes arising from a change in discount. It only covers
changes due to a change in future expected payments.
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Three-Period Adverse Model Exhibit &
With Supplemental Information

An St | Balance Sheet ] At TZ/31/X-1 At I/1/X At 12/31/X At 12/31/X+1 At 12/31/X+2
Line #'s Assets
1. T-Bilts $114.87 $692.09  $362.84 $239.61 $0.00
Liabilities

1. Undiscounted Loss Reserve $0.00 $300.00 $200.00 $0.00
9. UPR 0 $561.09 $0.00 $0.00 $0.00
2101, Reserve for Discount $0.00 {814.11) ($6.74} $0.00
2101a. Discounted Loss Reserve 0 8000  $285.89 $194.26 $0.00
2102. Risk Margin 0 $16.14 $6.77 $3.55 $0.00
22, Tots! Liabilities 0 $677.23  $292.65 $197.81 $0.00

28, Surplus $114.87  $114.87 $59.98 $41.81 $0.00

Statement of Income Year X Year X + 1 Year X+2
Pramium $577.23 $0.00 $0.00
Undiscounted Incurred Loss {4600.00} {4100.00) $0.00

0501, Change in Risk Margin ($6.77) $3.22 $3.55
0502. Change in Reserve for Discount $14.11% $8.37) {$6.74)
16. Net income $17.23 {$89.91) $6.27
[ Capital and Surplus Account ]
17. Surplus, Dec. 31 previous year $114.87 $459.98 [jﬂ:
Gains And (Losses) in Surplus |
18. Net Income $17.23 | 1889.97] $6.27
88| 1

27. {817.23) $0.00
31. Changes in Surplus for the year 1$54.88)[  ($18.18) {$41.B1}
32. Surplus, Dec. 31 current yesr $59.98 [ $41.81 $0.00

NEWEX.XLS
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Note carefully that we can simply “change” our liabilities by calculating new
values. However, simply calculating a new required surplus amount, which also affects
the required asset amount (line 1) does not, by itself, change the surplus or assets. The

other required changes will be discussed after the income statement changes.

The undiscounted incurred loss (line 2) is changed by the $100 change in reserve
estimate. Investment income during this year is unaffected, because we won't change
any cash items prior to year end. A change in risk margin still flows into income, but
the amount is less than in Exhibit 4. (We only get credit for a reduction in the
nominal reserve from $300 to $200, rather than the anticipated change from $300 to
$100). Similarly, the reserve for discount account is increased, but by a smaller

amount.

Net income is now a loss of $89.91, compared to a gain of $9.00 in Exhibit 4.
Now we inform our investor that we will be unable to pay a dividend this year (line
27). In fact, we do not have enough surplus to support our liabilities, so we need a

surplus infusions of $71.73 (line 25(a)).

The investor has earned a negative return in this year of almost -150% (bottom
line). Note that, in the subsequent year, investment income amounts are higher,
because the assets are higher. The investor earns exactly 15% on surplus in the final

year, although this policy represents an overall loss.

54



Practical Considerations

Although the methodology for the calculation of risk margins outlined in this
paper is straight forward, there are several practical reasons for choosing
computationally simple algorithms. The most complex step of the process involves the
determination of the aggregate distribution of losses and the solution of an equation
which produces the BRM value. It is likely that a company would not determine an
aggregate distribution for its entire portfolio of business directly, but would determine
distributions for individual blocks or lines of business. It is reasonable to assume that
aggregate distributions for a particular line of business do not change materially in a
short period of time. Thus, it may be reasonable to determine an aggregate distribution
for a particular line of business as a one time project and use the resulting factors for
some period of years. Moreover, it may also be reasonable to assume that aggregate
distributions for a particular line of business do not vary materially among companies
writing similar business. Thus it may be possible for an industry wide effort to
generate aggregate distributions for lines of business with individual companies either

using these results or making adjustments based on their own specific characteristics.

It might be necessary to calculate different factors for different ages. However, 1
believe that we will find that the ratio of BRM values to expected losses does not vary
materially by age. If so, then the same factor can be used for any year of outstanding,
and in particular, for the entire block of outstanding losses combined. Alternatively, we

may find that the factors vary over the first one or two years and then stabilize. In
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which case, we would have separate factors for the first year or two, and then an all-
subsequent factor. A bit more problematic is the fact that aggregate distributions are
likely to vary considerably based on the retentions kept by the company. It may be
possible to specify an aggregate distribution applying to unlimited losses and an
algorithm to adjust this distribution to various underlying retention and limit profiles. It
will take some additional research to determine how robust these factors are with
respect to the characteristics of the various lines of business, but it may be possible to
generate a table of factors which could be applied to the outstanding reserves of a

particular company.

Not only would this approach simplify the calculations of risk margins of
individual companies, it would also allow/facilitate a comparison of risk margins
among companies. If Company A has approximately the same amount of business as
Company B, but has a higher risk margin on its financial statements, this may be due
to the fact that Company A writes lines of business that require a higher risk margin.
A better comparison would be to look at the specific factor that Company A uses for

its auto liability outstanding reserves vs. the comparable factor for Company B.

GAAP ACCOUNTING

The discussion to this point has concentrated on the appropriate statutory

accounting for risk margins. An obvious question is how GAAP accounting should

incorporate risk margins,
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With minor exceptions, the proposals for the statutory treatment of risk margins
should apply equally 1o the appropriate GAAP treatment. This conclusion arises from
the fact that the derivation of the proposed statutory accounting treatment was
motivated by the GAAP accounting principle of matching revenues and expenses.
GAAP theory suggests that the value of uncertainty, i.e. risk margins, should be

incorporated into financial statements.

The fact that GAAP does not currently incorporate risk margins or discounting into
property-casualty financial statements does not arise from theoretical but, rather,
practical considerations. There are a number of practical issues, including calculation
methodologies, which need to be resolved before the accounting profession decides to

incorporate both elements into GAAP accounting.

The main difference between GAAP and statutory accounting with respect to risk
margins is likely to be related to the handling of discounting. This paper suggests that
statutory accounting should continue to deal with loss reserves on an undiscounted
basis with a contra liability line reflecting the amount of discount. The reason for this
is to preserve the existence of undiscounted liabilities in order to best track runoff of
liabilities on a basis consistent with history. This amount will also allow continued
calculation of traditional formulas and ratios such as are incorporated in the IRIS tests.
GAAP accountants may conclude that it would be preferable to show the discounted
liabilities as a single line item, with undiscounted liabilities disclosed in the notes to

the financial statements, if these amounts are needed.
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Altemative Treatment of the Risk Margin

The proposed treatment of the loss reserve risk margin is based upon several
assumptions believed to be reasonable. However, it is possible to put forth arguments
for a different set of assumptions, which might lead to different recommended
accounting treatments. Alternatively, it is possible to accept the overall assumptions,
yet reach a different conclusion regarding accounting treatment based upon criteria
such as simplicity or ease of presentation. This section will explore some of these

alternatives.

Earmarked Surplus

A key assumption is that an insured purchases an insurance policy to receive a
service—the specific service being the elimination (or at least reduction) of the risk
associated with the unknown losses covered by the policy. This paper argues that the
performance of that service is not complete until the final loss is paid. Consequently,
the earnings should be recognized over the same period. However, some may argue
that the performance of the service is complete when the policy period has ended.
Indeed, the concept of earned premium is consistent with that theory. Under this
theory, the entire NRM should be included in income by the time the policy is fully

earned.

58



But a different opinion on the time frame associated with the service provided does
not change the fact that uncertainty in loss reserves exists after the end of the policy
period. The NRM amount is still a necessary component of an adequate financial
structure. Under this scenario, it would be a required component of surplus, rather than

a hability item.

We have already determined that the SRM values belong in the surplus account.
(In fact, we have presumed that they are identical to the surplus account. However,
this paper does not treat other sources of risk such as asset risk. Inclusion of asset risk
would require surplus amounts other than those supporting loss reserves.) If only the
risk associated with loss reserves is included, then the NRM value and the SRM value
can be recombined into the total BRM. This amount could be shown as an earmarked

surplus item.

In summary, if one subscribes to the theory that the service under an insurance
policy is complete by the end of the policy year, and agrees that discounting of

reserves is appropriate, the following accounting treatment would follow:

B Start with the accounting treatment suggested in this paper, including the

establishment of an undiscounted loss reserve and a contra-liability for discount

(calculated at risk-free rates of return)
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B Earn the NRM, along with the remainder of the premium, over the policy

period

B Earmark the entire amount BRM, within surplus, not just SRM,, which
recognizes that the asset needs are not reduced under this scenario. The NRM
amounts are still required for financial adequacy, but they will be part of

surplus rather than as a liability item.

Identification of an earmarked surplus amount may make sense in a scenario where
risk- based capital concepts are incorporated into the financial statements. Such a
treatment might include an earmarked surplus item for each category of rnisk-based
surplus. In theory, the surplus account for an insurer would contain an earmarked
amount for reserve risk and asset risk, with the remainder in a “free” surplus account.
Presumably, regulators could put restrictions on the ability to péy dividends 1if the

amounts would exceed the “free” surplus amounts.

Footnote or Altemative Schedule

The accounting treatment proposed in this paper would require only two items in a
balance sheet - the total NRM value shown in the liability section and the SRM
amount contained in the surplus account (optionally, this does not even need to be
shown as a separate item). The alternative treatment discussed above only requires

one item, an optional earmarked surplus account. It may be that regulators and other



users of financial statements may wish to have additional information. This additional
information should be included as a footnote or as a separate schedule, depending on
the complexity of the additional information desired. For example it may be desirable
to show NRM and SRM values for each accident year. Such a schedule might show
the current totals of the NRM and SRM values as the sum of individual components,
as well as an historical registry of values at prior valuation periods. This schedule
would be especially useful if the methodology used to calculate the values changed

over time, or if critical parameters such as ROR changed over time.

Other categorizations may also be desirable:
®  Ongoing versus runoff business
®  Gross, net and ceded business

®  Special situations, such as environmental coverage
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Transition Issues

This paper has outlined a methodology to account for loss reserve risk margins.
An obvious question is how to get from here to there. Two methods of conversion are
possible. One method is a complete restatement of the annual statement at a particular
year-end. It may be necessary to restate the beginning year balances so that income
for the year is stated correctly. The difference between the prior year end balance
sheet and the restated beginning year would be reported as an extraordinary gain (or

loss) due to an accounting change.

Another method would be to phase in the new accounting rules prospectively.
This could be done on an accident year or policy year basis, although accident year
would be preferred. Presumably, after some period of time (five to ten years), the
remaining prior years would also be restated to avoid carrying multiple accounting

conventions forever.

There are advantages and disadvantages to both methods. The first method,
complete conversion, is “cleaner”, but to the extent that some companies have
understated their undiscounted liabilities by implicitly recognizing some time value of
money, they would be forced to either book inadequate discounted reserves or admit
openly that the undiscounted reserves were deficient. The phase-in approach would

mitigate this problem, but would mean that annual statement accounting would be a
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hybrid for years to come. More research into the advantages and disadvantages of

these alternatives (as well as possible other approaches) is needed.

In addition to transition issues, there are other reasons why the actual
implementation of the recommended procedures does not have to precisely follow the
theory. This paper has outlined an accounting treatment consistent with a theoretically
correct calculation of NRM and SRM values at each point in time. It is important to
keep the calculation of these values in context. Once the initial (NRM) value 1s
calculated, the subsequent calculations of NRM, values dictates how the original
amount is released into earnings, A different method for calculating NRM,, £>1 would
only affect the timing of the release into earnings, not the absolute amount. As an
analogy, consider the purchase of capital equipment. In general, the entire purchase
price is not taken as an expense immediately. Instead, a depreciation schedule is
established. The purpose of this schedule is not the depreciation amounts per se, but
the time frame over which the expense is recognized. In theory, we might wish to
create a schedule which shows how the equipment contributes to the corporation over
its life time, and charge expenses on a proportional basis. Instead, an arbitrary
lifetime is ascribed to the equipment, and the original purchase price is spread over
this time period according to specified rules (e.g. pro-rata, double declining balance).
For NRM values, we might decide to apply similar procedures. This would mean
assigning periods of time to lines of business, and an associated schedule which might

approximate a payout schedule. For example, we might assign a 10 year life to
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general liability, and select an exponential pattern. This schedule would be applied to

the original NRM values at all future points in time.

Alternatively, a study might be completed which calculates total NRM values
under a variety of circumstances. It might be possible to analyze the results and
conclude that selected factors applied to discounted reserves will approximate the

theoretically correct amounts.

Non-constant Variability of Loss Reserves

One assumption used in this paper is the assumption that an aggregate loss
distribution appropriate at the time of pricing is also appropriate for the unpaid losses
at future points in time. Mathematically, let L be a .random variable which represents
unpaid losses at time zero (i.e. the entire loss amount). Now consider the unpaid
losses at some future time, L. Of course E(L) < E(L,), so the distributions cannot be
identical. But if we assume that the unpaid loss amounts are scaled up to the same
level as the original loss distribution, how would we expect the two distributions to
differ? First, we might anticipate that some of the smaller, more predicable losses
have been paid, leaving larger, potentially more variable O/S claim. With additional
information we should anticipate a “tighter”, less variable distribution. In total, the
unpaid loss distribution will probably differ from the original, but it may not be

obvious that the riskiness is materially different.



More important, while we might find that the shape of the unpaid distribution is
significantly different than the original distribution, the important question is whether

the expected deficit, as a ratio to the expected, has changed materially.

If the answer to these questions is that the expected deficits of the unpaid loss
distributions are not materially different than the original, then it may be acceptable to
use a simplifying assumption that the same distribution, or at least the same critical
ratio values can be used for all ages. Keeping in mind that the goal is simply to
determine the timing of the release of the original NRM value, we might conclude that

expected deficit values as a ratio to expected amounts could vary as much as the age.

For example, the critical value used to calculate BRM, is 1.233. Suppose the
corresponding value for BRM, is a sequence of values each greater than 1.233. The
formula for calculating NRM, still works. It will produce an NRM value somewhat
higher than the original problem. In words, higher critical ratios arising from more
variability of loss reserves means that more surplus is needed at future points in time
to support the loss reserves. In order to produce our target ROR, we will need a
higher NRM, value. In other words, if the line of business is significantly more
volatile over its entire life span than the original example, the company is subject to

more risk and can command a larger price in the marketplace.

Note carefully that insureds with more risk do not automatically imply a higher

required ROR. Instead, the higher risk may require a higher surplus commitment with
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the same ROR. The target ROR will be related to the expected deficit, rather than to

the risk of the.individual insured.

SUMMARY

Current statutory and GAAP accounting rules performed adequately when
investment income was modest and the length of time until loss payment was
reasonably short. However, with high interest rates or longer payout patterns, current
accounting rules provide a poor match between recognition of profit and the true
economic reality of the insurance transaction. Specifically, current accounting rules

artificially defer the recognition of profit.

A change in accounting rules to reflect loss reserves discounted at risk-free rates of
return would over-correct. Specifically, this change would accelerate the recognition of
profit (in the expected case) entirely into the initial policy year, despite the fact that

risk exists with respect to loss reserves.

This paper outlined a procedure which provides a more appropriate balance
between these two incorrect alternatives. It specifies a formula to determine how much
of an overall asset requirement consistent with regulatory goals should be established
as a narrow risk margin as a liability on the balance sheet. This formula provides for

the proper release of the original profit margin into earnings over time.
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This paper discussed specific methodologies for the calculation of margins (e.g.,
based on expected deficit). Other methodologies may exist or may be developed.
More research is necessary to determine the proper choice of a methodology for the
calculation of margins. Once that research is complete, an acceptable method for

calculating and accounting for risk margins will exist.
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Appendix A

It will be instructive to review the accounting treatment of the profit margin for a
variety of assumptions. This discussion will trace how the timing of profit recognition
differs under various assumptions, which will roughly correspond to changes in the
insurance environment over time. This discussion will form a background and
framework for a discussion of how accounting for loss reserve margins ought to be

handled.

The first example considers a situation where investment income is earned at a rate
of 3%. This forms a benchmark starting point. The following examples will also
ignore expenses. While the treatment of expenses plays some part in the evolution of
accounting rules, it is not particularly relevant to the issue of risk margins and

therefore will not be discussed.

In Case 1, we assume that a policy is written with expected losses of $600 and a
premium of $611.65. Interest is assumed to be 3%. Losses are paid at the end of the

policy period.

In the first example, the premiums shown were calculated by selecting a paid
amount of $600.00, an expected profit of 5% (or $30.00), and calculating the required

premium. A $30.00 profit at the end of the year represents a 4.9% return on premium,
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Case 1

_ $30
Premium $611.65 | 525
Inv Inc. $18.35 $20

315
Paid $600.00 s10
A OS 0.00 - -
Incurred $600.00 5 S —

1 2 3
Profit $30.00 ! Year of Proft Recognition
Case 2
$593.84 $0.00

inv Inc. $17.82 $18.00
Paid $0.00 $600.00
A Of8 600.00 {600.00) {
Tncurred $800.00 $0.00 !
Profit $11.65 $18.00 -
Case 3
Premium $576.54 $0.00 0
tnv Inc. $17.30 $18.00 $18.00 $20

$10
Paid $0.00 $0.00 $600.00
A OIS £00.00 0.00 {800.00) 0
incurred $8600.00 $0.00 $0.00 10

1 2 3

Profit ($6.18) $18.00 $18.00 Year of Profit Recognition
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All other examples were constructed such that the expected profit (discounted to the

end of Year 1 where necessary) is 4.9% of premium.

The policy is written on January 1, premium 1s earned evenly over the next twelve
months, and losses are paid at the end of the year. As a consequence, the net income
(i.e., profit) is earned proportionately throughout the policy period. The company has
entered into a risk-taking enterprise. The result of the insurance policy could be a no-
claim situation or a situation with a large claim. This first example will assume that,
once the loss occurs, the amount is known with certainty. The risk is taken during the
policy year and no risk exists at the end of the policy period. In this example, the
incidence of risk undertaken by the insurance company and the emergence of profit

precisely track each other.

In case 2, we continue the 3% interest rate, but we now assume that the losses are
paid out over a longer time frame. Specifically, losses are paid 24 months after they
are incurred. This represents the evolution of the industry from predominately property

coverage to an increased proportion of longer tailed liability coverage.

When we inspect the graphs that identify when the profit is recognized, we see that
a large proportion of the profit is recognized during the policy year, but now a fairly
significant amount of the profit is recognized subsequent to the end of the policy
period. This fact should not be troubling. The reserves could be too high or too low at

any point up to the final payment period. Thus, the insurance company which has
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taken assumed risk from the insured for a fee finds itself with risk on its books until
the last day of payment. It earns a profit over this period of time and statutory
accounting has recognized profit over this entire period of time. It is possible to argue
whether the exact heights of the bars in the graph precisely conform to the exact
amount of profit that should be earned in each period, but we should all be in
agreement that the general shape of the profit recognition curve conforms to what we

think is the true economic reality of this company.

However, the last two or three decades have not conformed to assumptions such as
this. Interest rates are higher and the average length of time to loss payout is longer.
Let's relax these assumptions one at a time. In Case 3, we will assume that the loss
payment period is lengthened to thirty-six months on average, but the interest rate
remains at 3%. Under this scenario, the premium necessary to generate a reasonable

profit will be is set at $576.54.

Now when we examine the graphs that show profit recognition, they begin to
depart from our assumptions about the reality of the insurance transaction. Statutory
accounting would generate a loss during the policy period followed by gains in the
three subsequent years. While the overall profit is finally recognized, statutory
accounting rules cause the profit to be earned much later than would conform to
economic reality. We would believe that an insurance policy whose final loss payment
does not occur for thirty-six months eams at least some of its profit in the two years

after the policy period ends, but we would be hard pressed to argue that no profit,
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indeed even a loss, is incurred during the policy period. Obviously, losses can be
incurred on particular policies that end up with losses for the entire period, but this

example is intended to represent a situation that is profitable for its lifetime.

The situation becomes even more extreme if we increase the interest rate to 12%.
Case 4 summarizes the situation where loss payments occur thirty-six months after
occurrence, but interest is assumed at a 12% annual rate. This rate obviously exceeds
rates available today, but is consistent with rates available in the early 80's. The policy
generates significant losses during the policy period, which are offset by significant
gains in the subsequent years. Of course, it should be recognized that overall calendar
year results for an entire company would not look like this. Any particular calendar
year would contain a mixture of new policies with a negative contribution to profit and
older policies whose artificially high profits are running off. Eventually, a steady state
situation might be reached, but in a situation where interest rates were growing and
loss payment lags were increasing and the overall business volume was increasing,
statutory accounting produced an understatement of income. Even if a steady state
situation were reached, statutory accounting produces a poor match between reality

and the accounting for any particular set of policies.

The insurance industry had a mixed reaction to this situation. On the one hand,
there is a desire to report as high an earnings result as possible to satisfy the
stockholders (in the case of stock companies) and to portray the financial strength of

their companies to the policyholders, (in the case of mutual companies). On the other
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Premium $448.42 $0.00
Inv Inc. $53.81 $72.00 $72.00
Paid $0.00 $0.00 $600.00
A OIS 80000  0.00 (600.00)
incurred $600.00 $0.00 $0.00
1 3 3

Profit _{se1.T) $72.00 $72.00 Year of Proft Recognition
Case b
— $30
Pramium $448.42 $0.00 o
Inv inc. $53.81 $57.40 $64.29 $20

$15
Paid $0.00 $0.00 $600.00 $10
A OIS 478.32 5740  (535.71) 5
incurrad $478.32 $57.40 $64.29 ©

1 2 3

Profit $23.92 $0.00 $0.00 Year of Profit Recogniton |
Case 6
Premium $528. $0.00
inv Inc. $31.74 $30.86 $33.33
Paid $0.00 $0.00 $500.00
A OfS 514.40 41.15 (555.56)
Incurred $514.40 $41.15 $44.44
Profit $48.20 {$10.29) ($11.11) Year of Profit Recognition
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hand, a delayed recognition of profit meant a reduced, or at least deferred, tax bill to
the extent that the Internal Revenue Service accepted statutory income as tax income.
(Income for tax purposes was not identical to statutory income, but the magnitude of

the other adjustments is rather small compared to the discounting issue.)

Not surprisingly, the Internal Revenue Service did not accept this situation quietly.
For many years, the definition of income for tax purposes was virtually the same as
statutory income. However, as the length of time to loss payment increased and
interest rates increased, the use of nominal reserves artificially depressed statutory
income to such a degree that the Internal Revenue Service decided to make changes.
They decreed that reserves should be established on a discounted basis. (The precise
formula for the discount is beyond the scope of this paper, but it was roughly based on
T-bill rates.) The imposition of discounting dramatically changed the profit incidence.
As Case 5 shows, under discounting almost all of the income for a policy is
recognized in the first twelve months and only modest amounts of income are
recognized in the following three years. While some might argue that the premium has
been fully earned by the end of the policy period, it is certainly a fact that much
uncertainty still remains at the end of the policy period and prior to the loss payments.
If any one questions the existence of uncertainty, the following thought experiment

should suffice.

Consider a company issuing a policy for $448.47 with expected losses of $600.00.

This premium is set at a level which will generate a profit over its lifetime. If the
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company wished to sell this policy, that is, sell off the loss reserves at the end of the
premium earning period, would they be able to sell it at a rate such that they would
recoup the entire profits? I submit that they would only be able to earn a modest
amount of profit by that period and the premium for transferring the remaining
uncertain loss'liabilities would be sufficiently high that a significant amount of the

original profit would need to be transferred to the reinsuring company.

Finally, we look at Case 6. This also follows the tax accounting rules, except it
approximates the situation in place right now where the discount rate for tax purposes
exceeds the amount of interest a company can earn on T-bills. (This arises because the
discount rate used for IRS calculations is based on 60-month average rates, so when
rates are dropping rapidly the average rate exceeds the current rate.) In this situation,
we see that, while the overall profit of the contract is unchanged, the tax accounting
rules actually “recognize” more than all of the profit by the end of the policy period
and then recognize losses in subsequent periods. An insurance company is in the
unenviable position of having an artificially high income calculated for the purposes of
determining income tax, but artificially low statutory accounting income to report to

stockholders.

At low interest rates with short-tail lines of business, the true incidence of profit
and the incidence of profit arising under statutory accounting are approximately the
same. As the length of time between occurrence of the claim and payment of the claim

increases, the incidence of reported profit and the incidence of true profit (that is, the

75



price paid to transfer risk) remain approximately in sync. However, as the length of
time gets fairly long, the comparison starts to get out of sync and at modestly high
interest rates, statutory accounting rules generate a profit recognition picture which

bears almost no resemblance to reality.

Tax accounting attempted to correct this distortion, but it has over-corrected.
Discounting essentially forces the profit to be fully recognized during the policy
period, despite the fact that an insurance company remains at risk substantially after

the last dollar of premium is earned.

In summary, the failure to formally incorporate risk margins and recognition of
discount produced only modest distortions between statutory recognition of profit and
the true economic earning of profit when interest rates were low and most business
was short-tailed. However, the situation is very different today. The recognition of
profit under statutory and GAAP accounting is artificially deferred, and under tax
accounting is artificially accelerated relative to the true economic incidence of profit.
Simultaneous recognition of discounting and risk margins could correct these

problems.
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Appendix B

The theoretical justification for a loss reserve margin arises because the loss
liabilities are uncertain. Economic values of assets are reduced when uncertainty is
introduced; the economic value (or cost) of a liability is increased because of
uncertainty. Before analyzing the uncertainty associated with loss reserves, it will be
helpful to examine the treatment of uncertainty in the pricing situation. Then, by

analogy, the reserving situation can be analyzed.

Consider an entrepreneur in the process of establishing a brand-new insurance
company. Assume that the entrepreneur has identified a portfolio of insureds, whose
losses can be described by a random variable z, with distribution F(z). In order to
obtain regulatory approval to start the company, as well as convince potential insureds
to become customers, the company will have to show evidence of its ability to meet
its financial obligations. This is normally done by starting the company with a certain

amount of capital, C.

7



A ruin theory approach to solvency would require that the company have sufficient
assets such that the probability of being unable to satisfy its obligation, i.e., probability
of ruin is q, where q might be .01 or .005. Mathematically, we need to solve the
following equation for A where A represents the total assets of the company (which,

of course, equals the expected liabilities plus surplus):

[Par @)= q

Alternatively, we might specify an expected deficit requirement. Rather than
simply being interested in the probability that a company is unable to meet some of its
obligations, we may be more interested in the cost of insolvency. In this case, we
want the sum of all losses in excess of total assets. An expected deficit requirement
consistent with actual industry insolvency costs would be approximately .5% of

premium or .3% of expected losses. Let d equal .003 times all expected unpaid losses.

Mathematically, we need to solve the following equation for A

,.-:(z - A)dF(z) =d

(For convenience, we will ignore operating expenses of the company and include

LAE with loss.)

The company will charge a premium, P. At start-up, the company will have assets

equal to the premium plus the start-up capital:

A=P+C
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P is supplied by the policyholder and C is supplied by the stockholder. To
determine these values, we need another equation. Note that the premium can be
decomposed into two components — the expected losses, E(z), and a risk margin, R

(ignoring expenses). Thus:

P=E@) +R
Substituting:

A=Ef+R+C

In words, the total assets of the company include an amount necessary to cover the
expected losses, plus an amount necessary to cover the possibility that losses exceed

the expected amount. On average (or over the long term), the company will pay E{z),

leaving profits of R on capital of C. Thus:

= return on capital

Al

We can presume that the market will determine the acceptable level of profit for a
company with this level of risk. Call this amount ROE. In summary, the value ROE is

fixed by the market, and the value 4 is fixed by the characteristics of the portfolio of

risks. The two equations

A=EZ)+R+C

ROE =

alx
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simultaneously determine the total amount needed to start up the company, and the
relative contribution needed from policyholder and stockholder. (It should be noted
that ROE in the above discussion is a total return on capital, not an annual rate of
return, unless the company expects to pay all its losses by year-end. The appropriate

calculations reflecting annualized rates of return are handled in the main text of the

paper.)

In the pricing context, there is no confusion regarding the term “margin.” Although
both R and C are needed to meet the solvency requirements, only R is considered the

pricing margin.

To examine the reserving situation, we need to add some notation. Define L, as the
random variable representing losses unpaid at age ¢. For example, L,, represents losses
unpaid 24 months after the inception of the policy period. By definition, L, represents
the unpaid losses at the beginning of the period, so L, = L. If we let u be the date the
last loss is paid (ultimate), then L, = 0. For every value of ¢, we have a random
variable L, and a distribution associated with that variable. We are typically interested
in the inverse distribution at the value g, that is, the dollars of loss unpaid at time ¢
corresponding to the ¢* percentile of the aggregate loss distribution. For notational
convenience, we will define G(?) to be the inverse of the distribution function
associated with the random variable L, and cumulative probability ¢. In most cases, we
will not need to distinguish between various values of ¢. If needed, we can extend the

notation to G(t,q) to allow for varying values of ¢q.

80



Assume the new company starts with capital C and premium P. Assume no new
business is written and we examine our company at time 7. Some of the losses have
been paid — the remaining unpaid are represented by the random variable L,
Assuming that our criteria for solvency is unchanged, we would require total assets

of A, = G(t) which, as before, can be written as:

A =EL)+ R +C,

In words, the assets required for an insurance company at time ¢ are the expected
value of the liabilities plus an amount (R, + C) such that the probability of insolvency
is sufficiently low. This latter amount is comprised of two quantities. The first, R,, is
the portion of the original profit margin which must still remain in the company. The
second quantity, C, is the proportion of original capital required to remain in the
company. We can presume that the amount R - R, has been returned to the stockholder
in the form of a dividend and the amount C - C, has been returned as a return of
capital. If we assume that the market rate of return is unchanged, then it is reasonable

to assume that

R ROE
Cl

which means that
Rr _ C:
R C
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or that the release of profit has been proportional to the reduction in the capital

requirements.

It is important to note what assumptions are being made and what assumptions are
not being made, at least at this time. If a block of business is priced at inception, use
the following relationship to determine the overall required assets and the relative

contributions from owner and policyholder:

A4, =EL) + R +C,

At time t, use the following relationship to determine the required assets which
must remain in the insurer if the outstanding liabilities are retained or the amount of

assets needed by another company if the liabilities are fully reinsured:

A, =EL) + R +C,

Suppose that, at time t, the expected remaining losses are some proportion of the
original expected. For concreteness, assume that this value is 25%. That is:

28 s
EL)

We are not making the assumption that G(¥) is 25% of G(0). Nor are we making
the assumption that 4, is 25% of A, More importantly, we are not making the

assumption that (R, + C) is 25% of (R, + C,).
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We might examine the characteristics of the business being written and conclude
that the outstanding and IBNR and time t are more volatile than the overall block of

business. In this case, we would conclude that, while

EL)

=25
EL)

the ratio of the required assets is greater than 25%:

A, GO, 5
A G(0)

(24

In this case, the amounts in excess of expected losses would also, in total, have a

ratio greater than 25%:

R,+C,>

Lt > 025
RO + CO

Additionally, from the formula for assets, we note that:

i:G(t)>R:+C:
A G R, + C,

o 4

Alternatively, if we conclude that the additional information provided by the paid
data and outstanding case reserve information sufficiently improves our ability to

estimate the ultimate cost of the unpaid liabilities, such that:
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The relationship between R, + C, and R, + C, will be determined by the
characteristics of the business written. As we have seen, this ratio might be greater

than or less than the ratio of the expected unpaid losses to the original expected losses.

On the other hand, the determination of the individual components of R, + C, will
depend on the market rate of return for runoff business of this type. Unfortunately, this
market is very thinly traded, so empirical evidence may not be available to determine

the appropriate conclusions. Instead, we will have to use more theoretical approaches,

It is tempting to conclude that, if the unpaid liabilities are viewed as more “risky”
than the original business, the required ROE is higher. Equivalently, it is tempting to
conclude that, if solid information on outstanding claims reduces the “riskiness” of the
unpatd labilities, the required ROE would be lower. This does not necessarily follow.
If the outstanding liabilities are “risky,” then the value of G(#) will be relatively high,

which means a relatively large amount of assets is required, but this can be satisfied

by requiring more capital and leaving the ROE the same. That is, riskier business

either requires a higher return on a fixed amount of capital, or higher capital. If we
conclude that we establish our company (either the original company writing the
business or a company formed to reinsure the runoff) using a ruin criteria concept, that

is, we fix the required probability of solvency ¢, then, to a high degree of



approximation, we are assuming that riskier business requires more capital rather than
a higher return on capital. Thus, it will be reasonable to assume that the ROE for a

runoff situation will be the same as the original business and:

AR o
¢ G

I suggest that we should adopt the convention that the term “loss reserve margin”
should refer to R, not to the total of R, and C, One reason for this suggestion is that
we should not combine two very dissimilar concepts (a portion of the original
premium provided by the policyholder, and a portion of the original capital supplied
by the owner). Unfortunately, there is some precedence which is inconsistent with this
convention. In many hospital trust funds, it is typical to establish a funding
requirement consistent with the formula

A,=EL)+R,+C,

This formula specifically refers to the funding requirement for one particular

historical accident year (specifically, the one at age t). Conceptually, this formula is

calculated for all open years plus possibly an amount for the upcoming year:

A, =EL)+R +C,

In practice, all years other than the upcoming year may be handled as a group.
More importantly, there are two related issues that distinguish this situation from the

classic insurance company example.
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First, the value of q is typically set at .75 or .90 rather than a value very close to
one. This decision arises from the second distinction, which is that the policyholder
and the owner are often identical. Because of this identity, a value of ¢ can reasonably
be chosen lower than that of a stand-alone insurance company. Also, because of the
identity, the distinction between funds provided as a policyholder (R) and funds
provided as an owner (C,) is often not made. As a consequence, the fact that the term

“loss reserve margin” is used to refer to the entire amount R, + C, is not surprising.

The appropriate theoretical accounting for loss reserve margins is quite
straightforward, given these assumptions. An insurance company would write
premiums equal to P in year zero. This premium amount contains R, of expected
profit. The company would need to have capital C, to support this business. At time ¢
= 1, the end of the year, the company should book actual incurred losses (including an
appropriate amount for IBNR). The company conceptually can return C, - C, to the
owners, although in practice, this amount will be “rolled over” to support new writings
in the next year. The company can “release” R, - R, into earnings. If actual loss
experience exactly matches expected loss experience, then booked incurred losses will
exactly equal E(L,), and a profit of R, - R, will be reported. To the extent that actual
experience is better or worse than expected, so will the reported results. The company
will maintain a “reserve” at year-end of R,, which it will label the loss reserve margin.

It will be carried above the line as a hability, not below the line as a part of surplus.
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The introduction of this paper stated that the term “risk margin” requires careful
definition because the term is used to refer to fundamentally different concepts. This
appendix has laid a theoretical framework for terminology. As a result, issues in the
introduction can now be stated in precise terms: When we refer to risk margins, it is
important to clarify whether we are discussing only R, , or the larger quantity R, + C,
(or perhaps some other quantity). In the terminology of the main text, R, corresponds

to the narrow risk margin and R, + C, corresponds to the broad risk margin.
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Introduction

by Gary G. Venter
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Selected Papers from Variability in Reserves Prize Program

This volume contains a selection of the papers submitted for the Committee on the Theory of
Risk prize on how to measure the variability of loss reserves. Due to various constraints, not all of
the submitted papers are included. Several of the excluded papers contained good analyses of reserv-
ing, but did not specifically address measuring variability. Others had some promising ideas not
fully worked out into calculations. Hopefuily these will be refined and submitted for publication in

other venues.

Introduction

Several types of variation need to be accounted for to get a representative distribution of loss lia-
bilities. Random fluctuation of the data around the expected value is generally called “process risk.”
Possible errors arising from estimating the mean, process variance, or parameters of any fitted model
can be called “parameter risk.” The standard error combines these two elements into a variance mea-
sure, and this is calculated in several of the papers. “Model risk” (sometimes called “specification
risk”) is an additional element of uncertainty arising from the possibility that the model assumptions

themselves may be incorrect. A few papers attempt to quantify this as well.

The papers included here fell into three categories: Methods based on variance of link ratios;
methods based on the collective risk model; and methods based on parametric models of develop-

ment.

Methods Based on Variance of Link Ratios

Each age-to-age factor is a mean of several observed factors, so a variance can be calculated as
well. Adding an assumption that the observed factors are samples from a lognormal, and that the
ages are independent of each other, make the age-to-ultimate factors also lognormal, with readily
computable variarmces. Both assumptions are possible to check, and adjustments can be made if they
are too far off. The result is a distribution for the estimated liability for each accident year. Indepen-
dence is important in that the product of the expected values is the expected value of the product for

independent factors.
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To get the distribution for the entire reserve, the distributions for the different accident years can
be added by simulation or by matching moments of the sum. Normal, lognormal, and shifted gamma
distributions are possible candidates for the summed distribution. Another one, not discussed in
these papers but used by at least one committee member, is the shifted loglogistic G(x - x0) = F(x) =
x2/[x* + b°]. The moments for F are given by E(X") = b"(n/a)!(-n/a)!. The variance and coefficient
of skewness from these are the same for G, being unaffected by the shift xo, and so they can be used

to match the parameters a and b. Then xo, is computed as needed to get the right mean for G.

Measuring the Variability of Chain Ladder Reserve Estimates, Thomas Mach

This paper tied for second prize in the competition. It contains a detailed discussion of what as-
sumptions underlie the development factor (often called “chain ladder”) method; i.e., the assump-
tions that make this method optimal, and how to test if they hold. This inéludeé a‘test for correlation
of age-to-age factors as well as for other assumptions of the chain ladder method. Standard errors are
measured without assuming age-to-age factors are lognormal, but age-to-ultimate factors are as-
sumed to be lognormal in any case. The version of thé chain ladder here uses all observed factors to
compute mean age-to-age factors, but the formulas can be converted to apply to using only the lastn

diagonals by just using the last n terms of those sums indexed from 1 to I-k.

Unbiased Loss Development Factors, Daniel M. Murphy

Variances of link ratios are derived from loss development triangle data using regression statis-
tics measuring both process and parameter risk. Regression is presented as a generalized procedure
which can be used to model age-to-age factors from loss development triangles. Many techniques

currently in use can be viewed as types of regression models.

Murphy describes some of the main regression assumptions and illustrates how these assump-
tions can be tested and used to select an appropriate model. He then describes a recursive calculation
of variances of ultimate losses based on the regression statistics. Although the introduction discusses
three models frequently used to estimate loss development factors (weighted average development,

simple average development and geometric average development), the calculation of variances is
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presented in detail for only two models: The least squares linear and the least squares multiplicative
models. In actual practice, actuaries generally use the weighted average development or simple aver-
age development to estimate age-to-age factors. Using the paper’s approach, the variances for the
models more commonly used can be derived also, but the reader may need to derive the formulas
from basic principles or refer to formulas (i.e. for weighted average factors) contained in an appen-
dix.

Murphy presents the calculation of variances for multiple as well as single accident year ulti-
mates. His formulas assume independence between development ages. Finally, he invokes the t-dis-
tribution to derive confidence intervals for the ultimate and the outstanding losses. In order to
support the use of the t-distribution, he requires a further assumption that the variances are constant

across development ages, which would need to be checked against actual data.

In addition to providing variance and confidence interval formulas, Murphy also uses a simula-
tion procedure introduced by Stanard (PCAS 1986) to evaluate the bias and variance of eight devel-
opment factor estimates. It would also have been informative if the simulations had been used to test

the accuracy of the confidence interval estimates.

Correlation and the Measurement of Loss Reserve Variability, Randall D. Holmberg

An important issue for the development factor approach is potential correlation of link ratios. If
they are correlated, the product of the age-to-age factors is not an unbiased estimate of the age-to-ul-
timate development, and the variance of the age-to-ultimate factor is understated. This paper pro-
vides a method to measure and adjust for correlation. The author suggests a simplified model in
which the correlation p between a given age-to-age factor and the subsequent age-to-ultimate factor
is constant for all ages. He then shows how this correlation can be estimated, and how it affects the
reserve mean and variance. For the latter, an assumption on the distribution of the factors is made to
simplify the computation, and here the uniform distribution is assumed. However, it would not be
difficult to change to another distribution, just by plugging its density function and domain of defini-
tion into two integrals. The significance of the single p assumption is difficult to evaluate, and this

area needs further support. The sensitivity to the distributional assumption would also be useful to
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know. It may in fact be possible to avoid the distributional assumption by using moment formulas
for correlated variables, e.g.,
E(AB) = (A)E(B) + Cov (A,B), V(AB) = V(A)V(B) + E(A)’V(B) + E(B)*V(A) + Cov (A% B?) -
Cov(A,B)” - 2E(A)E(B)Cov(A,B).

The paper at least touches upon several other important issues in the variance calculation. For the
variance of tail factors it raises the possibility of expressing the standard deviation of a development
factor as a linear function of Ifactor-1i, and applying this to the last actual factor and the tail factor.

Correlation among accident years and among lines of insurance is also estimated.

Variability of Loss Reserves, Robert L. Brown

The effects of parameter risk and correlation among companies are illustrated in this paper,
which looks at historical variability in loss reserves for a large sample of companies. Reserve ade-
quacy for the entire sample showed a cyclical variation over time that would not be observed for a
like sample of independently fluctuating companies. Reserve adequacy was found to vary by size of
company as well, but the largest identifiable influence was consistent variation among companies:
Some tended to be more adequately reserved than others over considerable periods of time, even tak-

ing into account all other impacts.

Methods Based on the Collective Risk Model

The basic idea of using the coliective risk model to measure variability in loss reserves, as out-
lined in Roger Hayne’s paper in the 1989 PCAS, is to estimate frequency and severity distributions
for outstanding claims, and combine these to get an aggregate loss distribution for those claims.

Hayne originally did this separately for reported and unreported claims.

A Method to Estimate Probability Levels for Loss Reserves, Roger M. Hayne

The earlier work by Hayne is expanded to include parameter uncertainty. This is broadly defined
to include not just uncertainty about the parameters of a given model, but also the variability that can
arise from using different modelling approaches. Significantly greater uncertainty in the reserves is
found when this is taken into account. Hayne presents a detailed illustration of his procedure using a

professional liability data set from the Berquist-Sherman 1975 PCAS paper and for an auto Hability
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data set from the Advanced Case Study of the 1992 CLRS. These present straightforward techniques
for estimating parameters of the claim count and severity distributions and require only a modest

amount of data. The severity distribution parameters here are determined somewhat judgmentally.

It should be noted that the use of individual claim information would produce superior parameter
estimates, although such information often is not available. It should also be noted that the selected
lognormal coefficients of variation appeared to be low for this line of business. (However, Hayne
notes that his example illustrates only one of many ways of selecting parameters and he provides
some reasoning for his parameter selections). The most innovative contribution of this paper is the
use of the results of different methods of estimating reserves to derive the mixing parameter for the
severity distribution. This allows the actuary to incorporate specification error into the estimation of
loss reserve variability. Once the claim count, severity, contagion and mixing parameters are esti-
mated, the Heckman-Meyers procedure is used to compute the aggregate probability distribution for

the loss reserves. Simulation could also be used to implement this approach.

A Note on Simulation of Claims Activity for Use in Aggregate Loss Distributions, Daniel K. Lyons

This paper suggests using severity distributions for both paid and case incurred losses at different
valuations and annual probabilities of claims moving from one severity class to another (a transition
matrix) to project claim movement over time. The severity distributions are incorporated into a simu-
lation which 1) simulates the number of claims for a year, 2) simulates the report lag for each claim,
3) simulates the movement in each claim’s value over time until an ultimate value is reached, and 4)
works backward from the ultimate value of the claims to simulate their paid value. By simulating
many years of data distributions of paid, incurred and outstanding losses can be produced. The proce-
dure described in the paper could be used to approximate the process which underlies loss develop-

ment when the losses are aggregated.

The author illustrates his method using severity distributions and transition matrices which have
been judgmentally selected; i.e., not based on real data. To actually apply this technique, one would
have to construct actual severity distributions and transition probabilities using techniques not de-

scribed in the paper. The author’s example applies to outstanding losses at the beginning of an acci-
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dent or policy period, before any losses have been reported. While he mentions that in real life re-
serving situations, the actuary would need to determine outstanding loss severity distributions on a

conditional basis, he does not describe how to do this.

Methods Based on Parametric Models of Development

The chain ladder method is characterized by having a separate level for each accident year and a
separate degree of development for each lag. Thus models that have a parameter for each accident
year and for each lag are regarded as statistical versions of the chain ladder. This can now be seen to
be somewhat of a misnomer, as the assumptions of the usual chain ladder, as outlined in the Mack
paper, are significantly different from these models. The logarithms of the losses in an incremental
claims triangle (paid in year, for example) may meet the assumptions of regression analysis, which

then can be used to estimate model parameters and provide variances.

Statistical Methods for the Chain Ladder Technique, Richard J. Verrall

This paper, which took first prize in the competition, gives a comprehensive presentation of the
use of regression models to estimate loss development. It also lays out an interesting approach to ad-
justing lognormal maximum likelihood estimators for bias, and shows how to construct some Bayes-
ian estimators relevant to the model. The paper does not note, however, that adjusting the MLE of
the lognormal mean for bias involves some controversy, with different authors advising upward or
downward or no adjustment. The Bayesian estimates discussed include estimation of runoff, esti-
mates for the analysis of variance model, and relation to credibility theory. Relations to the chain lad-

der method are also discussed, and an excellent list of references is provided.

Probabilistic Development Factor Models with Applications to Loss Reserve Variability, Predic-
tion Intervals and Risk Based Capital, Ben Zehnwirth

Loglinear versions of chain ladder, Cape Cod, and separation method ar all outlined. The paper,
which tied for second prize, also addresses models that allow for changing parameters over time or
smoothing of parameters to avoid multicollinearity. It contains a general discussion of statistical fore-
casting methods, and sufficient detail is given that many of the examples presented can be repro-

duced by the reader.
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While many of the assumptions made are explicitly listed, there are a number of assumptions
that are either unstated, or appear to be statements of fact. For example, in Section 5.0 there is a state-
ment that the logarithm of paid losses at the earliest stage of development has a normal distribution
with a mean o and variance o °. This is an assumption implicit in the main model here, but is not
necessarily true in general. The assumptions about inflation also need to be carefully evaluated. Infla-
tion is assumed to affect all payments in a given calendar year equally, but in fact losses at different

stages of settlement might be affected differently.

Even though the model assumptions may not apply for every data set, this paper gives a com-
prehensive discussion of methods for fitting a regression model to development data and the testing

of such a model for goodness of fit.

IBNR Reserve under a Loglinear Location-Scale Regression Model, Louis Doray

Most authors who use regression to model loss development assume that the initial data (incre-
mental paid losses for example) is lognormally distributed. They take the logarithm of the initial
data, and fit linear regression models to the logged data. The logged data is then normally distrib-
uted, and the error term (the difference between the fitted values and the logged data) is also nor-

mally distributed—hopefully with a reduced variance and zero mean.

The main thrust of this paper is to explore four possible distributions of the error term other than
the normal distribution. In each case it presents the mathematics needed and tests the model against a
common data set. Maximum likelihood estimation is used to estimate the regression coefficients. Be-
cause of the complexity of the various distributions used, and the need for various second deriva-
tives of the log-likelihood function, the use of a computer algebra system would help
implementation. Various issues regarding goodness of fit and bias of estimates are discussed. Possi-
ble bias of the maximum likelihood estimates is not discussed. The paper does suggest incorporating

interest rate risk in presenting interval estimates for discounted reserves.

A comparison of estimates made by a regression method to estimates made using the chain lad-

der method shows that if the regression model is correct, the chain ladder method underestimates re-
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serve needs. The correctness of the regression model is not verified, however. The issue of moving

back to estimates of the unlogged data is also not addressed.

A Generalized Framework for the Stochastic Loss Reserving, Changsoeb Joe Kim

This approach measures variability by using goodness of fit from time series (ARIMA) models.
It may, however, require a great deal of stability across accident years. The author uses a two dimen-
sional auto-regressive procedure to estimate future incremental payments on a loss development tri-
angle. The application of the procedure assumes that a constant auto-regressive parameter(s) applies
to all accident years (which appears to be reasonable) and a constant parameter(s) applies to all de-
velopment ages (which may not be reasonable). Thus, the payment at age 10 is assumed to be the
same proportion of the age nine payment as the payment at age two is of the age one payment. This
technique does not address the “tail” problem, or the estimation of payments at development ages
greater than that in the historical data. Because the number of observations in most triangles is rela-
tively small and time series techniques generally require a large number of points, the author uses
standard loss development factors to convert the triangle into a matrix and derive initial values for
the fitting process. Formulas presented for the n-year-ahead variance of the two dimensional auto-re-
gressive process can be used to compute confidence intervals, presumably by using the standard nor-
mal distribution, but this is not explicitly stated. (It should be noted that the formula given for the

one year ahead variance appears to actually be the formula for the two year ahead forecast variance).

Outstanding Issues

Several issues are still not addressed and could benefit from further research:

1. What techniques are appropriate for which situations and what kinds of data? For in-
stance the regression techniques seem to require relatively stable, homogenous data. The
development factor methods require enough observations in each column for a reason-
able estimate of the variance of factors in the column. The collective risk model methods
require estimates of claim count and severity parameters and these can best be derived
from individual claim data. When these parameters are selected based on aggregate data
or judgment, does the aggregate probability model reflect the additional uncertainty con-
tributed by these less rigorous parameter estimates?

2. More work is needed on the “tail” problem. How does the actuary quantify the variability
for development ages beyond the last observation in the data? The uncertainty associated
with the tail can be substantial.
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3. The impact of correlation needs further analysis. This includes correlation within the de-
velopment triangle, among lines of business, with inflation, and with interest rates, espe-
cially for discounted reserved.

4. How does the actuary realistically reflect the uncertainty in reserve estimates for compa-
nies or lines of business with little or no data, or with recent changes in the data? It is rea-
sonable to assume that the variability of such reserve estimates should be higher than for
a company or line of business with abundant data. What about when different data sets
are combined (company/industry, external indexes, etc.)?

5. What kind of testing is needed to truly validate the use of these models? Tests based on
the triangle and fitted data can invalidate models, but failure to invalidate does not neces-
sarily give much comfort for forecasting. An understanding of the assumptions used, and
reflecting on their reasonableness may always be necessary, regardless of the fit provided.

6. How can the regression models be enhanced to incorporate a finite probability of no
losses paid in a future period for given accident years? For small companies this is a real-
istic possibility, and should be reflected in prediction intervals.

Gary G. Venter
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MEASURING THE VARIABILITY

OF CHAIN LADDER RESERVE ESTIMATES

Thomas Mack, Munich Re

Abstract:

The variability of chain ladder reserve estimates is quantified
without assuming any specific claims amount distribution
function. This is done by establishing a formula for the so-
called standard error which is an estimate for the standard
deviation of the outstanding claims reserve. The information
necessary for this purpose is extracted only from the usual
chain ladder formulae. With the standard error as decisive tool
it is shown how a confidence interval for the outstanding claims
reserve and for the ultimate claims amount can be constructed.
Moreover, the analysis of the information extracted and of its
implications shows when it is appropriate to apply the chain
ladder method and when not.

Submitted to the 1993 CAS Prize Paper Competition
on ‘'Variability of Loss Reserves!'

Presented at the May, 1993 meeting of the Casualty Actuarial
Society.

Reproduction in whole or in part without acknowledgement to the
Casualty Actuarial Society is specifically prohibited.
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1. Introduction and Qverview

The chain ladder method is probably the most popular method for
estimating outstanding claims reserves. The main reason for this
is its simplicity and the fact that it is distribution-free,
i.e. that it seems to be based on almost no assumptions. In this
paper, it will be seen that this impression is wrong and that
the chain ladder algorithm rather has far-reaching implications.
These implications also allow it to measure the variability of
chain ladder reserve estimates. With the help of this measure it
is possible to construct a confidence interval for the estimated

ultimate claims amount and for the estimated reserves.

Such a confidence interval is of great interest for the
practitioner because the estimated ultimate claims amount can
never be an exact forecast of the true ultimate claims amount
and therefore a confidence interval is of much greater
information value. A confidence interval also automatically
allows the inclusion of business policy into the claims
reserving process by using a specific confidence probability.
Moreover, there are many other claims reserving procedures and
the results of all these procedures can vary widely. But with
the help of a confidence interval it can be seen whether the
difference between the results of the chain ladder method and

any other method is significant or not.

The paper is organized as follows: In Chapter 2 a first basic
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assumption underlying the chain ladder method is derived from
the formula used to estimate the ultimate claims amount. In
Chapter 3, the comparison of the age-to-age factor formula used
by the chain ladder method with other possibilities leads to a
second underlying assumption regarding the variance of the
claims amounts. Using both of these derived assumptions and a
third assumption on the independence of the accident years, it
is possible to calculate the so-called standard error of the
estimated ultimate claims amount. This is done in Chapter 4
where it is also shown that this standard error is the
appropriate measure of variability for the construction of a
confidence interval. Chapter 5 illustrates how any given run-off
triangle can be checked using some plots to ascertain whether
the assumptions mentioned can be considered to be met. If these
plots show that the assumptions do not seem to be met, the chain
ladder method should not be applied. In Chapter 6 all formulae
and instruments established including two statistical tests set
out in Appendices G and H are applied to a numerical example.
For the sake of comparison, the reserves and standard errors
according to a well-known claims reserving software package are
also quoted. Complete and detailed proofs of all results and

formulae are given in the Appendices A - F.

The proofs are not very short and take up about one fifth of the
paper. But the resulting formula (7) for the standard error is
very simple and can be applied directly after reading the basic

notations (1) and (2) in the first two paragraphs of the next
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chapter. In the numerical example, too, we could have applied
formula (7) for the standard error immediately after the
completion of the run-off triangle. But we prefer to first carry
through the analysis of whether the chain ladder assumptions are
met in this particular case as this analysis generally should be
made first. Because this analysis comprises many tables and
plots, the example takes up another two fifths of the paper

(including the tests in Appendices G and H).

2. Notatjons and First Analysis of the Chajin Ladder Method

Let Cix denote the accumulated total claims amount of accident

year i, 1 £ 1

IA

I, either paid or incurred up to development
year kX, 1 £ k £ I. The values of Cyx for i+k € I+1 are known to
us (run-off triangle) and we want to estimate the values of Cj
for i+k > I+1, in particular the ultimate claims amount C;; of
each accident year i = 2, ..., I. Then,

Ry = Ci1 = Ci,141-i1
is the outstanding claims reserve of accident year i as Ci, I+1-i

has already been paid or incurred up to now.

The chain ladder method consists of estimating the ultimate

claims amounts C;; by

A
("
A

(1) Cir = Ci,1+1-i"fr42-4"--+"L1-1 + 2 I,

where

105



I-k I-k

(2) £y = 51 Cy,k+1 / j§1 Cik 1<k < I-1,

J

are the so-called age-to-age factors.

This manner of projecting the known claims amount Ci,1+1-i to
the ultimate claims amount C;; uses for all accident years i 2
I+1-k the same factor fy, for the increase of the claims amount
from development year k to development year k+l1 although the
observed individual development factors Ci,k+1/Cik of the
accident years i < I-k are usually different from one another
and from fy. This means that each increase from C;, to ci,k+1 is
considered a random disturbance of an expected increase from Cj,
to Cyyfy where fy is an unknown 'true' factor of increase which
is the same for all accident years and which is estimated from

the available data by f,.

Consequently, if we imagine to be at the end of development year
k we have to consider Ci,k+1' «ser Cy1 as random variables
whereas the realizations of Ciq1s -+-4+ Cji are known to us and
are therefore no longer random variables but scalars. This means
that for the purposes of analysis every Cijx can be a random
variable or a scalar, depending on the development year at the
end of which we imagine to be but independently of whether Cj,
belongs to the known part i+k < I+1 of the run-off triangle or
not. When taking expected values or variances we therefore must
always also state the development year at the end of which we

imagine to be. This will be done by explicitly indicating those
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variables C;, whose values are assumed to be known. If nothing

is indicated all C;, are assumed to be unknown.

What we said above regarding the increase from Cix to Ci,k+1 can
now be formulated in stochastic terms as follows: The chain
ladder method assumes the existence of accident-year-independent
factors f,, ..., fy.; such that, given the development Cigs =rev
Cix: the realization of Ci,k+1 is ‘'close! to Cikfyr the latter

being the expected value of C; .., in its mathematical meaning,
i

i.e.
(3) E(Ci,kﬂ.lcil""'cik) =Ciifx » 1<1igI, 1x5k<I-l.
Here to the right of the '|' those C;, are listed which are

assumed to be known. Mathematically speaking, (3) is a
conditional expected value which is just the exact mathematical
formulation of the fact that we already know €31+ +++s Cyxs but
do not know Ci,k+1‘ The same notation is also used for variances
since they are specific expectations. The reader who is not
familiar with conditional expectations should not refrain from
further reading because this terminology is easily under-
standable and the usual rules for the calculation with expected
values alsc apply to conditional expected values. Any special

rule will be indicated wherever it is used.

We want to point out again that the equations (3) constitute an
assumption which is not imposed by us but rather implicitly
underlyies the chain ladder method. This is based on two aspects

of the basic chain ladder equation {1): One is the fact that (1)
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uses the same age-to-age factor fy for different accident years
i = I+i~-k, ..., I. Therefore equations (3) also postulate age-
to-age parameters f, which are the>same for all accident years.
The other is the fact that (1) uses only the most recent
observed value Cj 1,7_j as basis for the projection to ultimate
ignoring on the one hand all amounts Cj;,, ..., ci,I—i observed
earlier and on the other hand the fact that Ci,I+1—i could
sﬁbstantially deviate from its expected value. Note that it
would easily be possible to also project to ultimate the amounts
o

o] of the earlier development years with the help

iz omvr i, I-1
of the age-to-age factors £y, ..., fy_4 and to combine all these
projected amounts together with Ci,I+1-ifI+1-i""'£I-1 into a
common estimator for C,;. Moreover, it would also easily be
possible to use the values Cj,I+1-i of the earlier accident
years j < i as additional estimators for E(Ci,I+1—i) by
translating them into accident year i with the help of a measure
of volume for each accident year. These possibilities are all
ignored by the chain ladder method which uses Ci,I+1-i as the
only basis for the projection to ultimate. This means that the
chain ladder method implicitly must use an assumption which
states that the information contained in Ci,I+1—i cannot be
augmented by additionally using Ciqr conv ci,I—i or Cl,I+1-i'

ooy ci-l,I+1—i' This is very well reflected by the equations

(3).

Having now formulated this first assumption underlying the chain

ladder method we want to emphasize that this is a rather strong
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assumption which has important consequences and which cannot be
taken as met for every run-off triangle. Thus the widespread
impression the chain ladder method would work with almost no
agsumptions is not justified. In Chapter 5 we will elaborate on
the linearity constraint contained in assumption (3). But here
we want to point out another consequence of formula (3). We can
rewrite (3) into the form

B(Cy,k+1/Cik!CizreeorCix) = %k
because C;, is a scalar under the condition that we know Cj,,
cevr Cik- This form of (3) shows that the expected value of the
individual development factor ci,k+1/Cik equals f, irrespective
of the prior development Cj;, ..., Cjy and especially of the
foregoing development factor cik/ci,kvl' As is shown in Appendix
G, this implies that subsequent development factors Cik/ci,k—l
and ci,k+1/cik are uncorrelated. This means that after a rather
high value of Cik/ci,k-l the expected size of the next
development factor ci,k+1/cik is the same as after a rather low
value of cik/Ci,k—l' We therefore should not apply the chain
ladder method to a business where we usually observe a rather
small increase ci,k+1/cik if cik/ci,k-l is higher than in most
other accident years, and vice versa. Appendix G also contains a

test procedure to check this for a given run-off triangle.
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3. Analysis of the Age-to-Age Factor Formula: the Key to

Measuring the Variability

Because of the randomness of all realizations C;, we can not
infer the true values of the increase factors fl' sy fI-l from
the data. They only can be estimated and the chain ladder method
calculates estimators £, ooy fI-l according to formula (2).
Among the properties which a good estimator should have, one
prominent property is that the estimator should be unbiased,
i.e. that its expected value E(fy) (under the assumption that
the whole run-off triangle is not yet known) is equal to the
true value f,, i.e. that E(fy) = fk' Indeed, this is the case
here as is shown in Appendix A under the additional assumption
that

(4) the variables {Ciq1¢ --+r Cig1} and (cjl' ey CjI) of

different accident years 1 # j are independent.

Because the chain ladder method neither in (1) nor in (2) takes
into account any dependency between the accident years we can
conclude that the independence of the accident years is also an
implicit assumption of the chain ladder method. We will
therefore assume (4) for all further calculations. Assumption
(4), too, cannot be taken as being met for every run-off
triangle because certain calendar year effects (such as a major
change in claims handling or in case reserving or greater

changes in the inflation rate) can affect several accident years
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in the same way and can thus distort the independence. How such

a situation can be recognized is shown in Appendix H.

A closer look at formula (2) reveals that

I-k
z Gy
T I8 31 _
£ = J=1 - Izk cjk 'Cj,k+1
X o1x 3=1 I-k Cyx
Z Cs z Cs
j=1 ¥ j=1 9%

is a weighted average of the observed individual development

factors Cj,k+1/Cjk’ 1 < j £ I-k, where the weights are

proportional to Cjk' Like fy every individual development factor

n

Cj,k+1/cjk' 1 £ j £ I-k, is also an unbiased estimator of fx

because

E(cj'k+1/cjk) = E(E(cj,k+1/cjk|cjl,...,cjk))

E(E(C,x+11C410 - - - +Cy30) /Cy0)
E(Cyxfx/Cyx)

E(fy)

= fy .

Here equality (a) holds due to the iterative rule E(X)

(a)
(b)
(c)

(d)

E(E(X|Y)) for expectaticns, (b) holds because, given le to Cjk'

Cjk is, a scalar, {c) holds due to assumption (3) and (d) holds

because f, is a scalar. (When applying expectations iteratively,

e.g. E(E(X]Y)), one first takes the conditional expectation

E(X|Y) assuming Y being known and then averages over all

possible realizations of Y.)
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Therefore the question arises as to why the chain ladder method
uses just fy as estimator for fy and not the simple average
1 I-k ~

LA ¢4, x+1/C5x
of the observed development factors which alsoc would be an
unbiased estimator as is the case with any weighted average

I-k . I-k

gx = jzl Wik cj,k+1/cjk with jil Wik = 1

of the observed development factors. (Here, wjk must be a scalar

if le, ey Cjk are known.)

Here we recall one of the principles of the theory of point
estimation which states that among several unbiased estimators
preference should be given to the one with the smallest
variance, a principle which is easy to understand. We therefore
should choose the weights Wik in such a way that the variance of
gy is minimal. In Appendix B it is shown that this is the case

if and only if (for fixed k and all j)

Wik is inversely proportional to Var(cj,k+1/cjklcjl""'cjk)'

The fact that the chain ladder estimator f)y uses weights which
are proportional to cjk therefore means that Cjk is assumed to
be inversely proportional to Var(cj,k+1/cjk‘cj1'""cjk)' or
stated the other way around, that

Var(cj,k+1/cjk| Cypre+-iCyx) = akz/Cjk

with a proportionality constant ak2 which may depend on k but
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not on j and which must be non-negative because variances are
always non-negative. Since here Cjk is a scalar and because
generally Var(X/c) = Var(X)/c2 for any scalar c, we can state
the above proportionality condition alsoc in the form

(8)  Var(Cy y4ql€y1s++-sCyx) = cjkak2, 1<3<I,1<kz<I-1,

with unknown proportionality constants akz, 1 <k < I-1.

As it was the case with assumptions (3) and (4), assumption (5)
also has to be considered a basic condition implicitly
underlying the chain ladder method. Again, condition (5) cannot
a priori be assumed to be met for every run-off triangle. In
Chapter 5 we will show how to check a given triangle to see
whether (5) can be considered met or not. But before we turn to
the most important consequence of (5): Together with (3) and (4)
it namely enables us to quantify the uncertainty in the

estimation of Cy; by Cy3.

4. Quantifyin Varjability of the U te Claims Amount

The aim of the chain ladder method and of every claims reserving
method is the estimation of the ultimate claims amount C;y for
the accident years i = 2, ..., I. The chain ladder method does
this by formula (1}, i.e. by

Cir = Ci,141-i"Trer-4c- - fr-g -
This formula yields only a point estimate for Cj1 which will

normally turn out to be more or less wrong, i.e. there is only a
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very small probability for C;; being equal to C;r- This
probability is even zero if Cijy is considered to be a continuous
variable. We therefore want to know in addition if the estimator
Cir is at least on average equal to the mean of C;1 and how
large on average the error is. Precisely speaking we first would
like to have the expected values E(C4yy) and E(Cjy), 2 £ i < I,
being equal. In Appendix C it is shown that this is indeed the

case as a consequence of assumptions (3) and (4).

The second thing we want to know is the average distance between
the forecast C;; and the future realization Ci1- In Mathematical
Statistics it is common to measure such distances by the square
of the ordinary Euclidean distance ('quadratic loss function').
This means that one is interested in the size of the so-called
mean squared error

mse(Cyy) = E((Cj; = C31)2|D)
where D = { Cj; | itk < I+1 } is the set of all data observed so
far. It is important to realize that we have to calculate the
mean squared error on the condition of knowing all data observed
so far because we want to know the error due to future random-
ness only. If we calculated the unconditional error E(CiI'ciI)z'
which due to the iterative rule for expectations is equal to the
mean value E(E((Cjy - CiI)Z[D)) of the conditional mse over all
possible data sets D, we also would include all deviations from
the data observed so far which obviously makes no sense if we
want to establish a confidence interval for C;; on the basis of

the given particular run-off triangle D.
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The mean squared error is exactly the same concept which also
underlyies the notion of the variance

var(X) = E(X - E(X))2
of any random variable X. Var(X) measures the average distance

of X from its mean value E(X).

Due to the general rule E(X-c)2 = Var(X) + (E(X)-c)2 for any
scalar c we have

mse(Cjy) = Var(C;r|D) + ( E(Cyy|D) - €41 )2
because Cy; is a scalar under the condition that all data D are
known. This equation shows that the mse is the sum of the pure
future random error Var(cillD) and of the estimation error which
is measured by the squared deviation of the estimate Cy; from
its target E(ciIID). On the other hand, the mse does not take
into account any future changes in the underlying model, i.e.
future deviations from the assumptions (3), (4) and (5), an
extreme example of which was the emergence of asbestos.

Modelling such deviations is beyond the scope of this paper.

As is to be expected and can be seen in Appendix D, mse (Cy 1)
depends on the unknown model parameters fy and akz. We therefore
must develop an estimator for mse(Cjp) which can be calculated
from the known data D only. The square root of such an estimator
is usually called 'gtandard error' because it is an estimate of
the standard deviation of C;; in cases in which we have to

estimate the mean value, too. The standard error s'e'(cil) of
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Cir is at the same time the standard error s.e.(Ry) of the
reserve estimate
Ry = €41 ~ Ci,1+1-4
of the outstanding claims reserve
Ry = Ciy - Cj, 1414
because

mse(Rg) = E((Ry - Ry)2|D) = E((C43 - C;1)2|D) =

]

mse(cil)
and because the equality of the mean squared errors also implies
the equality of the standard errors. This means that

(6) s.e.(R;) = s.e.(Ciy7) -

The derivation of a formula for the standard error s.e.(ciI) of
Cjy turns out to be the most difficult part of this paper; it is

done in Appendix D. Fortunately, the resulting formula is

simple:
3 I-1 a2 1 1
(7) (s.e.(C4y))2% = Cyy p] —_—( — + —— )
k=I+1-i £,2 ¢ I-k
x ik
T Cyx
j=1
where
1 I~k Ci 1t
(8) ay? = L Cyx ( I35 fx )2, 1<k s I-2.
I-k-1 j=1 Cx

is an unbiased estimator of akz (the unbiasedness being shown in

Appendix E) and

cik = ci,I+l-i.fI+1-i."'.tk-1 , k > I+1-i,

are the amounts which are automatically obtained if the run-off
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triangle is completed step by step according to the chain ladder

method. In (7), for notational convenience we have also set

Ci,141-4 = Ci,1+1-4"

Formula (8) does not yield an estimator for a;_, because it is
not possible to estimate the two parameters fI-l and ar_q from
the single observation cl,I/C1,1-1 between development years I-1
and I. If f3_4 = 1 and if the claims development is believed to
be finished after I-1 years we can put @r.q = 0. If not, we
extrapolate the usually decreasing series @y, @y, ey Cp_g,
ay_, by one additional member, for instance by means of
loglinear regression {cf. the example in Chapter 6) or more
simply by requiring that

@y.3 / Gyep = @yopy [/ Spay
holds at least as long as ap_3 > ay_y. This last possibility

leads to

2 : 4 2 . 2 2
(9) @y.3 = min ( ay.a/a7.5, min(eay_3, Gy.5) ) .

We now want to establish a confidence interval for our target
variables C;; and R;. Because of the equation

Cir = Ci,142-4 * Ry
the ultimate claims amount C;1 consists of a known part Ci,I+1-i
and an unknown part Rj. This means that the probability
distribution function of Cyq (given the observations D which
include ci,I+1—i) is completely determined by that of Ry. We

therefore need to establish a confidence interval for Ry only

and can then simply shift it to a confidence interval for Cit-
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For this purpose we need to know the distribution function of
R;. Up to now we only have estimates R; and s.e.(Rj) for the
mean and the standard deviation of this distribution. If the
volume of the outstanding claims is large enough we can, due to
the central limit theorem, assume that this distribution
function is a Normal distribution with an expected value equal
to the point estimate given by R; and a standard deviation equal
to the standard error s.e.(Ry). A symmetric 95%-confidence

interval for R; is then given by

( Ri - 2'5.9.(Ri) , Ri + 2-s.e.(Ri) ).

But the symmetric Normal distribution may not be a goocd
approximation to the true distribution of R; if this latter
distribution is rather skewed. This will especially be the case
if s.e. (Ry) is greater than 50 % of Ry. This can also be seen at
the above Normal distribution confidence interval whose lower
limit then becomes negative even if a negative reserve is not

possible.

In this case it is recommended to use an approach based on the
Lognormal distribution. For this purpose we approximate the
unknown distribution of R; by a Lognormal distribution with
parameters f; and aiz such that mean values as well as variances
of both distributions are equal, i.e. such that

exp(p; + 032/2) = Ry ,

exp(2u; + 042) (exp(0;2)-1) = (s.e.(Ry))? .
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This leads to

042 = In(1 + (s.e.(Ry))2/R42) ,

(10)
Mj = In(Ry) - 04272 .

Now, if we want to estimate the 90th percentile of Ry, for
example, we proceed as follows. First we take the 90th
percentile of the Standard Normal distribution which is 1.28.
Then exp(u;+1.280;) with u; and ¢;2 according to (10) is the
90th percentile of the Lognormal distribution and therefore also
approximately of the distribution of R;. For instance, if
s.e.(R;) /Ry = 1, then 0;2 = In(2) and the 90th percentile is
exp(u; + 1.280;) = Ryexp(1.280; - 0;2/2) = Ryexp(.719) =
2.05°R;. If we had assumed that R; has approximately a Normal
distribution, we would have obtained in this case Ry +

1.28+s.e.(Ry) = 2.28'Rj as 90th percentile.

This may come as a surprise since we might have expected that
the 90th percentile of a Lognormal distribution always must be
higher than that of a Normal distribution with same mean and
variance. But there is no general rule, it depends on the
percentile chosen and on the size of the ratio s.e.(Rj)/Ry. The
Lognormal approximation only prevents a negative lower
confidence limit. In order to set a specific lower confidence
limit we choose a suitable percentile, for instance 10%, and
proceed analogously as with the 90% before. The question of
which confidence probability to choose has to be decided from a
business policy point of view. The value of 80% = 90% - 10%

taken here must be regarded merely as an example.
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We have now shown how to establish confidence limits for every
Ry and therefore also for every Cjy = Ci,I+1-i + Ry. We may also
be interested in having confidence limits for the overall
reserve

R=Ry, + ... + R,
and the question is whether, in order to estimate the variance
of R, we can simply add the squares (s.e.(Ri))2 of the
individual standard errors as would be the case with standard
deviations of independent variables. But unfortunately, whereas
the R;'s itself are independent, the estimators Ry are not
because they are all influenced by the same age-to-age factors
fx, i.e. the Ry's are positively correlated. In Appendix F it is
shown that the square of the standard error of the overall
reserve estimator

R=R2+...+RI
is given by

(11) (s.e.(R))2 =

I I I-1 2ak2/tk2
= = (s.e.(Ry))2 + C47( I Cyx) z _—
i=2 j=i+1 k=I+1-1i I-k
Z Chyg
n=1

Formula (11) can be used to establish a confidence interval for
the overall reserve amount R in quite the same way as it was
done before for R;. Before giving a full example of the
calculation of the standard error, we will deal in the next

chapter with the problem of how to decide for a given run-off
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triangle whether the chain ladder assumptions (3) and (5) are

met or not.

5. Checking the Chain Ladder Assumptions Against the Data

As has been pointed out before, the three basic implicit chain

ladder assumptions

(3) E(Cj, k+11Ci1s++0Cix) = Cixfy o
(4) Independence of accident years ,
(5) Var(Cy x41lCiye-+sCix) = Cixayx?

are not met in every case. In this chapter we will indicate how
these assumptions can be checked for a given run-off triangle.
We have already mentioned in Chapter 3 that Appendix H develops
a test for calendar year influences which may violate (4). We
therefore can concentrate in the following on assumptions (3)

and (5).

First, we look at the equations (3) for an arbitrary but fixed k
and for i = 1, ..., I. There, the values of Cik, 1 = i <1, are
to be considered as given non-random values and equations (3)
can be interpreted as an ordinary regression model of the type
¥i =c + xb + €5, 1<ic<iI,
where ¢ and b are the regression coefficients and €; the error
term with E(€y) = 0, i.e. E(Yy) = c + x;b. In our special case,
we have ¢ = 0, b = fk and we have observations of the

independent variable ¥y = ci,k+1 at the points %x; = Ciy for i =
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1, ..., I-k. Therefore, we can estimate the regression
coefficient b = £y by the usual least squares method
I-k

- 2
2 (C4 x+1 ~ Cixfy)
1=1

minimum .

If the derivative of the left hand side with respect to f) is
set to 0 we obtain for the minimizing parameter f, the solution
I-k I-k
(12)  fxo = I CixCj y41 / I Cix? -
1=1 i=1
This is not the same estimator for f, as according to the chain

ladder formula (2). We therefore have used an additional index

'0' at this new estimator for fy. We can rewrite fyo as

- ., 2 .

I-k Cjx Ci, k+1
f = Z .
kO X

i=1 I-k , Cix
.2 clk
i=1

which shows that fi, is the Cikz-weighted average of the
individual development factors C; kx+1/Cix+ Whereas the chain
ladder estimator fy is the C;,-weighted average. In Chapter 3 we
saw that these weights are inversely proportional to the
underlying variances var(ci,k+1/cik|cil'""Cik)'
Correspondingly, the estimator fyo assumes
Var(ci,k+1/ciklcilf'"'Cik) being proportional to 1/C;,2,
or equivalently
Var(ci,k+1lcill""cik) being proportional to 1
which means that Var(Ci,k+1|Ci1,...,Cik) is the same for all
observations i = 1, ..., I~k. This is not in agreement with the

chain ladder assumption (5).
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Here we remember that indeed the least squares method implicitly
assumes equal variances Var(¥;) = Var(e;) = 02 for all i. If
this assumption is not met, i.e. if the variances Var(Y;) =
Var(e;) depend on i, one should use a weighted least squares
approach which consists of minimizing the weighted sum of
squares

I
E wi(Yi - Cc - le)z

i=1

where the weights w; are in inverse proportion to var(¥;).
Therefore, in order to be in agreement with the chain ladder
variance assumption (5), we should use regression weights wi
which are proportional to 1/Cix (more precisely to 1/(Cikak2),
but akz can be amalgamated with the proportionality constant
because k is fixed). Then minimizing

I-k 2

iZ, Gl T Gkt ® 7 Cax
with respect to fx yields indeed

I-k I-k
fx1 = 121 Ci, k1 / 121 Cix

which is identical to the usual chain ladder age-to-age factor

fk.

It is tempting to try another set of weights, namely 1/Cik2

because then the weighted sum of squares becomes
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I-k 2 2 I-k
Z Cike - Cixf)? /ol = 3

C.
i,k+1
(—— -2 .
1 cik
Here the minimizing procedure yields
1 I-k C;
i,k+1
(13) fo = — = ———,
I-k i=1 clk
which is the ordinary unweighted average of the development
factors. The variance assumption corresponding to the weights
used is
Var(ci,k+1lci1""'cik) being proportional to Cj?

or equivalently

Var(ci,k+1/cik|ci1""'cik) being proportional to 1.

The benefit of transforming the estimation of the age-to-age
factors into the regression framework is the fact that the usual
regression analysis instruments are now available to check the
underlying assumptions, especially the linearity and the
variance assumption. This check is usually done by carefully

inspecting plots of the data and of the residuals:

First, we plot Ci,k+1 against Cixr i=1, ..., I-k, in order to
see if we really have an approximately linear relationship
around a straight line through the origin with slope fy = fy,.
Second, if linearity seems acceptable, we plot the weighted
residuals

(Ci,k+1 ~ Cikfx) / YCix » 1< i < Ik,
(whose squares have been minimized) against Cjy in order to see

if the employed variance assumption really leads to a plot in

which the residuals do not show any specific trend but appear
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purely random. It is recommended to compare all three residual
plots (for i = 1, ..., I-k)

Plot O: ci,k+1 = Cikfxo against Cix «

Plot 1: (Cj 41 - Cixfx1)/VCix against Cyy ,

Plot 2: (Ci,k+1 = Cixfxz)/Cyx 2against Cyp
and to find out which one shows the most random behaviour. All
this should be done for every development year k for which we
have sufficient data points, say at least 6, i.e. for k < I-6.
Some experience with least squares residual plots is useful,
especially because in our case we have only very few data
points. Consequently, it is not always easy to decide whether a
pattern in the residuals is systematic or random. However, if
Plot 1 exhibits a nonrandom pattern, and either Plot 0 or Plot 2
does not, and if this holds true for several values of k, we
should seriously consider replacing the chain ladder age-to-age
factors fy, = £y with f,, or f,, respectively. The following

numerical example will clarify the situation a bit more.

6. Numerical Example

The data for the following example are taken from the
'Historical Loss Development Study', 1991 Edition, published by
the Reinsurance Association of America (RAA). There, we find on

page 96 the following run-off triangle of Automatic Facultative
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business in General Liability (excluding Asbestos &

Environmental) :

I G Gz Ci3 Cig Cis Cis Ci7 Cia Cio  Cio

| so02 8269 10907 11805 13539 16181 18009 18608 18662 18834
| 106 4285 5396 10666 13782 15599 15496 16169 16704
| 3410 8992 13873 16141 18735 22214 22863 23466
| 5655 11555 15766 21266 23425 26083 27067
i=5 | 1092 9565 15836 22169 25955 26180
!
I
|
[
!

i=6 1513 445 11702 12935 15852
i=7 557 4020 10946 12314

i=8 1351 6947 13112

i=¢ 3133 5395

i=10 2063

The above figures are cumulative incurred case losses in $ 1000.
We have taken the accident years from 1981 (i=1) to 1990 (i=10)
which is enough for the sake of example but does not mean that
we believe to have reached the ultimate claims amount after 10

years of development.

We first calculate the age-to-age factors £ = f according to
r

formula (2). The result is shown in the following table together

with the alternative factors f, according to (12) and fyo

according to (13):

| k=t k=2 k=3 k= k=5 k=6 k=7 k=8 k=9
|
!

fro | 2.217 1569 1.261 1162 1.100  1.041 1.032 1,016 1.009
|

frig | 2,999 1626 1277 1,972 1113 1,062 1.033 1.017 1,009
|

frz | 8.206 1.696 1.315 1,183  1.127  1.043 1.03% 1.018 1.009
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If one has the run-off triangle on a personal computer it is’
very easy to produce the plots recommended in Chapter 5 because
most spreadsheet programs have the facility of plotting X-Y
graphs. For every kK = 1, ..., 8 we make a plot of the amounts
Ci,k+1 (y-axis) of development year k+l1 against the amounts Cjy
{x-axis) of development year k for i =1, ..., 10-k, and draw a
straight line through the origin with slope f, ;. The plots for k
= 1 to 8 are shown in the upper graphs of Figures 1 to 8,
respectively. (All figures are to be found at the end of the
paper after the appendices.) The number above each point mark
indicates the corresponding accident year. (Note that the point
mark at the upper or right hand border line of each graph does
not belong to the plotted points (Cj,, Ci,k+1)' it has only been
used to draw the regression line.) In the lower graph of each of
the Figures 1 to 8 the corresponding weighted residuals

(Ci,k+1 - Cik)ﬁ/cik are plotted against Ciy for i=1,..., 10-k.

The two plots for k = 1 (Figure 1) clearly show that the
regression line does not capture the direction of the data
points very well. The line should preferably have a positive
intercept on the y-axis and a flatter slope. However, even then
we would have a high dispersion. Using the line through the
origin we will probably underestimate any future C;, if C;, is
less than 2000 and will overestimate it if C;, is more than
4000. Fortunately, in the one relevant case i = 10 we have C10,1

= 2063 which means that the resulting forecast Ci0.2 = €10,1%2 =
! 1
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2063:2.999 = 6187 is within the bulk of the data points plotted.
In any case, Figure 1 shows that any forecast of 010’2 is
associated with a high uncertainty of about +3000 or almost
+50% of an average-sized Ci,2 which subsequently is even
enlarged when extrapolating to ultimate. If in a future accident
year we have a value Cj, outside the interval (2000, 4000) it is
reasonable to introduce an additional parameter by fitting a
regression line with positive intercept to the data and using it
for the projection to C;,. Such a procedure of employing an
additional parameter is acceptable between the first two
development years in which we have the highest number of data

points of all years.

The two plots for k = 2 (Figure 2) are more satisfactory. The
data show a clear trend along the regression line and quite
random residuals. The same holds for the two plots for k = 4
(Figure 4). In addition, for both k = 2 and k = 4 a weighted
linear regression including a parameter for intercept would
yield a value of the intercept which is not significantly
different from zero. The plots for k = 3 (Figure 3) seem to show
a curvature to the left but because of the few data points we
can hope that this is incidental. Moreover, the plots for k = 5
have a certain curvature to the right such that we can hope that
the two curvatures offset each other. The plots for k = 6, 7 and
8 are quite satisfactory. The trends in the residuals for k = 7

and 8 have no significance in view of the very few data points.
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We need not to look at the regression lines with slopes f., or
fy, as these slopes are very close to fk (except for k=1). But
we should look at the corresponding plots of weighted residuals
in order to see whether they appear more satisfactory than the
previous ones. (Note that due to the different weights the
residuals will be different even if the slopes are equal.) The
residual plots for fy, and k = 1 to 4 are shown in Figures 9 and
10. Those for fy, and k = 1 to 4 are shown in Figures 11 and 12.
In the residual plot for fl,o (Figure 9, upper graph) the point
furthest to the left is not an outlier as it is in the plots for
f1,1 = fl (Figur 1, lower graph) and f1,2 (Figure 11, upper
graph). But with all three residual plots for k=1 the main
problem is the missing intercept of the regression line which
leads to a decreasing trend in the residuals. Therefore the
improvement of the outlier is of secondary importance. For k = 2
the three residuals plots do not show any major differences
between each other. The same holds for k = 3 and 4. The residual
plots for k = 5 to 8 are not important because of the small
number of data points. Altogether, we decide to keep the usual
chain ladder method, i.e. the age-to-age factors f) = fk,l'
because the alternatives fk,O or fk,z do not lead to a clear

improvement.
Next, we can carry through the tests for calendar year

influences (see Appendix H) and for correlations between

subsequent development factors (see Appendix G). For our example
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neither test leads to a rejection of the underlying assumption

as is shown in the appendices mentioned.

Having now finished all preliminary analyses we calculate the
estimated ultimate claims amounts Ci1 according to formula (1),
the reserves Ry = Cyp - ci,I+1—i and its standard errors (7).
For the standard errors we need the estimated values of akz

which according to formula (8) are given by

K 1 2 3 4 5 6 7 8 9

akz 27883 1109 691 61.2 119 40.8 1.34 7.88

A plot of ln(akz) against k is given in Figure 13 and shows that
there indeed seems to be a linear relationship which can be used
to extrapolate ln(ag2). This yields ag2 = exp(-.44) = .64. But
we use formula (9) which is more easily programmable and in the
present case is a bit more on the safe side: it leads to a,z =

1.34. Using formula (11) for s.e.(R) as well we finally obtain

ci,lo Ry s.e(ci'lc) = s.e.(Ri) s.e. (Ry)/R}
i=2 16858 154 206 134 %
i=3 24083 617 623 101 %
i=4 28703 1636 747 46 %
i=5 28927 2747 1469 53 %
i=6 19501 3649 2002 55 %
i=7 17749 5435 2209 41 %
i=8 24019 10907 5358 49 %
i=9 16045 10650 6333 59 %
i=10 18402 16339 24566 150 %
Overall 52135 26909 52 %
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{(The numbers in the 'Overall'~-row are R, s.e.(R} and s.e.(R)/R.)
For i = 2, 3 and 10 the percentage standard error (last column)
is more than 100% of the estimated reserve Ry. For i = 2 and 3
this is due to the small amount of the corresponding reserve and
is not important because the absolute amounts of the standard
errors are rather small. But the standard error of 150 % for the
most recent accident year i = 10 might lead to some concern in
practice. The main reason for this high standard error is the
high uncertainty of forecasting next year's value Ci0,2 3s was
seen when examining the plot of C;, against C;;. Thus, one year
later we will very likely be able to give a much more precise

forecast of clO,lO'

Because all standard errors are close to or above 50 % we use
the Lognormal distribution in all years for the calculation of
confidence intervals. We first calculate the upper 90%-
confidence limit (or with any other chosen percentage) for the
overall outstanding claims reserve R. Denoting by u and o2 the
parameters of the Lognormal distribution approximating the
distribution of R and using s.e.(R)/R = .52 we have 02 = ,236
(cf. (10)) and, in the same way as in Chapter 4, the 9%0th
percentile is exp(p + 1.280) = Reexp(l1.280-02/2) = 1.655:R =
86298. Now we allocate this overall amount to the accident years
i=2,..., 10 in such a way that we reach the same level of
confidence for every accident year. Each level of confidence

corresponds to a certain percentile t of the Standard Normal
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distribution and - according to Chapter 4 - the corresponding
percentile of the distribution of Ry is Rjexp(to; - °i2/2) with
aiz = 1ln(1 + (s.e.(Ri))z/Riz). We therefore only have to choose
t in such a way that

: 2

iiz Ri-exp(tai - 0;%/2) = 86298 .

This can easily be solved with the help of spreadsheet software
(e.g. by trial and error) and yields t = 1.13208 which

corresponds to the 87th percentile per accident year and leads

to the following distribution of the overall amount 86298:

upper confidence limit

Ry s.e. (Ry) /Ry 032 Ryexp(to;-0;2/2)
i=2 154 1.34 1.028 290
i=3 617 1.01 .703 1122
i=4 1636 .46 .189 2436
i=5 2747 .53 .252 4274
i=6 3649 .55 .263 5718
i=7 5435 .41 .153 7839
i=8 10907 .49 .216 16571
i=9 10650 .59 .303 17066
i=10 16339 1.50 1.182 30981
Total 52135 86298

In order to arrive at the lower confidence limits we proceed
completely analogously. The 10th percentile, for instance, of
the total outstanding claims amount is R-exp(-1.280-02/2) =
.477-R = 24871. The distribution of this amount over the

individual accident years is made as before and leads to a value
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of t = ~.8211 which corresponds to the 21st percentile. This
means that a 87% -~ 21% = 66% confidence interval for each
accident year leads to a 90% - 10% = 80% confidence interval for
the overall reserve amount. In the following table, the
confidence intervals thus obtained for R; are already shifted
(by adding ci,I+1-i) to confidence intervals for the ultimate
claims amounts C;; (for instance, the upper limit 16994 for i=2
has been obtained by adding C,9 = 16704 and 290 from the

preceding table):

confidence intervals

Ci,10 for 80% prob. overall empirical limits
i= 16858 ( 16744 , 16994 ) ( 16858 , 16858 )
i=3 24083 ( 23684 , 24588 ) ( 23751 , 24466 )
i=4 28703 ( 28108 , 29503 ) ( 28118 , 29446 )
i=5 28927 { 27784 , 30454 ) ( 27017 , 31699 )
i=6 19501 ( 17952 , 21570 ) { 16501 , 22939 )
i=7 17749 { 15966 , 20153 ) { 14119 , 23025 )
i=8 24019 ( 19795 , 29683 ) ( 16272 , 48462 )
i=9 16045 ( 11221 , 22461 ) { 8431 , 54294 )
i=10 18402 ( 5769 , 33044 ) { 5319 , 839271 )

The column "empirical limits" contains the minimum and maximum
size of the ultimate claims amount resulting if in formula (1)
each age-to-age factor fy is replaced with the minimum (or

maximum) individual development factor observed so far. These

factors are defined by

fx,min = min { € }43/Cix | 1 £ i 5 Ik}

fy max = Max { Cf y41/Cjy | 1 <4 5 I-k}

and can be taken from the table of all development factors which
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can be found in Appendices G and H. They are

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

1.650 1.259 1.082 1.102 1.009 %93 1.026 1.003 1.009

fy max | %0.425 2.723  1.977 1.292 1.195 1.113  1.043  1.033  1.009
‘

In comparison with the confidence intervals, these empirical
limits are narrower in the earlier accident years i < 4 and
wider in the more recent accident years i > 5. This was to be
expected because the small number of development factors
observed between the late development years only leads to a
rather small variation between the minimum and maximum factors.
Therefore these empirical limits correspond to a confidence
probability which is rather small in the early accident years
and becomes larger and larger towards the recent accident years.
Thus, this empirical approach to establishing confidence limits

does not seem to be reasonable.

If we used the Normal distribution instead of the Lognormal we
had obtained a 90th percentile of R + 1.28+R-(s.e.(R)/R) =
1.661°R (which is almost the same as the 1.655:'R with the
Lognormal) and a 10th percentile of R - 1.28-R+(s.e.(R)/R) =
.34*R (which is lower than the .477-R with the Lognormal). Also,

the allocation to the accident years would be different.

Finally, we compare the standard errors obtained to the output

of the claims reserving software package ICRFS by Ben Zehnwirth.
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This package is a modelling framework in which the user can
specify his own model within a large class of models. But it
also contains some predefined models, inter alia also a ‘'chain
ladder model'. But this is not the usual chain ladder method,
instead, it is a loglinearized approximation of it. Therefore,
the estimates of the oustanding claims amounts differ from those
obtained here with the usual chain ladder method. Moreover, it
works with the logarithms of the incremental amounts Ci,k+1'Cik
and one must therefore eliminate the negative increment Cy 9™
Cz,s' In addition, c2’1 was identified as an outlier and was
eliminated. Then the ICRFS results were quite similar to the

chain ladder results as can be seen in the following table:

est. outst. claims amount Ry standard error

chain ladder ICRFS chain ladder ICRFS
i=2 154 394 206 572
i=3 617 825 623 786
i=4 1636 2211 747 1523
i=5 2747 2743 1469 1724
i=6 3649 4092 2002 2383
i=7 5435 5071 2209 2972
i=8 10907 11899 5358 6892
i=9 10650 14569 6333 9689
i=10 16339 25424 24566 23160
Overall 52135 67228 26909 28414

Even though the reserves Ry for i=9 and i=10 as well as the
overall reserve R differ considerably they are all within one
standard error and therefore not significantly different. But it

should be remarked that this manner of using ICRFS is not
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intended by Zehnwirth because any initial model should be
further adjusted according to the indications and plots given by
the program. In this particular case there were strong
indications for developing the model further but then one would

have to give up the 'chain ladder model’'.

7. Final Remark

This paper develops a rather complete methodology of how to
attack the claims reserving task in a statistically sound manner
on the basis of the well-known and simple chain ladder method.
However, the well-known weak points of the chain ladder method
should not be concealed: These are the fact that the estimators
of the last two or three factors £1, £1.1, fI-2 rely on very few
observations and the fact that the known claims amount Cp, of
the last accident year (sometimes CI—1,2' too) forms a very
uncertain basis for the projection to ultimate. This is most
clearly seen if Cry happens to be 0: Then we have Cir = 0, Ry =
0 and s.e.(Ry) = 0 which obiously makes no sense. (Note that
this weakness often can be overcome by translating and mixing
the amounts C;, of earlier accident years i < I into accident
year I with the help of a measure of volume for each accident

year.)

Thus, even if the statistical instruments developed do not

reject the applicability of the chain ladder method, the result
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must be judged by an actuary and/or underwriter who knows the
business under consideration. Even then, unexpected future
changes can make all estimations obsolete. But for the many
normal cases it is good to have a sound and simple method.
Simple methods have the disadvantage of not capturing all
aspects of reality but have the advantage that the user is in
position to know exactly how the method works and where its
weaknesses are. Moreover, a simple method can be explained to
non-actuaries in more detail. These are invaluable advantages

simple models over more sophisticated ones.
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Appendix A: Unbiasedness of Age-to-Age Factors

Proposition: Under the assumptions

(3) There are unknown constants fi, ..., fy.j; with
E(Ci,k+1[Ci1,---,Cix) = Cixfk, 1<i<I, 15ks<I-1.

(4) The variables {Cjj;, ..., Cjr} and {C§1s +-+, Cy1} oOf

different accident years i # j are independent.

the age-to-age factors f3, ..., f1-3 defined by
I-k I-k

(2) fx = & Cy,x+1/ % Cjk , 1 5k g I-1,
1=1 J=1

are unbiased, i.e. we have E(fx) = fx, 1 < k < I-1.

Proof: Because of the iterative rule for expectations we have
(A1) E(fx) = E(E(fx|Bx))
for any set Bk of variables Cjj assumed to be known. We take
By = { Cij | i+3 s 1+1, § s x } , 1 <k <€ I-1.

According to the definition (2) of fx and because Cik, 1 < j <
I-k, is contained in Bk and therefore has to be treated as
scalar, we have

I-k I-k
(A2)  E(fx|Bx) = T E(Cj,k+1|Bx) / T Cjk -

=1 J=1
Because of the independence assumption (4) conditions relating
to accident years other than that of Cj, x+1 can be omitted, i.e.
we get
(A3)  E(Cj,k+1[Bk) = E(C3y,k+1/Cj1,---,Cjk) = Cyxfx

using assumption (3) as well. Inserting (A3) into (A2) yields
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k I-k
cjkfk / 'Z Cik = fx -
1 J=1

I_

(a4)  E(fx|Bx) = I

Finally, (Al) and (A4) yield
E(fx) = E(fx) = fx

because fx is a scalar.
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Appendix B: Minimizing the Variance of Independent Estimators

Proposition: Let T3, ..., Tr be independent unbiased estimators
of a parameter t, i.e. with

E(T§) =t , 1<i

A
A

I,

then the variance of a linear combination

(o)

T = 2 wiTj
i=1

under the constraint

(B1) wi =1

1

WM

i
(which guarantees E(T) = t) is minimal iff the coefficients wj
are inversely proportional to Var(T;), i.e. iff

wi = ¢/Var(Ti} , 1 <1< I,

Proof: We have to minimize

I

var(T) = Z wizvar(Ti)

i=1
(due to the independence of T;, ..., Ty) with respect to wj
under the constraint (Bl). A necessary condition for an extremum
is that the derivatives of the Lagrangian are zero, i.e. that

I I

(B2) — ( T wi®var(Ti) +A1 ~-Twj)) =0, 1
dwy i=1 i=1

IA
-
IA

I,

with a constant multiplier A whose value can be determined by
additionally using (Bl). (B2} yields
2wivVar(Ti) = A =0

or
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wi = A/ (2-Var(Ti)) .
These weights wj indeed lead to a minimum as can be seen by
calculating the extremal value of Var(T) and applying Schwarz's

inequality.

Corrollary: In the chain ladder case we have estimators T; =

Ci,k+1/Cik, 1 < i < I-k, for fx where the variables of the set

I-k

Ag = { Ci1, -+-, Cix }
=1

[ S

of the corresponding accident years i =1, ..., I~k up to
development year kX are considered to be given. We therefore want
to minimize the conditional variance
I-k
Var( T wiTj|Ax) .
1=1
From the above proof it is clear that the minimizing weights
should be inversely proportional to Var(Tj|Ax). Because of the
independence (4) of the accident years, conditions relating to
accident years other than that of Tj = Cj k+1/Cik can be
omitted. We therefore have
Var(Tj|Ak) = Var(Cj,k+1/Cik|Ci1,--+,Cik)
and arrive at the result that

the minimizing weights should be

inversely proportional to Var(Cj, x+1/Cik|Cii,---,Cik)-
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Appendix C: Unbiasedness_of the Estimated Ultimate Claims Amount

Proposition: Under the assumptions

{3) There are unknown constants £;, ..., fy.1 with
E(Cj,k+1/Ci1,---,Cik) = Cixfk, 1<is<I, 1<k¢«<I-l.

(4) The variables {Cjj, ..., Cjr} and {C4y1, ..., C4yr} of
different accident years i # j are independent.

the expected values of the estimator

(1) Ci1 = Ci,1+1-ifi41-i"---"f1-1

for the ultimate claims amount and of the true ultimate claims

amount Cjt are equal, i.e. we have E(Cjy) = E(Cir), 2 £ i 5 I.

Proof: We first show that the age-to-age factors fyx are
uncorrelated. With the same set
Bx = { Cij | i+ = 1+1, 3 <k } , 1 <kzx< I-1,

of variables assumed to be known as in Appendix A we have for J

< k
E(f4fx) = E(E(f£5fx|Bx)) ()
= E(f4E(fx|Bx)) (b)
= E(f4£x) (e)
= E(f§)fx (d)
= £yfx . (e

Here (a) holds because of the iterative rule for expectations,
(b) holds because 4 is a scalar for Bk given and for j < k, (c)
holds due to (A4), (d) holds because fx is a scalar and (e) was

shown in Appendix A.
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This result can easily be extended to arbitrary products of
different fx's, i.e. we have

(C1) E(fre1-i----°fx-1) = £i47-4*+..f1-1 .

This yields

[l

E{Ci1) E(E(Cir|Ci1,s.--,Ci, 1+1~1)) (a)
= E(E(Cj,1+1-1fT42~4i"--- f1-2{Ci1,.-+,Ci,1+1-1)) (D)

= E(Ci,1+1~iB(fr42~i-++f1-2|Ci1s.--,Ci, T41-1)) (€)

= E(Cj,1+1-iE{fI41-i"-. - f1-1)) (d)
= E(Cj,14+1-1i) ‘E(fr41-4-----f1-1) (e)
= E(Ci,T+1-1) "fr+1~j* .- f1-1 . ()

Here (a) holds because of the iterative rule for expectations,
(b) holds because of the definition (1) of Ci1, (c) holds
because Ci,I+1-i is a scalar under the stated condition, (d)
holds because conditions which are independent from the
conditioned variable f141-i°...'f3-1 can be omitted (observe
assumption (4) and the fact that f143-4, ..., f1r-1 only depend
on variables of accident years < i), (e) holds because E(f141-

i*+.."fr.1) is a scalar and (f) holds because of (Cl1).

Finally, repeated application of the iterative rule for
expectations and of assumption (3) yields for the expected value

of the true reserve Cjp

E(Cin)

E(E(Ci1|Ci1/+--+Ci,1-1))
= E(Cj,1-1f1-1)

= E(Ci,r-1)f1-1

E(E(Ci,1-1/Ci1/+++,C1-2))f1-2
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E(Ci,1-2f1-2)f1-1
E(Ci,1-2)f1-2f1-1

etc,

E(Ci, 1+1-1) f1+1-4i°+- - f1-1

E(Cir) -



Appendix D: Calculation of the Standard Error of Cjr

Proposition: Under the assumptions

(3) There are unknown constants £y, ..., fy-1 with
E(Cj,k+1/Ci1,-+-,Cik) = Cikfx, 1sis<I, 15ksgI-1.

(4) The variables {Ci{;, ..., Cjir} and {Cy1r oo Cyr1} of
different accident years i # j are independent.

(5) There are unknown constants @3, ..., @y.; with
Var(Ci,k+1/Ci1,-+-,Cik) = Cikox®, 1<isI, 1<ksI-L.

the standard error s.e.(Cjy) of the estimated ultimate claims

amount €41 = Cj, I+1-ifr+1-i'.-.*f1-1 is given by the formula

I-1  ax? 1 1

2
(sce.(cyp))?®=¢€i1 T —5 (——+—)
k=I+1-i fy cix I-k

where Cijx = Cj, 1+1-ifI+1-i°°"fx-1 , k > I+1-i, are the estimated

values of the future Cjx and Cj, 741~ = Ci,I+1-i-

Proof: As stated in Chapter 4, the standard error is the square
root of an estimator of mse(Cjy) and we have also seen that
(D1) mse(Ciy) = Var(Ciz|D) + (E(cir|p) - cin? .
In the following, we use the abbreviations

Ei(X) = E(X|Ci1, .-+, Ci,I+1-i)

Varj(X) = Var(X|Ci1, ..., Ci,I+1-1) -
Because of the independence of the accident years we can omit in
(D1) that part of the condition D = { Cjx | i+k < I+1 } which is
independent from Cjy, i.e. we can write

(D2) mse(Ciy) = Varj(Ciy) + (Ei(Cir) - €ir)? .
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We first consider Varj(Ciy). Because of the general rule Var(X)
= E(x%) - (E(X))2 we have

(D3)  Vari(Cir) = Ei(Cir®) - (Ei(cip))? .

For the calculation of Ej(Cjy) we use the fact that

for k 2 I+1-i

(D4)  Ei(Ci,x+1)

[

Ej (E(Ci,k+1]Ci1, ++++ Cix))
Ej (Cixfxk)

Ej (Cix)fx -

Here, we have used the iterative rule for expectations in its
general form E(X|2) = E(E(X|Y)lz) for (Y} O {2} (mostly we have
{Z} = &) . By successively applying (D4) we obtain for k 2 I+1-i
{(DS)  Ei{Ci,k+1) = Ei(Ci, 1+1-i)fr+1-i".--°Tx

= Ci, 1+1-ifr+1-i--.fx

because Cj, r+1-i is a scalar under the condition 'j'.

For the calculation of the first term Ei(CiIz) of (D3) we use

the fact that for k 2 I+1-i

(D6)  Ej(Ci,k+1%) = Ei(E(Ci,k+1%[Ci1s +--/ Cik) (a)
= Ej( Var(Cj k+1/Ci1, ..., Cik) + (b)

+ (E(Ci,k+11Ci1s «++ cix))?)
= Ei( Cikax® + (Cikfx)? ) ()

= Ej(Cix)ax® + Ej(Cik?)fx? -
Here, (a) holds due to the iterative rule for expectations, (b}
due to the rule E(XZ) = Var(X) + (E(X))2 and (c) holds due to
(3) and (5).
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Now, we apply (D6) and (D5) successively to get

(D7)  Ej(Cijr?) = Ei(Ci,I-l)aI-12 + Ei(ci,I-lz)fI-lz (D8)
= Ci,1+1-1f1+1-1"'fI-201-12 + (D3)
+ Ei(ci,x-z)a1-22f1-12 + (D6)

. 2
+ Ei(cl,I-Zz)fI'Z £1-12

- o 2
= Cj,1+1-1f141-1""fI-207-1° +

+ Ci,I+1-1fI+1-l"'fI-3“I-22fI-12 + (D5)
+ Ei(Ci,1-3)¢1-32f1-22f1-12 + (Ds6)
+ Ei(ci,I-32)fI-32fI—22fI-12
= etc.
It 2 2 2
= Ci,1+1-1 T fren-icccfr-10k“fr+1”c o f1-1
k=I+1-1

2 ,2 2
+ Ci,1+1-1“fr41-4%"-+ . o121

where in the last step we have used Ei(ci,I+i-i) = Cj,r+1-i and
Ei(ci,I+1-i2) = Ci,I+1-iz because under the condition ';'

Ci,1+1-i is a scalar.

Due to (D5) we have

2
2'...‘f1-1 .

(D8)  (Ei(Ciz))? = ci,141-if141-1
Inserting (D7) and (D8) into (D3) vyields
I-1
(D9) Varj(Ciy) = Ci, 1+1-i z £re1-i- e Ex-10k2fke1?e - £1-12
k=I+1-i
We estimate this first summand of mse(C3iy) by replacing the
unknown parameters fy, akz with their unbiased estimators fx and
akz, i.e. by
I-1

2 2 2
(D10)  Ci,1+41-i T fr41=i- - fx-1°0x'fx41-"'f1-1 =
k=I+1-1i
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2 2 2 I-1 ax?/fx?
= Ci,1+1-ifr+1-i*""f1-1 z
k=I+1-1 Cj 1+1-if141-i’" fx-1

2 I-1  a?/eg?

= ciI z —_—

k=I+1-i Cix

where we have used the notation Cjx introduced in the
proposition for the estimated amounts of the future Cjk, k >

I+i-i, including Cj, 141~ = Ci,T+1-i-

We now turn to the second summand of the expression (D2) for
mse(Cjy). Because of (D5) we have
Ej(Ci1) = Ci,1+1-ifr+1-i°---"f11
and therefore
(b11) (Ei(Cip) - €ip)? =
= Cj,1+1-i%(Exe1-iv---£1-1 = fr4a-iv----f1-1)% .
This expression cannot simply be estimated by replacing fy with
f)x because this would yield 0 which is not a good estimator
because fy43-i*.-. f1-1 generally will be different from
f141-i°*.-.°f1-1 and therefore the squared difference will be
positive. We therefore must take a different approach. We use
the algebraic identity
F=fry1-i*-ef1-1 = fr41-i"--."f1-1
= St4+1-i *+ +.. + S1-1
with
Sk = f141-4°-+- Lfx-1fkfk+1r+e. L1y -
i S CE T RERERSS T2 IS RRRTRE 5 251
= frer-4ce- - Ix-1 (Ex-fx) fk+yve-- " f1-y -
This yields
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F2 = (Sp41-i + ... + S7-1)2
I-1
= £ s¢? + 2 T S48 .
k=I+1-1 j<k

where in the last summation j and k run from I+i-i to I-1. Now
we replace Sy? with E(Sk?|Byx) and S48k, 3 < k, with E(S4Sk|Bx).
This means that we approximate Skz and 548k by varying and
averaging as little data as possible so that as many values Cjk
as possible from data observed are kept fixed. Due to (A4) we
have E(fx-fx|Bx) = 0 and therefore E(S4Sk|Bx) = 0 for j < k

because all fy, r < k, are scalars under Byx. Because of

(D12) E((fx-fx)2|Bx) = Var(fyx|By)
I-k I-k 5
= I Var(Cj,k+1|Bkx)/( T Cjk)
j=1 j=1
I-k I-k

= Var(cj,k+1lCi1,---/C3x) /(2 C0?
j=1 j=1

I-k 2 I-k )
= T Cyxax® / ( T Cyx)
j=1 j=1
, Ik
= ax® / T Cyx
=1

we obtain

2 2 2 22 2 I-k
E(Sk°|Bx) = fr4i1-i°"-fx-gokfr+1 - fr-1 / jzlcjk .

Taken together, we have replaced F2 = (= Sk)2 with zkE(sk2|Bk)
and because all terms of this sum are positive we can replace

all unknown parameters fy, ukz with their unbiased estimators
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fx, ax’. Altogether, we estimate FZ = (fr41-j+...-fy.q -
fr41-i*--- f1-1)° by

I-1 2 2 2 2 2 I-k
T (fr41-i - fx-p ok fxe1r- f1-1 / I Cyx ) =
k=I+1-i J=1

I-1 akz/sz

2 2
Rt W
= -1 -

I Cyk
j=1
Using (D11), this means that we estimate (Ej(Cj1) - ciI)2 by

2 2 2 I-1  ag?/fy?
(D13) €, 1+1-ifr41-i"--- fI-1 I = =
k=I+1-i I-k

Z Cyk
j=1
2 I-1 ax?/fy?
= ciI b [ —
k=I+1-1i I-k
Z Cix
=1

From {(D2), (D10) and (D13) we finally obtain the estimator

(S-e~(ciI))2 for mse(Cjy) as stated in the proposition.
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Appendix E: Unbiasedness of the Estimator akz

Proposjtion: Under the assumptions
(3) There are unknown constants f3, ..., fr-i with
E(Cji k+11Ci1,--+/Cikx) = Cixfx, 1< i<I, 1skgI-1.
(4) The variables {Cj3, ..., Ciy} and {C41+ ++++ Cy1} of
different accident years i # j are independent.
(5) There are unknown constants a1, ..., @¢r-3 with
var(Ci k+11Ci1s---,Cik) = Cikex?, 1 si<I, 15k s I-1.

the estimators

. Jk
I-k-1 j=1 Cyk
of akz are unbiased, i.e. we have

E(ag?) = ax? , 1<k s I-2.

Proof: In this proof all summations are over the index j from

j=1 to j=I-k. The definition of akz can be rewritten as

(E1)  (I-k-1)ay? 2,

L ( C§,x+12/C4k - 2+C§ k+1fx + Cikfx
=T ( ¢§,x+1%/Cjk ) - T ( Cikfx? )

using ZCj, k+1 = LxEIC4k according to the definition of fx. Using
again the set

Bx = { Cij | i+3 < I+1, j £ k }
of variables Cjj assumed to be known, (E1) yields
(E2)  E((I-k-1)ax?|Bx) = T E(Cj,x+12|Bx)/C3kx - = C3kE(fx?|Bk)
because C4ix is a scalar under the condition of Bg being known.
Due to the independence (4) of the accident years, conditions

which are independent from the conditioned variable can be
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omitted in E(Cj'k+12|Bk), i.e.

(E3)  E(C5,k+12IBx) = E(S5,k+121C§1,s -/ Cjk)

Var(Cj,k+11Cj1,++++Cik) *+ (E(C§,k+1]Cj1,+--,Cik))2

cikak? + (Cyxfx)?
where the rule E(xz) = Var(X) + (E(X))2 and the assumptions (5)

and (3) have also been used.

From (D12) and (A4) we gather

(E4) E(fx?|Bx) = Var(fx|Bx) + (E(fx|Bx))?

ax? / Tojk + £x2 .
Inserting (E3) and (E4) into (E2) we obtain
E((I-k-1)ax?|By) =

I-k 5 " I-k , 1
Z ( ax® + Cykfx® ) - T ( Cykak®/ T
=1

-k
j:l j=

1Cjk + Cjkfk2 )

2

(I-k)ax? - ax
= (I-k-1)ay?

From this we immediately obtain E(ax?|By) = ayx? .

Finally, the iterative rule for expectations yields

E(ax?) = E(E(ax?|Bx)) = Efagx?) = ax? .
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Appendix F: The Standard Error of the Overall Reserve Estimate

Proposition: Under the assumptions
(3) There are unknown constants £y, ..., fr.3 with
E(Cj k+11Ci1s-++,Cik) = Cixfx, 1s1<I, 1<k s I-1.
(4) The variables {Cj3, ..., Ci1} and {C31, --++ €41} of
different accident years i # j are independent.
(5) There are unknown constants o3, ..., ar-1 with
var(Cj k+1/Ci1,+-+,Cix) = Cixax®, 1si<I, 1x5ks I-1.
the standard error s.e.{R} of the overall reserve estimate
R=Rz + ... + Ry

is given by

) I ) I I-1  2ax?/fx?
{s.e.(R))° = = (s.e.(R3)° + Ci3( I Cji1) = —_—
i=2 j=i+1 k=I+1-i 1I=-k
Z Cnk
n=1

Proof: This proof is analogous to that in Appendix D. The
comments will therefore be brief.

We first must determine the mean squared error mse(R) of R.
Using again D = { Cjx | i+k £ I+1 } we have

T I I
(F1) mse{ £ Ry) = E(( T Rj - £ Rj)?|D)
i=2 i=2 ©  i=2

1 1
= E(( T C31 - £ Ci1)2|D)
i=2 i=2
I I I 2
= Var( T Cir|D) + ( E( £ Cir|D) - £ €41 )
i=2 i=2 i=2

The independence of the accident years yields
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I I
(F2) Var(_ZZCiIID) = I var(Cir|Cii, ---, Ci,I+1-i)
1= 1=2

whose summands have been calculated in Appendix D, see (D9).

Furthermore

I
cir )% = (T ( E(cir|p) - c41) )2 =
i 1=2

It &4 -

I
(F3)  ( E( T Cjr|D) -
1=2 2

= E {E(ci1]D) - ci1)(E(Cyx|D) - €31)
2<i, 3<I

= I Ci 141-iCj,1+1-3FiFjy
2<1,3<I

I

R Ly 2 . s Cx F:iFz
2 (Ci,1+41-iF{)° + 2 £ Cj 1+41-iC,1+1-3FiFy
i=2 i<j

with (like in (D11))

Fi = fr41-1°*f1-1 - f141-i°"°f1-1
which is identical to F of Appendix D but here we have to carry
the index i, too. In Appendix D we have shown (cf. (D2) and
(D11)) that

mse(Rj) = Var(Cjir|Cji1,-..,Ci,1+1-i) + (Ci,I+1—iFi)2 .

Comparing this with (F1), (F2) and (F3) we see that

I I
(F4) mse( £ Rj) = T mse(Rj) + z 2°Ci,1+1-iC3,1+1~-3FiF3.
i=2 i=2 2<i<is<I

We therefore need only develop an estimator for FiFj. A
procedure completely analogous to that for F2 in the proof of

Appendix D yields for F;jF4, i<j, the estimator
I-k

I-1 2 2 2.2 2
Z fr41-j°cfr-ifrer-icccfx-10xfx+1 - f1-1/ Z Cnk .
k=I+1-1 n=1

which immediately leads to the result stated in the proposition.

154



Appendix G: Testing for Correlations betwee ent

Development Factors

In this appendix we first prove that the basic assumption (3) of
the chain ladder method implies that subsequent development
factors Cjg/Cj k-1 and Cj k+1/Cix are not correlated. Then we
show how we can test if this uncorrelatedness is met for a given
run-off triangle. Finally, we apply this test procedure to the

numerical example of Chapter 6.

Proposition: Under the assumption

(3) There are unknown constants fj, ..., fr-1 with
E(Ci,k+11Ci1s+-+,Cix) = Cixfx, 1sisI, 15ksI-1.

subsequent development factors Cjx/Cj, k-1 and Cj, x+1/Cikx are

uncorrelated, i.e. we have (for 1 £ i £ I, 2 £ k £ I-1)

Cik Ci,k+1 Cix Ci,k+1
— ) = E( ) ~E( ) -

Ci,x-1 Cik Ci,k-1 Cik

E(

Proof: For j < k we have

(G1) E(Ci,k+1/Cij) = E(E(ci,k+1/cij[cil,...,cik)) (a)
= E(E(Ci,k+11Ci1/.--/,Cik) /Ci5) (b)
= E{Cijxfx/Cij) (c)
= E(Cix/Cij)fx - (d)

Here equation (a) holds due to the iterative rule E(X) =
E(E(X|Y)) for expectations, (b) holds because, given Cits ooy
Cikx, Cij is a scalar for j < k, (¢) holds due to (3) and (d)

holds because fx is a scalar.
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From (Gl) we obtain through the specialization j = k
(G2)  E(Cji,x+1/Cik) = E(Cik/Cik}fx = fx
and through j = k-1

Cik .Ci,k+1 ) B( Ci,k+1 : (gl) Cik

E( —— )£k .
Ci,k-1 Cix Ci,k-1 Ci, k-1

(63)  E(

Inserting (G2) into (G3) completes the proof.

Designing the test procedure:

The usual test for uncorrelatedness requires that we have
identically distributed pairs of observations which come from a
Normal distribution. Both conditions are usually not fulfilled
for adjacent columns of development factors. (Note that due to
(G2) the development factors Ci,k+1/Cikr 1 i< I-k, have the
same expectation but assumption (5) implies that they have
different variances.) We therefore use the test with Spearman's
rank correlation coefficient because this test is distribution-
free and because by using ranks the differences in the variances
of Cj x+1/Cik, 1 £ i s I-k, become less important. Even if these
differences are negligeable the test will only be of an
approximate nature because, strictly speaking, it is a test for
independence rather than for uncorrelatedness. But we will take
this into account when fixing the critical value of the test

statistic.
For the application of Spearman's test we consider a fixed

development year k and rank the development factors Cj k+1/Cik

observed so far according to their size starting with the
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smallest one on rank one and so on. Let rjkx, 1 £ i £ I-k, denote
the rank of Cj x+1/Cjx obtained in this way, 1 £ rjk < I-k. Then
we do the same with the preceding development factors
Cik/Ci, k-1, 1 < i s I-k, leaving out Cyij-k,k/Cr+i-k, k-1 fOF
which the subsequent development factor has not yet been
observed. Let syyx, 1 € i £ I-k, be the ranks obtained in this
way, 1 £ sjx < I-k. Now, Spearman's rank correlation coefficient
Tk is defined to be
I-k

(G4) Tk=1-6 I (rig- sik)? / ((1-k)3-I+k)
From a textbook of Mathematical Statistics it can be seen that

“1 £ Ty £ +1 ,
and, under the null-hypothesis,

E(Tx) = 0,

Var(Tk) = 1/(I-k-1) .
A value of Tk close to 0 indicates that the development factors
batween development years k-1 and k and those between years k

and k+1 are not correlated. Any other value of Ty indicates that

the factors are (positively or negatively) correlated.

For a formal test we do not want to consider every pair of
columns of adjacent development years separately in order to
avoid an accumulation of the error probabilities. We therefore
consider the triangle as a whole. This alsc is preferable fronm a
practical point of view because it is more important to know
whether correlations globally prevail than to find a small part

of the triangle with correlations. We therefore combine all
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values Ty, T3, ..., Ti-2 obtained in the same way like Ty.
(There is no T; because there are no development factors before
development year k=1 and similarly there is also no Ty; even
Tr-1 1s not included because there is only one rank and
therefore no randomness.) According to Appendix B we should not
form an unweighted average of T3, ..., Ty-z but rather use
weights which are inversely proportional to Var(Ty)} = 1/(I-k-1).
This leads to weights which are just equal to one less than the
number of pairs (rjx, Sik) taken into account by Ty which seenms

very reasonable.

We thus calculate

I-2 I-2
(65) T = T (I-k-1)Tx / = (I-k-1)
=2 k=2
I-2 I-k-1
= L — T,
k=2 (I-2)(I-3)/2
1-2
E(T) = = E(Tx) =0 ,
k=2
I-2 I-2
(G6) Var(T) = = (I-k-1)2 var(Tg) / ( £ (I-k-1) )2
k=2 k=2
I-2 I-2
= ¥ (I-k-1) / ( = (I-k-1) )2
k=2 x=2

1
(I-2) (I-3)/2
where for the calculation of Var(T) we used the fact that under
the null-hypothesis subsequent development factors and therefore

also different Tk's are uncorrelated.
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Because the distribution of a single Tx with I-k 2 10 is Normal
in good approximation and because T is the aggregation of
several uncorrelated Tyx's (which all are symmetrically
distributed around their mean 0) we can assume that T has
approximately a Normal distribution and use this to design a
significance test. Usually, when applying a significance test
one rejects the null-hypothesis if it is very unlikely to hold,
e.g. if the value of the test statistic is outside its 95%
confidence interval. But in our case we propose to use only a
50% confidence interval because the test is only of an
approximate nature and because we want to detect correlations
already in a substantial part of the run-off triangle.
Therefore, as the probability for a Standard Normal variate
lying in the interval (-.67, .67) is 50% we do not reject the
null-hypothesis of having uncorrelated development factors if

.67 .67
T <

- + .
V((I-2)(I-3)/2) V((1-2)(I-3)/2)

If T is outside this interval we should be reluctant with the

application of the chain ladder methocd and analyze the

correlations in more detail.

Application to the example of Chapter 6:
We start with the table of all development factors:
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Fq Fy Fj3 Fy4 Fg Fg Fo Fg Fg
i=1 1.6 1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01
i=2 40.4 1.26 1.98 1.29 1.13 0.99 1.043 1.03
i=3 2.6 1.54 1.16 1.16 1.19 1.03 1.026
i=4 2.0 1.36 1.35 1.10 1.11 1.04
i=5 8.8 1.66 1.40 1.17 1.01
i=6 4.3 1.82 1.11 1.23
i=7 7.2 2,72 1,12
i=8 5.1 1.89
i=9 1.7

As described above we first rank column F; according to the size
of the factors, then leave out the last element and rank the
column again. Then we do the same with columns F, to Fg. This

yields the following table:

Til Si2 ¥i2 Si3 ¥i3 Si4 Ti4 Sis5 Ti5 Sie rie Si7 ri7 Sig ris

1 1 2 2 1 1 2 2 5 4 4 3 2

9 8 1 1 7 6 6 S 3 2 1 1 3 2
4 3 4 4 4 3 3 3 4 3 2 2

3 2 3 3 5 4 1 1 2 1 3

8 7 5 5 6 S 4 4 1

5 4 6 6 2 2 5

7 & 8 7 3

6 5 7

2

We now add the squared differences between adjacent rank columns
of equal length, i.e. we add (sjx - rik)2 over i for every k, 2
< k £ 8. This yields 68, 74, 20, 24, 6, 6 and 0. (Remember that
we have to leave out X = 1 because there is no sj;, and k = 9

because there is only one pair of ranks and therefore no
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randomness.) From these figures we obtain Spearman's rank

correlation coefficients Tx according to formula (G4):

k 2 3 4 5 6 7 8
Ty 4/21 -9/28 3/7 -1/5 2/5 -1/2 1
I-k-1 7 6 5 4 3 2 1

The (I-k-1)-weighted average of the Ty's is T = .070 (see
formula (GS)). Because of Var(T) = 1/28 (see (G6)) the 50%
confidence limits for T are +.67/V28 = .127. Thus, T is within
its 50%-interval and the hypothesis of having uncorrelated

development factors is not rejected.
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Appendix H: Testing for Calendar Year Effects

One of the three basic assumptions underlying the chain ladder
method was seen to be assumption (4) of the independence of the
accident years. The main reason why this independence can be
violated in practice is the fact that we can have certain
calendar year effects such as major changes in claims handling
or in case reserving or external influences such as substantial
changes in court decisions or inflation. Note that a constant
rate of inflation which has not been removed from the data is
extrapolated into the future by the chain ladder method. In the
following, we first generally describe a procedure to test for

such calendar year influences and then apply it to our example.

Designing the test procedure:
A calendar year influence affects one of the diagonals
Dj = { lel cj-l,21 ey czlj-ll clj } o 1l < j < I,
and therefore also influences the adjacent development factors
Ry = { C32/€j1, €3-1,3/C3-1,2¢ -+ C1,3+2/C15 }
and
Aj-1 = { Cj-1,2/C%§-1,2+ ©§-2,3/Cj-2,2+ ---+ C15/C1,3-1 1}
where the elements of D4y form either the denominator or the
numerator. Thus, if due to a calendar year influence the
elements of Dj are larger (smaller) than usual, then the
elements of Aj.; are also larger (smaller) than usual and the

elements of Aj are smaller (larger) than usual.
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Therefore, in order to check for such calendar year influences
we only have to subdivide all development factors into ‘'smaller!
and 'larger' ones and then to examine whether there are
diagonals where the small development factors or the large ones
clearly prevail. For this purpose, we order for every k, 1 £ Xk g
I-1, the elements of the set

Fx = { Cj,k+1/Cix | 1 i <I~k},
i.e. of the column of all development factors observed between
development years k and k+1, according to their size and
subdivide them into one part LFx of larger factors being greater
than the median of Fx and into a second part SFix of smaller
factors below the median of Fix. (The median of a set of real
numbers is defined to be a number which divides the set into two
parts with the same number of elements.) If the number I-k of
elements of Fx is odd there is one element of Fx which is equal
to the median and therefore assigned to neither of the sets LFy
and SFy; this element is eliminated from all further

considerations.

Having done this procedure for each set Fg, 1 £ k < I-i, every
development factor observed is

- either eliminated (like e.g. the only element of Fr.y)

- or assigned to the set L = LFy + ... + LF1.; of larger factors
- or assigned to the set S = SF] + ... + SFy-; of smaller
factors. In this way, every development factor which is not

eliminated has a 50% chance of belonging to either L or S.
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Now we count for every diagonal Aj, 1 £3Jj g I-1, of development
factors the number Lj of large factors, i.e. elements of L, and
the number Sj of small factors, i.e. elements of S. Intuitively,
if there is no specific change from calendar year j to calendar
year j+1, Aj should have about the same number of small factors
as of large factors, i.e. L4y and S5 should be of approximately
the same size apart from pure random fluctuations. But if Ly is
significantly larger or smaller than 54 or, equivalently, if
25 = min(Lj, S4) ,
i.e. the smaller of the two figures, is significantly smaller

than (Lj+sj)/2, then there is some reason for a specific

calendar year influence.

In order to design a formal test we need the first two moments
of the probability distribution of Zj under the hypothesis that
each development factor has a 50 % probability of belonging to
either L or S. This distribution can easily be established. We
give an example for the case where Lj+sj = 5, i.e. where the set
A4y contains 5 development factors without counting any

eliminated factor. Then the number Lj has a Binomial

distribution with n S and p = .5, i.e.

n 1 5
prob(Lj =m) = (m) ;ﬁ = (m) ;3 , m=90,1, ..., 5.
Therefore
prob(Sj = 5) = prob(Lj = 0) = 1/32 ,
prob(Sj = 4) = prob(Lj = 1) = 5/32 ,



prob(Sj = 3) = prob(Lj = 2) = 10/32 ,
prob(Sj =2) = prob(Lj = 3) = 10/32 ,
prob(Sj =1) = prob(Lj = 4) = 5/32 ,
prob(sy = 0) = prob(Lj =5) = 1/32 .
This yields
prob(Zj = 0) = prob(Lj = 0) + prob(5y = 0) = 2/32 ,
prob(zj = 1) = prob(Lj = 1) + prob(Sj = 1) = 10/32 ,
prob(Zj = 2) = prob(Lj = 2) + prob(Sj = 2) = 20/32 ,

E(Z§) = (0+2 + 1-10 + 2-20)/32 = 50/32 ,
E(Z42) = (0-2 + 1-10 + 4-20)/32 = 90/32 ,

var(z4) = E(24%) - (E(2§))2 = 95/256

The derivation of the general formula is straightforward but
tedious. We therefore give only its result. If n = Ly+Sy and m =

{(n-1)/2] denotes the largest integer < (n-1)/2 then

n
(H1)  E(34) =

[ S]]
L]
—
~
-

n(n-1) n-1 n(n-1)
(H2) Var(24) = —— - (

It
|

: ) Sa *E(Z) - (BE? .

It is not advisable to test each Zj separately in order to avoid

an accumulation of the error probabilities. Instead, we consider
2 =123 + ... * 2141

where we have left out 2Z; because A; contains at most one

element which is not eliminated and therefore 2; is not a random

variable but always = 0. Similarly, we have to leave out any

other 24 if L4+S4y < 1. Because under the null-hypothesis

different Z4's are (almost) uncorrelated we have
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E(2) = E(Z2) + ... + E(21-1) ,

Var(z) = Var(2Z;) + ... + Var(2r-1)
and we can assume that Z approximately has a Normal
distribution. This means that we reject (with an error
probability of 5 %) the hypothesis of having no significant
calendar year effects only if not

E(Z) - 2-VVar(2Z) < 2 < E(2) + 2-VVvar(z) .

Application to the example of Chapter 6:

We start with the triangle of all development factors observed:

Fq Fy Fq Fa Fg Fg Fy Fg Fg
i=1 1.6 1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01
i=2 40.4 1.26 1.98 1.29 1.13 0.99 1.043 1.03
i=3 2.6 1.54 1.16 1.16 1.19 1.03 1.026
i=4 2.0 1.36 1.35 1.10 1.11 1.04
i=5 8.8 1.66 1.40 1.17 1.01
i=6 4.3 1.82 1.11 1.23
i=7 7.2 2.72 1.12
i=8 5.1 1.89
i=9 1.7

We have to subdivide each column Fy into the subset SFy of
'smaller' factors below the median of Fy and into the subset LFy
of 'larger' factors above the median. This can be done very
easily with the help of the rank columns rjx established in
Appendix G: The half of factors with small ranks belongs to SFy,
those with large ranks to LFx and if the total number is odd we

have to eliminate the mean rank. Replacing a small rank with
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'S', a large rank with 'L' and a mean rank with **' we obtain

the following picture:

J=1 §=2 3=3 j=4 j=5 j=6 =7 j=8 j=9

MW
[ 307 T B o B I N ]
[ o B T ¥ B o B ]

0w e *
ot ot
0
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[>T B o TR S 72 BN ¢ B B 7]

il
O

We now count for every diagonal Ay, 2 2 j € 9, the number Ly of
L's and the number 54 of 5's. wWith the notations 25 = min(Lj,
84), n =S5 + Ly, m = [(n-1)/2] as above and using the formulae

(1), (H2) for E(Z4) and Var(zj) we obtain the following table:

3 54 Lj Zj n m E(Zj) Var(Zj)

2 1 1 1 2 0 .5 .25

3 3 0 0 3 1 .75 .1875

4 3 1 1 4 1 1.25 .4375

5 1 3 1 4 1 1.25 .4375

6 1 3 1 4 1 1.25 .4375

7 2 4 2 6 2 2.0625 .6211

8 4 4 4 8 3 2.90625 .8037

9 4 4 4 8 3 2.90625 .8037

Total 14 12.875 3.9785 = (1.9946)2

The test statistic 2 = IZj = 14 is not outside its 95%-range

(12.875 - 2+1.9946, 12.875 + 2-1.9946) = (8.886, 16.864) and
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therefore the null-hypothesis of not having significant calendar
year influences is not rejected so that we can continue to apply

the chain ladder method.
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Figure 1: Regression and Residuals
Ci2 against Cil
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Figure 2: Regression and Residuals
Ci3 against Ci2
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Figure 32:

Regression and Residuals
Ci4 against Ci3
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Figure 32:

Regression and Residuals

Ci4 against Ci3
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Figure 4: Regression and Residuals
Ci5 against Ci4
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CiB aqainst Ci5

Figure 5: Regression and Residuals
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weighted residual

32000

Figure 6: Regression and Residuals

Ci7 against Ci6
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Figure 7:

Regression and Residuals

Ci8 against Ci7
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Figure 8: Regression and Residuals
Ci9 aqainst Ci8
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weighted residual

Figure 9: Residual Plots for fkO
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Figure 10: Residual Plots for k0
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Figure 11: Residual Plots for fk2
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Figure 12: Residual Plots for fk2
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Figure 13: Plot of ln(rxkz) against k
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UNBIASED LOSS DEVELOPMENT FACTORS

Abstract

Casualty Actuarial Society literature is inconclusive regarding whether the loss development
technique is biased or unbiased, or which of the traditional methods of estimating link ratios is
best. This paper presents a mathematical framework to answer those questions for the class of
linear link ratio estimators used in practice. A more accurate method of calculating link ratios
is derived based on classical regression theory. The circumstances under which the traditional
methods could be considered optimal are discussed. It is shown that two traditional estimators
may in fact be least squares estimators depending on the set of assumptions one believes governs
the process of loss development. Formulas for variances of, and confidence intervals around,
point estimates of ultimate loss and loss reserves are derived. A triangle of incurred loss dollars
is analyzed to demonstrate the concepts and techniques. A summary of a simulation study is
presented and suggests that the performance of the incurred loss development technique based
on the more general least squares estimator may approach that of the Bornhuetter-Ferguson and
Stanard-Buhlmann techniques in some situations. The requisite mathematics is within the reach
of the actuarial student equipped with the first three exams.
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1. INTRODUCTION

Three standard methods of estimating link ratios in practice are the Simple Average
Development (SAD) method — the arithmetic average of the link ratios; the Weighted Average
Development (WAD) method — the sum of losses at the end of the development period divided
by the sum of the losses at the beginning; and the Geometric Average Development (GAD)
method — the n® root of the product of n link ratios. Casualty Actuarial literature is
inconclusive regarding which method is "best” or even whether the methods are biased or
unbiased.! The purpose of this paper is to present a mathematical framework for evaluating the
accuracy of these methods, to suggest alternatives, and to unearth valuable information' about
the variance of the estimates of developed ultimate loss. It is assumed that the actuary has
exhausted all leads to discover systematic or operational reasons why a development triangle may
appear as it does, and the only concern now is how to deal with the remaining noise.

Proofs of the technical theorems are relegated to the Appendix. The mathematics within the
body of the paper is intended to motivate discussion and application.

An example will help motivate the exposition, so consider the accident year incurred loss
development triangle and its triangle of link ratios in Figures 1A and 1B. The specific content
of the example triangle is incidental to the purpose of this paper. It is hoped that the data is
sufficiently realistic to exemplify adequately the application of these resuits. The extension of
the results to other kinds of triangles should be self-evident.

Denote the link ratio as b, and the SAD, WAD, and GAD estimates of b as by, by.p, and
bgap respectively. For 12-24 months of development in the example triangle, these statistics
evaluate to bg,,=3.953, by,p=2.480, and bg,,=3.129. To determine which estimate is best,
we must first unveil the hidden assumptions implicit in the actuarial technique called loss
development.

! See, for example, James N. Stanard, "A Simulation Test of Prediction
Errors of Loss Reserve Estimation Techniques," and John P. Robertscon’s discussion
in the Proceedings of the Casualty Actuarial Society, LXXII, 1985.
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2. POINT ESTIMATES

When we say that we expect the value of incurred losses as of, say, 24 months to equal the
incurred value as of 12 months multiplied by a link ratio, it is possible that what we really mean
is this: the value of incurred losses as of 24 months is a random variable whose expected value
is conditional on the 12 month incurred value, and equals that 12 month value multiplied by an
unknown constant. Symbolically,
y=bx+e

where x and y are the current and next evaluations respectively, b is the unknown constant
development factor, called the age-to-age factor or link ratio, and e represents random variation.
The first step in developing losses is estimating the link ratios.

Expected Value of the Link Ratio

Let us generalize and suppose that the relationship between x and y is truly linear rather than
strictly multiplicative, The more general model is

Model 1 y=a+bx+te
E(e)=0, Var(e) is constant across accident years, the €’s are uncorrelated
between accident years and are independent of x.

This model is clearly a regression of 24-month losses y on 12-month losses x. Althoughx is a
priori a random variable, once an evaluation is made it is treated as a constant for the purpose
of loss development. More precisely, the model says that the expected value of the random
variable y conditional on the random variable x is linear in x: E(y | x)=a+bx. With this
understanding of the relationship between x and y, all classical results of least squares regression
may be brought to bear on the theory of loss development.” For the remainder of this paper
all expectations are conditional on the current evaluation.

It is a well known theorem, the Gauss-Markoff Theorem, that the "best estimates” of a and b
are the least squares estimates, denoted & and 5

b= E(X-J-()Y
Y (x-X)?

and a=y-bx .
For example, the least squares estimates & and 5 for the 12-24 month development pericd in
the triangle of Figure 1 are & = $373.63 (all amounts will be given in thousands of dollars)

and 6 = 2.027. These estimates were calculated using a popular spreadsheet software package.

? See, for example, Henry Scheffé, The Analysis of variance, Wiley, 1956,
p. 195.
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The indicated regression line is shown in Figure 2A.

The method of estimating link ratios® by least squares under the assumptions of Model I will
be called the Least Squares Linear (LSL) method. The least squares estimators of the line’s
parameters will be denoted a, g, and by g .

Five properties of the least squares estimates are particularly appealing.*

I The least squares estimates are linear functions of the variables y | x.
2. They are unbiased; i.e., E(a g )=a and E(b g )=b.
3. Within the class of all linear unbiased estimates of a and b, the least squares estimates

have the smallest variance. Least squares estimators are therefore called B.L.U.E.: Best
Linear Unbiased Estimators.

4. The vertical deviations of the (x,y) observations from the regression line sum to zero; in
other words, the average residual is zero.
S. The least squares regression line passes through the sample average (X.7)

Before continuing, glance again at Figure 2A. By visual inspection one might say that the
y-intercept is close enough to zero that it could reasonably be ignored in the predicted
relationship between y and x.° If one believes the y-intercept should truly be zero in the first
place, perhaps the model to use is

Model II y=bx+e
E(e)=0, Var(e) is constant across accident years, the e’s are uncorrelated
between accident years and are independent of x.

This model would be inappropriate if there were a significant probability that x = 0.
The BLUE estimator for b under Model II is

z
g Zxy
Yx?

The method of estimating link ratios by least squares under this strictly multiplicative
development model will be called the Least Squares Multiplicative (LSM) method. The least
squares estimator of the line’s parameter will be denoted by ,,.

’ The estimate & of the constant term can be considered a "link ratio" if

the link ratio function is viewed as being vector valued (&,5)

* These results can be found in many introductory texts on statistical
regression. Property 3 is the Gauss-Markoff Thecrem.

 Although it will be demonstrated that the y-intercept is significantly
cdifferent from zero.
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In the example triangie the 12-24 month LSM link ratio is b, gy = 2.204. Figure 2B illustrates
the difference between the LSL and LSM indicated regression lines.

Does b, satisfy the five properties of the LSL estimator above? Obviously, by is a linear
function of the y’s (again, conditional on the known x values). The fact that it is unbiased is
easy to prove. It has minimum variance within the class of linear unbiased estimators by virtue
of the Gauss-Markoff Theorem because it is the least squares estimator. But by g, does not
necessarily satisfy Properties 4-and 5. At first, the fact that by, does not zero out the sum of

the residuals nor determine a regression line passing through (%.5) may seem to be a

drawback. But on second thought, it must be inevitable. Indeed, a least squares regression line
is required to satisfy two conditions: it must be close to the data and it must zero out the
residuals. A two parameter line is free to satisfy two conditions. But a one-parameter line has
the ability to satisfy only one condition. LSM satisfies the first, so it cannot be expected to
satisfy the second as well.

If one were to define a "good" linear unbiased estimator as one which satisfies Properties 4 and
5, but not necessarily Property 3, then by,,, would be best (Theorem 1). However, the price
of adopting by, rather than by gy is an increase in the probability that the prediction of losses
as of the next evaluation would be off the mark because the variance of by, is greater than the
variance of byg.% Such are the standards by which by, may be considered "optimal.”

In the example, with by g, = 2.204 for 12-24 months of development, the average residual is
$227.9 and the standard deviation of the residuals is $876.5. With by, =2.480, the average
residual is $0.4 and the standard deviation of the residuals is $953.1.

Let us continue now to attack the assumptions of LSL and LSM to discover what we can about
bgap and bg,p. Take the constant variance assumption for example. The impact of trend would
imply that the variance of e is not constant across accident years. On-leveling the loss triangle
may adjust for such heteroskedasticity but in addition may introduce unwelcome side effects.
A model that speaks directly to the issue of non-constant variances is

Model IIT y=bx+uxe
E(e)=0, Var(e) is constant across accident years, the e’s are uncorrelated
between accident years and are independent of x.

This model differs from Model II in that it explicitly postulates a dependent relationship between
the current evaluation and the error term, xe. By dividing both sides of this equation by x we
see that this model also says that the ratio of consecutive evaluations is constant across accident
years. In other words, it is the development percent, not the development dollars, and the
random deviation in that percent that behave consistently from one accident year to the next.
This model’s BLUE for b is bg,q, (Theorem 3). The technique of estimating link ratios under
the assumptions of Model III will be called the SAD method.

% Again, the Gauss-Markoff Theorem. This fact is proved directly for this
actuarial problem as Theorem 2. Intuitively, Var(bygy) sVar(by,p) because bg,
gives more weight to the larger values of x.
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Another mode! that can adjust for trend is

Model IV y = bxe
E(e)=1, Var(e) is constant across accident years, the ¢’s are uncorrelated
between accident years and are independent of x.

This model says that random noise shocks the development process multiplicatively, and may
be appropriate in those situations in which the random error in the percentage development is
itself expected to be skewed. The BLUE for b under Model IV is the geometric average of the
link ratios, bg., (Theorem 4). The technique of estimating link ratios under the assumptions
of Model IV will be called the GAD method.

For the remainder of the paper, results will be stated in terms of the LSL and LSM methods.
Results for SAD and GAD, which are left to the reader, can be derived directly or by applying
the results below to the transformed SAD and GAD models on which Theorems 3 and 4,
respectively, depend.

Estimate of the Next Evaluation

The point estimate of the expected value of incurred losses as of the next evaluation given the
current evaluation is
LSL LSM
Yis. = s, + brg X Yism = brgy x
The estimates are unbiased under the assumptions of their respective models (Theorem 5). For
the example triangle the LSL and LSM estimates of the 24-month evaluation of accident year
1991 are, respectively, $2983 = $374 + 2.027 x $1287 and $2837 = 2.204 x $1287.

Estimated Ultimate Loss: A Single Accident Year

The Chain Ladder Method states that if b, is a link ratio from 12 to 24 months, b, is a link ratio
from 24 to 36 months, etc., and if U is the number of links required to reach ultimate, then
By=bb,- - - by is the (to ultimate) loss development factor (LDF). The implicit assumption is
that future development is independent of prior development. This assumption implies a type
of “transitive" property of loss development: if the conditional expectation of y given x is byx
and the conditional expectation of z given y is b,y then the conditional expectation of z given x
is b,byx.’

This all-important Chain Ladder Independence Assumption (CLIA) says that the relationship
between consecutive evaluations does not depend on the relationship between any other pair of
consecutive evaluations. In mathematical terms, the random variable corresponding to losses
evaluated at one point in time conditional on the previous evaluation is independent of any other
evaluation conditional on its previous evaluation. A direct result of this assumption is the fact

’ See Lemma 1 in Appendix A. This assumption may not hold in practice, for
example, when a claims department issues orders to "strengthen reserves" after
having operated for some time under a less conservative strategy.
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that an unbiased estimate of a to-uitimate loss development factor is the product of the unbiased

link ratio estimates; i.e., B,=5,6,-5;.

The very simplicity of the closed form LDF is one of the beauties of the multiplicative
development approach. A closed form expression for the intercept term of the more general
LSL approach is not nearly as simple, but this should not be considered a deterrent because a
closed form, to-ultimate expression is unnecessary. Instead, this paper proposes the use of a
recursive formula. A recursive estimate of developing ultimate loss illuminates the missing
portion of the triangle (clarifying the communication of the analysis to management and clients),
enables the actuary to switch models mid-chain, and is easy to program, even in a spreadsheet.
Perhaps the most compelling reason, however, is that a recursive estimate is invaluable for
calculating variances of predicted losses (Section 3), so the point estimates may as well be
calculated in the same step.

The mathematical theory for developing recursive estimates of ultimate loss conditional on the
current evaluation proceeds as follows. Consider a single fixed accident year. Let x, denote the
(known) current evaluation and let x, | x, denote the random variable corresponding to the n®
subsequent (unknown) evaluation conditional on the current evaluation. The goal is to find an
unbiased estimator for x, | x,. By definition, an unbiased estimate of x, | x, is one which
estimates u,=E(x, | x,). The unbiased chain estimate is built from the individual links x,, | x,;
of losses as of one age conditional on losses at the previous age.

Under the more general LSL model, it is assumed that for each n there exist constants a, and
b, such that the random variable x, conditional on x, , can be expressed as

Xn I'xn-l = an+brrxn-l + en .
It is also assumed that E(e,) =0, that Var(e,)=0?,, and that the ¢,’s are independent of all the x’s
and, by the CLIA, of each other. Theorem 6 proves that the following recursive formulas yield
unbiased estimates of future evaluation.

LSL LM
f, =4 +B,x f, =B x,
ﬁn = én * I5:1 p’n—l p‘n = Bn ﬁ'n-z

An unbiased estimate of ultimate loss conditional on the current evaluation is therefore g, .

For the example, the LSM estimate for 24-36 months of development is byg,=1.133.
Therefore, the prediction of accident year 1991 losses evaluated as of 36 months would be
$3380 = $2983 x 1.133 if LSL had been used for the 12-24 development period; if LSM had
been used, the estimate would be $3214 = $2837 x 1.133. The LSM prediction of accident year
1990 losses as of 36 months would be $3167 = $2795 x 1.133.

Estimated Total Ultimate Loss: Multiple Accident Years
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It should be obvious that an estimate of total ultimate loss for more than one accident year
combined could be obtained by adding up the separate accident year g, ’s. However, for the

purpose of calculating variances, a recursive expression is preferred because development
estimates of ultimate loss for different accident years are not independent.

The idea behind the recursive estimate for multiple accident years is this. Starting at the bottom
left corner of the triangle, add up columns of estimated future evaluations. Find a recursive
unbiased estimate of those column sums. Then an unbiased estimate of total losses at ultimate

will be the final sum.

The formulas are developed as follows. To keep the notation from becoming too convoluted,
index the rows of the triangle in reverse order so that the youngest accident year is the zeroth
row, the next youngest is row 1, and so on. Next, index the columns so that the 12 month
column is the zeroth column, the 24 month column is column 1, etc. A full triangle of N+1
accident years appears as in Figure 3. If

n-1

sn = 2 xx‘,n“ Xx‘,i

1=0

denotes the sum of the accident years’ future evaluations conditional on the accident years’
current evaluations, then an unbiased estimate of the future evaluation of multiple accident years
is an estimate of E(S,). Let M, denote this expectation. Recursive formulas for estimates of M,

are:

LSL LSM
M, = &, +B,x,,, M, = B,%,
ﬁn = nén + Bn (pln,l + Xn-x,n—l) ﬁn = Bn (&nq + xn-l,n—x)

Stop when n=U, the age at which all accident years are assumed to have reached ultimate.
These estimates are unbiased under the assumptions of their respective models. See
Theorem 10.

The completed triangle of Figure 1A is shown in Figure 4 where it was assumed that LSL is
appropriate through 84 months of development, LSM thereafter, and that losses are fully mature
(i.e., case reserves are adequate, on average) afier 108 months. Then, for example,

§, =%$2,982 because the 1991 accident year is the only one for which 24 months is a future
development point. Accident years 1991 and 1990 are the only years which have yet to reach
the age of 36 months, so #, = $3,268 + $3,470 = $6.738. And so on. Accident years 1984

through 1991 have yet to reach ultimate (108 months) so &, = $47,554.
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Estimated Reserves for Quistanding [.osses

Unbiased estimates of outstanding losses are
fiy - paid to date

for a single accident year and

4, - Total Paid To Pate

for multiple accident years.

Estimated Pure Premiums and Loss Ratios

Assuming exposures and earned premiums are static variables,® unbiased estimates of the pure
premium rate and of the loss ratio for a single accident year are

fiy Ry
and - ’
exposure earned premium

respectively. For multiple accident years, the estimates are

f, and iy
Total Exposure Total Earned Premium

Of course, the latter statistics are most useful when all quantities are brought onlevel.

8 Audit and reinsurance exposures and premiums may be random variables.
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3. VARIANCE

The least squares point estimators of Section 2 are functions of random variables. As such, they
are themselves random variables with their own inherent variances. Exact formulas for, and
estimates of, these variances will be addressed in turn.

Variance of the Link Ratio Estimates

It is well known® that the exact variances of the link ratio estimators are

LSL LSM
o Xx? 2
var (§) D 50
var (B) = ff—:jT_)z var (b) = Eo;z (1)
where
X = % Yo

and I is the number of accident years used in the estimate of the link ratio. Unbiased estimates
of these variances are obtained by plugging in the unbiased estimate s? of ¢® where s? is the
Mean Square for Error (MSE) of the link ratio regression. The MSE or its square root s (the
standard error of the estimate) is a standard statistic produced in the output of regression
software. Most regression software will calculate an estimate of the square root of the variance
in equation (1), sometimes called the standard error of the coefficient.

For 12-24 months of development in the example triangle s’ =848.8%. Estimates of the
standard deviations of the 12-24 month LSL intercept and slope factor are 77.35 and 0.194,
respectively. For the LSM model the MSE is 876.5? and the standard error of the coefficient
is 0.157. The spreadsheet software used to calculate these statistics automatically generates s,
and the standard error of the coefficient. The average x* value had to be calculated "by hand”

to derive the estimate of var (&)

Variance of Estimated Ultimate Loss: A Single Accident Year

Before continuing, it is time to make an importam distinction. The point estimate of ultimate
loss @, calculated recursively above is an estimate of the expected value of the (conditional on

° See for example Robert B. Miller and Dean W. Wichern, Intermediate

Business Statistics, Holt, Rinehart and Winston, 1977.
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x,) ultimate loss x;,.'°  Actual ultimate loss will vary from its expected value in accordance
with its inherent variation about its developed mean u,. As a result, the risk that actual ultimate

loss will differ from the estimate g, is comprised of two components: the variance in the
estimate of the expected value of x;, | x, — Parameter Risk — and the inherent variability of
ultimate loss about its mean u,; — Process Risk."! Symbolically, if {(conditional on x,) ultimate
loss for a given accident year is expressed as the sum of its (conditional) mean plus a random
error term €y
) Xplxo = py + &y

then the variance in the prediction pred,, of ultimate loss is

Var {pred; = Var(fiy) + Vax(g,)

= Parameter Risk + Process Risk

It

Total Risk .

The following recursive formulas for exact values of these two variance components are derived
in Theorems 8 and 9.

Parameter Risk
LsSL LSM

For n=1:

2 2

o — var fi, = x,varb

varfl, = T‘ + (x,-%,)%Var B, By = %o t
1

Forn>1:

varfl, = pi,varb, +

Ex Y

g —_
varg, = i (=%, )2 Vazb «
n
bZvarfl,, + varb varfi,,
b:varfi,, + varb,var g, ,

® Por better or for worse, it is usually the expected value of an unknown
quantity — e.g., rates or reserves — that actuaries are called upon to produce.
The "Statement of Principles Regarding Property and Casualty Loss and Loss
Adjustment Expense Reserves” is rather vague on that issue, but “The “Statement
of Principles Regarding Property and Casualty Insurance Ratemaking" (Principle
1) and, for example, "Actuarial Standard of Practice No. 7: Performing Cash Flow
Testing for Insurers" (section 5.5) are quite explicit.

" This process risk is the conditional variance of developing losses about
the conditional mean. As pertaining to triangles of incurred loss dollars, it
includes, but is not limited to, the unconditional a priori process risk of the
loss distribution (mitigated by the knowledge of losses emerged to date), the
random variation of the claims occurrence and reporting patterns, and the random
variation within case reserves.
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Process Risk

Var (x| x,) = o}
and
Var (x,|x,) = 04 + b? Var (x,., 1 x,)

The equation for Process Risk is the same under both models. Unbiased estimates of these

variances are obtained by plugging in unbiased estimates s? for 0,2, B, for b, and ¢, for u,.

Parameter Risk and Total Risk are illustrated in the familiar graphs of Figures SA and 5B where
+2 standard deviation prediction bands are drawn around the LSL and LSM estimates,
respectively, of 12-24 months of development from the example triangle. First, Parameter Risk
is represented by two curves +2 standard deviations (the square root of the estimated Parameter
Risk) away from the least squares line. Total prediction risk is represented by two curves +2
standard deviations (the square root of the sum of estimated Parameter Risk plus estimated
Process Risk) away from the least squares line. The actuary may represent Process Risk to the
layman as the distance between the Total Risk and Parameter Risk bands; of course, this is
technically incorrect.

Notice that in Figure 5A the Parameter Risk bands widen in both directions as x moves away
from its average value of $824 and that in Figure 5B the bands widen as x moves away from
zero. This occurs because the equation for parameter risk is a function of distance of x, from
the average value of x for the LSL model and a function of the absolute value of x, for LSM.

There is a subtle difference between a "prediction band" which measures the error one would
expect in a prediction based on the regression, and the more common "confidence band" which
measures the fit of the regression relative to the sample data. The concept of the confidence
band is illustrated in Figure 5C where, for example, a one-standard-deviation confidence band
is drawn around the LSL regression of 12-24 months of development. The radius of the
confidence band is the square root of the MSE, 848.8. Using the techniques of the next section,
it can be shown that one should expect about 34% of the data points to fall outside the
confidence band. In other words, one should expect about six outliers. In this case, there are
only four. The identification of outliers can provide the actuary with useful information before
he or she enters into fact-finding interviews with the claims and underwriting departments. The
identification of outliers provides information of a more technical nature as well. Indeed, note
that the outliers in Figure 5C occur at the higher values of x. This suggests that the variance
of ¥ is not independent of x. The assumptions of the SAD or GAD methods, or a variant, may
more appropriately describe the random processes underlying these particular data.

As a final note, ultimate loss is not ultimate until the final claim is closed. Suppose it takes C
development periods, C=U, to close out the accident year. Then the estimate of ultimate loss
is not of x;, | x, but of x. | x,. Although estimated ultimate loss through U development periods
may be the same as estimated ultimate loss through C development periods, the variances of the
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two estimates are not the same. Even if it is true that b,=1 for n> U, whereby parameter risk
halts at n=U, process risk continues to add up, so recursive estimates of Var(x, | x,) should be
carried out beyond n=U.

In the example, it was assumed that an accident year will be closed after 144 months based on
a visual inspection of Figure 1B (accident year 1974 was considered a data anomaly). The
recursive projection of ultimate accident year 1991 loss was already displayed in Figure 4. The
detailed calculation of the variance (Total Risk) is shown in Figure 6A.

Variance of Estimated Ultimate Loss: Multiple Accident Years

Actual total ultimate loss Sy for multiple (open) accident years will vary from the estimate #, as

a result of two sources of uncertainty: PARAMETER RISK — the variance in the estimate of
My — and PROCESS RISK — the inherent variance of §, about its developed mean My.
Symbolically, if we express total ultimate loss for multiple accident years (conditional on the
current evaluation of all accident years) as the sum of its mean My plus a random error term E;
Sy =My + Ey
then for a given accident year the variance in the prediction PRED,, of ultimate loss is
var (PRED,) = var(®,) + Var (E,)
= PARAMETER RISK + PROCESS RISK
= TOTAL RISK .

In Theorems 10 and 11 are derived the following recursive formulas for exact values of these
two variance components.
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PARAMETER RISK

LSL LSM
For n=1:
varfy, = xZ,varb,

2
. a —
varif, = Tl + (%, 0-%o) ?VarB,
1

For n>1:
varft, = varf, = (M, +x, ,)2varb, +
R 2 o -
3 — bZvarft, , + varb,vari _
nz_ll + (Mn-l +Xn—1,n~1 —nxn—l)zvarﬁn " Mn ! " Mn !

n

+ bZvarfl,_, + varb varfi ,

where

1 N
Ko = szi,n-l

ni=n

is the average "x value," and I, =N-n+1 (assuming a full column in the triangle) is the number
of data points, in the regression estimate of the n® link ratio.

PROCESS RISK
Var(E,) = of
and

var (£,) = na? + b?var (E,_,)

The equation for Process Risk is the same under both models. Unbiased estimates of these

variances are obtained by plugging in unbiased estimates s.* for g2, 8, for b,, and #, for M,

For the example, Figure 6B shows the calculation of the estimate of the variance of the estimate
of total ultimate loss for accident years 1984 through 1991 combined. Most of the basic
statistics are the same those appearing in Figure 6A.
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Variance of Estimated Ouistanding Losses: Single or Multiple Accident Years

Assuming paid losses are constant at any given evaluation,'? it is obvious that the variance of
a reserve equals the variance of total ultimate losses:

Var (Estimated Reserve) = Var (Estimated Ultimate Loss - Paid Loss)
= vVar (Estimated Ultimate Loss)

This equality holds for estimated reserves for a single accident year and for multiple accident
years.

Variance of Estimated Pure Premiums and Loss Ratios: Single or Multiple Accident Years

Assuming static exposures and pure premiums, the variances of the estimated pure premium rate
and of the estimated loss ratio are

Var (Estimated Ultimate Loss) and Yar {Estimated Ultimate Loss)
exposures? earned premiums?

Again, these formulas hold for single or multiple accident years.

One final note before leaving this section. Aggregate losses are often expressed as the
compound product of a frequency distribution (e.g., Poisson or negative binomial) and a severity
distribution (e.g., lognormal or Pareto). In practice, parameters for those distributions are
estimates, the result being that the variance of the aggregate loss distribution depends not only
on the inherent variance of the postulated frequency and severity distributions but on the
variance of the parameter estimates. The parameter error of the frequency distribution could
be estimated by applying the above techniques to the frequency triangle, defined to be the
triangle of claim counts per exposure. The parameter error of the severity distribution could be
estimated by applying the above techniques to the incurred (or paid) severity triangle, defined
as the triangle of cumulative incurred (paid) dollars divided by cumulative incurred (paid)
claims. Furthermore, since it is the mean of the distributions that are usually sought, only the
Parameter Risk above need be considered.

" gsalvage and subrogation could be handled as a separate category.
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4. CONFIDENCE INTERVALS

Confidence intervals necessarily are phrased in terms of a probability measure. As a result, this
discussion can no longer avoid making assumptions about the probability distribution of the error
terms, ¢, The traditional assumption is that they are normally distributed (lognormally
distributed under GAD which may be a bit more believable).

Confidence Intervals Around the Link Ratios

Let « be the probability measurement of the width of the confidence interval. Then 100a%
confidence intervals around the true LSL link ratios (a,,b,) are:

&,tt . (I,-2)/var (&)
2

and

B,tt o (I,-2)VAr (B,)
2

where t(I,-2) denotes the two-tailed « point (the "t-value")"® of Student’s t distribution with
1,-2 degrees of freedom and where I, is the number of accident years used in the estimate of the
n® link ratio. The degrees of freedom under LSL is I,-2 because two parameters are estimated
under that model. These formulas may be used for the LSM model as well; in that case the
degrees of freedom are I-1.

To demonstrate how these formulas can be used, suppose we want to test the hypothesis that the
12-24 month LSL constant term is not significantly greater than zero. Recall that this constant
term was estimated to be $373.63. Refer to Figure 7. There are 18 data points and two
parameters, so the degrees of freedom equals 16. At the 99% confidence level, the one-tailed
t-value is 2.62. It was shown above that the estimated variance of the constant term is 77.35%.
Then, if the constant term were truly zero, there would be a 99% chance that the estimated
intercept would be less than or equal to 202.66 = 77.35 x 2.62. Since the estimated value of
the intercept falls outside the confidence interval, it appears that LSL is an appropriate model
for this young stage of development. In fact, it appears that LSL is appropriate for the youngest
six stages of development. The confidence of that statement is 94 % =.99°.

As another example, the decision to assume that case reserves are reasonably adequate by 108
months is based on the apparent random nature of the link ratios thereafter. Notice in Figure
7 that the LSM link ratios are either at, or well within, one standard deviation ("Std(b)") of
unity for 120-132 months and beyond, but the 108-120 link ratio (.992) is more than one

' This assumes that the available t-table is presented in terms of a one-
tailed test, or, if not, that the actuary is able to look up the appropriate
value accordingly.
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standard deviation away from unity. Somewhat subjectively, it was deemed appropriate to
ignore this significant average negative development, as well as the relatively insignificant
positive development thereafter. If the actuary were to set the 108-120 factor to, say, an
interpolated value between the 96-108 and 120-132 factors, it may generally be considered a not
unreasonable application of actuarial judgment and may just so happen to reflect an amount of
conservativism consistent with the risk posture of the owners of the enterprise. However, in the
end, the ability of that actuary to convince management that this judgment is appropriate depends
on the level of trust established between the parties. '

1t is clear that near the tail of the triangle the degrees of freedom drop prohibitively. Inferences
about the link ratios become less precise. If it can be assumed that the variances of the residuals
in the development model are the same for all development periods (i.e., 6;=o0; for all i and ),
then a single estimate of the MSE can be obtained by solving for all link ratios simultaneously.
The result is that the t-value should become reasonably small’* and can make for "tighter”
inferences for all development periods.

Confidence Intervals Around Estimated Ultimate Loss

This section will begin with the GAD model because all results are exact.* Under the
transformed GAD model

Inx,) = In(b,) + In(x,.) + in(e,)
or

/

! / 4
Xp = by + Xpq * €y

the point estimate of ultimate transformed loss is

pred = /.= p/y = x] + jéﬁ:{

and the estimate of the variance of the prediction is

" For an NxN triangle, df=(N-1}(N-2)/2 under LSM if no data points are
discarded. For example, with a moderately-sized 5x5 triangle the two-tailed $0%-
ile t-value is only 18% greater than the smallest possible 90%-ile t-value,
namely the 90%-ile point on the standard normal curve. This can be especially
important for the small triangles that consultants or companies underwriting new
products are wont to see.

¥ Commonly used probability distributions are location oriented, so additive
models such as the transformed GAD model are quite tractable. The use of scale-
oriented probability distributions may yield results more directly applicable to
the multiplicative models actuaries favor.
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var (pred’y = (C+§)—Il—)s“ (Theorem 13)
3

=1

where we assume under transformed GAD that all o,’s are equal. It is well known that in this
case the MSE is proportional to a chi-square random variable with degrees of freedom equal to
the number of data points less the number of estimated parameters. Therefore, a one-sided

100a% confidence interval'¢ for ultimate transformed losses x/ given the current transformed

evaluation x; is exactly equal to

iz £ t,(df)VVar (pred) .

The corresponding 100a% confidence interval around the "untransformed"” prediction of ultimate
loss x given x, is

ex‘p(ﬁé + t,(df)yVaz (pred’) )

If df is large enough, t,(df) may be replaced by z,, the standard normal point, without significant
loss in accuracy."”

With this justification, an approximate 100a% confidence interval around a prediction under any
of the models is

pred + t o (df) yVar (pred)
2

Figures 6A and 6B show how this approach is used to derive estimates of ultimate loss at the
80% confidence level.

Confidence Intervals around Reserves

Confidence intervals around reserves are obtained by subtracting paid dollars from the endpoints
of the confidence intervals around ultimate loss. This is simply due to the fact that if

* at the risk of pedantry, "prediction interval" is more correct.

" This is often done in practice, particularly in time series analysis, even
when df is not large. The t distribution is preferraed, however, because the
thinner tails of the standard normal will understate the radius of the confidence
interval. For another perspective on this subject, see Everette S. Gardner Jr.,
"A Simple Method of Computing Prediction Intervals for Time Series Forecasts,"
Management Science, Vol. 34, No. 4, April 1%88, p. 541-546.
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a = P(lower bound < ultimate loss < upper bound)

then it is also true that
o = P(lower bound - paid < outstanding loss < upper bound - paid).

Figures 6A and 6B demonstrate the application of this concept as well. The 80% risk load for
all outstanding losses for accident years 1984 through 1991 is about 27% of the expected value.
It would be interesting to see how much this load is reduced for the same level of confidence
when an analysis of paid dollar triangles is also conducted. Incurred and paid estimates should
be negatively correlated, therefore the variance of their average should be reduced even more
than if independence were simply assumed.

Confidence Intervals around Pure Premiums and Loss Ratios

Confidence intervals around pure premiums and loss ratios are obtained by dividing the
endpoints of the confidence intervals around ultimate loss by exposures or premiums,
respectively. This scale shift is akin to the location shift for the confidence intervals around

reserves.
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5. AN ARGUMENT IN SUPPORT OF A NON-ZERO CONSTANT TERM

When the current evaluation is zero, the practice is to abandon the multiplicative loss
development methods and adopt an alternative, e.g., Bornhuetter-Ferguson, Stanard-Buhlmann,
or a variation on frequency-severity. LSL may be a fourth possibility.

To elaborate, consider the development of reported claim counts. Let N be the true ultimate
number of claims for a given accident year. Let r; be the random report year of the i claim.
Assume that the r, are independent and identically distributed for all claims so that if p, is the
probability that a claim is reported before the end of the n year, then p, is independent of i.
Based on these assumptions it is not difficult to show that if x, is the number of reported claims
at the n evaluation then

ﬁi.p&x (2)

E(x,lx,,) =N 1p - -1
n-i - n-1

which is of the form a,+b.x,,. Clearly the constant term a, is non-zero until all claims are
reported.

Figure 8A shows the true development line for evaluation 1 to evaluation 2 when N =40 and the
p.’s are 1/2, 3/4, 7/8, ..., 1-", along with a scattering of ten random data points.

Equation (2) becomes even more interesting when the reporting pattern is exponential, as might
be expected from a Poisson frequency process. In that case it is straightforward to prove that
the LSL coefficients (a,,b,) are identical for every age n. This somewhat surprising result can
be put to good use when the triangle is too small to give stable LSL estimates of individual link
ratios, as will be demonstrated in the following section.

From Equation (2) one can see that the slope factor b, does not depend on the exposure (N) but
only on the reporting pattern, and that the constant term a, is proportional to the exposure. An
increase in exposure from one accident year to the next will cause an upward, parallel shift in
the development regression line. Equation (2} may also be used as a paradigm for loss dollars.
although the bias of case reserves complicates the analysis, and systematic factors such as trend
can change expected ultimate loss dollars from one accident year to the next. Development
triangles, therefore, can be expected to display data samples randomly distributed about not a
single regression line but about multiple parallel regression lines as claim frequency increases.
as the volume of business expands, or simply through the impact of trend. This is pictured in
Figure 8B where a random sample is displaved about the regression line of Figure 8A and about
a parallel line determined by N=80. The estimated regression line based on all the poinis
combined will indicate a less significant constant term.
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6. COMPARING THE MODELS USING SIMULATION

In the 1985 Proceedings Mr. James N. Stanard published the results of a simulation study of the
accuracy of four simple methods of estimating ultimate losses using a 5x5 incurred loss triangle.
For the exposure tested'® it was demonstrated that WAD loss development was clearly inferior
to three additive methods — Bornhuetter-Ferguson (BF), Stanard-Buhlmann'® (SB), and a little-
used method called the Additive Model (ADD) — because it had greater average bias and a
larger variance. The additive methods differ from the multiplicative methods in that they adjust
incurred losses to date by an estimated doilar increase to reach ultimate, whereas the
multiplicative methods adjust by an estimated percentage increase. ADD’s estimated increase

is a straightforward calculation of differences in column means, ¥-x . BF and SB estimated
increases are based on inverted LDFs and are therefore nonlinear functions of the y’s.

Stanard’s simulation was replicated here to test additionally the accuracy of LSM, LSL, SAD
and GAD.” The model does not attempt to predict "beyond the triangle,” which is to say that
the methods project incurred losses to the most mature age available in the triangle, namely the
age of the first accident year. In the discussion below, by "ultitnate loss" is meant case incurred
loss as of the most mature available age.

The LSL method was modified to use LSM in those instances when the development factors
were "obviously wrong," defined to be when either the slope or the constant term was negative.
In real-life situations, this rudimentary adjustment for outliers can be expected to be improved
upon with more discerning application of actuarial judgment. The reason this modification was
necessary is due to the fact that a model that fits data well does not necessarily predict very
well. As an extreme example, LSL provides an exact fit to the sample data for the penultimate
link ratio (two equations, two unknowns), but the coefficients so determined reveal nothing about
the random processes that might cause another accident year to behave differently. It is not
possible to identify every conceivable factor that could explain the otherwise "unexplained”
variance of a model. Such unidentified variables are reflected through the averaging process of
statistical analysis: as the number of data points minus the number of parameters (the definition
of degrees of freedom) increases, the model captures more of the unexplained factors and

® Normally distributed frequency with mean = 40 and standard deviation = /40
claims per year, uniform occurrence date during the year, lognormal severity with
mean = $10,400 and standard deviation = $34,800, exponential report lag with mean
= 18 months, exponential payment lag with mean = 12 months, and case reserve
error proportional to a random factor equal to a lognormal random variable with
mean = 1 and variance = 2, and to a systematic factor equal to the impact of
trend between the date the reserve is set and the date the claim is paid.

' Which Mr. Stanard called the "Adjustment to Total Known Losses" method,
a.k.a. the “"Cape Cod Method.”

® For the details behind the computer model, the reader is referred to Mr.
Stanard's published results. The simulation was reproduced in C on an IBM PS/2
Medel 70 with a math coprocessor. The most complicated scenarios requiring 15000
iterations took about an hour and a half to process.
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becomes a better predictor.

In Exhibits I through IV, the average bias and standard deviation of the first accident year are
zero because the simulation defines uitimate to be the current age of that accident year.

Exhibit I: Claim Counts Only

In this case, 5000 claim count triangles were simulated, the "actual ultimate" as of the last
column was simulated as well, accident year ultimates were estimated using the various methods,
and averages and standard deviations of the prediction errors were calculated.

Of the multiplicative estimators, LSM has the smallest bias and the smallest variance for every
accident year. As can be expected, WAD is close behind. The remaining methods could
perhaps be ordered BF, SB, ADD, and LSL, in increasing order of accuracy as measured by
the standard deviation of the accident-year-total projection.

Consider first the average bias. In Figure 9A is graphed the relationship between incurred
counts at 12 months, x, with incurred losses at 24 months, y, which we know from the previous
section must be a linear relationship with a positive constant term. The ADD and WAD
estimates are also shown. All relationships are shown in their idealized states where LSL is
collinear with the true relationship and where the point (x,7) coincides with its expectation
(E(x),E(y)). Note that the ADD model is parallel to the line y=x because it adds the same
amount for every value of x. The conditional (on x) bias is the signed, vertical distance from
the estimated relationship to the true relationship. As is clear from Figure 9A, WAD and ADD
can be expected to overstate y for x > E(x) and understate y for x < E(x). The weighted
average of the conditional bias across all values of x, weighted by the probability density f(x),
is simulated by the average bias that appears in Exhibit I.

Ideally, this weighted average of the bias across all values of x should be expected to be zero,
which it is for the Additive Model. ADD estimates E(y)-E(x) via y-X calculated from prior

accident years. Since the environment in Exhibit 1 — exposure, frequency, trend, etc. — does
not change by accident year, the average of 5000 simulated samples of this dollar difference
across all possible values of x should get close to the true average dollar difference by the law
of large numbers, so the average bias should get close to zero. For the multiplicative
estimators, the average bias will probably not be zero. Take the WAD method for example.

Clearly there is a positive probability (albeit small) that X=0, so the expected value of the

WAD link ratio ‘f? is infinity. The average of 5000 simulations of this ratio attempts to

estimate that infinite expected value, so it should not be surprising that WAD usually overstates
development — and the greater the probability that x=o0, the greater the overstatement.?!

* This argument can be made more rigorous. The condition that the

probability of the sample average of x be greater than zero is a sufficient but
not necessary condition that E(by,p)} = ®. For a general, heuristic argument that
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The average bias of the BF and SB methods should be greater than zero as well because the
LDFs on which they rely are themselves overstated more often than not. The average LSM bias
is a more complicated function of the probability distribution of x because the LSM link ratic
involves x terms in the numerator and squared x terms in the denominator. The average bias
appears to shift as an accident year matures. The LSL method as modified herein has residual
average bias because it incorporates the biased LSM method when it detects outliers. It also
seems to be the case that the bias of the estimated 4-5 year link ratio is driving the cumulative
bias for the immature years.

Figure 9A illustrates the difference between a model that is unbiased for each possible value of
x, LSL, and a model which is "unbiased" only in the average, ADD. To reiterate, the purely
multiplicative and purely additive estimators will understate expected development when the
current evaluation is less than average and overstate expected development when the current
evaluation is greater than average.

Next, consider the variance. In simplified terms, the average bias statistic allows expected
overstatements to cancel out expected understatements. This is not the case for the variance
statistic. In Figure 9A it is clear that, ideally, the ADD estimate of y will be closer to the true
conditional expected value of y (the idealized LSL line) than will the WAD estimate for virtually
all values of x. Thus, the variance of ADD should be less than the variance of WAD. The
variance of LSL should be the smallest of all. However, LSL estimates twice as many
parameters than do ADD and LSM, so it needs a larger sample size to do a comparable job.
For the relatively small and thin triangles simulated here, a pure unmodified LSL estimate flops
around like a fish out of water — the price it must pay to be unbiased for all values of x. In
other words, in actual practice, the variance of an LSL method unmodified for outliers and
applied to a triangle with few degrees of freedom, will probably be horrendous. What is
perhaps remarkable is the degree to which the rudimentary adjustment adopted here tames the
LSL method.

Finally, let’s look at what would happen if we estimated the LSL parameters under the
assumption that all link ratio coefficients (a,,b,) are equal. We know from the previous section
that this is true because the reporting pattern is exponential. The results of this model are:

Average Std Dev Average Std Dev Age-Age  Age-Age
A/Y Bias Bias %Bias %Bias Bias %Bias
I 0.000 0.000 0.000 0.000
2 0.025 1.275 0.001 0.034 1.035 1.001
3 0.006 1.669 0.001 0.044 -0.019 0.000
4 -0.034 1.850 0.000 0.049 -0.040 -0.001
5 -0.006 1.815 0.001 0.049 0.028 0.001
Total -0.010 5.064 0.000 0.027

This mode! is the beneficiary of more degrees of freedom (eight — two parameters estimated

WAD yields biased estimates, see ([Stanard].
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from ten data points for each iteration) and as a result has the smallest average bias and variance
yet. These results lead to a somewhat counterintuitive conclusion: information about
development across immature ages sheds light on future development across mature ages. For
example, the immature development just experienced by the young accident year 4 from age I'
to age 2 is a valuable data point in the estimate of the upcoming development of the old accident
year 2 from age 4 to age 5. This should not be viewed simply as a bit of mathematical
prestidigitation but as an example of the efficiencies that can be achieved if simplifying
assumptions — even as innocuous as exponential reporting — can be justified.

Exhibir II: Random Severity, No Trend

In this case, 5000 triangles of aggregate, trend-free incurred losses were simulated and the same
calculations were performed.

Rarely does the property/casualty actuary experience loss triangles devoid of trend, so this model
is of limited interest. The introduction of uncertainty via the case reserves makes it more likely
that negative development will appear, in which case LSL reverts to LSM. As a result, the
additive models overtake LSL in accuracy.

Exhibit III: Random Severity, 8% Severity Trend Per Year

This is where it gets interesting. This could be considered the standard situation in which an
actuary compiles a loss triangle that includes trend and calculates loss development factors. In
this case, the environment is changing. The trending process follows the Unified Inflation
Model with =", which is to say that half of the impact of inflation is a function of the
occurrence date and half is a function of the transaction date (e.g., evaluating the case incurred
or paying the claim).

At first, one might think that a multiplicative estimator would have had a better chance of
catching the trend than would an additive estimator, but such does not appear to be the case.
Consider Figure 9B which graphs expected 12-24 month development for the first four accident
years. Trend has pushed the true development line upward at an 8% clip, illustrated by four
thin lines. The LSL model tries to estimate the average of the development lines, the WAD

estimator tries to pass through the average (X,3) midpoint of all accident years combined.

and the additive estimators try to find the line parallel to the line y=x which also passes through
the average midpoint. Again, ADD will probably be closer than WAD to the average LSL line
for every value of x. The upward trend makes it more likely that the estimated LSL intercept
will be less than zero, which makes it more likely that LSL reverts to LSM, so the modified
LSL’s variance gets closer yet to the variance of LSM.

Exhibit IV: Random Severity, 8% Trend, On-Level Triangle

? Robert P. Butsic and Rafal J. Balcarek, "The Effect of Inflation on Losses
and Premiums for Property-Liability Insurers,* Inflation Implications for
Property-Casualty Insurance, 1981 Casualty Actuarial Society Discussion Paper
Program, p. S8.



In this case, rows of the triangle were trended to the level of the most recent accident year
assuming that the research department is perfectly prescient in its estimate of past trend. For
most of the models the total bias decreases while the total variance increases. LSM and WAD
are virtually unchanged, GAD and SAD are exactly unchanged (of course), and the nonlinear
estimates move in opposite directions.

For the most part, working with the on-level triangle does seem to improve the accuracy of
estimated ultimate loss, but perhaps not to the degree one might hope. It would be interesting
to see if working with separate claim count and on-level severity triangles would successfully
decompose the random effects and further improve the predictions.
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7. CONCLUSION

Loss development predictions can be improved by the use of least squares estimators. In certain
situations the least squares estimators coincide with the more traditional simple average
development and geometric average development estimators. Under the four sets of assumptions
about the loss development process considered here, the weighted average link ratio estimator
is always inferior to an alternative, least squares estimator.

If the assumptions of a given model considered here can be married with the independence
assumption that forms the basis of the Chain Ladder Method, the developed estimates of ultimate
loss are unbiased. The variance of estimated ultimate loss can itself be estimated through
relatively straightforward application of recursive formulas. A range of estimates can be given
with associated approximate levels of confidence if one is willing to make some assumptions
about the probability distribution of the error terms.

At this point, statistical techniques may be of some guidance in selecting one model over
another, but the final choice of the most appropriate set of assumptions will probably be a
judgment call depending on, among other things, the exposure and the claims operation of the

book of business.

The simulation study suggests that the performance of the more general Least Squares Linear
method exceeds that of the multiplicative development methods and may, in some situations,
rival that of the nonlinear additive methods in common use today. It would be interesting to
investigate the correlation between development estimates of ultimate loss based on incurred and
paid triangles, and use that information to derive optimal, variance-minimizing weights for
making final selections.
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Auto Liability
Variance of Estimated Ultimate Loss
Accident Year 1991

Figure 6A

Ultimate Closed Paid to Indicated
Age (months 12 24 36 48 60 72 84 96 108 120 132 144 Date Reserve
n 9 1 2 3 4 3 § 7 8 9 19 1
mu hat $1,287 $2,982 $3,470 $3,802 $4,028 $4,223 $4,313 $4,451 $4,491 $4,491 $4,401 $4,491 $202 $4,289
x bar 824 2,000 2,317 2,495 2,325 1,866
b hat 2,027 1.078 1.056 1.017 1.034 1.011 1.022 1.032 1 1 1
Var(b hat) 0.0377 0.0017  0.0007 0.0004  0.0001 0.0002| 0.0035  0.0006 0 0 0
S 849 384 278 212 76 72 146 139 73 31 3
I 18 17 16 15 14 13 12 13 12 1 10
df 16 15 14 13 12 11 10 11 10 9 8
Parameter Risk 48,112 66,266 79,751 86,179 92,745 96,123 1.66E+05 1.88E+05 1.88E+05 1.88E+05 1.88E+05
Process Risk 7.20E+05 9.85E+05 1.18E+06 1.26E+06 1.35E+06 1.39E+06 1.47E+06 1.59E+06 1.59E+06 1.59E+06 1.59E+06
Total Risk 7.69E+05 1.05E+06 1.26E+06 1.35E+06 1.45E+06 1.48E+06 1.64E+06 1.77E+06 1.78E+06 1.78E+06 1.78E+06
Std Dev 876.671 1,025.227 1,120.290 1,160.473 1,202.590 1,218.497 1,279.595 1,332.182 1,334.199 1,334.566 1,334.569
Totat df 129
One—tailed 80% t-value (same as standard normal when df =129} 0.842
80% Confidence Risk Load (t—value x Std Dev) $1,124 $1,124
Upper bound on 80% Confidence interval for Ultimate Loss $5,615 $202 $5.413
80% Confidence Risk Load as a Percent of the Expected Value 25% 26%
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Auto Liability

Variance of Estimated Ultimate Loss
Accident Years 1984 — 1991

11

10

$47 555

Figure 6B

Total Indicated
Closed Paidto Total

132 144 Date Resewe
19 n
$47,555 $37.854 $9,704
1 1
0 0
31 3
11 10
9 8

7.35E+06 7.35E+06 7.35E+06 7.35E+06
2.48E+06 2.53E+06 2.54E+06 2.54E+06
9.82E+06 9.87E+06 9.88£+06 9.88E+06

Age (months 12 24 36 48 60 72 84 96
n 0 1 2 3 4 ) 8 4
M hat $1,287 $2,982 $6,739 311678 $16516 $25585 $36443 $44,685
x bar 824 2,000 2,317 2,495 2,325 1,866

b hat 2.027 1.078 1.056 1.017 1.034 1.011 1.022
Var(b hat) 0.0377 0.0017 0.0007 0.0004 0.0001 0.0002 0.0035
s 849 384 278 212 76 72 146
1 18 17 16 15 14 13 12
df 16 15 14 13 12 1" 10
PARAMETER RISK 48,112 95,937 1.61E+05 2.27E+05 2.63E+05 3.83E+05 5.70E+06
PROCESS RISK 7.20E4+05 1.13E+06 149E+06 1.72E+06 1.87E+06 1.95E+06 2.18E+06
TOTAL RISK 7.69E+405 1.23E+06 1.65E+06 1.95E+06 2.14E+06 2.33E+06 7.88E+06
Std Dev 876671 1,108.321 1,286.375 1,396.973 1,461.640 1,525.937 2,806.755 3,134.438 3,142.149 3,143.706 3,143.721
Total af

One~—tailed 80% t—value (same as standard normal when df=129)

80% Confidence Risk L.oad (t—value x Std Dev)
Upper bound on 80% Confidence Inteval for Uitimate Loss

80% Contidence Risk L.oad as a Percent of the Expected Value

129
0.842
$2,647 $2,647
$50,202 $37,854 $12348

6% 27%




T

12=24
LSL
a 373.63
b 2027
3 848.8
df 18
Std(a) 77.35
Std(b) 0.194
One ~tailed 99%
t—value 262
Upper bound
ona 202.66
LSM
b 2.204
s 876.5
df 17
Std(b) 0.157

24-3¢  J-4B 4860

255.26 137.50 161.37

1.078 1.056 1.017
384 204 277.64 211942
15 14 13

39.7946  31.7267 256207
0.04063 0.02726 0.01978

265 268 272

105.46 85.03 69.69

1.133 1.083 1.046

421.549 288.053 238.949

00336 0.02092 0.01656

Figure 7

Auto Liability
Incurred Loss + ALAE Development
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0.215
0.338
0.851

EXHIBIT|
Claim Counts Only

Std Dev
Bias

0.000
2.000
2.772
3.166
3.780
8.251

0.000
1.868
2.847
3.644
3.692
8.407

0.000
2.000
3.321
5.246
10.536
14.009

0.000
2.000
3.336
5.308
11101
14.520

0.000
2.000
3.345
5.346
11.585
14.943

0.000
2.000
3.354
5.390
12.268
15.530

0.000
1.940
3.021
3.997
4.280
9.564

0.000
1.952
3.064
4.151
5.164
10.626

Average
%Bias
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0.000
0.003
0.004
0.003
0.003
0.002

0.000
0.002
0.002
0.002
0.003
0.001

0.000
0.003
0.004
0.000

{0.020)

{0.003)

0.000
0.603
0.005
0.007
0.023
0.008

0.000
0.003
0.006
0.011
0.049
0.014

0.000
0.003
0.007
0.015
0.078
0.021

0.000
0.003
0.004
0.004
0.006
0.003
0.000
0.003
0.005
0.006
0.010
0.004

Std Dev
%Bias

0.000
0.053
0.073
0.083
0.100
0.043

0.000
0.049
0.075
0.096
0.097
0.044

0.000
0.053
0.087
0.138
0.277
0.074

0.000
0.053
0.088
0.139
0.292
0.076

0.000
0.053
0.088
0.140
0.305
0.079

0.000
0.053
0.088
0.142
0.322
0.082

0.000
0.051
0.07¢
0.105
0113
0.050

0.000
0.051
0.081
0.109
0.136

Age—Age
Bias

0.116
0.037
(0.052)
(0.021)

0.059
0.016
(0.028)
0.049

0.116

0.027
(0.139)
(0.752)

0.116
0.087
0.078
0.607

0.116
0.118
0.190
1.449

0.116
0.149
0.306
2.387

0.102
0.045
{0.010)
0.048

0.114
0.070
0.031
0.123

Age—Age
%Bias

0.003
0.001

(0.001)
0.000

0.002
0.000
0.000
0.001

0.003
0.001
{0.004)
{0.020)

0.003
0.002
0.002
0.016

0.003
0.003
0.005
0.038

0.003
0.004
0.008
0.062

0.003
0.001
0.000
0.002

0.003
0.002
0.001
0.004



Linear
LSL

ADD

LSM

WAD

GAD

SAD

Nonlinear
SB

BF

AlY

Average
Bias

0
9,206
8,749

30,028
39,426
87,410

0

158
(7,445)

324

(2,668)
(9,631)

0
9,206
6,192

24,331
12,280
52,019

0

9,206
11,815
51,641
116,664
189,327

0

9,206
13,873
61,706
184,903
269,687

o]

9,206
20,621
97,144
405,202
532,174

6,126
3,909
15,414
11,071
36,520

8,040
10,750
29,330
37,124
86,244

EXHIBIT I
Random Severity, No Trend

Std Dev
Bias

0
193,945
218,463
429,112
535,959
888,404

0
185,077
196,201
272,189
271,443
596,942

0
193,945
221,114
477,371
825,131

1,127,243

o]
193,945
222,675
515,997
894 747

1,208,220

0
193,945
219,115
484,892
854,318

1,130,473

0
193,945
227,597
598,072

1,241,904
1,552,136

0
184,062
196,494
291,195
286,813
633,658

0
200,965
221,175
331,648
374,743
820,177

Average
%Bias
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0.000
0.026
0.069
0.138
0.228
0.040

0.000
0.010
0.023
0.066
0.140

(0.004)

0.000
0.026
0.033
0.052
0.036
0.020

0.000
0.026
0.048
0.119
0.310
0.088

0.000
0.026
0.054
0.147
0.489
0.130

0.000
0.026
0.072
0.233
1.063
0.255

0.000
0.026
0.052
0.097
0.172
0.017

0.000
0.034
0.073
0.132
0.225
0.040

5td Dev
%Bias

0.000
0.302
0.420
0.650
1.004
0.356

0.000
0.329
0.472
0.581
0.680
0.255

0.000
0.302
0.415
0.742
1.404
0.453

0.000
0.302
0.421
0.807
1.597
0.487

0.000
0.302
0.412
0.763
1.593
0.469

0.000
0.302
0.440
0.980
2.516
0.640

0.000
0.304
0.430
0.575
0.698
027

0.000
0.373
0.525
0.691
0.886
0.342

Age—Age Age-—Age

Bias

9,206
(458)
21,279
9,398

158
(7,603)
7,769
(2,991)

9,206
(3,015)
18,140

(12,042)

9,206
2,608
39,826
65,023

9,206
4,666
47,833
123,197

9,206
11,415
76,523

308,058

6,126
(2.217)
11,506
(4,344)

9,040
1,710
18,580
7,794

%Bias

0.026
0.042
0.065
0.079

0.010
0.013
0.042
0.069

0.026
0.007
0.018

(0.015)

0.026
0.021
0.068
0.171

0.026
0.027
0.088
0.298

0.026
0.045
0.150
0.673

0.026
0.025
0.043
0.068

0.034
0.038
0.055
0.082



EXHIBIT i
Random Severity, 8% Trend

Average Std Dev Average 5tdDev  Age-—Age Age-—Age

AlY Bias Bias %Bias *%Bias Bias %Bias
Linear
LSL
1 0 0 0.000 0.000
2 12,848 190,771 0.030 0.300 12,848 0.030
3 11,815 318,796 0.061 0.469 {1,034) 0.030
4 8,339 515,561 0.080 0.629 (3,475) 0.018
5 {23,573} 731,012 0.075 0.944 (31,912) (0.005)
Total 9,430 1,181,752 0.002 0.367
ADD
1 0 [ 0.000 0.000
2 (2,249) 177,229 0.008 0.337 (2,249) 0.008
3 (15,161) 262,260 0.009 0.461 (12,912) 0.001
4 (35,576) 335,003 0.005 0.511 (20,414) (0.004)
5 {92,221) 399,076 {0.028) 0.551 (56,645) (0.033)
Total (145,207) 757,285 {0.053) 0.249
LSM
1 0 0 0.000 0.000
2 12,848 190,771 0.030 0.300 12,848 0.030
3 16,307 328,599 0.043 0.475 3,458 0.013
4 27,133 580,424 0.057 0.728 10,826 0.013
5 8411 1111762 0.035 1.360 (18,722) (0.021)
Total 64,698 1,504,280 0.021 0.472
WAD
1 0 0 0.000 0.000
2 12,848 190,771 0.030 0.300 12,848 0.030
3 23,423 333,524 0.057 0.477 10,575 0.026
4 62,726 608,272 0.122 0.775 39,303 0.061
5 169,257 1,272,791 0.310 1.620 106,531 0.168
Total 268,255 1,659,744 0.098 0.527
GAD
1 4] 0 0.000 0.000
2 12,848 190,771 0.030 0.300 12,848 0.030
3 26,050 331,370 0.062 0.466 13,201 0.031
4 77,169 586,779 0.149 0.755 51,119 0.082
5 277,757  1,285202 0.495 1.717 200,588 0.301
Total 393,824 1619314 0.148 0.534
SAD
1 0 0 0.000 0.000
2 12,848 180,771 0.030 0.300 12,848 0.030
3 35,174 346,105 0.080 0.497 22,326 0.049
4 124,456 685,305 0.235 0.924 89,282 0.144
5 647,473  4,098366 1.107 4.508 523,017 0.706
Total 819,951 4,291,335 0.299 1.164
Nontinear
S8
1 0 0 0.000 0.000
2 10,229 177,339 0.036 0.323 10,229 0.036
3 7.628 272,101 0.055 0.456 {2,601) 0.018
4 (5,009) 357,093 0.057 0.530 (12,637) 0.002
5 (62,946) 420,117 0.021 0.530 (57,936) {0.034)
Total (50,098) 825,565 (0.018) 0.269
BF
1 ¢ 0 0.000 0.000
2 16,575 212,872 0.052 0.421 16,575 0.052
3 23,046 310,265 0.091 0.589 6,471 0.037
4 25,574 422,741 0.114 0.668 2,529 0.021
5 {9,528) 534,249 0.101 0.780 (35,103) (0.012}
Totat 55,667 1,113,743 0.020 0.357
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Linear
LSL

ADD

LSM

WAD

GAD

SAD

Nonlinear
$SB

BF

AY

Bin s R =

Tot:

[[S. NN L

Average
Bias

0
12,848
19,663
38,827
44,325

115,663

0
(205)
(4,949)
(3.371)

(2.726)
(16,251)

0
12,848
16,069
26,536

3,262
58,715

0
12,848
23,310
62,521

166,470
265,149

0
12,848
26,050
77,169

277,757
393,824

0
12,848
35,174

124,456
647,473
819,951

0
8,650
10,927
17,818
12,875
50,271

0
12,243
20,320
38,157
51,227

121,946

EXHIBIT IV
Random Severity, 8% Trend, Estimates Based on On—Leveled (at 8%) Triangle

Std Dev
Bias

0

190,771
321,503
508,047
695,596
1,148,516

0
182,866
272,965
352,774
422,975
833,130

0

190,771
326,583
577,658
1,070,100
1,459,667

0

190,771
332,453
607,521
1,251,178
1,635,365

0

190,771
331,370
580,779
1,295 202
1,619,314

0

190,771
346,105
685,305
4,098,366
4,291,335

0
175,543
275,491
368,370
440,455
870,120

0
199,536
303,669
423,818
547,415

1,110,267

Average
%Bias
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0.000
0.030
0.080
0.147
0.216
0.045

0.000
0.014
0.033
0.074
0.140

(0.003)

0.000
0.030
0.043
0.055
0.027
0.019

0.000
0.030
0.057
0.121
0.305
0.097

0.000
0.030
0.062
0.149
0.495
0.148

0.000
0.030
0.080
0.235
1.107
0.299

0.000
0.032
0.063
0.106
0.173
0.021

0.000
0.041
0.084
0.142
0.223
0.046

Std Dev
%Bias

0.000
0.300
0.479
0.637
0.928
0.357

0.000
0.358
0.505
0.577
0.664
0.277

0.000
0.300
0.473
0.725
1.316
0.460

0.000
0.300
0.476
0.774
1.698
0.520

0.000
0.300
0.466
0.755
1.717
0.534

0.000
0.300
0.497
0.924
4.508
1.164

0.000
0.316
0.471
0.570
0.684
0.284

0.000
0.382
0.567
0.679
0.842

Age—Age Age-—Age

Bias

12,848
6815
19,164
5,498

(205)
(4,744)
1,578
(4,355)

12,848
3,220
10,467
(23,274)

12,848
10,461
39,211
103,950

12,848
13,201
51,119
200,588

12,848
22,326
89,282
523,017

8,650
2,277
6,891

(4.943)

12,243

8,078
17,837
13,070

%Bias

0.030
0.049
0.062
0.060

0.014
0.019
0.040
0.061

0.030
0.013
0.012

(0.027)

0.030
0.026
0.061
0.164

0.030
0.031
0.082
0.301

0.030
0.049
0.144
0.706

0.032
0.030
0.040
0.061

0.041
0.041
0.054
0.071



APPENDIX

Theorem l: The by, estimator satisfies Properties 4 and 5: the sum of the

residuals is zero and the line through the origin with slope by,, passes through

the sample average (X.,¥) .

Proof:
Z(y - bypx) = Ly - %Ex
eniy- Z
= nly }-c.j
=0

This proves Property 4. Next, ¥ - —};;s)?= 0, so ¥ = by,,X, demonstrating that the

sample average is on the line through the origin with slope by,,, Property S.

Theorem 2: Var(by,) 2 Var(byy)-

Proof: TFirst, write by = EIxy,/Zx’ = Zwy, where wa=x/Ix’. Recall that all
expectations of y are conditional on x, including the variance, which means that
expressions involving x, in particular w, may be manipulated as constants.

Therefore,

var {bpg) = Var ()t:wiyﬂ (Xy 0 Xys s X))
= };wfvar (v ixy)
= Twig?
1 v
= g2 i
¢ ;(sz]
OZ

Yx2

Next,



Varbgy = Var(%)

= 1l Yvary

(Lx)?
no?

(Ix)?
To show that Var(bw,.,) 2 Var(b,g) we only have left to show that

LiT02 < Tx?
n
or
1vy.42 . 1v.,
(—JZX) s =X¥x? .
n n
But the latter is just the Schwartz Inequality.' QED.

Theorem 3: Under Model III, the least squares estimator is bg,,.

Proof: The transformed Model IIX

is of the form

u=bv+e
where the variable v is identically equal to unity. Thus, the transformed model
satisfies all the assumptions of Model II. Accordingly, its least squares

estimator is

'See for example John F. Randolph, Basic Real and Abstract Analysis, p. 35.
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Theorem 4: Under Model IV, the least squares estimator is bg,p-
Proof: The transformed Model IV

ln(y) = ln{b} + ln(x} + ln{(e)
or

ln(y} - la(x) = 1ln(b) + ln(e)

is of the form

u=blv+ ve

where b’=ln(b), v=1, and E(e')=0. Thus, the transformed model satisfies the SAD

agsumptions. By Theorem 3

‘o iyu 2 - =1 z
Bl = £3 < = ZL{n(y - Inx)) = 237 1In( )

Therefore, the least squares estimator of the "untransformed" parameter b is

B = exp(8) = exp( 1T 1nL) = [exp T 10 )% = YT Z = bawy

Theorem 5: Under the assumptions of Model I, y.q = ayq + bygx is an unbiased

estimator of vy; i.e., B(yw) = E{y). Under the assumptions of Model 1II,

Yisu = DPygyX 18 an unbiased estimator of y.

Proof: Model I assumes that E{(y} = a + bx. Since all expectations are

conditional on x and since ag; and by are unbiased, we have

Elye) E{agg * bigx)
E{apg) + E(bygx)
Elags) + Blbyg)x
a + bx

E{y)} .

nyowouon

The proof for LSM is similar.

233



Lemma 1: Under LSL, E(Xx,|X,) = a, + b"E(x,,_,|xa). Under LSM, E(x,,]xo) = b,,E(x,,,,lxo).

Proof ]: The proof will be given for LSL. The proof for LSM is similar.

First,

£{x,, X,)
£(2,)
f f(Xn' xn—l'xa) dxn-:l

Xa-3

£ix,|x)

£{x,)

Next, the "Multiplication Rule" of conditional density functions® states that

£(X,) X0y s %) = f(xn[ (xn-llxl)))f(xn-llxﬂ)f(xo) .

Therefore,
f Flan] Otyoys o) ) £ (X | o) £(xy) dxp_y
f = Xa-1
(%, %) Fx,)
ol ECARESNVEAREJEARE SN
Xa-1
By the CLIA, the randeom variable x,,Ix,,,, is independent of x,. Therefore

f(x,,‘(x,,_,,x,,)) does not depend on x, so f(xnl(x,,_,,xo))=f(x,,|x,,4,). The rest of the
procof hinges on our ability to interchange the order of integration. We will

make whatever assumptions are necessary about the form of the density functions

lsee Robert V. Hogg and Allen T. Craig, Introduction to Mathematical
Statistics, p. 64.
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to justify that step.

E(x,!xy)

Proof 2: Recall

following variation

For LSL we have

Then

= fxnf(xnixo)dxn
Xn

- fxn
Xa

f (fx,,f(x,,] (Xpoy s X)) X E4 Xy | %) Xy

Xa

[ £zl <xn.1,xo>)f(xn.1!x°>dxn.1)dxn

]

Xn-3

f (fxuﬂxntx,,,odxn)fcxn.,rxadxn-,

Xa

Xn-1

(@ +boXpq) £, 1 x) dx,y
Xa-3

ap * bn [ Xn~1f(xn~1 1 xo) dxu—l

"

Xp.1 '
= a, + b E(x, %)

the well-known identity E(X)=E,[E(X|{Y)

reiterated in equation (1) above:

E(X, X} = By (x, [E{X,] (X51,3))]

Consider the

1.°

E{X, %) = B [E(X,] (%5, %)) ]
= By %o (E(Xa] %540 ) by CLIA
= Exﬂ_llx, [an * bnxn-x]

Theorem 6:

Proof:

is similar.

By induction on n.

= a, + by ElX,,]X)

E(fi,ix) = Elx,:X,)

The proof will be given for LSL;

) see

for example

I. B. Hossack, J. H. Pollard,

the proof for LSM

and B. Zehnworth,

Introductory Statistics with Applications in General Insurance, 1983, p. 63.
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For n=1 the theorem is simply a restatement of Theorem S.

Assume that E(f,,[X,) = E(X,,/X,). Wehavethat [, =4, + b,f,, where &, and B,

are functions of the random variables x,ix,,, and fi,, is a function of the random

variables x,,,,lx,,_,, ... ,%|x, and x,. The CLIA implies that x,|x,,_, is independent

of x,,; x,,,,...,x,’xo, and x, so &, and B, are independent of fi,_,. Therefore,

E(fl,lx,) = E(E,1x) + E(B, | X E(f,_ix,) v B, and ., are independent
= By B8, X ) ] By (BB, ] (X,q, X)) ) EXR, | %)
= Ex . [E(&, 15,00 ] + By [E(B, [ X,) D E(R,, [ XG)
= Eq xe (@) * By ik, [B) E(R, 1)

= a, * b E(f,,x)

a, + b, E{x,.,|x) by the induction hypothesis

= E(x,|X,) by Lemma 1.

Theorem 7:

lt*
tr
lad
|
(n
k4

For n=1:

o

var fi, = x; varB,
I]

varfl, = 2 .+ (x,-%)2Varh,
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For n>1:

q -
varfl, = == + By =X, )2 Varb, +

varf, = pi.,varb, +

a®

El

bivarfi,, + Vf:utsnvarf.l"_:l
bivarf,, + varb varfi,,

Proof: We will prove the LSM case first. We saw in Theorem & that B, and

f,.; are independent random variables. The formula' for the variance of the

product of two independent random variables x and y is

var(xy) = o/9 + po} + plol? .

This proves the theorem for LSM because B, is unbiased.

For LSL,

varf{l, = Var§, + 2Cov{(&,,5,f,.,) + var(B,f,.,).

It is well known’ that the random variables X, and B, are uncorrelated when B,

‘See Hogg and Craig, p. 178, problem 4.92.

> see R. Miller and D. Wichern, Intermediate Business Statistics, 1977,
p.202, for example.
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is determined by least squares; since all expectations are conditional, we have

that
Vard, = Var (X, - X,.,6,)
= varx, + Xz.,varb,
02
it ;?,,“_IVaan . (2)
Iﬂ
Next,
Covi&, B,.fi,.,) = Efi,, Covi§,,b,) = fi,., i5 independent of §, and b,
= p,., Cov(4,,B,)
and

covi{§,.B,) = Covix,- X, 0,5,

cov(-x, ,B,,B,)

= -X,,varb, . (3)

Putting these together with the formula for Var(b,fi,,) from the LSM derivation

above we have

2
4 -
Varfl, = —Iﬁ + X2, Varb, - 2p,, X, ,Varb, + f%,varb, + bivarf,, + Varfi,,

]

2
o -
= ——I" + By - X,,)2Varb, «+ blvarg, , + varb, varfl,

Bl
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Theorem 8:

var (x,1 %) = 0% + bl Var (x, | x,)

Proof:

Var(x,ixy) = By IVAr (X,] (X, X))}« Var, . (E (X, (Xp 0. %))

= By 1e (VAT ([0 ) )+ Var, o (B X0 ] by CLIA
= Ex‘_‘lx‘(az,,) v var, (a5 * baXn ) under LSL
= 0% + bvar (x,,1x,) under LSL or LSM.
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Lemma 2:

Proof:

E(S,)

= natb, (E(S,;) * Xpini) -«

i

"

n-1
EOq L lx )
120

a-1
Exl,n-)"".,l [E(xilﬂ! (Xiyn-l' xl,l) )}
i=o
a-1
By iy, (B (Xg a1 X 5} ]
1+0
n-1
Exq-xix.,(an "’bnxt,n-z)
iz0

n-2

by CLIA

{
na, « b, EE(X,',,..“X;(;) * Xno1,n-1

130

na, + bn (E(Sn-l) * Xn—).

240
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Theorem 9: Let XD,=(Xgps Xy s++-+%.4,y) Genote the current diagonal of the triangle

for the n youngest accident years. Then

E(®, | XD,) = E(S,) .

Proof: By induction on n. The proof will be given for LSL; the proof for LSM

is similar. For n=1, we know that

EM, | XD,) = B{f,,1%,,))

= ElX,,, | %,0) by Thecrem 7
= E(5))
Now, assume E(M,_,|XD,,) =E(S,,). Under LSL, & =nf+B (8, ,+x,.,,,) where

&, and B, are functions of the random variables x,|x,, and M _, is a functien

of random variables x,,fx,J., and of x, for j<n. By the CLIA &,and B, are

independent of M, ,. Therefore

E(M,xD,) = E(n&,+B (R, +X,., ..} | XD,

E(n&,[XD,) + E(Bn | XD,) E (ﬂn—x + Xo1,ne | XDg)

na, + by (B, {XD, 1) + o0 40y)

na, + b, (E(S5,.,) + X, ny) by the induction hypothesis

= E(S,) by Lemma 2.
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Theorem 10: PARAMETER RISK

lr
]
(e}
[t
1%}
3

|

For n=1:
2 e 2
° - - var¥, = x¢,varb
var¥, = T‘ + Xy 0=Xy)?Varb, 1 0.0 t
1
For n>1:
varH, = varf, = (M, +x, ,) *Varb, +
2 9% = 2 pivar®,., + varB,var¥,
n T My * Xy poy = X y) Varb,
n

+ b2varM, , + Varb,varH,

Proof:

We will prove the LSM case first. Since ®,=b, (%, _,+X,, ,,) . the proof is

immediate by virtue of the formula for the variance of the product of two

independent random variables once we note that

var (M, + Xn.q.nq) = Var (%,.,)

because x,,,, can be treated as a constant with respect to this conditional

variance.

For LSL,
varfl, = Var{nd,+b, (&, _, +x,, ..)))

= var (n§,) *» 2Cov(nd,, B (B, +x,, ,,)) + Var (B, (f,, +x,, ,.,))

In the proof of Theorem 7 we saw that (equation (2))
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2

a Un
Vara, = T
a

+ ¥2,varB,

Covi{4,,b,) = -X,,varb,

since #,, is independent of &,andb, and since all expectations

conditional on the current diagonal,

Cov (&, B (B, * Xpq.pt)) = DEF *+ X, 4 0) COV(E,,bB,)

therefore

2
o -
varfl, = n'(—I—" +xE,varB) - 2nE(®,_ + X0, py) Xn,Varb,
+ (My_1*Xny 0y) 2 Vaz By + bivarfl,, « varB,varfl,

2
o -
2R - 2
nizt v (M, + Xpoy py - DX, )2Varby
n

+ bivari, , + varB_ varf,
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Theorem 12: Var(S,) = no} + bjvar(s,,).

Proof:

var (S,) = Ey o, [Var (S,1 (X, XDy} )] + Vary o [E(S,| (X, XD,) )]

n-1
= By ix,[Var (E Xy ol (%, 40 Xq 000)) ] 4 VAXy i (@070, (S i+ X0, 0u))
1=0

a1
2
= By, 1o, (var (Z Xinl X n0)] + b vVary . ixo,., (Sp1*X53,5-1)
10

= no? + bivar(s,,).

Theorem 13: Under the transformed GAD model

' I3 / 7
Xp = bp + Xp + €,

where we assume that c/f = Var(e;) are identical for every j, the estimate of

the variance of the prediction of ultimate (transformed) loss
Wo=x+ 28
-1
is

v
(c + ?:i)s”
I

where s° denotes the MSE of the simultaneous solution of the link ratios of

the transformed model.

Proof: Since we assume equal variances by development age, we may solve for all

parameters b simultaneously with the equation (refer to Figure 4)
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/ !
Xn.1"Xn.0 ey
/ /
Xy-1,17XN-1,0 i 0.0 g €y
: 0 .0
;o I ; ,
Xy =X b. e
Tae 10.00 * 1
7 / bi /
Xy, 27 XN 01..00 2 &;
: = ] x H + H R
/ / / /
Xa,27Xz,1 01.00 byy ey
. : ;
b,
; , 006 .10 * ,
X, N-1— XN, N- ex-
N, N-1" XN, N2 00 .10 N-1
/ / /
XN-1,N-1"XN-1,¥-2 00 .01 ey-y
/ / /
Xn, 4~ XN, N-1 en

or, in more concise format, Y=X3 + E. It is well known that the least squares

estimator of f is f=(X'X)"'X’Y and that the variance-covariance matrix of this

estimator is (XX)7*¢® , 1In this case, it is clear by inspection that X'X

is a diagonal matrix whose j® entry equals I;, the number of data points in the

/
estimate of the j* link ratio, and whose off-diagonal elements are zero. Thus, Varbf = -;—
3

u
and Cov(b{,B{)=0 for iwj. Therefore, the Parameter Risk Var(c+y Bj) is
=1

U

12

exactly equal to ¢ —f]-‘- . The Process Risk is equal to
3

-1

<
Y var(e) = Co”
31

These variances are estimated by substituting the estimate s for o7
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Correlation and the Measurement of
Loss Reserve Variability

by Randall D. Holmberg
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CORRELATION AND THE MEASUREMENT OF
LOSS RESERVE VARIABILITY

Randall D. Holmberg, FCAS

Loss reserves are the largest liability on the balance sheet of an insurance company, yet
they are only estimates. Even the actuary responsible for making the estimates is often
unable to quantify the inherent uncertainty. This is partly a consequence of the complexity
of estimating the variability of the reserve estimates. Correlation across several
dimensions makes statistical measurement of uncertainty difficult. Most insurers have only
a limited number of historical data points available with which to make estimates of the
multiple correlations, making estimation of correlation problematic. This paper presents a
mathematically simple model of loss development variability which allows the inclusion of
several types of correlation. It can also be adapted to deal with other complexities which
may arise in the analysis of reserves. The paper also presents methods which make it
easier to estimate correlations in practical applications.
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CORRELATION AND THE MEASUREMENT OF
LOSS RESERVE VARIABILITY

Loss reserves, generally the largest liability on the balance sheet of an insurer, are only
estimates of ultimate loss payments. Even if these estimates as carried on the balance
sheet are unbiased, neither deliberately redundant nor inadequate, they are subject to
uncertainty. Furthermore, the magnitude of the uncertainty of these estimates is generaily
unknown, even to the actuary who reviews reserves and certifies their adequacy in
statutory financial statements. Considering the importance of reserve estimates to an

insurer's reported net worth, it is important to quantify the uncertainty of these estimates.

Attempts to quantify the uncertainty of loss reserve estimates can easily get stymied by the
complexity of reserve issues. There is potential for substantial correlation across many
dimensions. There are usually relatively few historical data points from which to estimate
the multiple correlations that are possible. Yet it is unlikely that correlation is insignificant
in the variability of the total reserve estimate. Therefore, actuaries need a model which
can deal with correlation but which allows reasonable estimation of the correlations

involved.

This paper presents a model for measuring the uncertainty of loss reserve estimates. Its
main virtue is the directness and simplicity of the approach. It includes adjustments to
account for many of the kinds of correlation effects which arise in analyzing reserves. The
data for this measurement will be available in one form or another at any insurance
company. The relevance of the items used in the measurement to the question being asked
is easy to see. The model is simple enough that it is relatively easy to add features to cope

with complications that the model as presented herein does not consider.
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While estimation of the correlations involved is difficult in practice, this paper presents

several approaches which have proved helpful in making such estimates.

Even when the parameters required by the model are difficult to estimate, the model may
be used in sensitivity testing to get a greater appreciation of the importance (or lack of
importance) of correlation to the accuracy of reserve estimates. The parameters have
clear-cut intuitive interpretations, so sensitivity testing should prove fruitful to a

knowledgeable reserve actuary.

The paper will present the model in a relatively simple form and then suggest adaptations
to deal with situations of greater complexity. An example of applying the approach is

integrated into the description of the model.

BASIC APPROACH

In the property-casualty insurance industry in the United States, actuaries generally rely on
a link ratio loss development approach to determine their estimates of accident-year
ultimates and hence the adequacy of carried loss reserves. It seems natural to consider the
way reserve adequacy is estimated in determining the variance of the resulting estimate.
We take a very direct approach. We measure the variance of historical link ratios which
the actuary examines when determining projections of future development patterns. From
these variances, the variance of the resulting estimate of ultimate is computed. The
variance of the estimated ultimate for a single exposure period is equal to the varance of
the estimate of reserve shortage or redundancy for that period. The exposure period
variance for a single period is then combined with those of other periods to arrive at the

variance of total reserve need at a valuation date.
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Variance of Link Ratios

In this description of the model, we phrase all discussion in terms of incurred loss
development methods. However, this same approach works in a paid loss development
context. Similarly, although all references are to "accident year" this model can be used

with other exposure periods such as report years or accident quarters.

We will first establish some notation. Let R denote the total IBNR reserve need as of the
valuation date in question. In our formulation, R includes provision for adverse or
favorable development on known cases. Case reserves are treated as a constant.
Therefore, the variability of R is equal to the variability of total reserve need. Let 1 be
the number of accident years and the maximum number of valuations included in our
development triangle. Define /, as the incurred loss for accident year i as valued j
years after the beginning of the accident year. Both i and j are numbered sequentially
beginning with 1. Let L, be the ultimate loss for accident year i . Let d, ; be the link ratio
for accident year { between valuations j and j+1. Finally, define D, as the
development factor for accident year / from age j to ultimate. In this formulation,
d,,=D,, is the tail factor for accident year / . The latest available historical valuation of

yeari is/, ... Note the following:

li, j+1
4, =" M
i
D, =]14. )
k=)
D,;=d,; D, ., for j<n ®
Li = Di.n—H-l '1;'.;-~5+1 4
E(L)= E(Di_n—iﬂ) '[i.n—m )
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R=3L,-3 ©)

E(R)y=2 E(L)=2 ] M

In the traditional link ratio approach,

EDD,)=]1E(,), and
k=j
E(d;)=E(d,,) foralli, k for which j>n-iandj>n-k.

We will not require that these two relationships hold in our model.

E(L,) is the estimated ultimate loss. The variance of Z, around this mean is what we will

measure to arrive at the variability of loss reserve estimates for a single accident year.

The first step in calculating the variance of accident year ultimates is to calculate the
variance of the historical link ratios for each stage of development. Exhibit I shows the
triangle of incurred losses we will use in our examples. Exhibit 2 is the resulting triangle
of link ratios. This is a ten-year triangle, so from it we calculate the variance of all &, , for
a fixed j, for values of i <10- ;. These variances, as well as average link ratios and

standard deviations, are also displayed in Exhibit 2. Note that since the variance of the

link ratio at age j, Var(d,,), is calculated across all i <10~/ for a fixed j, we have
Var(d, ,)=Var(d, ;) evenif i # k so the first subscript is not needed. In our example, the

same is true of the mean at age j, E(d,,). However, we will carry the first subscript

throughout for consistency with other notation.
The model treats historical link ratios at a given stage of development as a sample from

independent identically distributed random variables. The sample variance calculated from

this sample is used as an estimator of the variance of the random variable's distribution.
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The actuary's chosen projection of loss development may not match historical averages.
Even in such instances, the sample variance is used to estimate the variance of future
development, as it represents our best estimate of the variability of future development.
However, the chosen development factor is treated as the expected value of that
development. The example used in this paper includes some selected link ratios which are
not equal to the historical average, in order to illustrate how these selections are treated in

this method.

An issue that arises is what variance to assign to the link ratios where there are few
historical points, and to the tail development factor. Unless there is reason to do
otherwise, in practice we usually rely on the sample vanance for all ages where there are
two or more historical link ratios. In many cases, assigning zero variance to the last one-
year link ratio and to the tail factor is reasonable. In other cases, regressing the standard
deviation of link ratios against the quantity (I -Ed,; )‘ gives a fitted line which can be
used to read off the standard deviation of the link ratio or tail factor (limiting standard
deviations to non-negative values, of course). Alternate approaches could be used, such
as using a parallelogram of link ratios rather than a triangle, or regressing standard
deviations against the stage of development j, or simply judgmentally choosing a number
for these stages of development. If the data used produce standard deviations which are
sufficiently "bumpy" some of these techniques might be required even for stages of
development with relatively many historical link ratios available. In the example used
here, we have used sample variances where available and have assumed zero variance for
the last stage of development seen in the experience and for the tail factor. This is seen in

Exhibits 2 and 3.



Following equation (4), since /,_,,, is 2 known constant, we have:

Var (L) =Var (D, ) (i)’ ®
Therefore, determining Var(D,,_,,) for each i will determine the variance of each
accident year ultimate. Var(D,,.,,) is a function of the Var(d,;) for all j2n-i+1.

However, Var(D,,.,,,) also depends in part on the correlation between link ratios at

different stages of development within a single accident year.
Correlation Between Stages of Development

There are different reasons we might expect development at different stages to be
correlated. For instance, if unusually high loss development in one period were the result
of accelerated reporting, subsequent development would be lower than average as the
losses that would ordinarily be reported in those later periods would have already been
reported. In this instance, correlation between one stage and subsequent stages would be
negative. Positive correlation would occur if there were a tendency for weaker-than-
average initial reserving to be corrected over a period of several years. In that case, an
unusually high degree of development in one period would be a warning of more to come.

These examples do not exhaust the possible reasons for correlation.

The usual link ratio approach, constructing development factors to ultimate as

E(D )= HE(d,._k), implicitly assumes the stages of development are uncorrelated. If
k=]

the d, ; were independent for different values of j within a fixed i , we would have the

following:

Var(D, )= E*(d,) Var(D, ) +Var(d, )- E*(D,,..) +Var(d ) Var(D,,..) ()

gl
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Since for the tail factor (d,, in our example) &,, = D, ,, we could start with the tail factor

iny

and use equation (9) with our variances of link ratios to chain backward and build

Var(D,,_,.,) for all i . Here we generalize to a situation where correlation among stages

of development may exist.

Hayne approached the problem of correlated link ratios using an assumption of
multivariate lognormality. We propose an approach which is perhaps more intuitive and
which is certainly simpler. As a consequence, our approach lacks much of the elegance of
Hayne's, but it provides a model which can yield significant insights into the effects of

correlation between link ratios.

Our mathematically convenient model for correlation treats a single link ratio, &, ;, and the

following age-to-ultimate factor, D,

1,7+

as correlated. We postulate a distribution for d, ;

and a relationship between 4, , and D, ., which allow relatively easy calculation of means

i
and variances while still permitting the inclusion of various correlation effects. For

mathematical tractability, we assume d, ; is uniformly distributed with known mean and

variance. Assume a uniformly distributed random variable X, ,, stochastically independent

7
of d, ; with a relation as follows:

D,

ij+1

=ad +b X, (10)

where a+b =1 an

If the correlation coefficient between d,; and D

i,j+l>

p, is known!, we have enough

information to solve for @ and &, and for the lower and upper bounds of the range of
X, j» which we will call 4, and By, . We can then calculate £(D, ;) and Var(D, ).

i

1we will discuss the estimation of o later. For the moment, assume the value of £ is known.
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The derivation of these results follows. We have the following as a consequence of (10):
E(D,a)=a E(d,)+b-E(X;;) (12)
Var(D, ;) = a’ Var(d, )b Var(X, ) (13)

As a consequence of (10), we have the following for the correlation coefficient between
d;,and D, (see e.g. Sachs):

B Var( ;)
Var (D,..)
_ Var( “,) (14)
Var(d, ;)
Having determined @ we can further calculate:
b=1-a 15)
From (12):
E(D, E
E(X,)= ( ”‘)ba @, (16)
From (13):
Var(D, Y
Var(x, )= Lup) e’ Vard ) g,

bZ
We want to know E(d,,-D,,,,)=E(D,,), and Var(d, ;- D, ..} =Var(D,;). We will
calculate these by specifying the distributions of X, andd,; and integrating the

appropriate expressions over the relevant domains. First we determine these domains.

For a random variable ¥, uniformly distributed on the interval between 4, and B,

_ A, + B,
E(Y)—-———2 (18)
_ (B —4)
Var(Y) = 12 (19)
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So we can derive 4, ,By ,4, ,andB, . For notational convenience, we will use
4y to denoted,, , By to denoteBxU , Ay todenoted, , and B, to denoteB, ~in what

follows. We can determine the bounds of X, using formulae following from (18) and
(19):

. %
Ay =E()(I_J)_[L2_Ka_r2(.‘ﬂ_ (20)
[12-Var(X, )Y

By =E(X, )+ 2

@n

Analogous formulae give the values of 4, and B,. Now we can set up integrals and

calculate £(D, ;) and Var(D, ).

E(D,)=EW,; D)= e d, @, vb X,)dx,

(B, A)(B —4;)

2 By ) (B= )+ 2 (B - 2 (B~ )
) (B — A)(B, - 4,)

(22)

1
(B Ax) (B -4 ) J‘Ad Ax '1 (a

E('l)iz,j):'E(‘iiz,j'Diz,ji—l)_ +b'Xi‘j)2dXi,jCldi,1

< By B~ £+ L (B B A+ LBy - 3B~ A

= YRR @)

Var(D,) = E(D})-E*(D,,). 24)

We chain backward to calculate E(D, Y and Var(D,,_,,,) for all i, allowing us to

in-i+l in—i+l

calculate Var (L;). The way we do this is as follows. Start with the tail factor D, , so that
E(D,)=£(d,,) and Var(D,,)=Var(d, ), quantities we have estimated or assumed.

We also know E(d;,.,) and Var(d,, ;). Use (14) and (15) to calculate a and b. Use

in—

(16) and (17) to compute E(X,, ) and Var(X,, ). Calculate 4,, B,, 4,, and B,

in—
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using (20) and (21) and the analogous equations for A4,, and B,. Finally, calculate
E(D,,.,) and Var(D,
E(D,

,) using (22), (23), and (24). We can repeat this process, using
,) and Var (D,

=

) and Var(D,, ) to estimate £(D, ). We continue backward

e -1 - N2

in this fashion until we reach E(D,,.,) and Var(D,, ), allowing us to calculate

Var(L).

Correlation affects both E(D,;) and Var(D,,). Beyond this, there are important
conditional expectations and variances, E(D,,|d,,,) and Var(D |4 ,) for
l<jsn—-i+1. If we believe that link ratios and the following age-to-ultimate
development factors are correlated, then knowledge of the last historical link ratio for each
accident year should affect both our expectation of future development on that year and
the variance of our estimated ultimate. It is internally consistent if in projecting ultimate
losses and in estimating the vanance of those ultimates we use conditional expectations

and variances per the following:

from (5): E(L)=1, ., E(D, .,|d,.), ifi<n (25)

from (8): Var(L)=(,_..)} Var(D,,..ld,.), ifi<n (26)

from (5): E(L)=1,-ED,) 27

from (8): Var(L,)=(l,,)" -Var(D,)) (28)
Note that for i <n:

from (12): EWD,, ..\, )=ad, +b E(X,) (29)

from (13): Var(D,,_.|d,,.) =8 Var(X,,.) (30)

Exhibit 3 shows a calculation of conditional expectations and variances. For informational
purposes, it also shows unconditional expectations and variances including correlation,
and expectations and variances excluding correlation. Exhibit 3 uses the same value of p

for all 7 and all j, but this is not a requirement of the model. However, when the
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question of estimating p arises, there is a benefit to having a single value to estimate, and

there may be some intuitive appeal to having a single value of p.

At this point it is helpful to go through Exhibit 3 step by step to clarify how the model is
used in practice. At the top of the exhibit, we show for each stage of development j the
expected link ratio E(d, ;) and the variance of that link ratio Var(d, ;). E(d,)) is equal
to our selected link ratio. Var(d, ) is estimated using the sample variance as shown in
Exhibit 2. In this example, neither £(d, ;) nor Var(d, ;) vary with i , as has been noted

previously. However, the model could cope with different E(d;;) and Var(d, ;) for

different i .

The next item in Exhibit 3 is our value of p, which in this example is the same for all /, j.
From this point on, the exhibit is easier to interpret if we start on the right of the exhibit
and work our way to the left. At each j, we determine @ using equation (14) and b
using (15). For j>8, we have a=0, since Var(D,,,,)=0. For lesser j, we use the
value of Var(D, ,,,) from the next column to the right to calculate g and . E(X, ) and
Var(X,,), calculated using (16) and (17) respectively, are shown next, followed by
Ay, By, which follow using (20) and (21). The values of E(d, ;) and Var(d, ;) from the
top of the exhibit similarly allow us to calculate A,, and B, which are the next values
shown in Exhibit 3. Then, using (22) and (23), we can calculate E(D,,) and Var (D, i)
These values flow into the calculation for the next column to the left. For each j, once
we have completed the column to this point we have enough information to proceed with

the calculations for the column for j—1.

Below these unconditional means and variances, we calculate the conditional values

E(D, 0, 1) and Var(D, ., |d, ., ,_,) using equations (25) through (28), which

will be used to project the ultimate and the variance of that ultimate for accident year
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n— j+1. These calculations require some parameters from the column for j-—1, namely

a, b, E(X,_;,,,,),and Var(X, ).

Note that there are no conditional expectation and variance for j =1 or equivalently for

i =n. This is of course because thereis no &, ;.

The effect of correlation on unconditional E(D,,,_;) is relatively small, but the effect on

unconditional Var (D, ,,_;) is significant, when compared to the values ignoring correlation.

When conditional expectations and variances are used, both expectations and variances are

significantly affected by correlation.

The assumption of a uniformly distributed X, and d,; is primarily for mathematical

convenience in determining variances of the product of correlated random variables. It is
not intended to represent a realistic model of the probability distribution of the link ratios
or age-to-ultimate development factors. Thus, the actuary may decide that using
conditional probabilities and variances is putting too much reliance on a model which was
chosen largely for.convenience. In such a case, the actuary might base estimated ultimates
on the traditional age-to-ultimate factor as the product of projected link ratios (implicitly
ignoring correlation for the purpose of projecting ultimates), but use the varances
including correlation, either conditional or unconditional. Alternatively, he or she might
use the unconditional E(D, ;) including correlation (recognizing correlation among future
development, but ignoring the correlation to historical link ratios) instead of relying on
conditional E(D, |4, ;) from this model. Note that as a consequence of (13) and (30),
Var(D,,\d, ;.,)<Var(D,;). Hence, the use of the correlated unconditional Var(D, ;)

would be conservative. The correlated E(D,;) is greater than the age-to-ultimate

excluding correlation if correlation is positive, less than the uncorrelated age-to-ultimate if

correlation is negative (assuming that loss development is positive). E(D, |d, ) may be
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greater or smaller than E(D, ;) depending on whether 4, | is greater or smaller than the

average link ratio at that stage, and whether correlation is positive or negative.

Exhibit 4 shows a calculation where E(D,, ., |d;, ) and Var(D,_,,|d,,_,) are used for
calculating expected ultimates and the variance of those ultimates, based on equations (25)
through (28). In our example we use conditional expectations and variances in the interest

of internal consistency, as discussed earlier. For convenience in later calculations, Exhibit

4 shows variances converted to standard deviations.

Following from equation (6), we have Var (R):Var[z L,). If the L, for different j

were independent, we could calculate the variance of the estimated total reserve need R as
Var(R):ZVar(L,.) @3n

However, the model does not require this assumption of independence, as will be seen

below.
Correlation Between Accident Years

There are reasons that the estimated ultimates for different accident years as of a given
valuation date might be positively correlated. If current case reserves are stronger (or
weaker) at the valuation date than assumed implicitly in the projected development pattern
for one accident year, it is likely to be true for all accident years. If claim processing has
been disrupted in some way, that may very well affect all accident years. If a judicial
decision changes the likelihood of paying out on certain types of claims, that could affect
all accident years. There are doubtless other examples of contingencies which could cause

positive correlation. It is less clear, at least to us, what realistic contingencies in property-
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casualty insurance could result in negative correlation, although hypothetical examples can

be created.

One concern which must be noted at this point is that some of the situations which can
cause correlation between accident years can also cause correlation between stages of
development within an accident year. The prior section dealt with measuring the
correlation between stages of development within an accident year. It is important in
adding consideration of correlation between accident years that we avoid "double-
counting" the correlation which results from the same cause as the correlation within an
accident year. A method we propose to avoid (or at least ameliorate) the potential
double-counting, without going into the complexities of multivariate analysis, is described
in the next section on estimating correlation coefficients. The current section describes the
mechanics of including correlation between accident years in our measure of the variability

of total reserves.

We start with a formula for the variance of the sum of generalized random variables 7, .
' Var(Z)j):Z Cov(}jﬁ,}';ﬁ)
k=t k=1 k=l

Note that Cow(¥, ¥,)=Var(¥,), and that each term Cov(Y;‘,Y; ), for &, = k, appears

twice in this sum. Thus, for example, this formula would agree with the familiar formula
for the variance of the sum of two random variables,

Var(Y +Z)=Var()+Var(Z)+2-Cov(Y,Z).

We approach the calculation of the variance of R through use of a correlation matrix.

Since Cov(L,,L,)=p, . Var (L)% Var(L,)%, where P 18 the correlation coefficient
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between L, and L, defining a matrix of the values of p, , is the first step to calculating

the variance of R.

Set up an nxn matrix C, with ¢, = ¢, = p,, for all k,;m.2 Var(L,) is known for each

k based on the work done in the previous section. Therefore, we calculate

VarR)=3 3 Covl, L) =Y 3 o Var (LYE Var (LYK (32)

k=1 m=1 k=l m=1
Exhibit 5 shows the calculation of Var (R) in this manner. The exhibit shows the matrix of
correlation coefficients first, i.e. the matrix of p, . It then illustrates the calculation of the
matrix of covariances using the accident year standard deviations calculated in Exhibit 4.
Each element in the second matrix is a term from equation (32). The sum of all elements
in the second matrix is equal to the displayed "Variance of Estimated Reserve Need" at the
bottom of Exhibit 5. This is converted to a standard deviation for the reader's

convenience.
Estimating Correlation Coefficients

The inclusion of correlation has significant effects on both estimated IBNR reserve need
and the variance of that estimate. Exhibits 4 and 5 show an estimated needed IBNR of
$69,879 and a standard deviation of that estimate of $21,492. If we had used zero
correlation everywhere in the model, the corresponding numbers would have been
$68,325 estimated IBNR need with a standard deviation of $14,717. Clearly, the
existence of correlation is an important factor in measuring the varability of reserve

estimates.

ZAgain, take 0, ,, as given. The problem of estimating these correlations is treated later.
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How do we determine the correlation o within each accident year and the correlations

Pr.m between accident years at a given valuation point? How do we account for the fact

that some of the correlation captured in p is caused by the same factors that result in

correlation measured in the p,,? The first step in our recommended approach is to

estimate p, without any consideration of collinearity, as described below.,

One approach which can be used to estimate p is an iterative approach based on the
incurred loss triangle being analyzed. In our experience convergence is usually pretty

rapid, taking 3 to 5 iterations.

On the first pass, treat p as if it were zero. Take the resulting estimated ultimates

H E(d,,) and use them to calculate implied D, = E(L,)/  forj<n—i

k=n—i+]

E(L)=1

A—i+]

(that is for all j with at least one historical link ratio in addition to the projected

development). Transform all D, and all &, , to random variables with mean zero and

standard deviation one using these formulae:

. D, —ED)
Y vamyy

_ (di./—l - E(dn,/—l))

Y (Var(d, )"

"

where expectations and variances are calculated across varying ¢ within a fixed ;.

Calculate the sample correlation coefficient between these 4, and D/ for all

fy~1

i, jsuchthat 2 < j<n—i. Use this sample correlation coefficient as p for all 7, j in all

calculations. If the ultimates are being projected using £(L}=1 ., H E(d, ), this is

k=n-i+l

the final estimate of p. If ultimates are being projected using £(D, |4, ), or using
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E(D,;) including the effect of correlation, as seen in Exhibits 3 and 4, we must go
through the calculation of new ultimates £(L;) since these ultimates depend on p. For
the second iteration, base D/, on the new estimate of E(ZL,) and calculate new D', using
(33). Calculate a new sample correlation coefficient between d’, | and D", Repeat this
process until it converges on a value for p. This iterative approach maximizes use of the
most relevant data for the determination of p, by putting all available data points into the

determination.

Other methods which would determine a different p for each j would require
substantially more historical points than are usually available to an insurer. We have tried
using accident quarter by calendar quarter triangles to expand the number of historical

points, but the data are so variable when cut this fine that the approach did not work well.

The question of determining the elements of the accident year correlation matrix C
presents similar challenges to the determination of p. There are additional complexities

due to the need to avoid the effects of collinearity.

In practice, we have found it difficult to determine values for the non-diagonal elements of
this matrix from company data. When we look at homogeneous lines of insurance,
calculated correlation coefficients are often not significant if a reasonable standard is used.
This is particularly true for stages of development where there are relatively few data

points. An approach we have used with some success is similar in respects to that

outlined above for estimating p.

Start with our incurred loss triangle and estimated ultimates £(Z). In this instance, the

E(L)) include whatever correlation effects based on p the actuary has decided to include.

Calculate implied D, = E(L)// , forj<n—i.  Transform ail D/, to random variables
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D!, with mean zero and standard deviation one using the formula:

. (D, -EWL)

D vyt Y

Calculate the sample correlation coefficient between D", and D

Y ")+ for all values i, f

where j<n—i and both D/, and D, ;,, exist. This represents the correlation between
age-to-ultimate development at a given valuation date for accident years which are
separated by one year. Use this sample correlation coefficient for all ¢, where [k—m|=1.
Use an analogous approach for |k —m| =2, basing c,, on the sample correlation between
Dy and D!, ,,. Continue in this fashion for [k~m|=3,4,., until correlation is
negligible or until there are too few points with the proper spacing to calculate a sample

correlation coefficient.

The adjustment to this procedure to remove collinearity is to restate (34) as:

"o (DIIJ - E(Dxllldnj-l))
Y Var(D,,ld,,.))"

(33)

Thus, the correlation between D, and 4, ;_, is considered and is "reduced out" of the
measure of correlation between accident years. This way, any factor which contributes to
correlation both between accident years and within accident years is not double-counted.
In practice, we can estimate the correlation between accident years using both (34) and
(35). If the results flowing from using (34) without eliminating collinearity and ignoring
correlation within accident years show a stronger correlation than the combination of
using (35) with correlation within accident year, we can use (34) and ignore the
correlation within accident years. Otherwise, we use the combination of correlation within

accident years and the correlation between accident years measured using the results of

(35).
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We have found that it is often helpful to restrict these calculations to relatively low values

of j, for instance, look only at pairs D, and D,

for which j<3. It appears that in
many cases the correlation between accident years becomes insignificant for accident years
which are beyond the earliest few stages of development at the valuation date under

consideration.

Another approach which has proved useful is looking at higher levels of aggregation for
determination of this correlation, rather than looking at a homogeneous line of insurance.
Combinations of lines often show more correlation between accident years than can be
seen through the "noise" at a finer level of detail. If correlations from aggregated data are
to be applied at a finer level of detail, the actuary should make sure that the lines combined
to reach the aggregate are expected to behave similarly in terms of loss development, so
that the correlations might be reasonable for use at the detail level. A further
consideration is that the collinearity adjustment described above must then be done at the
aggregated level. While this adjustment is possible, the description of the calculation is
not given here. In practice, when we have used aggregated data to determine correlation
between accident years, we have not included correlation within accident years in our
variance measure. Then we can rely on equation (34) in making our estimate of the

correlation.

Exhibit 5 shows a situation where correlation was believed to be significant only between

years falling in the last 4 accident years as of a given valuation date, and where correlation

was negligible for |k ~m|> 2.
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OTHER ISSUES AND ADDITIONAL COMPLICATIONS

The model as described above deals with the variability of reserve estimates inciuding
assumptions of two varieties of correlation. This section discusses additional concemns
that arise in estimating reserve need and in some cases describes how the model could be

adapted to address those concemns.
Homogeneity of Data

The model as presented depends on the data in the loss development triangle being
homogeneous. If the data are not homogeneous, but the mix is constant through time, the
model may still provide useful information. If the data are not homogeneous and the mix

is not constant through time, the model as presented will not give representative results.
Correlation Between Lines of Insurance

The model as described above deals with one homogeneous line of insurance. When
analyzing reserves for an insurer, we are usually concerned with the variability of the
estimated reserve need for the insurer as a whole as well as on a line-by-line basis. If the
R, are independent, the formula for the variability of the total reserve estimate is

Var(z’: R,) = }r:Var(R:) (36)

s=1 s=1

where R, is the reserve estimate for line 5, and r is the number of lines of insurance.

Intuitively, it would be expected that some of the R, are not independent. However, with
measurement of the correlation within accident years and between accident years as

described earlier in this paper, we have generally felt comfortable that the great majority of
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the effects which in practical application cause correlation between lines of insurance are
already captured in the measures of correlation already described. Therefore, we have
used (36) to estimate the varance of reserve estimates for combinations of lines of
insurance. The substantial enhancements to this model to accommodate a further measure

of correlation are beyond the scope of this paper.
Effect of Inflation

Variability in loss development could be the result of changes in inflation rates. If the
actuary feels the effect of inflation on the loss development triangle would distort the
measurement of reserve variability described in this paper, the triangle should be adjusted
to a constant dollar basis before this variability model is used. It must be noted that in
order for the resulting variability measure to be complete, consideration of the variability
of estimates of future inflation would have to be included separately. Such consideration
is beyond the scope of this paper. Failing to remove the effects of inflation f;rom the
triangle before applying our model of variability implicitly assumes that future variability
of inflation will have the same effects on reserve estimates that the historical triangle
shows. The actuary may feel this assumption is justified, but at any rate the choice of such

an assumption should be a conscious decision.
Varying Volume of Data Through Time

In practice, the triangle of loss development data we are analyzing may have significant

changes in the volume of business through the period of time covered. In such a situation,

the calculation of sample Var(d, ;) in the manner shown in Exhibit 2 could be distorted by

points showing unusual development but backed by very little data. To cope with such

situations, we have used a "dollar-weighted variance” approach which is shown in
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Appendix A. The essence of this approach is defined by:

n-j

Zli.jﬂ

E.d,)="] for 1< j<n-land 37

n-J

20

o la.j+l i
LYt -EE,)

Var,(d, )= =
.y
i=1

forl<j<n-1 (38).

We use the weighted variance Var, (d, ;) in exactly the same way we used Var(d, ) in the

earlier description of the model. Appendix A shows a revised version of Exhibits 1
through 5 (renumbered as 1A through SA) substituting this weighted approach. In this
particular example the effect is not large because the triangle used in our examples does
not have extreme volume changes. In practice we have encountered many situations
where the volume adjustment is important. In fact, we almost always use the weighted
variance approach in practice since in situations where it is unimportant it has little effect,
and in situations where it is important it gives a better representation of the variability of

loss development.

Paid Versus Incurred Development

The model has been described in terms of incurred loss development and IBNR estimates.
However, there is nothing in the formulation which requires that it be used in this way.
All formulae and relationships would hold equally well for paid loss development analysis.
Interpretation of correlation coefficients might vary, however. Depending on the reason

for correlation between accident years on an incurred development basis, it might be
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expected that on a paid development basis there would be no correlation at all.
Correlation between link ratios within a given accident year might also be zero when
viewed in a paid loss development context. The actuary should consider these issues, and
where possible test to see if correlation does exist. If correlation is eliminated by using
paid development data, the actuary could rely on equations (8), (9) and (31) and greatly

stmplify the calculation of variability of reserve estimates.

Trends in Loss Development Patterns

As presented in the example in this paper, the model included no consideration of changes
through time in loss development patterns. Some simple kinds of changes could be

included relatively easily. For example, if a regression curve were fitted to historical

values of d, , and projected values were read off that curve, the appropriate adaptation of
the model would be to substitute the curve values for all projected E(d, ;) and substitute
historical variance around the fitted curve for all Var(d, ;) in the formulae describing the
model. A volume-weighting scheme would he possible in this context if desired. The
complications for using fitted curves in the analysis of correlation should also be
considered. When normalizing the variables to arrive at 4, and D/, the expected
values and variances should be measured considering the fitted curves rather than "raw"

means and variances.

CONCLUSIONS

The model presented in this paper uses the variance of link ratios to estimate the variance
of reserve estimates, It allows the inclusion of correlation effects of several varieties. It
can be elaborated to cope with a number of concerns which may be important in specific

situations.
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While the estimation of correlation is often difficult in practice, we have presented some
approaches which maximize the use of historical data in making such estimates. If
estimates prove impractical, this model can be applied in a sensitivity-testing manner to
demonstrate that the effects of correlation can be important as regards both the estimated
reserve need and the variance of that estimate. Whether or not correlations can be
estimated with much accuracy, this model gives actuaries an approach to better

quantifying the uncertainty of reserve estimates.
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Triangle of Incurred Loss Valuations

Exhibit 1A
Accident Stage of Development (Years) Y
Year 1 2 3 4 5 6 7 8 9 10
1 32223 48,439 54284 58,146 61,305 63,739 63,604 62,721 63247 62,159
2 42,588 65239 77329 82,064 85,260 85,226 80,944 79,577 80,614
3 44,960 69,989 75,140 79,019 80,548 80,864 79341 79,525
4 33,145 56,088 60,732 66,551 66,857 68,395 66,806
i 5 30,754 46,587 54 855 57,645 56,249 54,560
6 33,594 47,576 52,870 59,598 58,715
7 31,064 54,187 63,529 73,791
8 33,831 48,453 02,742
9 44,772 72,814
10 48,307
1
. . . iLl_ 7 (d ey
Weighted Average Development and Weighted Variance h, | £} Exhibit 2A
Accident J
Year 1 2 3 4 S 6 7 8 9
1 97 38 13 91 64 34 1 0 0
2 29 87 50 48 5 53 5 0
3 0 395 93 2 1 3 11
4 597 244 S 7 16 0
1 5 57 39 71 87 78
6 676 67 87 52
7 1078 30 355
8 536 1035
9 209
E @) 1.558 1.149 1.087 1.015 1.007 0.975 0.991 1.011 0.983
Var,(d,,) 0.010029 '0.004433  0.001536  0.000713  0.000472 0.000305  0.000075  0.000005
Var, (d, J)% 0.100145  0.066581  0.039193  0.026699 0.021719  0.0174634 0008638  0.002306

Selected Link Ratio

) AV BN v rrn




[

Modecling Correlation Within an Accident Year

Stage: 1 2
£, ) 1.558 1.180
Var,(d, ;) 0.010029  0.004433
o 0.100
a 0.110096  0.095952
b 0.889904  0.904048
E(X, ) 1.265 1.090
Var(X, ) 0.015197  0.004944
Ay 1.051 0.968
B, 1.478 1.212
Ay 1.385 1.065
B, 1.731 1.295
Unconditional, including correlation:
E(D,) 2.022 1297
Var(D,,) 0.050964  0.012156
E(DL) 4.139 1.694
Conditional Expectation and Variance:
E(D,\d, ,..) 2.022 1.305
Var(D,ld,,.)  0.050964  0.012035
If no correlation:
ED,,) 2.020 1.296
Var(D, ) 0.041337  0.010046

3

1.120
0.001536

0.107745
0.892255

0.964
0.002218
0.883
1.046

1.052
1.188

1.099
0.004081
1.211

1.110
0.004041

1.098
0.003363

4

1.015
0.000713

0.114186
0.885814

0.960
0.001173
0.901
1.020

0.968
1.061

0.981
0.001783
0.964

0.985
0.001765

0.981
0.001501

5

1.007
0.000472

0.092599
0.907401

0.955
0.000486
0.917
0.993

0.970
1.045

0.967
0.000929
0.935

0.963
0.000920

0.967
0.000810

6

0.975
0.000305

0.0520322
0.9479678

0.985
0.000091
0.968
1.001

0.945
1.005

0.960
0.000404
0.921

0.956
0.000400

0.960
0.000370

0.991
0.000075

0.026238
0.973762

0.994
0.000005
0.990
0.998

0.976
1.006

0.984
0.000083
0.969

0.985
0.000082

0.984
0.000079

1.011
0.000005

0.983
0.000000
0.983
0.983

1.007
1.015

0.994
0.000005

0.994
0.000005

0.994
0.000005

9

0.983
0.000000

0

1

1.000
0.000000

1.000
1.000

0.983
0.983

0.983
0.000000

0.983
0.000000

0.983
0.000000

Exhibit 3A

10

1.000
0.000000

0

1

1.000
0.000000

1.000
1.000

1.000
1.000

1.000
0.000000

1.000
0.000000

1.000
0.000000



Projected Ultimates and Standard Deviations

By Accident Year, Including Correlation

Accident Current
Year Valuation

62,159
80,614
79,525
66,806
54,560
58,715
73,791
62,742
72,814
48,307

OO0 AW e

—

Total 660,033

Expected
LDF

1.000
0.983
0.994
0.985
0.956
0.963
0.985
1.110
1.305
2.022

Variance
of LDF

0.000000
0.000000
0.00000s
0.000082
0.000400
0.000920
0.001765
0.004041
0.012035
0.050964
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Expected
Ultimate

62,159
79,227
79,040
65,773
52,166
56,560
72,713
69,632
94,987
97,671

729,929

Needed
IBNR

~1,387
—485
—-1,033
-2,394
—2,155
—-1,078
6,890
22,173
49,364

69,896

Exhibit 4A

Variance  Std. Dev.
of Ult of Ult.

0 4]

0 0

32163 179
364308 604
1191987 1,092
3172039 1,781
9613035 3,100
15905997 3,988
63806418 7,988

118928464 10,905




LLT

Projected Reserve Need — — All Years Combined Exhibit SA
Including Correlation Between Accident Ycears

Mairix of correlation coefficients Pem
m

Year 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0]

2 0 1 0 0 0 0 0 0 0 0

3 0 0 i 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0
PR | Q 0 0 1 0 0 0 0 9
G 0 0 0 0 0 1 0 0 0 0

7 0 0 0 0 [ 4} 1 0.5 0.2 1]

8 0 0 0 0 0 Q 0.5 1 0.5 0.2

9 4 0 0 4] 0 0 02 0.5 1 0.5

10 0 0 0 0 0 0 0 0.2 0.5 1

Matrix of Covariances (= Corrclation Cocfficient X Sid Dev for Year (Horiz) X Std Dev for Year (Vert))
PewVar(L)A -Vor (L)
m
Yecar 1 2 3 4 5 6 7 8 9 1

Sid, Dev, [4] [/] 179 504 1,092 1,781 3,100 3,988 7,988 10,905

1 I 0 0 0 ¢ 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 1791 0 0 32163 0 1} 0 0 0 0 0

4 604 0 0 0 364808 0 0 0 0 0 b}

k S 1,092 0 Q o} Q 1191987 Q 0 ] 4] Q
6 1,781 0 0 0 0 0 3172039 0 0 0 4]

7 3,100 0 0 0 0 0 0 9613035 6182736 4953275 0

8 3,988 ¢ 8 0 0 0 0 6182736 15905957 15928784 8698680

9 7,988 0 0 0 0 0 0 4953275 15928784 63806418 43555709

10 10,905 0 4] 0 0 0 0 0 8698680 43555709 118928464

Variance of Estimaied Rescerve Need: 371653280

Standard Devialion of Estimated Rescrve Need: 19,278

MCSCIVve INCCU! L
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Variability of Loss Reserves

by Robert L. Brown
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VARIABILITY OF LOSS RESERVES

ABSTRACT

This paper addresses the issue of biases in the loss reserving process, some of which may
be intentional. Using an empirical analysis of data from 169 companies over a seventeen year
period, it is observed that the level of loss reserves exhibits cyclical behaviour, is different
for companies of different sizes and is different for reinsurers than for direct insurers. Fur-
thermore, after these factors are accounted for, the differences in levels between individual
companies accounts for about three-quarters of the explainable variation.

The paper suggests that greater independence on the part of the loss reserve specialist
could lead to more objective estimation and could reduce historical variability by about 40%.
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1 Introduction

Loss reserve estimates are made at least annually by one or more loss reserve specialists
(now normally actuaries) in each insurance company writing property-casualty business.
The degree of difficulty in estimating loss reserves depends on a number of factors. For
example, some liability and other lines of business have long average time delays before
settlement; the size of the ultimate loss may be positively correlated with the length of such
delay; and the size of the ultimate loss may be highly variable.

The size of the loss reserve has an immediate impact on the income statement of the
insurer since the year-to-year increase in loss reserves is a direct charge to income in the
company’s income statement. In theory, the size of loss reserves for a particular block of
insurance business in successive years has no impact on the ultimate profitability of that
block. The reserve only allocates portions of the profit to the successive years. In practice,
however, the size of the loss reserves in successive years may influence the setting of premiums
since incurred losses include estimates of loss reserves. Establishing inadequate reserves may
lead to inadequate future premium income. Furthermore, a sharp increase in loss reserves
has a direct influence on the income statement, shareholder confidence and stock prices.

Because the size of loss reserves affects income and hence taxes and stock prices, it is
possible that the loss reserves in financial statements may not be objective estimates of
future losses (see, for example, the article by Loomis, 1984). Grace (1990) hypothesizes that
insurers are influenced by the desire to maximize earnings each year while maintaining a
smooth progression of earnings in order to minimize investor uncertainty. This suggests that
a company that is under-reserved in one year is likely to be under-reserved in the next year.
In various empirical studies, Anderson (1973), Smith (1980) and Weiss (1985) all found that
reserve errors had the effect of smoothing the underwriting income of insurers. This implies
that the ‘true’ underwriting income stream is more volatile than that obtained using reserve
estimates.

Because the insurance business is inherently risky and the estimation process is imperfect,



variability in loss reserves is inevitable. The objective of this paper is to examine and test
empirically various sources of variability, and test the hypothesis that reserve errors are

nonrandom.

2 Sources of Reserve Error

The deviation of a reserve estimate from its ‘true’ value is termed the reserve error. The
‘true’ value of the reserve established at the end of an accounting year can only be established
(or more accurately estimated) after all (or almost all) claims have been settled.

Some errors in reserving may be deliberate. Any attempt to smooth earnings is in this
category. Forbes (1970), Smith (1980) and Weiss (1985) all confirmed that financial results
for property-casualty companies were consistent with management’s deliberate attempt to
influence income smoothing through the reserving process. To the extent that a firm should
be viewed from an on-going basis, this smoothing is considered a desirable characteristic of
the loss reserving process by Pentikdinen and Rantala (1992). Of course, from a break-up
perspective, such smoothing would be undesirable.

Deliberate over-reserving may be desirable to make the balance sheet of a company some-
what conservative. Reserves for property-casualty insurers have historically not included
discounting of future cash flows even though reserves (or more correctly, assets offsetting
reserve liabilities) are invested. The classic argument is that such conservatism in reserving
provides a margin of error against deviations in claims experience and against the effect of
unanticipated inflation for claims that are not yet settled. This deliberate over-reserving is
based on the belief that the balance sheet is more important than the income statement and
that solvency considerations are paramount. The amount of any over-reserving plays the
same role as surplus, but is hidden and thus protected from distribution to policy-owners or
shareholders. Generally accepted accounting principles (GAAP) argue in favor of explicit
recognition of the various sources of profit and a more ‘accurate’ income statement and

hence, a more accurate balance sheet. Current tax regulation requires methods consistent
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with GAAP.

The Conference of Consulting Actuaries (1992) report that for the period 1987-1991, a
total of 164 U.S. property-casualty insurance companies were declared insolvent and that
the ultimate total surplus deficiency for these companies could reach $5 billion. They report
(p.91) that:

“The stated leading cause of insolvency is ‘underreserving’. But in
many cases, further analysis will show that this is a symptom rather
than a cause. Underreserving can be a form of deferring the real prob-
lem. The practice of underreserving can lead to more easily defined
causes.

When management recognizes there are serious problems, the easiest
immediate solution is to seek justification for lower reserves. The loss
reserve is an estimate of future costs for events that have occurred
previously. Payments resulting from past events will be made over an
extended period of time. The inherent delay in the loss reserve payout
is often the basis for deliberate underreserving. In the case of deliberate
underreserving, a further cause must usually be sought.

There may also be inadvertent underreserving, because future events
may be hard to anticipate, or there may be a lack of understanding of
the extent of loss. In instances where events giving rise to liabilities
occur over an extended period of time, inadvertent underreserving can

indeed be a cause of an insolvency.”

As indicated by the last paragraph above, some sources of variation in loss reserves are
non-deliberate. There are a variety of sources of such error. Some may be non-random and
some may be random. Random errors occur when, for example, more claim-causing events
(‘accidents’) than anticipated occur and when the sizes of losses associated with accidents

are different from expected. This is often termed ‘stochastic error’.
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Another source of error is ‘model error’. Model error arises when the underlying math-
ematical model and associated method of estimation are inconsistent with reality. For ex-
ample, many ratio-based methods, such as the chain ladder method (see, for example, van
Eeghen, 1981) assume implicitly that the ratios of paid (or incurred) claims for successive
years of development are constant. Estimation error is introduced to the extent that such
ratios may vary from accident year to accident year. It is well-known that the chain ladder
method under-estimates reserves when the outcomes are stochastic (Stanard, 1985).

Further error is introduced when a model is calibrated. This error is often called ‘param-

eter error’ since most models and hence methods are described in terms of parameters that
require estimation based on a sample of previous years’ data.

Pentikainen and Rantala (1992) describe reserve volatility when the chain ladder method
is used as well as when a premium-based loss reserving method is used. The premium based-
method uses a percentage of the earned premium for each accident year in the calculation of
reserves. To the extent that premiums are not good predictors of actual claims, model errors
are introduced. Because it is well-known that an underwriting cycle exists, one would expect
a similar cycle in loss reserves if they are based on premiums. Recently, Lamm-Tennant,
Starks and Stokes (1992) analyzed loss ratios recognizing the nature of the cycle. They cite
many references to the underwriting cycle. To the extent that there is systematic over- and
under-pricing through the cycle, corresponding errors in loss reserves can occur when the
methods used in loss reserving are linked to premium income rather than ‘true’ expected
claims.

Stochastic error arises when ‘the unexpected occurs’. Although many loss reserve meth-
ods are based on models that ignore stochastic variation in claims, there have been several
methods that incorporate the stochastic component. Many are described in Taylor (1986)
and the Institute of Actuaries’ Claims Reserving Manual (1989). De Jong and Zehnwirth
(1983) describe a general state-space model for loss reserving. This approach is used by
Zehnwirth (1985). Verrall (1989a, 1989b, 1990) and Renshaw (1989) describe stochastic
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versions of the chain ladder method.

Modelling the stochastic error allows for the development of probability statements about
the adequacy of a particular level of reserves. These probability statements can take into
account both the stochastic error and the estimation error. However, they do not take any
account of model error. The estimates are based on the assumption that the model (and
hence the method) is appropriate.

Different methods yield different results because they are based on different model as-
sumptions and/or different calibration methods (statistical estimation criteria). Methods
are considered robust if they are rather insensitive to the model assumptions. The more
robust a method is, the less sensitive it is to systematic variation that needs to be reflected
in the reserve estimate. All reserving methods (and statistical estimation procedures) com-
promise robustness and sensitivity. Pentikdinen and Rantala (1992) try to address the issue

of interpreting the different results from different methods, i.e. the model error.

3 The Approach of this Paper

Development of reserve estimates should involve selection of a model, calibration of the
selected model and validation of the calibrated model. The estimate of loss reserves is a
forecast. For models that include formal assumptions about the variability of the claims
process (i.e. stochastic error), estimates of the likely variability of the forecast value can be
obtained using statistical theory. In the practice of loss reserving, the forecasts are based on
past payments or incurred claims, usually set up in the form of the standard ‘runoff triangle’.
This is done separately for each line of business. There is no standard way of combining the
estimates of variability of various lines of business. If it is assumed that the experience of
lines of business are stochastically independent, then the variance associated with a reserve
estimate for all lines combined is the sum of the variances associated with each line. When
the standard deviation is used as a measure of volatility, it is clear that variability decreases

as lines of business are combined. However, if there is a strong positive correlation between
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lines, this does not hold.

The approach of this paper is to treat the whole company as the business entity, rather
than treat each line of business separately. From the point of view of either the income state-
ment (underwriting results) or the balance sheet (solvency) of an insurer, all lines of business
are always combined. We will examine historical loss reserves and compare them with the
corresponding subsequent runoff of claims. This will allow us to assess the performance of
loss reserving in the past and to study the sources of variability in order to better explain
the entire loss reserve process.

Since loss reserve specialists use different methods, estimates of variability for that spe-
cialist depend on the individual methods used. We will examine variability empirically by
studying the variability for all companies combined, for each company over time, and for
various subclasses of companies to provide a better explanation of the actual variability that
should be anticipated regardless of the methods used.

We believe that it is inappropriate to impose solvency margins developed on a theoretical
basis for any specific loss reserving method (e.g. chain ladder). Because of the different
nature of claims information for different lines of business and for claims at different stages
in the claim settlement process (e.g. incurred but not reported, reported but not yet settled),
it is probably best to measure uncertainty of loss reserves on the basis of historical variability.
In order to best understand historical variability, empirical studies are necessary.

Previous empirical studies of accuracy of loss reserves have been done by Forbes (1969,
1970), Anderson (1973), Ansley (1979) and Smith (1980), Aiuppa and Treischmann (1987),
Grace (1990) and Panjer and Brown (1992) who each studied a collection of companies over a
period of time. In particular, Grace examines the desire of companies to maximize firm value
through the reserving process considering the tax status of the company. She also considers
the desire of companies to smooth income by minimizing the variability of earnings. These
are considered deliberate attempts to distort the true income picture of a company. This

variation is specific to the individual company.
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There are sources of variability that are not specific to a single company. For example,
the effect of inflationary increases in costs affects all insurers in a particular line of business
such as automobile insurance. Such industry-wide influences should be observable as an
annual effect across all companies in historical studies. Ansley (1979) studied the effect of
inflation of reserve estimates.

Finally the level of conservatism inherent in reserves also varies from company to com-
pany. Small companies writing a few small lines of business have less ability to diversify
variability than large companies writing more lines of business over which variability is not
(or negatively) correlated. Hence, one would expect smaller companies to hold relatively
larger reserves than large insurers.

Similarly, one might expect reinsurers that are part of world-wide reinsurance groups to
hold relatively smaller reserves than small domestic insurers who do not have the ability to

diversify risk internationally.

4 The Data

In this paper we try to identify the influences of various sources on the loss reserves by
examining historical data from a set of 169 companies operating under federal regulation in
Canada. This study is significantly larger than any of the cited previous studies, most of
which examine only U.S. companies. The data were obtained from the annual statements
over the period 1975-1991.

Companies are categorized by ‘size’ (Small, Medium and Large) on the basis of 1991
premium income, and by ‘type’ (Domestic or Foreign) on the basis of ownership. Reinsurers
are separately identified.

For each year from 1975 to 1986, the aggregate loss reserve for all lines of business
(including loss adjustment expenses) for all prior accident years combined is compared with
the runoff in the subsequent five years and any remaining loss reserve at that time. The

difference is measured as a percentage excess or deficiency (see section 5).
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Using the runoff for five years for the most recent accident year means that, for the prior
accident years included in the estimate, the runoff will be more than five years old. For
Canadian insurers, for most (but certainly not all) lines of business, the vast majority of
claims will have been settled within five years of occurrence. The reserve established after
five years will still contain some error. However, since the reserve after five years is generally
quite small, the error in estimating the ‘true’ required reserve should also be small relative
to the initial error.

The study is conducted for all lines of business combined since the solvency of the com-
pany, the value of the firm, and investor and public confidence are dependent on the overall
performance of the company. No adjustment is made for discounting since reserves for the
period 1975-1986 were established on a basis which ignored discounting.

In an environment in which interest earned on reserves is accounted for, actual loss
reserves could be smaller. Similarly, to the extent that there is an implicit offset of interest
and future inflation, any inflationary increases in subsequent payments make reserves appear
deficient.

The number of companies in each category is given below:

Domestic Foreign Total

Large Insurers 24 25 49
Medium Insurers 23 24 47
Small Insurers 23 21 44
Reinsurers 6 23 29
Total 76 93 169

5 The Model

Let E; denote the estimate in year ¢ of outstanding losses in respect of all accident years 1
and prior. Let U; denote the estimate made in year i + 5 of outstanding losses at the end of
year i for accident years ¢ and prior. In the analysis in this paper, U; is treated as the ‘true’

level of outstanding losses at the end of accident year i and E; is an estimate of this true
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value. Of course U; is itself an estimate; but, at year 1 + 5, all accident year values are at
least 5 years mature. For lines of business that are not too long-tailed, the estimate at year
i + 5 will be reasonably accurate, or at least significantly more accurate than the estimate
E; made at year i.

The excess/deficiency of the estimate E; is defined as (E; — U;) /U;. It is measured as
a fraction of the ‘true’ value. For positive values of E; and U;, the excess/deficiency only
takes on values greater than -1. For the purpose of the statistical analysis described below
we transform the excess/deficiency to obtain values taking on all possible values of the real
line.

Let X; = 100log (E:/U;). Then E; = U;e*+/1% resulting in a simple multiplicative model
for the estimate E;. Explanatory variables are now introduced and a statistical analysis of
the values of X¢ for all 12 years and for all 169 companies in the data is carried out. The

explanatory (categorical) variables in the analysis are:

Year: vi, @ = 1975, 1976, ..., 1986 Iz ! 659

Size: s;, j = Small, Medium, Large, Reinsurer %
Type: ti, k = Domestic, Foreign Z , : q
Company: ¢;, [ = company identifiers . 'Lg

Using a standard analysis of variance (ANOVA) procedure we examine the model
p T g o WY oy 3 ore
Xijhi = p+ 9+ 85 + L+ ag + aa + aje + o + €

where g is the overall mean level of Xiju, y: is the effect of year i, s; is the effect of size 7, #
is the effect of type k. The quantities a;j, a;, a;; and a,j; represent the interaction terms of
year, type and size. Finally ¢;;, represents the residual ‘error’ and has mean 0 and variance
a*. It represents that part of X;x that cannot be explained by the above mentioned factors
and their interactions.

The results of the analysis of variance are shown in Table 1. It shows that, at a 5%

significance level:
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i) each of year and size are statistically significant explanatory variables;
ii) type is not significant,
iii) only one two-factor interaction is significant, namely type and size; and
iv) the three-way interaction is not significant.

Nonsignificance of some of the interaction terms means that the factor ‘year’ is independent
of size and type. However, the interaction between size and type is significant.

Using the reduced model
X = p+yi 85 +te + o + €

results in the analysis of variance table given in Table 2. From Table 2, it can be seen that
the R? = 10.7%, meaning that only 10.7% of the total variance can be explained by the

effects of year, type and size.

TABLE 1

ANALYSIS OF VARIANCE FOR EXCESS/DEFICIENCY
Source of Sum of Sig.
Variation Squares % d.f. F-ratio Level
Year 213,846 60 11 1146 0.00
Size 126,675 36 3 2489 0.00
Type 2,886 0.1 1 1.70 0.19
Year Type 12,345 03 11 0.66 0.78
Year Size 33,728 1.0 33 0.66 0.96
Type Size 34,494 10 3 6.78 0.00
Year Type Size 31,698 0.9 33 0.57 0.98
Model 455,673 129

Error 3,083,677 87.1

Total 3,539,351 100.0
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TABLE 2

ANALYSIS OF VARIANCE FOR EXCESS/DEFICIENCY

Source of Sum of Sig.
Variation  Squares % dJf. F-ratio Level
Year 213,846 60 11 11.65 0.000
Size 126,675 3.6 3 2531 0.00
Type 2,886 01 1 173 0.19
Type Size 34,417 3 6.88 0.00
Model 377,824 10.7
Error 3,539,351 89.3
Total 3,539,351 100.0
TABLE 3
ANALYSIS OF VARIANCE FOR EXCESS/DEFICIENCY
Source of Sum of Sig.
Variation  Squares % df. F-ratio Level
Year 213,846 6.0 11 16.00 0.000
Size 126,675 3.6 3 34.76 0.00
Type 2,886 46 1 238 0.19
Type Size 34,417 1.0 3 9.44 0.00
Company 1,055,063 29.8 161 5.39 0.00
Model 1432888 40.5
Error 2,106,463  59.5
Total 3,539,351 100.0

Table 2 indicates that although the variables ‘year’, ‘type’ and ‘size’ play a significant
role in explaining the variation of loss reserves, they collectively explain only 10.7% of the
total observed variability.

In order to test the hypothesis that individual companies consistently over- or under-
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reserve, the variable ‘company’ was introduced as an additional explanatory variable. The
result are given in Table 3.

Table 3 indicates that an additional 29.8% of the total variability can be explained by
the variable ‘company’. This suggests that individual companies are consistently over- or
under-reserved (after account is taken of type and size) year after year. Although some
consistent over- or under-reserving should be expected since the reserves in successive years
are correlated, the data indicate the degree of consistency is high.

The model in Table 3 explains 40.5% of the variation leaving 59.5% unexplained. This
unexplained variation is due to stochastic error and possible non-stochastic error for reasons

that are not (but could possibly be) incorporated into a model.

6 The Results

The least squares estimates for ‘year’, ‘size’ and ‘type’ in the model used in Table 3 are given
in Table 4. Because of the significant interaction between ‘size’ and ‘type’, the (apparently
nonsignificant) main effect ‘type’ remains in the model.

Table 4 indicates that the average level of reserves established during the period 1975-
1985 was almost 1% (exp(0.0093)-1) in excess in the level required. It also indicates that
there was a dramatic cyclical effect on reserve levels.

Strazewski (1984) reports that the Insurance Services Office estimated that property-
liability companies in the United States were under-reserved by 10%. Our analysis, based
on data through 1987, indicates that for Canada, reserves in 1982 were 9.3% (exp(0.0093-
0.1067)-1) deficient.

Although there was no apparent difference between domestic and foreign insurers overall,
statistically significant interactions between ‘type’ and ‘size’ arose as a result of the large

variations shown.
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No. of

Overall Observations

1914
Year of No. of
Reserve Obeervations
1975 150
1976 145
1977 149
1978 151
1979 156
1980 163
1981 165
1982 167
1983 166
1984 167
1985 166
1986 169
Type of
Company
Domestic 835
Foreign 1079
Size of
Company
Small 486
Medium 543
Large 577
Reinsurer 308

Means of Interaction Terms

Type Size

Domestic  Small
Medium
Large
Reinsurer

Foreign  Small
Medium
Large
Reinsurer

TABLE 4
RESULTS OF ANALYSIS OF VARIANCE
Means of Main Effects

Overall
Mean

0.93%

Mean
Effect

-6.58%
6.19%
19.27%
22.63%
11.88%
-1.02%
-5.67%
-10.67%
-3.73%
-7.58%
-8.64%
-0.53%

0.36%
1.35%

13.13%
0.50%
-1.97%
-12.20%

No, of Observations Mean

293

218
265

284
68

268
278
293
240

3.88%
-0.15%
1.86%
-14.39%

20.65%
1.13%
-5.49%
-11.58%



We have not shown the 169 individual company effects after accounting for the group
effects. Listing the companies and their individual effects serves no useful purpose for us.
However, knowledge of the individual effects can be very useful to individual companies’

managements and loss reserve specialists and others, as discussed below.

7 Conclusions

The results of this study show that a significant amount (40.5%) of the variability can
be easily explained. First, reserve levels for property-casualty companies follow a cyclical
pattern. Furthermore there are general differences in reserve levels for companies of different
sizes and between direct insurers and reinsurers.

Almost three-quarters of the explained variation comes from the individual companies,
irrespective of type, size, or year of valuation. The most important observation is that the
individual loss reserve specialist in a given company has consistently over- or under-reserved.

This suggests that any efforts by managements, professions or regulatory authorities
should be aimed at the individual company level. Consistent under- or over-reserving may
be a result of intentionally trying to improve the apparent financial situation of the company.
Greater independence of the loss reserve specialist may provide more objective estimates.
The ‘appointed actuary’ position created through the new act governing insurers and other
financial institutions in Canada may improve the situation.

Similarly a tendency for reserve excesses and deficiencies to follow a cyclical pattern
suggests that insurers strengthen reserves when they can afford it. This is inconsistent with
an objective assessment of loss reserves. Again, independence of the loss reserve specialist
may help this situation. Finally, methods of loss reserves that are linked to loss ratios would
appear to be inappropriate since premiums are subject to cyclical behaviour as a result of

competitive pressure.
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A METHOD TO ESTIMATE PROBABILITY
LEVELS FOR LOSS RESERVES

by
Roger M. Hayne
Abstract
This paper explores the collective risk mode! as a vehicle for estimating the probability distribution for
reserves. Though this basic mode! has been suggested in the past and it provides a direct means to
estimate process uncerainty, it does not directly address the potentially more significant problem of

parameter uncertainty. This paper presents some techniques to estimate parameter uncertainty and, to
some extent, also uncertainty regarding projection model selection inherent in reserve estimates.
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TIMATE P
LEVELS FOR LOSS RESERVES

1. Introduction

The collective risk modsl, see for example Beard, Pentikinen and Pesonen [1], provides a conceptually
simple framework to model total claims in the insurance process. in its simplest form this modei
calculates the total loss from an Insurance portfolio as the sum of N random claims chosen from a single
claim size distribution where the number N is itselff a random variable. With some fairly broad
assumptions regarding the number and size of claims we can draw conclusions regarding the various
moments of distribution of total claims. Thus this model seems to be a reasonable choice as a starting

point in estimating the distribution of reserves for an insurer.

The distribution resulting from this simple collective risk model provides an estimate of the potential
variation in total payments assuming all distributions are correct. We often refer to this variation as
process variation, that inherent due to the random nature of the process itself. Not directly addressed in
this simple collective risk model is the possibility that the estimates of the parameters for the underying

distributions, are incorrect. Variation due to this latter uncertainty is often called parameter variation.

Parameter variation is itself an important aspect in assessing the variability inherent in insurance related
estimates. Meyers and Schenker [2] discuss this aspect of collective risk applications. They conclude,
not surprisingly, that for a "farge” volume of claims, that expected to be experienced by most insurers,
parameter uncertainty is a much more significant contributor to overall variability than the random, or

process, portion.
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As indicated above, the collective risk model does not directly address parameter uncertainty nor does it
address the methodology used in obtaining reserve estimates themselves. In practice actuaries often
apply several methods, based on different underlying assumptions, to derive different projections of
required reserves. The actuary then selects a "best estimate" of required reserves, based on the various
projections used, keeping in mind the nature of the data and the assumptions inherent in each of the
methods. Complicating matters further Is the fact that most of the generally accepted actuarial projection
methods currently in use are not stochastic in nature, that is, they do not have specific assumptions
regarding underlying probability distributions. Thus, in many cases, they only provide "point estimates”

without any indication as to the statistical nature of those estimates.

Even if the actuary uses stochastic methods, methods that make assumptions regarding the underlying
distributions, the result will usually be a single distribution of total losses or reserves. It is possible that
different methods may lead to different estimates of the distribution of reserves. This raises another
area of uncertainty that should be considered in estimating probability levels for loss reserves; that of
uncertainty that the model applied is indeed the correct one. This is sometimes termed specification

uncertainty.

Though many of the stochastic methods we have seen attempt to provide estimates of process variation
and sometimes even parameter variation within the framework of the particular mode! those methods do
not provide a convenient means of measuring the possibility that the mode! itself may be incorrect.
Even regression related approaches with regimens in selecting which independent variables to include
can only claim to provide the "best" estimate within a particular family of models and do not generally

address whether another family is indeed better for a particular situation.

For these reasons this paper will deal with an application of collective risk theory to estimate probability

levels in loss reserves. Though the method that we present follows the general approach described in
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Hayne [3] we cover ground not covered there, especially in the area of estimating the impact of

parameter uncertainty in probability ievels.

2. The Collective Risk Model

The basic collective risk model, as described above, can probably be seen best as the implementation of

the following algorithm:

Algorithm 2.1
1. Randomly select N, the number of claims.
2. Randomly select N claims, X, X,,..., X, from the claim size distribution.

3. Calculate aggregate loss as 7= X, + X,+...4+X,.

4. Repeat steps 1 through 3 "many" times,

The distribution of T then represents the distribution of total losses given the distributions of the

individual claims X ; and the distribution of N, the number of claims. Assuming these distributions are

carract the result of this slgorithm provides an estimate of the inherent process variation. It does not,

however, provide a means of incorporating parameter uncertainty.

We will follow Heckman and Meyers {4] and consider a revised collective risk algorithm that incorporates

parameter uncertainty in both the claim count and claim size distributions. We assume that the number

of claims N has a Poisson distribution with mean A, and hence variance Var(N):A. We also assume
that 7 Is a random variable with E(y)=1, and Var(z)=c. The variable y then will be used to reflect

the uncertainty with the selection of the expected ciaim count parameter 2. If y Is assumed to have a
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Gamma distribution then Heckman and Meyers show that the resulting M will have a negative binomial

distribution with

E(N)= 4, and
Var(N) = 2+c2?

In this case Var(N)=E(N), with equality only if ¢ = 0.

As Heckman and Meyers point out, the Poisson distribution assumes that claims during two disjoint time
periods are independent, that the expscted claims in a time interval is dependent only on the length of
the interval and not on the starting point of that interval and that no more than one claim can occur at a
time. They introduce the contagion parameter ¢ to allow for dependence of the number claims in one
time interval on claims in prior interval(s). The above modification with ¢ > 0 assumes that the number
of claims in one interval is positively correlated with the number in past intervals. For example, a

successful liability claim may lead to an increased number of future claims.

Similarly it is possible that the existence of past claims may decrease the possibility of future claims. An
example that Heckman and Meyers point out in this situation is with a group of life insurance policies
where clalms in an earlier period reduces the number of claims in a later period. They model this by
assumning that the final claim count distribution will be Binomial. In this case Var(N) <E(N), which can
be accomplished with an appropriate negative value for ¢, even though a negative value does not make
sense in the original derivation of the distribution for N. We will thus assume that N has either a

Binomial distribution (¢ < 0), a Poisson distribution (c = 0), or a Negative Binomial distribution (¢ > 0).
The maodification of Algorithm 2.1 also reflects uncertainty in the overall mean of the claim size

distribution. For this we assume that # is a random variable with E{ ) =1 and Var(})=b. With these

added distributions Heckman and Meyers present the following modified collective risk algorithm:
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Algorithm 2.2

1. Randomly select a number N from the assumed claim count distribution.
2. Select Nclaims X,, X,,..., X, from the assumed claim size distribution.
3. Randomly select a number g from the assumed distribution.

4. Calculate the aggregate loss as T=3(X, + X, +...+Xy).

§. Repeat steps 1 through 4 "many” times.

We note that in the case that b = ¢ = 0, that is, no parameter uncertainty, Algorithm 2.2 simply reduces to

Algorithm 2.1 with an assumed Poisson claim count distribution.

Following Heckman and Meyers we will assume that § has a Gamma distribution. We follow their

caution that this is selected for its mathematical convenience rather than for a specific property of

parameter uncertainty. We refer readers {0 page 31 of [4] for a further discussion of this assumption.

The collective risk model has some useful properties, for example, if we know the moments of the claim
count and claim size distributions, assuming independence of the various distributions, we can determine
the corresponding moments of the final aggregate distribution. These properties hold for both the
formulation in Algorithm 2.1 and the formulation in Algorithm 2.2. In particular under the above

conventions we have:

E(T) = AE(X) @1
Var(T) = AB( X2 }(1+ b) + ZE2(X)(b + ¢ + bc) @2
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Since Algorithm 2.1 is a special case of Algorithm 2.2 with b = ¢ = 0, equations (2.1) and (2.2) will still
hold. In this case, however, the last term in the formula for Var(7) disappears and equation (2.2)

becomes:

Var(T) = AE{x?) 2.3)

The difference between these two variance equations is notable. In the case of equation (2.3), the

variance of the average claim, i.e. Var(%), will approach 0 as i gets large. However, in the case of
equation (2.3), if either b or ¢ is non-zero, Var{%) approaches E*(X)(b+¢ +bc). Thus introduction of
parameter uncertainty introduces uncertainty in the average that cannot be overcome by increasing the
number of claims, or by diversifying the risk. In financial terms, parameter uncertainty in this manner

introduces undiversifyable risk.

Heckman and Meyers present an algorithm for approximating the distribution of 7 in the case that the
cumulative density function for the claim size distribution is a step function. Since any smooth function
can be approximated within any required tolerance by a step function, this is not a restrictive assumption.

We will use that algorithm in the method presented here.

3. Point Estimates of Reserves

Exhibit 1 presents summaries of various medical malpractice loss statistics that were derived from the
data used by Berquist and Sherman [5]. To keep the numbers to a manageable size, all losses and
claim counts in that paper were divided by 10 and the dates were changed to make the exhibits here
appear more current. In addition, page 2 of Exhibit 1 shows projected ultimate reported claims. This
projection is based on a development factor method applied to reported counts using volume weighted
averages as selected factors. Though the data are hypothetical, they do reflect characteristics of actual

loss data.
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In addition, we included another example of our calculations and estimates of probability levels in the
appendix to this paper. That example is based on the data set used in the Advanced Case Study

session of the 1992 Casualty Loss Reserve Seminar.

As pointed out by Berquist and Sherman a comparison of the trends in average case reserves and
average loss payments, as shown in Exhibit 2, indicates a potential change in relative reserve adequacy.

This change, if it is occurring, could affect the incurred loss projections.

in addition, reference to ratios of closed to projected ultimate claims, as shown in Exhibit 3, seems to
indicate a change in the rate at which claims are being closed. This could affect projections based on

paid losses.

Since there appear to be occurrences that can influence forecasts based on either paid or incurred data
we considered two sets of forecasts; one based on the data shown in Exhibit 1 without any adjustment
and the second based on data adjusted in an attempt to remove the influences of these apparent

changes. The resulting adjusted paid and incurred loss data appear in Exhibit 4.

We used methods similar to those presented in [5] to adjust the paid losses for apparent changes In the
rate of claims closing. We calculated the adjusted incurred as the sum of the adjusted paid losses plus
the product of adjusted average reserves times adjusted claims open. We calculated the adjusted

reserves as suggested In 5).

Exhibit 3 also shows the triangle of adjusted closed claims. We obtained this triangle as the product of

the forecast ullimate reporied claims for an accident times the most recent percentage of uitimate claims

closed at that particular valuation point. For example, the estimate of 210 claims closed for 1889 at 38
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months is the product of 42.3%, the percent of ultimate closed at 36 months for the most recent accident

year (1990) times 487, the projected ultimate claims for 1989.

We used four different projection methods on each set of data; paid loss development, incurred loss
development, a severity projection method and a hindsight average outstanding loss method. in both of
the development factor methods we used an exponential curve fit to the difference of selected
development factors minus 1 to estimate development after 96 months. In the severity projection
method we reviewed the average costs per ultimate claim and inherent trends in those averages at the
various stages of development to "square the triangle” of average payments, see, for example [5] for

examples of this technique.

For the hindsight average outstanding loss method we calculated the average unpaid loss per open and
incurred but not reported (IBNR) claim at various stages of development. We calculated these averages
as the ratios of the difference of initial forecast ultimate losses minus paid losses to date divided by the
difference of forecast uitimate claims minus claims closed to date. We used the unweighted average of
the other three projections as the initial selection in this case. We then reviewed these averages and
inherent trends at each stage of development and selected a representative average for the accident
year currently at that age. We then used the product of that average and the number of open and IBNR
claims as an estimate of the future payments for that year. Our ultimate loss projection for this method

was then the sum of this outstanding loss estimated and the amount paid to date.

Exhibit 5 then shows a summary of the various projections and our weighted average selection, based on
the weights shown in the bottom portion of that exhibit. We judgmentally selected the weights shown but
they reflect our view of the extent that the hypotheses of the indicated projection method fit with what has

been occuming in the data.
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We recognize that these methods and selections are based on judgment and that different actuaries may
have different opinions than we do. However, we believe that the method to estimate variation that we
will present is sufficiently adaptable to accommodate different selections or even different underlying

forecasting methods,

If we had estimates of the variances of the different projection methods ancther weighting presents itself.
If we assume the various projections are independent then the weighted average with the least variance
is that which assigns a weight to a random variable proportional to the inverse of its varlance. This is
intuitively appealing since, in this case, uncertain projections, identified by high variances, are given

relatively less weight than more precise ones.

4. Estimate of Process Variation

We will estimate the process variation, that which is due only to random fluctuation, using the unadjusted
collective risk model as described in Algorithm 2.1. Later we will examine an approach to Include

parameter uncertainty in the estimates and to use Algorithm 2.2

Since we will be using the collective risk model we will need estimates of the distributions of the number
of claims and of the size of individual claims. We will use the results of our reserve forecasts as a

starting point.

Columns (1) through (7) of Exhibit 6 shows the caiculation of indicated reserves and resuiting indicated
average loss per outstanding and IBNR claim by accident year. We will assume that the total
outstanding claims have a lognormal distribution and that the loss data, and corresponding reserves,
represent losses at $500,000 policy limits. We make these assumptions to maintain simplicity in the

presentation. In practice the actuary will need to make appropriate estimates for these distributions.
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We have also selected the coefficient of variation (ratio of the standard deviation to the mean) for the
lognormal distribution, as shown in column (8). Though the selections here are judgmental they are

based on two assumptions:

1. In ratemaking for this line of business we have selected a lognormal distribution with a coefficient of

variation of 5.0 In calculating our increased lirits distributions.

2. As time progresses the book of open and IBNR claims become more homogeneous and thus we

would expect the coefficient of variation to decrease.

In practice we would have to derive estimates for these parameters too. One approach would be to
consider the distribution of open and IBNR claims at various stages of development for older accident
years that are completely, or at least nearly completely, closed out. Such a review would provide better

insight in the selection of the coefficient of variation.

We have selected a lognormal distribution here primarily for its computational convenience. All of the
concepts we will present will apply for most commonly used claim size distributions, though some of the

specific formulae we will use may need to be modified.

Also, for convenience, we will assume that open claims and IBNR claims have the same claim size
distribution and that they are independent. A potential refinement would be to separately estimate the
distributions for open and IBNR claims. Again, this could be accomplished by reviewing distributions for

older accident years, but we will not explore this further here.

There may be some argument with the assumption of independence. It is possible that settlement of

open claims, and resulting precedent, may influence the distribution of IBNR claims, or even that of other
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open claims. The inclusion of the mixing parameter by Heckman and Meyers will essentially affect all
claims in the same way, adjusting the aggregate losses either up or down uniformly, thereby building in
some dependence. We recognize that notwithstanding the use of a mixing parameter our assumptions
may slightly understate the spread of reserves if the distributions for open and IBNR claims are not

independent.

Columns (8) and (10) of Exhibit & show the x4 and o parameters for the selected lognormal distribution.
In this case we selected the following parameterization for the lognormal probability density function:

_(hx"'l-')?
27

e
=

With this parameterization, if X is the lognommal variable, 4 and o represent the mean and standard
deviation respectively of the normal distribution of In(X). In addition, the coefficient of variation (c.v.) for

the unlimited distribution and expected loss limited to L respectively are given by:

cv=ve” -1

E(X|L) =i a{'—%d‘—" - 0') + L[1 - ®( ’"LT“‘)]

Here &(X ) denotes the probability that a standard normal variable will not exceed X. This and other

formulae regarding the lognormal distribution can be found in [6] among other sources. We solved the
first of these equations directly for o. Given o, then, we used numerical methods to estimate the value

of x4 that would yield a mean limited to $500,000 equal to the selected average reserve shown in column

{7). Many commercially available sofiware and spreadsheet packages contain such algorithms, one
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could also write a simple algorithm using interval halving since the function E(X|L) is an increasing

function of x4 for a fixed L.

Exhibit 7 shows the selected step function approximations for the claim size distributions. Since these
distributions will be used as input for the Heckman and Meyers atgorithm, the probability for an indicated
amount does not correspond to the probability that the limited mean will not exceed that amount. Rather
these represent step function approximations for the lognormal distribution which have means equal to

the expected limited losses.

We will assume that the number of open claims is certain, that is, it has 0 variance. This is equivalent to
a contagion parameter c=-J. We will assume that the IBNR claims have a Poisson distribution.
Claims that close without payment may add some technical complexity to the selection of these
distributions. We can include this in a number of ways. Probably the most straight-forward would be to
include a positive probability of $0 losses in the claim size distribution. We note that the positive
probability of a $0 loss may present problems with the algorithm presented in {4]. This practical problem
can be overcome by using a small loss amount such as $0.01 instead of $0 for the claim size distribution
input. Again, in order to keep these discussions relatively simple we will not make this refinement here,

although the example we present in the appendix to this paper does deal with such a situation.

Another potentially complicating factor with these assumptions is the presence of reopened claims. We
have assumed that the claim count data includes a reopened claim as a separate count and we have
thus included provision for reopened counts in our estimates for IBNR claims. Again, we could adjust the
claim count distribution for open claims to accommodate reopens. Another option would be to model

reopened claims separately, similar to the way we treat IBNR claims.
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We note another option in representing the combined distribution of open and IBNR claims. Let 1,
denote the number of open claims and 2, the number of expected number of IBNR claims. We have
assumed that the number of open claims is certain and that the number of IBNR claims has a Poisson
distribution. Then the number of combined claims has mean i, + 4, and varance A,. We see that a

claim distribution with mean 1, + A, using contagion parameter

Ao
(4o +’11)2

will also have varlance equal to Z,. This is one potential short-cut in the calculations. If one assumes
that open and IBNR claims have the same distributions then this assumed claim count distribution could

replace the two separate distributions In the calculations.

We note, however, that this vaiue of ¢ is negative, resulting in the use of a binomial distribution which
has a maximum number of possible claims. This may be undesirable in applications. However, we
calculated aggregate loss distributions using both this single distribution and using separate distributions

for open and IBNR claims and we found no discemible difference in the results.

Making use of the algorithm in [4] we calculated the resulting distribution of aggregate reserves for each
accident year separately. We then used the same algorithm to calculate the aggregate distribution for all
years combined, using the output of the algorithm to estimate the aggregate reserves for individual
accident years. In this case we assumed 1 "claim" and used contagion factors of -1 for each year

(implying a zero claim count variance) to estimate the distribution for aggregate reserves.

The user of this algorithm should be aware that the output provides estimates of the value of the

cumulative density function at selected values of the aggregate reserves. These comespond to the
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valuation of that function at those points. Though this is valuable information, it does not directly provide
a step function approximation to the aggregate reserve function that maintains expected values. We
thus modified the output, similar to the modification for the individual claim size distributions, to obtain
better step function approximations to the indicated cumulative density function before using them as

input for the final calculations.

Exhibit 8 shows the estimated distribution of aggregate reserves for each accident year and for all
accident years combined. To facilitate comparison between the years we show the estimated probability
levels for various multiples of the expected values (shown in the first line). Heckman and Meyers refer

to these ratios as "entry ratios.”

As can be seen from this exhibit, the distributions of reserves for earlier accident years appear to be
more disperse than those for later years. In addition, the distribution of aggregate reserves for all
accident years is quite tight. This is a result of the law of large numbers. Even with this substantial
narrowing of the ranges, in this case random fluctuation alone could result in reserves of more than
110% of the expected value approximately 5% of the time, with an approximate 0.1% chance of
exceeding 120%. In this case roughly 90% of the aggregate reserve distribution falis between +10% of
the expected value. We stress that only accounts for random fluctuations assuming all our hypotheses

are correct. We have not yet addressed uncertainty in these assumptions.

5. Estimate of the Contagion Parameter

We first address uncertainty in the expected claim count parameter, 2. For this we consider projected

ultimate frequencles by accident year as shown in Exhibit 8. A review such as this may be conducted in

conjunction with a periodic rate review and all factors considered in such a review should be included in
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these projections. Here we selected an average annual frequency trend of 2.3% as indicated by an

exponential fit through the frequencies for all years.

Assuming that 1993 will have an estimated 8,700 eamed exposures column (€) shows the indicated 1993
claims assuming the respective historical frequencies, adjusted to 1993 level using the 2.3% assumed
trend. We see that this resulls In an average of 518 claims per year with an unbiased estimate of the
variance of 3,158 as compared with the expected variance of 516 if the distribution were Poisson. We
thus assume a contagion parameter of 0.6099 by solving the equation 3,158 = 516 + ¢ x 5162 for . We
will then assume that the distributions of IBNR claims for all accident years have this same factor to

reflect parameter uncerainty.
8. Estimates of Mixing Parameters

Returning to our ultimate loss, and hence reserve, selections described in section 3 (Point Estimates of
Reserves) we note that our selected weights can be thought of as providing our subjective judgment
regarding the likelihood that the underiying assumptions for the various methods are met in this particular

data set. This may be thought of as a form of Bayesian &-priori probability estimate.

Foliowing this thought, we can calculate the variance of the projection methods about the weighted
average, using the same weights as used in the selections. in particular, if, for a fixed accident year, Z;

denotes the projection for method | and w, denotes the relative weight given to method i then our

selection and corresponding variance can be calculated as:

EZ)=3wz,

i=1

vma=im&rﬂﬂy
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These estimates are shown in column (8) of Exhibit 10. If we then assume that the methods that we
applied consider all different sets of alternative hypotheses then the variance in the methods is an

indication of the overall variance of the estimates, and hence reserves, for a particular year.

As indicated above, we can explain a portion of the variance experienced by process variation and in
uncertainty in the claim counts. In particular, using formula (2.2) separately for open and IBNR claims

we derive:

Var(Z, )= 4o (E(X3|L)-E2(X,|L))

®.1)
var(z,) = 4, E(X?|L) + c2E3(x,|)

The first of these equations assumes a contagion parameter ¢ = — ){lo, and both follow directly from

equation (2.2) with b = 0. With our assumption that the reserves for open and IBNR claims are

independent then the total variance is the sum of the variances.

Columns (1) through (5) of Exhibit 10 summarize estimates from Exhibits 1 and 8. Column (6) shows the

value of E(X 2 |L) using the following formula (see, for example, [6]):

et {2

Using these values and equations (6.1) we calculated the amount of variance that can be explained by

process variation and the contagion parameter. This explained variance is shown in column (7).

As can be seen there, the explained variance exceeds the variance in the selection in accident years

1985 and 1986, but is less for the other years. Thus there is variance in the projections that is not
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explained by process variation or by uncertainty in the claim count projections. We will assume that this
remaining uncertainty is explained by a non-zere mixing parameter, b. For this, we solve the following

equation for b:

var(T) =Y + b4, E(X3|L)+ dol4o - VEX(Xo |t )+ 4, E(X2IL)+ B+ DE(X,|L)] (6.2

Where Var(T) denotes the variance in selected in column (8) and Y denotes the explained variance in
column (7). Column (9) shows the resulting b values. The b values we selected to estimate uncertainty

in the expected value are shown in column (10).

We note that the indicated b parameter increases from 1985 through 1991 but decreases in 1982. This
is primarily due to the decrease In the variance in the selected between 1891 and 1992 because of the
wider range of forecasts for 1991 than 1992. Though it may seem counterintuitive for parameter
uncertainty to decrease, it is possible that the wider range in 1991 may indicate that changes that appear

to have influenced the 1991 forecasts more.

These b parameter estimates provide for parameter uncertainty regarding severity within each accident
year. As yet unanswered is the question of uncertainty affecting all accident years. For this we chose an

approach similar to that taken in estimating the ¢ parameter.

As is often done in ratemaking applications, we used the trend inherent in the historical pure premiums to
adjust historical pure premiums to present separate “observations” of 1993 pure premiums, We then
used the variation inherent in these "observations" as an indication of the amount of overali uncertainty
we have in the 1993 severity estimate. We then assumed, as in our estimates of the contaglon

parameter, that this uncertainty will apply to our total reserve estimates for historical years.
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Calculations shown in Exhibit 11 derive estimates similar to those in Exhibits 9 and 10. Column (1)
shows the limited severity implied by our projections while column (2) simply repeats our assumption that
the losses will have a coefficient of variation of 5.0. Of course, if there were reason to believe that this
coefficient will change over time we could modify the values in column (2). Column (3) then shows the
unlimited severity for a lognormal distribution with the coefficient of variation shown in column (2) that

would yleld the severities limited to $500,000 shown in column (1).

Column (4) shows our selected frequency as shown in Exhibit 9 and column (5) shows the indicated
unlimited pure premium. We then calculated an annual pure premium trend of 18.6% based on all
observations of unlimited pure premiums in column (5). Similar to the analysis in Exhibit 8 we adjusted
these observed pure premiums to our expected 1993 Jevel using this indicated 18.6% trend. We elected
to base our projections on the unlimited pure premium due to the damping effects of a fixed limit on

limited severities.

We note that the usual arguments of additional variability in the unlimited averages that are cited as a
reason for basing ratemaking analysis on limited data do not necessarily apply here. Since the unlimited
loss estimates are based on the limited losses and a smooth distribution that does not change drastically
from year to year, there is little additional fluctuation introduced in considering unlimited losses in this

case.

Column (7) then shows the various indications of 1993 total losses, using the assumed 8,700 exposures
as used in Exhibit 9. Using the estimated 518 claims for accident year 1993 from Exhibit 9, we derive
the indicated unlimited severities shown in column (8). Column (9) then shows the resulting 1993 level
severities limited to $500,000 per claim, again using the lognormal distribution, the coefficients of

variation in column (2) and the unlimited means in column (8).
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Finally the various observations of indicated 1993 total limited Josses are shown in column (10). Based
on these observations we expect $13,054 thousand in losses in 1993 with a variance of 3,082,167
million, assuming the observations are independent. This corresponds to an average of $25,288 per
claim limited to $500,000 and an unlimited average of $29,346. This latter amount is the unlimited
severity necessary for a lognormal distribution with coefficient of variation 5.0 to have a mean limited to

$500,000 equal {o $25,298.

These assumptions, including our selected contagion parameter, then result in an expected variance of
4,027,361 million. This in turn results in a negative value for b when we solve equation 6.2. Thus we
conclude that our assumptions are sufficient to account for observed variation in these estimates and we

will select an overail b parameter equal to zero.

As with calculations without parameter unceriainty, we calculated the aggregate distributions for reserves
for each year separately. In this case we used the selected contaglon parameter and selected b
parameters shown in Exhibit 10. We then convoluted the resulting distributions with a mixing parameter

set to zero.

Similar to Exhibit 8, Exhibit 12 shows the estimated distributions of reserves including these estimates of
parameter uncertainty. Comparing these two exhibits shows the significant impact of Including
parameter uncertainly as described here. For example, without parameter uncertainty 97% of the
estimated 1991 reserves fall within 30% of the expected value whereas less than 58% fall in this range if

parameter uncertainty is included,

A similar observation, though not as dramatic, also holds for the aggregate distributions. Without

parameter uncertainty 80% of losses are within 10% of the expected. With parameter uncertainty only

51% of the losses are in that range. Another comparison shows that the 80% probability level is

317



approximately $45 million without parameter uncertainty but is approximately $50 million when
parameter uncertainty is considered. Exhibits 12 and 13 graphically show this comparison for the

cumulative density functions and probability density functions respectively.

7. Conclusions

Now that our presentation is complete, we once again point out that the methodology we presented does
not depend on the choice of the underlying claim size distribution, nor does it require the use of the same
distributions for both open and IBNR claims. Of course, calculations of the limited mean and variance

would change with different claim size distributions but ali concepts and methodology stili apply.

We note that this methodology attempts to recognize uncertainty arising from the process, in the
selection of parameters, and, to some extent, in the selection of reserve forecasting model. We aiso
recognize that much more work is necessary before we have a comprehensive approach to measure all
these sources of uncertainty, However, echoing, Meyers and Schenker, we conclude that parameter

uncertainty can be have a significant impact on the distribution of reserves.
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Exhibit 1

Page 1 of 2
EXAMPLE MEDICAL MALPRACTICE DATA
Incurred Losses
Accident Months of Development
Year 12 24 36 48 60 12 84
1985 $290 $516 $1,0M $1,461 $1,666  $2,090 $2,289  $2,351
1968 483 1,071 1,691 2,284 2,621 3,197 3,222
1987 546 1,194 2,073 3,003 4,240 4,838
1988 a3 1,863 3,214 5,720 6,114
1989 1,123 1,997 5,014 7,373
1990 871 3,348 6,348
1991 1,293 4,890
1992 1,579
Cumufative Paid Losses
Accident Months of Development
Year 12 24 36 48 60 72 84 96
1985 $13 $41 $144 $299 3447 $818  $1,264  $1.582
1988 4 53 202 364 752 1,430 1,898
1987 30 115 248 507 1,140 1,771
1988 5 79 381 977 1,852
1989 21 83 360 1,129
1990 17 159 627
1991 21 157
1992 21
NOTE:

1. Ali dollar amounts are in thousands.
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Accident

Year

1985
1986
1987
1988
1989
1990
1991
1992

Accident

—Year

1985
1986
1987
1988
1989
1980
1991
1892

Exhibit 1

Page20f2
EXAMPLE MEDICAL MALPRACTICE DATA
Reported Claim Count
Months of Development Projected
12 24 =36 48 60 72 84 Ultimpate
107 168 219 252 256 259 261 263 263
102 185 231 269 275 278 280 282
130 251 314 375 387 392 398
135 273 352 421 448 458
138 283 367 467
138 277 362 483
155 279 459
160 500
Cumulative Closed Claim Count
Months of Development
12 24 36 48 60 72 84
32 84 119 137 153 182 208 227
36 89 116 134 165 202 226
42 118 142 195 244 286
31 117 169 232 294
29 144 213 279
33 135 196
41 132
40
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Accident

Exhibit 2

COMPARISON OF AVERAGE PAYMENT AND AVERAGE RESERVE TRENDS

Average Reserve per Open Claim

Year
1985
1986
1987
1988
1989
1990
1991
1992

Indicated
Trend

Accident

Year
1985
1988
1987
1988
1989
1990
1991
1992

Indicated
Trend

Months of Development
24 36 48 60 72 84 96
$3,6903 $5655 $9,270 $10,104 $11,835 $16,519 $19,240 $21,361
7258 10,604 12,948 14222 16,991 23250 24,519
5,864 8,113 10,610 14,367 21,678 28,934
8,346 11,436 15481 25,085 28,039 }
10,110 13,770 30,221 33,213
8,291 22444 34,464
11,158 32,197
12,983
15.6% 29.5% 31.1% 34.3% 32.7% 32.3% 26.8% 1
Average Payment per Closed Claim
Months of Development
0-12 12-24 24-36 36-48 _48-60 _60-72 72-84 84-96
$402 $539  $2.9M $8,620 $9,199 $12669 $17,084 $16,634
110 919 5,487 9,120 12403 18452 19,533
706 1,115 5,644 4,928 12,994 14,948
161 862 5,782 9,477 14,085
724 541 4,003 11,709
518 1,394 7,635
517 1,494
525
12.9% 12.0% 11.5% 6.7% 14.2% 8.6% 14.3%



EXAMPLE MEDICAL MALPRACTICE DATA

Ratios of Closed to Projected Ultimate Claims

Exhibit 3

Accident Months of Development
Year. 12 24 36 48 60 72 84 96
1985 12.2% 31.8% 45.2% 52.1% 58:2% 69.2% 79.1% 86.3%
1986 12.8% 31.6% 41.1% 47.5% 58.5% 71.6% 80.1%
1987 10.6% 29.6% 35.7% 49.0% 61.3% 71.9%
1988 6.8% 25.5% 36.9% 50.7% 64.2%
1989 5.8% 29.0% 42.9% 56.1%
1990 71% 29.2%
1991 8.9% 28.8%
1992 8.0%
@ Adjusted Cumulative Closed Claim Count
[
Accident Months of Development
Year 12 24 38 48 80 72 84 96
1985 21 76 111 148 169 189 211 227
1986 23 81 119 158 181 203 228
1987 32 115 168 223 256 286
1988 37 132 194 257 294
1989 40 143 210] 279
1990 37 133 196
1991 37 132
1992 40
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EXAMPLE MEDICAL MALPRACTICE DATA

Cumulative Paid Losses Adjusted for Closure Rates

Exhibit 4

Accident Months of Development
—Year 12 24 36 48 60 12 84
1985 $2 $34 $11 $396 $623 $919  $1,317 $1,582
1986 0 32 210 620 966 1,417 1,898
1987 7 106 354 817 1,287 1,17
1988 6 123 554 1,272 1,852
1989 24 82 337 1,129
1690 19 163 627
1991 12 157
1992 1
Incurred Losses Adjusted for Closure Rates and Reserve Changes
Accident Months of Development
Year 12 24 36 48 60 72 84 96
1985 $422 $1.315  $1,982  $2371 $2,.227  $2450  $2,383 $2,351
1986 443 1.697 2,417 3,044 2,959 3,304 3,222
1087 640 2,610 3,663 4,634 4,481 4,838
1988 733 3,108 4871 8,008 6,114
1989 861 3,490 5,042 7,373
1990 991 4,185 6,348
1991 1,344 4,890
1992 1,578
NOTE:

1. All doilar amounts are in thousands.



743

Accident

Year

1985
1986
1987
1988
1989
1990
1991
1992

Accident

Year

1985
1988
1987
1988
1989
1990
1991
1992

NOTE:

EXAMPLE MEDICAL MALPRACTICE DATA

Ultimate Loss Projections

Unadjusted Methods

Adjusted Methods

Development

Severity Hindsight

Development

Incurred Paid __ Projection _Method Incurred Paid _ Projection _Method _Average
$2,414  $2,300  $2,300 $2,351 $1,902  $1,901
3,399 3,454 3,354 3,180 2,741 2,674
5317 4,536 4,885 4,649 3,519 3,714
7.979 8,149 7,586  $6,797 6,438 5,254 5249  $5413
11,222 9,697 9,818 8,862 7,631 4,878 6,107 6,430
14,746 13,215 11,247 11,049 8,671 7,326 6,877 6,838
22,083 12250 13,372 14,924 9,814 7,591 7,763 8,126
19,360 10,141 17,740 20,673 12,419 9,964 8,717 10,273
Selected Weights
Unadjusted Methods Adjusted Methods
Development Severty Hindsight Development Severity Hindsight
incurred Paid __ Projection _Method Incurred Paid  Projection _Method
2 1 1 2 1 1
2 1 1 8 4 2
2 1 1 9 6 3
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8
1 1 1 1 4 4 8 8

1. Ali dollar amounts are in thousands.

Exhibit 5

Severity Hindsight Weighted

$2,242
3,075
4,278
5,806
6,783
7.999
9,263
11,335
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ESTIMATED TOTAL RESERVES
1) @ 3} “) (5) ©) @ ®)
Indicated

Open & Indicated Selected
Selected Losses Indicated Estimated Claims IBNR  Average Coefficient

Accident  Ultimate Paid Reserves Ultimate Closed Claims Reserve of
Year Losses _to Date 1) - (2) glalms to Date . _(4) - (5) {3)/(6)  Varialion
1985 $2,242  $1,582 227 36 $18,333 34
1986 3,075 1,898 1 177 282 226 5 21,018 36
1987 4,279 1,71 2,508 398 286 112 22,393 38
1988 5,806 1,852 3,954 458 294 164 24,110 40
1989 6,783 1,120 5,654 497 279 218 25936 4.2
1890 7,999 627 7,372 463 196 2687 27610 4.4
1991 9,263 157 9,106 459 132 327 27,847 46
1992 11,335 21 11,314 500 40 460 24,596 4.8

Total $50,782  $9,037 $41,745

NOTE:
1. Amounts in columns (1), (2), and (3) are in thousands of dollars.

©®

Exhibit 6

(19)

indicated
Lognormal Parameters

L o

8.59985 1.5908
8.7009 1.6238
8.7279 1.6544
8.7702 1.6832
8.8152 1.7104
8.8520 1.7360
8.8204 1.7602
8.6557 1.7832



Loss
Amount

$50
100
250
500
750
1,000
1,250
1,500
2,000
2,500
3,500
5,000
6,000
7.500
8,500
10,000
12,500
15,000
20,000
25,000
35,000
50,000
60,000
75,000
85,000
100,000
125,000
150,000
175,000
200,000
225,000
250,000
275,000
300,000
350,000
400,000
450,000
500,000

SELECTED CLAIM SIZE DISTRIBUTIONS

Accident Year

Exhibit 7

1985 1986 1087 1988 18989 1900 1991

0.00138
0.00548
0.02612
0.08697
0.10693
0.14405
0.17806
0.21001
0.26564
0.31402
0.39369
0.48100
0.52587
0.58142
0.61120
0.65070
0.70072
0.74028
0.79521
0.83318
0.88178
0.91994
0.93492
0.95108
0.95822
0.96685
0.875¢8
0.98167
0.98559
0.98837
0.99043
0.99200
0.99321
0.99421
0.99583
0.99858
0.99727
0.99777

0.00138
0.00535
0.02476
0.08290
0.10021
0.13495
0.16888
0.19894
0.24955
0.29555
0.37188
0.45649
0.50043
0.55520
0.58482
0.82430
0.67482
0.71518
0.77194
0.81180
0.86369
0.90547
0.92224
0.94053
0.94876
0.95877
0.96956
0.97640
0.98119
0.98464
0.98722
0.98921
0.99076
0.89204
0.99390
0.99517
0.99610
0.99677

0.00156
0.00590
0.02602
0.08446
0.10155
0.13588
0.16730
0.10682
0.24837
0.29337
0.36799
0.45082
0.49391
0.54772
0.57690
0.81584
0.66585
0.70595
0.76270
0.80280
0.85546
0.89839
0.91583
0.93497
0.94366
0.95429
0.96586
0.97328
0.97852
0.98232
0.98519
0.98741
0.98915
0.98061
0.99273
0.99419
0.98526
0.99605

0.00169
0.00625
0.02657
0.086461
0.10097
0.13452
0.165168
0.19392
0.24413
0.28795
0.36071
0.44171
0.48399
0.52693
0.56573
0.80425
0.65394
0.89396
0.75097
0.79156
0.84533
0.88977
0.90804
0.92822
0.93748
0.94885
0.96136
0.96947
0.97525
0.97947
0.98268
0.98519
0.08716
0.98882
0.99128
0.99295
0.99421
0.99514
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0.00181
0.00853
0.02688
0.06435
0.09990
0.13282
0.16247
0.18047
0.23933
0.28201
0.35297
0.43222
0.47373
0.52585
0.5542¢0
0.59242
0.84182
0.68178
0.73903
0.78009
0.83495
0.88087
0.89996
0.92117
0.93099
0.94311
0.95656
0.9853¢
0.97171
0.97838
0.97985
0.98275
0.98497
0.98685
0.98962
0.99156
0.89302
0.99410

0.00194
0.00685
0.02737
0.06453
0.09952
0.13162
0.16085
0.18824
0.23603
0.27775
0.34718
0.42489
0.46570
0.51703
0.54512
0.58283
0.63186
0.67164
0.72896
0.77030
0.82593
0.87299
0.89274
0.91480
0.92509
0.93784
0.95211
0.96155
0.96836
0.97343
0.97732
0.98039
0.98283
0.98491
0.98800
0.99018
0.99182
0.89305

0.00229
0.00786
0.03002
0.06895
0.10488
0.13775
0.16740
0.19508
0.24310
0.28484
0.35397
0.43097
0.47128
0.52191
0.54959
0.58671
0.83494
0.87406
0.73043
0.77110
0.82590
0.87238
0.89195
0.91385
0.92410
0.93881
0.95109
0.88057
0.98745
0.97256
0.97851
0.97963
0.98213
0.98425
0.98742
0.98966
0.99136
0.99263

0.00346
0.01125
0.03951
0.08585
0.12719
0.16384
0.19840
0.22644
0.27766
0.32148
0.39280
0.47050
0.51050
0.56031
0.58723
0.82315
0.66931
0.70839
0.75921
0.79886
0.84700
0.88888
0.90832
0.92573
0.93475
0.94589
0.95833
0.96854
0.97246
0.97685
0.98022
0.98288
0.88500
0.98680
0.98948
0.99137
0.99281
0.99388



ESTIMATED PROBABILITY LEVELS FOR RESERVES

Without Parameter Uncertainty

Exhibit 8

Accident Year
1885 1986 1987 1988 1988 1960 1891 1992  Total
Expected Reserve
$860 $1,177 $2,508 $3,954 $5654 $7,372 $9,106 $11,314 $41745
Ratio fo
Expected Estimated Probability Level
0.3 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.4 0.0195 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5 0.0519 0.0202 0.0017 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
0.6 0.1322 0.0743 0.0174 0.0051 0.0004 0.0007 0.0003 0.0001 0.0000
0.7 0.2424 0.1710 00748 00376 0.0005 0.0123 0.0075 0.0031 0.0000
0.8 03635 0.2955 0.1918 0.1386 0.0710 0.0792 0.0626 0.0421 0.0006
0.9 04794 04278 03567 03134 02491 02576 0.2378 0.2095 0.0479
1.0 0.5815 05541 05359 05281 0.5200 0.5200 0.5179 05162 0.5074
1.1 06670 066865 06960 07213 0.7667 07596 0.7749 07981 0.9452
1.2 0.7375 07599 08182 0.857¢ 09140 09070 0.9230 0.8434 (.9990
1.3 0.7962 0.8330 09001 0.9369 09757 09719 0.9805 0.0892 1.0000
14 0.8445 0.8874 09492 0.9753 0.8946 0.9932 09962 09985 1.0000
1.5 0.8842 0.8262 0.9760 09914 0.9990 0.9987 0.9994 09999 1.0000
18 0.9150 0.9530 09894 0.9973 0.9999 0.9998 0.9999 1.0000 1.0000
1.7 0.9384 09708 09956 09992 1.0000 1.0000 1.0000 1.0000 1.0000
1.8 0.9558 0.9823 0.9983 ©.8998 1.0000 1.0000 1.0000 14.0000 1.0000
1.9 0.8685 0.9896 09993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 09777 09938 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.1 0.9844 09965 098998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.2 0.9862 0.9981 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
23 0.9926 0.9989 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000
24 0.9950 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 0.9967 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
286 0.8978 0.8898 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
27 0.9985 0.9898 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
238 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
29 0.9994 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3.0 09986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
31 0.9997 1.0000 1.0000 1.0000 4.0000 1.0000 1.0000 1.0000 1.0000
32 0.9968 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 14.0000 1.0000
33 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
NOTE:

1.

Reserve estimates are in thousands.
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ESTIMATE OF CONTAGION PARAMETER

M @

Estimated
Accident Ultimate

Year Claims__ Exposures__ (2)/(3) Frequency (5)x8,70

1985 263
1986 282
1987 398
1988 458
1989 497
1990 463
1991 459
1992 500
Indicated Trend
Arithmetic Average

Variance Estimate

Indicated ¢ Value

&)

5,007
4,965
7,719
7,922
11,361
7,525
8,376
8,649

@)

®)

Indicated Selected

4.45%
5.68%
5.16%
5.78%
4.37%
6.15%
5.48%
5.78%

2.3%

Eamed Frequency On-Level

§.34%
6.66%
§.91%
6.48%
4.79%
6.58%
5.73%
5.91%

Exhibit 9

®
Indicated
1993
Claims

579
514
564
417
572
499
514

516
3,158
0.0099



6C¢

ESTIMATES OF PARAMETER UNCERTAINTY FOR MEANS

) @
Indicated Lognormal
Accident Parameters
—Year W . O
1985 8.5995 1.5908
1986 8.7009 1.6236
1987 8.7279 1.6544
1988 8.7702 1.6832
1989 8.8152 1.7104
1990 8.8520 1.7360
1991 8.8204 1.7602
1592 8.6557 1.7832
Selected Contagion Parameter:
NOTE:

() “@ 5)
Estimated Expected
Number of Claims  Average
Qpen IBNR Reserve
36 0 $18,333
54 2 21018
106 6 22,393
152 12 24,110
188 30 25,936
166 101 27,610
147 180 27,847
120 340 24,596
0.0099

1. Amounts in columns (8), (7) and (8) are in millions.

®
E(x2|L)

sr—————

2,267
2,920
3,322
3,821
4,366
4,890
5,044
4,280

) &
Vartiance
Explained in

Exhibit 10

Variance  Selected _bvalue _bvalue

69,526 40,192
138,662 71,526
319,139 373,623
539,092 746,201
831,265 2,277,671

1,256,128 4,180,470
1,784,293 9,390,867
2,588,688 8,436,800

® (10)
implied  Selected
-0.0581  0.0000
-0.0477  0.0000
0.0091  0.0091
0.0147  0.0147
0.0574  0.0574
0.0074  0.0974
01742  0.1742
00720  0.0720




0te

ESTIMATE OF OVERALL MIXING PARAMETER

@)
Indicated
1993

@®)

Indicated
1993

Exhibit 11

(10)
Indicated
1993
Limited

Severity Limited Loss (4)x
Level ~ (6)x8,700 _(7)/516__Severty _(9)x516

$26,202
36,562
27,591
31,007
21,483
32,992
29,502
29,915

4] @ @ “ &) ©) )
Indicated Unlimited Indicated
Unlimited  Pure 1993
Indicated Selected Indicated Pure Premium Unlimited Uniimited
Accident Limited Coefficient Uniimited Selected Premium at 1993 Loss
Year _ Severity of Varation _Severity Frequency _ (3)x(4)
1985 $8,525 5.0 $8,913 4.45% $397 $1,554  $13,520
1986 10,904 5.0 11,572 5.68% 657 2,168 18,866
1987 10,751 5.0 11,399 5.16% 588 1,636 14,237
1988 12,677 5.0 13,605 5.78% 786 1.844 16,046
1989 13,648 5.0 14,736 4.37% 644 1,274 11,085
1990 17.276 5.0 19,081 6.15% 1,173 1,957 17,024
1991 20,181 50 22,692 5.48% 1,244 1,750 15,223
1992 22,670 50 25882 5.78% 1,496 1,774 15,436
Indicated Trend 18.6%
Average (000)

Variance Estimate (000,000)

Average Limited Severity

Cormesponding Unlimited Severity
£{x*|t) (000,000)
Selected 1993 Claim Counts

Explained Variance (000,000)
Implied b value

Selected Overall b value

NOTE:

1. Columns (7) and (10) are in thousands.

$22,916
30,547
23,976
26,599
19,219
27,987
25,415
25723

$11,825
15,762
12,372
13,725
9,817
14,441
13,114
13,273

$13,054
3,082,167
$25,208
29,346
4,536

516
4,027,361
-0.00542
0



Ratio to

1.2

D) b owd ed o md b b

2.1

NOTE:

ESTIMATED PROBABILITY LEVELS FOR RESERVES

Exhibit 12

With Parameter Uncertainty
Accident Year
1985 1988 1987 1988 1989 1990 1991 1092 Total
Expected Reserve
$660 $1,177 $2,508 $3,954 $5854 $7,372 §$9,106 $11,314 $41,745
Estimated Probability Level

0.0008 0.0001 0.0000 00000 0.0000 0.0001 0.0008 0.0000 0.0000
0.0115 0.0024 0.0001 0.0000 0.0008 0.0026 0.0117 0.0008 0.0000
0.0519 0.0202 0.0037 00015 0.0083 0.0211 0.0541 0.0101 0.0000
0.1322 00743 00264 00151 0.0439 0.0779 0.1382 0.0502 0.0001
0.2424 01710 0.09368 00686 0.1284 0.1798 0.2527 0.1400 0.0052
0.3635 0.2955 ©0.2152 0.1851 0.2597 0.3120 0.3775 0.2733 0.0638
04794 04278 03749 03549 04137 04511 04965 04248 0.2630
0.5815 0.5541 0.5421 05401 05630 05789 0.8007 0.5688 0.5476
0.6670 06885 06899 07028 06898 06851 06874 06800 0.7769
0.7375 07508 0.8043 0.82390 0.7879 0.7708 0.7570 0.7840 0.9051
0.7962 0.8330 0.8840 0.9032 0.8589 0.8347 0.8118 0.8527 0.9826
0.8449 0.8873 0.8350 09500 0.9080 0.8818 0.8543 0.9011 0.9856
0.8842 09282 0.9852 09755 0.9409 0.9159 0.8870 0.9341 (0.9944
0.9150 0.9530 09822 09885 0.9623 0.9402 09122 0.9564 0.9977
09384 0.9708 09912 09948 09761 09575 0.9315 09712 0.9990
0.9558 0.9823 0.9958 0.9977 0.9849 0.9697 0.9484 09810 0.9995
0.9685 09805 09980 09950 0.9904 0.9783 0.9578 0.9874 0.9998
0.9777 09939 09981 09996 0.99039 0.9845 0.9667 0.9916 0.8999
0.8844 09965 09996 09998 09961 09888 0.9735 09944 0.9999
0.9892 0.9981 0.9998 09999 09975 0.9919 09788 0.992 1.0000
0.9926 0.9989 0.9999 1.0000 0.9984 09941 0.9830 0.9975 1.0000
0.9950 09994 1.0000 10000 09990 0.9957 0.9863 0.9983 1.0000
0.9867 0.9967 1.0000 1.0000 0.9093 0.9968 0.9889 0.9988 1.0000
0.9978 09998 1.0000 1.0000 09998 09976 0.9910 0.9892 1.0000
0.9985 0.9999 1.0000 1.0000 0.9997 0.9982 0.9926 0.9994 1.0000
0.9980 1.0000 1.0000 1.0000 0.98998 0.9987 0.9939 0.9996 1.0000
0.9994 1.0000 1.0000 1.0000 0.9999 09930 0.9950 0.9987 1.0000
0.9996 1.0000 1.0000 1.0000 0.9999 0.9992 0.8959 0.9998 1.0000
0.9987 1.0000 10000 10000 09999 09934 0.9966 0.9999 1.0000
0.9998 1.0000 1.0000 1.0000 4.0000 0.9986 0.89971 09999 1.0000
09999 1.0000 1.0000 10000 10000 0.9997 09976 0.9998 1.0000

1. Reserve estimates are in thousands,

331



[423

Probability
O o O O o O o O o
O L4 N W R U O N @ © =
251—4——4——%——*—%——4-*—?——1———!——1

Estimated Aggregate Reserve Cumulative Densities

Exhibit 13

Aggregate Reserve (000,000)

Without Parameter Uncertainty With Parameter Uncertainty
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Exhibit 14

Estimated Aggregate Probability Density Functions
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Reserve Amount (000,000)

With Parameter Uncertainty

- Without Parameter Uncertainty




APPENDIX

This appendix summarizes the analysis of another data set using the methods presented in this paper.
The data used are those provided to the panelists for the Advanced Case Study session of the 1992
Casualty Loss Reserve Seminar, as summarized in Exhibit A-1. The first two pages of that exhibit give a
summary background information regarding the data source while the last three pages give summary
triangles and exposure information. Included are eighteen years of development for eighteen accident
years including data on paid and outstanding losses, claims closed with payment, reported claims, open

claims and eamed exposures.

Qur analysis indicated that there seemed to be changes in the percentage of reported claims that are
paid for the various accident years. It appears that the court decision cited in the background material
resulted in a higher proportion of reported claims being paid than the levels prior to that decision. We
noted other changes in these ratios in the data. We thus selected paid counts, as opposed to reported,

as the denominator in calcutating severities in our severity and hindsight projection methods.

We used four projection methods to estimate ultimate reported counts, The first two were development
factor methods applied to historical paid claims and historical incurred claims (paid claims plus
outstanding claims). The third method estimated ultimate paid claims as the product of the number of
ultimate reported claims and the forecast percentage of ultimate claims that will be paid. We used
development factor methods applied to the historical ratios of paid to closed (defined to be reported
minus open) claims. We considered trends in both the resulting reported frequencies and indicated
percentages paid to temper the leveraging effect of development factor methods for more immature

years,

The fourth method was a hindsight method based on frequencies. This method is similar to what we

used to estimate losses, as described in the main portion of this paper.
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Exhibit A-2 summarizes these prolections and shows our selections and various diagnostics. These
profections indicate an increase In estimated ultimate reported frequency in 1987 after a general
decrease in prior years, as shown in column (12), and a marked increase in the percentage of reported

that are estimated to be paid as shown in column (13).

After an analysis simitar to that for the sample medical malpractice data, we noted that there appears to
be a change in the rate at which clalms are being closed. We thus considered loss projections based on
paid loss data adjusted to remove this apparent change, Exhibit A-3 then shows a summary of our

uitimate foss projections similar to Exhibit 5.

Exhibit A-4 then summarizes the assumptions we used to estimate the distribution of aggregate reserves
before consideration of parameter uncertainty. In this case we assumed that claims closing with
payment would have lognormal distributions with unlimited means equal to the average reserve per
estimated future paid cfaim, shown in column (3). We assumed that all claims closing with payment
would have a coefficient of variation equal {0 1.25 and judgmentally scaled this back as shown in column
(7). Though 1.25 may seem arbitrary and possibly low, its selection was based on discussions with the

source of these sample data.

We have also elecled to combine accident years 1984 and prior. This is due primarily to the relative

scarcity of data for those years and the resulting "noise” in estimates for individual accident years.

As with the analysis in the main section of this paper, we assumed that open and IBNR claims both had
the same loss distribution. Agaln, this is more of a convenience than a requirement of this approach. in
this case, however, we assumed that the distribution of claims closing with payment would be lognormal
and included $0.01 losses in the input distribution with the complement of the probability of a claim
closing with payment. We then adjusted the remaining distribution accordingly. Exhibit A-5 shows an

example using accident year 1888.

335



Exhibit A-6 shows the resulting aggregate distributions for the reserves without consideration of
parameter uncertainty, similar to Exhibit 8. As can be seen from this exhibit, the rather large number of
claims results in relatively litle variation in aggregate amounts. Virtually all of the distribution is within

5% of the expected value of $203.2 million.

Exhibit A-7 corresponds to Exhibit 9 and resuits in an estimate for the overall contagion parameter of
0.0097. As shown in Exhibit A-2, however, due to changes that appeared in the data we used several
different forecasting methods to estimate ultimate paid claims with variance among the methods as

shown in column (10} of Exhibit A-2 and summarized in column (2) of Exhibit A-8.

Assuming our forecasts of the percentage of ultimate reported claims that will be paid, we can transiate
these variance estimates for ultimate paid claims to variance estimates for reported claims, as shown in
column {4) of Exhibit A-8. We calculated the amount shown for 1984 and Prior as the sum of the

corresponding amounts for the individual accident years.

We then solved for the contagion parameter, using the ultimate reported count estimates in column (1)
and the variance estimates in column (4) to derive the estimates in column (5). In most accident years,
the variance in the estimates is greater than what would be expected from a Poisson distribution. In
addition to this variance for individual accident years, there is additional variation from year to year as
shown in Exhibit A-7. We thus selected our contagion parameters as the sum of the indicated

parameters in column (5) and the overall indicated parameter shown in Exhibit A-7.

Exhibit A-9 shows our estimates of the mixing parameters for the individual years. Since we assume
that the josses are uniimited we can easily determine the indicated standard deviation, and hence
variance using the unlimited mean and assumed coefficient of variation. Column (10) then shows the
variance explained using the selected contagion parameters from Exhibit A-8 and the claim counts and
claim size variances. Column (11) shows the variance among methods and shows that, except for

accident years 1985 and 1991, the variance in methods exceeds what can be explained by our other
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assumptions. Column (12) gives the resulting implied values for the mixing parameter b while column

(13) shows our selections.

As with Exhibit 11, we also calculated the variation in ultimate losses over the accident years, shown in
Exhibit A-10. In this case the observed variance exceeds the amount that can be explained with the
overall contagion parameter and our estimates of claim count and claim size distributions. This then

implies an additional mixing parameter of 0.00089 shown at the bottom of Exhibit A-10.

We then calculated the individual distributions for each of the accident years separately, using the
estimates of contagion and mixing parameters shown in Exhibits A-8 and A-8. We used the overall
mixing parameter from Exhibit A-10 to reflect additional uncerainty in our final convolution of the

distributions for individual accident years.

Exhibit A-11 then presents a summary of our estimates for the individual years and for the aggregate
reserves. As with the analysis in the main section of this paper, the infroduction of parameter uncertainty
markedly widens the aggregate distribution. Whereas without parameter uncertainty, 90% of the losses
were within 2.5% of the expected, with parameter unceriainty this percentage drops to 33%. Without
parameter uncertainty 99.9% of the reserves were within 5% of the expected while with parameter
uncertainty 60% fall in this range and we would have 1o widen the range to 20% to capture more than

99% of the indicated values. Exhibits A-12 and A-13 show these comparisons graphically.
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Exhibit A-1
Page 1 of 5

BACKGROUND INFORMATION RELATING TO SAMPLE DATA

These data are based on actual bodily injury liability experience for an insurer,
though we havs randomly disturbed the true data to protect the identity of the
insurer. The liability coverage is not particularly long-tailed and does not contain
exposure to continuing damage or latent exposure claims such as asbestos or
pollution.

For your information, the incremental paid counts and amounts and the
incremental reported counts as well as outstanding counts and amounts were all
multiplied by values selected randomly from a lognormal distribution. The
corresponding normal distribution [that of In(X)] had a mean of O and a standard
deviation of 0.05. Thus the data should be close to "real." The exposures
shown have also been modified from the actual data, however the underlying
frequencies and pure premiums remain unchanged from that which would have
arisen from the randomly perturbed data.

We have included five summary triangles:

1. Cumulative Paid Losses. Total loss payments at annual valuations for each
accident year.

2. Outstanding Losses. Carried case reserves, without any actuarial or butk
adjustments, valued at successive year-ends.

3. Cumulative Paid Claims. Total claims closed with payment at annual
valuations.

4. Outstanding Claims. Total claims open at year-end valuation dates whether
or not the claim subsequently closes with payment.

5. Reported Claims. Total claims reported to the insurer, whether or not the
claim subsequently closes with payment.

The accident years shown are real. Losses included are total direct losses and
the insurer has experienced some drift to higher policy limits over time. This drift
has been gradual and somewhat consistent over the time period under
consideration. The exposure counts are not inflation-sensitive but do not reflect
changes in the mix of exposures between lower and higher risk insureds that
may have occurred over time. Similar to the drift in policy limits there has been a
general, and gradual, drift to a greater proportion of lower risk insureds in this
book.

The exposures are relatively homogeneous over time and contain no claims from
outside the United States. There have been no changes in the overall mix of
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Exhibit A-1
Page20f 5

legal jurisdictions affecting these claims. There was, however, a notable legal
decision near the end of 1986 affecting claims under this coverage. You can
assume that this change made it easier to initiate claims and more difficult for
the insurer to settle those claims early as compared to the situation prior to that
time.

You may note a decrease in payments and reported claims during calendar year
1891. This is not the result of the random disturbances we introduced in the
data but is present in the actual data. The Company is unable to provide a
specific explanation as to the reason for this decrease.
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Accident

—Year
1974
1975
1976
1977
1978
1979
1980
1881
1882
1983
1984
1985
1986
1887
1988
1989
1990
1991

Sample Data for Advanced Case Study Exhibit A-1
Page3of S
Cumuiative Paid Losses
Months of Development
12 24 36 48 3] 72 84 96 108 120 132, 144 156 168 180, 192 216
$267 $1,975 $4567 $7,375 §$10,661 $15232 $17,888 $18541 $18937 $19,130 $19,189 $19,208 $19,234 $19234 $19,246 $19246 $19246 $19,246
310 2,809 5,686 9,386 14884 20654 22017 2528 2772 2821 23042 23,060 BT BT B2 W27 23159
370 2,744 7.281 13287 19773 23888 25174 25819 26049 26180 26268 26364 2637 26379 26397 26,397
577 3877 9,612 16,962 23,764 26,712 28393 20656 29839 29944 29997 29,999 29,999 30,049 30,049
509 4,518 12,067 21,218 27,184 29617 30,854 31,240 31598 31,888 32002 31,947 31,965 31,966
630 5,763 16,372 24,105 29,091 32,531 33878 34185 34200 34420 34479 34,498 34,524
1,078 8,066 17518 26,091 31,807 33,883 34820 35482 35607 35937 35957 35962
1,646 9,378 18034 26652 31,253 33376 34287 34985 3512 35161 35172
1,754 11256 20,624 27,857 31,360 33,331 34,061 34227 34317 34,378
1,997 10,628 21,015 29014 33788 36329 37446 37,571 37,681
2,164 11,538 21548 29,167 34440 36528 36950 37,009
1,922 10,939 21,357 28468 32982 35330 36,059
1,962 13,053 27,869 38560 44,461 45,988
2320 18086 38,099 51,953 58029
3343 24806 52054 66203
3847 34a7v 9232
6,090 33,392
5,451
Claims Closed with Payment
Months of Devel
12 24 36 48 60 72 84 96 108 1 1 144 168 1 192 216
268 607 858 1,090 1,333 1,743 2,000 2076 2,113 2129 2137 2141 2143 2143 2145 2,145 2,145 2145
294 681 913 1,195 1,620 2076 2,234 2,283 2,320 2,331 2,339 2341 2343 2343 2,343 2,343 2,344
283 €42 961 1,407 1,984 23715 2,504 2,549 2,580 2,590 2.59% 2,600 2602 2,603 2,603 2603
274 707 1176 1,688 2,295 2,545 2,689 2777 2,809 2,817 2824 2,825 2,825 2826 2626
269 €58 1,28 1,819 2,217 2,475 2613 2,671 2,691 2,706 270 2,711 2,714 217
249 7 1,581 2,101 2,528 2816 2,930 2,961 2973 2,979 2,986 2,988 2,992
305 1,107 1,713 2316 2,748 2942 3,025 3,049 3,063 3.077 3,079 3,080
343 1,042 1,608 2,260 2,596 2734 2801 2,835 2,854 2,858 2,860
350 1,242 1922 2407 2,661 2,834 2,887 2,902 2911 2915
428 1,257 1841 2,345 2,683 2,853 2,908 2,920 2925
201 1,004 1,577 2,054 2,406 2,583 2,622 2,636
303 1,001 1,575 2,080 2,444 2,586 2,617
318 1,055 1,906 2524 2874 2958
343 1,438 2,384 3172 3,559
391 1,671 3,082 3771
433 1,841 3,241
533 1923
339
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Sarnple Data for Advanced Case Study Exhibit A-1
PagedolS
Cumulative Reported Claims
Months of
12 25 K] 48 1) 12 84 96 108 120 132 144 156 168 180 192 216
1912 3, 3.945 4,057 4,104 4,149 4,155 4,164 4,167 4,169 4,169 4,168 4,170 4170 4170 4170 4,170
2,219 3,302 3Ns 4,462 4,618 4,673 4,696 4,704 4,708 4711 4712 4,716 4,716 4,716 4,716 4,716 417
2347 3,702 4,278 4,768 4918 4,983 5,003 5,007 5012 5012 5013 5014 505 5,015 5015 5,015
2,983 4,348 5,055 5,696 5818 5,881 5,684 5802 5,896 5,807 5,900 5,900 5,900 5,900 5,900
2,538 3,906 4,633 5123 5,242 5,275 5,286 5,292 5,288 5,302 5,304 5304 5,306 6,306
3,548 5,196 5,779 6,206 6313 6,329 6,339 6,343 6,347 6,347 6,348 6,348 6,348
4,583 6,106 6,656 7.032 7128 7,139 7447 7.180 RAL] 7,153 7154 7154
4,430 5,967 6510 8,775 6,854 6,873 6,883 6,889 6,892 6,894 6,895
4,408 5,848 6,264 6,526 6,571 6,588 6,594 6,566 5,600 6,602
4,861 5437 6,969 7134 7196 7,206 721 7212 7.214
4,229 5645 6,053 6,419 6,506 6,523 6529 6,531
3727 4,830 53 5M7 5,177 5,798 5,802
3,561 5,045 5,656 6,040 6,096 6111
4,259 6,049 6,767 7,206 7282
4,424 6,700 7548 8,105
5,008 7407 8,287
4,889 7314
4,044
Qutstanding Claims
Months of Development
A2 4 % 48 60 0 2 0 g4 96 108 120 132 _isd 196.. 168 180 1% 204 216
1,384 1.33% 1,462 1,660 1,406 772 406 191 b ] 57 3 13 3 4 0 o ] 0
1,289 1,727 1,730 1913 1,310 649 358 167 73 30 9 6 4 2 2 1 1
1,605 1977 1,947 1,708 1,006 540 268 166 79 48 32 18 14 10 10 T
2,101 2,159 2,050 1,735 988 582 332 139 €6 38 14 21 21 8 3
1,855 1,943 1817 1,384 830 450 193 93 56 3 15 9 T 2
2,259 2025 1.548 1273 752 340 150 68 3B 24 18 13 4
2,815 1,991 1,558 1,307 540 28 88 55 28 14 8 6
2,408 1873 1,605 954 480 28 115 52 7 15 1
2,388 1,838 1,280 819 354 163 67 44 2 10
2,641 1,765 1.082 663 335 134 62 M4 18
2417 1,654 896 877 284 20 42 15
1,924 1,202 o941 610 268 o8 55
1810 1,591 956 648 202 o4
2273 1,792 1,059 626 242
2,403 1,966 1,166 693
2,471 2,009 1,442
2642 2,007
2,366

Page 4
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Sample Data for Advanced Case Study

Exhibit A-1
Page5of 5

$6,967
11,306
11,064
14318
15,070
16,470
16,351
15,012
16,218
16,958
15,806
15,384

24 146
26,947
30,574
34,128

Accident

—Year _12_ 24
1974
1975 6 617
1976 7,658
1977 8,735
1978 8,722
1979 9,349
1980 11,145
1881 10,933
1982 13,323
1983 13,899
1984 14,272
1585 13,901
1988 15,952
1987 2772
1968 25,216
1989 24,961
1990 30,389
1991 28,194

Accident  Eamed

—Year Exposures
1974 11,000
1975 11,000
1976 11,000
1977 12,000
1978 12,000
1979 12,000
1980 12,000
1981 12,000
1962 11,000
1983 11,000
1984 11,000
1985 11,000
1985 12,000
1987 13,000
1388 14,000
1989 14,000
1990 14,000
1991 13,000

13,773
13,655
14,807
15,257
14,320
14,636
14,728
12,676
12,414
10,156
12,539
16,018
18,397
17,950
19,621

$12476 $11.919

14,386
13,352
12,678
11,188
10,574
1,273

__@_.ﬂ__.L_ﬁ_JE_JN__QLJﬂ_J&._Jﬁ__M.JﬂL_EA__ﬂL

$8,966
10,593
7592
7,741
5,959
6,561
5,159
5,107
3,355
4,112
3,604
3,808
2929
3373

$5,367
4234
4064
4,355
3,473
2,864

$3,281
2,110
1,895
2,132
1,531
1328
1,290
1,400
613
576
379
627

Outstanding Losses
Months of Development
$1,524 $667 $348
1,051 436 353
1,003 683 384
910 438 r<]
942 547 286
784 424 212
573 405 134
564 %68 120
388 192 11
426 331
159

Page S

$123
93
216
176
177
146
81
a3

$18
10
Le]
101
67
38

5
57
32

7

5
50
14

33

3



Exhibit A-2
SAMPLE BODILY INJURY UABILITY LOSS DATA

Projections of the Ultimate Number of Ciaims Closed with Payment

N @ @) “ ©) ©) @ ® @) (10)
Indicated
Selected Welgh Variance
Accident Devel Percent  Hindsight ] t Percent Hindsight Weighted in Selected

_Year _Paid rmcuged Paid E&M Eagd Incurred Paid = Freguency Average Methods

1974 2,145 2,145 2,143 1 0 ] 2,145 00
1975 2,344 2,345 2,345 1 0 0 2,344 0.0
1976 2,603 2,610 2,608 1 1] [ 2,603 0.0
1977 2,826 2827 2,828 1 0 [ 2,826 Q0.0
1978 2,718 2,715 2,716 1 1] 0 2,718 0.0
1979 2,994 2987 2,996 1 0 Q 2,994 0o
1980 3,085 3,075 3,083 1 1 1 3,081 18.7
1981 2,865 2,857 2,864 1 1 1 2,862 127
1982 2,924 2,907 2911 1 1 1 2,915 53.7
1983 2,941 2,819 2930 1 1 1 2,930 80.7
1984 2,661 2,820 2640 2,647 1 1 1 1 2,642 2185
1985 2,660 2,626 2,643 2,639 1 1 1 1 2,642 1475
1986 3,056 2,978 3,023 3,018 1 1 1 1 3,019 766.8
1987 3,879 3,676 3,813 3,728 1 2 2 3 3755 45966
1988 4718 4,279 4,585 4373 1 2 2 3 4,446 23,0489
1989 5233 4,540 5,014 4641 1 2 2 3 4,783 60,9765
1990 5,398 4516 5,137 4,821 1 2 2 3 4,896 84,230.1
1991 3,903 3,990 4,574 4,447 1 2 2 2 4,275 769720
{11) (12) {13) {14) {15} (16) (17 (18) (19)
Future
Indicated  Percent
Estimated indi d indicated Number Number Number  Future Paid

Accident Ultimate Reported Percent Reported Number IBNR Paid Paid (18y

Year  Reporfed Fregquency _ Paid to Date Open = (11)-(14) _toDate  (9-{17) KI5}+(16)]
1974 4,170 0.379 51.4% 4170 Q [+] 2,145 0 -

1975 4,719 0.429 49.7% 4717 1 2 2,344 0 0.0%
1976 5,016 0.456 51.9% 5,015 7 1 2,603 0 0.0%
1977 5,904 0.492 47.9% 5,900 3 4 2,826 0 0.0%
1978 5,308 0.442 51.2% 5306 2 0 2,717 1 50.0%
1678 6,348 0.529 47.2% 6,348 4 ] 2,992 2 50.0%
1980 7,154 0.596 43.1% 7.154 6 0 3,080 1 16.7%
1981 §,900 0.575 41.5% 6,895 11 5 2,860 2 12.5%
1982 6,602 0.600 44.2% 6,602 10 0 2,915 ] 0.0%
1983 7216 0.656 40.6% 7214 18 2 2,925 5 25.0%
1984 6,534 0.594 40.4% 6,531 15 3 2,636 6 33.3%
1985 5,808 0.528 45.5% 5,802 55 1] 2617 25 41.0%
1986 6,120 0.510 49.3% 6,111 94 9 2,958 61 59.2%
1987 7,319 0.563 51.3% 7,282 242 37 3,558 166 70.3%
1988 8,232 0.588 54.0% 8,105 693 127 377 675 82.3%
1989 9,002 0.643 53.1% 8,287 1,142 718 3,241 1,542 83.0%
1990 8918 0.637 54.9% 7,314 2,007 1,604 1,923 2,973 82.3%
1991 7,982 0614 5§3.6% 4,044 2,366 3,938 339 3,938 62.4%
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Exhibit A-3
SAMPLE BODILY INJURY LIABILITY LOSS DATA

Projections of the Uitimate Losses

Paid Methods Adjusted
Unadjusted Paid Methods [ncurred for Claims Closing Chang
Accident Devel  Severity Devel- Devel-  Severity Weighted
_Year  opment  Method Hindsight opment _opment Method Hindsight Average
1974 $19,246 $19,245 $19,246 $18,246 $19,245 $18,246
1975 23,159 23,159 23,162 23,161 23,159 23,160
1976 26,397 26,397 26,430 26,400 26,397 26,406
1977 30,049 30,049 30,054 30,061 30,063 30,057
1978 31,996 31,994 31,971 32,021 32,023 32,003
1979 34,559 34,563 34,510 34,572 34,572 34,554
1980 36,012 36,023 35955 36,012 36,011 35,999
1981 35,221 35,231 35131 35,224 35217 35,198
1982 34,478 34,464 34,344 34,426 34,423 34,416
1983 37,941 37,864 37,811 37,768 37,765 37,812
1984 37,474 37,371 36,979 37,214 37,205 37,205
1985 38,715 36,505 $36,409 36,543 36,394 36,407  $36,429 36,463
1986 47,818 47,338 47,044 46,916 47,083 47,054 47,055 47,117

1987 63,861 62,577 62,799 60,585 61685 61571 62,844 62,173
1988 83,555 80,717 79,763 74,708 78,748 78,001 79,268 78,809
1989 99,338 94,800 50,936 84444 91348 89375 91514 90,845
1990 110,157 105,279 94,068 92617 102640 95848 96,509 98,101
1991 127,250 104,212 94,090 87,770 312,670 91,947 96,203 94,044

Selected Weights

Paid Methods Adjusted Indicated

Unadjusted Paid Methods incurred for Claims Closing Changes Variance
Accident Devel  Severity Devel- Devel-  Severity in Selected

Year opment Method Hindsight opment _opment  Method Hindsight Methods
1974 1 1 2 2 2 0
1975 1 1 2 2 2 2
1976 1 1 2 2 2 194
1977 1 1 2 2 2 31
1978 1 1 2 2 2 453
1979 1 1 2 2 2 659
1980 1 1 2 2 2 655
1981 1 1 2 2 2 1,547
1982 1 1 2 2 2 2,102
1983 1 1 2 2 2 3,455
1984 1 1 2 2 2 25,279
1985 1 1 2 2 2 2 3 7,936
1986 1 1 2 2 2 2 3 50,268
1987 1 1 2 2 2 2 3 876,278
1988 1 1 2 2 2 2 3 4,889,756
1989 1 1 2 2 2 2 3 13,592,826
1990 1 1 2 2 2 2 3 26,807,766
1991 0 1 2 2 0 2 3 20,489,727

1. Dollar amounts are in thousands.
2. Varlance amounts are in millions.
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1) @ 3 @ ]
indicated
Indicated Average
Fulure Claimto
Accident indicated Paid be Paid Total Number
Year  Reserves _Claims (W2 _Open IBNR
1984 &
Prior $404 17 $23,765 77 17
1985 404 25 18,160 55 -]
1986 1,129 61 18,508 94 9
1987 4,144 196 21,143 242 37
1988 12,606 675 18,676 693 127
1888 31,613 1,542 20,501 1,142 715
1990 64,708 2973 21,766 2,007 1,604
1991 88,593 3,938 22,508 2,366 3,938
Total $203,198 9,408 $21,598 6,599 6,436
NOTE:

SAMPLE BODILY INJURY DATA

Summary Reserve and Claim Indications

1. Amounts in column (1) are in thousands.

345

6)
Selected
Percent
fo be
Paid (2)/
[(4)+(5}]

18.1%
41.0%
59.2%
70.3%
82.3%
83.0%
82.3%
62.4%

72.2%

Exhibit A-4

M

Selected
Coefficient
of
Variation

1.060
1.075
1.100
1128
1.150
1475
1.200
1.225



Exhibit A-S
SAMPLE BODILY INJURY DATA

Severity Input for Accident Year 1986

Selected
Input
Step Function Distribution
Loss Approximation 408 +
Amount  for Lognormal 592 x (1)
$0.01 - 0.40800
950 0.00007 G.40804
2,316 0.02575 042324
4,358 0.11754 047758
7.147 0.26685 0.56598
10,625 0.43325 0.66454
14,909 0.58465 0.75411
19,994 0.70653 0.82627
25,902 0.79769 0.88023
32,651 0.86274 0.91874
40,258 0.90778 0.94541
48,743 0.93837 0.96352
58,118 0.95890 0.97567
68,399 0.97260 0.98378
79,598 0.98170 0.98917
91,728 0.98774 0.99274
104,801 0.89176 0.99512
118,828 0.99444 0.99671
133,822 0.99623 0.99777
149,791 0.99743 0.99848
166,746 0.99824 0.99896
184,696 0.99879 0.99928
203,651 0.99916 0.99950
223,619 0.89942 0.99966
244,608 0.99959 0.99976
266,629 0.99971 0.99983
289,687 0.99980 0.99988
313,791 0.99986 0.99992
338,949 0.99990 0.99994
365,168 0.99993 0.99996
392,455 0.99995 0.99997
420,817 0.99996 0.99998
450,261 0.99997 0.99998
480,793 0.99998 0.99999
512,420 0.99999 0.99999
545,148 0.99999 0.99999
578,984 0.99999 0.99999
613,932 0.99999 0.99999
650,000 1.00000 1.00000
NOTE:

1. The amounts in column (1) are based on
a lognormal distribution with mean 18,508
and coefficient of variation 1.100.
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Ratio to
Expected
0.300
0.500
0.600
0.700
0.750
0.800
0.825
0.850
0.875
0.800
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.280
1.275
1.300
1.350
1.400
1.500
1.600
1.800
2.000
2.500
3.000

NOTE:

1. Dollar amounts are in thousands.

Estimated Probability Levels for Reseves Without Parameter Uncertainty

SAMPLE BODILY INJURY DATA

Exhibit A-8

Accident Year
1984 &
Prior 1985 1988 1987 1988 1989 1980 1991 Total
Expected Reserve
$404 $404 $1,129 $4,144 $12808 $31,813 $64,700 $88,593 $203,198
Estimated Probability Leve!

0.0030 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0433 0.0117 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0986 0.0445 0.0020 00000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1864 0.1189 0.0208 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.2398 0.1703 0.0502 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
0.2878 0.2342 C.1024 0.0088 0.0000 0.0000 0.0000 0.0000 0.0000
0.3281 0.2693 0.1383 0.0205 0.0000 0.0000 0.0000 0.0000 0.0000
0.3580 0.3062 0.1813 0.0424 0.0005 0.0000 0.0000 0.0000 0.0000
0.3903 0.3443 0.2305 0.0792 0.0034 0.0000 0.0000 0.0000 0.0000
0.4217 0.3833 0.2849 0.1348 0.0166 0.0013 0.0000 0.0000 0.0000
04530 0.4228 0.3433 0.2008 0.0584 0.0132 0.0013 0.0013 0.0000
0.4842 0.4622 0.4048 0.3028 0.1533 0.0727 0.0242 0.0242 0.0009
0.5149 0.5014 0.4668 0.4079 0.3116 0.2388 0.1685 0.1665 0.0458
0.5451 05398 05285 05177 05404 0.5089 0.5050 0.5050  0.4851
0.5744 0.5770 0.5883 0.6238 0.7019 0.7683 0.8340 0.8340 0.9488
0.6028 0.8130 0.6449 0.7187 0.8462 0.9222 0.9715 0.9715 0.9994
0.8303 0.8475 0.6973 0.7985 0.9329 0.8818 0.9975 0.9875 1.0000
0.6557 0.6802 0.7449 0.8618 0.9752 0.9970 0.9999 0.9999 1.0000
0.6820 0.7110 0.7876 0.9080 0.9921 0.9997 1.0000 1.0000 1.0000
07063 0.7397 0.8251 09422 0.9979 1.0000 1.0000 1.0000  1.0000
0.7291 07685 0.8572 009846 08995 1.0000 1.0000 10000  1.0000
0.7507 0.7913 0.8846 0.9792 0.9999 1.0000 1.0000 1.0000 1.0000
07710 08140 0.9077 0.9880  1.0000 1.0000 1.0000 1.0000  1.0000
0.7902 0.8348 0.9268 0.8933 1.0000 1.0000 1.0000 1.0000 1.0000
0.8082 0.8537 0.9423 0.9964 1.0000 1.0000 1.0000 1.0000 1.0000
0.8250 0.8709 0.9540 0.9981 1.0000 1.0000 1.0000 1.0000 1.0000
0.8548 0.9002 0.9730 0.8995 1.0000 1.0000 1.0000 1.0000 1.0000
0.8803 0.9236 0.9842 0.9899 1.0000 1.0000 1.0000 1.0000 1.0000
0.8202 0.9563 0.9948 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
09478 08757 098984 10000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8786 0.9928 0.99%9  1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
0.9915 0.9978 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9991 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Exhibit A-7
SAMPLE BODILY INJURY DATA
Selection of Overali Contagion Parameter
indicated Indicated

Ultimate Selected 1992
Accident Reported On-Level Claims

_Year  Frequency Frequency (2)x13,000
1874 0.379 0.57T1 7423
1975 0.429 0.831 8,203
1976 0.456 0.656 8,528
1977 0.492 0.892 8,908
1978 0.442 0.608 7.904
1979 0.529 0.711 9,243
1980 0.598 0.783 10,179
1981 0.575 0.738 8,594
1982 0.600 0.753 9,789
1083 0.658 0.805 10,465
1984 0.594 0.713 9,269
1985 0.528 0.619 8,047
1986 0.510 0.585 7,805
1987 0.563 0.631 8,203
1988 0.588 0.644 8,372
1989 0.643 0.688 8,044
1990 0.837 0.667 8,674
1991 0.614 0.628 8,184

Indicated

Trend 2.3%
Arithmetic Average 8,756
Estimate of Variance 753,387
Indicated Overall Contagion

Parameter 0.0097
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Accident
Year
1984 &
Prior
1985
1986
1987
1988
1988
1880
1991

O

Estimated
Ulitimate
Reported

65,869
5,808
6,120
7,319
8,232
9,002
8,918
7,982

SAMPLE BODILY INJURY DATA

Selected Contaglion Parameters

ed
Indicated

@

Variance Estimated
in Selected Proportion Reported Contagion Conlagion
Methods Paid  {2YI(3)x(3)] Parameler Parameter

384.2
1475
766.8

4,596.6

23,048.9

60,976.5

84,230.1

76.972.0

45.5%
49.3%
51.3%
54.0%
53.1%
54.8%
53.6%

349

@
Estimated
Variance
in

1,338.7
7125
3,154.7
17,4664
79,042.8
216,258.8
279,462.0
267,918.8

&

Indicated
Individual

0.0000
-0.0002
-0.0001

0.0002

0.0010

0.0028

0.0034

0.0041

Exhibit A-8

®

Selected

0.0087
0.0008
0.0098
0.0088
0.0108
0.0123
0.0131
0.0138



SAMPLE BODILY INJURY DATA

Estimates of Mixing Parameters

Exhibit A-9

) @ (&)] “) ®) ® Y]
Estimates Based on Claims With Payment e(x?)
Selected Indicated Based on
Estimated Coefficient Standard  Indicated Indicated Reported
Accident Average of Deviation Variance E(X®}  Percent Claims
Year . _Reserve Varation _(1)x(2) (3x(3) . (H+(1)x(1) _ Paid {5)x(6)
1984 &
Prior  $23,765 1.050  $24,953  622.665 1,187.440 18.1% 214.927
1985 16,160 1.075 17,372 301.786 582.932 41.0% 230.802
1986 18,508 1.100 20,359  414.481 757.027 59.2% 448.160
1987 21,143 1.125 23,786 585,768 1,012.794 70.3% 711.994
1988 18,678 1.150 21,477 461.279 810.072 82.3% £666.689
1989 20,501 1.1475 24,089  580.264 1,000.555 83.0%  830.461
1990 21,766 1.200 26,119 682.213 1,155.971 82.3% 951.364
1991 22,508 1.225 27,572 760.232 1,266.842 62.4% 790.509
® ©) (10) a1 (12 (13)
Estimated Variance
Accident  Number of Claims  Explained in Implied  Selected
Year Open IBNR Variance Selected b Value _bValue
1984 &
Prior 77 17 18,830 34,377  0.1161 0.1161
1985 55 6 11,680 7,936 -0.0256  0.0000
1986 94 9 34,969 50,268 0.0138  0.0138
1987 242 37 148,177 876,278 00544  0.0544
1988 693 127 423,955 4,889,756  0.0379  0.037¢9
1989 1,142 715 3,027,679 13,592,826 0.0200  0.0200
1990 2,007 1,804 13,618,136 26,807,766 0.0062  0.0062
1991 2,366 3,938 46,708,007 20,489,727 -0.0062  0.0000
NOTE;

1. Amounts in columns {4), (5), (7), (10), and (1 1) are in millions.
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Accident
_Year
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1884
1985
1986
1987
1988
1989
1980
1991

SAMPLE BODILY INJURY DATA

Estimate of Overall Mixing Parameter

Q) @ 3)

Indicated
Estimated Pure

Ultimate Eamed Premium
Losses Exposures (1)}
$19,248 11,000 $1,750
23,160 11,000 2,105
28,406 11,000 2,401
30,057 12,000 2,505
32,003 12,000 2,687
34,554 12,000 2,880
35,999 12,000 3,000
35,199 12,000 2,033
34 416 11,000 3,129
37,812 11,000 3,437
37,205 11,000 3,382
38,463 11,000 3315
47,117 12,000 3,926
62,173 13,000 4,783
78,809 14,000 5829
90,845 14,000 6,489
88,101 14,000 7,007
94,044 13,000 7,234
7.8%

A. Indicated Trend
B. Average (000)
C. Variance Estimate (000,000)
D. Estimated 1992 Claims Reported
E. Indicated Severity (000) (A/C)
F. Selected Coefficient of Variation
G. Indicated Standard Deviation (000) (ExF)
H. Indicated Variance (000,000) (GxG)
1. indicated &(x ?}{000,000) (H+EXE)
J. Selected Overail Contagion Parameter
K. Explained Variance (000,000)
L. Indicated Overall Mixing Parameter
M. Selected Overall Mixing Parameter

)
Estimated

Pure
Premium

at 1992

_Level
$6,764
7,547
7,985
7,728
7,633
7,648
7,388
8,701
8,831
8,757
6,168
5,608
8,161
8,063
7602
8,129
8,143
7.798

Exhibit A-10

®

Indicated
1902
Loss

4

$87,932
98,111
103,805
100,464
98,229
99,308
96,044
87,113
86,203
87,841
80,184
72,804
80,0983
90,519
98,826
105,877
105,859
101,374

$93,421
93,442,417
8,758
$10.869
1.250
$13.33¢
177.84¢9
201.877
0.0087
87,317,281
0.00069
©.00089

1. Amounts in cofumns (1) and (5) are in thousands of doliars.
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Ratlo to

0.300
0.500
0.600
0.700
0.750
0.800
0.825
0.850
0.875
0.800
0.928
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.178
1.200
1.225
1.250
1.275
1.300
1.350
1.400
1.500
1.600
1.800
2.000
2.500
3.000

1. Doliar amounts are in thousands.

Estimated Probability Leveis for Reseves With Parameter Uncertainty

SAMPLE BODILY INJURY DATA

Exhibit A-11

Accident Year
1984 &
Prior 1985 1986 1981 1088 1989 1880 1991 Total
Expected Reserve
$404 $404  $1,128  $4,144 $12608 $31,613 $64,700 $83,593 $203,198
Estimated Probabilily Level

0.0128  0.0001 0.0000 00000 0.0000 ©0.0000 0.0000 00000 0.0000
0.1059  0.0118 00005 0.0016  0.0001 0.0000 0.0000 0.0000  0.0000
0.1925  0.0446  0.0081 0.0182 0.0039 0.0002 0.0000 0.0000 0.0000
02840 04170 0.0486 00848 00375 00084  0.0001 0.0000  0.0000
0.3468 0.1705 00930 0.1425 0.0817 0.0202 0.0014  0.0001 0.0000
0.3893  0.2344 0.1573 02152 0.1488 0.0758 0.011¢ 0.0021 0.0000
04252 02885 0.1963 02558 0.1904 01118 00250 0.0071 0.0009
04508 0.3084 0.2307 02988 0.2367 0.1581 0.0502 0.0194  0.0033
0.4754 03445 0.2864 03428 0.2866 0.2089 0.0908 0.0455 0.0127
0.5001 03834 03357 03874 0.3388 02686  0.1494 0.0825 0.0394
0.5236 0.4228  0.3885  0.4321 0.3924 0.3335 02259 0.1858  0.0982
0.5487 0.4623  0.4380 04761 0.4462 04013 03175 02657 0.2007
0.5690 0.5014 0.4893 05190 04993 04700 04187 03859 0.3449
0.5904 0.5398 0.5395 05603 0.5508 0.5374 05225 05150 0.5113
06115 05770 0.5877 05998 05995 0.8017 06219 06395 08715
0.6310 06130 06338 06371 0.6454 08616 0.7113 07484  0.8018
0.6505 06475 06768 06722 06880 0.71860 0.7875  0.8351 0.8927
06885  0.8801 07169 07049 07273 0.7646 0.8489 08985 0.9478
0.6862 0.7109 0.7533 0.7352 0.7626 0.8070  0.8861 0.9413  0.9770
0.7030 07386 07866 0.7830 0.7948 0.8434 0.9308 0.9673  0.8807
0.7188 0.7664 0.8164 07885  0.8231 0.8742 09552 0.9834  0.9966
0.7344  0.7911 0.8429 08117  0.8481 0.8998 0.9718 09915 0.9988
07486 08138 08662 0.8326 0.8703 08210 09828 0.9980 0.9996
0.7827  0.8347 0.8867 0.8515 0.8896  0.9381 09898 09980  0.8998
0.7755 08536 09045 08836 0.9063 09519 09940 09990 1.0000
0.7880 0.8708 09198 08839 09208 0.9629 09966  0.9990 1.0000
0.8109  0.8001 0.9442 09088 0.9437 08783 08990  1.0000 1.0000
08315 09235 09617 09303 0.9604 00875 0.9997 1.0000 1.0000
0.8665 0.9562 09826 09588 0.8808  0.9961 1.0000 1.0000 1.0000
089042 09756 0.9924 09758 0.9909 09988 1.0000 1.0000 1.0000
0.9334 09827 00986 09918 09980 09999 1.0000  1.0000  1.0000
09578 09978 09998 0.9972 0.9998 1.0000 1.0000  1.0000 1.0000
0.9859 0.9999 1.0000 0.9098 1.0000 1.0000 1.0000 1.0000 1.0000
0.9949 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000
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Exhibit A-12

Estimated Aggregate Reserve Cumulative Densities
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Exhibit A-13

Estimated Aggregate Probability Density Functions
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for Use in Aggregate Loss Distributions
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A NOTE ON SIMULATION OF CLAIM ACTIVITY FOR USE IN
AGGREGATE LOSS DISTRIBUTIONS

Abstract

Aggregate loss distributions have been used in a number of different applications over the last few
years. These applications have usually focused on the distribution of losses at ultimate or final
values and have not studied how losses move to ultimate values over time. The approach outlined
in this note models claim activity through the use of transition matrices. Individual claim activity
is then incorporated into an aggregate loss simulation model to determine a number of
distributions of interest.
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This note will present an overview of how to determine the distribution of paid, case, and
incurred but not reported (IBNR) losses over time in a manner consistent with the determination
of aggregate loss distributions. The method is based on determining severity distributions for
both paid and case incurred losses at different valuations, determining transition matrices to model
claim changes over time, and simulating many years of claim activity. This method may require
much computer time and, if it is to be company specific, detailed loss stratification data. While
these requirements may by burdensome the method aiso permits an analysis of the distribution of
loss development factors and of run off ratios.

In 1988 Hayne outlined an approach! using collective risk theory to measure the vaniability
of loss reserves. The approach used in this note is an application of the use of collective risk
theory such that claim development may be introduced into the process.

When the Insurance Services Office (ISO) prepares a review of increased limits factors
they track the severity distribution over time. This is done because ISO is interested in the
distribution of losses at their ultimate values. ISO's supplementary exhibits show triangles of
pareto parameters obtained from fitting curves to accident year case incurred losses at various
valuations. These fits and the relationship between the curves are used to determine the final
severity curve upon which indicated increased limits factors are based. This material generally
shows the average size of loss increases as the accident year matures.

Severity distributions are needed in determining aggregate loss distributions. Much has
been written about the use of aggregate distributions and there are a few methods to use to
calculate an aggregate distribution.2,? In a recent paper Bear and Nemlick use aggregate loss
distributions to quantify the expected impact of swing rated reinsurance contracts. In 1980 Patrik
and John® used the notion of supporting surplus as measured by the use of an aggregate loss
distribution to determine the appropriate load for working cover reinsurance treaties. All of these

methods use severity distributions at ultimate or final values. ISO uses severity distributions at
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different valuations in their increased limit reviews but do not measure how individual claims
change from one valuation to another. Transition matrices could be used to model this activity.
In the formulation of the algorithm used in this paper I am using the severity distribution format as
used by Heckman and Meyers (probability of loss in certain intervals is specified, the loss within
an interval is uniform). Appendix A sheets one and five show the severity distributions for paid
and incurred losses at twelve, twenty four, thirty six, and forty eight month valuations. The
average loss is shown at the bottom of each column. Sheets two through four and six through
eight show the transition matrices to go from one valuation to the next. Since I am using severity
distributions consisting of twenty intervals each transition matrix is twenty by twenty. The second
column in sheet 2, the column labeled "0", shows the movement of claims in the first loss interval
(30 to $5,000) at twelve months to other loss intervals at twenty four months. In this example
45% of claims remain in the first interval. Twenty five percent of claims move up an
interval($5,000 to $10,000), 15% move up two intervals, 10% three intervals, and 5% four
intervals. Other columns show how losses in other intervals are expected to move during the
course of the development period. You will note; entries in each column sum to one, amounts
beneath the diagonal represent positive development (claims get larger), and entries above the
diagonal represent negative development (claims get smaller). In terms of matrix notation if S, is
the severity vector at the first valuation and T, is the first to second valuation transition matrix
then S,, the severity distribution at the second valuation, equals T,, - S;. This can be extended so
that S; =T, - 8, §,=T;, - S, and so on. The ultimate severity distribution can be obtained from
the initial severity distribution at twelve months and all the transition matrices.

This approach can be used for paid losses as well as case incurred losses. If paid and
incurred transactions are used from the same set of losses you should be able to produce the same

ultimate severity distribution in both instances. The illustrative paid and case incurred material
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(strictly hypothetical and not based on any data set) contained in Appendix A produce roughly the

same severity distribution at forty eight months.

These initial severity distributions and transition matrices are used to model the paid and

case incurred activity on a claim by claim basis, This routine is then used in a simulation program

to calculate an aggregate loss distribution. The final aggregate loss distribution is similar to one

praduced using the Heckman - Meyers algarithm. This approach extends the aggregate loss

distribution over development and payment periods in a way which is consistent with the ideas

underlying the collective risk model.

To illustrate this I used the following algorithm to produce aggregate losses:

i.

Randomly select the number of claims for a year from a negative binomial distribution
with mean equal to 126 (approximately) and variance 378. The mean number of
claitns was selected so that the expected ultimate loss amount is about $5,000,000.
For each claim randomly select a report lag from a poisson distribution with mean
equal to one half. If the lag is greater than two, cap the lag at two. This was done so
that all years would be at ultimate values at the end of six development years. For
purposes of simplification the initial severity distributions and transition matrices do
not vary as a function of lag. In this example if the lag for a claim is one year the
twelve month severity distribution is used as the twenty four month severity
distribution and all transition matrices are adjusted accordingly. In practice the initial
severity distributions and transition matrices would likely vary as a function of lag
because claims which are reported later usually have higher average values.

For each claim randomly select a loss interval from the case incurred loss severity
distribution at twelve months. Within the interval randomly select a loss amount on
the assumption that losses are uniformly distributed in the interval, This is the value of

the claim at twelve months.



4. For each claim at twelve months enter the appropriate column of the twelve to twenty
four month transition matrix (based on the loss interval) and randomly select a loss
interval for the twenty four month valuation (determined by the row). If the loss
interval does not change use the twelve month loss value at the value of the claim at
twenty four months. If the loss interval changes randomly select a loss amount on the
assumption that losses are uniformly distributed in the new interval.

5. Repeat step four for the other development periods until the claim is at ultimate. This
produces a series of case incurred claim amounts for an individual claim at different
loss valuations.

6. When the final or ultimate loss interval is determined work backwards using the paid
transition matrices and paid severity distributions to determine the payment history for
the claim. For example, suppose a claim is in the tenth loss interval at development
period four (this is ultimate). It is possible to determine what loss intervals the claim
could have been in at period three (i.e., those columns that have a non-zero entry in
the tenth row of the transition matrix) and to randomly select a period three loss
interval based on the relevant transition matrix and the period three paid severity
distribution. That is, the probability of being in the tenth interval at period four equals
Ity - 5;), j = 1 10 20 where ; is the probability of being in the j* interval of the
period three severity distribution and 1, is the tenth row of the period three to four
transition matrix. Randomly assign a column j based on the ratio of t,; - 5, 10 Z(ty; -
5).

7. When all payment values for a claim are determined accumulate the paid and case
incurred values and repeat steps two through six until all claims as specified in step
one are finished.

8. Repeat steps one through seven for the desired number of simulation years.
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1 ran this procedure for 10,000 years using the material in Appendix A. The table below

shows the average paid and case incurred values generated by the simulation:

Case
Valuation Paid Loss Incurred
Loss
12 697,224 1,160,996

24 1768930 2,729,345
36 3,289626 4,095,227
48 4486742 4783310
60 4927417 4,982,895
72 5010529 5,010,529

More importantly I accumulated various distributions about average values. Rather than
show tables of the resultant distributions I will illustrate them graphically. (The program output
can be used to calculate means, variances, deciles, etc.) Exhibits A through G show the graphs of
a number of distributions.

Exhibit A, Sheet two shows the distribution of losses at ultimate values. 1 have labeled
this "Outstanding Losses at Time 0" because it represents the a priori distribution of loss before
any experience has been registered. This graph was prepared using losses at their ultimate values
after the simulation had worked through all of the transition matrices, Using the accumulated loss
arrays by year it is also possible to determine the distribution of outstanding losses (case
outstanding and IBNR) at the end of any valuation. The distribution of outstanding losses is
obtained by subtracting paid losses from ultimate losses. Exhibit A, Sheets three through five
shows the distribution of outstanding losses at the end of the first, second, and third valuation
respectively. Exhibit A, Sheet one shows these distributions on the same graph. This illustrates
the reduction in average outstanding loss as well as variance over time. It is important to realize

that these distributions are on an a priori basis. To determine the variability of reserves given a
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particular amount of reported losses at a specified valuation it would be necessary to determine
the outstanding loss distribution on a conditional basis. If variability arouse only from claim
counts and the first valuation severity distribution (i.e., there were no IBNR claims or case
development) the conditional variance of outstanding losses at the first valuation would be zero.

Exhibit B shows similar graphs for IBNR reserves. These distributions were calculated by
subtracting case incurred losses from ultimate losses. Exhibit B, Sheet one, as in Exhibit A, Sheet
one, shows the reduction in average IBNR reserves and variance over time.

Exhibits C and D were determined from the accumulated loss arrays too. These graphs
show the distribution of incremental (calendar year) paid and case reported losses respectively for
a variety of valuations.

Exhibits E and F show the distribution of paid and case incurred loss development factors.
The substantial reduction in loss development factor variance as losses mature is particularly
noticeable in the sheet one of both exhibits. This type of analysis could be helpful in establishing
credibility standards for development factors or to help select the underlying curve to use to
model loss development factors for other variability of loss reserve approaches.5.”

Exhibit G shows the distribution of run off ratios of loss reserves as of twelve months. I
used case incurred loss development factors to estimate ultimate losses and calculated the run off
ratio by dividing ultimate losses less paid losses at twelve months by estimated uitimate losses at
twelve months less paid losses at twelve months. I did not allow for sufficient room in the
program output to show the tail of the distribution - in this example it appears there is continued
risk of adverse run off in excess of 50% of carried reserves. This type of analysis might be used
to test different IBNR reserving methods under different claim department reserving practices.?

I have tried to outline a straightforward approach that might be used to help quantify the
variability of a number of different reserve amounts or loss development measures. I am aware

that specifying the transition matrices for different development periods on both a paid and case



basis could be time consuming and that once accomplished the simulations could take a great deal
of computer time. However, there is no substitute for data and it is appealing that such transition
matrices could be tailored to individual claim department practices and empirical severity
distributions. In addition computer performance continues to improve making large simulation
exercises more practical.

T am also aware that this method does not address parameter risk. This is an important
source of risk and the variance indications obtained from this approach should be viewed

accordingly.
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Distribution of Case Incurred Losses

Case Incurred Loss
Severity Distribution at ... Months

[ Loss Range 12 | 14 | 3w | 48
0 5000 67000000 32550000 25080000 22572000
5,000 10,000 12600000 22950000 20262500 21757375
10,000 25,000 07000000 .16100000 17547500 17683250
25,000 50,000 05000000 11900000 14227500 .14393500
50,006 75,000 04000000 07500000 09372506 09615250
75,000 100,000 .02000000 03300000 05100000 05313625
100,000 150,000 01000000 02150000 03345000 .03432750
150,000 200,000 01000000 01450000 01999000 01866400
200,000 250,000 01000000 01250000 01435000 01419650
250,000 300,000 00500000 00760000 00699450
300,000 350,000 00200000 .G0382500 00377000
350,000 400,000 00100000 00251000 00258875
400,000 450,000 00050000 00130000 00178900
450,000 500,600 00045000 00143350
500,000 600,000 00028000 00090475
600,000 700,000 00017500 00072225
700,000 800,000 00009000 00052500
800,000 900,000 00005500 00031450
900,000 1,000,000 00002000 00027800
1,000,000 1,000,000 .D0000500 00014175
Average 1517500  28,040.00 3722800 3969329
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Case Incurred Loss Transition Matrix - 12 to 24
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Lom

at 12 months

o s,000] 10,000] 25000] s0000] 75,000] 100,000] 150,000] 200,000] 250,000] 300,000] 30,000] 400,000] 450,000] 300,000 600.000] 700,000] %00,006] 200,000] 1,000,000,
Ase 200
250
150

100
030

.400
200
100
.as0
050

200
450
150
100
030
030

100
550
150
.100
030
050

.050
.500
.200
.150
030
050

D30
500
.200
.150
050
030

050
500
200
150
.050
050

050

150
050
.050

.200
100
050
050

600
.200
100
030
050

.200

050
050

600

030
050

.600
200

0%
.050

ggst

050

-200
.100
050
050

200

.050
.050

150
100
.100

.100

150
100

100
.200
500
.200

050
100
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Case Incurred Loss Transition Matrix - 24 to 36
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Loss

Range & Loss at 24 months

36 moa. o] 5,000] 10,000 25,000] 50,000] 75,000] 100,000] 150,000] 200,000] 250,000] 300,000] 350,000] 400,000] $50,000] 500,000} 600,000] 700,000] $00,000] 500,000] 1,000,000
o[ 700 100

so00f 150 .60 100

10000 100 150 600 100

25000 .05 100 150 600 .100

50,000] 0% 00 %0 600 100

75,000 050 100 .10 .600

100,000 050 100 150 700

150,000 050 100 150 670

200,000 050 100 150 670

250,000 050 100 150 640G

300,000 050 100 150 550

350,000 030 056 100 200 550

400,000 030 0% 100 200 .550

450,000 030 050 100 200  .500

500,000 020 040 050 100 200  .550

600,000/ 010 030 040 050 .00 200 600

700,000 020 030 040 0% 100 200 650  .100  .100 050

800,000 010 020 030 050 .00 100 150 .65 200 1100

900,000 010 020 05 050 050 100 150  .500 200

1,000,000 010 050 U0 00 100 100 200 650
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Case Incurred Loss Transition Matrix - 36 10 48
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Range o

48 mos.

Loss

at 36 months

5,000
10,000
25,000
50,000
75,000

150,000
200,000
250,000
300,000
350,000

450,000

800,000

1,000,000

o] s5,000] 10,000] 325,000] 50.000] 75,000] 100,000] 150.000] 200,000] 250,000] 300,000] 350,000] 400,000] 450,000] 500,000] 600,000] 700,000] $00,000] 900,000] 1,000,000
900

100 .950

050 950
.050 950
050

950
050 950
050 950
050 830
100 -850
050 100
050

150
100
.050
050
030
020

150
100
050
050
050
050
050

.500
150
100
050
050
050
050
050

.200
100
050
050
050

.200
100
100
050
050

.200
100
100

050
.650
.200
100

050
100
650
-200

050
100
%50
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Distribution of Paid Losses

Paid Loss
Severity Distribution at ... Months
{ Loss Range 12 § 24 | 36 | 48
0 - 5000 83900000 51179000 28148450 22518760
5,000 - 10,000 02200000 .17924000 20094000 21704890
10,000 - 25,000 03400000 .13307000 18165150 .17642663
25,000 - 50,000 03200000 05549000 14032750 .14364213
50,000 - 75,000 03800000 04215000 07695400 09596605
75000 - 100,000 01500000 01655000 04276350  .05302065
100,000 - 150,000 01100000 .02880000 03588100 03435765
150,000 - 200,000 00600000 .00126000 00727910 01871986
200,000 - 250,000 00300000 01753000 01828910 01425819
250,000 - 300,000 00673000 00739710 00947793
300,000 - 350,000 00173000 00331240 00536202
350,000 - 400,000 00063000 00231130 00199542
400,000 - 450,000 00003000 00057470 00149668
450,000 - 500,000 00035740 00100664
500,000 - 600,000 00023830 00063843
600,000 - 700,000 00014590 00069786
700,000 - $00,000 00005470 00037797
800,000 - 900,000 00003080 00013853
900,000 - 1,000,000 00000690 00011645
1,000,000 - 1,000,000 00000030 00006443
Average 10,845.00 21,630.13 3376883  39,673.48
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Paid Loas Transition Matrix - 12 to 24

Appendix A

Loss

Range at

at 12 months

24 mos.

300,000] 350,000] 400,000] 450,000] 500,000 600,000] 706,000 200.000] 200,000] 1,000,000

Shect 6

16,000

.61
.200
150

030

010

520

200

200

050

030

470
250
070

.200
010

470

.200
170
010
150

290
250

010

250

-200

490

010

200
200
100

010
.010
010
010

Loss
o[ s.o00] 10,000 25.000] 50,000] 75.006] 100.000] 150,000] 200,000] 250,000
0

200
100

050
.050

.200

050
050

200

100
.050

050

.200

100
050
0s0

.200

050
050

.200
100

050
050

200

050

050

650

150

100

750
150

800

.200

1.000
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Appendix A

Sheet 7
Paid Loss Transition Matrix - 24 to 36
Loss
Range &t Loss at 24 manths
36 mos. o] 5.000] yo000] —25.000] 50,000] 75.000] 100.000] 150,000] 200,000] 250.000] 300,000 350,000] 400.000] 250,000]_$06,000] 600,000] 700,000] 00.000] 900.000] 1,600,000
of 50
s000] 200 550
10,000] 150 200 500
25,000 100 156 250
50,000 100 150 250 580
75,000 100 150 250 610
100,000 00 150 250 &K1
150,000 020 o 1w el
200,000 oM 150 150 0
250,000 010 030 156 660
300,000, 030 070 150 600
350,000 030 030 100 200 600
400,000, DD 03 050 150 550
450,000 430 056 100 200 500
500,000 020 040 050 100 200 550
600,000 Mo 030 040 050 100 200 600
200,000 020 030 040 050 100 200 650
800,000 00 e 030 050 050 100 150 750
900,000/ o 020 050 oS0 050 100 150 800
1,000,000 010 0s0 050 050 100 100 200 1.000
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Paid Loss Transition Matrix - 36 to 48

Appendix A
Sheet 8

Range &

Loss

48 mos.

5,000] 10,000

25,000] 50,000]

at 36 months
75.000] 100,000] 150,000] 200,000] 250,000] 300,000] 350,000] 400.000] 450,000] 560,000] 600,000] 700,000] $00,000] 900,000] 1,000,000

5,000
10,000
25,000
50,0001
75,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000,
450,000
500,000/
600,000
700,000
800,000
900,000

1,000,000}

of
00

200

.800
200

750
250

700
300

700

300 600

200
100

620
.100
.100

050
.050

.560
.200
.100

.050
.030
Qe
.010

580

080
050
.050

010
olo

.350

100
.100
.100
100

450
210

100

070

200
200
100

900
100




Statistical Methods for the
Chain Ladder Technique

by Richard J. Verrall
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Abstract

This paper considers the application of loglinear models to claims reserving. The models encompass
the chain ladder technique and extend the range of the possible analyses. By bringing the methods
within a statistical framework, a coherent strategy for testing goodness of fit and for forecasting

outstanding claims is produced. Improvements to the basic chain ladder technique are given which

use Bayesian methods.

Key Words Claims Reserving, Linear Models, Bayes and Empirical Bayes Methods, State Space
Models, The Chain Ladder Technique.
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1. Introduction

Forecasting outstanding claims and setting up suitable reserves to meet these claims is an important
part of the business of a general insurance company. Indeed, the published profits of these companies
depend not only on the actual claims paid, but on the forecasts of the claims which will have to be
paid. It is essential, therefore, that a reliable estimate is available of the reserve to be set aside to
cover claims, in order to ensure the financial stability of the company and its profit and loss
account. There are a number of methods which bave proved useful in practice, one of which is
extensively used and is known as the chain ladder technique. In recent years, a statistical framework
for analysing this data has been built up, which encompasses the actuarial method, extending and
consolidating it. The aim of this paper is to bring together these results and to illustrate how the
chain ladder technique can be improved and extended, without altering the basic foundations upon
which it has been built. These improvements are desigeed to overcome two problems with the chain
ladder technique. Firstly, that not enough conneciion is made between the accident years, resulting
in an over-paramesrised model and unstable forecasts. Secoadly, that the development pattern is
assumed to be the same for all accident years. No allowance is made by the chain ladder technique
for any change in the speed with which claims are settled, or for any other factors which may change
the shape of the run-off pattern. Before describing the methods for overcoming these problems, we
first define the chain ladder linear model, and show how it can be used to give upper prediction

bounds on total outstanding claims.

2. The Data

It will be assumed throughout this paper that the data is in the form of a triangle. It should be
emphasised that this is for notational convenience only: there are no problems in extending the
methods to other shapes of data. The year in which the policy is written will be called the
underwriting year, accident year or year of business. In the years after the policy was written the
company may receive claims related to that policy, and these ciaims are indexed by their business
year and the delay. The following data set, which is taken from Taylor and Ashe (1983) will be used

for illustrative purposes. The data is given in the form of incremental claims in each delay year.
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357848 766940 610542 482940 527326 574308 146342 139950 227229 67948
352118 884021 933894 1183289 445745 320996 527804 266172 425046
290507 1001799 926219 1016654 750816 146923 495992 280405

310608 1108250 776189 1562400 272482 352053 206286

443160 693190 991983 769488 504851 470639

396132 937085 847498 805037 705960

440832 847631 1131398 1063269

359480 1061648 1443370

376686 986608

344014

The data may take a slightly different shape if one or more of the corners is truncated, but this
paper will consider triangles of data (without loss of generality). The first column will be labelled
delay year 1, rather than delay year 0.

Sometimes, the rows are standardised by dividing by 8 measure of the volume of business, such as
the premium income. This is reversed when predictions of outstanding claims are made. For the

above triangle the exposure factors are:
610 721 697 621 600 552 543 503 525 420.

The incremental claims relating to business year i and delay year j will be denoted Z,;, so that the

set of data obeerved is
{ Z;j 1 i=l,ents =1, b4 1)

The statistical approach uses the incremental claims, but the chain ladder technique is applied to the

cumulative claims, which are defined by:
J
Cij = ¥ Za
k=1

The problem is to forecast outstanding claims on the basis of past experience. In other words to fill
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in the lower right hand triangle of claims. Sometimes it is also useful to extend the forecasts beyond
the latest delay year (i.e. to the right of the claims run-off triangle). The standard actuarial

technique does not attempt to do this.

3. Linear Models and the Chain Ladder Technique

This paper will concentrate on the chain ladder technique. It its familiar form, this assumes that the
cumnulative claims for each business year develop similarly by delay year, and estimates development
factors as ratios of sums of cumulative claims with the same delay index. Thus the estimate of the
development factor for column j is
f—j+1
C;;

=l 3.1

t—-j+l

C, .
-1
&

The model on which this is based is
E(Ci;1CitsCiay--» Cy ) = 2;Cy 5, 1=2,0 0t (3.2)

and {3.1) is ao estimate of A; . It has the advantage that it is relatively straightforward to calculate,
but there is no clear basis on which to examine the properties in greater detail. It can be seen as a

useful “rough-and-ready” estimation method.

The expected uitimate loss, E ( C;, ) , is estimated by multiplying the latest loss, C;,_;,, , by the

appropriate estimated A-values :
P .
estimate of E (C;; } = (J1  A;) Cipminr - (3.3)
J=t—i42

The chain ladder technique produces forecasts which have a row effect and a column effect. The
column effect is obviously due to the parameters { X; ; j=2,...,t }. There is also a row effect since
the estimates for each row depend not only on the parameters { }; ; j=2,...,t }, but also on the row
being considered. The latest cumulative claims, C;,_;,,, can be considered as the row effect. This

leads to consideration of other models which have row and column effects, in particular the two-way
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analysis of variance model. The connection is first made with a multiplicative model. This uses the

non-cumulative data, Z;; , and models them according to:

E(Z;)=1U;s; (3.4)
where U, is a parameter for row i,

S j is a parameter for column j
A multiplicative error structure is assumed.

Also ys, =1 (3.5)
I

S, is the expected proportion of ultimate claims which occur in the jth development year.

U, is the expected total ultimate claim amount for business year i (neglecting any tail factor).

Kremer(1982) showed that the following relationships between the parameters hold:

s; = (22) (36)
T M
i=j
s, = 1 (3.1
IT A
=2
and U, = E(Cy) (3.8)

Estimators of { §; ; i=1,...,t } and { U; ; j=1,..,t } can be obtained by applying a linear model to
the logged incremental claims data. Taking logs of both sides of equation (3.4), and assuming that
the incremental claims are positive:

E(Y;;)=p+a; + 8 (3.9)

where Y'.j = log Z..,.

and the errors now have an additive structure and are assumed to have mean zero.

398



The errors will also be sssumed to be identically distributed with variance o?, although this
distributional assumption can be relaxed.
The usual restriction is placed on the parameters to ensure a non-singular design matrix, in this case

a =g =0

Now equation (3.9) can be written in the form of a linear model. Suppose, for example, there are

three years of data.

Then
FYu u €1
Y12 = B 1 0 0 0 O T as + €13
¥ 1 0 6 1 0 as €31 (310)
Y13 1 1 0 0 0 ﬂ; €3
Y23 10 0 ¢ 1 8, €33
L Y31 | 11 01 @ L €34 ]
1 01 00

Kremer (1982) derived the normal equations for the chain ladder linear model and also examined the
relationships between the linear model and the crude chain ladder technique. By reversing the
transformation it can be shown that

£ .
eai el‘ Z eﬁ E

=1

Kremer showed that if the estimate of U; is obtained by “hatting” the parameters in the above
identity, the result is very similar to that obtained from the chain ladder technique. The resulting
estimate of U, is not the maximum likelihood estimate, neither is it unbiased, but it does serve the

purpose of illustrating the similarity between the chain ladder techrique and the two-way analysis of

variance.

Furthermore, if all the geometric means are replaced by arithmetic means the estimators of the
parameters of the models are equivalent. Thus the two estimation methods, the chain ladder method
and the linear model, will produce identical results. The structure of the models is identical and the

only difference is the estimation technique. It can be argued that the linear model estimates are best
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in a statistical sense, but it should be emphasised that in using the linear model instead of the crude

chain ladder technique, there are no radical changes.

In general, a loglinear model applied to this data takes the form

y=X8+e

where y is the vector of logged incremental claims,
X is the design matrix,
8 is the parameter vector and

e is a vector of errors.

Apart from the chain ladder linear model, other models which bave been suggested as suitable for

claims data include a gamma curve (suggested by Zehnwirth (1985))

Yij=vi+ 6 logi+ 7 (J—1) +e;

and an exponential tail (suggested by Ajne (1989)) in which the first few delay years follow the
chain ladder model and the later delay years follow an exponential curve.

The statistical treatment facilitates the production of standard errors as well as point forecasts. This
is a considerable advantage over the ad hoc methods, and allows ’safe’ upper limits on outstanding
claims to be set. The statistical analysis is more comprehensive and allows a greater study of the
models, their fit to the data and any unusual features in the data. Also, Bayesian methodology can
be incorporated to allow the structured input of other information, and to extend the range of the
analysis by including empirical Bayes and state space methods. This has beneficial consequences for

the stability of the predictions.

With reference to the computing aspects, Renshaw (1989) has shown how these models can be

implemented in GLIM, and Christofides (1990) has used the spread-sheet package SuperCalc5.



