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Accounting for Risk Margins 

by Stephen W. Philbrick with an 

introduction by Paul G. 0’ Connell 



Introduction 

by Paul G. O’Connell 

The CAS Committee on Reserves is pleased to present a funded research paper titled 

“Accounting for Risk Maigins”, authored by Stephen W. Philbrick. The committee’s charge to 

Mr. Philbrick was to explore possible ways to adapt statutory and GAAP accounting to reflect 

formal existence of margins for adverse deviations in loss reserves. The focus was not to be on 

methods for calculating margins, but rather on proper accounting treatment for the calculated 

margin. In his paper he has accomplished this and more. 

Mr. Philbrick demonstrates the conflict between profit recognition and the true economic 

reality of the insurance transaction under both current accounting principles and in an 

environment where losses are discounted at a risk-free rate. Through his research in this area, he 

has advanced a theoretical framework that addresses the appropriate accounting technique for 

reflecting and amortizing a risk margin, which when used with discounted loss reserves, results 

in a more accurate formula for profit recognition. 

Mr. Philbrick’s paper is a valuable addition to casualty actuarial literature. It is certain to 

prompt debate among actuaries, accountants and others as well as to inspire additional research 

on the appropriate method or methods for calculating risk margins. 



The current and former members of the CAS Committee on Reserves who assisted on this 

project are as follows: 

Neil A. Bethel (Chairperson 1991-1993) 
Paul G. O’Connell (Chairperson 1994) 
Raja R. Bhagavatula 
Charles F. Cook 
Linda A. Dembiec 
Todd J. Hess 
Russell T. John 
Jeffrey P. Kadison 
Stephen P. Lowe 
Steven 13. Marks 
Richard J. Roth, Jr. 
Mark J. Sobel 
Chris M. Suchar 
Ronald Swanstrom 
John P. Tiemey 
Ronald F. Wiser 



Accounting for Risk Malgins 

By Stephen W. Philbrick 

Introduction 

The importance of risk margins is growing rapidly. Not long ago, the subject of 

risk margins was not considered a burning issue within the actuarial profession, much 

less the insurance community at large. The recent insolvencies in the industry and the 

attendant search for causes and solutions, however, have led to heightened interest in 

risk margins. 

Risk margins, whether in pricing or in loss reserves, have always been easy to 

understand superficially but difficult to pin down precisely. It is well known that case 

reserves and IBNR reserves are estimates of unknown future loss payments. Actual 

results will differ from estimated amounts, and the concept of risk margin reflects that 

fact. 

A risk-averse individual or corporation would prefer a fixed liability of $100 to a 

liability whose expected value is $100, but whose actual payout amount is uncertain. 

“The greater the uncertainty, the larger the risk margin,” Beyond that statement, 

however, there is little universal agreement. Methods vary not only for calculating 

uncertainty, but also for determining risk margins from uncertainty measures. 
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Furthermore, assuming a risk margin has been calculated, it is not obvious how that 

risk margin should be incorporated into statutory accounting, and it is arguable whether 

it should be incorporated at all. 

The purpose of this paper is to explore how such a risk margin should be 

incorporated in statutory accounting. Rather than researching methods of calculating 

risk, this paper will assume that a satisfactory method for calcuiating risk margins will 

be separately developed. 

Nevertheless, a discussion of the accounting treatment of risk margins can hardly 

proceed without a clear understanding of what we mean by the term “risk margin”. 

Unfortunately, the actuarial profession not only needs to develop methods to calculate 

a risk margin, but it also needs to agree on a common definition. There are three 

common situations where the term “risk margin” is used: undiscounted loss reserves, 

loss portfolio transfers, and self-insurance trust funds. Each of these situations will be 

discussed briefly. 

Undiscounficd Loss Reserves 

The term risk margin is commonly used in the observation that stating the loss 

reserve at nominal (rather than discounted) values provides an implicit risk margin. It 

is clear that the amount of the risk margin in this circumstance is the difference 

between undiscounted and discounted reserves. This observation, however, does not 
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provide much insight into the purpose or definition of a risk margin. Compounding the 

problem is the fact that there is no general agreement regarding which discount rate 

should be used in such a calculation; thus, the specific value of the implicit risk margin 

is not clearly defined. 

Loss Portfolio TmnsfetdCommutalions 

There is a market (albeit tiny) for loss reserves. A company retiring from business 

may sell a portfolio of reserves to another company. In theory, the amount of the 

purchase price less the present value of the expected payments represents a risk 

margin. Unfortunately, this does not provide a good empirical source for risk margin 

data because most of these transactions involve other factors, such as tax 

considerations and stop loss agreements. In concept, however, this provides one 

measure of a risk margin. Conceptually, a risk margin represents the difference 

between the expected (discounted) value of the reserves and the certainty equivalent of 

the reserves, where certainty equivalent means the amount certain one would accept (or 

pay) now in exchange for a stream of payments in the future whose amount and timing 

is uncertain. A lump sum payment in exchange for a portfolio of reserves will 

represent a certainty equivalent, if no extraneous items (such as taxes, expenses, side 

agreements or default risk) are involved. 

A commutation is a special case of a loss portfolio transfer, where the loss 

reserves are transferred back to the ceding company. In most cases, one of the parties 



to the transaction may be in financial difftculty, which will distort the value agreed 

upon. If both parties are financially strong (and the commutation is not simply the 

unwinding of a financial reinsurance agreement), the terms of the commutation may 

provide insight into the value associated with the riskiness of the loss reserves. 

Self-Jnsumnce Trust Funds 

The use of risk margins is fairly well developed in the case of Self-Insurance Trust 

Funds. From a financial structure standpoint, one notable difference between a 

traditional insurance company and a trust fund is that a trust fund typically does not 

have a capital or surplus account. Rather, it establishes a funding requirement such that 

the available funds correspond to the p” percentile of the aggregate loss distribution, 

where p is typically 75% or 90%. The risk margin is the recommended funding 

requirement less the expected present value of the reserves. It is typical for an actuarial 

funding study to explicitly show the amount of the risk margin in the report. It is 

important to note, however, that this risk margin is not intended to represent the 

difference between the expected value of the reserves and the certainty equivalent. 

Thus, while an actuary has a tool kit of methods to arrive at a best estimate of loss 

reserves, the goal of all such methods is the same. The actuary also has a variety of 

methods to calculate risk margins, however, the goals of the various methods are not 

all the same although all are termed risk margins, 



Risk Ma&s in Canada 

In developing recommendations for the calculation and accounting of risk margins, 

it may be helpful to review developments in other countries. 

The Canadian Institute of Actuaries (CIA) has adopted a standard of practice which 

requires a provision for adverse deviations. The mechanics of the standard are quite 

different from the methodology outlined in this paper. The CIA methodology is 

heavily judgmental, requiring the actuary to select margins relating to three variables: 

-claims development 

-reinsurance recovery 

-interest rate 

Each margin is selected from a range (with options for selecting outside the range) 

based on a qualitative list of considerations. The claims development margin range is 

O-15%, the reinsurance recovery is O-25% and the interest rate margin is a downward 

adjustment, (which can vary by line of business) to the interest rate used for 

discounting. The range is from 50 basis points to 200 basis points. 

The overall provision for adverse deviations is added to discounted liabilities.’ 

'Memorandum to Fellows and Property/Casualty Actuaries of the 
Canadian Institute of Actuaries from the Commifltee on Property and 
Casualty Financial Reporting May 5, 1993. 
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Types of Risk Margin 

It is critically important to recognize the potential differences in the type of risk 

margin that might be proposed in any attempt to standardize risk margin calculations. 

At least four different possibilities could occur. 

1. A risk matgin based on a certainty equivalent concept, Under this concept, a 

risk margin would be calculated such that, when added to a present-value reserve, it 

produces an estimate of the certainty equivalent value; that is, the amount of cash 

immediately payable to transfer the liability. This concept corresponds to loss portfolio 

transfers. 

2. A risk margin based on a theory of ruin concept Under this concept, a risk 

margin would be calculated such that the probability of insolvency or the expected cost 

of insolvency is reduced to an acceptable level. This concept corresponds to risk 

theoretic discussions of insurance enterprises. 

3. A risk matgin based on probability intervals. Under this concept, a probability, 

such as 75% or 90%, is specified. A risk margin is calculated such that the actual loss 

amount is less than or equal to the expected loss plus the risk margin in the specified 

proportion of times, These intervals are sometimes referred to as confidence intervals.’ 

This concept is commonly used in trust fund analyses. A reasonable question is 

2Technically, confidence intervals are intervals around parameters, while prediction intervals BE. 
intervals around &. 
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whether the probability intervals should be applied to discounted or undiscounted 

losses. The use of probability intervals is discussed in Loss Reserving for Solvency 

(David A. Arata [1983], PCAS LXX, P. 1). Although that article does not explicitly 

discuss discounting, it appears that the calculations are performed with undiscounted 

losses. This concept is also discussed in a CLRS presentation by Robin Harbage (1989 

CLRS Transcripts, p. 1075). Again, it is not explicitly stated whether discounted 

values are used, but the context of the discussion implies that undiscounted values are 

used. 

4. A risk margin intended to simply provide a relative measure of tisk It is 

conceivable that the actuarial profession may conclude that the calculation of a risk 

margin satisfying the goals of methods 1 or 2 is beyond current capabilities. 

Alternatively, the profession may decide that it is possible to design a measure of 

relative risk. For example, some fixed percentage of the aggregate loss variance might 

be proposed as a risk measure. This value would be higher for companies with more 

risk, thereby providing a relative measure. The absolute value of the measure, however, 

might not have a precise meaning. This is analogous to the concept of utility functions, 

which attempts to mk preferences, but not necessarily to ascribe a meaning to the 

absolute level of the utility function value. The implicit margin in undiscounted loss 

reserves corresponds to this concept, because the absolute amount of the risk margin 

does not result from risk theory, but lines of business considered to be riskier (i.e., 

long-tail) will tend to have relatively larger implicit risk margins. 
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Relevant Accounting Issues 

Accounting for risk margins will be dependent on the concepts underlying the 

calculation. The implications for balance sheet and income statement are different for 

the different choices. In particular, a measure following the fourth concept of risk 

margin may not easily be transferable to a balance sheet and might have to be 

accounted for in a separate schedule. 

Accounting for risk should be largely coincident with accounting for profit. An 

entrepreneur (or group of entrepreneurs) starts an insurance company with the intention 

and expectation of earning a profit3 An entrepreneur wishing to earn a profit without 

taking risk will find few opportunities. In order to earn a profit substantially in excess 

of rates available in the United States government securities, an entrepreneur must 

assume some risk. 

‘Exceptions arguably exist; there are some nonprofit organizations formed primarily for the 
purpose of providing difficult-to-obtain insurance. However, mutual insurance companies do 
operate as profit-maximizing firms, despite the blurred distinction between entrepreneurs and 
customers. 
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Qpes of Risk 

An enterprise engaged in the business of insurance faces a wide variety of types of 

risks. Some of these risks include: 

Underwriting risk-This is often defined as the risk that actual losses and expenses 

will exceed premiums. For the purpose of this paper, underwriting risk represents the 

possibility that discounted actual losses exceed the loss portion of the premium. 

investment risk-This term encompasses all risks related to the returns on invested 

assets. This risk is often subdivided into: 

Interest rate risk-Possibility that asset values may drop due to a change in market 

yield rates 

Default risk-Possibility of non-payment of interest and/or principal 

Reinvestment risk-shortfall in investment income due to lower available yields for 

reinvested assets 

Market risk-Generally referring to stocks or real estate; possible reductions in asset 

values due to changes market prices 

Timing risk-the risk that the actual payout pattern of losses will differ from expected. 

Reinsumnce risk-The risk that reinsurance placed by an enterprise may not be 

collectible. 

Chdit risk-The risk that an insured might not pay all premiums due. 
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Risks are also classified as process risk or parameter risk. Process risk represents 

the possibility that actual results differ from expected results while parameter risk 

represents the possibility that the estimated expected differs from the true expected. 

This paper will concentrate on underwriting risk. The assumption will be made that 

assets are invested in risk-free securities such as T-bills, where the durations are 

closely matched to the expected. This is not an optimal investment strategy, nor does it 

eliminate all investment risk. Some timing risk remains. However, there is an important 

interrelationship between timing risk and underwriting risk (as defined here). 

Sometimes a company can settle a claim for a smaller amount by settling it earlier that 

“expected”. If the reduction in nominal costs equaled the discount associated with the 

length of time, this would produce no net change in underwriting risk calculated on a 

discounted basis. Conversely, a settlement for more than the “expected” amount arising 

from a protracted settlement might also have no effect on underwriting risk. In reality, 

these amounts will not precisely offset, however, it should be clear that at least some 

portion of timing risk is mitigated by the possibility that nominal settlements will be 

dependent on the timing of settlement, Major changes in timing can still have a 

deleterious effect on investment results when a portfolio has been precisely duration- 

matched. However, this is beyond the scope of this paper. 

This paper will incorporate process risks and some aspects of parameter risks. 

Parameter risk, by its very nature, cannot be precisely estimated. Some aspects of the 

estimation process, such as model selection, are considered by many to be parameter 
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risk, but are beyond the scope of this paper. Other significant issues, such as the 

possibility of a government takeover of the workers compensation system, might be 

considered parameter risk, but are almost certainly not incorporated into the pricing 

decision and are excluded from consideration in this paper.4 

The largest single source of profit for a typical insurance enterprise is the 

assumption of underwriting risk.’ Some companies earn income for operations that are 

not strictly labeled as underwriting. For instance, companies that provide fronting 

services earn profits for the assumption of credit risk. Other companies offer 

“unbundled services” and may sell services such as claims-handling and loss 

prevention without incurring underwriting risk. 

The fact that “underwriting income” has been negative for the industry as a whole 

for many years does not mean that companies are not engaging in underwriting risk. 

The definition of underwriting income (excess of premium over expenses and losses in 

nominal dollars) is an anachronism, determined when the time value of money was a 

much smaller component of income (both because interest rates were lower than today 

and because the length of time between premium receipt and loss payment was 

shorter). 

‘While it may appear obvious that our pricing mechanism does not formally incorporate 
the possibility of a government takeover of some portion of the insurance business, it is not as 
obvious as it sounds. To the extent that investors are truly worried about such an event, capital 
will be less likely to flow into the industry and the remaining capital may be able to command 
a higher rate of return that otherwise. 

‘Operations such as Berkshire Hathaway may be exceptions because of their large 
investment amounts relative to insurance operations. 
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To the extent that companies invest in securities with significantly higher risk 

characteristics than Treasury bills, they are truly earning income from their assumption 

of investment risks. For the purposes of this discussion, underwriting returns will be 

defined as the excess of premium over the sum of discounred expenses and losses, 

where expenses and losses are discounted at risk-free rates of return, over the time 

period between receipt of premium and payment of expenses or losses. Under this 

definition, the largest single component of insurance companies’ returns will arise from 

underwriting returns. 

Accounting rules-whether statutory, tax, or GAAP-do not explicitly state how 

the accounting for either the profit or risk margin should take place. Rather, accounting 

rules specify how to account for the various components of the insurance transaction 

(premium, expenses, losses, investment income) that drive the accounting treatment of 

the profit component. It should not be inferred, though, that the resulting accounting 

treatment of profit is of minor relevance. In fact, with respect to GAAP accounting, the 

determination of rules for accounting of the various elements is guided in part by 

whether the resulting income statement bears a close resemblance to “reality.” 

Accounting is needed whenever the timing of cash flows associated with a 

particular transaction occur at different times. In a classic goods manufacturing 

company, the initial cash flow is the capital inflow to the company. This is followed 

by cash outflow for capital equipment, which is followed by cash outflows for labor 

and materials. Finally, there is a cash inflow as the customer buys the product. Because 
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the time frame typically encompasses several years, accounting principles were 

developed in order to more closely match revenues and expense. For example, the cash 

outflow for capital equipment is not expensed in the year purchased, but capitalized 

over some time frame, effectively charging a portion of the total cost to each year it 

provides service. 

Similarly, an insurance company has an original cash inflow of capital, followed by 

cash inflows of premium and the cash outflows of expenses and losses. Accounting 

conventions, including such items as loss reserves, exist so that balance sheets and 

income statement more accurately reflect the economic reality of the corporation. 

In any industry, accounting conventions are not expected to perfectly reproduce 

economic reality. Instead, the goal of closely approximating economic reality is 

balanced with the desire for reasonable simplicity, consistency and efficiency of 

performing the accounting. We might argue therefore that the theoretically correct way 

to depreciate an item of capital equipment is to precisely measure its life time and its 

yearly contribution to the business. These calculations would be expensive and are 

subject to dispute and manipulation, so accounting conventions exist to prorate the 

original cost of capital equipment over some fixed length of time which only 

approximates the actual useful lifetime. When significant changes occur to the 

environment (e.g., new classes of equipment), accounting conventions must be devised 

or revised to reflect the new situation. In any such situation, the goal is to promulgate 
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accounting conventions such that the resulting accounting statements are a reasonable 

reflection of economic reality. 

In the property-casualty insurance industry, accounting conventions have generally 

dictated that loss reserves should be established on a nominal basis, that is, without 

any reduction for the time value of money These accounting standards were 

established at a time when: 

H reserves were smaller (relative to premiums) than today 

n interest rates, and therefore the potential amount of discount, were much lower 

The decision to carry reserves on a nominal basis was not justified on theoretical 

grounds, but rather, pragmatic ones. As additional evidence, it should be noted that life 

insurance has always formally incorporated the time value of money in its accounting. 

The length of time associated with life contracts has always been long enough that the 

simplicity arising from nominal reserves is far overshadowed by the material 

distortions which would result. 

This situation has changed in three significant ways: 

l The property-casualty industry has migrated from a predominantly property (i.e., 

short-tail) to a predominantly casualty (longer tail) book of business 

n Individual lines of business have experienced a lengthening of the payment tail 

w Interest rates, while lower today than a decade ago, are still well above rates 

prevalent over the first half of this century. 
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Each of these three changes has combined to increase the financial impact of the 

time value of money. Appendix A provides an analysis of the accounting of a single 

policy, starting with a low-interest scenario on short-tail business, and gradually 

changing assumptions to a level consistent with today’s marketplace. The conclusions 

of that analysis are: 

m if very short-tail business is written in a low interest environment, the timing of 

profit recognition arising from accounting rules roughly mirrors the pattern that 

corresponds to economic reality. 

n if longer-tail business is written in a higher interest rate environment, 

accounting conventions significantly delay the recognition of profit. The 

accounting of a single policy implies that the business loses money in the year 

it is written, and profits are earned in subsequent years. 

Plicing and Risk Margins 

Before directly addressing the accounting for loss reserve risk margins it will be 

helpful to review basic assumptions associated with the pricing of a policy. Risk 

margins for loss reserves should not be considered separately from premium pricing 

issues, but rather as a different point on a continuum of a policy from inception to 

final loss payment. 
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A block of business is normally priced at a level intended to provide a sufficient 

profit after paying expected losses and expenses, Premium levels will be affected by 

many external events, but over long periods of time for the industry as a whole, it is 

reasonable to assume that the profit margins will be related to the amount of risk 

assumed by the company. 

An insurance enterprise must be financially able to withstand actual loss payments 

in excess of expected payments, There are two ultimate sources of funds to provide for 

this contingency:6 

1. Surplus7 from investors, and 

2. Profit margin from insureds 

The term capital is sometimes used to refer to the original amount of assets 

provided by the investors (or subsequent infusions) as distinct form retained earnings. 

This paper will use the term surplus to refer to the entire amount of policyholders 

surplus, including original contributed capital, subsequent capital or surplus infusions 

and any retained earnings. 

6The absence of investment income is deliberate. For the purposes of this paper, we will 
assume that investment income does accrue to the insurance enterprise but that the amount is 
not under the control of the insurance company. Thus, if an insurance enterprise determines 
that it faces higher potential losses than contemplated in its current financial structure, it may 
raise capital, raise rates (or some combination) but it cannot choose to raise investment income 
rates. 

‘Theoretically, a third potential source is debt. Because debt is so rarely used in the 
insurance industry, it will not be treated in this discussion. 
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Appendix B contains a more in-depth discussion of the nature of the surplus and 

proftt margin components, including a discussion of how the relative amounts are 

determined. 

In the pricing context, there is little confusion about the term risk margin. While 

there are two sources of funds which pay losses in excess of expected losses, one of 

these sources, the profit margin, is generally considered to be the risk margin, and the 

other source, surplus, is not. When we turn to loss reserves, the situation is not as 

clear. 

Loss Reserves and Risk Margins 

The actuarial profession has not yet settled on a methodology to determine risk 

margins for loss reserves. It is possible, however, to consider conceptually what such a 

provision means without necessarily specifying the calculation procedure. A loss 

reserve margin is an amount needed over and above the expected (discounted) reserves 

to reflect the inherent riskiness of the reserves. While this description is obviously 

imprecise, it is difficult to refine it without specifying, or implying, a calculation 

methodology. For example, if we define loss reserve margin as that amount, which 

when added to the reserves, provides a total amount sufficient to pay actual losses with 

probability x% (where x might be 99 or 99.5) then we have essentially adopted a ruin 

theory approach to loss reserve margins. 
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Despite the vagueness of the definition, there is an important conclusion that can be 

drawn. Specifically, the normal use of the term “risk margin” in the context of loss 

reserves does not provide for a distinction between the two ultimate sources of 

fund-the insured and the investor. Indeed, some actuaries argue that a loss reserve 

margin should be merely an earmarked surplus item which is equivalent to implying 

that the source of the amount is the investor. 

Risk Mqin Calculation 

For the purpose of this paper, it will be necessary to divide the total risk margin 

into two components: 

m a loss reserve risk margin arising from the original profit margin 

n an earmarked surplus amount 

To avoid confusion between two distinct terms with the same name, the first of 

these two items will be referred to as the “narrow risk margin” (NRM) and the second 

of the two items will be referred to as the “surplus risk margin” (S&I)*. The sum of 

the two amounts will be referred to as the “broad risk margin” (BRM). The term 

NRM will be defined to mean that portion of the total risk margin which belongs 

“above the line”, that is, the portion which theoretically should be considered a liability 

of the company rather than any part of surplus. The term SRM is defined to be that 

*This choice of terminology is deliberately based on the convention used to distinguish 
between two overlapping definitions of IBNR. 
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portion of the total risk margin which belongs in the surplus section of the balance 

sheet. 

Calculation of these three elements will probably proceed in one of two ways: 

either the NRM and SRM values will be separately calculated directly, or the total 

BRM value will be calculated and apportioned into the two components. A 

methodology to directly calculate the NRM value might start by exploring what it 

would cost to “sell” the liabilities. 

Assume that an efficient secondary market exists for loss reserves. The difference 

between the sale price and the best estimate reserves on a discounted basis would 

represent the narrow risk margin. In this case, this amount would identically be the 

amount that a company should carry as a liability (that is, above the line) in the normal 

case that it does not sell its reserves. 

Several caveats should be noted. First, actual sales of loss reserves typically include 

aggregate limits on the amount that the assuming company will pay. The appropriate 

narrow risk margin must be calculated without any such limits.’ Second, actual 

transactions often reflect a different tax situation between the ceding and assuming 

company. The narrow risk margin should be calculated exclusive of tax considerations. 

Third, this “thought experiment”doesn’t specify how such a sales price should be 

calculated. 

‘Obviously, existing policy limits and aggregates should be incorporated into the 
calculations. 
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Alternatively, industry risk margin calculations may, instead, directly calculate the 

broad definition, BRM. If the methodology is based on aggregate loss distributions or 

ruin theory approaches, it is likely that the resulting amount will be either the total 

amount (including loss reserves) needed as available assets to ensure the viability of 

the insurance enterprise or the amount needed in excess of the best estimate loss 

reserves. It is highly likely that in the second case, the amounts will be relative to 

discounted loss reserves. If the resulting margin is to be added to nominal loss 

reserves, an additional calculation will be required. 

Once the broad risk margin is calculated, then the two components, NRM and 

SRM, can be calculated using formulas outlined in a later section. 

Another possible approach to risk margin calculations is an adjusted discount rate 

calculation where the best estimate loss reserves are discounted at a rate less than 

prevailing market rates.” In this case, the difference between the reserves discounted at 

the adjusted rate and discounted at market rates will represent the risk margin. This 

calculation normally produces a narrow risk margin. 

Many questions still need to be addressed. Subsequent sections will discuss: 

m Transition from the current situation to the proposed situation 

n Proper handling of the change in risk margin arising from a consistent 

application of the methodology 

%I the case of property, it is conceivable that the appropriate adjustment to interest 
rates may produce “discounted” loss reserves slightly larger than the nominal amount. 
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w Proper handling of the change in risk margin arising from a change in the 

methodology used to calculate risk margins 

However, before we go into those issues, we should discuss specific examples 

with a proposed methodology for the calculation of the BRh4 and its 

components, NRM and SRM. 

Assume that an insurance company has the opportunity to write a volume of 

business with expected nominal losses of $300.00. For simplicity, we will treat the 

entire business as if it consists of a single policy. This amount is chosen to keep the 

numbers in the exhibits manageable. The reader is invited to think of this as a 

surrogate for a more realistic number such as 30,000,OOO or 300,000,000.” 

We will examine three different scenarios, starting with an over-simplified example 

and moving toward a more realistic example. 

In the first example, only one loss payment is made (at the middle of the policy 

period), the premium is paid at the beginning of the policy period, and only a single 

policy is written. This will be referred to as the SINGLE PERIOD model. 

“It would be preferable to examine a single policy added to an existing company. 
However, exploration of this alternative suggests that proper handling of a single policy 
requires analysis of the covariance of the individual policy with the remainder of the portfolio. 
It was felt that this complication would detract from the central theme of this paper, so the 
decision has been made to analyze the company as a whole. The correct treatment of 
covariance is important to the issue of pricing an individual contract, but less important to the 
accounting of the risk margin of a contract which has already been priced. 
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In the second example, loss payments are made at the middle of three calendar 

periods following the inception date. The premium is paid at the beginning of the 

policy year. Only one policy is issued; this will be referred to as the THREE PERIOD 

model. 

Finally, we will assume that a policy identical to the one in the second example is 

written each year for three years. This allows the company to reach a steady state. 

Expected loss reserve reductions from expected payments exactly offset additions from 

the new policy. This will be called the STEADY STATE model . 

Several assumptions will be common to all models: 

m Policy period - One year 

n Policy inception date - January 1 

w Risk-free interest rate - 6% 

n Company’s desired rate of return on equity - 15% 

n Expenses - none 

m Taxes (federal and premium) - none 

SINGLE PERIOD MODEL 

Assume that a policy is issued whose undiscounted expected losses are $300.00. 

All losses are paid at the middle of the year, so the present value of expected losses is 

$291.39 (300/1.06’). The present value of actual losses may turn out to be less than or 
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greater than this amount. This variability will be quantified by assuming that the 

aggregate distribution of losses is modeled by a lognormal distribution with mean 

$291.39 and coefficient of variation (CV) equal to .128. To put this value in 

perspective, the probability that actual losses could 23% higher than expected is 

approximately 5%. In other words, there is roughly a 95% probability that actual losses 

will be less than $359 (291 x 1.23). 

The insurance company must provide for an amount of assets sufficiently large so 

that regulators and policyholders will be satisfied that the company is highly likely to 

pay any losses which arise under this policy. Obviously, it would be desirable if the 

company could be cert&r that it could pay losses under any scenario. However, with 

an unlimited potential for loss, no finite amount of assets can guarantee payment in all 

circumstances. Therefore, regulators and policyholders must be satisfied that non- 

performance is reduced to an acceptable level. 

Non-performance can be measured in two important ways. The most common way 

is to measure the probability of non-performance, which is the probability that the 

available assets of the company are insufficient to pay the actual losses. This approach 

is often referred to as the “probability of ruin” approach. We could specify the 

acceptable probability of ruin, for example, I%, and solve for the amount of assets 

necessary to cover the 99th percentile of the aggregate loss distribution. 

26 



Another way to measure non-performance is to measure the total cost of non- 

performance, which is the expected losses in excess of available assets. This approach 

will be referred to as the “expected deficit” approach. We specify the acceptable deficit 

(as a percentage of expected discounted losses) and solve for the amount of assets. If 

we specify an expected deficit of 2%, then we need to find the amount of assets such 

that the area of the aggregate loss distribution above the asset amount is 2% of 

$291.39 or $5.83. This asset amount is $359.42’* Thus, the insurance company needs 

to provide $359.42 in additional assets in order to write this policy. 

The company can get some of these assets from the policyholder and some from 

the investors in the company. 

The policyholder will provide assets by paying a premium. The amount of the 

premium will be equal to expected losses plus a risk premium. The risk premium will 

be called the narrow risk margin (NRM). The investor will supply surplus, which will 

be called the surplus risk margin (SRM). The sum of the NRM and the SRM produces 

the broad risk margin (BRIG). The BRM is that amount of assets needed in addition to 

“The actual calculation involves solving the equation for expected deficit directly 

I,-{z - A)dF =.003 
In this equation, Z is a random variable representing the possible 

aggregate losses of the company, F is the cumulative distribution of aggregate losses, and A is 
the desired amount of assets required to satisfy the expected deficit criterion. In words find the 
value A such that the sum of losses in excess of A is .3% of the total. Altemalively, solve the 
following equation which represents the proportion of losses which can be covered by a 
company with assets equal to A. 

In both cases, F is the aggregate dist;bution of losses incorporating both process and 
parameter risks, aad in this example, is a lognormal distribution with CV = ,128. 



expected losses to satisfy policyholders and regulators that the company is financially 

sound. Consequently, the BRM is equal to the total asset need ($359.42) less the 

expected losses ($291.39) which produces a BRM value of $68.03. 

We now need to determine the relative contributions of the policyholder and the 

investor to the BRM. How is the BRM apportioned between NRM and SRM? The 

answer is that we solve for a value of NRh4 sufficiently large to provide the required 

rate of return (ROR). The solution (for the single period model) is: 

NM= (ROR-i)xBRM 
l+ROR 

Although this is the formula we would use in practice for a one-period model, this 

formula will be more understandable in a slightly different form. Using the 

relationship BRh4 = SRM + NRh4, the formula for NRM can be written in terms of 

sRh4 as follows: 

NRM = (ROR -i)SRM 

l+i 

In words, the investor will supply the amount SRM and expects to earn a return on 

this amount at a rate of ROR. The SRM amount can be invested during the year at 

rate i, so the policyholder must supply the difference ROR-i. This amount is needed at 

the end of the year, so the amount required at the beginning of the year is discounted 

by ones year’s interest (l+i). 

Solving, we find in this specific example: 

NRh4 = $5.32 

28 



SRM = $62.71 

BRM = $68.03 

Now we will examine how to handle the statutory accounting for this policy. 

Exhibit 1 contains the suggested handling of this policy in terms of the effect on 

existing lines in the balance sheet and income statement pages, as well as required 

additional lines. Exhibit 2 contains the identical information as Exhibit 1, as well as 

some supplemental information which will be used to better understand how the 

process works. This discussion will concentrate on Exhibit 2 for ease of explanation, 

but the conclusions apply to Exhibit 1. 

In Exhibit 2, the relevant lines of the balance sheet and income statement are 

shown. The shaded lines contain the supplemental, explanatory material not intended to 

be included in actual financials. (A quick glance at Exhibits 1 and 2 will verify that the 

only difference between them is the shaded lines.) The lines in bold print are lines not 

currently in statutory tinancials that would be required if we incorporate discounting 

and loss reserve margins into the statement. The annual statement line numbers are 

shown on the left side of the exhibits. Four-digit numbers corresponding to write-in 

lines are used to indicate where the newly required information should reside if a 

current statement format is used. Obviously, if these recommendations are accepted, 

the organization and line numbering of these exhibits may change. 
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One-Period Model Exhibit 1 

L” St Balance Sheet 

he #‘s Assets 

At 12/31/X-l At l/l/X At 12/31/X 

1. T-Bills $62.71 $359.42 $0.00 

_________________-_-____________________--------------------- 

Liabilities 
1. Undiscounted Loss Reserve $0.00 $0.00 

9. UPR 0 $291.39 $0.00 

2101. Reserve for Discount $0.00 $0.00 

2101a. Discounted Loss Reserve 0 $0.00 $0.00 

2102. Risk Margin 0 $5.32 $0.00 

22. Total Liabilities 0 $296.71 $0.00 

26. Surplus $62.71 $62.71 $0.00 

1. 
2. 

8. 

0501. 

0502. 

16. 

Statement of Income Year x 
Premium $296.71 

Undiscounted Incurred Loss ($3OO.OC 

Investment Income S12.7C 

Change in Risk Margin so.oc 

Change in Reserve for Discount so.oc 

Net Income $9.41 

Capital and Surplus Account I 
17. Surplus, Dec. 3 I previous year $62.71 

I Gains And (Losses) in Surplus 
18. Net Income $9.41 

25(a). Surplus Adjustments: Paid in ($62.71 

27. Investor Dividend ($9.41 

31. Changes in Surplus for the year ($62.71 

32. Surplus, Dec. 31 current year so.oc 

NEWEX.XLS 
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One-Period Model 
With Supplemental Information 

Exhibit 2 

An St Balance Sheet 

Line #'s Assets 

At 12/31/X-l At l/l/X At 12/31/X 

1. T-Bills $62.71 $359.42 $0.00 

_________-----___-_-------------------------------------------- 

Liabilities 
1. Undiscounted loss Reserve 

9. UP!? 

2101. Reserve for Discount 

2101a. Discounted Loss Reserve 

2102. Risk Margin 

22. Total liabilities 

26. Surplus 

$0.00 $0.00 

0 $291.39 $0.00 

$0.00 $0.00 

0 $0.00 $0.00 

0 $5.32 $0.00 

0 $296.71 $0.00 

$62.71 $62.71 $0.00 

2. Undiscounted Incurred Loss ($300.00 

1 : ; ""'~~~~!~~~~~~g~~~~,L~~~,.~s~~~j. . . 

’ 1 ‘. ‘t&t: &%~dk Margiti and Surplu# 
.. ; ., : i $6.61 

$4.08 

0. Investment Income $12.70 

0501. Change in Risk Mergin $0.00 

0502. Chmge in Reserve for Discount $0.00 

16. Net Income $9.41 

I Capital and Surplus Account 
17. Surplus, Dec. 3 I previous year $62.71 

I Gains And (Losses) in Surplus 
16. Net Income $9.41 

25(a). 

27. 

31. Chenges in Surplus for the year 

32. Surplus, Dec. 31 current year 

Surplus Adjustments: Paid in ($62.71 .̂. ~ , ,, 
$5.32 -‘: I Ngrr?w Riiik:MaYgffiQ%pwent 

: 
ire. tiib:cfi:tjmtvowrit 84.08 

Investor Dividend ($9.41 

($62.71 

$0.00 

NEWEX.XLS 
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Balance Sheet 

We presume that the required surplus must be in the company before writing the 

new policy. With an effective date of l/l/X, this means we need to include the $62.71 

of required surplus in the company on the previous day, 12/31/X-l, Before the policy 

is written, the balance sheet will contain only this surplus amount.” 

Financial statements are typically calculated at year-ends, but we have shown a 

balance sheet on l/l/X, immediately following the writing of this policy, to help 

follow the transactions. The premium of $296.71 is received by the company on 

January 1 and invested in Treasury bills. Consequently, the asset side of the balance 

sheet shows the surplus as well as the total premium, invested in Treasury bills. This 

total is $359.42. Technically, this entire amount of the premium should be established 

as an unearned premium reserve on that date. However, it will be difficult to trace the 

flow of the narrow risk margin if it is buried in the UPR, so we have placed the 

expected loss portion of the premium into the UPR and the narrow risk margin of 

$5.32 into a risk margin reserve. 

13The mathematics would be slightly “cleaner” if we could assume that the risk margins 
are contributed on a discounted basis. However, it is unlikely that regulators would accept such 
a concept, so a convention is adopted where expected loss amounts are provided on a 
discounted basis while surplus and risk margins are provided on a nominal basis. 
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Income Statement 

Now let us examine the income statement, The premium line (line 1) contains the 

entire premium of $296.71. The shaded lines show that this total is comprised of an 

expected loss portion and a narrow risk margin. In the expected case, actual losses of 

$300.00 are incurred and paid halfway through the year (line 2). The company earns 

investment income of $12.70 during the year (line 8). The shaded lines show that this 

total is comprised of two amounts, 4.08 and 8.61. The first value arises from the 6% 

rate applied to the narrow risk margin and surplus amounts, which are held for the full 

year ((62.71 + 5.32) x .06 = 4.08). The second arises from investment income on 

assets supporting loss reserves. 

These assets are only held for six months before the loss is paid, so the asset 

amount, $291.39, earns 6% for six months or $8.61. Note that the $8.61, added to the 

$291.39 precisely provides enough money to pay the $300.00 loss. The net income 

(line 16) is the sum of these values, or $9.41 (line 16). 
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Capital and Surplus Account 

The remaining part of the exhibit shows the reconciliation of the surplus account. It 

starts at $62.71 (line 17) at the previous year-end. The net income of $9.41 (line 18) is 

an addition. In this example, the policy is now completed so the company can return 

the surplus to the investor. This is shown as a negative paid-in amount of $62.71 (line 

25(a)). At the end of the year, we would issue a stockholder dividend to the investor in 

the amount of the net income of $9.41 (line 27). The shaded lines show that this total 

is comprised of the $4.08 investment income earned on the surplus and narrow risk 

margin during the year, and the $5.32 provided by the policyholder in the form of a 

narrow risk margin, If we then calculate the ratio of the net income to the surplus at 

risk, we find that the investor has earned a 15% return on the investment. This exhibit 

should help provide an understanding of the rationale behind the formula for 

determining the narrow risk margin, The investor can earn a “safe” return of 6% in 

Treasury bills. Instead the investor risks the surplus in an insurance enterprise with the 

expectation of a higher reward. The required return is 15% on the surplus. The surplus 

can be invested at rate i, so the remaining requirement (ROR-i) must be provided by 

the policyholder. 

At the end of the year, all losses are paid and all surplus returned to the investor, 

so that balance sheet contains all zeros. 
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Of course, actual loss experience might be less than or greater than the expected 

loss experience. The excess amount, if actual losses are less than expected, will result 

in a higher rate of return. The short-fall, if actual losses exceed expected, will result in 

a reduced return or a need to use surplus to pay losses. The risk that the latter may 

occur is, of course, the reason that the investor can expect a return in excess of a risk- 

free rate. 

While this example illustrates some of the dynamics of the situation, note that the 

lines for change in risk margin (line 0501) and change in reserve for discount (line 

0502) contain zeros. This is correct in this example, because the reserves for these 

items are zero before the policy is written and zero after the last loss is paid, so the 

year-end changes are zero. We will next examine a policy with payments over a three- 

year period so we can better understand the dynamics of these items. 

THREE PERIOD MODEL 

In this example, assume a single policy is written on l/l/X. The expected nominal 

losses are $600.00. The expected payout of these losses is $300.00, $200.00, and 

$100.00, with payments taking place at the middle of years X, X+1, and X+2. The 

expected losses, discounted at 6%, are $561.09. 

Again assume that the actual nominal losses can be described by a lognormal 

model with mean of $561.09 and CV of ,128. We will make the simplifying 
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assumption that the overall amount is variable, but the timing of the payments is fixed. 

As calculated before, the total assets required is found by multiplying the expected 

losses by 1.233. This produces: 

Total Asset Need = $561.09 x 1.233 = S692.09 

Arguably, not all of these assets are needed presently because some assets are 

needed for payments in the future. It is unrealistic, however, to assume that regulators 

would permit surplus to be promised at some future date. We will assume that all 

surplus must be supplied prior to the policy inception date. 

As before, we expect the policyholder to pay a premium consisting of the expected 

losses $561.09 plus the NRM, while the investor will supply the SRM. The total asset 

need less the expected losses produces the sum of the NRM and SRM which we call 

the BRM: 

BRM = $692.09 - $561.09 = $131.00 

The calculation of the apportionment between NRM and SRM is now more 

complicated. The investor must commit surplus, not simply for the upcoming twelve 

month period, but over the entire life of the policy, which extends until the last loss is 

paid. Similarly, regulators and policyholders require that assets over and above 

expected losses need to remain in the company until the last loss is paid. Denote L, to 

be the expected unpaid losses at time t. The policy inception date will correspond to 

t=O, but subsequent values of t will correspond to year-end points in time. Make the 
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simplifying assumption that the same aggregate loss distribution can be used to 

describe the unpaid losses at any point in time14. Then the total asset need at any time 

will be calculated the same way as at the beginning of the policy period: 

Asset need at time I = 1.233 x L, 

For simplicity we will assume that the evaluation of asset need does not take place 

continuously, but at year-end points in time. For each time t, we can also calculate a 

value we denote BRM, which will be the total asset need, less the expected losses: 

BRM, = (I.233 x LJ - L, = .233L, 

Now we have a sequence of future BRM, values, each of which can be 

decomposed into an NRM, and SRh4, The formula for calculating the initial, as well 

as all subsequent NRM, is: 

In words, the future BRM, values are discounted at rate ROR. The total of the 

discounted values is multiplied by (ROR - i), reflecting the fact that the BRM, will 

earn investment income at rate i, and the policyholder must supply the remaining 

amount in order to pay the investor the required rate of return. 

“This assumption will be discussed further in a later section 
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Applying these formulas produces the following values: 

BRM, = .233 

L, =$131.00 

NRM, = $16.14 

SRM, = $114.87 

Now let us examine the financial statements corresponding to this policy. As 

before, two exhibits are provided. Exhibit 3 contains the proposed accounting. Exhibit 

4 contains the identical information, as well as supplemental information in the shaded 

lines. 

Balance Sheet (Year X) 

On the day before the policy is issued, (l2/3 l/X-l) the required surplus of $114.87 

is supplied (Exhibit 4 Line 1). On the following day, the total premium is paid, 

consisting of expected losses of $561.09 and narrow risk margin of $16.14, for a total 

premium of $577.23. When added to the surplus, this produces total assets on l/l/X of 

$692.09. On that same day, a UPR reserve is established -in the amount of $561.09 

(line 9) and a risk margin reserve of $16.14 is established (line 2102). 

During the year, a %300.00 loss is paid. By year-end, the premium is earned, so the 

UPR reserve drops to zero. The remaining unpaid losses, on an undiscounted basis are 

38 



Three-Period Model Exhibit 3 

an Sf Balance Sheet At 12/31/X-l A, i/r/x Af ,.2/3,/x At ,2,31,x+, .4f 12/31/x+2 

ins X’s Assets 

1. T- EillS $114.87 6692.09 $352.64 $119.81 $0.00 

________________________________________---------------------------------------. 

Liabilities 

1. Undiscounted Loss Reserve 9o.w *3oo.oc * 100.00 $0.00 
9. “PR 0 $561.09 $0.00 $0.04 $0.00 

2101. Rarsrvs for Disawnt $0.00 ,*14.11, 152.87, 60.00 

2101a. 

2102. 

22. 

D,SCO”“md Loss Rt?*ww 0 $0.00 5285.89 $97.13 SO.00 
R&k Margh 0 816.14 $6.77 $1.77 $0.00 

Total Liabilifies 0 $577.23 5292.65 $98.90 $0.00 

26. swp/w $114.87 5114.87 $59.98 $20.90 $0.00 

1. 

2. 

8. 

Statement of Income Yesr x YesrX+ I Y.%wX+2 

Premium $577.23 50.00 $0.00 

Undiscounted Incurred Loss 1$600.00~ $0.00 $0.00 

,““.9sfme”r home $32.66 $15.25 54.23 

0501. Chmge in Wsk Margin 158.771 54.99 t1.77 

0502. Change in Reoww Ior C’~~COM~ t14.11 ($11.241 ($2.87 

16. Ivet ,“COnx $17.23 $9.00 $3.14 

Capital and Surplus Account 
17. Surphs, Dec. 31 previous yew 8114.87 $59.98 $20.90 

1 Gains And ILosses) In Surplus 
18. fvet lncorne 517.23 $9.00 $3.14 

25w. Sum/us Adjustments: Paid in ,554.w ($39.08) (520.90 

27. lnvesmr Dividend 1817.231 l59.001 ,*3.14 

31. c*en&les in S”rpl”S for the year ($54.881 ,539.ow ~$20.90 

32. Surplus, Dec. 31 currem year 559.98 520.90 50.00 
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Three-Period Model 
With Supplemental information 

Exhibit 4 

i- 
4" St Balance Sheet AT ,zNI,X-I A, 1,1,x At 12/.31,x At ,2/31/x+ 1 A, 12/3,,x+i 
he X’s Assets 

1. T-Sills $114.87 $692.09 *352.&% $119.81 $0.00 

________________________________________--------------------------------------- 
liabilities 

1. Undi*counred Loss Rssswe $0.00 $300.00 8100.00 $0.00 

9. "PR 0 $561.09 $0.00 $0.00 $0.00 

2101. Ruurn ‘0, zntcovnt $0.00 f514.1 I, (82.87) bO.00 

2101*. wscolmmd Loss Rwsww 0 $0.00 9285.89 897.13 80.00 

2102. Rh*MW 0 Olf3.14 $6.77 01.77 $0.00 

22. TO ta, Liahimi*.s 0 $577.23 $292.85 $98.90 $0.00 

28. SUlplUS $114.87 *114.*7 $59.98 $20.90 SO.00 

I Statement of Income I Yea,x+ I vearx+z I 

40 



$300.00 (line 1). The present value of these losses at year-end is $285.89, so the 

difference between the discounted and undiscounted amounts is established as a reserve 

for discount of % -14.11 (line 2101). The discounted loss reserve is shown as the sum 

of line 9 and line 2101 in line 2101a. 

The required year-end risk margin and surplus are calculated as before-the 

expected losses are now $285.89, so the BRM, is: 

BRM, = ,233 x $285.89 = $64.75 

NRM, = $6.77 

SRM, = $59.98 

Thus, we need to maintain $6.77 in the risk margin reserve and $59.98 in the 

surplus account. 

Income Statement (Year X) 

Looking at the income statement (Exhibit 4), we see that income includes a. 

premium of $577.23 (line 1) comprised of the loss portion of the premium $561.09, 

plus the risk margin portion, $16.14. Incurred losses are shown on an discounted basis, 

and are equal to the total of payments made during the year, $300.00 and all expected 

future payments. This results in a total incurred loss amount of $600.00 (line 2). The 

company earns investment income of $32.66 during the year (line 8). This is comprised 

of two items, the amount earned on the assets underlying the loss reserves and the 
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investment income earned on the risk margin and surplus. These two amounts are 

$24.80 and $7.86 (shaded lines). 

In our previous example, the investment income associated with loss reserves added 

to the loss reserve precisely paid off the loss payment. In this example, the situation is 

slightly more complicated. The total discounted losses at policy inception of $561.09 is 

comprised of two components: $291.39 for the expected payment of $300.00 in the 

first year, and $269.70 for subsequent loss payments. Consequently, $8.61 of the 

investment income is combined with the $29 I .39 to make the midyear loss payment of 

$300.00. The remaining investment income, $24.80 - $8.61 = $16.19 is added to the 

$269.70 value to produce the needed loss reserve of $285.89 (line 2lOla). 

As a check, either confirm that $285.89 represents the correct expected value of the 

remaining two payments, or note that the origmal discounted amount of $269.70 should 

be multiplied by 1.06 to bring it forward one year. 

The change in risk margin is $-6.77 (line 0501). This amount may appear puzzling 

at first. It is important to note the entire effect of the risk margin on the income 

statement. The entire risk margin of $16.14 is included in the income because it is a 

part of the earned premium (see shaded line above line 1). The S6.77 ensures that not 

all of the original risk margin is included in income in this year. The total of these two 



items, $16.14 - $6.;77 = $9.37, represents the portion of the total risk margin that is 

included in the first year’s income.” 

The change in reserve for discount is $14.11 (line 0502), representing the fact that 

the prior year-end reserve was zero, and the required reserve of S14.1 I (line 2101) 

must be established. The sum of all the income items produces the net income for the 

year of $17.23 (line 16). 

Capital an! Surplus Account (Year X) 

The previous year-end surplus $114.87 (Exhibit 4, line 17) is carried down from 

line 26 of the balance sheet. To this amount we will add the net income for the year, 

calculated above to be %I 7.23 (line I6 as well as line 18). Now that some of the losses 

are paid, the remaining obligations require less total assets and less surplus to support 

possible fluctuation in actual payments. The new surplus requirement (SFCM,) is 

$59.98. Thus, the difference between the surplus on hand, and the required surplus, is 

returned to the investor as a negative paid-in surplus amount16. This amount, $114.87 - 

$59.98 = $54.88, is shown on line 25(a). 

‘?f we had assumed that the policy has an effect&c date of 12/3 I/X-l, the individual line 
entries would be different, although the total effect would be the same. This effective date of 
l/l was deliberately chosen to make sure the accounting treatment for this situation would be 
understood. The subsequent years treatment should be reviewed for understanding. 

‘% practice, the investor would leave the surplus in to support a new poiicy written in the 
second year. 
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We also paid the entire net income amount out to the investor as a stock dividend” 

(line 27). The shaded lines show that this dividend is comprised of the portion of the 

narrow risk margin that has been taken into income $9.37, and the investment income 

earned during the year on the surplus and risk margin, $7.86. 

The bottom shaded line shows that the investor return, $17.23, divided by the 

surplus at risk during the year, $114.87, produces a return on surplus of 15%. 

Balance Sheet (Year X+1) 

In the second year, the loss payment of $200.00 is made, leaving an undiscounted 

loss reserve equal to the single remaining payment of $100.00 (Liabilities, line 1). The 

present value of this payment of $97.13 (line 2lOla) leaving a reserve for discount of 

S2.87 (line 2101). The total required assets are calculated as before: 

Required Assets = 1.233 x $97.13 = $119.81 

The BRM, is calculated as before: 

BRM, = ,233 x $97.13 = $22.68 

which is apportioned into its components: 

NRM, = $1.77 

SRM, = $20.90 

Thus, the risk margin on the liability side becomes $1.77 (line 2101) and the 

surplus amount becomes $20.90 (line 26). 

“In practice, this amount, or a portion of this amount would be left in the company as 
retained earnings, to support growth in premium writings. 
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Income Statement (Year X+1) 

No premium is received in this year, and our estimate of ultimate losses for prior 

years does not change, so the incurred losses are zero. Our assets earn a total of $15.25 

during the year (line 8). This is comprised of $11.24 earned on assets supporting loss 

reserves and $4.00 earned on the surplus and risk margin (shaded lines). Once the 

losses are paid, we will need a smaller broad risk margin, hence a smaller narrow risk 

margin and a smaller surplus risk margin. Consequently, we can release $4.99 of the 

risk margin amount into income (line 0501). This is calculated as the difference 

between the required risk margin at the prior year-end, $6.66 and the amount needed at 

the current year-end, $1.77. 

Similarly, we have to charge against income the need to increase the reserve for 

discount from G14.11 to $-2.87. This increase in reserves of $11.24 is a charge to 

income of $-I 1.24 (line 0502). The net income for the year is the total of these items, 

or $9.00 (line 16) 

Finally, we reconcile the surplus account. It started with $59.98 (line 17). We 

earned $9.00 in net income (line 18) returned the surplus not needed for the next 

year’s operations, $-39.08 (line 25(a)), and paid an investor dividend equal to total net 

income of $9.00 (line 27). This amount is comprised of the $4.99 of the original 

narrow risk margin released into earnings this year plus the investment income on the 

remaining risk margin and surplus (shaded lines above line 27). The sum of these 
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changes is the total change in surplus for the year, $39.08 (line 31), yielding the year- 

end surplus of $20.90 (line 37), which is precisely the amount needed to support the 

remaining loss reserves. The investor dividend of $9.00 divided by the surplus 

throughout the year of $59.98, provides the investor with a return on invested surplus 

of 15%. 

Balance Sheet (Year X+2) 

In the third year, the final loss is paid, so at the end of the year, there is no need 

for reserves or surplus, and therefore no need for assets. Consequently, all values in the 

balance sheet are zero. 

Income Statement (Year X+2) 

There is no premium in this year. Loss payments exactly equal as expected, so 

incurred losses are zero. Investment income of $4.23 is earned during the year (line 8). 

This is comprised of the $2.87 earned on the assets supporting loss reserves of $97.13, 

and the $1.36 earned on the risk margin and surplus (Exhibit 4, shaded lines above line 

8). Note that the sum of the investment income on loss reserve assets plus the reserve 

of $97.13 provides enough money to pay the loss of $100.00. 

The required risk margin at the end of the year is zero, so the change in the risk 

margin of $1.77 flows into income (line 0501). The S2.87 corresponds to the fact that 
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the reserve for discount becomes zero (line 0502). The total of the income items is the 

net income for the year of $3.14 (line 16). 

Finally, we reconcile the surplus account. The beginning surplus is $20.90 (line 

17). Net income of $3.14 is added (line 18). All remaining surplus can be returned to 

the investor, S20.90 (line 25(a)), and we pay a stock holder dividend to the investor 

equal to the net income (line 27). This dividend is comprised of the release of the 

remaining portion of the narrow risk margin $1.77, and the investment income earned 

during the year on the risk margin and surplus, $1.36 (shaded lines above line 27). The 

total dividend of $3.14, divided by the surplus invested throughout the year $20.90, 

provides the investor with a 15% return. 

STEADY STATE 

In this example, a policy is written every year. Each policy will be identical to the 

policy in the three period model. The nominal losses will be $600.00, paid out over 

three calendar years with $300.00 in the current year, $200.00 in the second year, and 

100.00 in the third year. Because there are no losses outstanding after the third year, 

any point in time in the steady state model needs only to consider the current year, the 

prior year and the second prior year. 

The results are summarized in Exhibit 5, (This exhibit is laid out in the same 

format as Exhibits 2 and 4.) 
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Three-Period Model 
Steady State 

Exhibit 5 

A” 91 Balance Sheet A, 12/3,/X-f A, VI/X Af r.?/.?1,x /If 1.?L?,,x+ I At ,2/31,x+.? 
Line t’s Assets 

1. T-Bills $603.45 $1,164.54 $603.45 (603.45 $603.45 

--.-------------------~-----------------------------------------------------------~ 
Liabilities 

1. ““disco”“*ed LOSS Rescwe s400.00 $400.00 $400.00 5400.00 s400.w 
9. “PR 0 5561.09 so.00 $0.00 50.00 

2101. Rersrw ‘or Discoun, ,* 16.98) ($16.98, ,S16.9Bl ($16.98) 1516.98, 
2101a. ol*co”“t¶d I.035 Rsrsrvs $383.02 5383.02 $383.02 $383.02 8383.02 

2102. RI* Mwgl” 524.68 $24.68 $24.68 $24.68 E24.88 

22. TOM Li9bilifies 9407.70 $968.79 $407.70 $407.70 f407.70 

26. surplur 5195.75 $195.75 $195.75 $195.75 $195.75 

31. chmgss in S”rplut Ior the year $0.00 90.00 $0.00 
32. s”rpl”s, Dec. 3 r C”,,*“t year $195.75 $195.75 $195.75 

bvartw ffMfm ms lllsnsl?l 1B*oo% 1wxs 15”DU%, 
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Most of the values in the exhibits can be calculated as the sum of the appropriate 

amounts in Exhibit 4 associated with each of the three years. For example, the 

undiscounted loss reserve is $400.00 at each year-end. This is the sum of the unpaid 

amount of $300.00 on the previous year’s policy, and the remaining unpaid of $100.00 

on the second prior year’s policy. (The current policy does not contribute to loss 

reserves, but rather to the UPR account.) The narrow risk margin is $24.68 at each 

year end, corresponding to the sum of the three narrow risk margins in Exhibit 4. 

Note that surplus adjustments (line 25(a)) are always zero. On December 3 1, there 

is a potential for a return of surplus, arising from the fact that losses have been paid 

during the year and therefore do not require surplus to support the loss reserves. 

However, a new policy will be written the following day, which will require surplus. 

In the steady state model, this return of surplus and the required additional surplus 

exactly offset. Of course, a company which is growing would require either additional 

surplus paid in, or (more likely) an increase in surplus by paying out to the investor 

less than the profit earned in the year (i.e., retained surplus). 
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ADVERSE RESULTS 

To this point, the assumption has been made that actual loss emergence follows 

expected loss emergence. If actual experience always matched expected, there would 

be no need for risk margins (or, for that matter, insurance). It will be helpful to 

analyze what happens if actual experience deviated from the expected. This paper will 

only analyze adverse departures from expected. Positive deviations can, and do, occur 

but the proper accounting should be obvious from the following discussion. The 

discussion will focus on two types of deviation: 

1. Actual payments not equal to expected payments 

2. A change in the estimated outstanding reserve 

Of course, these two types of changes often occur simultaneously, but they will be 

separated for the purposes of discussion. 

Actual paid not equal to expected paid 

This is the easiest type of deviation to handle. In the three-period model (Exhibit 

4) expected payments are $300, $200, and $100 for the three calendar periods. If 
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actual paid losses differ from that amount, but this dues nor a#ect the estimate of 

oltrskmding, the only adjustments are that: 

n Actual incurred (line 2) will be different, which will flow dollar for dollar 

through to 

m Net Income (line 16) which will flow through to 

m Investor Dividend (line 27) and will change the 

e Investor Return (bottom line) 

If the adverse results are large enough, i.e., greater than income, then it would 

require a surplus contribution (line 25(a)). 

Risk margins are unaffected whenever the loss reserves are unchanged. It might 

seem reasonable that investment income should be affected, but note that assets are not 

reduced because investor dividends are reduced by the excess payments dollar for 

dollar. (Technically, there is a small impact, if loss payments are made mid-year and 

investor dividends and surplus replenishments are made at year-end.) 
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Change in estimated outstanding reserves 

The more complicated situation occurs when there is a change in the estimate of 

outstanding reserves’*. As noted above, the expected payments for the three-period 

model are $300, $200, and $100. Let us suppose that, sometime during the second 

year, we determine that the best estimate of third year payments is $200, rather than 

$100. Exhibit 6 summarizes how this change flows through accounting statements. A 

comparison of Exhibits 4 and 6 will reveal that some items are different. Each entry in 

Exhibit 6 which differs from its counterpart in Exhibit 4 has a box around it. 

Not surprisingly, there are no changes in any of the values up through l2/3 l/X. 

During year X + I, the determination is made that nominal loss reserves should be set 

at $200. This creates a change in the Undiscounted Loss Reserve (line 1). The Reserve 

for Discount and Discounted Loss reserves (line 2101 and 2010a) are similarly 

affected. The formula for risk margin is applied to the revised amounts. In this 

simplified situation (only one remaining payment), the required risk margin (line 2102) 

increases directly in proportion to the loss reserve change. The required surplus (line 

26) is also increased. Changes in the loss reserve and required risk margin also change 

the total liability entry (line 22)). 

” Of course, this does not include reductions in reserves due to the payment of losses 
originally as expected, or reserve changes arising from a change in discount. It only covers 
changes due to a change in future expected payments. 
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Three-Period Adverse Model 
With Supplemental Information 

Exhibit 6 

An St Balance Sheet At r2,Q~Lx-f At l/l/X At 12/3f/X At 12/31/X+ 1 At 12/31/X+2 

tins x’s Assers 
1. T-M/S 9114.87 $632.03 $352.64 [ $239.61 1 $0.00 

._----____-- .----.-.----------------------------------------------------------- 

Liebh ties ! 
1. Undiscounted Loss Reswve 

9. UPR 0 $561.09 
2101. -* fwok~t 

2101% lxteovnnd Lass n- 
2102. 18it*Mupkr 

22. TOM tiabilitie 

I Statement of Income I 
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Note carefully that we can simply “change” our liabilities by calculating new 

values. However, simply calculating a new required surplus amount, which also affects 

the required asset amount (line 1) does not, by itself, change the surplus or assets. The 

other required changes will be discussed after the income statement changes. 

The undiscounted incurred loss (line 2) is changed by the $100 change in reserve 

estimate. Investment income during this year is unaffected, because we won’t change 

any cash items prior to year end. A change in risk margin still flows into income, but 

the amount is less than in Exhibit 4. (We only get credit for a reduction in the 

nominal reserve from $300 to $200, rather than the anticipated change from $300 to 

$100). Similarly, the reserve for discount account is increased, but by a smaller 

amount. 

Net income is now a loss of $89.91, compared to a gain of $9.00 in Exhibit 4. 

Now we inform our investor that we will be unable to pay a dividend this year (line 

27). In fact, we do not have enough surplus to support our liabilities, so we need a 

surplus infusions of $71.73 (line 25(a)). 

The investor has earned a negative return in this year of almost -150% (bottom 

line). Note that, in the subsequent year, investment income amounts are higher, 

because the assets are higher. The investor earns exactly 15% on surplus in the final 

year, although this policy represents an overall loss. 
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Practical Considemtions 

Although the methodology for the calculation of risk margins outlined in this 

paper is straight forward, there are several practical reasons for choosing 

computationally simple algorithms. The most complex step of the process involves the 

determination of the aggregate distribution of losses and the solution of an equation 

which produces the BRM value. It is likely that a company would not determine an 

aggregate distribution for its entire portfolio of business directly, but would determine 

distributions for individual blocks or Iines of business. It is reasonable to assume that 

aggregate distributions for a particular line of business do not change materially in a 

short period of time. Thus, it may be reasonable to determine an aggregate distribution 

for a particular line of business as a one time project and use the resulting factors for 

some period of years. Moreover, it may also be reasonable to assume that aggregate 

distributions for a particular line of business do not vary materially among companies 

writing similar business. Thus it may be possible for an industry wide effort to 

generate aggregate distributions for lines of business with individual companies either 

using these results or making adjustments based on their own specific characteristics. 

It might be necessary to calculate different factors for different ages, However, I 

tielieve that we will find that the ratio of BRM values to expected losses does not vary 

materially by age. If so, then the same factor can be used for any year of outstanding, 

and in particular, for the entire block of outstanding losses combined. Alternatively, we 

may find that the factors vary over the first one or two years and then stabilize. In 
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which case, we would have separate factors for the first year or two, and then an all- 

subsequent factor. A bit more problematic is the fact that aggregate distributions are 

likely to vary considerably based on the retentions kept by the company. It may be 

possible to specify an aggregate distribution applying to unlimited losses and an 

algorithm to adjust this distribution to various underlying retention and limit profiles. It 

will take some additional research to determine how robust these factors are with 

respect to the characteristics of the various lines of business, but it may be possible to 

generate a table of factors which could be applied to the outstanding reserves of a 

particular company. 

Not only would this approach simplify the calculations of risk margins of 

individual companies, it would also allow/facilitate a comparison of risk margins 

among companies, If Company A has approximately the same amount of business as 

Company B, but has a higher risk margin on its financial statements, this may be due 

to the fact that Company A writes lines of business that require a higher risk margin. 

A better comparison would be to look at the specific factor that Company A uses for 

its auto liability outstanding reserves vs. the comparable factor for Company B. 

GAAP ACCOUNTING 

The discussion to this point has concentrated on the appropriate statutory 

accounting for risk margins. An obvious question is how GAAP accounting should 

incorporate risk margins, 
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With minor exceptions, the proposals for the statutory treatment of risk margins 

should apply equally to the appropriate GAAP treatment. This conclusion arises from 

the fact that the derivation of the proposed statutory accounting treatment was 

motivated by the GAAP accounting principle of matching revenues and expenses. 

GAAP theory suggests that the value of uncertainty, i.e. risk margins, should be 

incorporated into financial statements. 

The fact that GAAP does not currently incorporate risk margins or discounting into 

property-casualty financial statements does not arise from theoretical but, rather, 

practical considerations, There are a number of practical issues, including calculation 

methodologies, which need to be resolved before the accounting profession decides to 

incorporate both elements into GAAP accounting. 

The main difference between GAAP and statutory accounting with respect to risk 

margins is likely to be related to the handling of discounting. This paper suggests that 

statutory accounting should continue to deal with loss reserves on an undiscounted 

basis with a contra liability line reflecting the amount of discount. The reason for this 

is to preserve the existence of undiscounted liabilities in order to best track runoff of 

liabilities on a basis consistent with history. This amount will also allow continued 

calculation of traditional formulas and ratios such as are incorporated in the IRIS tests. 

GAAP accountants may conclude that it would be preferable to show the discounted 

liabilities as a single line item, with undiscounted liabilities disclosed in the notes to 

the financial statements, if these amounts are needed. 



Alternative Tlleatment of the Risk Margin 

The proposed treatment of the loss reserve risk margin is based upon several 

assumptions believed to be reasonable. However, it is possible to put forth arguments 

for a different set of assumptions, which might lead to different recommended 

accounting treatments. Alternatively, it is possible to accept the overall assumptions, 

yet reach a different conclusion regarding accounting treatment based upon criteria 

such as simplicity or ease of presentation. This section will explore some of these 

alternatives. 

Earmahed Surpfus 

A key assumption is that an insured purchases an insurance policy to receive a 

service-the specific service being the elimination (or at least reduction) of the risk 

associated with the unknown losses covered by the policy. This paper argues that the 

performance of that service is not complete until the final loss is paid. Consequently, 

the earnings should be recognized over the same period. However, some may argue 

that the performance of the service is complete when the policy period has ended. 

Indeed, the concept of earned premium is consistent with that theory. Under this 

theory, the entire NRM should be included in income by the time the policy is fully 

earned. 
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But a different opinion on the time frame associated with the service provided does 

not change the fact that uncertainty in loss reserves exists after the end of the policy 

period. The NRM amount is still a necessary component of an adequate financial 

structure. Under this scenario, it would be a required component of surplus, rather than 

a liability item. 

We have already determined that the SRM values belong in the surplus account. 

(In fact, we have presumed that they are identical to the surplus account. However, 

this paper does not treat other sources of risk such as asset risk. inclusion of asset risk 

would require surplus amounts other than those supporting loss reserves.) If only the 

risk associated with loss reserves is included, then the NRM value and the SRM value 

can be recombined into the total BRM. This amount could be shown as an earmarked 

surplus item. 

In summary, if one subscribes to the theory that the service under an insurance 

policy is complete by the end of the policy year, and agrees that discounting of 

reserves is appropriate, the following accounting treatment would follow: 

l Start with the accounting treatment suggested in this paper, including the 

establishment of an undiscounted loss reserve and a contra-liability for discount 

(calculated at risk-free rates of return) 
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n Earn the NRM, along with the remainder of the premium, over the policy 

period 

m Earmark the entire amount BRM, within surplus, not just SRM,, which 

recognizes that the asset needs are not reduced under this scenario. The NRh4 

amounts are still required for financial adequacy, but they will be part of 

surplus rather than as a liability item. 

Identification of an earmarked surplus amount may make sense in a scenario where 

risk- based capital concepts are incorporated into the financial statements. Such a 

treatment might include an earmarked surplus item for each category of risk-based 

surplus. In theory, the surplus account for an insurer would contain an earmarked 

amount for reserve risk and asset risk, with the remainder in a “free” surplus account. 

Presumably, regulators could put restrictions on the ability to pay dividends if the 

amounts would exceed the “free” surplus amounts. 

Footnote or Alternative Schedule 

The accounting treatment proposed in this paper would require only two items in a 

balance sheet - the total NRM value shown in the liability section and the SRM 

amount contained in the surplus account (optionally, this does not even need to be 

shown as a separate item). The alternative treatment discussed above only requires 

one item, an optional earmarked surplus account. It may be that regulators and other 
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users of financial statements may wish to have additional information. This additional 

information should be included as a footnote or as a separate schedule, depending on 

the complexity of the additional information desired. For example it may be desirable 

to show NRM and SRM values for each accident year. Such a schedule might show 

the current totals of the NRM and SRM values as the sum of individual components, 

as well as an historical registry of values at prior valuation periods. This schedule 

would be especially useful if the methodology used to calculate the values changed 

over time, or if critical parameters such as ROR changed over time. 

Other categorizations may also be desirable: 

n Ongoing versus runoff business 

m Gross, net and ceded business 

m Special situations, such as environmental coverage 
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Tmnsition Issues 

This paper has outlined a methodology to account for loss reserve risk margins. 

An obvious question is how to get from here to there. Two methods of conversion are 

possible. One method is a complete restatement of the annual statement at a particular 

year-end. It may be necessary to restate the beginning year balances so that income 

for the year is stated correctly. The difference between the prior year end balance 

sheet and the restated beginning year would be reported as an extraordinary gain (or 

loss) due to an accounting change. 

Another method would be to phase in the new accounting rules prospectively. 

This could be done on an accident year or policy year basis, although accident year 

would be preferred. Presumably, after some period of time (five to ten years), the 

remaining prior years would also be restated to avoid carrying multiple accounting 

conventions forever. 

There are advantages and disadvantages to both methods. The first method, 

complete conversion, is “cleaner”, but to the extent that some companies have 

understated their undiscounted liabilities by implicitly recognizing some time value of 

money, they would be forced to either book inadequate discounted reserves or admit 

openly that the undiscounted reserves were deficient. The phase-in approach would 

mitigate this problem, but would mean that annual statement accounting would be a 
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hybrid for years to come. More research into the advantages and disadvantages of 

these alternatives (as well as possible other approaches) is needed. 

In addition to transition issues, there are other reasons why the actual 

implementation of the recommended procedures does not have to precisely follow the 

theory This paper has outlined an accounting treatment consistent with a theoretically 

correct calculation of NRh4 and SRM values at each point in time. It is important to 

keep the calculation of these values in context. Once the initial (NRM) value is 

calculated, the subsequent calculations of NRM, values dictates how the original 

amount is released into earnings. A different method for calculating NRM,, tll would 

only affect the timing of the release into earnings, not the absolute amount. As an 

analogy, consider the purchase of capital equipment. In general, the entire purchase 

price is not taken as an expense immediately. Instead, a depreciation schedule is 

established. The purpose of this schedule is not the depreciation amounts per se, but 

the time frame over which the expense is recognized. In theory, we might wish to 

create a schedule which shows how the equipment contributes to the corporation over 

its life time, and charge expenses on a proportional basis. Instead, an arbitrary 

lifetime is ascribed to the equipment, and the original purchase price is spread over 

this time period according to specified rules (e.g. pro-rata, double declining balance). 

For NRh4 values, we might decide to apply similar procedures. This would mean 

assigning periods of time to lines of business, and an associated schedule which might 

approximate a payout schedule. For example, we might assign a 10 year life to 
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general liability, and select an exponential pattern. This schedule would be applied to 

the original NRM values at all future points in time. 

Alternatively, a study might be completed which calculates total NRM values 

under a variety of circumstances. It might be possible to analyze the results and 

conclude that selected factors applied to discounted reserves will approximate the 

theoretically correct amounts. 

Non-constant Variability of Loss Reserves 

One assumption used in this paper is the assumption that an aggregate loss 

distribution appropriate at the time of pricing is also appropriate for the unpaid losses 

at future points in time. Mathematically, let L, be a random variable which represents 

unpaid losses at time zero (i.e. the entire loss amount). Now consider the unpaid 

losses at some future time, L,. Of course E(LJ < E(L,), so the distributions cannot be 

identical. But if we assume that the unpaid loss amounts are scaled up to the same 

level as the original loss distribution, how would we expect the two distributions to 

differ? First, we might anticipate that some of the smaller, more predicable losses 

have been paid, leaving larger, potentially more variable O/S claim. With additional 

information we should anticipate a “tighter”, less variable distribution. In total, the 

unpaid loss distribution will probably differ from the original, but it may not be 

obvious that the riskiness is materially different. 
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More important, while we might find that the shape of the unpaid distribution is 

significantly different than the original distribution, the important question is whether 

the expected deficit, as a ratio to the expected, has changed materially. 

If the answer to these questions is that the expected deficits of the unpaid loss 

distributions are not materially different than the original, then it may be acceptable to 

use a simplifying assumption that the same distribution, or at least the same critical 

ratio values can be used for all ages. Keeping in mind that the goal is simply to 

determine the timing of the release of the original NRM value, we might conclude that 

expected deficit values as a ratio to expected amounts could vary as much as the age. 

For example, the critical value used to calculate BRM, is 1.233. Suppose the 

corresponding value for BRM, is a sequence of values each greater than 1.233. The 

formula for calculating NRM, still works. It will produce an NRM value somewhat 

higher than the original problem. In words, higher critical ratios arising from more 

variability of loss reserves means that more surplus is needed at future points in time 

to support the loss reserves. In order to produce our target ROR, we will need a 

higher NRM, value. In other words, if the line of business is significantly more 

volatile over its entire life span than the original example, the company is subject to 

more risk and can command a larger price in the marketplace. 

Note carefully that insureds with more risk do not automatically imply a higher 

required ROR. Instead, the higher risk may require a higher surplus commitment with 
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the fame ROR. The target ROR will be related to the expected deficit, rather than to 

the risk of the, individual insured. 

SUMMARY 

Current statutory and GAAP accounting rules performed adequately when 

investment income was modest and the length of time until loss payment was 

reasonably short, However, with high interest rates or longer payout patterns, current 

accounting rules provide a poor match between recognition of profit and the true 

economic reality of the insurance transaction. Specifically, current accounting rules 

artificially defer the recognition of profit. 

A change in accounting rules to reflect loss reserves discounted at risk-free rates of 

return would over-correct. Specifically, this change would accelerate the recognition of 

profit (in the expected case) entirely into the initial policy year, despite the fact that 

risk exists with respect to loss reserves. 

This paper outlined a procedure which provides a more appropriate balance 

between these two incorrect alternatives. It specifies a formula to determine how much 

of an overall asset requirement consistent with regulatory goals should be established 

as a narrow risk margin as a liability on the balance sheet. This formula provides for 

the proper release of the original profit margin into earnings over time. 
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This paper discussed specific methodologies for the calculation of margins (e.g., 

based on expected deficit). Other methodologies may exist or may be developed. 

More research is necessary to determine the proper choice of a methodology for the 

calculation of margins Once that research is complete, an acceptable method for 

calculating and accounting for risk margins will exist. 



Appendix A 

It will be instructive to review the accounting treatment of the profit margin for a 

variety of assumptions, This discussion will trace how the timing of profit recognition 

differs under various assumptions, which will roughly correspond to changes in the 

insurance environment over time. This discussion will form a background and 

framework for a discussion of how accounting for loss reserve margins ought to be 

handled. 

The first example considers a situation where investment income is earned at a rate 

of 3%. This forms a benchmark starting point. The following examples will also 

ignore expenses. While the treatment of expenses plays some part in the evolution of 

accounting rules, it is not particularly relevant to the issue of risk margins and 

therefore will not be discussed. 

In Case 1, we assume that a policy is written with expected losses of $600 and a 

premium of $611.65. Interest is assumed to be 3%. Losses are paid at the end of the 

policy period. 

In the first example, the premiums shown were calculated by selecting a paid 

amount of $600.00, an expected profit of 5% (or %30.00), and calculating the required 

premium. A $30.00 profit at the end of the year represents a 4.9% return on premium. 
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All other examples were constructed such that the expected profit (discounted to the 

end of Year 1 where necessary) is 4.9% of premium. 

The policy is written on January 1, premium is earned evenly over the next twelve 

months, and losses are paid at the end of the year. As a consequence, the net income 

(i.e., profit) is earned proportionately throughout the policy period. The company has 

entered into a risk-taking enterprise. The result of the insurance policy could be a no- 

claim situation or a situation with a large claim. This first example will assume that, 

once the loss occurs, the amount is known with certainty. The risk is taken during the 

policy year and no risk exists at the end of the policy period. In this example, the 

incidence of risk undertaken by the insurance company and the emergence of profit 

precisely track each other. 

In case 2, we continue the 3% interest rate, but we now assume that the losses are 

paid out over a longer time frame. Specifically, losses are paid 24 months after they 

are incurred. This represents the evolution of the industry from predominately property 

coverage to an increased proportion of longer tailed liability coverage. 

When we inspect the graphs that identify when the profit is recognized, we see that 

a large proportion of the profit is recognized during the policy year, but now a fairly 

significant amount of the profit is recognized subsequent to the end of the policy 

period. This fact should not be troubling. The reserves could be too high or too low at 

any point up to the final payment period. Thus, the insurance company which has 
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taken assumed risk from the insured for a fee finds itself with risk on its books until 

the last day of payment. It earns a profit over this period of time and statutory 

accounting has recognized profit over this entire period of time. It is possible to argue 

whether the exact heights of the bars in the graph precisely conform to the exact 

amount of profit that should be earned in each period, but we should all be in 

agreement that the general shape of the profit recognition curve conforms to what we 

think is the true economic reality of this company. 

However, the last two or three decades have not conformed to assumptions such as 

this. Interest rates are higher and the average length of time to loss payout is longer. 

Let’s relax these assumptions one at a time. In Case 3, we will assume that the loss 

payment period is lengthened to thirty-six months on average, but the interest rate 

remains at 3%. Under this scenario, the premium necessary to generate a reasonable 

profit will be is set at $576.54. 

Now when we examine the graphs that show profit recognition, they begin to 

depart from our assumptions about the reality of the insurance transaction. Statutory 

accounting would generate a loss during the policy period followed by gains in the 

three subsequent years. While the overall profit is finally recognized, statutory 

accounting rules cause the profit to be earned much later than would conform to 

economic reality. We would believe that an insurance policy whose final loss payment 

does not occur for thirty-six months earns at least some of its profit in the two years 

after the policy period ends, but we would be hard pressed to argue that no profit, 
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indeed even a loss, is incurred during the policy period. Obviously, losses can be 

incurred on particular policies that end up with losses for the entire period, but this 

example is intended to represent a situation that is profitable for its lifetime. 

The situation becomes even more extreme if we increase the interest rate to 12%. 

Case 4 summarizes the situation where loss payments occur thirty-six months after 

occurrence, but interest is assumed at a 12% annual rate. This rate obviously exceeds 

rates available today, but is consistent with rates available in the early 80’s. The policy 

generates significant losses during the policy period, which are offset by significant 

gains in the subsequent years, Of course, it should be recognized that overall calendar 

year results for an entire company would not look like this. Any particular calendar 

year would contain a mixture of new policies with a negative contribution to profit and 

older policies whose artificially high profits are running off. Eventually, a steady state 

situation might be reached, but in a situation where interest rates were growing and 

loss payment lags were increasing and the overall business volume was increasing, 

statutory accounting produced an understatement of income. Even if a steady state 

situation were reached, statutory accounting produces a poor match between reality 

and the accounting for any particular set of policies. 

The insurance industry had a mixed reaction to this situation. On the one hand, 

there is a desire to report as high an earnings result as possible to satisfy the 

stockholders (in the case of stock companies) and to portray the fmancial strength of 

their companies to the policyholders, (in the case of mutual companies). On the other 
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hand, a delayed recognition of profit meant a reduced, or at least deferred, tax bill to 

the extent that the Internal Revenue Service accepted statutory income as tax income. 

(Income for tax purposes was not identical to statutory income, but the magnitude of 

the other adjustments is rather small compared to the discounting issue.) 

Not surprisingly, the Internal Revenue Service did not accept this situation quietly. 

For many years, the definition of income for tax purposes was virtually the same as 

statutory income. However, as the length of time to loss payment increased and 

interest rates increased, the use of nominal reserves artificially depressed statutory 

income to such a degree that the Internal Revenue Service decided to make changes, 

They decreed that reserves should be established on a discounted basis. (The precise 

formula for the discount is beyond the scope of this paper, but it was roughly based on 

T-bill rates.) The imposition of discounting dramatically changed the profit incidence. 

As Case 5 shows, under discounting almost all of the income for a policy is 

recognized in the first twelve months and only modest amounts of income are 

recognized in the following three years. While some might argue that the premium has 

been fully earned by the end of the policy period, it is certainly a fact that much 

uncertainty still remains at the end of the policy period and prior to the loss payments. 

If any one questions the existence of uncertainty, the following thought experiment 

should suffice. 

Consider a company issuing a policy for $448.47 with expected losses of $600.00. 

This premium is set at a level which will generate a profit over its lifetime. If the 
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company wished to sell this policy, that is, sell off the loss reserves at the end of the 

premium earning period, would they be able to sell it at a rate such that they would 

recoup the entire profits? I submit that they would only be able to earn a modest 

amount of profit by that period and the premium for transferring the remaining 

uncertain loss’liabilities would be sufficiently high that a significant amount of the 

original profit would need to be transferred to the reinsuring company. 

Finally, we look at Case 6. This also follows the tax accounting rules, except it 

approximates the situation in place right now where the discount rate for tax purposes 

exceeds the amount of interest a company can earn on T-bills. (This arises because the 

discount rate used for IRS calculations is based on 60-month average rates, so when 

rates are dropping rapidly the average rate exceeds the current rate.) In this situation, 

we see that, while the overall profit of the contract is unchanged, the tax accounting 

rules actually “recognize” more than all of the profit by the end of the policy period 

and then recognize losses in subsequent periods. An insurance company is in the 

unenviable position of having an artificially high income calculated for the purposes of 

determining income tax, but artificially low statutory accounting income to report to 

stockholders. 

At low interest rates with short-tail lines of business, the true incidence of profit 

and the incidence of profit arising under statutory accounting are approximately the 

same. As the length of time between occurrence of the claim and payment of the claim 

increases, the incidence of reported profit and the incidence of true profit (that is, the 
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price paid to transfer risk) remain approximately in sync. However, as the length of 

time gets fairly long, the comparison starts to get out of sync and at modestly high 

interest rates, statutory accounting rules generate a profit recognition picture which 

bears almost no resemblance to reality. 

Tax accounting attempted to correct this distortion, but it has over-corrected. 

Discounting essentially forces the profit to be fully recognized during the policy 

period, despite the fact that an insurance company remains at risk substantially after 

the last dollar of premium is earned. 

In summary, the failure to formally incorporate risk margins and recognition of 

discount produced only modest distortions between statutory recognition of profit and 

the true economic earning of profit when interest rates were low and most business 

was short-tailed. However, the situation is very different today. The recognition of 

profit under statutory and GAAP accounting is artificially deferred, and under tax 

accounting is artificially accelerated relative to the true economic incidence of profit. 

Simultaneous recognition of discounting and risk margins could correct these 

problems. 
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Appendix B 

The theoretical justification for a loss reserve margin arises because the loss 

liabilities are uncertain. Economic values of assets are reduced when uncertainty is 

introduced; the economic value (or cost) of a liability is increased because of 

uncertainty. Before analyzing the uncertainty associated with loss reserves, it will be 

helpful to examine the treatment of uncertainty in the pricing situation. Then, by 

analogy, the reserving situation can be analyzed. 

Consider an entrepreneur in the process of establishing a brand-new insurance 

company. Assume that the entrepreneur has identified a portfolio of insureds, whose 

losses can be described by a random variable z, with distribution F(z). In order to 

obtain regulatory approval to start the company, as well as convince potential insureds 

to become customers, the company will have to show evidence of its ability to meet 

its financial obligations. This is normally done by starting the company with a certain 

amount of capital, C. 



A ruin theory approach to solvency would require that the company have sufficient 

assets such that the probability of being unable to satisfy its obligation, i.e., probability 

of ruin is q, where q might be .01 or ,005. Mathematically, we need to solve the 

following equation for A where A represents the total assets of the company (which, 

of course, equals the expected liabilities plus surplus): 

Alternatively, we might specify an expected deficit requirement. Rather than 

simply being interested in theproba6iliry that a company is unable to meet some of its 

obligations, we may be more interested in the cost of insolvency. In this case, we 

want the sum of all losses in excess of total assets. An expected deficit requirement 

consistent with actual industry insolvency costs would be approximately .5% of 

premium or .3% of expected losses, Let d equal ,003 times all expected unpaid losses, 

Mathematically, we need to solve the following equation for A 

I ;(z - A)dF(z) = d 

(For convenience, we will ignore operating expenses of the company and include 

LAE with loss.) 

The company will charge a premium, P. At start-up, the company will have assets 

equal to the premium plus the start-up capital: 

A=P+C 
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P is supplied by the policyholder and C is supplied by the stockholder. To 

determine these values, we need another equation. Note that the premium can be 

decomposed into two components - the expected losses, Efi), and a risk margin, R 

(ignoring expenses). Thus: 

P = E(z) + R 

Substituting: 

A = E(z) + R + c 

In words, the total assets of the company include an amount necessary to cover the 

expected losses, plus an amount necessary to cover the possibility that losses exceed 

the expected amount. On average (or over the long term), the company will pay E(z), 

leaving prOfitS of R on capital of C. Thus: 

R - = return on capital 
c 

We can presume that the market will determine the acceptable level of profit for a 

company with this level of risk. Call this amount ROE. In summary, the value ROE is 

fixed by the market, and the value A is fixed by the characteristics of the portfolio of 

risks. The two equations 

ROE = $ 
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simultaneously determine the total amount needed to start up the company, and the 

relative contribution needed from policyholder and stockholder. (It should be noted 

that ROE in the above discussion is a total return on capital, not an annual rate of 

return, unless the company expects to pay all its losses by year-end. The appropriate 

calculations reflecting annualized rates of return are handled in the main text of the 

paper.1 

In the pricing context, there is no confusion regarding the term “margin.” Although 

both R and C are needed to meet the solvency requirements, only R is considered the 

pricing margin. 

To examine the reserving situation, we need to add some notation. Define L, as the 

random variable representing losses unpaid at age t. For example, L, represents losses 

unpaid 24 months after the inception of the policy period. By definition, L, represents 

the unpaid losses at the beginning of the period, so L, = L. If we let u be the date the 

last loss is paid (ultimate), then L, = 0. For every value of f, we have a random 

variable L, and a distribution associated with that variable. We are typically interested 

in the inverse distribution at the value q; that is, the dollars of loss unpaid at time t 

corresponding to the q’h percentile of the aggregate loss distribution. For notational 

convenience, we will define G(f) to be the inverse of the distribution function 

associated with the random variable L, and cumulative probability q. In most cases, we 

will not need to distinguish between various values of q. If needed, we can extend the 

notation to G&d to allow for varying values of q. 
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Assume the new company starts with capital C and premium l? Assume no new 

business is written and we examine our company at time 1. Some of the losses have 

been paid - the remaining unpaid are represented by the random variable L, 

Assuming that our criteria for solvency is unchanged, we would require total assets 

of A, = G(t) which, as before, can be written as: 

A, = E(LJ + R, + C, 

In words, the assets required for an insurance company at time t are the expected 

value of the liabilities plus an amount (R, + CJ such that the probability of insolvency 

is sufficiently low. This latter amount is comprised of two quantities. The first, Rn is 

the portion of the original profit margin which must still remain in the company. The 

second quantity, C, is the proportion of original capital required to remain in the 

company. We can presume that the amount R - R, has been returned to the stockholder 

in the form of a dividend and the amount C- C, has been returned as a return of 

capital. If we assume that the market rate of return is unchanged, then it is reasonable 

to assume that 

4 - = ROE 
cc 

which means that 
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OF that the release of profit has been proportional to the reduction in the capital 

requirements. 

It is important to note what assumptions are being made and what assumptions are 

not being made, at least at this time. If a block of business is priced at inception, use 

the following relationship to determine the overall required assets and the relative 

contributions from owner and policyholder: 

A0 = E(L> + R, + C, 

At time t, use the following relationship to determine the required assets which 

must remain in the insurer if the outstanding liabilities are retained or the amount of 

assets needed by another company if the liabilities are fully reinsured: 

A, = E(L,) + R, + C, 

Suppose that, at time t, the expected remaining losses are some proportion of the 

original expected. For concreteness, assume that this value is 25%. That is: 

E&l - = .25 
E&J 

We are not making the assumption that G(r) is 25% of G(0). Nor are we making 

the assumption that A, is 25% of A,. More importantly, we are not making the 

assumption that (R, + C,) is 25% of (R, + Co). 
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We might examine the characteristics of the business being written and conclude 

that the outstanding and IBNR and time t are more volatile than the overall block of 

business. In this case, we would conclude that, while 

the ratio of the required assets is greater than 25%: 

A 
--! + gg > .25 
4 

In this case, the amounts in excess of expected losses would also, in total, have a 

ratio greater than 25%: 

R +C 
- > .25 
% + cc7 

Additionally, from the formula for assets, we note that: 

Alternatively, if we conclude that the additional information provided by the paid 

data and outstanding case reserve information sufficiently improves our ability to 

estimate the ultimate cost of the unpaid liabilities, such that: 
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A G -2;' > .25 
4 G* 

The relationship between R, + C, and R, + C, will be determined by the 

characteristics of the business written. As we have seen, this ratio might be greater 

than or less than the ratio of the expected unpaid losses to the original expected losses. 

On the other hand, the determination of the individual components of R, + C, will 

depend on the market rate of return for runoff business of this type. Unfortunately, this 

market is very thinly traded, so empirical evidence may not be available to determine 

the appropriate conclusions. Instead, we will have to use more theoretical approaches. 

It is tempting to conclude that, if the unpaid liabilities are viewed as more “risky” 

than the original business, the required ROE is higher. Equivalently, it is tempting to 

conclude that, if solid information on outstanding claims reduces the “riskiness” of the 

unpaid liabilities, the required ROE would be lower. This does not necessarily follow. 

If the outstanding liabilities are “risky,” then the value of G(t) will be relatively high, 

which means a relatively large amount of assets is required, but this can be satisfied 

bv requiring more caoital and leavinp the ROE the same. That is, riskier business 

either requires a higher return on a fixed amount of capital, or higher capital. If we 

conclude that we establish our company (either the original company writing the 

business or a company formed to reinsure the runoff) using a ruin criteria concept, that 

is, we fix the required probability of solvency q, then, to a high degree of 
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approximation, we are assuming that riskier business requires more capital rather than 

a higher return on capital. Thus, it will be reasonable to assume that the ROE for a 

runoff situation will be the same as the original business and: 

R 4 2=-=m 
cc3 ct 

I suggest that we should adopt the convention that the term “loss reserve margin” 

should refer to Rn not to the total of R, and C, One reason for this suggestion is that 

we should not combine two very dissimilar concepts (a portion of the original 

premium provided by the policyholder, and a portion of the original capital supplied 

by the owner). Unfortunately, there is some precedence which is inconsistent with this 

convention. In many hospital trust funds, it is typical to establish a funding 

requirement consistent with the formula 

A, = E&J + R, + C, 

This formula specificaNy refers to the funding requirement for one particular 

historical accident year (specifically, the one at age t), Conceptually, this formula is 

calculated for all open years plus possibly an amount for the upcoming year: 

A0 = E(L,,) + R, + Co 

In practice, all years other than the upcoming year may be handled as a group. 

More importantly, there are two related issues that distinguish this situation from the 

classic insurance company example. 
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First, the value of q is typically set at .75 or .90 rather than a value very close to 

one. This decision arises from the second distinction, which is that the policyholder 

and the owner are often identical, Because of this identity, a value of q can reasonably 

be chosen lower than that of a stand-alone insurance company. Also, because of the 

identity, the distinction between funds provided as a policyholder (R,) and funds 

provided as an owner (CJ is often not made. As a consequence, the fact that the term 

“loss reserve margin” is used to refer to the entire amount R, + C, is not surprising. 

The appropriate theoretical accounting for loss reserve margins is quite 

straightforward, given these assumptions. An insurance company would write 

premiums equal to Pin year zero. This premium amount contains R, of expected 

profit. The company would need to have capital C, to support this business. At time I 

= I, the end of the year, the company should book actual incurred losses (including an 

appropriate amount for IBNR). The company conceptually can return C, - C, to the 

owners, although in practice, this amount will be “rolled over” to support new writings 

in the next year. The company can “release” Rj - R. into earnings. If actual loss 

experience exactlv matches expected loss experience, then booked incurred losses will 

exactly equal E(L,J, and a profit of R, - R, will be reported. To the extent that actual 

experience is better or worse than expected, so will the reported results. The company 

will maintain a “reserve” at year-end of R,, which it will label the loss reserve margin. 

It will be carried above the line as a liability, not below the line as a part of surplus. 
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The introduction of this paper stated that the term “risk margin” requires careful 

definition because the term is used to refer to fundamentally different concepts. This 

appendix has laid a theoretical framework for terminology. As a result, issues in the 

introduction can now be stated in precise terms: When we refer to risk margins, it is 

important to clarify whether we are discussing only R, , or the larger quantity R, + C, 

(or perhaps some other quantity). In the terminology of the main text, R, corresponds 

to the narrow risk margin and R, + C, corresponds to the broad risk margin. 
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Selected Papers from Variability in Reserves Prize Program 

This volume contains a selection of the papers submitted for the Committee on the Theory of 

Risk prize on how to measure the variability of loss reserves. Due to various constraints, not ali of 

the submitted papers are included. Several of the excluded papers contained good analyses of reserv- 

ing, but did not specifically address measuring variability. Others had some promising ideas not 

fully worked out into calculations. Hopefully these will be refined and submitted for publication in 

other venues. 

Introduction 
Several types of variation need to be accounted for to get a representative distribution of loss lia- 

bilities. Random fluctuation of the data around the expected value is generally called “process risk.” 

Possible errors arising from estimating the mean, process variance, or parameters of any fitted model 

can be called “parameter risk.” The standard error combines these two elements into a variance mea- 

sure, and this is calculated in several of the papers. “Model risk” (sometimes called “specification 

risk”) is an additional element of uncertainty arising from the possibility that the model assumptions 

themselves may be incorrect. A few papers attempt to quantify this as well. 

The papers included here fell into three categories: Methods based on variance of link ratios; 

methods based on the collective risk model; and methods based on parametric models of develop- 

ment. 

Methods Based on Variance of Link Ratios 
Each age-to-age factor is a mean of several observed factors, so a variance can be calculated as 

well. Adding an assumption that the observed factors are samples from a lognormal, and that the 

ages are independent of each other, make the age-to-ultimate factors also lognormal, with readily 

computable variances. Both assumptions arc possible to check, and adjustments can be made if they 

are too far off. The result is a distribution for the estimated liability for each accident year. Indepen- 

dence is important in that the product of the expected values is the expected value of the product for 

independent factors. 
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To get the distribution for the entire reserve, the distributions for the different accident years can 

be added by simulation or by matching moments of the sum. Notmal, lognotrnal, and shifted gamma 

distributions are possible candidates for the summed distribution. Another one, not discussed in 

these papers but used by at least one committee member, is the shifted loglogistic G(x - xo) = F(x) = 

x2/2x2 + b2]. The moments for F are given by E(X”) = b”(n/a)!(-n/a)!. The variance and coefficient 

of skewness from these are the same for G, being unaffected by the shift xo, and so they can be used 

to match the parameters a and b. Then xo, is computed as needed to get the right mean for G. 

Measuring the Variability of Chain Ladder Reserve Estimates, Thomas Mach 

This paper tied for second prize in the competition. It contains a detailed discussion of what as- 

sumptions underlie the development factor (often called “chain ladder”) method; i.e., the assump- 

tions that make this method optimal, and how to test if they hold. This includes a’test for correlation 

of age-to-age factors as well as for other assumptions of the chain ladder method. Standard errors are 

measured without assuming age-to-age factors are lognormal, but age-to-ultimate factors areas- 

sumed to be lognonnal in any case. The version of the chain ladder here uses ali observed factors to 

compute mean age-to-age factors, but the formulas can be converted to apply to using only the last n 

diagonals by just using the last n terms of those sums indexed from 1 to I-k. 

Unbiased LossDevelopment Facfors, Daniel M. Murphy 

Variances of link ratios are derived from loss development triangle data using regression statis- 

tics measuring both process and parameter risk. Regression is presented as a generalized procedure 

which can be used to model age-to-age factors from loss development triangles. Many techniques 

currently in use can be viewed as types of regression models. 

Murphy describes some of the main regression assumptions and illustrates how these assump- 

tions can be tested and used to select an appropriate model. He then describes a recursive calculation 

of variances of ultimate losses based on the regression statistics. Although the introduction discusses 

three models frequently used to estimate loss development factors (weighted average development, 

simple average development and geometric average development), the calculation of variances is 
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presented in detail for only two models: The least squares linear and the least squares multiplicative 

models. In actual practice, actuaries generally use the weighted average development or simple aver- 

age development to estimate age-to-age factors. Using the paper’s approach, the variances for the 

models more commonly used can be derived also, but the reader may need to derive the formulas 

from basic principles or refer to formulas (i.e. for weighted average factors) contained in an appen- 

dix. 

Murphy presents the calculation of variances for multiple as well as single accident year ulti- 

mates. His formuias assume independence between development ages. Finally, he invokes the t-dis- 

tribution to derive confidence intervals for the ultimate and the outstanding losses. In order to 

support the use of the t-distribution, he requires a further assumption that the variances are constant 

across development ages, which would need to be checked against actual data. 

In addition to providing variance and confidence interval formulas, Murphy also uses a simula- 

tion procedure introduced by Stanatd (PCAS 1986) to evaluate the bias and variance of eight devel- 

opment factor estimates. It would also have been informative if the simulations had been used to test 

the accuracy of the confidence interval estimates. 

Correlation and the Measurement of Loss Reserve Variability, Randall D. Holmberg 

An important issue for the development factor approach is potential correlation of link ratios. If 

they are correlated, the product of the age-to-age factors is not an unbiased estimate of the age-to-ul- 

timate development, and the variance of the age-to-ultimate factor is understated. This paper pro- 

vides a method to measure and adjust for correlation. The author suggests a simplified model in 

which the correlation p between a given age-to-age factor and the subsequent age-to-ultimate factor 

is constant for all ages. He then shows how this correlation can be estimated, and how it affects the 

reserve mean and variance. For the latter, an assumption on the distribution of the factors is made to 

simplify the computation, and here the uniform distribution is assumed. However, it would not be 

difficult to change to another distribution, just by plugging its density function and domain of defini- 

tion into two integrals. The significance of the single p assumption is difficult to evaluate, and this 

area needs further support. The sensitivity to the distributional assumption would also be useful to 
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know. It may in fact be possible to avoid the distributional assumption by using moment formulas 

for correlated variables, e.g., 

E(AB) = l$A)E(B) + Cov (A,B), V(AB) = V(A)V(B) + E(A)*V(B) + E(B)*V(A) + Cov (A*,B*) - 
Cov(A,B) - ZE(A)E(B)Cov(A,B). 

The paper at least touches upon several other important issues in the variance calculation. For the 

variance of tail factors it raises the possibility of expressing the standard deviation of a development 

factor as a linear function of Ifactor-11, and applying this to the last actual factor and the tail factor. 

Cortelation among accident years and among lines of insurance is also estimated. 

Variabiliiy of Loss Reserves, Roberl L. Brown 

The effects of parameter risk and correlation among companies are illustrated in this paper, 

which looks at historical variability in loss reserves for a large sample of companies. Reserve ade- 

quacy for the entire sample showed a cyclical variation over time that would not be observed for a 

like sample of independently fluctuating companies. Reserve adequacy was found to vary by size of 

company as well, but the largest identifiable influence was consistent variation among companies: 

Some tended to be more adequately reserved than others over considerable periods of time, even tak- 

ing into account all other impacts. 

Methods Based on the Collective Risk Model 
The basic idea of using the collective risk model to measure variability in loss reserves, as out- 

lined in Roger Hayne’s paper in the 1989 PCAS, is to estimate frequency and severity distributions 

for outstanding claims, and combine these to get an aggregate loss distribution for those claims. 

Hayne originally did this separately for reported and unreported claims. 

A Method to Estimate Probabilily Levels for Loss Reserves, Roger M. Hayne 

The earlier work by Hayne is expanded to include parameter uncertainty. This is broadly defined 

to include not just uncertainty about the parameters of a given model, but also the variability that can 

arise from using different modelling approaches. Significantly greater uncertainty in the reserves is 

found when this is taken into account. Hayne presents a detailed illustration of his procedure using a 

professional liability data set from the Berquist-Sherman 1975 PCAS paper and for an auto liability 
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data set from the Advanced Case Study of the 1992 CLRS. These present straightforward techniques 

for estimating parameters of the claim count and severity distributions and require only a modest 

amount of data. The severity distribution parameters here are determined somewhat judgmentally. 

It should be noted that the use of individual claim information would produce superior parameter 

estimates, although such information often is not available. It should also be noted that the selected 

lognormal coefficients of variation appeared to be low for this line of business. (However, Hayne 

notes that his example illustrates only one of many ways of selecting parameters and he provides 

some reasoning for his parameter selections). The most innovative contribution of this paper is the 

use of the results of different methods of estimating reserves to derive the mixing parameter for the 

severity distribution. This allows the actuary to incorporate specification error into the estimation of 

loss reserve variability. Once the claim count, severity, contagion and mixing parameters are esti- 

mated, the Heckman-Meyers procedure is used to compute the aggregate probability distribution for 

the loss reserves. Simulation could also be used to implement this approach. 

A Note on Simulation of Claims Activity for Use in Aggregate Loss Distributions, Daniel K. Lyons 

This paper suggests using severity distributions for both paid and case incurred losses at different 

valuations and annual probabilities of claims moving from one severity class to another (a transition 

matrix) to project claim movement over time. The severity distributions are incorporated into a simu- 

lation which 1) simulates the number of claims for a year, 2) simulates the report lag for each claim, 

3) simulates the movement in each claim’s value over time until an ultimate value is reached, and 4) 

works backward from the ultimate value of the claims to simulate their paid value. By simulating 

many years of data distributions of paid, incurred and outstanding losses can be produced. The proce- 

dure described in the paper could be used to approximate the process which underlies loss develop- 

ment when the losses are aggregated. 

The author illustrates his method using severity distributions and transition matrices which have 

been judgmentaliy selected; i.e., not based on real data. To actually apply this technique, one would 

have to construct actual severity distributions and transition probabilities using techniques not de- 

scribed in the paper. The author’s example applies to outstanding losses at the beginning of an acci- 
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dent or policy period, before any losses have been reported. While he mentions that in real life re- 

serving situations, the actuary would need to determine outstanding loss severity distributions on a 

conditional basis, he does not describe how to do this. 

Methods Based on Parametric Models of Development 
The chain ladder method is characterized by having a separate level for each accident year and a 

separate degree of development for each lag. Thus models that have a parameter for each accident 

year and for each lag are regarded as statistical versions of the chain ladder. This can now be seen to 

be somewhat of a misnomer, as the assumptions of the usual chain ladder, as outlined in the Mack 

paper, are significantly different from these models. The logarithms of the losses in an incremental 

claims uiangle (paid in year, for example) may meet the assumptions of regression analysis, which 

then can be used to estimate model parameters and provide variances. 

Statistical Metho& for the Chain Ladder Technique, Richard J. Verrall 

This paper, which took first prize in the competition, gives a comprehensive presentation of the 

use of regression models to estimate loss development. It also lays out an interesting approach to ad- 

justing lognorrnal maximum likelihood estimators for bias, and shows how to construct some Bayes- 

ian estimators relevant to the model. The paper does not note, however, that adjusting the MLE of 

the lognormal mean for bias involves some controversy, with different authors advising upward or 

downward or no adjustment. The Bayesian estimates discussed include estimation of runoff, esti- 

mates for the analysis of variance model, and relation to credibility theory. Relations to the chain lad- 

der method am also discussed, and an excellent list of references is provided. 

Probabilistic Development Factor ModeLF with Applications to Loss Reserve Variability, Predic- 
tion IntervaIs and Risk Based Capital, Ben Zehnwirth 

Loglinear versions of chain ladder, Cape Cod, and separation method ar all outlined. The paper, 

which tied for second prize., also addresses models that allow for changing parameters over time or 

smoothing of parameters to avoid multicollinearity. It contains a general discussion of statistical fore- 

casting methods, and sufficient detail is given that many of the examples presented can be repro- 

duced by the reader. 
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While many of the assumptions made are explicitly listed, there are a number of assumptions 

that are either unstated, or appear to be statements of fact. For example, in Section 5.0 there is a state- 

ment that the logarithm of paid losses at the earliest stage of development has a normal distribution 

with a mean a and variance o *. This is an assumption implicit in the main model here, but is not 

necessarily true in general. The assumptions about inflation also need to be carefully evaluated. Infla- 

tion is assumed to affect all payments in a given calendar year equally, but in fact losses at different 

stages of settlement might be affected differently. 

Even though the model assumptions may not apply for every data set, this paper gives a com- 

prehensive discussion of methods for titting a regression model to development data and the testing 

of such a model for goodness of fit. 

IBNR Reserve under a Loglinear Location-Scale Regression Model, Louis Doray 

Most authors who use regression to model loss development assume that the initial data (incre- 

mental paid losses for example) is lognormally distributed. They take the logarithm of the initial 

data, and fit linear regression models to the logged data. The logged data is then normally distrib- 

uted, and the error term (the difference between the fitted values and the logged data) is also nor- 

mally distributed-hopefully with a reduced variance and zero mean. 

The main thrust of this paper is to explore four possible distributions of the error term other than 

the normal distribution. In each case it presents the mathematics needed and tests the model against a 

common data set. Maximum likelihood estimation is used to estimate the regression coefficients. Be- 

cause of the complexity of the various distributions used, and the need for various second deriva- 

tives of the log-likelihood function, the use of a computer algebra system would help 

implementation. Various issues regarding goodness of fit and bias of estimates are discussed. Possi- 

ble bias of the maximum likelihood estimates is not discussed. The paper does suggest incorporating 

interest rate risk in presenting interval estimates for discounted reserves. 

A comparison of estimates made by a regression method to estimates made using the chain lad- 

der method shows that if the regression model is correct, the chain ladder method underestimates re- 
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serve needs. The correcmess of the regression model is not verified, however. The issue of moving 

back to estimates of the unlogged data is also not addressed. 

A Generalized Framework for the Stochastic Lass Reserving, Changsoeb Joe Kim 

This approach measures variability by using goodness of fit from time series (ARIMA) models. 

It may, however, require a great deal of stability across accident years. The author uses a two dimen- 

sional auto-regressive procedure to estimate future incremental payments on a loss development tri- 

angle. The application of the procedure assumes that a constant auto-regressive parameter(s) applies 

to all accident years (which appears to be reasonable) and a constant parameter(s) applies to all de- 

velopment ages (which may not be reasonable). Thus, the payment at age 10 is assumed to be the 

same proportion of the age nine payment as the payment at age two is of the age one payment. This 

technique does not address the “tail” problem, or the estimation of payments at development ages 

greater than that in the historical data. Because the number of observations in most triangles is rela- 

tively small and time series techniques generally require a large number of points, the author uses 

standard loss development factors to convert the triangle into a matrix and derive initial values for 

the fitting process. Formulas presented for the n-year-ahead variance of the two dimensional auto-re- 

gressive process can be used to compute confidence intervals, presumably by using the standard nor- 

mal distribution, but this is not explicitly stated. (It should be noted that the formula given for the 

one year ahead variance appears to actually be the formula for the two year ahead forecast variance). 

Outstanding Issues 

Several issues are still not addressed and could benefit from further research: 

1. What techniques are appropriate for which situations and what kinds of data? For in- 
stance the regression techniques seem to require relatively stable, homogenous data. The 
development factor methods require enough observations in each column for a reason- 
able estimate of the variance of factors in the column. The collective risk model methods 
require estimates of claim count and severity parameters and these can best be derived 
from individual claim data. When these parameters am selected based on aggregate data 
or judgment, does the aggregate probability model reflect the additional uncertainty con- 
tributed by these less rigorous parameter estimates? 

2. More work is needed on the “tail” problem. How does the actuary quantify the variability 
for development ages beyond the last observation in the data? The uncertainty associated 
with the tail can be substantial. 
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3. The impact of correlation needs further analysis. This includes correlation within the de- 
velopment triangle, among lines of business, with inflation, and with interest rates, espe- 
cially for discounted reserved. 

4. How does the actuary realistically reflect the uncertainty in reserve estimates for compa- 
nies or lines of business with little or no data, or with recent changes in the data? It is rea- 
sonable to assume that the variability of such reserve estimates should be higher than for 
a company or line of business with abundant data. What about when different data sets 
are combined (company/industry, external indexes, etc.)? 

5. What kind of testing is needed to truly validate the use of these models? Tests based on 
the triangle and fitted data can invalidate models, but failure to invalidate does not neces- 
sarily give much comfort for forecasting. An understanding of the assumptions used, and 
reflecting on their reasonableness may always be necessary, regardless of the fit provided. 

6. How can the regression models be enhanced to incorporate a finite probability of no 
losses paid in a future period for given accident years? For small companies this is a real- 
istic possibility, and should be reflected in prediction intervals. 

Gary G. Venter 
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1. Introduction and Overview 

The chain ladder method is probably the most popular method for 

estimating outstanding claims reserves. The main reason for this 

is its simplicity and the fact that it is distribution-free, 

i.e. that it seems to be based on almost no assumptions. In this 

paper, it will be seen that this impression is wrong and that 

the chain ladder algorithm rather has far-reaching implications. 

These implications also allow it to measure the variability of 

chain ladder reserve estimates. With the help of this measure it 

is possible to construct a confidence interval for the estimated 

ultimate claims amount and for the estimated reserves. 

Such a confidence interval is of great interest for the 

practitioner because the estimated ultimate claims amount can 

never be an exact forecast of the true ultimate claims amount 

and therefore a confidence interval is of much greater 

information value. A confidence interval also automatically 

allows the inclusion of business policy into the claims 

reserving process by using a specific confidence probability. 

Moreover, there are many other claims reserving procedures and 

the results of all these procedures can vary widely. But with 

the help of a confidence interval it can be seen whether the 

difference between the results of the chain ladder method and 

any other method is significant or not. 

The paper is organized as follows: In Chapter 2 a first basic 
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assumption underlying the chain ladder method is derived from 

the formula used to estimate the ultimate claims amount. In 

Chapter 3, the comparison of the age-to-age factor formula used 

by the chain ladder method with other possibilities leads to a 

second underlying assumption regarding the variance of the 

claims amounts. Using both of these derived assumptions and a 

third assumption on the independence of the accident years, it 

is possible to calculate the so-called standard error of the 

estimated ultimate claims amount. This is done in Chapter 4 

where it is also shown that this standard error is the 

appropriate measure of variability for the construction of a 

confidence interval. Chapter 5 illustrates how any given run-off 

triangle can be checked using some plots to ascertain whether 

the assumptions mentioned can be considered to be met. If these 

plots show that the assumptions do not seem to be met, the chain 

ladder method should not be applied. In Chapter 6 all formulae 

and instruments established including two statistical tests set 

out in Appendices G and H are applied to a numerical example. 

For the sake of comparison, the reserves and standard errors 

according to a well-known claims reserving software package are 

also quoted. Complete and detailed proofs of all results and 

formulae are given in the Appendices A - F. 

The proofs are not very short and take up about one fifth of the 

paper. But the resulting formula (7) for the standard error is 

very simple and can be applied directly after reading the basic 

notations (1) and (2) in the first two paragraphs of the next 
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chapter. In the numerical example, too, we could have applied 

formula (7) for the standard error immediately after the 

completion of the run-off triangle. But we prefer to first carry 

through the analysis of whether the chain ladder assumptions are 

met in this particular case as this analysis generally should be 

made first. Because this analysis comprises many tables and 

plots, the example takes up another two fifths of~the paper 

(including the tests in Appendices G and Ii). 

2. Notations and First Analvsis of the Chain Ladder Method 

Let Cik denote the accumulated total claims amount of accident 

year i, ISiSI, either paid or incurred up to development 

year k, 1 5 k 6 I. The values of Cik for i+k I I+1 are known to 

US (run-off triangle) and we want to estimate the values of Cik 

for i+k > I+l, in particular the ultimate claims amount CiI of 

each accident year i = 2, . . . . I. Then, 

Ri = ci1 - =i,I+l-i 

is the outstanding claims reserve of accident year i as Ci I+l-i , 
has already been paid or incurred up to now. 

The chain ladder method consists of estimating the ultimate 

claims amounts CiI by 

(1) CiI = Ci,I+l-i'fr+l-i'...'fy-l I ZlilI, 

where 
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I-k 
(2) fk = c 'j,k+l 1 :f: 'jk r 1 2 k 6 I-l, 

j=l 

are the so-called age-to-age factors. 

This manner of projecting the known claims amount Ci,I+1-i to 

the ultimate claims amount CII uses for all accident years i 2 

1+1-k the same factor fk for the increase of the claims amount 

from development year k to development year k+l although the 

observed individual development factors Ci,k+l/Cik of the 

accident years i I I-k are usually different from one another 

and from fk. This means that each increase from Cik to Ci,k+l is 

considered a random disturbance of an expected increase from Cik 

to Cikfk where fk is an unknown 'true' factor of increase which 

is the same for all accident years and which is estimated from 

the available data by fk. 

Consequently, if we imagine to be at the end of development year 

k we have to consider Ci k+l, . . . . CiI as random variables , 
whereas the realizations of Gil, . . . . Cik are known to us and 

are therefore no longer random variables but scalars. This means 

that for the purposes of analysis every Cik can be a random 

variable or a scalar, depending on the development year at the 

end of which we imagine to be but independently of whether Cik 

belongs to the known part i+k 5 I+1 of the run-off triangle or 

not. When taking expected values or variances we therefore must 

always also state the development year at the end of which we 

imagine to be. This will be done by explicitly indicating those 
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variables Cik whose values are assumed to be known. If nothing 

iS indicated all Cik are assumed to be unknown. 

What we said above regarding the increase from Cik to Ci k+l can I 
now be formulated in stochastic terms as follows: The chain 

ladder method assumes the existence of accident-year-independent 

factors fl, . . . . fIel such that, given the development Gil' . . . . 

Cikt the realization of Ci k+l is 'close' to Cikfk, the latter I 
being the expected value of Ci k+l in its mathematical meaning, , 
i.e. 

(3) E(Ci,k+llCil,-.-rCik) = Cikfk t ISiSI, 1 I k 2 I-l. 

Here to the right of the '1 t those Cik are listed which are 

assumed to be known. Mathematically speaking, (3) is a 

conditional expected value which is just the exact mathematical 

formulation of the fact that we already know Gil, . . . . Cik, but 

do not know Ci,k+l* The same notation is also used for variances 

since they are specific expectations. The reader who is not 

familiar with conditional expectations should not refrain from 

further reading because this terminology is easily under- 

standable and the usual rules for the calculation with expected 

values also apply to conditional expected values. Any special 

rule will be indicated wherever it is used. 

We want to point out again that the equations (3) constitute an 

assumption which is not imposed by us but rather implicitly 

underlyies the chain ladder method. This is based on two aspects 

of the basic chain ladder equation (1): One is the fact that (1) 
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uses the same age-to-age factor fk for different accident years 

i = 1+1-k, . . . , I. Therefore equations (3) also postulate age- 

to-age parameters fk which are the same for all accident years. 

The other is the fact that (1) uses only the most recent 

observed value Ci,I+l-i as basis for the projection to ultimate 

ignoring on the one hand all amounts Gil, . . . . Ci,I-i observed 

earlier and on the other hand the fact that Ci,I+1-i could 

substantially deviate from its expected value. Note that it 

would easily be possible to also project to ultimate the amounts 

tilt **.I ci,I-i of the earlier development years with the help 

of the age-to-age factors fl, . . . . fImZ and to combine all these 

projected amounts together with Ci,I+l-ify+l-i'..-'fI-1 into a 

common estimator for CiI. Moreover, it would also easily be 

possible to use the values Cj,I+1-i of the earlier accident 

years j < i as additional estimators for E(Ci,I+I-i) by 

translating them into accident year i with the help of a measure 

of volume for each accident year. These possibilities are all 

ignored by the chain ladder method which uses Ci I+1-i as the , 
only basis for the projection to ultimate. This means that the 

chain ladder method implicitly must use an assumption which 

states that the information contained in Ci I+1-i cannot be I 
augmented by additionally using Gil, . . . . Ci,I-i or CI I+l-i, I 
. . . , Ci-l,I+l-i. This is very well reflected by the equations 

(3). 

Having now formulated this first assumption underlying the chain 

ladder method we want to emphasize that this is a rather strong 
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assumption which has important consequences 'and which cannot be 

taken as met for every run-off triangle. Thus the widespread 

impression the chain ladder method would work with almost no 

assumptions is not justified. In Chapter 5 we will elaborate on 

the linearity constraint contained in assumption (3). But here 

we want to point out another consequence of formula (3). We can 

rewrite (3) into the form 

E(Ci,k+l/CikICil,".,Cik) = fk 

because Cik is a scalar under the condition that we know CiI, 

. . . . Cik. This form of (3) shows that the expected value of the 

individual development factor Ci k+l/Cik equals fk irrespective I 
of the prior development Gil, . . . . Cik and especially of the 

foregoing development factor Cik/Ci,k-l. As is shown in Appendix 

G, this implies that subsequent development factors Cik/Ci,k-l 

and Ci,k+l/Cik are uncorrelated. This means that after a rather 

high value of Cik/Ci,k-l the expected size of the next 

development factor Ci,k+l/Cik is the same as after a rather low 

value Of Cik/Ci,k-1. We therefore should not apply the chain 

ladder method to a business where we usually observe a rather 

Small increase Ci,k+l/Cik if Cik/Ci,k-1 is higher than in most 

other accident years, and vice versa. Appendix G also contains a 

test procedure to check this for a given run-off triangle. 
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3. Analysis of the Ase-to-Aoe Factor Formula: the Key to 

Measurina the Variability 

Because of the randomness of all realizations Cik we can not 

infer the true values of the increase factors fI, . . . . fI-I from 

the data. They only can be estimated and the chain ladder method 

calculates estimators fl, . . . . fIml according to formula (2). 

Among the properties which a good estimator should have, one 

prominent property is that the estimator should be unbiased, 

i.e. that its expected value E(fK) (under the assumption that 

the whole run-off triangle is not yet known) is equal to the 

true value fk, i.e. that E(fk) = fk. Indeed, this is the case 

here as is shown in Appendix A under the additional assumption 

that 

(4) the variables {Gil, . . . . CiI} and {Cj,, ..*I CjI} of 

different accident years i # j are independent. 

Because the chain ladder method neither in (1) nor in (2) takes 

into account any dependency between the accident years we can 

conclude that the independence of the accident years is also an 

implicit assumption of the chain ladder method. We will 

therefore assume (4) for all further calculations. Assumption 

(4), too, cannot be taken as being met for every run-off 

triangle because certain calendar year effects (such as a major 

change in claims handling or in case reserving or greater 

changes in the inflation rate) can affect several accident years 
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in the same way and can thus distort the independence. How such 

a situation can be recognized is shown in Appendix H. 

A closer look at formula (2) reveals that 

I-k 
' 'j,k+l 

j=l 
f k- 

= 
I-k 

jzl % 

';" 'jk 'j,k+I -. 
j=l I-k 

jzlcjk 'jk 

is a weighted average of the observed individual development 

factors Cj,k+l/Cjkr 1 5 j 5 I-k, where the weights are 

proportional to Cjk. Like fk every individual development factor 

'j,k+l/'jk/ 1 I j 5 I-k, is also an unbiased estimator of fk 

because 

E(Cj,k+l/Cjk) = E(E(Cj,k+l/CjklCjlt * - * rcjk)) (a) 

= E(E(Cj,k+llCjl,.-*ICjk)/Cjk) (b) 

= E(Cjkfk/Cjk) 

= E(fk) 

= fk . 

(cl 

(d) 

Here equality (a) holds due to the iterative rule E(X) = 

E(E(XIY)) for expectations, (b) holds because, given Cjl to cjk, 

Cjk is,a scalar, (c) holds due to assumption (3) and (d) holds 

because fk is a scalar. (When applying expectations iteratively, 

e.g. E(E(XIY)), one first takes the conditional expectation 

E(X(Y) assuming Y being known and then averages over all 

possible realizations of Y.) 
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Therefore the question arises as to why the chain ladder method 

uses just fk as estimator for fk and not the simple average 

1 I-k ._ 
~ ' 'j,k+l/'jk 
I-k j=l 

of the observed development factors which also would be an 

unbiased estimator as is the case with any weighted average 

I-k I-k 
gk = jz, wjk 'j,k+l/'jk with C Wjk=l 

j=l 

of the observed development factors. (Here, wjk must be a scalar 

if Cjl, . . . . Cjk are known.) 

Here we recall one of the principles of the theory of point 

estimation which states that among several unbiased estimators 

preference should be given to the one with the smallest 

variance, a principle which is easy to understand. We therefore 

should choose the weights w. lk in such a way that the variance of 

gk is minimal. In Appendix B it is shown that this is the case 

if and only if (for fixed k and all j) 

Wjk is inversely proportional t0 Var(Cj k+l/CjklCjl,...,Cjk). 
I 

The fact that the chain ladder estimator fk uses weights which 

are proportional to Cjk therefore means that Cjk is assumed to 

be inversely proportional to Var(Cj,k+I/CjklCjI,...,Cjk), or 

stated the other way around, that 

var(Cj,k+l/CjklCjl,.~.,cjk) = ak2/Cjk 

with a proportionality constant ak2 which may depend on k but 

, 
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not on j and which must be non-negative because variances are 

always non-negative. Since here cjk is a scalar and because 

generally Var(X/c) = Var(X)/c2 for any scalar c, we can state 

the above proportionality condition also in the form 

(5) var(cj,k+llcjl# . ..'Cjk) = CjkQk', 15 j 5 I, 1 < k 5 I-l, 

with unknown proportionality constants ek2, 1 ~2 k I I-l. 

As it was the case with assumptions (3) and (Q), assumption (5) 

also has to be considered a basic condition implicitly 

underlying the chain ladder method. Again, condition (5) cannot 

a priori be assumed to be met for every run-off triangle. In 

Chapter 5 we will show how to check a given triangle to see 

whether (5) can be considered met or not. But before we turn to 

the most important consequence of (5): Together with (3) and (4) 

it namely enables us to quantify the uncertainty in the 

estimation of CiI by CiI. 

4. Quantifying the Variabilitv of the Ultimate Claims Amount 

The aim of the chain ladder method and of every claims reserving 

method is the estimation of the ultimate claims amount CiI for 

the accident years i = 2, . . . . I. The chain ladder method does 

this by formula (l), i.e. by 

Cif = ci I+l-i'fI+l-i'""fI-l f I 
This formula yields only a point estimate for CiI which will 

normally turn out to be more or less wrong, i.e. there is only a 
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very small probability for CiI being equal to CiI. This 

probability is even zero if CiI is considered to be a continuous 

variable. We therefore want to know in addition if the estimator 

CiI is at least on average equal to the mean of CiI and how 

large on average the error is. Precisely speaking we first would 

like to have the expected values E(CiI) and E(CiI), 2 I i 5 I, 

being equal. In Appendix C it is shown that this is indeed the 

case as a consequence of assumptions (3) and (4). 

The second thing we want to know is the average distance between 

the forecast CiI and the future realization CiI. In Mathematical 

Statistics it is common to measure such distances by the square 

of the ordinary Euclidean distance ('quadratic loss function'). 

This means that one is interested in the size of the so-called 

mean squared error 

mse(CiI) = EC (CiI - Ci1) 2 ID) 

where D = { Cik I i+k % I+1 } is the set of all data observed so 

far. It is important to realize that we have to calculate the 

mean squared error on the condition of knowing all data observed 

so far because we want to know the error due to future random- 

ness only. If we calculated the unconditional error E(CiI-Cir)2, 

which due to the iterative rule for expectations is equal to the 

mean value E(E((CiI - CII)~/D)) of the conditional mse over all 

possible data sets D, we also would include all deviations from 

the data observed so far which obviously makes no sense if we 

want to establish a confidence interval for CiI on the basis of 

the given particular run-off triangle D. 
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The mean squared error is exactly the same concept which also 

underlyies the notion of the variance 

Var(X) = E(X - E(X))2 

of any random variable X. Var(X) measures the average distance 

of X from its mean value E(X). 

Due to the general rule E(X-c) 3 = Var(X) + (E(X)-c)~ for any 

scalar c we have 

mse(CiI) = Var(CiIID) + ( E(CiIlD) - CiI )' 

because CiT is a scalar under the condition that all data D are 

known. This equation shows that the mse is the sum of the pure 

future random error Var(CiT[ ) D and of the estimation error which 

is measured by the squared deviation of the estimate CiI from 

its target E(CiIID). On the other hand, the mse does not take 

into account any future changes in the underlying model, i.e. 

future deviations from the assumptions (3), (4) and (5), an 

extreme example of which was the emergence of asbestos. 

Modelling such deviations is beyond the scope of this paper. 

As is to be expected and can be seen in Appendix D, mse(Cir) 

depends on the unknown model parameters fk and ~~2. We therefore 

must develop an estimator for mse(CiT) which can be calculated 

from the known data D only. The square root of such an estimator 

is usually called *standard error' because it is an estimate of 

the standard deviation of CiI in cases in which we have to 

estimate the mean value, too. The standard error s.e.(CiX) of 
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CiI is at the same time the standard error s.e.(Ri) of the 

reserve estimate 

% = ciI - ci,I+l-i 

of the outstanding claims reserve 

Ri = CiI - Ci 1+1-i I 

because 

mse Pi) = E((Ri - Ri)21D) = E((CiI - CiI)21D) = 

= mse(Cir) 

and because the equality of the mean squared errors also implies 

the equality of the standard errors. This means that 

(6) s.e.(Ri) = S.e.(Cir) - 

The derivation of a 

CiI turns out to be 

done in Appendix D. 

simple: 

(7) (s-e. (Cir) 1 2 

where 

formula for the standard error s.e.(CiI) of 

the most difficult part of this paper; it is 

Fortunately, the resulting formula is 

I-l 
= c;, c 

2 
!%(L+ 

1 

k=I+l-i fk2 
-1 

Cik I-k 

jzlcjk 

1 I-k 
(8) ok2 = - c cjk ( 

'j k+l 
I_--fk)2, 1 I k 5 I-2. 

I-k-l j=l 'jk 

is an unbiased estimator of ok2 (the unbiasedness being shown in 

Appendix E) and 

cik = Ci,I+l-i'fy+l-i'".'fk-~ e k > 1+1-i, 

are the amounts which are automatically obtained if the run-off 
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triangle is completed step by step according to the chain ladder 

method. In (7), for notational convenience we have also set 

%,1+1-i = 'i,I+l-i. 

Formula (8) does not yield an estimator for aIel because it is 

not possible to estimate the two parameters fI-I and aIel from 

the single observation C1,I/CI,I-l between development years I-l 

and I. If Q-1 = 1 and if the claims development is believed to 

be finished after I-l years we can put aIm1 = 0. If not, we 

extrapolate the usually decreasing series al, OR, . . . . aIm3, 

aI-2 by one additional member, for instance by means of 

loglinear regression (cf. the example in Chapter 6) or more 

simply by requiring that 

aIm3 1 arw2 = afB2 ! aIwl 

holds at least as long as aIw3 > aIs2. This last possibility 

leads to 

(9) 
2 

= min ( a~-2/a~-3, 
2 

ax-1 min(aIm3, aim21 1 . 

We now want to establish a confidence interval for our target 

variables CiI and Ri. Because of the equation 

(31 = ci,I+l-i + Ri 

the ultimate claims amount CiI consists of a known part Ci I+l-i I 
and an unknown part Ri. This means that the probability 

distribution function of CiI !given the observations D which 

include Ci I+l-i) I is completely determined by that of Ri. We 

therefore need to establish a confidence interval for Ri only 

and can then simply shift it to a confidence interval for CiI. 
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For this purpose we need to know the distribution function of 

Ri. Up to now we only have estimates Ri and s.e.(Ri) for the 

mean and the standard deviation of this distribution. If the 

volume of the outstanding claims is large enough we can, due to 

the central limit theorem, assume that this distribution 

function is a Normal distribution with an expected value equal 

to the point estimate given by Ri and a standard deviation equal 

to the standard error s.e.(Ri). A symmetric 95%-confidence 

interval for Ri is then g+ven by 

( Ri - a*s.e.(Ri) , Ri + 2.s.e.(Ri) ). 

But the symmetric Normal distribution may not be a good 

approximation to the true distribution of Ri if this latter 

distribution is rather skewed. This will especially be the case 

if s.e.(Ri) is greater than 50 % of Ri. This can also be seen at 

the above Normal distribution confidence interval whose lower 

limit then becomes negative even if a negative reserve is not 

possible. 

In this case it is recommended to use an approach based on the 

Lognormal distribution. For this purpose we approximate the 

unknown distribution of Ri by a Lognormal distribution with 

parameters pi and Oi2 such that mean values as well as variances 

of both distributions are equal, i.e. such that 

exP(fii + Ui2/2) = Ri , 

exP(2fii + oi2)(exp(ai2)-1) = (s.e.(Ri))2 . 
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This leads to 

Ui2 = ln(1 + (S.e.(Ri))2/Ri2) , 
(10) 

Hi = ln(Ri) - Oi2/2 . 

Now, if we want to estimate the 90th percentile of Ri, for 

example, we proceed as follows. First we take the 90th 

percentile of the Standard Normal distribution which is 1.28. 

Then eXp(piil.28Ui) with cci and Ui2 according to (10) is the 

90th percentile of the Lognormal distribution and therefore also 

approximately of the distribution of Ri. For instance, if 

s.e.(Ri)/Ri = 1, then oi 2 = ln(2) and the 90th percentile is 

exP(Cci + 1.28oi) = Riexp(1.28Ui - Ui2/2) = RieXp(.719) = 

2.05.Ri. If we had assumed that Ri has approximately a Normal 

distribution, we would have obtained in this case Ri + 

1.28*s.e.(Ri) = 2.28.Ri as 90th percentile. 

This may come as a surprise since we might have expected that 

the 90th percentile of a Lognormal distribution always must be 

higher #an that of a Normal distribution with same mean and 

variance. But there is no general rule, it depends on the 

percentile chosen and on the size of the ratio s.e.(Ri)/Ri. The 

Lognormal approximation only prevents a negative lower 

confidence limit. In order to set a specific lower confidence 

limit we choose a suitable percentile, for instance lo%, and 

proceed analogously as with the 90% before. The question of 

which confidence probability to choose has to be decided from a 

business policy point of view. The value of 80% = 90% - 10% 

taken here must be regarded merely as an example. 



We have now shown how to establish confidence limits for every 

Ri and therefore also for every CiI = Ci,I+1-i + Ri. We may also 

be interested in having confidence limits for the overall 

reserve 

R = R2 + . . . + RI , 

and the question is whether, in order to estimate the variance 

of R, we can simply add the squares (s.e.(Ri))2 of the 

individual standard errors as would be the case with standard 

deviations of independent variables. But unfortunately, whereas 

the Ri'S itself are independent, the estimators Ri are not 

because they are all influenced by the same age-to-age factors 

fk, i.e. the Ri's are 

shown that the square 

reserve estimator 

positively correlated. In Appendix F it is 

of the standard error of the overall 

R = R2 + . . . + 

is given by 

(11) (s.e. (R))2 = 

I I 
= c 

i-2 I 
(s-e. Will2 + Cir( Ii1 2ak2'fk2 

k=I+l-i I-k 
' 'nk 

n=l 

Formula (11) can be used to establish a confidence interval for 

the overall reserve amount R in quite the same way as it was 

done before for Ri. Before giving a full example of the 

calculation of the standard error, we will deal in the next 

chapter with the problem of how to decide for a given run-off 
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triangle whether the chain ladder assumptions (3) and (5) are 

met or not. 

5. Checkina the Chm Assumations Aaainst the Data 

As has been pointed out before, the three basic implicit chain 

ladder assumptions 

(3) E(Ci,k+llCilr ***#cik) = Cikfk I 

(4) Independence of accident years , 

(5) Var(Ci,k+llCil,...,Cik) e Cikak2 I 

are not met in every case. In this chapter we will indicate how 

these assumptions can be checked for a given run-off triangle. 

We have already mentioned in Chapter 3 that Appendix H develops 

a test for calendar year influences which may violate (4). We 

therefore can concentrate in the following on assumptions (3) 

and (5). 

First, we look at the equations (3) for an arbitrary but fixed k 

and for i = 1, . . . . I. There, the ValUeS of Cik, 1 S i I I, are 

to be considered as given non-random values and equations (3) 

can be interpreted as an ordinary regression model of the type 

Yi = c + xib + "i , lSi<I, 

where c and b are the regression coefficients and 'i the error 

term with E(Ei) = 0, i.e. E(Yi) = c + Xib. In our special case, 

we have c = 0, b = fk and we have observations of the 

independent variable Yi = Ci,k+l at the points Xi = Cik for i = 
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1, . . . . I-k. Therefore, we can estimate the regression 

coefficient b = fk by the usual least squares method 

If the 

set to 

(12) 

I-k 
' (Ci,k+l - Cikfk)2 ~ minimum . 

i=l 

derivative of the left hand side with respect to fk is 

0 we obtain for the minimizing parameter fk the solution 

I-k I-k 

fkO = ' 'ikCi,k+l / C Cik 2 . 
i=l i=l 

This is not the same estimator for fk as according to the chain 

ladder formula (2). We therefore have used an additional index 

'0' at this new estimator for fk. We can rewrite fko as 

1-k Cik2 
fkO = c 

'i,k+l -. 
i=l I-k 

' 'ik 
2 'ik 

i=l 

which shows that fko is the Cik2-weighted average of the 

individual development factors Ci k+l/Cik, whereas the chain I 
ladder estimator fk is the Cik-weighted average. In Chapter 3 we 

saw that these weights are inversely proportional to the 

underlying variances Var(Ci,k+l/CiklCil,...RCik). 

Correspondingly, the estimator fkO assumes 

Var(Ci,k+l/CiklCilr.'.rCik ) being proportional to l/Cik2, 

or equivalently 

Var(Ci,k+l Icilteee ,Cik) being proportional to 1 

which means that Var(Ci k+llCil,'.. I ,Cik) is the same for all 

observations i = 1, . . . , I-k. This is not in agreement with the 

chain ladder assumption (5). 
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Here we remember that indeed the least squares method implicit 

assumes equal variances Var(Yi) = Var(ei) = u2 for all i. If 

this assumption is not met, i.e. if the variances Var(Yi) = 

Var(ti) depend on i, one should use a weighted least squares 

approach which consists of minimizing the weighted sum of 

squares 

C Wi(Yi 
i=l 

- C - Xib)’ 

where the weights Wi are in inverse proportion to Var(Yi). 

Therefore, in order to be in agreement with the chain ladder 

variance assumption (5), we should use regression weights Wi 

which are proportional to l/Cik (more precisely to 1/(CikUk2), 

but ok2 can be amalgamated with the proportionality constant 

because k is fixed). Then minimizing 

I-k 
' ('i,k+l 

i=l 
- Cikfk)2 / Cik 

with respect to fk yields indeed 

I-k I-k 
f kl = ' 'i,k+l 1 

i=l LI, Cik 

which is identical to the usual chain ladder age-to-age factor 

‘k- 

lY 

It is tempting to try another set of weights, namely l/cik2 

because then the weighted sum of squares becomes 
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I-k I-k 
' (Ci,k+l 

i=l 
- Cikfk)2 / Cik2 = C ( 

'i k+l 

i=l 
A- fk)2 . 

'ik 

Here the minimizing procedure yields 

1 1-k Ci k+l 
(13) fk2 = - c A , 

I-k i=l 'ik 

which is the ordinary unweighted average of the development 

factors. The variance assumption corresponding to the weights 

used is 

Var(Ci,k+llCil,...,Cik ) being proportional to Cik' 

or equivalently 

Var(Ci,k+l/CiklCilr...,Cik) being proportional to 1. 

The benefit of transforming the estimation of the age-to-age 

factors into the regression framework is the fact that the usual 

regression analysis instruments are now available to check the 

underlying assumptions, especially the linearity and the 

variance assumption. This check is usually done by carefully 

inspecting plots of the data and of the residuals: 

First, we plot ci,k+l against Cik, i = 1, . . . . I-k, in order to 

see if we really have an approximately linear relationship 

around a straight line through the origin with slope fk = fkl. 

Second, if linearity seems acceptable, we plot the weighted 

residuals 

cc. i,k+l - Cikfk) / 4cik t 1 6 i I I-k, 

(whose squares have been minimized) against Cik in order to see 

if the employed variance assumption really leads to a plot in 

which the residuals do not show any specific trend but appear 
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purely random. It is recommended to compare all three residual 

plots (for i = 1, . . . . I-k) 

Plot 0: ci,k+l - CikfkO against 'ik ' 

Plot 1: (ci,k+l - Cikfkl)r/Cik against 'ik 1 

Plot 2: (ci,k+l - Cikfk2)/Cik against Cik , 

and to find out which one shows the most random behaviour. All 

this should be done for every development year k for which we 

have sufficient data points, say at least 6, i.e. for k S I-6. 

Some experience with least squares residual plots is useful, 

especially because in our case we have only very few data 

points. Consequently, it is not always easy to decide whether a 

pattern in the residuals is systematic or random. However, if 

Plot 1 exhibits a nonrandom pattern, and either Plot 0 or Plot 2 

does not, and if this holds true for several values of k, we 

should seriously consider replacing the chain ladder age-to-age 

factors fkl = fk with fko or fk2 respectively. The following 

numerical example will clarify the situation a bit more. 

6. 

The data for the following example are taken from the 

'Historical Loss Development Study', 1991 Edition, published by 

the Reinsurance Association of America (RAA). There, we find on 

page 96 the following run-off triangle of Automatic Facultative 
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business in General Liability (excluding Asbestos & 

Environmental): 

I 

i=l 

i=2 1 

i=3 1 

id 1 

i-5 1 

i-6 1 

i-7 1 

i=a 

i=9 1 

i=lO 1 

5012 

106 

3410 

5655 

1092 

1513 

557 

1351 

3133 

2063 

a269 

6285 

a992 

11555 

9565 

6.445 

4020 

6947 

5395 

10907 11805 13539 16181 18009 la&u 18442 18834 

5396 lo646 13782 15599 15196 16169 16704 

13873 16141 18735 22214 22863 23466 

15764 21266 23425 26083 27067 

1563.6 22169 25955 26180 

11702 12935 15852 

10946 12314 

13112 

The above figures are cumulative incurred case losses in $ 1000. 

We have taken the accident years from 1981 (i=l) to 1990 (i=lO) 

which is enough for the sake of example but does not mean that 

we believe to have reached the ultimate claims amount after 10 

years of development. 

We first calculate the age-to-age factors fk = fk,l according to 

formula (2). The result is shown in the following table together 

with the alternative factors fko according to (12) and fk2 

according to (13): 

1 k=l k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 

----I 

fkO 1 2.217 1.569 1.261 1.162 1.100 1.041 1.032 1.016 1.009 

fkl 1 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 

fk2 ; 8.206 1.696 1.315 1.185 1.127 1.043 1.034 1.011 1.009 
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If one has the run-off triangle on a personal computer it is' 

very easy to produce the plots recommended in Chapter 5 because 

most spreadsheet programs have the facility of plotting X-Y 

graphs. For every k = 1, . . . . 8 we make a plot of the amounts 

Ci,k+l (y-axis) of development year k+l against the amOUntS Cik 

(x-axis) of development year k for i = 1, . . . . 10-k, and draw a 

straight line through the origin with slope fkl. The plots for k 

= 1 to 8 are shown in the upper graphs of Figures 1 to 8, 

respectively. (All figures are to be found at the end of the 

paper after the appendices.) The number above each point mark 

indicates the corresponding accident year. (Note that the point 

mark at the upper or right hand border line of each graph does 

not belong to the plotted points (Cik, Ci,k+l), it has only been 

used to draw the regression line.) In the lower graph of each of 

the Figures 1 to 8 the corresponding weighted residuals 

(C* i,k+l - Cik)Hcik are plotted against Cik for i = l,..., 10-k. 

The two plots for k = 1 (Figure 1) clearly show that the 

regression line does not capture the direction of the datd 

points very well. The line should preferably have a positive 

intercept on the y-axis and a flatter slope. However, even then 

we would have a high dispersion. Using the line through the 

origin we will probably underestimate any future Ci2 if Gil is 

less than 2000 and will overestimate it if Gil is more than 

4000. Fortunately, in the one relevant case i = 10 we have Cl0 1 I 
= 2063 which means that the resulting forecast C10,2 = C10,1f2 = 
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2063.2.999 = 6187 is within the bulk of the data points plotted. 

In any case, Figure 1 shows that any forecast of Cl0 2 is , 

associated with a high uncertainty of about k3000 or almost 

*50% of an average-sized Ci,2 which subsequently is even 

enlarged when extrapolating to ultimate. If in a future accident 

year we have a value Gil outside the interval (2000, 4000) it is 

reasonable to introduce an additional parameter by fitting a 

regression line with positive intercept to the data and using it 

for the projection to Ci2. Such a procedure of employing an 

additional parameter is acceptable between the first two 

development years in which we have the highest number of data 

points of all years. 

The two plots for k = 2 (Figure 2) are more satisfactory. The 

data show a clear trend along the regression line and quite 

random residuals. The same holds for the two plots for k = 4 

(Figure 4). In addition, for both k = 2 and k = 4 a weighted 

linear regression including a parameter for intercept would 

yield a value of the intercept which is not significantly 

different from zero. The plots for k = 3 (Figure 3) seem to show 

a curvature to the left but because of the few data points we 

can hope that this is incidental. Moreover, the plots for k = 5 

have a certain curvature to the right such that we can hope that 

the two curvatures offset each other. The plots for k = 6, 7 and 

8 are quite satisfactory. The trends in the residuals for k = 7 

and 8 have no significance in view of the very few data points. 
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We need not to look at the regression lines with slopes fko or 

fk2 as these slopes are very close to fk (except for k=l). But 

we should look at the corresponding plots of weighted residuals 

in order to see whether they appear more satisfactory than the 

previous ones. (Note that due to the different weights the 

residuals will be different even if the slopes are equal.) The 

residual plots for fkO and k = 1 to 4 are shown in Figures 9 and 

10. Those for fk2 and k = 1 to 4 are shown in Figures 11 and 12. 

In the residual plot for fl,O (Figure 9, upper graph) the point 

furthest to the left is not an outlier as it is in the plots for 

fl,l = ft (Figur 1, lower graph) and f1,2 (Figure 11, upper 

graph) . But with all three residual plots for k=l the main 

problem is the missing intercept of the regression line which 

leads to a decreasing trend in the residuals. Therefore the 

improvement of the outlier is of secondary importance. For k = 2 

the three residuals plots do not show any major differences 

between each other. The same holds for k = 3 and 4. The residual 

plots for k = 5 to 8 are not important because of the small 

number of data points. Altogether, we decide to keep the usual 

chain ladder method, i.e. the age-to-age factors fk = fk 1, , 
because the alternatives fk,O or fk,2 do not lead to a clear 

improvement. 

Next, we can carry through the tests for calendar year 

influences (see Appendix H) and for correlations between 

aubsequent development factors (see Appendix G). For our example 
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neither test leads to a rejection of the underlying assumption 

as is shown in the appendices mentioned. 

Having now finished all preliminary analyses we calculate the 

estimated ultimate claims amounts CiI according to formula (l), 

the reserves Ri = CiI - Ci,I+l-i and its standard errors (7). 

For the standard errors we need the estimated values of uk2 

which according to formula (8) are given by 

k 1 2 3 4 5 6 7 8 9 

Ok2 27883 1109 691 61.2 119 40.8 1.34 7.88 

A plot of ln(ak2) against k is given in Figure 13 and shows that 

there indeed seems to be a linear relationship which can be used 

to extrapolate ln(a92). This yields a92 = exp(-.44) = .64. But 

we use formula (9) which is more easily programmable and in the 

present case is a bit more on the safe side: it leads to a92 = 

1.34. Using formula (11) for s.e.(R) as well we finally obtain 

Ci,lO Ri s-e(ci,lO) = s.e.(Ri) s-e. (Ri) /Ri 

i=2 16858 154 206 134 % 
i=3 24083 617 623 101 % 
i=4 28703 1636 747 46 % 
i=5 28927 2747 1469 53 % 
i=6 19501 3649 2002 55 % 
i=7 17749 5435 2209 41 % 
i=8 24019 10907 5358 49 % 
i=9 16045 10650 6333 59 % 
i=10 18402 16339 24566 150 % 

Overall 52135 26909 52 % 
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(The numbers in the 'Overall'-row are R, s-e.(R) and s.e.(R)/R.) 

For i = 2, 3 and 10 the percentage standard error (last column) 

is more than 100% of the estimated reserve Ri. For i = 2 and 3 

this is due to the small amount of the corresponding reserve and 

is not important because the absolute amounts of the standard 

errors are rather small. But the standard error of 150 % for the 

most recent accident year i = 10 might lead to some concern in 

practice. The main reason for this high standard error is the 

high uncertainty of forecasting next year's value C10,2 as was 

seen when examining the plot of Ci2 against Gil. Thus, one year 

later we will very likely be able to give a much more precise 

forecast of C1o,lo. 

Because all standard errors are close to or above 50 % we use 

the Lognormal distribution in all years for the calculation of 

confidence intervals. We first calculate the upper 90%- 

confidence limit (or with any other chosen percentage) for the 

overall outstanding claims reserve R. Denoting by /.b and u2 the 

parameters of the Lognormal distribution approximating the 

distribution of R and using s.e.(R)/R = .52 we have 02 = .236 

(cf. (10)) and, in the same way as in Chapter 4, the 90th 

percentile is exp(p + 1.28~) = R*exp(1.28u-u2/2) = 1.655-R = 

86298. Now we allocate this overall amount to the accident years 

i=2 ,...I 10 in such a way that we reach the same level of 

confidence for every accident year. Each level of confidence 

corresponds to a certain percentile t of the Standard Normal 



distribution and - according to Chapter 4 - the corresponding 

percentile of the distribution of Ri is RieXp(tUi - Ui2/2) with 

Ui2 = ln(1 + (s.e.(Ri))2/Ri2). We therefore only have to choose 

t in such a way that 

I 
~7 Ri*exp(tai - Ui2/2) = 86298 . 

i=2 

This can easily be solved with the help of spreadsheet software 

(e.g. by trial and error) and yields t = 1.13208 which 

corresponds to the 87th percentile per accident year and leads 

to the following distribution of the overall amount 66298: 

upper confidence limit 

Ri s.e.(Ri) /Ri 'i 
2 RieXp(toi-Ui2/2) 

i-2 154 
i=3 617 
i=4 1636 
i=5 2747 
i=6 3649 
i=7 5435 
i=8 10907 
i=9 10650 
i=lO 16339 

1.34 
1.01 

.46 

.53 

. 55 
-41 
.49 
. 59 

1.50 

1.028 290 

-703 1122 
. 189 2436 
. 252 4274 
. 263 5718 
. 153 7839 
. 216 16571 
. 303 17066 

1.182 30981 

Total 52135 86298 

In order to arrive at the lower confidence limits we proceed 

completely analogously. The 10th percentile, for instance, of 

the total outstanding claims amount is R*exp(-1.28u-u2/2) = 

,477-R = 24871. The distribution of this amount over the 

individual accident years is made as before and leads to a value 
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of t = -.8211 which corresponds to the 21st percentile. This 

means that a 87% - 21% = 66% confidence interval for each 

accident year leads to a 90% - 10% = 80% confidence interval for 

the overall reserve amount. In the following table, the 

confidence intervals thus obtained for Ri are already shifted 

(by adding Ci,I+l-i) to confidence intervals for the ultimate 

claims amounts CiI (for instance, the upper limit 16994 for i=2 

has been obtained by adding C2,g = 16704 and 290 from the 

preceding table): 

=i, 10 

confidence intervals 
for 80% prob. overall empirical limits 

i=2 16858 
i=3 24083 

i=4 28703 

i=5 28927 

i=6 19501 
i=7 17749 
i=8 24019 
i-9 16045 
i=lO 18402 

( 16744 , 16994 ) 
( 23684 , 24588 ) 

( 28108 ‘ 29503 ) 

( 27784 , 30454 ) 

( 17952 , 21570 ) 
( 15966 , 20153 ) 
( 19795 , 29683 ) 
( 11221 , 22461 ) 
( 5769 , 33044 ) 

( 16858 , 
( 23751 , 
( 28118 , 
( 27017 , 
( 16501 , 
( 14119 , 
( 16272 , 
( 8431 , 
( 5319 , 

16858 ) 

24466 ) 

29446 ) 

31699 ) 
22939 ) 
23025 ) 

48462 ) 

54294 ) 

839271 ) 

The column "empirical limitsH contains the minimum and maximum 

size of the ultimate claims amount resulting if in formula (1) 

each age-to-age factor fk is replaced with the minimum (or 

maximum) individual development factor observed so far. These 

factors are defined by 

'k,min = min { ci,k+l/cik 1 1 < i 5 1-k 1 

'k,max = max { Ci,k+l/Cik I 1 < i I I-k 1 

and can be taken from the table of all development factors which 
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can be found in Appendices G and Ii. They are 

1 k=l k=Z k=3 k=4 k=5 k=6 k=7 kd k=9 

-I 

fk,nin 1 1.650 1.259 1.082 1.102 1.009 .W3 1.026 1.003 1.009 

fk,max i 40.425 2.723 1.977 1.292 1.195 1.113 1.043 1.033 1.009 

In comparison with the confidence intervals, these empirical 

limits are narrower in the earlier accident years i 2 4 and 

wider in the more recent accident years i t 5. This was to be 

expected because the small number of development factors 

observed between the late development years only leads to a 

rather small variation between the minimum and maximum factors. 

Therefore these empirical limits correspond to a confidence 

probability which is rather small in the early accident years 

and becomes larger and larger towards the recent accident years. 

Thus, this empirical approach to establishing confidence limits 

does not seem to be reasonable. 

If we used the Normal distribution instead of the Lognormal we 

had obtained a 90th percentile of R + l.ZI*R*(s.e.(R)/R) = 

1.661-R (which is almost the same as the 1.655-R with the 

Lognormal) and a 10th percentile of R - 1.28.R*(s.e.(R)/R) = 

.34-R (which is lower than the . 477-R with the Lognormal). Also, 

the allocation to the accident years would be different. 

Finally, we compare the standard errors obtained to the output 

of the claims reserving software package ICRFS by Ben Zehnwirth. 
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This package is a modelling framework in which the user can 

specify his own model within a large class of models. But it 

also contains some predefined models, inter alia also a 'chain 

ladder model'. But this is not the usual chain ladder method, 

instead, it is a loglinearized approximation of it. Therefore, 

the estimates of the oustanding claims amounts differ from those 

obtained here with the usual chain ladder method. Moreover, it 

works with the logarithms of the incremental amounts Ci k+l-Cik I 
and one must therefore eliminate the negative increment C2 7- , 

'2,6* In addition, C2 I was identified as an outlier and was I 
eliminated. Then the ICRFS results were quite similar to the 

chain ladder results as can be seen in the following table: 

est. outst. claims amount Ri standard error 
chain ladder ICRFS chain ladder ICRFS 

i=2 154 394 206 572 
i=3 617 825 623 786 
i=4 1636 2211 747 1523 
i=5 2747 2743 1469 1724 
i=6 3649 4092 2002 2383 
i=7 543s 5071 2209 2972 
i=8 10907 11899 5358 6892 
i=9 10650 14569 6333 9689 
i=lO 16339 25424 24566 23160 

Overall 52135 67228 26909 28414 

Even though the reserves Ri for i=9 and i=lO as well as the 

overall reserve R differ considerably they are all within one 

standard error and therefore not significantly different. But it 

should be remarked that this manner of using ICRFS is not 
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intended by Zehnwirth because any initial model should be 

further adjusted according to the indications and plots given by 

the program. In this particular case there were strong 

indications for developing the model further but then one would 

have to give up the 'chain ladder model'. 

7. Final Remark 

This paper develops a rather complete methodology of how to 

attack the claims reserving task in a statistically sound manner 

on the basis of the well-known and simple chain ladder method. 

However, the well-known weak points of the chain ladder method 

should not be concealed: These are the fact that the estimators 

of the last two or three factors fI, fIml, fIW2 rely on very few 

observations and the fact that the known claims amount CI1 of 

the last accident year (sometimes Cl.-I,2, too) forms a very 

uncertain basis for the projection to ultimate. This is most 

clearly seen if CI1 happens to be 0: Then we have CiI = 0, RI = 

0 and s.e.(RI) = 0 which obiously makes no sense. (Note that 

this weakness often can be overcome by translating and mixing 

the amounts Gil of earlier accident years i < I into accident 

year I with the help of a measure of volume for each accident 

year.) 

Thus, even if the statistical instruments developed do not 

reject the applicability of the chain ladder method, the result 
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must be judged by an actuary and/or underwriter who knows the 

business under consideration. Even then, unexpected future 

changes can make all estimations obsolete. But for the many 

normal cases it is good to have a sound and simple method. 

Simple methods have the disadvantage of not capturing all 

aspects of reality but have the advantage that the user is in a 

position to know exactly how the method works and where its 

weaknesses are. Moreover, a simple method can be explained to 

non-actuaries in more detail. These are invaluable advantages of 

simple models over more sophisticated ones. 
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Apoendix A: Unbiasedness of Acre-to-Acre Factors 

Provosition: Under the assumptions 

(3) There are unknown constants fl, . . . . fI-1 with 

E(ci,k+l[cil,--.,cik) = Cikfkr l<iSI, 1 s k 2 I-l. 

(4) The variables {Gil, . . . . CiI} and {Cjl, . . . . CjI) of 

different accident years i # j are independent. 

the age-to-age factors fl, . . . . fI-1 defined by 

I-k I-k 
(2) fk = x cj,k+l / c cjk I 1 s k < I-l, 

j=l j=l 

are unbiased, i.e. we have E(fk) = fk, 1 5 k S I-l. 

Proof: Because of the iterative rule for expectations we have 

(Al) E(fk) = E(E(fklBk)) 

for any set Bk of variables Cij assumed to be known. We take 

Bk = ( Cij / i+j 5 I+l, j < k ) , 1 5 k s I-l. 

According to the definition (2) of fk and because cjkr 1 5 j I 

I-k, is contained in Bk and therefore has to be treated as 

scalar, we have 

I-k I-k 
(AZ) E(fklBk) = x E(Cj,k+llBk) / c Cjk * 

j=l j=l 

Because of the independence assumption (4) conditions relating 

to accident years other than that of cj,k+l can be omitted, i.e. 

we get 

(A3) E(Cj,k+llBk) = E(Cj,k+llCjl,..*,Cjk) = Cjkfk 

using assumption (3) as well. Inserting (A3) into (A2) yields 
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I-k I-k 
(A4) E(fklBk) = c cjkfk / c cjk = fk . 

j=l j=l 

Finally, (Al) and (A4) yield 

E(fk) = E(fk) = fk 

because fk is a scalar. 
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Avvendix B: Minimizina the Variance of Indevendent Estimators 

provosition: Let Tl, . . . . TI be independent unbiased estimators 

of a parameter t, i.e. with 

E(Ti) = t , l<i<I, 

then the variance of a linear combination 

I 
T= CWiTi 

i=l 

under the constraint 

(Bl) iWi= 1 
i-l 

(which guarantees E(T) = t) is minimal iff the coefficients Wi 

are inversely proportional to Var(Ti), i.e. iff 

wi = c/Var(Ti) , lSi.51. 

Proof: We have to minimize 

I 
Var(T) = E wi2Var(Ti) 

i=l 

(due to the independence of Tl, . . . . TI) with respect to Wi 

under the constraint (Bl). A necessary condition for an extremum 

is that the derivatives of the Lagrangian are zero, i.e. that 

I 
(82) $ ( ", wi'Var(Ti) + A(1 - HWi)) '0, lSi< I, 

i i=l i-l 

with a constant multiplier A whose value can be determined by 

additionally using (Bl). (B2) yields 

ZwiVar(Ti) - x = 0 

or 
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wi = X / (2*Var(Ti)) . 

These weights Wi indeed lead to a minimum as can be seen by 

calculating the extremal value of Var(T) and applying Schwarz's 

inequality. 

Corro11BTy: In the chain ladder case we have estimators Ti = 

ci,k+lfcikr 1 5 i I I-k, for fk where the variables of the set 

I-k 
Ak= u { tilt .--I Cik ) 

i-l 

of the corresponding accident years i = 1, . . . . I-k up to 

development year k are considered to be given. We therefore want 

to minimize the conditional variance 

I-k 
Var( X WiTilAk) . 

i=l 

From the above proof it is clear that the minimizing weights 

should be inversely proportional to Var(TilAk). Because of the 

independence (4) of the accident years, conditions relating to 

accident years other than that of Ti = Ci,k+I/Cik can be 

omitted. We therefore have 

Var(TilAk) = Var(Ci,k+I/CikjCiIt...,Cik) 

and arrive at the result that 

the minimizing weights should be 

inversely proportional t0 Var(Ci,k+I/CiklCiI,...,Cik). 
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Avvendix C: Unbiasedness of the Estimated Ultimate Claims Amount 

prooositioq: Under the assumptions 

(3) There are unknown constants fl, . . . . fI-1 with 

E(Ci,k+llCilr..-rCik) = Cikfkr 1 s i 5 I, 1 s k 5 I-l. 

(4) The variables {Gil, ,.., CiI) and (Cjl, . . . . CjI) of 

different accident years i # j are independent. 

the expected values of the estimator 

(1) CiI = Ci,I+l-ifi+l-i'...'fI-1 

for the ultimate claims amount and of the true ultimate claims 

amount CiI are equal, i.e. we have E(CiI) = E(CiI), 2 I i 5 I. 

Proof: We first show that the age-to-age factors fk are 

uncorrelated. With the same set 

Bk = { Cij ( i+j 5 I+l, j S k } , 1 2 k I I-l, 

of variables assumed to be known as in Appendix A we have for j 

<k 

E(fjfk) = B(B(fjfklBk)) (a) 

= E(fjE(fklBk)) (b) 

= E(fjfk) (cl 

= E(fj)fk (d) 

= fjfk + (e) 

Here (a) holds because of the iterative rule for expectations, 

(b) holds because fj is a scalar for Bk given and for j < k, (c) 

holds due to (A4), (d) holds because fk is a scalar and (e) was 

shown in Appendix A. 
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This result can easily be extended to arbitrary products of 

different fk’S, i.e. we have 

(Cl) E(fI+l-ia... ‘ff-1) = fi+l-i'*ss'fI-l a 

This yields 

E(CII) = E(E(CiIlCil,...rCi,I+l-i)) (4 

= E(E(Ci,I+l-ifI+l-i..-..fI-1ICilt...~Ci,I+l-i)) (b) 

= E(Ci,I+1-iElfI+l-i'...'fI-lICil~..-,Ci,I+l-i)) (C) 

= E(Ci,I+l-iE(fI+l-i'...'fI-l)) Cd) 

= E(Ci,I+r-i)*E(fI+l,i..-..fI-l) (e) 

= E(Ci,I+1-i)'fI+1-i'...*fI-l - (f) 

Here (a) holds because of the iterative rule for expectations, 

(b) holds because of the definition (1) of CiT, (c) holds 

because Ci,I+l-i is a scalar under the stated condition, (d) 

holds because conditions which are independent from the 

conditioned variable fI+l-i*e..*fI-l can be omitted (observe 

assumption (4) and the fact that fI+l-i, . . . . fT-1 only depend 

on variables of accident years < i), (e) holds because E( fI+l- 

i’... *fI-1) is a scalar and (f) holds because of (Cl). 

Finally, repeated application of the iterative rule for 

expectations and of assumption (3) yields for the expected value 

of the true reserve CiI 

E(Cir) = E(E(CiIlCil,...,Ci,I-1)) 

p E(Ci, I-1fI-l) 

= E(Ci,I-1) Q-1 
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= E(CilI-2fI-2)fI-1 

= E(Ci,I-2) fI-2fI-1 

= etc. 

= E(Ci,I+l-i)fI+1-i'....fI-l 

= E(CiI) * 



. culation of the Standard Error of Ci1 

. * 
ProDosltloll : Under the assumptions 

(3) 

(4) 

(5) 

the 

There are unknown constants fl, . . . . fIml with 

B(Ci,k+llCillB..rCik) E Cikfkr 15 i 5 I, 1 s k 5 I-l. 

The variables {Gil, . . . . CiI) and {Cjl, .,., CjI} of 

different accident years i # j are independent. 

There are unknown constants 01, . . . . ax-1 

Var(Ci,k+llCil,...,Cik) it Cil@Jc2r 1Si 

standard error s.e.(Ci~) of the estimated 

amount Ci1 = Ci,I+l-ifI+l,i’...‘fI*l is given 

(S.e.(CiI))2 = $1 
I-1 4k2 1 

C - ( - + 
k=I+l-i fk2 Cik 

with 

5 I, 1 5 k 5 I-l. 

ultimate claims 

by the formula 

1 
-1 
I-k 

c cjk 
j=l 

where Cik = Ci,I+l-ifI+l-i"'fk-1 , k > 1+1-i, are the estimated 

values of the future Cik and Ci,~+l-i = Ci,I+l-is 

prooc: As stated in Chapter 4, the standard error is the square 

root of an estimator of mse(CiI) and we have also seen that 

(Dl) mse(CiI) = Var(CiI/D) + (E(CiI(D) - Cix)' . 

In the following, we use the abbreviations 

Ei 0) = E(XICilr *--I Ci,I+l-i) r 

VariW = Var(XlCil, . . ., Ci,I+l-i) - 

Because of the independence of the accident years we can omit in 

(Dl) that part of the condition D = { Cik I i+k ~5 I+1 ) which is 

independent from CiI, i.e. we can write 

(D2) mse(Ci~) = Vari(CiI) + (Ei(CiI) - Ci1)' . 
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We first consider Vari(CiI). Because of the general rule Var(X) 

= E(X2) - (E(X))2 we have 

(D3) Vari(CiI) = Ei(Ci12) - (Ei(CiI))2 . 

For the calculation of Ei(CiI) we use the fact that 

for k 2 1+1-i 

(D4) Ei(Ci,k+l) = Ei(E(Ci,k+llCj.lr -*-r Cik)) 

= Ei (Cikfk) 

= Ei(Cik)fk s 

Here, we have used the iterative rule for expectations in its 

general form E(XIZ) = E(E(XIY)IZ) for {Y} > {Z} (mostly we have 

(2) = 0). By successively applying (D4) we obtain for k 2 1+1-i 

(D5) Ei(Ci,k+l) = Ei(Ci,I+l-i)fI+l-i'****fk 

= Ci,I+l-ifI+l-i'...'fk 

because Ci,I+l-i is a scalar under the condition 'i's 

For the calculation of the first term Ei(Ci12) of (D3) we use 

the fact that for k 1 1+1-i 

(DC) Ei(Ci,k+12) = Ei(E(Ci,k+121Cil, ***I Cik) (4 

= Ei( Var(Ci,k+ilCil, ..., Cik) + (b) 

+ (E(Ci,k+llCilr --*I cik))2 ) 

= Ei( CikQk2 + (cikfk)2 ) (cl 

= Ei(Cik)Uk2 + Ei(Cik2)fk2 . 

Here, (a) holds due to the iterative rule for expectations, (b) 

due to the rule E(X2) = Var(X) + (E(X))2 and (c) holds due to 

(3) and (5). 
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Now, we apply (D6) and (D5) successively to get 

(D7) Ei(Ci12) = Ei(Ci,I-l)QI-l2 + Ei(Ci,I-12)fI,12 

= Ci,I+l-lfI+l-l"'fI-2QI-1 2, 

+ Ei(Ci,I-2)QI-22fI-12 + 

+ Ei(Ci,I-22)fI-22fI-12 

= Ci,I+l-lfr+l-l***fI-201-l 2+ 

+ Ci,I+l-lfI+l-l"'fI-301~22fI-12 + 

+ Ei(Ci,r-3f~I-32fr-z2fI-12 + 

+ Ei(Ci,I-32)fI-32fI-22fI-12 

= etc. 

I-l 
= Ci,I+l-i D fI+l-i"'fk-lek2fk+12"'fI-l2 

k=I+l-i 

+ Ci,I+l-i 2f I+l-i2'*..*fI-12 

where in the last step we have used Ei(Ci,I+l-if = Ci,I+l-i and 

Ei(Ci,I+l-i2) = Ci,I+1-i2 because under the condition 'i' 

Ci,I+l-i is a scalar. 

Due to (D5) we have 

(Da) (Ei(CiI))2'x Ci,I+l-i2fI+l-i2'..**fI-12 * 

Inserting (D7) and (Da) into (D3) yields 

I-l 
(D9) Vari(Cir) = Ci,I+l-i C fI+l-i "~fk,l~k2fk+12~~*fI-12 

k=I+l-i 

We estimate this first summand of mse(CiI) by replacing the 

unknown parameters fk, Ok2 with their unbiased estimators fk and 

Ok', i.e. by 

I-l 
(DlOl Ci,I+l-i D f1+1-i"' fk-l'=,f~f,f+l-*fI2,1 = 

k=I+l-i 
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2 I-l 
z Ci,*+l-ifl+l-l"'f~-l C 

ak2/fk2 

k=I+l-i Ci,I+l-ifI+l-i"'fk-1 

I-l 
= c"i, c 

ak2/fk2 

k=I+l-i Cik 

where we have used the notation Cik introduced in the 

proposition for the estimated amounts of the future Cik, k > 

1+1-i, including Ci,I+l-i = Ci,I+l-is 

We now turn to the second summand of the expression (D2) for 

mse (CiI) . Because of (D5) we have 

Ei (CiI) = Ci,I+l-ifI+I-i'.*.'fI-I 

and therefore 

(D11) (Ei(CiI) - CiI12 = 

= Ci,I+l-i2(fI+l-i'*..'fI-I - f*+l-i'-.s' fI-1)2 * 

This expression cannot simply be estimated by replacing fk with 

fk because this would yield 0 which is not a good estimator 

because fI+l-is... .fI,1 generally will be different from 

fI+I-i'... *fI-I and therefore the squared difference will be 

positive. We therefore must take a different approach. We use 

the algebraic identity 

F = fI+l-i*...*fI-I - fI+l-i*,..*fI-l 

= S*+l-j, + S-S + S*-1 

with 

Sk = fI+l-i'...'fk-ffkfk+l.....fI-1 - 

- fI+l-i'...'fk-lfkfk+I*...*fI-I 

= f*+1-is... 'fk-l(fk-fk)fk+l'...'fI-1 . 

This yields 
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F2 = (SI+l-i + ea. + ~S1-1)~ 

I-l 
x c Sk2 

k=I+l-i 
+ 2 c sjsk s 

-f<k 

where in the last summation j and k run from 1+1-i to I-l. Now 

we replace Sk2 with E(Sk2/Bk) and sjsk, j < k, with S(SjSklBk). 

This means that we approximate Sk2 and sjsk by varying and 

averaging as little data as possible so that as many ValUSS Cik 

as possible from data observed are kept fixed. Due to (A4) we 

have E(fk-fklBk) = 0 and therefore E(sjsklBk) = 0 for j < k 

because all frr r < k, are scalars under Dk. Because of 

(D12) E((fk-fk)‘jBk) = --(fk/Bk) 

I-k 
= C Var 

j=l 

I-k I-k 
= ' var(Cj,k+l/cjl#~..PCjk)/( c cjk)2 

j=l j-1 

I-k 
a c cjkak' / (1xkcjk)2 

j=l j=l 

= ek2 / fs:cjk 

we obtain 

E(sk2 1%) = fi+1-i ...f:,l":f:+l".f;-l / 
I-k 

c cjk e 
j=l 

Taken together, we have replaced F2 * ( I: Sk)2 with SkE(Sk21Bk) 

and because all terms of this sum are positive we can replace 

all unknown parameters fk, Ok2 with their unbiased estimators 
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fkr ak2. Altogether, we estimate F2 = (fI+l-i'...*fI-1 - 

fI+l-~-...*f~-~)2 by 

I-l 2 2 2 
c ( f1+1-i". &‘ak’fk+l 

k=I+l-i 
’ " fi-1 / >=Ibjk ) = 

2 2 I-l Ok2 /fk2 = fI+l-i'...'fI-1 c 
k=I+l-i I-k * 

x cjk 
j=l 

Using (Dll), this means that we estimate (Ei(CiI) - C~I)~ by 

2 2 2 I-l ak2/fk2 
(D13) Ci,I+l-ifI+l-i'.**'fI-1 c = 

k=I+l-i I-k 
c cjk 

j=l 

I-l 
= c:, c 

ak2/ fk2 

k=I+l-i I-k ' 
c cjk 

j=l 

From (D2), (DlO) and (D13) we finally obtain the estimator 

(s-e. (Cir) I2 for mse(CiI) as stated in the proposition. 
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5 ak2 

pronositioq: Under the assumptions 

(3) 

(4) 

(5) 

There are unknown constants fl, . ..! fI-1 with 

E(Ci,k+llCilr - * * rcik) = Cikfkr l<isI, 1 s k s I-l. 

The variables {till . . . . CiI} and {Cjl, . . . . CjI) of 

different accident years i # j are independent. 

There are unknown constants al, . . . . aIwl with 

Var(Ci,k+llCilr..-,Cik) = Cikak2, lSil1, 1 5 k s I-l. 

estimators 

1 
ak2 = - 

I-k cj,k+l 
z cjk ( - - fk j2 t 1 I k I I-2, 

I-k-l j=l cjk 

Of ak2 are unbiased, i.e. we have 

E((rk2) = &k2 , 15 k 5 I-2. 

Proof: In this proof all summations are over the index j from 

j=l to j=I-k. The definition of Ok2 can be rewritten as 

(El) (I-k-l)ek2 = I ( Cj,k+12/Cjk - 2'Cj,k+lfk + Cjkfk2 ) 

= I ( Cj,k+12/Cjk ) - I ( Cjkfk2 ) 

using zcj,k+l = fkxcjk according t0 the definition Of fk. USi.rK$ 

again the set 

Dk = ( Cij 1 i+j 5 I+l, j 5 k } 

of variables Cij assumed to be known, (El) yields 

fE2) E((I-k-l)ak2)Bk) = E E(cj,k+121Bk)/cjk - c CjkE(fk2/Bk) 

because cjk is a scalar under the condition of Bk being known. 

Due to the independence (4) of the accident years, conditions 

which are independent from the conditioned variable can be 
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omitted in E(Cj,k+l'IBk), i.e. 

(E3) E(Cj,k+l'lBk) = E(cj,k+121cjl,...,cjk) 

= var(cj,k+l)cjl,...,cjk) + (E(cj,k+llcjl,.-.,Cjk))2 

= cjkak2 + (cjkfk12 

where the rule E(X2) = Var(X) + (E(X))2 and the assumptions (5) 

and (3) have also been used. 

From (D12) and (A4) we gather 

(E4) E(fk'IBk) = Var(fklBk) + (E(fklBk))2 

= ak2 / Ccjk + fk2 . 

Inserting (E3) and (E4) into (E2) we obtain 

E((I-k-1)ek2[Bk) = 

I-k 
2 ( ok2 + cjkfk2 ) - 

I-k I-k 
= 

j=l 
c ( cjkak2/ c cjk + cjkfk2 ) 

j=l j=l 

= (I-k)ak2 - ok2 

= (I-k-l)ok2 . 

From this we immediately obtain E(ak21Bk) = Ok2 . 

Finally, the iterative rule for expectations yields 

E(ak2) = E(E(ak'lBk)) = E(ak2) = Ok2 . 
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Awwendix F: The Standard Error of the Overall Reserve Estimate 

PrODositiqD: Under the assumptions 

(3) There are unknown constants fl, . . . . fI-1 with 

E(Ci,k+lfCilr...rCik) p Cikfkr l<i<I, 1 5 k 5 I-l. 

(4) The variables {Gil, . . . . CiI) and (Cjl, . . . . CjI) of 

different accident years i # j are independent. 

(5) There are unknown constants al, . . . . aI- with 

Var(Ci,k+ilCii, sssrcik) = Cikak', lsi51, 1 5 k 5 I-l. 

the standard error s.e.(R) of the overall reserve estimate 

R = Rp + . . . + Rx 

is given by 

I 
(s.e.(R))2 = C 

I-l 2ak2/fk2 

i=2 i 
(s.e.(Ri)2 + CiI( I CjI) 

j=i+l k=Itl-i I-k 
= cnk 

n=l 

proop: This proof is analogous to that in Appendix D. The 

comments will therefore be brief. 

We first must determine the mean squared error mse(R) of R. 

Using again D = { Cik 1 i+k I I+1 } we have 

I I I 
(Fl) mS9( C Ri) - E(( I: Ri - C Ri)2 

i-2 1==2 i=2 
1") 

I I 
- E(( C QI - 2 Ci1 

i.02 ia2 
)'lD) 

= Var(ii2CiIlD) + ( E( E CiIID) 
I 

i=2 

The independence of the accident years yields 
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I 
(=I Var( i CiIlD) 

i=2 
= z Var(CiIICil, ---, Ci,I+l-i) , 

i=2 

whose summands have been calculated in Appendix D, see (D9). 

Furthermore 

I 
(F3) ( E( g CiIID) - cciI)2= ( i ( E(CiIlD) -Ci1) )2= 

i=2 i=2 i=2 

= c (E(CiIID) 
Zli,jSI 

- CiI)‘(E(CjI(D) - Cj1) 

= c 
Zli,jSI 

Ci,I+I-iCj,I+I-jFiFj 

I 
= C (Ci,I+1-iFi12 + 2 C Ci,I+l-i.Cj,I+l-jFiFj 

i=2 icj 

with (like in (Dll)) 

Fi = fI+I-i"'fI-1 - fI+l-i"'fI-1 

which is identical to F of Appendix D but here we have to carry 

the index i, too. In Appendix D we have shown (cf. (D2) and 

(Dll)) that 

mse(Ri) = Var(CiIlCiI,...,Ci,I+I-i) + (Ci,I+I-iFi)' . 

Comparing this with (Fl), (F2) and (F3) we see that 

I I 
(F4) mse( C Ri) = D mse(Ri) + C 

i-2 i=2 2Si<j51 
2'Ci,I+l-iCj,I+I-jFiFj. 

We therefore need only develop an estimator for FiFj. A 

procedure completely analogous to that for F2 in the proof of 

Appendix D yields for FiFj, i-zj, the estimator 

I-l 
c f1+1-j 

k=I+l-i 

2 I-k 
...f~-la:f~+l...fr-l, E C* , 

n=l 

which immediately leads to the result stated in the proposition. 
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ADDendiX G: Testins for Correlations between Subsequent 

DeveloDment Factors 

In this appendix we first prove that the basic assumption (3) of 

the chain ladder method implies that subsequent development 

factors Cik/Ci,k-I and Ci,k+I/Cik are not correlated. Then We 

show how we can test if this uncorrelatedness is met for a given 

run-off triangle. Finally, we apply this test procedure to the 

numerical example of Chapter 6. 

prooosition: Under the assumption 

(3) There are unknown constants fl, . . . . fI-I with 

E(Ci,k+l/Cilr . - - rcik) = Cikfkr 16i61, 1 5 k 6 I-l. 

subsequent development factors Cik/Ci,k-1 and Ci,k+l/Cik are 

uncorrelated, i.e. we have (for 1 S i I I, 2 I k .S I-l) 

Cik ci,k+l Cik 
E(-.----- 1 = E( 

ci,k+l 
- )*E( - ) ' 

Ci,k-l Cik Ci,k-1 =ik 

Proof: For j S k we have 

(Gl) E(Ci,k+l/Cij) = E(E(Ci,k+l/CijlCil,...,cik)) 

= E(E(Ci,k+llCil,...,Cik)/Cij) 

(4 

(,b) 

= E(Cikfk/Cij) (cl 

* E(Cik/Cij)fk . (d) 

Here equation (a) holds due to the iterative rule E(X) = 

E(E(X/Y)) for expectations, (b) holds because, given Gil, . . . . 

Cik, Cij is a Scalar for j S k, (c) holds due to (3) and (d) 

holds because fk is a scalar. 

155 



From (Gl) we obtain through the specialization j = k 

(=I E(Gi,k+I/Cik) = E(Cik/Gik)fk = fk 

and through j = k-l 

Cik Ci,k+l (Gl) cik 
(G3) E( -*- 1 

Ci,k+l =E(- = 1 EC - )fk . 
Ci,k-1 cik Ci,k-l Ci,k-1 

Inserting (G2) into (G3) completes the proof. 

pesisnins the test Drocedure: 

The usual test for uncorrelatedness requires that we have 

identically distributed pairs of observations which come from a 

Normal distribution. Both conditions are usually not fulfilled 

for adjacent columns of development factors. (Note that due to 

(G2) the development factors Ci,k+l/Gikr 1 5 i I I-k, have the 

same expectation but assumption (5) implies that they have 

different variances.) We therefore use the test with Spearman's 

rank correlation coefficient because this test is distribution- 

free and because by using ranks the differences in the variances 

of Ci,k+l/Cikr 1 I i 5 I-k, become less important. Even if these 

differences are negligeable the test will only be of an 

approximate nature because, strictly speaking, it is a test for 

independence rather than for uncorrelatedness. But we will take 

this into account when fixing the critical value of the test 

statistic. 

For the application of Spearman's test we consider a fixed 

development year k and rank the development factors Ci,k+I/Gik 

observed so far according to their size starting with the 
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smallest one on rank one and so on. Let rik, 1 I i < I-k, denote 

the rank of ci,k+l/cik obtained in this way, 1 I rik 5 I-k. Then 

we do the same with the preceding development factors 

CikiCi,k-lr 1 I i 2 I-k, leaving out CI+I-k,k/CI+l-k,k-1 for 

which the subsequent development factor has not yet been 

observed. Let sikt 1 5 i < I-k, be the ranks obtained in this 

way, 1 5 sik 5 I-k. Now, SpeaIIIIan’S rank correlation COeffiCient 

Tk is defined to be 

(G4) Tk = 1 - 6 fzr (rik - Sik)l / ((I-k)3-I+k) . 

From a textbook of Mathematical Statistics it can be seen that 

-1 S Tk S +l , 

and, under the null-hypothesis, 

E(Q) = 0 , 

Var(Tk) = 1/(1-k-l) . 

A value Of Tk close to 0 indicates that the development factors 

between development years k-l and k and those between years k 

and k+l are not correlated. Any other value of Tk indicates that 

the factors are (positively or negatively) correlated. 

For a formal test we do not want to consider every pair of 

columns of adjacent development years separately in order to 

avoid an accumulation of the error probabilities. We therefore 

consider the triangle as a whole. This also is preferable from a 

practical point of view because it is more important to know 

whether correlations globally prevail than to find a small part 

of the triangle with correlations. We therefore combine all 
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values T2, T3, . . . . TI-2 obtained in the same way like Tk. 

(There is no Tl because there are no development factors before 

development year k=l and similarly there is also no TI; even 

TX-1 is not included because there is only one rank and 

therefore no randomness.) According to Appendix B we should not 

form an unweighted average of T2, .,., TI-2 but rather use 

weights which are inversely proportional to Var(Tk) = 1/(1-k-l). 

This leads to weights which are just equal to one less than the 

number of pairs (rik, sik) taken into account by Tk which seems 

very reasonable. 

We thus calculate 

I-2 
(G5) T = 'X2 (I-k-l)Tk / C (I-k-l) 

k=2 k=2 

I-2 I-k-l 
= c Tk I 

k=2 (I-2)(1-3)/2 

I-2 
E(T) = C E(Tk) = o , 

k=2 

I-2 
c-1 Var(T) = '.X2 (I-k-l)2 Var(Tk) / ( C (I-k-l) )2 

k=2 k=2 

I-2 
= c (I-k-l) / ( 'X2 (I-k-l) )2 

k=2 k=2 

A. 

= 

(I-2)(1-3)/2 

where for the calculation of Var(T) we used the fact that under 

the null-hypothesis subsequent development factors and therefore 

also different Tk's are uncorrelated. 
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Because the distribution of a single Tk with I-k 2 10 is Normal 

in good approximation and because T is the aggregation of 

several uncorrelated Tk's (which all are symmetrically 

distributed around their mean 0) we can assume that T has 

approximately a Normal distribution and use this to design a 

significance test. Usually, when applying a significance test 

one rejects the null-hypothesis if it is very unlikely to hold, 

e.g. if the value of the test statistic is outside its 95% 

confidence interval. But in our case we propose to use only a 

50% confidence interval because the test is only of an 

approximate nature and because we want to detect correlations 

already in a substantial part of the run-off triangle. 

Therefore, as the probability for a Standard Normal variate 

lying in the interval (-.67, . 67) is 50% we do not reject the 

null-hypothesis of having uncorrelated development factors if 

.67 .67 

d((~-2) (I-3)/2) 
S T I + 

d((I-2)(1-3)/2) ' 

If T is outside this interval we should be reluctant with the 

application of the chain ladder method and analyze the 

correlations in more detail. 

c anter 6: 

We start with the table of all development factors: 
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FI F2 F3 F4 F5 F6 F7 F8 F9 

i=l 1.6 
i=2 40.4 
i=3 2.6 
i=4 2.0 
i-5 8.8 
i=6 4.3 
i=7 7.2 
i=8 5.1 
i=9 1.7 

1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01 
1.26 1.98 1.29 1.13 0.99 1.043 1.03 
1.54 1.16 1.16 1.19 1.03 1.026 
1.36 1.35 1.10 1.11 1.04 
1.66 1.40 1.17 1.01 
1.82 1.11 1.23 
2.72 1.12 
1.89 

As described above we first rank column Fl according to the size 

of the factors, then leave out the last element and rank the 

column again. Then we do the same with columns F2 to F8. This 

yields the following table: 

ril si2 ri2 si3 ri3 si4 ri4 si.5 ri5 si6 ri6 si7 ri7 si8 ri8 

112 2 112 2 5 4 4 3 2 11 
9 8 117 6 6 5 3 2 113 2 2 
4 3 4 4 4 3 3 3 4 3 2 2 1 
3 2 3 3 5 4 112 13 
8 7 5 5 6 5 4 41 
5 4 6 6 2 2 5 
7 6 8 7 3 
6 5 7 
2 

We now add the squared differences between adjacent rank columns 

of equal length, i.e. we add (Sik - rik)2 over i for every k, 2 

<k68. This yields 68, 74, 20, 24, 6, 6 and 0. (Remember that 

we have to leave out k = 1 because there is no sil, and k = 9 

because there is only one pair of ranks and therefore no 
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randomness.) From these figures we obtain Spearman's rank 

correlation coefficients Tk according to formula (G4): 

k 2 3 4 5 6 7 8 

Tk 4121 -9/28 3/7 -l/5 215 -l/2 1 
I-k-l 7 6 5 4 3 2 1 

The (I-k-1)-weighted average of the Tk's is T = .070 (see 

formula (GS)). Because of Var(T) = l/28 (see (G6)) the 50% 

confidence limits for T are f.67H28 = f.127. Thus, T is within 

its 50%-interval and the hypothesis of having uncorrelated 

development factors is not rejected. 
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ADDendiX H: Testina for Calendar Year Effects 

One of the three basic assumptions underlying the chain ladder 

method was seen to be assumption (4) of the independence of the 

accident years. The main reason why this independence can be 

violated in practice is the fact that we can have certain 

calendar year effects such as major changes in claims handling 

or in case reserving or external influences such as substantial 

changes in court decisions or inflation. Note that a constant 

rate of inflation which has not been removed from the data is 

extrapolated into the future by the chain ladder method. In the 

following, we first generally describe a procedure to test for 

such calendar year influences and then apply it to our example. 

Desianina the test DrOCedUre: 

A calendar year influence affects one of the diagonals 

D-j = { Cjlt Cj-l,2, -*-r Cz,j-lt Clj 1 t 1 .s j 5 I, 

and therefore also influences the adjacent development factors 

A-j = 1 Cj2lCjlr Cj-1,3/Cj-l,2r -*-I Cl,j+l/Clj 1 

and 

Aj-1 = { Cj-l,Z/Cj-l,lr Cj-2,3/Cj-2,2# ---I Clj/Cl,j-1 ) 

where the elements of Dj form either the denominator or the 

numerator. Thus, if due to a calendar year influence the 

elements of Dj are larger (smaller) than usual, then the 

elements of Aj-1 are also larger (smaller) than usual and the 

elements of Aj are smaller (larger) than usual. 
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Therefore, in order to check for such calendar year influences 

we only have to subdivide all development factors into 'smaller' 

and *larger* ones and then to examine whether there are 

diagonals where the small development factors or the large ones 

clearly prevail. For this purpose, we order for every k, 1 5 k 5 

I-l, the elements of the set 

Fk = f ci,k+l/cik 1 1 S i 5 1-k ) I 

i.e. of the column of all development factors observed between 

development years k and k+l, according to their size and 

subdivide them into one part LFk of larger factors being greater 

than the median of Fk and into a second part SFk of smaller 

factors below the median of Fk. (The median of a set of real 

numbers is defined to be a number which divides the set into two 

parts with the same number of elements.) If the number I-k of 

elements of Fk is odd there is one element of Fk which is equal 

to the median and therefore assigned to neither of the sets LFk 

and SFk; this element is eliminated from all further 

considerations. 

Having done this procedure for each set Fk, 1 I k I I-l, every 

development factor observed is 

- either eliminated (like e.g. the only element of FI-1) 

- or assigned to the set L = LFI + . . . + LFI-2 of larger factors 

- or assigned to the set S = SF1 + . . . + SFI-2 of smaller 

factors. In this way, every development factor which is not 

eliminated has a 50% chance of belonging to either L or S. 
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Now we count for every diagonal Aj, 1 I j 5 I-l, of development 

factors the number Lj of large factors, i.e. elements of L, and 

the number Sj of small factors, i.e. elements of S. Intuitively, 

if there is no specific change from calendar year j to calendar 

year j+l, Aj should have about the same number of small factors 

as of large factors, i.e. Lj and Sj should be of approximately 

the same size apart from pure random fluctuations. But if Lj is 

significantly larger or smaller than Sj or, equivalently, if 

zj = min(Lj, Sj) , 

i.e. the smaller of the two figures, is significantly smaller 

than (Lj+Sj)/Z, then there is some reason for a specific 

calendar year influence. 

In order to design a formal test we need the first two moments 

of the probability distribution of Zj under the hypothesis that 

each development factor has a 50 % probability of belonging to 

either L or S. This distribution can easily be established. We 

give an example for the case where Lj+Sj = 5, i.e. where the set 

Aj contains 5 development factors without counting any 

eliminated factor. Then the number Lj has a Binomial 

distribution with n = 5 and p = ,5, i.e. 

prob(Lj = m) = (t) 
1 

F 
= (1) f I m = 0, 1, . . . . 5. 

Therefore 

prob(Sj = 5) = prob(Lj = 0) = l/32 , 

prob(Sj = 4) = prob(Lj = 1) = 5/32 , 



prob(Sj = 3) = prob(Lj = 2) = lo/32 , 

prob(Sj = 2) = prob(Lj = 3) = lo/32 , 

prob(Sj = 1) f prob(Lj = 4) = 5/32 , 

prob(Sj = 0) = prob(Lj = 5) = l/32 . 

This yields 

prob(Zj = 0) = prob(Lj = 0) + prob(Sj = 0) = 2/32 , 

prob(Zj = 1) = prob(Lj = 1) + prob(Sj = 1) = lo/32 , 

prob (z j = 2) = prob(Lj = 2) + prob(Sj = 2) = 20/32 , 

E(Zj) = (0.2 + 1.10 + 2*20)/32 = 50132 , 

E(Zj') = (0.2 + 1.10 + 4*20)/32 = 90/32 , 

Var(Zj) = E(Zj2) - (E(Zj))2 = 95/256 , 

The derivation of the general formula is straightforward but 

tedious. We therefore give only its result. If n = Lj+Sj and m = 

[(n-1)/2] denotes the largest integer $ (n-l)/2 then 

n(n-1) n-l n(n-1) 
(HZ) Var(Zj) = - - 

4 (m) - + E(Zj) 
2" 

- (E(Zj)12 * 

It is not advisable to test each Zj separately in order to avoid 

an accumulation of the error probabilities. Instead, we consider 

z = z2 + . . . + ZI-1 

where we have left out Z1 because Al contains at most one 

element which is not eliminated and therefore Z1 is not a random 

variable but always = 0. Similarly, we have to leave out any 

other Zj if Lj+Sj 5 1. Because under the null-hypothesis 

different Zj's are (almost) uncorrelated we have 
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E(Z) = E(Z2) + . . . + E(ZT-1) , 

Var(Z) = Var(Z2) + . . . + Var(ZT-1) 

and we can assume that Z approximately has a Normal 

distribution. This means that we reject (with an error 

probability of 5 %) the hypothesis of having no significant 

calendar year effects only if not 

E(Z) - 2*+ar(Z) 5 Z 5 E(Z) + 2&ar(Z) . 

ADDliCatiOn to the examnle of Chaoter 6: 

We start with the triangle of all development factors observed: 

i=l 1.6 1.32 1.08 1.15 1.20 1.11 1.033 1.00 1.01 
i=2 40.4 1.26 1.98 1.29 1.13 0.99 1.043 1.03 
i=3 2.6 1.54 1.16 1.16 1.19 1.03 1.026 
i=4 2.0 1.36 1.35 1.10 1.11 1.04 
i=5 8.8 1.66 1.40 1.17 1.01 
i=6 4.3 1.82 1.11 1.23 
i=7 7.2 2.72 1.12 
i=8 5.1 1.89 
i=9 1.7 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

We have to subdivide each column Fk into the subset SFk of 

'smaller' factors below the median of Fk and into the subset LFk 

of 'larger' factors above the median. This can be done very 

easily with the help of the rank columns rik established in 

Appendix G: The half of factors with small ranks belongs to SFk, 

those with large ranks to LFk and if the total number is odd we 

have to eliminate the mean rank. Replacing a small rank with 
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‘S’, a large rank with 'L' and a mean rank with *** we obtain 

the following picture: 

I- - - - 
j-1 j-2 j-3 j-4 je5 j=6 j-7 j=8 jag 

j=l s s s s L L * s * 
j=2 L s L L * s L L 
j=3 s s l s L s s 
j ~‘4 s s L s s L 
j==5 L L L L s 
j=6 * L s L 
j=7 L L s 
j=8 L L 
j=9 S 

We now count for every diagonal Aj, 2 I j 5 9, the number Lj of 

L's and the number Sj of S's. With the notations Zj = min(Lj, 

Sj) I n = S- 3 + Ljt m = [(n-1)/2] as above and using the formulae 

(Hl), (H2) for E(Zj) and Var(Zj) we obtain the following table: 

j S* 3 L* 3 Zj n m E(Zj) Var(Zj) 

1 1 2 0 .5 .25 
0 0 3 1 .75 .1875 
1 1 4 1 1.25 .4375 
3 1 4 1 1.25 .4375 
3 1 4 1 1.25 .4375 
4 2 6 2 2.0625 .6211 
4 4 8 3 2.90625 .8037 
4 4 8 3 2.90625 .8037 

Total 14 12.875 3.9785 = (1.9946)2 

The test statistic Z = CZj = 14 is not outside its 95%-range 

(12.875 - 2B1.9946, 12.875 + 2e1.9946) = (8.886, 16.864) and 
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therefore the null-hypothesis of not having significant calendar 

year influences is not rejected so that we can continue to apply 

the chain ladder method. 
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UNBIASED LOSS DEVELOPMENT FACTORS 

Abstract 

Casualty Actuarial Society literature is inconclusive regarding whether the loss development 
technique is biased or unbiased, or which of the traditional methods of estimating link ratios is 
best. This paper presents u mathematical framework IO answer those questions for the class of 
linear link ratio estimators used in practice. A more accurate method of calculating link ratios 
is derived based on classical regression theory. The circumstances under which the traditional 
methods could be considered optimal are discussed. It is shown that two traditional estimators 
may in fact be least squares estimators depending on the set of assumptions one believes governs 
the process of loss development. Form&s for variances ox and confidence intervals around, 
point estimates of ultimate loss and loss reserves are derived. A triangle of incurred loss dollars 
is analyzed to demonstrate the concepts and techniques. A summary of a simulation study is 
presented and suggests that the performance of the incurred loss development technique based 
on the more general least squares estimator may approach that of the Bomhuetter-Ferguson and 
Stanard-Buhlmann techniques in some situations. The requisite mathematics is within the reach 
of the actuarial student equipped with the first three exams. 
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1. INTRODUCTION 

Three standard methods of estimating link ratios in practice are the Simple Average 
Development (SAD) method - the arithmetic average of the link ratios; the Weighted Average 
Development (WAD) method - the sum of losses at the end of the development period divided 
by the sum of the losses at the beginning; and the Geometric Average Development (GAD) 
method - the n* root of the product of n link ratios. Casualty Actuarial literature is 
inconclusive regarding which method is “best” or even whether the methods are biased or 
unbiased.’ The purpose of this paper is to present a mathematical framework for evaluating the 
accuracy of these methods, to suggest alternatives, and to unearth valuable information. about 
the variance of the estimates of developed ultimate loss. It is assumed that the actuary has 
exhausted all leads to discover systematic or operational reasons why a development triangle may 
appear as it does, and the only concern now is how to deal with the remaining noise. 

Proofs of the technical theorems are relegated to the Appendix. The mathematics within the 
body of the paper is intended to motivate discussion and application. 

An example will help motivate the exposition, so consider the accident year incurred loss 
development triangle and its triangle of link ratios in Figures 1A and 1B. The specific content 
of the example triangle is incidental to the purpose of this paper. It is hoped that the data is 
sufficiently realistic to exemplify adequately the application of these results. The extension of 
the results to other kinds of triangles should be self-evident. 

Denote the link ratio as b, and the SAD, WAD, and GAD estimates of b as bs,, lawAD, and 
b CAD respectively. For 12-24 months of development in the example triangle, these statistics 
evaluate to b,,,=3.953, b,=2.480, and b cm=3. 129. To determine which estimate is best, 
we must first unveil the hidden assumptions implicit in the actuarial technique called loss 
development. 

I see, for example, James N. Stanard, "A Simulation Test of Prediction 
Errors of Loss Reserve Estimation Techniques," andJohn P. Robertson's discussion 
in the Proceedings of the Casualty Actuarial Society, LXXII, 1985. 
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2. POINT ESTIMATES 

When we say that we expect the value of incurred losses as of, say, 24 months to equal the 
incurred value as of 12 months multiplied by a link ratio, it is possible that what we really mean 
is this: the value of incurred losses as of 24 months is a random variable whose expected value 
is conditional on the 12 month incurred value, and equals that 12 month value multiplied by an 
unknown constant. Symbolically, 

y=bx+e 
where x and y are the current and next evaluations respectively, b is the unknown constant 
development factor, called the age-to-age factor or link ratio, and e represents random variation. 
The first step in developing losses is estimating the link ratios. 

Expected Value of the Link Ratio 

Let us generalize and suppose that the relationship between x and y is truly linear rather than 
strictly multiplicative. The more general model is 

Model I y=a+bx+e 
E(e) =O, Var(e) is constant across accident years, the e’s are uncorrelaced 
between accident years and are independent of x. 

This model is clearly a regression of 24-month losses y on 12-month losses x. Although x is a 
ptioti a random variable, once an evaluation is made it is treated as a constant for the purpose 
of loss development. More precisely, the model says that the expected value of the random 
variable y conditional on the random variable x is linear in x: EO, 1 x)=a+bx. With this 
understanding of the relationship between x and y, all classical results of least squares regression 
may be brought to bear on the theory of loss development.’ For the remainder of this paper 
all expectations are conditional on the current evaluation. 

It is a well known theorem, the Gauss-Markoff Theorem, that the “best estimates” of a and b 

are the least squares estimates, denoted & and lj : 

lj- c(x-FlY 
c (x-3 * 

and a .y-6,- 

For example, the least squares estimates 2 and 6 for the 12-24 month development period in 

the triangle of Figure 1 are a = $373.63 (all amounts will be given in thousands of dollars) 

and 6 = 2.027. These estimates were calculated using a popular spreadsheet software package. 

: see, for example, Henry Scheffk, The Amlysis of Variance, Wiley, 1956, 
p. 195. 



The indicated regression line is shown in Figure 2A 

The method of estimating link ratios’ by least squares under the assumptions of Model I will 
be called the Least Squares Linear (LSL) method. The least squares estimators of the line’s 
parameters will be denoted aLSL and b,,. 

Five properties of the least squares estimates are particularly appealing.4 

The least squares estimates are linear functions of the variables y 1 x. 
They are unbiased; i.e., E(a,,)=a and E(b,,)=b. 
Within the class of all linear unbiased estimates of a and b, the least squares estimates 
have the smallest variance. Least squares estimators are therefore called B.L.U.E.: Best 
Linear Unbiased Estimators. 
The vertical deviations of the (x,y) observations from the regression line sum to zero; in 
other words, the average residual is zero. 

5. The least squares regression line passes through the sample average (?,y7 

Before continuing, glance again at Figure 2A. By visual inspection one might say that the 
y-intercept is close enough to zero that it could reasonably be ignored in the predicted 
relationship between y and x.~ If one believes the y-intercept should truly be zero in the first 
place, perhaps the model to use is 

Model II y=bx+e 
E(e)=O, Var(e) is constant across accident years, the e’s are uncorrelated 
between accident years and are independent of x. 

This model would be inappropriate if there were a significant probability that x = 0. 

The BLUE estimator for b under Model II is 

The method of estimating link ratios by least squares under this strictly multiplicative 
development model will be called the Least Squares Multiplicative (LSM) method. The least 
squares estimator of the line’s parameter will be denoted bu,,,. 

' The estimate B of the constant term can be considered a "link ratio" if 

the link ratio function is viewed as being vector valued (a,61 

' These results can be found in many Introductory texts on statistical 
regression. Property 3 is the Gauss-Markoff Theorem. 

' Although it will be demonstrated that the y-intercept is significantly 
different from zero. 
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In the example triangle the 12-24 month LSM link ratio is b,, = 2.204. Figure 2B illustrates 
the difference between the LSL and LSM indicated regression lines. 

Does b,, satisfy the five properties of the LSL estimator above? Obviously, b,, is a linear 
function of the y’s (again, conditional on the known x values). The fact that it is unbiased is 
easy to prove. It has minimum variance within the class of linear unbiased estimators by virtue 
of the Gauss-Markoff Theorem because it is the least squares estimator. But b,, does not 
necessarily satisfy Properties 4.and 5. At first, the fact that btsM does not zero out the sum of 

the residuals nor determine a regression line passing through CT,3 may seem to be a 
drawback. But on second thought, it must be inevitable. Indeed, a least squares regression line 
is required to satisfy two conditions: it must be close to the data and it must zero out the 
residuals. A two parameter line is free to satisfy two conditions. But a one-parameter line has 
the ability to satisfy only one condition. LSM satisfies the first, so it cannot be expected to 
satisfy the second as well. 

If one were to define a “good” linear unbiased estimator as one which satisfies Properties 4 and 
5, but not necessarily Property 3, then &,u would be best (Theorem 1). However, the price 
of adopting bw,,u rather than blsM is an increase in the probability that the prediction of losses 
as of the next evaluation would be off the mark because the variance of bw,,, is greater than the 
variance of blSM. 6 Such are the standards by which b,,, may be considered “optimal.” 

In the example, with bmM= 2.204 for 12-24 months of development, the average residual is 
$227.9 and the standard deviation of the residuals is $876.5. With bw,,=2.480, the average 
residual is $0.4 and the standard deviation of the residuals is $953.1. 

Let us continue now to attack the assumptions of LSL and LSM to discover what we can about 
bsru, and b,, Take the constant variance assumption for example. The impact of trend would 
imply that the variance of e is not constant across accident years. On-leveling the loss triangle 
may adjust for such heteroskedasticity but in addition may introduce unwelcome side effects. 
A model that speaks directly to the issue of non-constant variances is 

Model III Y =bx+ne 
E(e)=O, Var(e) is constant across accident years, the e’s are uncorrelated 
between accident years and are independent of X. 

This model differs from Model II in that it explicitly postulates a dependent relationship between 
the current evaluation and the error term, xe. By dividing both sides of this equation by x we 
see that this model also says that the ratio of consecutive evaluations is constant across accident 
years. In other words, it is the development percent, not the development dollars, and the 
random deviation in that percent that behave consistently from one accident year to the next. 
This model’s BLUE for b is b sAD (Theorem 3). The technique of estimating link ratios under 
the assumptions of Model IIf will be called the SAD method. 

6 Again, the Gauss-Markoff Theorem. This fact is proved directly for this 
actuarial problem as Theorem 2. Intuitively. var(b,,)rVar(b,,,) because bu,,, 
gives more weight to the larger values of x. 

189 



Another model that can adjust for trend is 

Model IV y = bxe 
E(e) = 1, Var(e) is constant across accident years, the e’s are uncorrelated 
between accident years and are independent of x. 

This model says that random noise shocks the development process multiplicatively, and may 
be appropriate in those situations in which the random error in the percentage development is 
itself expected to be skewed. The BLUE for b under Model IV is the geometric average of the 
link ratios, b, (Theorem 4). The technique of estimating link ratios under the assumptions 
of Model IV will be called the GAD method. 

For the remainder of the paper, results will be stated in terms of the LSL and LSM methods. 
Results for SAD and GAD, which are left to the reader, can be derived directly or by applying 
the results below to the transformed SAD and GAD models on which Theorems 3 and 4, 
respectively, depend. 

Estimate of the Next Evaluation 

The point estimate of the expected value of incurred losses as of the next evaluation given the 
current evaluation is 

LSL LSM 
ylsL = aLSL + b,x YLSM = b, x 

The estimates are unbiased under the assumptions of their respective models (Theorem 5). For 
the example triangle the LSL and LSM estimates of the 24-month evaluation of accident year 
1991 are, respectively, $2983 = $374 + 2.027 x $1287 and $2837 = 2.204 x $1287. 

Estimated Ultimate Loss: A Sinale Accident Year 

The Chain Ladder Method states that if b, is a link ratio from 12 to 24 months, b2 is a link ratio 
from 24 to 36 months, etc., and if U is the number of links required to reach ultimate, then 
B”=b,b,- + * b, is the (to ultimate) loss development factor (LDF). The implicit assumption is 
that future development is independent of prior development. This assumption implies a type 
of “transitive” property of loss development: if the conditional expectation of y given x is b,x 
and the conditional expectation of z given y is b,y then the conditional expectation of z given x 
is b,b$.’ 

This all-important Chain Ladder Independence Assumption (CLIA) says that the relationship 
between consecutive evaluations does not depend on the relationship between any other pair of 
consecutive evaluations. In mathematical terms, the random variable corresponding to losses 
evaluated at one point in time conditional on the previous evaluation is independent of any other 
evaluation conditional on its previous evaluation. A direct result of this assumption is the fact 

'See Lemma 1 in Appendix A. This assumption may not hold in practice, for 
example, when a claims department issues orders to "strengthen reserves" after 
having operated for some time under a less conservative strategy. 
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that an unbiased estimate of a to-ultimate loss development factor is the product of the unbiased 

link ratio estimates; i.e., 8,=f$.-6,. 

The very simplicity of the closed form LDF is one of the beauties of the multiplicative 
development approach. A closed form expression for the intercept term of the more general 
LSL approach is not nearly as simple, but this should not be considered a deterrent because a 
closed form, to-ultimate expression is unnecessary. Instead, this paper proposes the use of a 
recursive formula. A recursive estimate of developing ultimate loss illuminates the missing 
portion of the triangle (clarifying the communication of the analysis to management and clients), 
enables the actuary to switch models mid-chain, and is easy to program, even in a spreadsheet. 
Perhaps the most compelling reason, however, is that a recursive estimate is invaluable for 
calculating variances of predicted losses (Section 31, so the point estimates may as well be 
calculated in the same step. 

The mathematical theory for developing recursive estimates of ultimate loss conditional on the 
current evaluation proceeds as follows. Consider a single fixed accident year. Let x0 denote the 
(known) current evaluation and let X, 1 x0 denote the random variable corresponding to the n* 
subsequent (unknown) evaluation conditional on the current evaluation. The goal is to find an 
unbiased estimator for x, 1 xg. By definition, an unbiased estimate of x, 1 x0 is one which 
estimates pn=E(x, f x0). The unbiased chain estimate is built from the individual links x, 1 x,] 
of losses as of one age conditional on losses at the previous age. 

Under the more general LSL model, it is assumed that for each n there exist constants a,, and 
b, such that the random variable x, conditional on x,,.* can be expressed as 

x, I x,,., = a,+ b&,,., + e, . 
It is also assumed that E(e,)=O, that Var(e,) =$., and that the e,‘s are independent of all the x’s 
and, by the CLIA, of each other. Theorem 6 proves that the following recursive formulas yield 
unbiased estimates of future evaluation. 

!A LSM 

P, = a, + 61% Pi = 6l% 

F” = % + ~“fLl P, = 6,~ 

An unbiased estimate of ultimate loss conditional on the current evaluation is therefore F, 

For the example, the LSM estimate for 24-36 months of development is b,,= 1.133. 
Therefore, the prediction of accident year 1991 losses evaluated as of 36 months would be 
$3380 = $2983 x 1.133 if LSL had been used for the 12-24 development period; if LSM had 
been used, the estimate would be $3214 = $2837 x 1.133. The LSM prediction of accident year 
1990 losses as of 36 months would be $3167 = $2795 x 1.133. 

Estimated Total Ultimate Loss: MultivIe Accident Years 
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It should be obvious that an estimate of total ultimate loss for more than one accident year 

combined could be obtained by adding up the separate accident year &, ‘s. However, for the 

purpose of calculating variances, a recursive expression is preferred because development 
estimates of ultimate loss for different accident years are not independent. 

The idea behind the recursive estimate for multiple accident years is this. Starting at the bottom 
left corner of the triangle, add up columns of estimated future evaluations. Find a recursive 
unbiased estimate of those column sums. Then an unbiased estimate of total losses at ultimate 
will be the final sum. 

The formulas are developed as follows, To keep the notation from becoming too convoluted, 
index the rows of the triangle in reverse order so that the youngest accident year is the zeroth 
row. the next youngest is row 1, and so on. Next, index the columns so that the 12 month 
column is the zeroth column, the 24 month column is column 1, etc. A full triangle of N + 1 
accident years appears as in Figure 3. If 

denotes the sum of the accident years’ future evaluations conditional on the accident years’ 
current evaluations, then an unbiased estimate of the future evaluation of multiple accident years 
is an estimate of E(S,J. Let M, denote this expectation. Recursive formulas for estimates of M, 
are: 

UL LSM 

A, = 2, + 6>X0,,) $1 = ~,?u 

Stop when n=U, the age at which all accident years are assumed to have reached ultimate. 
These estimates are unbiased under the assumptions of their respective models. See 
Theorem 10. 

The completed triangle of Figure 1A is shown in Figure 4 where it was assumed that LSL is 
appropriate through 84 months of development. LSM thereafter. and that losses are fully mature 
(i.e.. case reserves are adequate, on average) after 108 months. Then, for example, 

fi, =$2,982 because the 1991 accident year is the only one for which 24 months is a future 

development point. Accident years 1991 and 1990 are the only years which have yet to reach 

the age of 36 months. so i?J = $3,268 + 53.470 = S6.735. And so on. Accident years 1984 

through 1991 have yet to reach ultimate (108 months) so A, = $47,554 
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Estimated Reserves for Outstanding Losses 

Unbiased estimates of outstanding losses are 

p, -paid to date 

for a single accident year and 

&, - Total Paid To Date 

for multiple accident years. 

Estimated Pure Premiums and Loss Ratios 

Assuming exposures and earned premiums are static variables,’ unbiased estimates of the pure 
premium rate and of the Ioss ratio for a single accident year are 

FLI and P" 
exposure earned premium' 

respectively. For multiple accident years, the estimates are 
^ ^ 
MU and MU 

Total Exposure Total Earned Premium 

Of course, the latter statistics are most useful when all quantities are brought onlevel. 

' Audit and reinsurance exposures and premiums may be random variables. 
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3. VARIANCE 

The least squares point estimators of Section 2 are functions of random variables. As such, they 
are themselves random variables with their own inherent variances. Exact formulas for, and 
estimates of, these variances will be addressed in turn. 

Variance of the Link Ratio Estimates 

It is well known9 that the exact variances of the link ratio estimators are 
UL LSM 

VdI(6) = --zL 
c(x-x7* 

where 

var(6) = & (1) 

and I is the number of accident years used in the estimate of the link ratio. Unbiased estimates 
of these variances are obtained by plugging in the unbiased estimate s* of &r where sz is the 
Mean Square for Error (MSE) of the link ratio regression. The MSE or its square root s (the 
standard error of the estimate) is a standard statistic produced in the output of regression 
software. Most regression software will calculate an estimate of the square root of the variance 
in equation (1) sometimes called the standard error of the coefftcient. 

For 12-24 months of development in the example triangle $,,=848.8*. Estimates of the 
standard deviations of the 12-24 month LSL intercept and slope factor are 77.35 and 0.194, 
respectively. For the LSM model the MSE is 876.52 and the standard error of the coefftcient 
is 0.157. The spreadsheet software used to calculate these statistics automatically generates suiL 
and the standard error of the coefficient. The average .? value had to be calculated “by hand” 

to derive the estimate of var (2) 

Variance of Estimated Ultimate Loss: A Sinnle Accident Year 

Before continuing, it is time to make an important distinction. The point estimate of ultimate 

loss nu calculated recursively above is an estimate of the expected value of the (conditional on 

' See for example Robert 8. Miller and Dean W. Wichern, Intermediate 
Business Statistics, Halt, Rinehart and Winston, 1977. 
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x0) ultimate loss XV” Actual ultimate loss will vary from its expected value in accordance 
with its inherent variation about its developed mean pu. As a result, the risk that actual ultimate 

loss will differ from the estimate nu is comprised of two components: the variance in the 

estimate of the expected value of xt, j .x0 - Parameter Risk - and the inherent variability of 
ultimate loss about its mean pu - Process Risk.” Symbolically, if (conditional on x0) ultimate 
loss for a given accident year is expressed as the sum of its (conditional) mean plus a random 
error term eu 

xu I x0 = t4J + GJ 
then the variance in the prediction pred” of ultimate loss is 

var fpred,f = var fp,) + var (Eg) 

= Parameter Risk + Process Risk 

= Total Risk . 

The following recursive formulas for exact values of these two variance components are derived 
in Theorems 8 and 9. 
Parameter Risk 

LSL LSM 
For n= 1: 

For n> 1: 

varp, = -ir + (c,.1 -jr,-,) 2 var6, + 
n 

b.ZVar p,-, + Var6,Var&, 

va= PI = x,2var6, 

" For better or for worse, it is usually the expected value of an unknown 
quantity - e.g., rates or reserves - that actuaries are called upon to produce. 
The "Stateme<t of Principles Regarding Property and Casualty~loss and Loss 
Adjustment Exoense Reserves" is rather vactue on that issue. but "The "Statement 
of-Principles-Regarding Property and Cas&lty Insurance Ratemaking" (Principle 
1) and, for example, "Actuarial Standard of Practice NO. 7: Performing Cash Flow 
Testing for Insurers" (section 5.5) are quite explicit. 

" This process risk is the conditional variance of developing losses about 
the conditional mean. As pertaining to triangles of incurred loss dollars, it 
includes, but is not limited to, the unconditional a priori process risk of the 
loss distribution (mitigated by the knowledge of losses emerged to date), the 
random variation of the claims occurrence and reporting patterns, and the random 
variation -within case reserves. 
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var (Xl 1 x,) = 0; 

and 

var (x, I x,) = o; + b,2 Var (x.,-i Ixo) 

The equation for Process Risk is the same under both models. Unbiased estimates of these 

variances are obtained by plugging in unbiased estimates so2 for CT,‘. 6, for b,, and 6, for p,,. 

Parameter Risk and Total Risk are illustrated in the familiar graphs of Figures 5A and 5B where 
+2 standard deviation prediction bands are drawn around the LSL and LSM estimates, 
respectively, of 12-24 months of development from the example triangle. First, Parameter Risk 
is represented by two curves +2 standard deviations (the square root of the estimated Parameter 
Risk) away from the least squares line. Total prediction risk is represented by two curves +2 
standard deviations (the square root of the sum of estimated Parameter Risk plus estimated 
Process Risk) away from the least squares line. The actuary may represent Process Risk to the 
layman as the distance between the Total Risk and Parameter Risk bands; of course, this is 
technically incorrect. 

Notice that in Figure .5A the Parameter Risk bands widen in both directions as x moves away 
from its average value of $824 and that in Figure 5B the bands widen as x moves away from 
zero. This occurs because the equation for parameter risk is a function of distance of x0 from 
the average value of x for the LSL model and a function of the absolute value of x0 for LSM. 

There is a subtle difference between a “prediction band” which measures the error one would 
expect in a prediction based on the regression, and the more common “confidence band” which 
measures the fit of the regression relative to the sample data. The concept of the confidence 
band is illustrated in Figure 5C where, for example, a one-standard-deviation confidence band 
is drawn around the LSL regression of 12-24 months of development. The radius of the 
confidence band is the square root of the MSE, 848.8. Using the techniques of the next section, 
it can be shown that one should expect about 34% of the data points to fall outside the 
confidence band. In other words, one should expect about six outliers. In this case, there are 
only four. The identification of outliers can provide the actuary with useful information before 
he or she enters into fact-finding interviews with the claims and underwriting departments. The 
identification of outliers provides information of a more technical nature as well. Indeed, note 
that the outliers in Figure 5C occur at the higher values of x. This suggests that the variance 
of y is not independent of x. The assumptions of the SAD or GAD methods, or a variant, may 
more appropriately describe the random processes underlying these particular data. 

As a final note, ultimate loss is not ultimate until the final claim is closed. Suppose it takes C 
development periods, C 2 U. to close out the accident year. Then the estimate of ultimate loss 
is not of xu 1 x0 but of sc 1 x0. Although estimated ultimate loss through U development periods 
may be the same as estimated ultimate loss through C development periods, the variances of the 
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two estimates are not the same. Even if it is true that b,= 1 for n> U, whereby parameter risk 
halts at n=U, process risk continues to add up, so recursive estimates of Var(x, 1 x0) should be 
carried out beyond n=U. 

In the example, it was assumed that an accident year will be closed after 144 months based on 
a visual inspection of Figure 1B (accident year 1974 was considered a data anomaly). The 
recursive projection of ultimate accident year 1991 loss was already displayed in Figure 4. The 
detailed calculation of the variance (Total Risk) is shown in Figure 6A. 

Variance of Estimated Ultimate Loss: Multivie Accident Years 

Actual total ultimate loss S,, for multiple (open) accident years will vary from the estimate A, as 

a result of two sources of uncertainty: PARAMETER RISK - the variance in the estimate of 
Mu - and PROCESS RISK - the inherent variance of S, about its developed mean Mu. 
Symbolically, if we express total ultimate loss for multiple accident years (conditional on the 
current evaiuation of all accident years) as the sum of its mean Mu plus a random error term Eu 

S, = Mu f E, 
then for a given accident year the variance in the prediction PRJZD, of ultimate loss is 

Var (PREQ) = Var C&J + Var (EJ 

= PARAMETER RISK + PROCESS RISK 

= TOTAL RISK . 

In Theorems 10 and 11 are derived the following recursive formulas for exact values of these 
two variance components. 
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PARAMETER RISK 

LSL 
For n=l: 

For n> 1: 

varf& = 

LSM 

varlfi, = xj,,varfi, 

+ b,2Var%-, + Var&,Var&,, 

is the average “x value, I’ and I, = N-n+ 1 (assuming a full column in the triangle) is the number 
of data points, in the regression estimate of the n* link ratio. 

PROCESS RISK 

Var(E,) = 0: 

and 

Var (En) = nap + b,fVar (17~~~) 

The equation for Process Risk is the same under both models. Unbiased estimates of these 

variances are obtained by plugging in unbiased estimates s,’ for u,*, 6, for b,, and 9 for M,. 

For the example, Figure 6B shows the calculation of the estimate of the variance of the estimate 
of total ultimate loss for accident years 1984 through 1991 combined. Most of the basic 
statistics are the same those appearing in Figure 6A. 
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Variance of Estimated Outstandim Losses: Sinnle or Multivie Accident Years 

Assuming paid losses are constant at any given evaluation, ‘* it is obvious that the variance of 
a reserve equals the variance of total ultimate losses: 

v~r(EstimatedReserve) = Var (Estimated Ultimate Loss - Paid Loss) 

= Var (Estimated Ultimate Loss) 

This equality holds for estimated reserves for a single accident year and for multiple accident 
years. 

Variance of Estimated Pure Premiums and Loss Ratios: Sir&e or Muttivle Accident Years 

Assuming static exposures and pure premiums, the variances of the estimated pure premium rate 
and of the estimated loss ratio are 

Var (Estimated Ultimate Loss) and Var (Estimated Ultimate Loss) 
eXpOSUreS2 earned premiums2 

Again, these formulas hold for single or multiple accident years, 

One final note before leaving this section. Aggregate losses are often expressed as the 
compound product of a frequency distribution (e.g., Poisson or negative binomial) and a severity 
distribution (e.g., lognormal or Pareto). In practice, parameters for those distributions are 
estimates, the result being that the variance of the aggregate loss distribution depends not only 

on the inherent variance of the postulated frequency and severity distributions but on the 
variance of the parameter estimates. The parameter error of the frequency distribution could 
be estimated by applying the above techniques to the frequency triangle, defined to he the 
triangle of claim counts per exposure. The parameter error of the severity distribution could be 
estimated by applying the above techniques to the incurred (or paid) severity triangle, defined 
as the triangle of cumulative incurred @aid) dollars divided by cumulative incurred (paid) 
claims. Furthermore, since it is the mean of the distributions that are usually sought, only the 
Parameter Risk above need be considered. 

" Salvage and subrogation could be handled as a separate category. 
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4. CONFIDENCE INTERVALS 

Confidence intervals necessarily are phrased in terms of a probability measure. As a result, this 
discussion can no longer avoid making assumptions about the probability distribution of the error 
terms, e,. The traditional assumption is that they are normally distributed (lognormally 
distributed under GAD which may be a bit more believable). 

Let Q be the probability measurement of the width of the confidence interval. Then lOOa% 
confidence intervals around the true LSL link ratios (a,.b,) are: 

and 

where t&-2) denotes the two-tailed a point (the “t-value”)” of Student’s t distribution with 
I,-2 degrees of freedom and where I, is the number of accident years used in the estimate of the 
n* link ratio. The degrees of freedom under LSL is I,-2 because two parameters are estimated 
under that model. These formulas may be used for the LSM model as well; in that case the 
degrees of freedom are 1,-l. 

To demonstrate how these formulas can be used, suppose we want to test the hypothesis that the 
12-24 month LSL constant term is not significantly greater than zero. Recall that this constant 
term was estimated to be $373.63. Refer to Figure 7. There are 18 data points and two 
parameters. so the degrees of freedom equals 16. At the 99% confidence level, the one-tailed 
t-value is 2.62. It was shown above that the estimated variance of the constant term is 77.35’. 
Then, if the constant term were truly zero, there would be a 99% chance that the estimated 
intercept would be less than or equal to 202.66 = 77.35 x 2.62. Since the estimated value of 
the intercept falls outside the confidence interval, it appears that LSL is an appropriate model 
for this young stage of development. In fact, it appears that LSL is appropriate for the youngest 
six stages of development. The confidence of that statement is 94% = .996. 

As another example, the decision to assume that case reserves are reasonably adequate by I08 
months is based on the apparent random nature of the link ratios thereafter. Notice in Figure 
7 that the LSM link ratios are either at. or well within, one standard deviation (“Std(b)“) of 
unity for 120.132 months and beyond, but the 108-120 link ratio (.992) is more than one 

!' Tbls assumes that the available t-table is presented in terms of a one- 
tailed test, or, if not, tbat the actuary 1s able to look up the appropriate 
value accordingly. 
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standard deviation away from unity. Somewhat subjectively, it was deemed appropriate to 
ignore this significant average negative development, as well as the relatively insignificant 
positive development thereafter. If the actuary were to set the 108-120 factor to, say, an 
interpolated value between the 96-108 and 120-132 factors, it may generally be considered a not 
unreasonable application of actuarial judgment and may just so happen to reflect an amount of 
conservativism consistent with the risk posture of the owners of the enterprise. However, in the 
end, the ability of that actuary to convince management that this judgment is appropriate depends 
on the level of trust established between the parties. 

It is clear that near the tail of the triangle the degrees of freedom drop prohibitively. Inferences 
about the link ratios become less precise. If it can be assumed that the variances of the residuals 
in the development model are the same for all development periods (i.e., ui=aj for all i and j), 
then a single estimate of the MSE can be obtained by solving for all link ratios simultaneously. 
The result is that the t-value should become reasonably smalli and can make for “tighter” 
inferences for all development periods. 

Confidence Intervals Around Estimated Ultimate Loss 

This section will begin with the GAD model because all results are exact.” Under the 
transformed GAD model 

ln(x,,) = In(b,) + In&,.,) + ln(e,) 
or 

the point estimate of ultimate transformed loss is 

and the estimate of the variance of the prediction is 

" For an NxN triangle, df-(N-1) (N-2)/2 under LSM if no data points are 
discarded. For example, with a moderately-sized 5x5 triangle the two-tailed 90%- 
ile t-value is only 18% greater than the smallest possible 90%-ile t-value, 
namely the 90%-ile point on the standard normal curve. This can be especially 
important for the small triangles that consultants or companies underwriting new 
products are wont to see. 

" Commonlyusedprobability distributions are location oriented, so additive 
models such as the transformed GAil model are quite tractable. The use of scale- 
oriented probability distributions may yield results more directly applicable to 
the multiplicative models actuaries favor. 
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v&(pred') = (c+ (Theorem 13) 

where we assume under transformed GAD that all a,,‘~ are equal. It is well known that in this 
case the MSE is proportional to a chi-square random variable with degrees of freedom equal to 
the number of data points less the number of estimated parameters. Therefore, a one-sided 

100a% confidence interval” for ultimate transformed losses XL given the current transformed 

evaluation x,’ is exactly equal to 

p: * t,(df)&ar @red') . 

The corresponding lOOcr% confidence interval around the “untransformed” prediction of ultimate 
loss xc given x0 is 

exp(@: t t,(df)&r (pred')) . 

If df is large enough, t,(df) may be replaced by z,, the standard normal point, without significant 
loss in accuracy.” 

With this justification, an approximate lOOa% confidence interval around a prediction under any 
of the models is 

pred f t; (df)&& (pred) 

Figures 6A and 6B show how this approach is used to derive estimates of ultimate loss at the 
80% confidence level. 

Confidence Intervals around Reserves 

Confidence intervals around reserves are obtained by subtracting paid dollars from the endpoints 
of the confidence intervals around ultimate loss. This is simply due to the fact that if 

I6 At the risk of pedantry, "prediction interval" is more correct 

" This is often done in practice, particularly in time series analysis, even 
when df is not large. The t distribution 1s prefer-red. however, because the 
thinner tails of the standard normal will understate the radius of the confidence 
interval. For another perspective on th1.s subject, see Everette S. Gardner Jr., 
"A Simple Method of Computing Prediction Intervals for Time Series Forecasts," 
Management Science, Vol. 34, No. 4. Aprzl 1988, p. 541-546. 
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CY = P(lower bound I ultimate loss 5 upper bound) 
then it is also true that 

cy = P(lower bound - paid I outstanding loss 5 upper bound - paid). 

Figures 6A and 6B demonstrate the application of this concept as well. The 80% risk load for 
all outstanding losses for accident years 1984 through 1991 is about 27% of the expected value. 
It would be interesting to see how much this toad is reduced for the same level of confidence 
when an analysis of paid dollar triangles is also conducted. Incurred and paid estimates should 
be negatively correlated, therefore the variance of their average should be reduced even more 
than if independence were simply assumed. 

Contidence Intervais around Pure Premium and Loss Ratios 

Confidence intervals around pure premiums and loss ratios are obtained by dividing the 
endpoints of the confidence intervals around ultimate loss by exposures or premiums, 
respectively. This scale shift is akin to the location shift for the confidence intervals around 
reserves. 
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5. AN ARGUMENT IN SIJPPORT OF A NON-ZERO CONSTANT TERM 

When the current evaluation is zero, the practice is to abandon the multiplicative loss 
development methods and adopt an alternative. e.g., Bornhuetter-Ferguson, Stanard-Buhlmann, 
or a variation on frequency-severity. LSL may be a fourth possibility. 

To elaborate, consider the development of reported claim counts. Let N be the true ultimate 
number of claims for a given accident year. Let r, be the random report year of the i”’ claim. 
Assume that the r, are independent and identically distributed for all claims so that if p, is the 
probability that a claim is reported before the end of the n”’ year, then p. is independent of i. 
Based on these assumptions it is not difficult to show that if x, is the number of reported claims 
at the n’ evaluation then 

E(x,!x,.,) = N+ + -+,yn-, (2) 
n L 

which is of the form a,,++,&,. Clearly the constant term a, is non-zero until all claims are 
reported. 

Figure 8A shows the true development line for evaluation 1 to evaluation 2 when N =40 and the 
pn’s are 112, 3/4, 7/S, , I-%“, along with a scattering of ten random data points. 

Equation (2) becomes even more interesting when the reporting pattern is exponential, as might 
be expected from a Poisson frequency process. In that case it is straightforward to prove that 
the LSL coefficients (a,,,b,) are identical for every age n. This somewhat surprising result can 
be put to good use when the triangle is too small to give stable LSL estimates of individual link 
ratios, as will be demonstrated in the following section. 

From Equation (2) one can see that the slope factor b, does not depend on the exposure (N) but 
only on the reporting pattern, and that the constant term a, is proportional to the exposure. An 
increase in exposure from one accident year to the next will cause an upward, parallel shift in 
the development regression line. Equation (2) may also be used as a paradigm for loss dollars. 
although the bias of case reserves complicates the analysis, and systematic factors such as trend 
can change expected ultimate loss dollars from one accident year to the next. Development 
triangles, therefore, can be expected to display data samples randomly distributed about not a 
single regression line but about multiple parallel regression lines as claim frequency increases. 
as the volume of business expands, or simpi), through the impact of trend. This is pictured in 
Figure 8B where a random sample is displayed about the regression line of Figure 8A and about 
a parallel line determined by N=80. The estimated regression line based on all the points 
combined will indicate a less significant consrant term. 
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6. COMPARING THE MODELS USING SIMULATION 

In the 1985 Proceedings Mr. James N. Stanard published the results of a simulation study of the 
accuracy of four simple methods of estimating ultimate losses using a 5x5 incurred loss triangle. 
For the exposure tested” it was demonstrated that WAD loss development was clearly inferior 
to three additive methods - Bomhuetter-Ferguson (BF), Stanard-Buhlmann’q (SB), and a little- 
used method called the Additive Model (ADD) - because it had greater average bias and a 
larger variance. The additive methods differ from the multiplicative methods in that they adjust 
incurred losses to date by an estimated dollar increase to reach ultimate, whereas the 
multiplicative methods adjust by an estimated percentage increase. ADD’s estimated increase 

is a straightforward calculation of differences in column means, F-x BF and SB estimated 
increases are based on inverted LDFs and are therefore nonlinear functions of the y’s. 

Stanard’s simulation was replicated here to test additionally the accuracy of LSM, LSL. SAD 
and GAD.” The model does not attempt to predict “beyond the triangle,” which is to say that 
the methods project incurred losses to the most mature age available in the triangle, namely the 
age of the first accident year. In the discussion below, by “ultimate loss” is meant case incurred 
Ioss as of the most mature avaiiabfe age. 

The LSL method was modified to use LSM in those instances when the development factors 
were “obviously wrong,” defined to be when either the slope or the constant term was negative. 
In real-life situations, this rudimentary adjustment for outliers can be expected to be improved 
upon with more discerning application of actuarial judgment. The reason this modification was 
necessary is due to the fact that a model that fits data well does not necessarily predict very 
well. As an extreme example, LSL provides an exact fit to the sample data for the penultimate 
link ratio (two equations, two unknowns), but the coefficients so determined reveal nothing about 
the random processes that might cause another accident year to behave differently. It is not 
possible to identify every conceivable factor that could explain the otherwise “unexplained” 
variance of a model. Such unidentified variables are reflected through the averaging process of 
statistical analysis: as the number of data points minus the number of parameters (the definition 
of degrees of freedom) increases, the model captures more of the unexplained factors and 

"Normally distributed frequency with mean = 40 and standard deviation = 140 
claims per year, uniform occurrence date during the year, lognormal severity with 
mean = $10,400 and standard deviation = $34.800, exponential report lag with mean 
= 18 months, exponential payment lag with mean = 12 months, and case reserve 
error proportional to a random factor equal to a lognormal random variable with 
mean = 1 and variance = 2, and to a systematic factor equal to the impact of 
trend between the date the reserve is set and the date the claim is paid. 

" Which Mr. Stanard tailed the 'Adjustment to Total Known Losses" method, 
a.k.a. the "Cape Cod Method." 

iv For the details behlnd the computer model, the reader is referred to Mr. 
Stanard's published results. The simulation was reproduced in C on an IBM PS/2 
Model 70 with a math co~3rocessor. The most comolicated scenarios reauirinq 15000 
iterations took about -an hour and a half to process. 

- - 
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becomes a better predictor. 

In Exhibits I through IV, the average bias and standard deviation of the first accident year are 
zero because the simulation defines ultimate to be the current age of that accident year. 

Exhibit I: Claim Counts Only 

In this case, 5000 claim count triangles were simulated, the “actual ultimate” as of the last 
column was simulated as well, accident year ultimates were estimated using the various methods, 
and averages and standard deviations of the prediction errors were calculated. 

Of the multiplicative estimators, LSM has the smallest bias and the smallest variance for every 
accident year. As can be expected, WAD is close behind. The remaining methods could 
perhaps be ordered BF, SB, ADD, and LSL, in increasing order of accuracy as measured by 
the standard deviation of the accident-year-total projection. 

Consider first the average bias. In Figure 9A is graphed the relationship between incurred 
counts at 12 months, x, with incurred losses at 24 months, y, which we know from the previous 
section must be a linear relationship with a positive constant term. The ADD and WAD 
estimates are also shown. All relationships are shown in their idealized states where LSL is 

collinear with the true relationship and where the point (X,3 coincides with its expectation 
(E(x),E(y)). Note that the ADD model is parallel to the line y=x because it adds the same 
amount for every value of x. The conditional (on x) bias is the signed, vertical distance from 
the estimated relationship to the true relationship. As is clear from Figure 9A, WAD and ADD 
can be expected to overstate y for x > E(x) and understate y for x < E(x). The weighted 
average of the conditional bias across all values of x, weighted by the probability density f(x), 
is simulated by the average bias that appears in Exhibit I. 

Ideally, this weighted average of the bias across all values of x should be expected to be zero, 

which it is for the Additive Model. ADD estimates E(y)-E(x) via F-x calculated from prior 
accident years. Since the environment in Exhibit 1 - exposure, frequency, trend, etc. - does 
not change by accident year, the average of 5000 simulated samples of this dollar difference 
across all possible values of x should get close to the true average dollar difference by the law 
of large numbers, so the average bias should get close to zero. For the multiplicative 
estimators, the average bias will probably not be zero. Take the WAD method for example. 
Clearly there is a positive probability (albeit small) that X=0, so the expected value of the 

WAD link ratio g is infinity. The average of 5tXlO simulations of this ratio attempts to 

estimate that infinite expected value, so it should not be surprising that WAD usually overstates 

development - and the greater the probability that X=0, the greater the overstatement .:’ 

" This argument can be made more rigorous. The condition that the 
probability of the sample average of x be greater than zero is a sufficient but 
not necessary condition that E(b,& = m. For a general, heuristic argument that 
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The average bias of the BF and SB methods should be greater than zero as well because the 
LDFs on which they rely are themselves overstated more often than not. The average LSM bias 
is a more complicated function of the probability distribution of x because the LSM link ratio 
involves x terms in the numerator and squared x terms in the denominator. The average bias 
appears to shift as an accident year matures. The LSL method as modified herein has residual 
average bias because it incorporates the biased LSM method when it detects outliers. It also 
seems to be the case that the bias of the estimated 4-5 year link ratio is driving the cumulative 
bias for the immature years. 

Figure 9A illustrates the difference between a model that is unbiased for each possible value of 
x, LSL, and a model which is “unbiased” only in the average, ADD. To reiterate, the purely 
multiplicative and purely additive estimators will understate expected development when the 
current evaluation is less than average and overstate expected development when the current 
evaluation is greater than average. 

Next, consider the variance. in simplified terms, the average bias statistic allows expected 
overstatements to cancel out expected understatements. This is not the case for the variance 
statistic. In Figure 9A it is clear that, ideally, the ADD estimate of y will be closer to the true 
conditional expected value of y (the idealized LSL line) than will the WAD estimate for virtnally 
all values of X. Thus, the variance of ADD should be less than the variance of WAD. The 
variance of LSL should be the smallest of all. However, LSL estimates twice as many 
parameters than do ADD and LSM, so it needs a larger sample size to do a comparable job. 
For the relatively small and thin triangles simulated here, a pure unmodified LSL estimate flops 
around like a fish out of water - the price it must pay to be unbiased for all values of x. In 
other words, in actual practice, the variance of an LSL method unmodified for outliers and 
applied to a triangle with few degrees of freedom, will probably be horrendous. What is 
perhaps remarkable is the degree to which the rudimentary adjustment adopted here tames the 
LSL method. 

Finally, let’s look at what would happen if we estimated the LSL parameters under the 
assumption that all link ratio coefficients (a,,,h,) are equal. We know from the previous section 
that this is true because the reporting pattern is exponential. The results of this model are: 

Average 
A/Y Bias 

I 0000 
2 0:025 
3 0.006 
4 -0.034 
5 -0.oo6 

Total -0.010 

std uev Average 
Bias %Bias 

0000 
I:275 

0 000 
0:001 

1.669 0.001 
1.850 0.000 
1.815 o.001 
5.064 0.000 

Std Uev Age-Age Age-Age 
%Bias Bias %Bias 

0000 
0:034 1.035 1.001 
0.044 -0.019 0.000 
0.049 -0.040 -0.001 
0.049 0.028 0.001 
0.027 

This model is the beneficiary of more degrees of freedom (eight - two parameters estimated 

WAD yields biased estimates, see [Stanardl. 
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from ten data points for each iteration) and as a result has the smallest average bias and variance 
yet. These results lead to a somewhat counterintuitive conclusion: information about 
development across immature ages sheds light on future development across mature ages. For 
example, the immature development just experienced by the young accident year 4 from age 1 
to age 2 is a valuable data point in the estimate of the upcoming development of the old accident 
year 2 from age 4 to age 5. This should not be viewed simply as a bit of mathematical 
prestidigitation but as an example of the efficiencies that can be achieved if simplifying 
assumptions - even as innocuous as exponential reporting - can be justified. 

Exhibit II: Random Severitv, No Trend 

In this case, 5000 triangles of aggregate, trend-free incurred losses were simulated and the same 
calculations were performed. 

Rarely does the property/casualty actuary experience loss triangles devoid of trend, so this model 
is of limited interest. The introduction of uncertainty via the case reserves makes it more likely 
that negative development will appear, in which case LSL reverts to LSM. As a result, the 
additive models overtake LSL in accuracy. 

Exhibit III: Random Sever&. 8% Severity Trend Per Year 

This is where it gets interesting. This could be considered the standard situation in which an 
actuary compiles a loss triangle that includes trend and calculates loss development factors. In 
this case, the environment is changing. The trending process follows the Unified Inflation 
Model with Q= ‘/2 ,” which is to say that half of the impact of inflation is a function of the 
occurrence date and half is a function of the transaction date (e.g., evaluating the case incurred 
or paying the claim). 

At first, one might think that a multiplicative estimator would have had a better chance of 
catching the trend than would an additive estimator, but such does not appear to be the case. 
Consider Figure 9B which graphs expected 12-24 month development for the first four accident 
years. Trend has pushed the true development line upward at an 8% clip, illustrated by four 
thin lines. The LSL model tries to estimate the average of the development lines, the WAD 

estimator tries to pass through the average (X,y7 midpoint of all accident years combined. 
and the additive estimators try to find the line parallel to the line y =x which also passes through 
the average midpoint. Again, ADD will probably be closer than WAD to the average LSL line 
for every value of X. The upward trend makes it more likely that the estimated LSL intercept 
will be less than zero. which makes it more likely that LSL reverts to LSM, so the modified 
LSL’s variance gets closer yet to the variance of LSM. 

Exhibit IV: Random Severirv. 8% Trend, On-Level Triangle 

" Robert P. Buts:c and Rafal J. Balcarek, "The Effect of Inflation on Losses 
and Premlunis for Property-Llabllity Insurers," inflation Impllcatlons fcr 
Property-Casualty Insurance, 1981 Casualty Actuarial Society Discussror. Paper 
Program, p. 58. 
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In this case, rows of the triangle were trended to the level of the most recent accident year 
assuming that the research department is perfectly prescient in its estimate of past trend. For 
most of the models the total bias decreases while the total variance increases. LSM and WAD 
are virtually unchanged, GAD and SAD are exactly unchanged (of course), and the nonlinear 
estimates move in opposite directions. 

For the most part, working with the on-level triangle does seem to improve the accuracy of 
estimated ultimate loss, but perhaps not to the degree one might hope. It would be interesting 
to see if working with separate claim count and on-level severity triangles would successfully 
decompose the random effects and further improve the predictions. 
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7. CONCLUSION 

Loss development predictions can be improved by the use of least squares estimators. In certain 
situations the least squares estimators coincide with the more traditional simple average 
development and geometric average development estimators. Under the four sets of assumptions 
about the loss development process considered here, the weighted average link ratio estimator 
is always inferior to an alternative, least squares estimator. 

If the assumptions of a given model considered here can be married with the independence 
assumption that forms the basis of the Chain Ladder Method, the developed estimates of ultimate 
loss are unbiased. The variance of estimated ultimate loss can itself be estimated through 
relatively straightforward application of recursive formulas. A range of estimates can be given 
with associated approximate levels of confidence if one is willing to make some assumptions 
about the probability distribution of the error terms. 

At this point, statistical techniques may be of some guidance in selecting one model over 
another, but the final choice of the most appropriate set of assumptions will probably be a 
judgment call depending on, among other things, the exposure and the claims operation of the 
book of business. 

The simulation study suggests that the performance of the more general Least Squares Linear 
method exceeds that of the multiplicative development methods and may, in some situations, 
rival that of the nonlinear additive methods in common use today. It would be interesting to 
investigate the correlation between development estimates of ultimate loss based on incurred and 
paid triangles, and use that information to derive optimal, variance-minimizing weights for 
making final selections. 
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212 76 72 146 139‘ 73 31 3 

15 14 13 12 13 12 11 10 
13 12 11 10 11 10 9 8 

86,179 92,745 96,123 1.66E+05 1.88E+05 1.88E+O5 1.88Et05 1.88E+05 
1.26Et06 1.35E+06 1.39Et06 1.47Et06 1.59E+06 1.59Et06 159EtO6 1.59E+06 
1.35E+06 1.45E+06 1.48Et06 1.64Et06 1.77E+06 1.78E+06 1.78Et08 1,78E+06 
1,160.473 1202.590 1,218.497 1,279.595 1,332.182 1,334.199 1,334.566 1.334669 

Total df 129 

One-tailed 80% t-value (same as standard normal when df=129) 0.842 

80% Confidence Risk Load (t-value x Std Dw) $1,124 $1,124 

Upper bound on 80% Confidence Interval for Ultimate Loss $5,615 $202 $5,413 

80% Confidence Risk Load as a Percent of the Expected Value 25% 26% 



Age (months) 
” 
M hat 
x bar 
1, ha1 
Var(b hat) 
e 

12 
9 

$1,287 
824 

24 
1 

$2,& 
2wJ 
2.027 

0.0377 
849 

18 

36 
z 

$6.739 
2,317 
1.078 

0.0017 
384 

17 

Auto Liability 
Variance of Estimated Ultimate Loss 

Accident Years 1984 - 1991 

48 
3 

$11,678 
2,495 
1.056 

0.0007 
276 

16 

so d 
$16,& 

2,325 
1.017 

0.0004 
212 

15 

72 
.$25,58: 

1,866 
1.034 

0.0001 
76 
14 

84 

$36.44: 
I 

96 

$44.68: 

1.011 
0.0002 I 

1.022 
0.0035 

72 146 
13 12 

Ultimate 
gg XT! 132 

s 9 lo 
$47,555 $47,555 $47,555 

1.032 
0.0006 

139 
13 

1 
0 

73 
12 

0 
31 
11 

FigureGB 

Total Indicated 
w Paid to Total 

144 Date Resenre 
1, 
22 

$47,555 $37.854 $9,701 

1 
0 
3 

10 
df 16 15 14 13 12 11 IO 11 IO 9 8 

,\) PARAMETER RISK 48,112 95,937 1.6lE+05 2.27E+O5 2.63E+O5 3.8X+06 5.70E+O6 7.35E+06 7.35E+06 7.35E+06 7.35E+06 
p! PROCESS RISK 7.2OE+05 l.l3E+O6 1,49E+O6 1.72E+O6 1.87E+O6 1.95E+O6 2.16E+O6 2.48E+O6 2.53E+06 2.54E+06 2.54E+06 

TOTAL RISK 7.69E+O5 1.2X+06 1.65E+O6 1.95E+O6 2.14E+O6 2.33E+O6 7.66E+O6 9.82E+O6 9.87E+O6 9,88E+O6 9.88E+O6 
sld DW 876.671 1.106.321 1,286.375 I,396973 1,461.640 1,525.937 2,8ffi.755 3,134.438 3.142.149 3,143.706 3,14X721 

Total dt 129 

One-tailed 80% t-value (same as standard normal when df=129) 0.642 

80% Confidence Risk Load (t-value x Std Dev) $2.647 $2.647 

Upper bound on 80% Confidence Interval for Ultimate Loss $50,202 $37,854 $12,348 

60%Confidence Risk Load as a Percent of the Expected Value 6% 27% 



Auto Liability 
Incurred Loss + ALAE Development 

Estimated Least Squares Development Coefficients 

Figure 7 

a 373.63 
b 2 027 
S 6466 

df 16 
Swa) 77 35 
smw 0.194 

One-tailed 99% 
t-value 2.62 
Upper bound 
on a 202.e6 

255.26 (3750 161.37 5801 

1 07s ,056 ,017 ,034 

364204 277.64 211.942 76.0792 

15 14 13 12 

39 7946 31.7267 256207 10.0074 

004063 002726 0.01976 O.W602 

2.65 

105.46 

2.66 

65.93 

2.72 

69.89 

2.76 

27.62 

4337 16.67 - 6.51 

1 .o, t 1.022 1.013 

72.0653 146.632 77,915 

(1 1, 10 9 

13.4745 67.416 36.9558 

0.0128, 0.0591 0.03224 

2.62 

36.00 

2.60 

195.51 

3.00 

110.87 

LSM 
b 2204 1.133 I.083 1.046 1.045 1.024 1.032 1009 0.992 1 a01 1.003 1.002 ,.ocQ 0.99s 1.ow l.wo Loo0 ,.m 

S 676.5 421.549 266.053 238.949 66502, 74.6246 139.291 73.3338 31.2645 2.93139 34.8892 .?a.8384 17.687 10.622 o.ooo O.ooO 

S:(b) 0.157 17 0.0334 16 0.02-392 15 0.01664 14 O.OXW 13 0.00663 12 0.02397 II 0.01335 10 O.WS65 9 o.oax 6 0.00764 7 0.00772 6 o.w51 5 0.0035 4 o.ooo 3 O.OW 2 1 0 



Claim Count Development 
Expected Number of Claims = 40 

Figure 8A 

40 

20 
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Claim Count Development 
Expected Number of Claims = 40 & 80 

Figure 8B 
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Idealized Development Estimators 
No Trend 

Figure 9A 

Current Evaluation (x) 



Idealized Development Estimators 

With Trend 
Figure 9B 

1 

Current Evaluation (x) 



ADD 

LSM 

WAD 

GAD 

SAD 

Nonlinear 
SB 

SF 

m 
Average Std Dev Average Std Dev Age-Age Age-Age 

Bias Bi8s YBias %6i8S Bias %Bias 

1 0.000 0.000 0.000 0.000 
2 0.116 2.000 0.003 0.053 
3 0.153 2.772 0.004 0.073 
4 0.101 3.166 0.003 0.083 
5 o.080 3.780 o.003 0.1M) 

TOtA 0.451 8.251 0.002 0.043 

1 0.000 0.000 0.000 0.040 
2 0.059 1.868 0.002 0.049 
3 0.075 2.847 0.002 0.075 
4 0.047 3.644 0.002 0.096 
3 0.096 3.692 0.003 g&sJ 

Total 0.277 8.407 0.001 0.044 

1 
2 
3 
4 
5 

Total 

0.000 
0.116 
0.143 
0.004 

E 

0.000 0.000 
2.000 0.003 
3.321 0.004 
5.246 0.000 

10.536 
14.009 gg 

O.WO 0.000 
2.000 0.903 
3.336 0.005 
5.308 0.007 

tt.lOl 0.023 
f4.520 O.CQ8 

0.000 
0.053 
0.087 
0.136 
0.277 
0.074 

1 0.000 
2 0.116 
3 0.203 
4 0.281 
5 0.888 

Total 1.488 

0.000 
0.053 
0.088 
0.139 
0.292 
0.076 

1 0.000 0.000 0.000 0.000 
2 0.116 2.000 0.003 0.053 
3 0.234 3.345 0.006 0.086 
4 0.424 5.346 0.011 0.140 
5 1.873 11.585 0.049 0.305 

Total 2.647 14.943 0.014 0.079 

: 
3 
4 
5 

T&l 

0.000 0.000 O.OQO 0.000 
0.116 2.000 o.OQ3 0.053 
0.265 3.354 0.007 0.088 
0.571 5.390 0.015 0.142 
2.958 12.268 0.078 0.322 
3.910 15.530 0.021 0.082 

: 
3 
4 
s 

Total 

0.000 0.000 0.000 
0.102 1.940 0.003 
0.147 3.021 0.004 
0.137 3.997 0.004 
O.t85 4.280 o.006 
0.571 9.564 0.003 

1 0.000 0.000 0.000 
2 0.114 1.952 0.003 
3 0.164 3.064 0.005 
4 0.215 4.151 0.006 
3 0.338 5.164 o.010 

Total 0.851 10.626 0.004 

0.000 
0.051 
0.079 
0.105 
0.113 
0.050 

0.000 
0.051 
0.081 
0.109 
0.136 
0.056 
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0.116 
0.037 

I:::;:; 

0.003 
0.001 

w&J 

0.059 0.002 
0.016 0.000 

(0.028) 0.000 
0.049 0.001 

0.116 0.003 
0.027 0.001 

(0.139) (0.004) 
(0.752) (0.020) 

0.116 0.003 
0.087 0.002 
0.078 0.002 
0.607 0.016 

0.116 0.003 
0.118 0.003 
0.190 0.005 
1.449 0038 

0.116 0.003 
0.149 0.004 
0.306 0.008 
2.387 0062 

0.102 
0.045 

(0.010) 
0.048 

0.114 
0.070 
0.031 
0.123 

0.003 
0.001 
0.000 
0.002 

0.003 
0.002 
0.001 
0.004 



EXHIBIT II 
RandomSeverlty,NoTrend 

ADD 

LSM 

WAD 

GAD 

SAD 

Nonlinea 
SB 

BF 

m 
Average Std Dev Average Std Dev 

BiaS BieS %Bias XBi8S 

1 0 0 0.000 0.000 
2 9,206 193,945 0.026 0.302 
3 8,749 218.463 0.069 0.420 
4 30,028 429,112 0.138 0.650 
5 39.426535.959 0.228 1.004 

Total 87,410 888,404 0.040 0.356 

1 
2 
3 
4 
s 

Total 

0 0 

(7.E) 
185,077 
196,201 

324 272,189 
271,443 
546.942 

0.000 O.OW 
0.010 0.329 
0.023 0.472 
0.066 0.581 
0.140 0.680 

(0.004) 0.255 

: 
3 
4 
5 

Total 

0 0 
9,206 193,945 
6,192 221,114 

24,331 477.371 
(2,29ol3J 
52,019 1,127,243 

0.000 0.040 
0.026 0.302 
0.033 0.415 
0.052 0.742 
0.036 1.404 
0.020 0.453 

1 
2 
3 
4 
3 

Total 

0 0 
9,206 193,945 

11,815 222,675 
51.641 515.997 

116;6648&?&7 
189,327 I,208220 

0.000 O.OW 
0.026 0.302 
0.048 0.421 
0.119 0.807 
0.310 1.597 
0.088 0.487 

: 
3 
4 
5 

Total 

: 
3 
4 
5 

Total 

0 0 
9,206 193,945 

13,873 219,115 
61,706 484,892 

194.903854,318 
289,687 1,130,473 

0 0 
9,206 193,945 

20,621 227,597 
97,144 598.072 

0.000 O.WO 
0.026 0.302 
0.054 0.412 
0.147 0.763 
0.489 1.593 
0.130 0.469 

405,202 I,241904 
532,174 1,552,136 

O.OQO 0.000 
0.026 0.302 
0.072 0.440 
0.233 0.980 
1.063 2.516 
0.255 0.640 

1 0 0 0.000 0.000 
2 6,126 184,062 0.026 0.304 
3 3,909 196.494 0.052 0.430 
4 15,414 291,195 0.097 0.575 
s iJo7l286.813 0.172 0.698 

Total 36,520 633,658 0.017 0.271 

1 
2 
3 
4 
3 

Total 

0 0 
9,040 200,965 

10,750 221,175 
29.330 331.648 
-374.743 
86,244 820,177 

0.000 0.000 
0.034 0.373 
0.073 0.525 
0.132 0.691 
o.n5 0.886 
0.040 0.342 

Age-Age Age-Age 
Bias 

9,206 0.026 
(458) 0.042 

21,279 0.065 
9,398 0.079 

(7.E) 
7,769 

(2,991) 

0.010 
0.013 
0.042 
0.069 

9,206 0.028 
(3,015) 0.007 
18,140 0.018 

(12,042) (0.015) 

9,206 0.026 
2,608 0.021 

39,826 0.068 
65,023 0.171 

9,206 0.026 
4,666 0.027 

47,833 0.088 
123,197 0.298 

9,206 0.026 
11,415 0.045 
76,523 0.150 

308,058 0.673 

6,126 0.026 
(2.217) 0.025 
11,506 0.043 
(4,344) 0.068 

9,040 0.034 
1,710 0.038 

18,580 0.055 
7,794 0.082 
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MHIEIT Ill 
Random Severity, 8% Trend 

ADD 

LSht 

WA0 

GAD 

SAD 

Nonlinear 
SB 

BF 

Average 0td Dev AVW8tJe Std Oev Age-Age Age-Age 
Bias Bias KBias %Bias Bias %Bi8S 

1 
2 
3 
4 
3 

Total 

0 0 
12,646 tSo,77t 
11,815 318,796 
8,339 515,561 

1 
2 
3 
4 
s 

Total 

(2.24:) 
0 

177,223 
(15,161) 262,260 
t3-5.5761 335.003 
&$2tJ 399;076 

(145,207) 757,285 

1 
2 
3 
4 
s 

Total 

0 0 
12,848 190,771 
16,307 328,599 
27.133 580.424 
8&t 1.111;762 

64,698 1.504,260 

: 
3 
4 
3 

Total 

0 0 O.OW 0.000 
12,848 190,771 0.030 0.300 
23,423 333,524 0.057 0.477 
62,726 606,272 0.122 0.775 

169.257 1.272.791 0.310 1.620 
268,255 f $59,744 0.088 0.527 

t 0 0 
2 12,848 190,771 
3 26,050 331,370 
4 77,169 580,779 
5 I,295202 277,757 

Total 393,824 1,619,314 

1 
2 
3 
4 
s 

TOtal 

0 0 
12,848 190,771 
35,174 346,105 

124,456 665,305 
647,473 4,oS6.366 
819,951 4,2S1,335 

1 
2 
3 
4 
3 

Total 

1 
2 
3 
4 
5 

Total 

0 0 
10,229 177,339 

7.628 272,101 
(5wJ) 357,093 

(62.9461 420,117 
KW398) 825,565 

0 0 
16,575 212,872 
23.046 310,265 
25.574 422.741 

5e 
534,249 

1,113,743 

O.OQO 0.000 
0.030 0.300 
0.061 0.469 
0.080 0.629 
g&g 0.944 
0.002 0.367 

0.000 
0.008 
0.008 
0.005 

gzg 

0.090 
0.337 
0.461 
0.511 
0.551 
0.249 

0.000 0.000 
0.030 0.300 
0.043 0.475 
0.057 0.728 
0.035 1.360 
0.021 0.472 

8% 
0.062 
0.149 
0.495 
0.148 

0.000 
0.300 
0.466 
0.755 
1.717 
0.534 

O.WO 0.004 
0.030 0.300 
0.080 0.497 
0.235 0.924 
1.107 4.508 
0.288 1.164 

O&M 0.000 
0.036 0.323 
0.055 0.456 
0.057 0.530 
pJ2J 0.590 

(0.018) 0.289 

0.000 0.000 
0.052 0.421 
0.091 0.589 
0.114 0.668 
O.tOt 0.780 
0.020 0.357 

12,648 

g%; 
(311912) 

0.030 
0.030 
0.018 

(0.005) 

r&w 
(12,912) 
(20,414) 
W.645) 

12.848 0.030 
3,458 0.013 

10,828 0.013 
(18,722) (0.021) 

12,648 0.030 
10,575 0.026 
39,303 0.061 

106,531 0.188 

12,848 0.030 
13,201 0.031 
51,119 0.082 

200,588 0.301 

12,848 0.030 
22,326 0.049 
89,282 0.144 

523,017 0.706 

10,229 
(2.601) 

I:::::; 

0.036 
0.018 
0.002 

(0.034) 

16,575 0.052 
6,471 0.037 
2,529 0.021 

(35,103) (0.012) 
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EXHIBIT IV 
Random Severity, 8% Trend, Estimates Based on On-Leveled (at 8%) Tri8ngla 

Arf 
Unear 

LSL 
1 
2 
3 
4 
5 

Total 
ADD 

1 
2 
3 
4 
5 

Total 
LSM 

2 
3 
A 

3 
Total 

WAD 

2 
3 
4 
s 166.470 1,251,178 

Total 285,149 1.635,365 
GAD 

2 
3 
4 
5 277,757 1.295,202 

Total 393,824 1,619,314 

1 
2 
3 
4 
3 

Total 
Nonlinear 

SB 

BF 

2 
3 
4 

Average Std Dev Average Std Dev Age-Age Age-Age 
Bias Bias %Bias %Bias Bias %Bias 

0 0 0.000 0.000 
12,848 190,771 0.030 0.300 
19,663 321,503 0.080 0.479 
38,827 508,047 0.147 0.637 
44,325695,596 0.216 0.928 

115,663 1,148,516 0.045 0.357 

(20:) 182,866 0 

(4,949) 272,965 
(3.371) 352,774 
(7.726) 422.975 

(16,251) 833,130 

0 0 0.000 0.000 
12,848 190,771 0.030 0.300 
16,069 326,583 0.043 0.473 
26,536 577,658 0.055 0.725 

3.262 1.070.100 0.027 1.316 
58,715 1,459,667 0.019 0.460 

0 0 
12,848 190,771 
23,310 332,453 
62.521 607,521 

0.000 0.000 
0.030 0.300 
0.057 0.476 
0.121 0.774 
0.305 1.598 
0.097 0.520 

0 0 
t 2,848 190,771 
26,050 331,370 
77,169 580.779 

0 0 0.000 0.000 
12,848 190.771 0.030 0.300 
35,174 346,105 0.080 0.497 

124,456 685,305 0.235 0.924 
647,473 4,098,366 1.107 4.508 
819,951 4.291,335 0.298 1.164 

0 0 
8,650 175,543 

10,927 275,491 
17,818 368,370 

s 12,875= 
Total 50,271 870,120 

1 0 0 
2 12,243 199,538 
3 20,320 303,669 
4 38,157 423.818 
5 -547,415 

Total 121,948 1,110,267 

0.000 0.000 
0.014 0.358 
0.033 0.505 
0.074 0.577 
0.140 0.664 

(0.003) 0.277 

0.000 0.000 
0.030 0.304 
0.062 0.466 
0.149 0.755 
0.495 1.717 
0.148 0.534 

0.000 0.000 
0.032 0.316 
0.063 0.471 
0.106 0.570 
0.173 0.684 
0.021 0.284 

0.000 0.000 
0.041 0.382 
0.084 0.567 
0.142 0.879 
0.223 0.842 
0.046 0.356 

12,848 0.030 
6,815 0.049 

19,164 0.062 
5,498 0.060 

(205) 0.014 
(4,744) 0.019 
1,578 0.040 

(4,355) 0.061 

12,848 0.030 
3,220 0.013 

10,467 0.012 
(23,274) (0.027) 

12,848 0.030 
10,461 0.026 
39,211 0.061 

103,950 0.164 

12,848 0.030 
13,201 0.031 
51,119 0.082 

200,588 0.301 

12,848 0.030 
22,326 0.049 
89,282 0.144 

523,017 0.706 

8,650 0.032 
2,277 0.030 
6,891 0.040 

(4,943) 0.061 

12.243 0.041 
8,078 0.041 

17,837 0.054 
13,070 0.071 
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APPENDIX 

Theorem 1: The b,,m estimator satisfies Properties 4 and 5: the sum of the 

residuals is zero and the line through the origin with slope b,, passes through 

the sample average CEV? . 

Proof: 

c(y - b,,x) = xy - +x 

= n(T- $3 

=o 

This proves Property 4. Next, y- SF= 0, so F= b,% demonstrating that the 

sample average is on the line through the origin with slope bwu), Property 5. 

Theorem 2: Var(b,,) Z Var(b,,). 

Proof: First, write b,, = Zqy,/Zd = Ew,y, where w,-x,/Cti. Recall that all 

expectations of y are conditional on x, including the variance, which means that 

expressions involving x, in particular w, may be manipulated as constants. 

Therefore, 

Var fb,,) = Var (P,Y,/ (x,,x,....,x,)) 

= ZfwjVar (y, ix,) 

= cwfo' 

= :q+T) 

02 _i- 
xx= 

Next, 
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var b,, = v+z) 

= -&pVaIY 

2 
E-E!-, 

(EC)* 

To show that Var(b,,,) + Var(b,,,) we only have left to show that 

But the latter is just the Schwartz Inequality.' QED. 

Theorem 3: Under Model III, the least squares estimator is b,,. 

Proof: The transformed Model III 

I= b+e 
x 

is of the form 

u=bv+e 

where the variable v is identically equal to unity. Thus, the transformed model 

satisfies all the assumptions of Model II. Accordingly, its least squares 

estimator is 

'see for example John F. Randolph, Basic Real and Abstract Analysis, p. 35. 
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Theorem 4: Under Model IV, the least squares estimator is b,,. 

Proof: The transformed Model IV 

In(y) = In(b) + in(x) + In(e) 

or 

is of the form 

In(y) - In(x) = In(b) + In(e) 

" = b'v + ve' 

where b'=ln(b), v-1, and E(e')=O. Thus, the transformed model satisfies the SAD 

assumptions. By Theorem 3 

Therefore, the least squares estimator of the "untransformed" parameter b is 

6 = expf6') = .+,ln~) = ('xp.+)+ =nm = b,, 

Theorem 5: Under the assumptions of Model I, yrsr = aLSL + b,,x is an unbiased 

estimator of y; i.e., E(Y,,) = E(y). Under the assumptions of Model II, 

yLsM = b,,x is an unbiased estimator of y. 

Proof: Model I assumes that E(y) = a + bx. Since all expectations are 

conditional on x and since auL and b,, are unbiased, we have 

E(y,,! = E(a,, l b,,x) 
= E(a,,) + E(b,,x) 
= E(a,,) + E(b,,)x 
=a+bx 
= E(Y) . 

The proof for LSM is similar. 
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Lemma 1: Under LSL, E(x,jx,) = a, + b,E(x+,Ix,). Under LSM, E(x,lx,) = b,E(x*,/x,). 

Proof 1: The proof will be given for LSL. The proof for LSM is similar. 

First, 

Next, the "Multiplication Rule" of conditional density functions' states that 

ffx",~",,&?~ = ffX.1 (X"~,XD))f(X"~IXb)ffXg). 

Therefore, 

I f(x,l Lx"~,.XJ) f(x,-, 1x0) f(xJ %-I 

fLx,lx,) = +' 
f(q) 

= k, 
f(x,l (?&-1,x0) 1 f(%,-,l%)~n-1 . 

By the CLIA, the random variable x~/x.., is independent of x0. Therefore 

f(x, 1 (x ".,, x0)) does not depend on x0, so f(x, 1 Ix.., ,x0) I =f Ix, 1 x..,) . The rest of the 

proof hinges on our ability to interchange the order of integration. We will 

make whatever assumptions are necessary about the form of the density functions 

'See Robert V. Hogg and Allen T. Craig, Introduction to Nathematical 
Statistics, p. 64. 
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to justify that step. Then 

E(X,!XJ = J x,f(x,!x,ldx, 

flx,l (X"~l,XO) ff(x,.,lx,)dw,~, 

(1) 

Proof 2: Recall the well-known identity E(X)=E,(E(X\Y)].' Consider the 

following variation reiterated in equation (1) above: 

E(x,lx,,) = E,&,[E(x,/ (x,..,,x,))l . 

For LSL we have 

by CLIA 

Theorem 6: ElF.;x,) = E&.x,) 

Proof: By induction On n. The proof will be given for LSL; the proof for LSM 

is similar. 

I see for example I. 8. Hossack, J. H. Pollard, and B. Zehnworth, 
Introductory Statistics with Applications in General Insurance, 1983, p. 63. 
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For n=l the theorem is simply a restatement of Theorem 5. 

are functions of the random variables X,(X*,, and p,-, is a function of the random 

variables x..,/x..~, . . . ,x,1x0 and x0. The CLIA implies that x.Ix,., is independent 

of x.-,~x~~,...,x,~x~, and x,, so fi,and 6" are independent of pP1. Therefore, 

E(P,/x,) = E(8,jxO) + E(fi,~~,,)E(P,.~ix~) :. 6,and p,-, are independent 

= 4 .>,xo n [Efd,i (x,.,,xo))l + E,>.1!,o[E(6,/ (x,-,.X,))] E(P,-lIXo) 

= E,.,.xo [E(~,Ix,.,II + Ep+ i+ , [E(fj,~x,~,)l E(P,e,!x,) 

= E, .,,& [a,1 + &,1x0 Lb,1 EC@,-, 1x0) n 

= a, + b,E(Fa-lix,l 

= a, + b,E(x,+ 1 x0) by the induction hypothesis 

= E(x,,lx,,) by Lemma 1. 

Theorem 7: 

g& 

For n=l: 
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Proof: We will prove the LSM case first. We saw in Theorem 6 that 6, and 

P.-l are independent random variables. The formula' for the variance of the 

product of two independent random variables x and y is 

var(xy) = a*%y2 + ,u*'ayZ + ,uy%,' . 

This proves the theorem for LSN because &, is unbiased. 

For LSL, 

varp, - Varl, + 2Cov(d,,6,pn~,) l var (8,P,.,) . 

It is well known' that the random variables znand$, are uncorrelated when 6" 

'See Hogg and Craig, p. 178, problem 4.92. 

' See R. Miller and D. Wichern, Intermediate Business Statistics, 1977, 
p.202, for example. 
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is determined by least squares; since all expectations are conditional, we have 

that 

= var (x7, - 

= var x;, + 

=-T- 
+ xi., var 6, (21 

n 

Next, 

C0V(8,,lj,P,.~l = EP,_,Cov(l,,lj,) 

= pnM1 cov(s,,6,1 

7 fine1 is independent of 8, and6, 

and 

cov(a,.6,l = COV(X, - x,~,6,,EJ 

= COV(-FnJ5*,6,) 

= -Fn-1var6, . (3) 

Putting these together with the formula for Var (6,,pnm1) from the LSM derivation 

above we have 

Var p, = - + x& vargn - 2 p'n-l ~,,-~va16, + P:-, W& + 6: V=r L-1 + “=I @n-x 
In 
d? I-+ 
1, 

tp,-, -X,.,I~V~I~, + b,'varP,-, + var6,var~,., 
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Theorem 8: 

"ar(x,:xo) = o', + b;Vac(x,.,.&,) . 
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Lemma 2: E(Sn) = nan+b,(E(S..,) + x..,.m.,t. 

Proof: 

n-1 
EC.5,) = E(~x,,,.x,,,) 

1.0 

= “a, + b, (E(S,-,) + x~->,~.~) . 
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Theorem 9: Let XD"=(x,,,x,,,,...,x~,,.,) denote the current diagonal of the triangle 

for the n youngest accident years. Then 

E(t%,jXD,) = Et.9,). 

Proof: By induction on n. The proof will be given for LSL; the proof for LSM 

is similar. For n=l, we know that 

E(fi,lXDl) = E(P,~,Ix,,,)) 

= EIX,,, I x4.0) by Theorem7 

= ECS,) 

a,, and gn are functions of the random variables %,,Ix,,, and t?,,., ie a function 

of random variables x,~(+., and of xIJ for j<n. By the CLIA ~5~ and 6,, are 

independent of &,.,. Therefore 

E(fi,/XD,) = E(nb,+6,(~-,+X,-,,,-,) lx%) 

= E(n&I XD,J f E&IxD,, E @,.I + x,.,.,.~ixn,) 

= na, + b, (Et%-, / XQ1) +x,-,,,-,) 

= na, + b, (E(S,w,) + x,,-,.n.i) by the induction hypothesis 

= E(S") by Lemma 2. 
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Theorem 10: PARAMETER RISK 

For n=l: 

0: varti, = - + (xo,,-xa)'varb, 
I, 

For n>l: 

vExi%, = varA, = (M,,-~ + ~,,,,)~mb, + 

b,'var%., + varb,var%-, 

Proof: 

We will prove the LSM case first. Since A,=&, 6i,,m,+xn-,.,-,) , the proof is 

immediate by virtue of the formula for the variance of the product of two 

independent random variables once ws note that 

Var Cq., + x,-,,,m,) = var (6&.,) 

because x..,~., can be treated as a constant with respect to this conditional 

variance. 

For LSL, 

var P, = var (nd, + 6" (t++, + Xn.l,"-l) 1 

= var cd,) + 2c0~(nd,,6,(t&~ + x~+.~)) + var Cb,C6$-, +-Y~.~,.-~) ) 

In the proof of Theorem 7 we saw that (equation (2)) 
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and that (equation (3)) 

cov(S,,6,) = -F"-,Vaxf;, 

Since C$-, is independent of b,and 6" and since all expectations are 

conditional on the current diagonal, 

therefore 
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Theorem 12: v==(s") = nun2 + b,‘Var(S,., ) . 

Proof: 

V.x(S,) = EG$>!," [Var(S,i CX,.,.XD,) )I + Var~.,;,~[E(S,/ (X,.,.xD,) 1 I 

n-1 

= no: + biVar(S,.,). 

Theorem 13: Under the transformed GAD model 

where we assume that d,' = var (e;) are identical for every j, the estimate of 

the variance of the prediction of ultimate (transformed) loss 

fi'" = x: + $6; . 

is 

where S’Z denotes the MSE of the simultaneous solution of the link ratios of 

the transformed model. 

Proof: Since we assume equal variances by development age, we may solve for all 

parameters b, simultaneously with the equation (refer to Figure 4) 
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I 

: : : ! 
I \ 1 0 0 0 b: 

0 1 0 0 b: 
+ 

0 1 . 0 0 d-1 
ji 
oo... 10 t b: , 

0 

0 1 
0 0 0 0 I 1 

or, in more concise format, Y=XR + E. It is well known that the least squares 

estimator of I3 is @=(X'X),-lX'Y and that the variance-covariance matrix of this 

estimator is (X/X)-'cr" . In this caee, it is clear by inspection that X'X 

is a diagonal matrix whose j* entry equals Ij, the number of data points in the 

est.&te of the j" lti ratio, and whose off-diagonal elenznts are zezo. ~i-zus, ~ar6: q 2 
15 

and Cov(6~,6$)=0 for iwj. Therefore, the Parameter Risk Var(c+CC;) is 
1-1 

exactly equal to The Process Risk is equal to 

c 
CVar(eQ = Co” 
1-i 

These variances are estimated by substituting the estimate s I2 for 0" 
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CORRELATION AND THE MEASUREMENT OF 

LOSS RESERVE VARIABILITY 

Randall D. Holmberg, FCAS 

Loss reserves are the largest liability on the balance sheet of an insurance company, yet 
they are only estimates. Even the actuary responsible for making the estimates is often 
unable to quantify the inherent uncertainty. This is partly a consequence of the complexity 
of estimating the variability of the reserve estimates. Correlation across several 
dimensions makes statistical measurement of uncertainty difficult. Most insurers have only 
a limited number of historical data points available with which to make estimates of the 
multiple correlations, making estimation of correlation problematic. This paper presents a 
mathematically simple model of loss development variability which allows the inclusion of 
several types of correlation, It can also be adapted to deal with other complexities which 
may arise in the analysis of reserves. The paper also presents methods which make it 
easier to estimate correlations in practical applications. 
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CORRELATION AND THE MEASUREMENT OF 

LOSS RESERVE VARIABILITY 

Loss reserves, generally the largest liability on the balance sheet of an insurer, are only 

estimates of ultimate loss payments. Even if these estimates as carried on the balance 

sheet are unbiased, neither deliberately redundant nor inadequate, they are subject to 

uncertainty. Furthermore, the magnitude of the uncertainty of these estimates is generally 

unknown, even to the actuary who reviews reserves and certifies their adequacy in 

statutory financial statements. Considering the importance of reserve estimates to an 

insurer’s reported net worth, it is important to quantify the uncertainty of these estimates. 

Attempts to quantify the uncertainty of loss reserve estimates can easily get stymied by the 

complexity of reserve issues. There is potential for substantial correlation across many 

dimensions. There are usually relatively few historical data points from which to estimate 

the multiple correlations that are possible. Yet it is unlikely that correlation is insignificant 

in the variability of the total reserve estimate. Therefore, actuaries need a model which 

can deal with correlation but which allows reasonable estimation of the correlations 

involved. 

This paper presents a model for measuring the uncertainty of loss reserve estimates. Its 

main virtue is the directness and simplicity of the approach. It includes adjustments to 

account for many of the kinds of correlation effects which arise in analyzing reserves. The 

data for this measurement will be available in one form or another at any insurance 

company. The relevance of the items used in the measurement to the question being asked 

is easy to see. The model is simpie enough that it is relatively easy to add features to cope 

with complications that the model as presented herein does not consider. 
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While estimation of the correlations involved is difficult in practice, this paper presents 

several approaches which have proved helpful in making such estimates. 

Even when the parameters required by the model are difficult to estimate, the model may 

be used in sensitivity testing to get a greater appreciation of the importance (or lack of 

importance) of correlation to the accuracy of reserve estimates. The parameters have 

clear-cut intuitive interpretations, so sensitivity testing should prove fruitful to a 

knowledgeable reserve actuary. 

The paper will present the model in a relatively simple form and then suggest adaptations 

to deal with situations of greater complexity. An example of applying the approach is 

integrated into the description of the model. 

BASIC APPROACH 

In the property-casualty insurance industry in the United States, actuaries generally rely on 

a link ratio loss development approach to determine their estimates of accident-year 

ultimates and hence the adequacy of carried loss reserves. It seems natural to consider the 

way reserve adequacy is estimated in determining the variance of the resulting estimate. 

We take a very direct approach. We measure the variance of historical link ratios which 

the actuary examines when determining projections of future development patterns. From 

these variances, the variance of the resulting estimate of ultimate is computed. The 

variance of the estimated ultimate for a single exposure period is equal to the variance of 

the estimate of reserve shortage or redundancy for that period. The exposure period 

variance for a single period is then combined with those of other periods to arrive at the 

variance of total reserve need at a valuation date. 
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Variance of Link Ratios 

In this description of the model, we phrase all discussion in terms of incurred loss 

development methods. However, this same approach works in a paid loss development 

context, Similarly, although all references are to “accident year” this model can be used 

with other exposure periods such as report years or accident quarters. 

We will first establish some notation. Let R denote the total IBNR reserve need as of the 

valuation date in question. In our formulation, R includes provision for adverse or 

favorable development on known cases. Case reserves are treated as a constant. 

Therefore, the variability of R is equal to the variability of total reserve need. Let n be 

the number of accident years and the maximum number of valuations included in our 

development triangle. Define {,j as the incurred loss for accident year i as valued j 

years after the beginning of the accident year. Both i and j are numbered sequentially 

beginning with 1. Let L, be the ultimate loss for accident year i Let d,,j be the link ratio 

for accident year i between valuations j and j + 1. Finally, define Q, as the 

development factor for accident year i from age j to ultimate. In this formulation, 

di,” = D,,. is the tail factor for accident year i The latest available historical valuation of 

year i is l,,n-,+,. Note the following: 

4.j = fi4.k (2) 
k, 

Di.j = di., ’ Di.j+, for j <n (3) 

4 = L+, L-i+, (4) 

W-G I= -w2pi+l) ’ &I-i+, (5) 
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R = c 4 - c (n-t+, I 
E(R) = c EC4 > -CL+, (7) 

I 

In the traditional link ratio approach, 

E(Q,,)=fiE(4,,), and k?, 
E(d,,,) = E(d,,,) for all i , k for which j > n -i and j > n - k 

We will not require that these two relationships hold in our model. 

E(L,) is the estimated ultimate loss. The variance of L, around this mean is what we will 

measure to arrive at the variability of loss reserve estimates for a single accident year. 

The first step in calculating the variance of accident year ultimates is to calculate the 

variance of the historical link ratios for each stage of development. Exhibit 1 shows the 

triangle of incurred losses we will use in our examples. Exhibit 2 is the resulting triangle 

of link ratios. This is a ten-year triangle, so from it we calculate the variance of all d,,, for 

a fixed j , for values of i 2 10 - j These variances, as well as average link ratios and 

standard deviations, are also displayed in Exhibit 2. Note that since the variance of the 

link ratio at age j, Var(d,,,), is calculated across all i 5 10-j for a fixed j, we have 

Var(~‘,,,) = Vur (d,,,) even if i f k so the first subscript is not needed. In our example, the 

same is true of the mean at age j, E(d,,,) However, we will carry the first subscript 

throughout for consistency with other notation 

The model treats historical link ratios at a given stage of development as a sample from 

independent identically distributed random variables. The sample variance calculated from 

this sample is used as an estimator of the variance of the random variable’s distribution. 
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The actuary’s chosen projection of loss development may not match historical averages. 

Even in such instances, the sample variance is used to estimate the variance of future 

development, as it represents our best estimate of the variability of future development. 

However, the chosen development factor is treated as the expected value of that 

development. The example used in this paper includes some selected link ratios which are 

not equal to the historical average, in order to illustrate how these selections are treated in 

this method. 

An issue that arises is what variance to assign to the link ratios where there are few 

historical points, and to the tail development factor. Unless there is reason to do 

otherwise, in practice we usually rely on the sample variance for all ages where there are 

two or more historical link ratios. In many cases, assigning zero variance to the last one- 

year link ratio and to the tail factor is reasonable. In other cases, regressing the standard 

deviation of link ratios against the quantity (1 - E(d,,)( gives a fitted line which can be 

used to read off the standard deviation of the link ratio or tail factor (limiting standard 

deviations to non-negative values, of course). Alternate approaches could be used, such 

as using a parallelogram of link ratios rather than a triangle, or regressing standard 

deviations against the stage of development j , or simply judgmentally choosing a number 

for these stages of development. If the data used produce standard deviations which are 

sufficiently “bumpy” some of these techniques might be required even for stages of 

development with relatively many historical link ratios available. In the example used 

here, we have used sample variances where available and have assumed zero variance for 

the last stage of development seen in the experience and for the tail factor. This is seen in 

Exhibits 2 and 3. 

253 



Following equation (4), since Ir,rr-,+, is a known constant, we have: 

VW-4) = v~m.“-i+l>* Lt+l)*. (8) 

Therefore, determining Var(D,,,,+,) f or each i will determine the variance of each 

accident year ultimate. VU~(D~.~-~+,) is a function of the Vur(d,.j) for all j > n - i + 1. 

However, VU~(D~.,~+,) also depends in part on the correlation between link ratios at 

different stages of development within a single accident year. 

Correlation Between Stages of Development 

There are different reasons we might expect development at different stages to be 

correlated. For instance, if unusually high loss development in one period were the result 

of accelerated reporting, subsequent development would be lower than average as the 

losses that would ordinarily be reported in those later periods would have already been 

reported. In this instance, correlation between one stage and subsequent stages would be 

negative. Positive correlation would occur if there were a tendency for weaker-than- 

average initial reserving to be corrected over a period of several years. In that case, an 

unusually high degree of development in one period would be a warning of more to come. 

These examples do not exhaust the possible reasons for correlation. 

The usual link ratio approach, constructing development factors to ultimate as 

E(D~,,) = fiE(&), implicitly assumes the stages of development are uncorrelated. If 
k=, 

the d,,, were independent for dierent values of j within a fixed i , we would have the 

following: 

254 



Since for the tail factor (d,,,, in our example) d,,* = D,,,, we could start with the tail factor 

and use equation (9) with our variances of link ratios to chain backward and build 

Vur (D,,++,) for all i Here we generalize to a situation where correlation among stages 

of development may exist 

Hayne approached the problem of correlated link ratios using an assumption of 

multivariate lognormality. We propose an approach which is perhaps more intuitive and 

which is certainly simpler. As a consequence, our approach lacks much of the elegance of 

Hayne’s, but it provides a model which can yield significant insights into the effects of 

correlation between link ratios. 

Our mathematically convenient model for correlation treats a single link ratio, dZ,, , and the 

following age-to-ultimate factor, Dl,i+,, as correlated. We postulate a distribution for 4, 

and a relationship between d,.,, and Q,+, which allow relatively easy calculation of means 

and variances while still permitting the inclusion of various correlation effects. For 

mathematical tractability, we assume di j is uniformly distributed with known mean and 

variance. Assume a uniformly distributed random variable Xi,,, stochasticaliy independent 

of dr., with a relation as follows: 

4.,+, =u.d,, +b. X ‘.I (10) 

whereu+b=l (11) 

If the correlation coefficient between 4., and D!,,+,, p, is knowni, we have enough 

information to solve for u and b, and for the lower and upper bounds of the range of 

Xi .,,, which we will call A,J and Bx,., We can then calculate E( Di,, ) and Vur( D,,, ) 

1 We will discuss the estimation of p later. For the moment, assume the value of p is known. 
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The derivation of these results follows. We have the following as a consequence of (10). 

E(D,,,+,)=a.E(d;,,)+b.E(X,,,) (12) 

Yur(D,,j+,)=a”.Yur(d~~,)+bZ.Yur(y,,) (13) 

As a consequence of (lo), we have the following for the correlation coefficient between 

d,., and L?.,+, (see e.g. Sachs): 

Having determined a we can further calculate: 

b=l-a 

From (12): 

(15) 

W-q,) = 
E(Da,,+, I- a EC%) 

b 
(16) 

From (13): 

Var(X;,,> = 
Var(D,,,+,)-a’,Var(g,,) 

b= 
(17) 

We want to know E(d$,, .D,,j+,) = E(D,.,), and Yar (d,,, Da,,+, ) = Var (D,,, ). We will 

calculate these by specifying the distributions of X,,, and d;,, and integrating the 

appropriate expressions over the relevant domains. First we determine these domains. 

For a random variable Y, uniformly distributed on the interval between A, and Br, 

(1% 
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So we can derive Ax,J ,B, ,,,, A,$, , and B,,,, For notational convenience, we will use 

A, to denote A,,, , B, to denote B,,, , A, to denote A,J, and Bd to denote Bd,, in what 

follows. We can determine the bounds of Xi,, using formulae following from (18) and 

(19): 

B 
x 

= E(X 
1.) 

)+ [12.var(Xi.,)lk 
2 

(20) 

(21) 

Analogous formulae give the values of Ad and Bd. Now we can set up integrals and 

calculate E(Di,j) and V~Y(L$~). 

E(D,,)=E(d,,,.D,.,+‘)=(Bx_Ax~,(B,_A,) -I, I, 
” B*di,j+~d,,, -tb~X,,,)dX,,,dd,, d x 

= 
+-(B,A,,s(B’-A’)+$(B;-A:)@-A;) 

(Bx-AxW,-4) 
(22) 

= 
$(Bx-A,)(B:-A~)+$(B:,--A:)(~;-~;)+$B;-/1:)(B,’-~;) 

(4 -Ax).@, - 4) 
(23) 

VWDi,,) = W:,) - E’(Q,,). (24) 

We chain backward to calculate E(Dj,,_,+l) and V~T(D~,~_,+,) for all i , allowing us to 

calculate VW(&). The way we do this is as follows. Start with the tail factor D,,, so that 

E(D+) = E(d,,“) and Var(DJ =Var(d,,,), quantities we have estimated or assumed. 

We also know E(d$.,,) and Vur(di,-,). Use (14) and (15) to calculate a and b Use 

(16) and (17) to compute E(X,,“-,) and Vm(Xi,_,). Calculate A,, B,, Ad, andB, 
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using (20) and (21) and the analogous equations for A,, and Bd Finally, calculate 

E(D,,“-,) and Vur(D,,,-,) using (22), (23), and (24). We can repeat this process, using 

E(D ,,“-,) and Vur(D, ,“-,) to estimate E(D ,,“- 2) and Vur(Dr,,..,). We continue backward 

in this fashion until we reach E(D,,“-,+,) and Vur(D,,,_,+,), allowing us to calculate 

Vur(L,). 

Correlation affects both E(D,,,) and Vur(D,,,). Beyond this, there are important 

conditional expectations and variances, E(D,,,Id,,,-,) and Vur(Q,,Id, .,-, > for 

1 i j $n-i+l. If we believe that link ratios and the following age-to-ultimate 

development factors are correlated, then knowledge of the last historical link ratio for each 

accident year should affect both our expectation of future development on that year and 

the variance of our estimated ultimate. It is internally consistent if in projecting ultimate 

losses and in estimating the variance of those ultimates we use conditional expectations 

and variances per the following: 

from (5): 

from (8): 

from (5): 

from (8): 

Note that for i < n 

from (12): 

from (13): 

E(4) =I i.n-,-, ‘E(D ,.“- ,+,14,n-,), ifi <n (25) 

Vur(L,) =(4 .“-, +,>* .Vur(D ,+, +,14.,-,L if i <n (26) 

E(4) = 4, . W’n,,) (27) 

J’4-L) = K.,)’ .VNDn.,> (28) 

WL,+,IL) = a.4.,-r +b.E(X ,.“--I 1 

Vur(D,,,-,+,I4 .n-, > =b2.VW-L) 

(29) 

(30) 

Exhibit 3 shows a calculation of conditional expectations and variances. For informational 

purposes, it also shows unconditional expectations and variances including correlation, 

and expectations and variances excluding correlation. Exhibit 3 uses the same value of p 

for all i and all j, but this is not a requirement of the model. However, when the 
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question of estimating p arises, there is a benefit to having a single value to estimate, and 

there may be some intuitive appeal to having a single value of p 

At this point it is helpful to go through Exhibit 3 step by step to clarify how the model is 

used in practice. At the top of the exhibit, we show for each stage of development j the 

expected link ratio E(d,,j) and the variance of that link ratio Vur(d,.,) E(d,,,) is equal 

to our selected link ratio. Vur(d,,,) is estimated using the sample variance as shown in 

Exhibit 2. In this example, neither E(d,,,) nor Vur(d,,j) vary with i , as has been noted 

previously. However, the model could cope with different E(d,,,) and Var(di,,) for 

different i 

The next item in Exhibit 3 is our value of p, which in this example is the same for all i, j 

From this point on, the exhibit is easier to interpret if we start on the right of the exhibit 

and work our way to the left. At each j, we determine a using equation (14) and b 

using (15). For j 2 8, we have a = 0, since Vur(D,,,+,) = 0. For lesser j, we use the 

value of Var(D,,j+,) from the next column to the right,to calculate a and b E(X,,,) and 

Vur (X,,, ), calculated using (16) and (17) respectively, are shown next, followed by 

A,, B,, which follow using (20) and (21). The values of E(d,,,) and Vur (d,,,) from the 

top of the exhibit similarly allow us to calculate A,, and B, which are the next values 

shown in Exhibit 3. Then, using (22) and (23), we can calculate E(D,,, ) and Var (D,,, ) 

These values flow into the calculation for the next cohnnn to the left. For each j, once 

we have completed the column to this point we have enough information to proceed with 

the calculations for the column for j - 1, 

Below these unconditional means and variances, we calculate the conditional values 

E(Dn-j+l., ldn-j+l.j-1) and fir@,-,+,,,Id,,+ ,.,-, ) using equations (25) through (28) which 

will be used to project the ultimate and the variance of that ultimate for accident year 
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n-j + 1. These calculations require some parameters from the column for i - 1, namely 

a, b, E(Xn-j+l,j-l), and V~r(x,-,+,,,-t). 

Note that there are no conditional expectation and variance for j = 1 or equivalently for 

i = n. This is of course because there is no d,,. 

The effect of correlation on unconditional E(Q,,,_,) is relatively small, but the effect on 

unconditional Var(D,,,,-,) is significant, when compared to the values ignoring correlation. 

When conditional expectations and variances are used, both expectations and variances are 

significantly affected by correlation. 

The assumption of a uniformly distributed X,.j and 4,, is primarily for mathematical 

convenience in determining variances of the product of correlated random variables. It is 

not intended to represent a realistic model of the probability distribution of the link ratios 

or age-to-ultimate development factors. Thus, the actuary may decide that using 

conditional probabilities and variances is putting too much reliance on a model which was 

chosen largely for convenience. In such a case, the actuary might base estimated ultimates 

on the traditional age-to-ultimate factor as the product of projected link ratios (implicitly 

ignoring correlation for the purpose of projecting ultimates), but use the variances 

including correlation, either conditional or unconditional. Alternatively, he or she might 

use the unconditional E(D,,,) including correlation (recognizing correlation among fUture 

development, but ignoring the correlation to historical link ratios) instead of relying on 

conditional E(Di,,Id,,j-,) from this model. Note that as a consequence of (13) and (30) 

Var(Q, Id,,_,) < Var(D,,,). Hence, the use of the correlated unconditional Var(D,,,) 

would be conservative. The correlated E(D,,j) is greater than the age-to-ultimate 

excluding correlation if correlation is positive, less than the uncorrelated age-to-ultimate if 

correlation is negative (assuming that loss development is positive). E(D,,,Jd;,,-,) may be 
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greater or smaller than E(D,,,) depending on whether 4 ,-, is greater or smaller than the 

average link ratio at that stage, and whether correlation is positive or negative 

Exhibit 4 shows a calculation where E(D I.“- i+,ld ,,“-,) and Vur(Dn_,+,Idi,,_,) are used for 

calculating expected ultimates and the variance of those ultimates, based on equations (25) 

through (28). In our example we use conditional expectations and variances in the interest 

of internal consistency, as discussed earlier. For convenience in later calculations, Exhibit 

4 shows variances converted to standard deviations. 

Following from equation (6) we have I’,,(R) = Vur c L, 
L 1 

If the Li for different i 

were independent, we could calculate the variance of the estimated total reserve need R as 

VW(R) = cVar(L,) (3 1) 

However, the model does not require this assumption of independence, as will be seen 

below. 

Correlation Between Accident Years 

There are reasons that the estimated ultimates for different accident years as of a given 

valuation date might be positively correlated. If current case reserves are stronger (or 

weaker) at the valuation date than assumed implicitly in the projected development pattern 

for one accident year, it is likely to be true for all accident years. If claim processing has 

been disrupted in some way, that may very well affect all accident years. If a judicial 

decision changes the likelihood of paying out on certain types of claims, that could affect 

all accident years. There are doubtless other examples of contingencies which could cause 

positive correlation. It is less clear, at least to us, what realistic contingencies in property- 
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casualty insurance could result in negative correlation, although hypothetical examples can 

be created. 

One concern which must be noted at this point is that some of the situations which can 

cause correlation between accident years can also cause correlation between stages of 

development within an accident year. The prior section dealt with measuring the 

correlation between stages of development within an accident year. It is important in 

adding consideration of correlation between accident years that we avoid “double- 

counting” the correlation which results from the same cause as the correlation within an 

accident year. A method we propose to avoid (or at least ameliorate) the potential 

double-counting, without going into the complexities of multivariate analysis, is described 

in the next section on estimating correlation coefficients. The current section describes the 

mechanics of including correlation between accident years in our measure of the variability 

of total reserves. 

We start with a formula for the variance of the sum of generalized random variables & 

Note that Cov(Y,,Y,) = Vur(U,), and that each term Cov Yk, , Ykl), fork, * k2 appears ( 

twice in this sum. Thus, for example, this formula would agree with the familiar formula 

for the variance of the sum of two random variables, 

var(Y+z)=Var(Y)+vur(Z)+2~Cov(Y,Z). 

We approach the calculation of the variance of R through use of a correlation matrix. 

Since Cov(L,,L,)=p,,, ~Var(L,)x~V~r(Lm)x, where pk., is the correlation coefficient 
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between Lb and L,, defining a matrix of the values of A,, is the first step to calculating 

the variance of R . 

Set up an n x n matrix C, with c, = c, = pk,, for all k; m .2 Var (L,) is known for each 

k based on the work done in the previous section. Therefore, we calculate 

Var(R)=k ~Cov(L,,L,,,)=~ ~p,.,.Var(L,)ii.Var(L,)X (32) 
h-1 nr-, k=I ml 

Exhibit 5 shows the calculation of Vur(R) in this manner. The exhibit shows the matrix of 

correlation coefficients first, i.e. the matrix of ,D~ m. It then illustrates the calculation of the 

matrix of covariances using the accident year standard deviations calculated in Exhibit 4. 

Each element in the second matrix is a term from equation (32). The sum of all elements 

in the second matrix is equal to the displayed “Variance of Estimated Reserve Need” at the 

bottom of Exhibit 5. This is converted to a standard deviation for the reader’s 

convenience. 

Estimating Correlation Coeffkients 

The inclusion of correlation has significant effects on both estimated lBNR reserve need 

and the variance of that estimate. Exhibits 4 and 5 show an estimated needed IBNR of 

$69,879 and a standard deviation of that estimate of $21,492. If we had used zero 

correlation everywhere in the model, the corresponding numbers would have been 

$68,325 estimated IBNR need with a standard deviation of $14,717. Clearly, the 

existence of correlation is an important factor in measuring the variability of reserve 

estimates. 

‘A@n, t&e h,, as given. The problem of estimating these correlations is treated later. 
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How do we determine the correlation p within each accident year and the correlations 

,Q,, between accident years at a given valuation point? HOW do we account for the fact 

that some of the correlation captured in p is caused by the same factors that result in 

correlation measured in the pk.,,? The first step in our recommended approach is to 

estimate p, without any consideration of collinearity, as described below. 

One approach which can be used to estimate p is an iterative approach based on the 

incurred loss triangle being analyzed. In our experience convergence is usually pretty 

rapid, taking 3 to 5 iterations. 

On the first pass, treat p as if it were zero. Take the resulting estimated ultimates 

E(-4)=4,,-,+,’ fiE(d,,,) d an use them to calculate implied D,‘, = E( L, ) / ‘;,, forj -< n -i 
k=n-,+, 

(that is for all j with at least one historical link ratio in addition to the projected 

development). Transform all D:, and all d,,,_, to random variables with mean zero and 

standard deviation one using these formulae: 

D,, = u?:, - WA:, )) 
‘,’ (Var(D,~,))~ 

(33) 

4-I = M.,-, - E(d,,,-,)I 
Vdd,,,-,)I % 

where expectations and variances are calculated across varying i within a fixed j, 

Calculate the sample correlation coefficient between these d,:;-, and 0,‘; for ail 

i, j such that 2 I j 5 n-i Use this sample correlation coefficient as p for all i, j in all 

calculations. If the ultimates are being projected using E(L,) = I,,,_,+, . k$E(d,,k)l t&s is 
a 

the final estimate of p. If ultimates are being projected using E(D,,,/d,,,m,), or using 
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E(Qj) including the effect of correlation, as seen in Exhibits 3 and 4, we must go 

through the calculation of new ultimates E(L,) since these ultimates depend on p. For 

the second iteration, base Dl, on the new estimate of E(L,) and calculate new DL; using 

(33). Calculate a new sample correlation coefficient between d,::-, and 0,::. Repeat this 

process until it converges on a value for p. This iterative approach maximizes use of the 

most relevant data for the determination of p, by putting all available data points into the 

determination. 

Other methods which would determine a different p for each j would require 

substantially more historical points than are usually available to an insurer. We have tried 

using accident quarter by calendar quarter triangles to expand the number of historical 

points, but the data are so variable when cut this fine that the approach did not work well. 

The question of determining the elements of the accident year correlation matrix C 

presents similar challenges to the determination of p. There are additional complexities 

due to the need to avoid the effects of collinearity. 

In practice, we have found it difficult to determine values for the non-diagonal elements of 

this matrix from company data. When we look at homogeneous lines of insurance, 

calculated correlation coefficients are often not significant if a reasonable standard is used. 

This is particularly true for stages of development where there are relatively few data 

points. An approach we have used with some success is similar in respects to that 

outlined above for estimating p, 

Start with our incurred loss triangle and estimated ultimates E(L,) In this instance, the 

E( L,) include whatever correlation effects based on p the actuary has decided to include. 

Calculate implied D,', = E(L, ) / [,, forj < n-i Transform all Da', to random variables 
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0:; with mean zero and standard deviation one using the formula: 

(D(j -‘(D(j)) 
9yI = (var(D;,))% (34) 

Calculate the sample correlation coefficient between D:.‘, and D,Y,,,+, for all values i, j 

where j In-i and both 0,: and Dt’I,,j+, exist, This represents the correlation between 

age-to-ultimate development at a given valuation date for accident years which are 

separated by one year. Use this sample correlation coefficient for all c, where Ik - m( = 1. 

Use an analogous approach for lk -ml = 2, basing c*, on the sample correlation between 

D;;. and D,“,,,,, Continue in this fashion for Ik -ml = 3,4, . . . . until correlation is 

negligible or until there are too few points with the proper spacing to calculate a sample 

correlation coefficient. 

The adjustment to this procedure to remove collinearity is to restate (34) as: 

D .,,. = (OlI, -EN;, 14.,-3) 
I” WWD;, Pi.,-,>)” 

(35) 

Thus, the correlation between D,,, and 4,-, is considered and is “reduced out” of the 

measure of correlation between accident years. This way, any factor which contributes to 

correlation both between accident years and within accident years is not double-counted. 

In practice, we can estimate the correlation between accident years using both (34) and 

(35). If the results flowing from using (34) without eliminating collinearity and ignoring 

correlation within accident years show a stronger correlation than the combination of 

using (35) with correlation within accident year, we can use (34) and ignore the 

correlation within accident years. Otherwise, we use the combination of correlation within 

accident years and the correlation between accident years measured using the results of 

(35). 
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We have found that it is often helpful to restrict these calculations to relatively low values 

of j, for instance, look only at pairs 0,'; and D,Y,,,+, for which j < 3. It appears that in 

many cases the correlation between accident years becomes insignificant for accident years 

which are beyond the earliest few stages of development at the valuation date under 

consideration. 

Another approach which has proved useful is looking at higher levels of aggregation for 

determination of this correlation, rather than looking at a homogeneous line of insurance. 

Combinations of lines often show more correlation between accident years than can be 

seen through the “noise” at a finer level of detail. If correlations From aggregated data are 

to be applied at a finer level of detail, the actuary should make sure that the lines combined 

to reach the aggregate are expected to behave similarly in terms of loss development, so 

that the correlations might be reasonable for use at the detail level. A further 

consideration is that the collinearity adjustment described above must then be done at the 

aggregated level. While this adjustment is possible, the description of the calculation is 

not given here. In practice, when we have used aggregated data to determine correlation 

between accident years, we have not included correlation within accident years in our 

variance measure. Then we can rely on equation (34) in making our estimate of the 

correlation, 

Exhibit 5 shows a situation where correlation was believed to be significant only between 

years falling in the last 4 accident years as of a given valuation date, and where correlation 

was negligible for lk - ml > 2. 
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OTHER ISSUES AND ADDITIONAL COMPLICATIONS 

The model as described above deals with the variability of reserve estimates including 

assumptions of two varieties of correlation. This section discusses additional concerns 

that arise in estimating reserve need and in some cases describes how the model could be 

adapted to address those concerns. 

Homogeneity of Data 

The model as presented depends on the data in the loss development triangle being 

homogeneous. If the data are not homogeneous, but the mix is constant through time, the 

model may still provide useful information. If the data are not homogeneous and the mix 

is not constant through time, the model as presented will not give representative results. 

Correlation Between Lines of Insurance 

The model as described above deals with one homogeneous line of insurance. When 

analyzing reserves for an insurer, we are usually concerned with the variability of the 

estimated reserve need for the insurer as a whole as well as on a line-by-line basis. If the 

R, are independent, the formula for the variability of the total reserve estimate is 

where R, is the reserve estimate for line s , and r is the number of lines of insurance. 

Intuitively, it would be expected that some of the R, are not independent, However, with 

measurement of the correlation within accident years and between accident years as 

described earlier in this paper, we have generally felt comfortable that the great majority of 
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the effects which in practical application cause correlation between lines of insurance are 

already captured in the measures of correlation already described. Therefore, we have 

used (36) to estimate the variance of reserve estimates for combinations of lines of 

insurance. The substantial enhancements to this model to accommodate a further measure 

of correlation are beyond the scope of this paper. 

Effect of Inflation 

Variability in loss development could be the result of changes in inflation rates. If the 

actuary feels the effect of inflation on the loss development triangle would distort the 

measurement of reserve variability described in this paper, the triangle should be adjusted 

to a constant dollar basis before this variability model is used. It must be noted that in 

order for the resulting variability measure to be complete, consideration of the variability 

of estimates of future inflation would have to be included separately. Such consideration 

is beyond the scope of this paper. Failing to remove the effects of inflation from the 

triangle before applying our model of variability implicitly assumes that future variability 

of inflation will have the same effects on reserve estimates that the historical triangle 

shows. The actuary may feel this assumption is justified, but at any rate the choice of such 

an assumption should be a conscious decision. 

Varying Volume of Data Through Time 

In practice, the triangle of loss development data we are analyzing may have significant 

changes in the volume of business through the period of time covered. In such a situation, 

the calculation of sample Yar(d,,j) in the manner shown in Exhibit 2 could be distorted by 

points showing unusual development but backed by very little data. To cope with such 

situations, we have used a “dollar-weighted variance“ approach which is shown in 
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Appendix A. The essence of this approach is defined by: 

for l<jsn-land (37) 

2 “-I 
c :( I 1’“‘~E,(d,,,) 

Var, (4,, ) = I=’ 
I’ 1. ‘.I 

“-I for l<jln-1 (38). 

g”., 

We use the weighted variance Var,(a’,,,) in exactly the same way we used Var((i,,) in the 

earlier description of the model. Appendix A shows a revised version of Exhibits 1 

through 5 (renumbered as 1A through SA) substituting this weighted approach. In this 

particular example the effect is not large because the triangle used in our examples does 

not have extreme volume changes. In practice we have encountered many situations 

where the volume adjustment is important. In fact, we almost always use the weighted 

variance approach in practice since in situations where it is unimportant it has little effect, 

and in situations where it is important it gives a better representation of the variability of 

loss development. 

Paid Versus Incurred Development 

The model has been described in terms of incurred loss development and lBNR estimates. 

However, there is nothing in the formulation which requires that it be used in this way. 

All formulae and relationships would hold equally well for paid loss development analysis. 

Interpretation of correlation coefficients might vary, however. Depending on the reason 

for correlation between accident years on an incurred development basis, it might be 
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expected that on a paid development basis there would be no correlation at all. 

Correlation between link ratios within a given accident year might also be zero when 

viewed in a paid loss development context. The actuary should consider these issues, and 

where possible test to see if correlation does exist. If correlation is eliminated by using 

paid development data, the actuary could rely on equations (8), (9) and (31) and greatly 

simplify the calculation of variability of reserve estimates. 

Trends in Loss Development Patterns 

As presented in the example in this paper, the model included no consideration of changes 

through time in loss development patterns. Some simple kinds of changes could be 

included relatively easily. For example, if a regression curve were fitted to historical 

values of d,,, and projected values were read off that curve, the appropriate adaptation of 

the model would be to substitute the curve values for all projected E(d,,,) and substitute 

historical variance around the fitted curve for all V~r(d,,~> in the formulae describing the 

model. A volume-weighting scheme would be possible in this context if desired. The 

complications for using fitted curves in the analysis of correlation should also be 

considered. When normalizing the variables to arrive at d,I;-, and 0,‘; the expected 

values and variances should be measured considering the fitted curves rather than “raw” 

means and variances. 

CONCLUSIONS 

The model presented in this paper uses the variance of link ratios to estimate the variance 

of reserve estimates, It allows the inclusion of correlation effects of several varieties. It 

can be elaborated to cope with a number of concerns which may be important in specific 

situations. 
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While the estimation of correlation is often diicuh in practice, we have presented some 

approaches which maximize the use of historical data in making such estimates. If 

estimates prove impractical, this model can be applied in a sensitivity-testing manner to 

demonstrate that the effects of correlation can be important as regards both the estimated 

reserve need and the variance of that estimate. Whether or not correlations can be 

estimated with much accuracy, this model gives actuaries an approach to better 

quantifying the uncertainty of reserve estimates. 
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Exhibit IA Triangle of Incurred Loss Valunlions 

Accident 
Year 

1 
2 
3 
4 

i 5 
6 
7 
8 
3 

10 

1 

32,223 
42,588 
44,360 
33,145 
30,754 
33>94 
31,064 
33,831 
44,172 
48,307 

2 

48,439 
65239 
69,989 
56,088 
46,587 
41,516 
54,187 
48,453 
72,814 

Stage of DcvelOpnlcnl (Years) -I 
3 4 5 6 

54,284 58,146 GlJOS 63,739 
17,329 82,064 8SpO 85,226 
75,140 79,019 80,548 80,864 
60,132 66,ss 1 66,857 68,395 
54,855 51,645 56,249 54,560 
52,870 59,598 58,715 
63,529 73,791 
62,742 

7 8 

63,604 
80,944 
7934 1 
66,806 

62,721 
79571 
79,525 

9 10 

63,247 62,159 
80,614 

Wcighlcd Avcragc I)cvclopnml nnd Wcighlcd Varinncc 

2 

I ,,,.(~-w,,,) 

Accident j 

Year 1 2 3 4 5 6 

1 97 38 13 91 64 34 
2 29 87 so 48 5 53 
3 0 39s 93 2 1 3 
4 i 591 244 5 7 16 0 
5 51 39 71 87 18 
6 616 61 87 52 
I 1078 30 35s 
8 536 1035 
9 209 

6, Cd,., 1 1.558 1.149 1.087 1.015 1.007 0.975 
~arw(d,.,) 0.0 10029 '0.004433 0.001536 0.000713 O.ooO472 o.ooo3os 
~Qr.(d,,)" O.lcQ14S O.O&ml 0.039193 0.026699 0.021719 0.0174634 

Sclccwd Link Ratios 
_,I . __^ 

I 

1 
5 

11 

0.991 1.011 
0.00007s 0.000005 
0.008638 0.002306 

Exhibit 2A 

9 

0 

0.983 



Modcling Correlalion Within an Accident Ycnr 
j 

Exhibit 3A 

stage: 1 2 3 4 5 6 7 8 9 10 

1.120 1.015 1.007 0.915 0.991 1.011 0.983 1.000 
0.001536 0.000713 0.000472 0.000305 o.ooMJ75 0.000005 0.000300 0.000000 

1 S58 1.180 
0.010029 0.004433 

P 0.100 

;: 
0.110096 0.095952 0.107745 0.114186 0.092599 0.0520322 0.026238 0 
0.889904 0.904048 0.892255 0.885814 0.907401 0.9479678 0.973762 1 

0.964 0.960 0.955 0.985 0.994 0.983 
0.0022 18 0.001173 0.000486 0.000091 0.000005 0.000000 

0.883 0.901 0.917 0.968 0.990 0.983 
1.046 1.020 0.993 1.001 0.998 0.933 

0 0 
1 1 

1.000 1.000 
0.000000 o.oocMloo 

1 .OOO 1.000 
1.000 1.000 

QT.,) 1.265 1.090 
~flrvc,,) 0.015197 0.004944 
Ax 1.051 0.968 

11, 1.478 1.212 

4 1.385 1.065 
I!, 1.731 1.295 

Unconditional, including corrclntion: 
We,,,) 2.022 1.291 
“WD,., 1 0.050964 0.012156 
W-J;,) 4.139 1.694 

Conditional Expectation and Variance: 
wt,,l~ ,,,-I 1 2.022 1.305 
1’~ CD,., Id,,,., ) 0.050964 0.012035 

If no corrclalion: 
W4.,) 2.020 1.296 
‘+aJ,.,) 0.04 1337 0.010046 

1.052 0.968 0.970 0.945 0.976 1.007 0.983 1.000 
1.188 1.061 1.045 I.005 1.006 1.015 0.983 1 .ooo 

1.099 0.981 0.967 0.960 0.954 
0.004081 0.001783 0.000929 0.000404 0.000083 

1.211 0.964 0.935 0.92 1 0.969 

0.994 0.983 1.000 
0.00000s 0.000000 0.000000 

1.110 0.985 0.963 0.956 0.985 0.994 0.983 1.000 
0.004041 0.001765 0.000920 0.000400 O.OOM382 0.000005 0.000000 0.000000 

1.098 0.981 0.967 0.960 0.984 0.994 0.983 1 .ooo 
0.003363 0.001501 0.000810 0.000370 0.000079 0.000005 0.000000 0.000000 



Projected Ultimates and Standard Deviations 
By Accident Year, Including Correlation 

Accident Current Expected Variance Expected Needed Variance Std. Dev. 
Year Valuation LDF of LDF Ultimate IBNR of Ult of wt. 

1 62,159 1.000 0.000000 62,159 0 0 0 
2 80,614 0.983 0.000000 79,227 - 1,387 0 0 
3 79,525 0.994 0.000005 79,040 -485 32163 179 
4 66,806 0.9‘9 0.000082 65,773 - 1,033 364808 604 
5 54,560 0.956 0.000400 52,166 -2,394 1191987 1,092 
6 58,715 0.963 0.000920 56,560 -2,155 3172039 1,781 
7 73,79 1 0.985 0.001765 72,713 - 1,078 9613035 3,100 
8 62,742 1.110 0.00404 1 69,632 6,890 15905997 3,988 
9 72,814 1.305 0.012035 94,987 22,173 63806418 7,988 

10 48,307 2.022 0.050964 97,671 49,364 118928464 10,905 

Total 660,033 729,929 69,896 

Exhibit 4A 
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Projcclcd Rcscrve Need - - All Years Combined 
Including Correlation Bc~ecn Accident Years 

Exhibit SA 

Matrix oFcorrchtion cocfkicnts pk.,, 
n2 

Year 

k ; 

7 
8 
9 

10 

1 2 3 4 5 6 I 8 9 10 

1 0 0 -5 0 0 0 0 0 0’ 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0.5 0.2 0 
0 0 0 0 0 0 0.5 1 0.5 0.2 
0 0 0 0 0 0 0.2 0.5 1 0.5 
0 0 0 0 0 0 0 0.2 0.5 1 

c: 
4 Malrix ol Covnrinnccs (= Corrclarion Coclkicnt X Sld Dcv for Ycnr (I-lorizj X Sld Dcv [or Year (Vcrt)) 

pt,,.Var(L,)X.y,,(L-)K 

ni - ,.. ..--~-- 
3 4 5 G 7 8 9 -_ lo] 

- 179 604 1,092 1,781 3,103 3,988 7,988 -------- -- ------------'--' ---- 10,9OSl __.- 
0 0 0 0 0 0 0 -0 
0 0 0 0 0 0 0 0 

32163 0 0 0 0 0 0 0 
0 364808 0 0 0 0 0 0 
0 0 .1191987 0 0 0 0 0 
0 0 0 3172039 0 0 0 0 
0 0 0 0 9613035 6182736 4953215 0 
0 0 0 0 6182736 15905997 15928784 86P8680 
0 0 0 0 4953275 15928781 63806418 4355SlOP 
0 0 0 0 0 -___ 8G98680 435557m 118P2a464J 

Varinncc ol Estimaicd Rcscrvc Need: 3716.53280 
.%tndard Dcvinlion of Eshnntcd Rescrvc Need: 19,278 
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VARIABILITY OF LOSS RESERVES 

ABSTRACT 

This paper addresses the issue of biases in the loss reserving process, some of which may 
be intentional. Using an empirical analysis of data from 169 companies over a seventeen year 
period, it is observed that the level of loss reserves exhibits cyclical behaviour, is different 
for companies of different sizes and is different for reinsurers than for direct insurers. Fur- 
thermore, after these factors are accounted for, the differences in levels between individual 
companies accounts for about three-quarters of the explainable variation. 

The paper suggests that greater independence on the part of the loss reserve specialist 
could lead to more objective estimation and could reduce historical variability by about 40%. 
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1 Introduction 

Loss reserve estimates are made at least annually by one or more loss reserve specialists 

(now normally actuaries) in each insurance company writing property-casualty business. 

The degree of difficulty in estimating loss reserves depends on a number of factors. For 

example, some liability and other lines of business have long average time delays before 

settlement; the size of the ultimate loss may be positively correlated with the length of such 

delay; and the size of the ultimate loss may be highly variable. 

The size of the loss reserve has an immediate impact on the income statement of the 

insurer since the year-to-year increase in loss reserves is a direct charge to income in the 

company’s income statement. In theory, the size of loss reserves for a particular block of 

insurance business in successive years has no impact on the ultimate profitability of that 

block. The reserve only allocates portions of the profit to the successive years. In practice, 

however, the size of the loss reserves in successive years may influence the setting of premiums 

since incurred losses include estimates of loss reserves. Establishing inadequate reserves may 

Iead to inadequate future premium income. Furthermore, a sharp increase in loss reserves 

has a direct influence on the income statement, shareholder confidence and stock prices. 

Because the size of loss reserves affects income and hence taxes and stock prices, it is 

possible that the loss reserves in financial statements may not be objective estimates of 

future losses (see, for example, the article by Loomis, 1984). Grace (1990) hypothesizes that 

insurers are influenced by the desire to maximize earnings each year while maintaining a 

smooth progression of earnings in order to minimize investor uncertainty. This suggests that 

a company that is under-reserved in one year is likely to be under-reserved in the next year. 

In various empirical studies, Anderson (1973), Smith (1980) and Weiss (1985) all found that 

reserve errors had the effect of smoothing the underwriting income of insurers. This implies 

that the ‘true’ underwriting income stream is more volatile than that obtained using reserve 

estimates. 

Because the insurance business is inherently risky and theestimation process is imperfect, 

281 



variability in loss reserves is inevitable. The objective of this paper is to examine and test 

empirically various sources of variability, and test the hypothesis that reserve errors are 

nonrandom. 

2 Sources of Reserve Error 

The deviation of a reserve estimate from its ‘true’ value is termed the reserve error. The 

‘true’ value of the reserve established at the end of an accounting year can only be established 

(or more accurately estimated) after all ( or almost all) claims have been settled. 

Some errors in reserving may be deliberate. Any attempt to smooth earnings is in this 

category. Forbes (1970), Smith (1980) and Weiss (1985) all confirmed that financial results 

for property-casualty companies were consistent with management’s deliberate attempt to 

influence income smoothing through the reserving process. To the extent that a firm should 

be viewed from an on-going basis, this smoothing is considered a desirable characteristic of 

the loss reserving process by Pentikainen and Rantala (1992). Of course, from a break-up 

perspective, such smoothing would be undesirable. 

Deliberate over-reserving may be desirable to make the balance sheet of a company some 

what conservative. Reserves for property-casualty insurers have historically not included 

discounting of future cash flows even though reserves (or more correctly, assets offsetting 

reserve liabilities) are invested. The classic argument is that such conservatism in reserving 

provides a margin of error against deviations in claims experience and against the effect of 

unanticipated inflation for claims that are not yet settled. This deliberate over-reserving is 

based on the belief that the balance sheet is more important than the income statement and 

that solvency considerations are paramount. The amount of any over-reserving plays the 

same role as surplus, but is hidden and thus protected from distribution to policy-owners or 

shareholders. Generally accepted accounting principles (GAAP) argue in favor of explicit 

recognition of the various sources of profit and a more ‘accurate’ income statement and 

hence, a more accurate balance sheet. Current tax regulation requires methods consistent 
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with GAAP. 

The Genference of Consulting Actuaries (1992) report that for the period 1987-1991, a 

total of 164 U.S. property-casualty insurance companies were de&red insolvent and that 

the ultimate total svplus deficiency for these companies could reach $5 billion. They report 

(p.91) that: 

‘“rhe stated leading cause of insolvency is ‘underreserving’. But in 

many cases, further analysis will show that this is a symptom rather 

than a cause. Underreserving can be a form of deferring the real prob- 

lem. The practice of underreserving can lead to more easily defined 

CaUWS. 

When management recognizes there are serious problems, the easiest 

immediate solution is to seek justification for lower reserves. The loss 

reserve is an estimate of future costs for events that have occurred 

previously. Payments resulting from past events will be made over an 

extended period of time. The inherent delay in the loss reserve payout 

is often the basis for deliberate underreserving. In the case of deliberate 

underreserving, a further cause must usually be sought. 

There may also be inadvertent underreserving, because future events 

may be hard to anticipate, or there may be a lack of understanding of 

the extent of loss. In instances where events giving rise to liabilities 

occur over an extended period of time, inadvertent underreserving can 

indeed be a cause of an insolvency.” 

As indicated by the last paragraph above, some sources of variation in loss reserves are 

non-deliberate. There are a variety of sources of such error. Some may be non-random and 

some may be random. Random errors occur when, for example, more claim-causing events 

(‘accidents’) than antidpated occur and when the sizes of losses associated with accidents 

are different from expected. This is often termed ‘stochastic error’. 
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Another source of error is ‘model error’. Model error arises when the underlying math- 

ematical model and associated method of &&nation are inconsistent with reality. For ex- 

ample, many ratiobased methods, such as the chain Zadder method (see, for example, van 

Eeghen, 1981) assume implicitly that the ratios of paid (or incurred) claims for successive 

years of development are constant. Estimation error is introduced to the extent that such 

ratios may vary from accident year to accident year. It is well-known that the chain ladder 

method under-estimates reserves when the outcomes are stochastic (Stanard, 1985). 

Further error is introduced when a model is calibrated. This error is often called ‘param- 
--- 

e&r-r’ since most models and hence methods are described in terms of parameters that 

require estimation based on a sample of previous years’ data. 

Pentiksinen and Rantala (1992) describe reserve volatility when the chain ladder method 

is used as well as when a premium-based loss reserving method is used. The premium based- 

method uses a percentage of the earned premium for each accident year in the calculation of 

reserves. To the extent that premiums are not good predictors of actual claims, model errors 

are introduced. Because it is well-known that an underwriting cycle exists, one would expect 

a similar cycle in loss reserves if they are based on premiums. Recently, Lamm-Tennant, 

Starks and Stokes (1992) analyzed loss ratios recognizing the nature of the cycle. They cite 

many references to the underwriting cycle. To the extent that there is systematic over- and 

under-pricing through the cycle, corresponding errors in loss reserves can occur when the 

methods used in loss reserving are linked to premium income rather than ‘true’ expected 

claims. 

Stochastic error arises when ‘the unexpected occurs’. Although many loss reserve meth- 

ods are based on models that ignore stochastic variation in claims, there have been several 

methods that incorporate the stochastic component. Many are described in Taylor (1986) 

and the Institute of Actuaries’ Claims Reserving Manual (1989). De Jong and Zehnwirth 

(1983) describe a general state-space model for loss reserving. This approach is used by 

Zehnwirth (1985). Verrall (1989a, 1989b, 1990) and Ftenshaw (1989) describe stochastic 
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versions of the chain ladder method. 

Modelling the stochastic error allows for the development of probability statements about 

the adequacy of a particular level of reserves. These probabiity statements can take into 

account both the stochastic error and the estimation error. However, they do not take any 

account of model error. The estimates are based on the assumption that the model (and 

hence the method) is appropriate. 

Different methods yield different results because they are based on different model as- 

sumptions and/or different calibration methods (statistical estimation criteria). Methods 

are considered robust if they are rather insensitive to the model assumptions. The more 

robust a method is, the Iess sensitive it is to systematic variation that needs to be reflected 

in the reserve estimate. All reserving methods (and statistical estimation procedures) com- 

promise robustness and sensitivity. Pentiklinen and Rantala (1992) try to address the issue 

of interpreting the different results from different methods, i.e. the model error. 

3 The Approach of this Paper 

Development of reserve estimates should involve selection of a model, calibration of the 

selected model and validation of the calibrated model. The estimate of loss reserves is a 

forecast. For models that include formal assumptions about the variability of the claims 

process (i.e. stochastic error), estimates of the likely variability of the forecast value can be 

obtained using statistical theory. In the practice of loss reserving, the forecasts are based on 

past payments or incurred claims, usually set up in the form of the standard ‘runoff triangle’. 

This is done separately for each line of business. There is no standard way of combining the 

estimates of variability of various lines of business. If it is assumed that the experience of 

lines of business are stochastically independent, then the variance associated with a reserve 

estimate for all lines combined is the sum of the variances associated with each line. When 

the standard deviation is used as a measure of volatility, it is clear that variability decreases 

as lines of business are combined. However, if there is a strong positive correlation between 
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lines, this does not hold. 

The approach of this paper is to treat the whole company aa the business entity, rather 

than treat each line of business separately. Ram the point of view of either the income state- 

ment (underwriting results) or the balance sheet (solvency) of rm insurer, all lines of business 

are always combined. We will examine historical loss reserves and compare them with the 

corresponding subsequent runoff of claims. This will allow us to asseas the performance of 

loss reserving in the past and to study the sources of variability in order to better explain 

the entire loss reserve process. 

Since loss reserve specialists use different methods, estimates of variability for that spe 

cialist depend on the individual methods used. We will examine variability empirically by 

studying the variability for all companies combined, for each company over time, and for 

various subclasses of companies to provide a better explanation of the actual variability that 

should be anticipated regardless of the methods used. 

We believe that it is inappropriate to impose solvency margins developed on a theoretical 

basis for any specific loss reserving method (e.g. chain ladder). Because of the different 

nature of claims information for different lines of business and for claims at different stages 

in the claim settlement process (e.g. incurred but not reported, reported but not yet settled), 

it is probably best to measure uncertainty of loss reserves on the basis of historical variability. 

In order to best understand historical variability, empirical studies are necessary. 

Previous empirical studies of accuracy of loss reserves have been done by Forbes (1969, 

1970), Anderson (1973), Ansley (1979) and Smith (1980), Aiuppa and Treischmann (1987), 

Grace (1990) and Panjer and Brown (1992) who each studied a collection of companies over a 

period of time. In particular, Grace examines the desire of companies to maximize firm value 

through the reserving process considering the tax status of the company. She also considers 

the desire of companies to smooth income by minimizing the variability of earnings. These 

are considered deliberate attempts to distort the true income picture of a company. This 

variation is specific to the individual company. 
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There are sources of variability that are not specific to a single company. For example, 

the effect of inflationary increases in costs affects all insurers in a particular line of business 

such as automobile insurance. Such industry-wide influences should be observable as an 

annual effect across all companies in historical studies. An&y (1979) studied the e&t of 

in6ation of reserve estimates. 

Finally the level of conservatism inherent in reserves also varies from company to com- 

pany. Small companies writing a few small lines of business have less ability to diversify 

variability than large companies writing more lines of business over which variability is not 

(or negatively) correlated. Hence, one would expect smaller companies to hold relatively 

larger reserves than large insurers. 

Similarly, one might expect reinsurers that are part of world-wide reinsurance groups to 

hold relatively smaller reserves than small domestic insurers who do not have the ability to 

diversify risk internationally. 

4 The Data 

In this paper we try to identify the influences of various sources on the loss reserves by 

examining historical data from a set of 169 companies operating under federal regulation in 

Canada. This study is significantly larger than any of the cited previous studies, most of 

which examine only U.S. companies. The data were obtained from the annual statements 

over the period 19751991. 

Companies are categorized by ‘size’ (Small, Medium and Large) on the basis of 1991 

premium income, and by ‘type’ (Domestic or Foreign) on the basis of ownership. Reinsurers 

are separately identified. 

For each year from 1975 to 1986, the aggregate loss reserve for all lines of business 

(including loss adjustment expenses) for all prior accident years combined is compared with 

the runoff in the subsequent five years and any remaining loss reserve at that time. The 

difference is measured as a percentage excess or deficiency (see section 5). 

287 



Using the runoff for five years for the most recent accident year means that, for the prior 

accident years included in the estimate, the runoff will be more than five years old. For 

Canadian insurers, for most (but certainly not all) lines of business, the vast majority of 

claims will have been settled within five years of occurrence. The reserve established after 

five years will still contain some error. However, since the reserve after five years is generally 

quite small, the error in estimating the ‘true’ required reserve should also be small relative 

to the initial error. 

The study is conducted for all lines of business combined since the solvency of the corn- 

pany, the value of the firm, and investor and public confidence are dependent on the overall 

performance of the company. No adjustment is made for discounting since reserves for the 

period 1975-1986 were established on a basis which ignored discounting. 

In an environment in which interest earned on reserves is accounted for, actual loss 

reserves could be smaller. Similarly, to the extent that there is an implicit offset of interest 

and future inflation, any inflationary increases in subsequent payments make reserves appear 

deficient. 

The number of companies in each category is given below: 

Domestic Foreign Total 
Large Insurers 24 25 49 
Medium Insurers 23 24 47 
Small Insurers 23 21 44 
Reinsurers 6 23 29 

Total 76 93 169 

5 The Model 

Let E, denote the estimate in year i of outstanding losses in respect of all accident years i 

and prior. Let Vi denote the estimate made in year i + 5 of outstanding losses at the end of 

year i for accident years i and prior. In the analysis in this paper, Ui is treated as the ‘true’ 

levei of outstanding losses at the end of accident year i and Ei is an estimate of this true 
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value. Of course UC is itself an estimate; but, at year i + 5, all accident year values are at 

least 5 years mature. For lines of business that are not too long-tailed, the estimate at year 

i + 5 will be reasonably accurate, or at least significantly more accurate than the estimate 

Ei made at year i. 

The excess/deficiency of the estimate ZZi is defmed as (Ei - Ui)/U;. It is measured as 

a fraction of the ‘tNe’ value. For positive values of Ei and Vi, the excess/deficiency only 

takes on values greater than -1. For the purpose of the statistical analysis described below 

we transform the excess/deficiency to obtain values taking on all possible values of the real 

line. 

Let Xi = 100 log (Ei/Vi). Then Ei = cI@‘*~lw, resulting in a simple multiplicative model 

for the estimate Ei. Explanatory variables are now introduced and a statistical analysis of 

the values of Xi for all 12 years and for ah 169 companies in the data is carried out. The 

explanatory (categorical) variables in the analysis are: 

Year: Yi, t = 1975, 1976, . . . . 1986 IL 

Size: Sjr 3 = Small, Medium, Large, Reinsurer 7 

Type: tk, k = Domestic, Foreign z 

Company: ct. 1 = company identifiers 
, 

Using a standard analysis of variance (ANOVA) procedure we examine the model 

I 2 4 7, A,1 \ 7 g ?b 
xijkf = : t Yi + sj $ tk $ &j $ Qi& + Ojk + aij& t fijkf 

$45 

where p is the overall mean level of Xijkl, y; is the effect of year i, Sj is the effect of size j, tk 

is the effect of type k. The quantities oij, Qit, Qjk and eijk represent the interaction terms of 

year, type and size. Finally cijkl represents the residual ‘error’ and has mean 0 and vari,ce 

a’, It represents that part of Xijk, that cannot be explained by the above mentioned factors 

and their interactions. 

The results of the analysis of variance are shown in Table 1. It shows that, at a 5% 

significance level: 
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i) each of year and size are statistically significant explanatory variables; 

ii) type is not significant, 

iii) only one two-factor interaction is significant, namely type and size; and 

iv) the three-way interaction is not significant. 

Nonsignificance of some of the interaction terms ws that the factor ‘year’ is independent 

of size and type. However, the interaction between size and type is significant. 

Using the reduced model 

Xijkf = P + Yi + Sj t tL t ‘Zjk t Gjkl 

results in the analysis of variance table given in Table 2. From Table 2, it can be seen that 

the RZ = 10.7%, meaning that only 10.7% of the total variance can be explained by the 

effects of year, type and size. 

TABLE 1 
ANALYSIS OF VARIANCE FOR EXCESS/DEFICIENCY 

Source of 
Variation 
Year 

Sum of 
Squares 
213,846 

% d.f. F-ratio 
6.0 11 11.46 

Sig. 
Level 

0.00 
Size 126,675 3.6 3 
Type 2,886 0.1 1 

Year Type 12,345 0.3 11 
Year Size 33,728 1.0 33 
Type Size 34,494 1.0 3 

Year Type Size 31,698 0.9 33 

Model 455,673 12.9 

Error 

Total 

3,083,677 

3,539,351 

87.1 

100.0 

24.89 0.00 
1.70 0.19 

0.66 0.78 
0.66 0.96 
6.78 0.00 

0.57 0.98 
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TABLE a 
ANALYSIS OF VARIANCE FOR EXCESS/DEFICIENCY 

Source of 
Variation 
Year 

sum of sip. 
squares % d-f. F-ratio 
213,846 6.0 11 11.65 

Level 
0.000 

Size 126,675 3.6 3 25.31 0.00 
Type 2, 666 0.1 1 1.73 0.19 

Type Size 34,417 3 6.88 0.00 

Model 377,824 10.7 

Error 3,539,351 89.3 

Total 3,539,351 100.0 

TABLE 3 
ANALYSIS OF VARIANCE FOR EXCESS/DEFICIENCY 

source of sum of Sig. 
Variation 
Year 

squares 
213.846 

% d.f. F-ratio 
6.0 11 16.00 

Level 
0.000 

Size 126;675 3.6 3 34.76 0.00 
“be 2, 886 4.6 1 2.38 0.19 

Type Size 34,417 1.0 3 9.44 0.00 

Company 1,055,063 29.8 161 5.39 0.00 

Model 1,432,&38 40.5 

Error 2,106,463 59.5 

Total 3,539,351 100.0 

Table 2 indicates that although the variables ‘year’, ‘type’ and ‘sire’ play a signifkant 

role in explaining the variation of loss reserves, they collectively explain only 10.7% of the 

total observed variability. 

In order to test the hypothesis that individual companies consistently over- or under- 
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reserve, the variable ‘company’ was introduced as an additional explanatory variable. The 

result are given in Table 3. 

Table 3 indicates that an additional 29.8% of the total variability can be explained by 

the variable ‘company’. This suggests that individual companies are consistently over- or 

under-reserved (after account is taken of type and size) year after year. Although some 

consistent over- or under-reserving should be expected since the reserves in successive years 

are correlated, the data indicate the degree of consistency is high. 

The model in Table 3 explains 40.5% of the variation leaving 59.5% unexplained. This 

unexplained variation is due to stochastic error and possible non-stochastic error for reasons 

that are not (but could possibly be) incorporated into a model. 

6 The Results 

The least squares estimates for ‘year’, ‘ size’ and ‘type’ in the model used in Table 3 are given 

in Table 4. Because of the significant interaction between ‘size’ and ‘type’, the (apparently 

nonsignificant) main effect ‘type’ remains in the model. 

Table 4 indicates that the average level of reserves established during the period 1975- 

1985 was almost 1% (exp(0.0093)1) in excess in the level required. It also indicates that 

there was a dramatic cyclical effect on reserve levels. 

Strazewski (1984) reports that the Insurance Services Office estimated that property- 

liability companies in the United States were under-reserved by 10%. Our analysis, based 

on data through 1987, indicates that for Canada, reserves in 1982 were 9.3% (exp(0.0093- 

91067)-l) deficient. 

Although there was no apparent difference between domestic and foreign insurers overall, 

statistically significant interactions between ‘type’ and ‘sire’ arose as a result of the large 

variations shown. 
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TABLE 4 
RESULTS OF ANALYSIS OF VARXANCE 

MearuofMain Effects 

overall 

Year of 
Reacrve 

1973 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 

5pe of 
CQ=w-Y 
Domestic 
Foreign 

Si8.e of 
company 
Small 
Medium 
Latge 
Reinsurer 

No. Of OVfWdl 
Observationa Mean 

1914 0.93% 

No. aC Mean 
ObserVStiiZiS Effect 

150 -6.38% 
143 6.19% 
149 19.27% 
151 22.63% 
136 11.88% 
163 -1.02% 
163 -3.67% 
167 -10.67% 
166 -3.73% 
167 -7.38% 
166 -8.64% 
16% -0.33% 

833 0.36% 
107% 1.35% 

486 13.13% 
543 0.50% 
577 - 1.97% 
308 -12.20% 

Means of Interaction Temxs 

Type She No. of Observations Mt?AUl 

Domestic Small 218 3.88% 
Medium 265 -0.15% 
Large 284 1.66% 
Reinsurer 68 -14.39% 

Foreign SUd 268 20.63% 
Medium 278 1.13% 
Large 293 -3.49% 
Fleiosurer 240 -11.38% 
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We have not shown the 169 individual company effects after accounting for the group 

eEects. Listing the companies and their individual effects serves no useful purpose for us. 

However, knowledge of the individual effects can be very useful to individual companies’ 

managements and loss reserve specialists and others, as discussed below. 

7 Conclusions 

The results of this study show that a significant amount (49.5%) of the variability can 

be easily explained. First, reserve levels for property-casualty companies follow a cyclical 

pattern. Furthermore there are general differences in reserve levels for companies of different 

sizes and between direct insurers and reinsurers. 

Almost three-quarters of the explained variation comes from the individual companies, 

irrespective of type, size, or year of valuation. The most important observation is that the 

individual loss reserve specialist in a given company has consistently over- or under-reserved. 

This suggests that any efforts by managements, professions or regulatory authorities 

should be aimed at the individual company level. Consistent under- or over-reserving may 

be a result of intentionally trying to improve the apparent financial situation of the company. 

Greater independence of the loss reserve specialist may provide more objective estimates. 

The ‘appointed actuary’ position created through the new act governing insurers and other 

financial institutions in Canada may improve the situation. 

Similarly a tendency for reserve excesses and deficiencies to follow a cyclical pattern 

suggests that insurers strengthen reserves when they can afford it. This is inconsistent with 

an objective assessment of loss reserves. Again, independence of the loss reserve specialist 

may help this situation. Finally, methods of loss reserves that are linked to loss ratios would 

appear to be inappropriate since premiums are subject to cyclical behaviour as a result of 

competitive pressure. 
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A METHOD TO ESTIMATE PROBABILITY 
I EVELS FOR LOSS RESERVES 

Roger M. Hayne 

Abstract 

This paper explores the collective risk model as a vehicle for estimating the probability distribution for 
reserves. Though this basic model has been suggested in the past and It provides a direct means to 
estimate process uncertainty, it does not directly address the potentially more significant problem of 
parameter uncertainty. This paper presents some techniques to estimate parameter uncertainty and, to 
some extent, also uncertainty regarding projection model selection inherent in reserve estimates. 
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OD TO ESTIMATE PROBABllJY 

LEVELS FOR LOSS RESERVES 

I. lntrodu&m 

The collective risk model, see for example Beard, Pentiktiinen and Pesonen [l]. provides a conceptually 

simple framework to model total claims In the insurance process. In its simplest form this model 

calculates the total loss from an insurance portfolio as the sum of N random claims chosen from a single 

daim size distribution where the number N is itself a random variable. With some fairly broad 

assumptions regarding the number and size of claims we can draw conclusions regarding the varlous 

moments of distribution of total claims. Thus thls model seems to be a reasonable choice as a starting 

p&t in estimating the dish-ibutlon of reserves for an insurer. 

The dlstrlbution resulting from this slmp4e collective risk model provides an estimate of the potential 

variation in total payments assumina all distributions are correct. We often refer to this variation as 

process variation, that inherent due to the random nature of the process itself. Not directly addressed in 

this simple collective risk model Is the possibility that the estimates of the parameters for the underlying 

distributions, are incorrect. Variation due to this latter uncertainty is oflen called parameter variation. 

Parameter variation is itself an important aspect in assessing the variability inherent in insurance related 

estimates. Meyers and Schenker [2] discuss this aspecl of collective risk applications. They conclude, 

not surprisingly, that for a “large” volume of claims, that expected to be experienced by most insurers, 

parameter uncertainty is a much more significant contributor to overall variability than the random, or 

process, portlon. 
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As indicated above, the collective risk model does not directly address parameter uncertaintynor does It 

address the methodology used in obtaining reserve estimates themselves. In practice actuaries often 

apply several methods, based on different underlying assumptions, to derive different projections of 

required reserves. The actuary then selects a “best estimate” of required reserves, based on the various 

projections used, keeping in mind the nature of the data and the assumptions inherent in each of the 

methods. Complicating matters further is the fact that most of the generally accepted actuadal projectIon 

methods currently in use are not stochastic in nature, that is, they do not have specigc assumptions 

regarding undertying probability distributions. Thus, in many cases, they only provide “point estimates” 

without any Indication as to the statlstical nature of those estlmates. 

Even if the actuary uses stochastic methods, methods that make assumptions regarding the underlying 

dlstrlbutions, the result will usually be a single distribution of total losses or reserves. It is possible that 

different methods may lead to different estimates of the distribution of reserves. This raises another 

area of uncertainty that should be considered in estimating probabilIIy levels for loss reserves; that of 

uncertainty that the model applied is indeed the correct one. This is sometimes termed specification 

uncertainty. 

Though many of the stochastic methods we have seen attempt to provide estimates of process variation 

and sometimes even parameter variation within the framework of the oarticular model those methods do 

not provide a convenient means of measuring the possibility that the model itself may be incorrect. 

Even regression related approaches with regimens in selecting which independent variables to include 

c=an only claim to pmvide the “best” estimate wlthin a particular family of models and do not generally 

address whether another family is indeed better for a particular situation. 

For these reasons this paper will deal with an application of collective risk theory to estimate probability 

levels in loss reserves. Though the method that we present follows the general approach descrtbed in 



Hayne 131 we wver ground not covered there, especially In the area of estimating the impact of 

parameter uncertainty in probability levels. 

2. The Colhcti~ Risk Model 

The basic collediie risk model, as described above, oan probably be seen best as the implementation of 

the following algorithm: 

Alaorithm 2.1 

1. Randomly select N, the number of claims. 

2. Randomly select N claims, X,, X,...., X, from the claim size distribution. 

3. Calculate aggregate loss as T= X, +X,+...+X, 

4. Repeat steps 1 through 3 “many” times. 

The distribution of T then represents the distribution of total losses given the distributions of the 

individual claims X, and the distribution of N. the number of claims. Assuming these distributions are 

correct the result of this algorithm provides an estimate of the Inherent process variation. tt does not, 

however, pmvide a means of incorporating parameter uncertainty. 

We will follow Heckman and Meyers [4] and consider a revised collective risk algorithm that lnwrporates 

parameter uncertainty in both the claim count and claim size distributions. We assume that the number 

of claims N has a Poisson distribution with mean R, and hence variance Var(N) = 1. We also assume 

that x Is a random variable with Eh) = 1, and Var(x) = c. The variable x then will be used to reflect 

the uncertainty with the selectfon of the expected claim count parameter L If x is assumed to have a 
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Gamma distribution then Heckman and Meyen show that the resulting N will have a negative binomial 

distribution with 

E(N)=& and 

Var(fV) = R + c,F 

In this case Var(N)zE(N), with equality only if c = 0. 

As Heckman and Meyers point out, the Poisson distribution assumes that claims during two disjoint time 

periods are independent, that the expected claims in a time interval is dependent only on the length of 

the interval and not on the starting point of that interval and that no more than one claim can occur at a 

lime. They introduce the contagion parameter c to allow for dependence of the number claims in one 

time interval on claims in prior interval(s). The above modification with c > 0 assumes that the number 

of claims in one interval is positively correlated with the number in past intervals. For example, a 

succassful liability claim may lead to an increased number of future claims. 

Similarly it is possible that the existence of past claims may decrease the possibility of future claims. An 

exampte that Heckman and Meyers point out in this situation is with a QrOUp of life insurance policies 

where claims in an earlier period reduces the number of claims in a later period. They model this by 

assuming that the final claim count distribution will be Binomial. In this case Var(N) <E(N). which can 

be accomplished with an appropriate negative value for c. even though a negative value does not make 

sense in the original derivation of the distribution for N. We will thus assume that N has either a 

Binomial distribution (c < 0), a Poisson distribution (c = 0), or a Negative Binomial distribution (c > 0). 

The modification of Algorithm 2.1 also reflects uncertainty in the overall mean of the claim size 

distribution. For this we assume that p is a random variable with E(Y,) = 1 and Var(yP) = b. With these 

added distributions Heckman and Meyers present the following modified collective risk algorithm: 
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Alaorithm 2.2 

1, Randomly select a number N from the assumed claim count distribution. 

2. Select Nclaims X,, X,, . . . . X, from the assumed claim size distribution. 

3. Randomly select a number p from the assumed distribution. 

4. Calculate the aggregate loss as T= $(X, +X,+...+%,). 

5. Repeat steps 1 through 4 “many” times. 

We note that in the case that b = c = 0, that is. no parameter uncertainty, Algorithm 2.2 simply reduces to 

Algorithm 2.t with an assumed Poisson claim count distribution. 

Poliowing Heckman and Meyers we will assume that ,L? has a Gamma distributton. We follow their 

caution that this is selected for its malhematioal convenience rather than for a specific pmperty of 

parameter uncertainty. We refer weden to page 31 of [4] for 8 further discussion of this assumption. 

The collective risk model has some useful properties, for example, if we know the moments of the claim 

count 8nd claim size distributions, assuming independence of the various distributions, we can determine 

the corresponding moments of the final aggregate distribution. These properties hold for both the 

formulation in Algorithm 2.1 and the formulation in Algorithm 2.2. In patilcular under the above 

conventions we have: 

E(7) = rtE(X) 

Var(T)=1E(X’)(l+b)+d2E2(X)(b+c+&c) 

(2.1) 

(2.2) 
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Since Algorithm 2.1 is 8 special case of Algorithm 2.2 with b = c = 0. equations (2.1) and (2.2) will still 

hold. In this case, however, the last term in the formula for Var(T) disappears and equation (2.2) 

becomes: 

Var(T) = LE(X’) (2.3) 

The difference between these two variance equations is notable. In the case of equation (2.3), the 

variance of the average claim, Le. Var(s), will approach 0 as 1 gets large. However, in the cese of 

equation (2.3), if either b or c is non-zero, Var(x) approaches E’(X)(b +C + bc). Thus introduction of 

parameter uncertainty introduces uncertainty in the average that cannot be overcome by increasing the 

number of claims, or by diversifying the risk. In financial term?.. parameter uncertainty in this manner 

introduces undiversifyable risk. 

Heckman and Meyers present an algorithm for approximating the distribution of T in the case that the 

cumulative density function for the claim size distribution is 8 step function. Since any smooth function 

can be 8pproXim8ted within eny required tolerance by a step function, this is not a restrictive assumption. 

We will use thst 8lgOtithm in the method presented here. 

3. Point Estimates of Reserves 

Exhibit 1 presents summaries of various medical malpractice loss statistics that were derived from the 

data used by Berquist 8nd Sherman [5]. To keep the numbers to a manageable size, all losses and 

claim counts in that peper were divided by 10 and the dates were changed to make the exhibits here 

appear more current. In addition, page 2 of Exhibit 1 shows projected ultimate reported claims. This 

projection is based on a development factor method applied to reported counts using volume weighted 

averages as selected factors. Though the data 8re hypothetical, they do reflect characteristics of actual 

loss data. 
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In addition, we included another example of our calculations and estimates of probablllty levels in the 

appendix to this paper. That example is based on the data set used in the Advanced Case Study 

session of the 1992 Casualty Loss Reserve Seminar. 

As pointed out by Serquist and Sherman a comparison of the trends in average c8s.e reserves and 

average loss payments, as shown in Exhibit 2. indicates a potent&t change in relative reserve adequacy. 

This change, if it is occurring, could affect the incurred loss projections. 

In addition, reference to ratios of closed to projected ultimate claims, as shown in Exhibit 3, seems to 

indicate a Ch8nQe in the rate at which claims are being closed. This could affect projections based on 

paid tosses. 

Since there appear to be occurrences that can influence forecasts based on either paid or incurred data 

we considered two sets of forecasts; one based on the data shown in Exhibit 1 without any adjustment 

and the second based on date adjusted in an &tempt to remove the influences of these apparent 

changes. The resulting adjusted paid and incurred loss data appear in Exhibit 4. 

We used methods similar to those presented in (51 to adjust the paid losses for apparent changes In the 

rate of claims closing. We calcut8ted the adjusted incurred as the sum of the adjusted paid losses plus 

the product of adjusted everage reserves times adjusted claims open. We calculated the adjusted 

reserves 8s suggested In 151. 

Exhibit 3 also shows the triangle of adjusted closed claims. We obtalned this triangle 8s the product of 

the forecast ultimate reported claims for an accident times the most fecent percentage of ultimate claims 

closed at that particulsr valuation point. For example, the estimete of 210 claims closed for 1989 at 38 
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months is the product of 42.3%, the percent of ultimate closed at 36 months for the most recent accident 

year (1990) times 497, the projected ultimate claims for 1989. 

We used four different projection methods on each set of data; paid loss development, incurred loss 

development, a severity projection method and a hindsight average OUtSbIding loss method. In both of 

the development factor methods we used an exponential curve fit to the difference of selected 

development factors minus 1 to estimate development after 98 months. In the severity projection 

method we reviewed the average costs per ultimate claim and inherent trends in those averages at the 

various stages of development to “square the triangle” of average payments, see, for example 15) for 

examples of this technique. 

For the hindsight average outstanding loss method we calculated the average unpaid loss per open and 

incurred but not reported (IBNR) claim at various stages of development. We calculated these averages 

as the ratios of the difference of initial forecast ultimate losses minus paid losses to date divided by the 

difference of forecast ultimate claims minus claims closed to date. We used the unweighted average of 

the other three projections as the Initial selection in this case. We then reviewed these averages and 

inherent trends at each stage of development and selected a representative average for the accident 

year currently at that age. We then used the product of that average and the number of open and IBNR 

claims as an estimate of the future payments for that year. Our ultimate loss projection for this method 

was then the sum of this outstanding loss estimated and the amount paid to date. 

Exhibit 5 then shows a summary of the various projections and our weighted average selection, based on 

the weights shown in the bottom portion of that exhibit. We judgmentally selected the weights shown but 

they reflect our view of the extent that the hypotheses of the indicated projection method fit with what has 

been occurring in the data. 
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We recognize that these methods and selections are based on judgment and that different actuaries may 

have different opinions than we do. However, we believe that the method to estimate vartatlon that we 

will present is sufficiently adaptable to accommodate different selections or even different undedying 

fOteG%tinQ methods. 

If we had estimates of the variances of the different projection methods another weighting presents itself. 

If we assume the various projections are independent then the weighted average with the least valiance 

is that which assigns a weight to a random varlable proportional to the inverse of its variance. This is 

intuitively appealing since, in this case, uncertain pmjections. identified by high variances, are given 

relatively less weight than more precise ones. 

4. Estimafe of Process Variation 

We will estimate the process variation, that which is due only to random ffuctuation. using the unadjusted 

collective risk model as described in Algorithm 2.1. Later we will examine an approach to Include 

parameter uncertainty in the estimates and to use Algorithm 2.2. 

Since we will be using the collective risk model we will need estimates of the distributions of the number 

of claims and of the size of individual claims. We will use the results of our reserve forecasts as a 

staning point. 

Columns (I) through (7) of Exhibit 6 shows the calculation of indicated reserves and resulting indicated 

average loss per outstanding and IBNR claim by accident year. We will assume that the total 

outstanding claims have a lognormal distribution and that the loss data, and corresponding reserves, 

represent losses at $500,000 policy limits. We make these assumptions to maintain simplicity in the 

presentation. In practice the actuary will need to make appropriate estimates for these distributions. 
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We have also selected the coefficient of variatton (ratio of the standard deviation to the mean) for the 

l~normal distribution, as shown in column (8). Though the selections here are judgmental they are 

based on two assumptions: 

1. In ratemaking for this line of business we have s-eleded a lognormal distribution with a coefficient of 

variation of 5.0 In calculating our increased limtts distributions. 

2. As time progresses the book of open and IBNR daims become more homogeneous and thus we 

would exped the coefficient of variation to decrease. 

In pradice we would have to derive estimates for these parameters too. One approach would be to 

consider the distribution of open and IBNR claims at various stages of development for older accident 

years that are completely, or at least nearly completely, closed out. Such a review would provide better 

insight in the selection of the coefficient of variation. 

We have seleded a lognormal distribution here primarily for its computational convenience. All of the 

concepts we will present will apply for most commonly used claim size distributions, though some of the 

specific formulae we will use may need to be modified. 

Also, for convenience, we will assume that open claims and ISNR claims have the same daim size 

distribution and that they are independent. A potential refinement would be to separately estimate the 

distributions for open and IBNR claims. Again, this could be accomplished by reviewing distributions for 

older accident years, but we will not explore this further here. 

There may be some argument with the assumption of independence. It is possible that settlement of 

open claims. and resulting precedent, may influence the distribution of IBNR claims, or even that of other 
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open claims. The inclusion of the mixing parameter by Heckman and Meyers will essentially affect all 

claims in the same way, adjusting the aggregate losses either up or down uniformly, thereby building in 

some dependence. We recognize that notwithstanding the use of a mixing parameter our assumptions 

may slightly understate the spread of reserves if the distributions for open and IBNR claims are not 

independent. 

Columns (9) and (10) of Exhibit 6 show the p and Q parameters for the selected lognormal distribution. 

In this case we selected the following parametarization for the lognormal pmbability density fundlon: 

_(lnr-py 
f(+z?-L 

XCT 2?T J-- 

With this parameterization, if X is the lognormal variable, /1 and D represent the mean and standard 

deviation respectively of the normal distribution of In(X). In addition, the coefficient of variation (c.v.) for 

the unlimited distribution and expected loss limited to L respedively are given by: 

c.v.=Jed -1 

E[XlL) = a’+ 

Here cp(X) denotes the probability that a standard normal variable will not exceed X. This and other 

formulae regarding the lognormal distribution can be found in [6] among other sources. We solved the 

first of these equations directly for o. Given (r, then, we used numerical methods to estimate the value 

of ,D that would yield a mean limited to $500,000 equal to the selected average reserve shown in column 

(7). Many commercially available software and spreadsheet packages contain such algorithms, one 
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could also write a simple algorithm using interval halving since the function E(XIL) is an increasing 

function of ,u for a fixed L. 

Exhibit 7 shows the selected step function approximations for the claim size distributions. Since these 

distributions will be used as input for the Heckman and Meyers algorithm, the probability for an indicated 

amount does f@J correspond to the probability that the limited mean will not exceed that amount. Rather 

these represent step function approximations for the lognormal distribution which have means equal to 

the expected limited losses. 

We will assume that the number of open claims is certain, that is, it has 0 variance. This is equivalent to 

a contagion parameter c=-y1. We will assume that the IBNR claims have a Poisson distribution. 

Claims that close without payment may add some technical complexity to the selection of these 

distributions. We can include this In a number of ways. Probably the most straight-forward would be to 

include a positive probability of $0 losses in the claim size distribution. We note that the positive 

probability of a $Cr loss may present problems with the algorithm presented in [4]. This practical problem 

can be overcome by using a small loss amount such as $0.01 instead of $0 for the claim size distribution 

input. Again, in order to keep these discussions relatively simple we will not make this refinement here, 

although the example we present in the appendix to this paper does deal with such a situation. 

Another potentially complicating factor with these assumptions is the presence of reopened claims. We 

have assumed that the claim count data includes a reopened claim as a separate count and we have 

thus included provision for reopened counts in our estimates for IBNR claims. Again, we could adjust the 

claim count distrtbution for open claims to accommodate reopens. Another option would be to model 

reopened claims separately, similar to the way we treat IBNR claims. 
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We note another option In representing the combined distribution of open and IBNR claims. Let A, 

denote the number of open claims and A, the number of expected number of IBNR claims. We have 

assumed that the number of open claims is certain and that the number of IBNR claims has a Poisson 

distribution. Then the number of combined claims has mean A, +A, and vartance A,. We see that a 

claim distribution wilh mean %o + A, using contagion parameter 

will also have variance equal to 2,. This is one potential short-cut in the calculations. If one assumes 

that open and IBNR claims have the same distributions then this assumed claim count dlstrtbution could 

replace the two separate distributions In the calculations. 

We note, however, that this value of c is negative, resulting in the use of a binomial distrlbulion which 

has a maximum number of possible claims. This may be undesirable in applications. However, we 

calculated aggregate loss distributions using both this single distribution and using separate distributions 

for open and IBNR ctaims and we found no discernible difference in the results. 

Making use of lhe algorithm in [4] we calculated the resulting distribution of aggregate reserves for each 

accident year separately. We then used the same algorithm to calculate the aggregate distribution for all 

years combined, using the output of the algorithm to estimate the aggregate reserves for individual 

accident years. In this case we assumed 1 “claim” and used contagion factors of -1 for each year 

(implying a zero claim count variance) to estimate the distribution for aggregate reserves. 

The user of this algorithm should be aware that the output provides estimates of the value of the 

cumulative density function at selected values of the aggregate reserves. These correspond to the 
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valuation of that function at those points. Though this is valuable information, it does not directly provide 

a step function approximation to the aggregate reserve function that maintains expected values. We 

thus modified the output, similar to the moditkation for the individual claim size distributions, to obtain 

better step function approximations to the Indicated cumulative density function before using them as 

input for the final calculations. 

Exhibit 8 shows the estimated distribution of aggregate reserves for each accident year and for all 

accident years combined. To facilitate comparison between the years we show the estimated probability 

levels for various multiples of the expected values (shown in the first line). Heckman and Meyers refer 

to these ratios as ‘entry ratios.” 

As can be seen from this exhibit, the distributions of reserves for earlier accident years appear to be 

more dlspene than those for later years. In addition. the distribution of aggregate reserves for all 

accident years is quite light. This is a result of the law of large numbers. Even with this substantial 

narrowing of the ranges, in this case random fluctuation alone could result in reserves of more than 

110% of the expected value appmxlmately 5% of the time, wlth an approximate 0.1% chance of 

exceeding 120%. In this case mughly 90% of the aggregate reserve distribution falls between 510% of 

the expected value. We stress that only accounts for random fluctuations assumina all our hvootheses 

are wrrec$. We have not yet addressed uncertainly in these assumptions. 

5. Estimate of the Contagion Parameter 

We first address uncertainly in the expected claim wunt parameter, R. For this we consider projected 

ultimate frequencies by accident year as shown in Exhibit 9. A review such as this may be conducted in 

conjunction with a periodic rate review and all factors considered in such a review should be included in 
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these projections. Here we selected an average annual frequency trend of 2.3% as indicated by an 

exponential fit through the frequencies for all years. 

Assuming that 1993 will have an estimated 8.700 earned exposures wlumn (6) shows the indicated 1993 

claims assuming the respective histodcal frequencies, adjusted to 1993 level using the 2.3% assumed 

trend. We see that this results In an average of 5f8 claims per year with an unbiased estimate of the 

variance of 3,f58 as compared with the expected variance of 576 if the distribution were Poisson. We 

thus assume a contagion parameter of 0.0099 by solving the equation 3,158 = 516 +c x 516’ for c. We 

will then assume that the distributions of IBNR claims for all accident years have this same factor lo 

reflect parameter uncertainty. 

6. Estimates of Mixing Parameters 

Returning to our ultimate loss, and hence reserve, selections described in section 3 (PoM Esfimates of 

Reserves) we note that our selected weights can be thought of as providing our subjective judgment 

regarding the likelihood that the underlying assumptions for the various methods are met in this particular 

data set. This may be thought of as a form of Bayesian e-priori probability estimate. 

Following this thought. we can calculate the variance of the projection methods about the weighted 

average, using the same weights as used in the selections. In particular, if, for a fixed accident year, Z, 

denotes the pmjection for method I and w, denotes the relative weight given to method i then our 

selection and corresponding variance can be calculated as: 

E(Z) = $v,z, 

var(Z) = tw,;Zi -E(Z))* 
id 
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These estimates are shown in column (8) of Exhibit IO. If we then assume that the methods that we 

applied consider all different sets of alternative hypotheses then the variance in the methods is an 

indication of the overall variance of the estimates, and hence reserves, for a particular year. 

As indicated above, we can explain a portion of the variance experienced by process variation and in 

uncertainty in the claim counts. In particular, using formula (2.2) separately for open and IBNR claims 

we derive: 

Var(Z,)=&(E(X$-E’(X,$)) 

Var(Z,)=t,E(X$)+cd:E’(X,(L) 
(6.1) 

The first of these equations assumes a contagion parameter C = -Jo, and both follow directly from 

equation (2.2) with b = 0. With our assumption that the reserves for open and IBNR claims are 

independent then the total variance is the sum of the variances. 

Columns (1) through (5) of Exhibit 10 summarize estimates from Exhibits 1 and 6. Column (6) shows the 

value of E(X’(L) using the following formula (see, for example, (61): 

E(X’IL) = e2d+2* p$-2,),L2[,-4y!]] 

Using these values and equations (6.1) we calculated the amount of variance that can be explained by 

process variation and the contagion parameter. This explained variance is shown in column (7). 

As can be seen there, the explained variance exceeds the variance in the selection in accident years 

1985 and 1986, but is less for the other years. Thus there is variance in the projections that is not 
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explained by process varfatfon or by uncertainty in the claim count projections. We will assume that this 

remalnlng uncertainty is explained by a non-zero mixing parameter, b. For this, we solve the following 

equation for b: 

Var(t)=Y+b[&,E(X~/L)+&&.,- I)E’(XoIL)+R, E(X,?IL)+%~Z:(c+l)E’(X,(L)J (6.2) 

Where Var(7) denotes the variance in selected in column (8) and Y denotes the explained variance in 

column (7). Column (9) shows the resulting b values. The b values we selected to estimate uncertainty 

in the expected value are shown in column (10). 

We note that the indicated b parameter increases from 1985 through 1991 but decreases in 1982. This 

is prlmarily due to the decrease in the variance in the sefectad between 1991 and 1992 because of the 

wider range of forecasts for 1991 than 1992. Though it may seem couflterintuitive for parameter 

uncertainty to decrease, it is possible that the wider range in 1991 may indicate that changes that appear 

to have influenced the 1991 forecasts more. 

These b parameter estimates provide for parameter uncertainty regarding severity within each accident 

year. As yet unanswered is the question of uncertainty affecting all accident yean. For this we chose an 

approach similar lo that taken In estimating the c parameter. 

As is otten done in ratemaking applications, we used the trend inherent in the historical pure premiums to 

adjust historical pure premiums to present separate “observations” of 1993 pure premiums. We then 

used the variation inherent in these “observations” as an indication of the amount of overall uncertainty 

we have in the 1993 severity estimate. We then assumed, as in our estimates of the contagion 

parameter, that this uncertainty will apply to our total reserve estimates for historical years. 
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Calculalfons shown in Exhibit 11 derive estimates similar to those in Exhibits 9 and IO. Column (1) 

shows the llmited severity implied by our pmJections while column (2) simply repeats our assumption that 

the losses will have a wefklent of variation of 5.0. Of wurse, if there were reason to belleve that this 

coeftklent will change over tlme we could modify the values In column (2). Column (3) then shows the 

unlimited severity for a lognormal dtstributlon with the coefficient of variation shown in column (2) that 

would yield the severities limited to $500,600 shown in column (1). 

Column (4) shows our selected frequency as shown in Exhibit 9 and column (5) shows the Indicated 

unlimtted pure premium. We then calculated an annual pure premium trend of 18.6% based on all 

observations of unlimited pure premiums in column (5). Similar to the analysis in Exhibit 9 we adjusted 

these observed pure premiums to our expected 1993 level using this Indicated 18.6% trend. We elected 

to base our pmjections on the unlimited pure premium due to the damping effects of a fixed limit on 

limited severities. 

We note that the usual arguments of additional variability in the unlimited averages that are cited as a 

reason for basing ratemaking analysis on limited data do not necessarily apply here. Slnw the unlimited 

loss estimates are based on the limited losses and a smooth distribution that does not change drastlcally 

from year to year, there is little additional fluctuation introduced in considering unlimited losses in this 

case. 

Column (7) then shows the various Indications of 1993 lotal losses, ustng the assumed 8,700 exposures 

as used in Exhibit 9. Uslng the estimated 516 claims for accident year 1993 from Exhibit 9, we derive 

the indicated unlimited severities shown in column (8). Column (9) then shows the resutting 1993 level 

severities limited to $500,000 per claim, again using the lognormal distribution, the wefficlents of 

variation in column (2) and the unlimited means in column (8). 
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Finally the various observations of indicated 1993 total limited losses are shown in column (10). Based 

on these observations we exped $13.054 thousand in losses in 1993 with a variance of 3.082,167 

million, assuming the observations are independent. This corresponds to an average of $25,298 per 

claim limited to $500,000 and an unlimited average of $29,346. This latter amount is the unlimited 

severity necessary for a tognormal distribution with coefficient of variation 5.0 to have a mean limited to 

$500,000 equal to $25,298. 

These assumptions, including our selected contagion parameter, then resutt in an expected variance of 

4Q27.361 million. This in turn results in a negative value for b when we solve equation 6.2. Thus we 

conclude that our assumptions are sufficient to account for observed vatiation in these estimates and we 

will select an overall b parameter equal to zero. 

As with calculations without parameter uncertainty, we calculated the aggregate distdbutions for reserves 

for each year separately. In this case we used the selected contagion parameter and selected b 

parameters shown in Exhibit IO. We then convoluted the resutting distributions with a mixing parameter 

set to zero. 

Similar to Exhibit 8, Exhibit 12 shows the estimated distributions of reserves including these estimates of 

parameter uncertainty. Comparing these two exhibits shows the significant impact of including 

parameter uncertainty as described here. For exampie. without parameter uncertainty 97% of the 

estimated 1991 reserves fall within 30% of the expected value whereas less than 56% fall in this range if 

parameter uncertainty is included. 

A similar observation, though not as dramatic, also holds for the aggregate distributions. Without 

parameter uncertainty 90% of losses are within 10% of the expected. With parameter uncertainty only 

5i% of the losses are in that range. Another comparison shows that the 90% probability level is 
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approximately $45 million without parameter uncertainty but is approximately $50 million when 

parameter uncertainty is considered. Exhibits 12 and 13 graphically show this comparison for the 

cumulative density functions and probability density functions respectively. 

7. Conclusions 

Now that our presentation is complete, we once again point out that the methodology we presented does 

not depend on the choice of the underlying claim size distribution, nor does it require the use of the same 

distributions for both open and IBNR claims. Of course, calculations of the limited mean and variance 

would change with different claim size distributions but all concepts and methodology still apply. 

We note that this methodology attempts to recognize uncertainty arising from the process, in the 

selection of parameters. and, to some extent, in the selection of reserve forecasting model. We also 

recognize that much more work is necessary before we have a comprehensive approach to measure all 

these sources of uncertainty. However, echoing, Meyers and Schenker. we conclude that parameter 

uncertainty can be have a significant impact on the distribution of reserves. 
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Exhibit 1 
Page 1 of 2 

EXAMPLE MEDICAL MALPRACTICE DATA 

lncurrad Losses 

Accident Months of Development 

1987 546 (194 2;073 3;ass 4,240 4,838 
1908 873 1,863 3,214 5,720 6,114 
1989 1,123 1,997 5,014 7,373 
1990 671 3,346 6,348 
1991 1,293 4,890 
1992 1.579 

Cumulative Paid Losses 

Accident Months of Development 
Year 12 24 36 48 607284- 96 
1985 313 $41 $144 $299 $447 $818 $1,264 $1.562 
1986 4 53 202 364 752 1,430 1,898 
1987 30 115 248 507 1,140 1,771 
1908 5 79 381 977 1,852 
1969 21 83 300 1,129 
1990 17 159 627 
1991 21 157 
1992 21 

1. Ail dollar amounts are in thousands. 



Exhibit 1 
PageZof2 

EXAMPLE MEDICAL MALPRACTICE DATA 

Accident Months of Development Pmjected 
Year 12 24 -36 48807284 
1985 107 168 219 252 256 259 261 -+e= 263 
1986 102 185 231 269 275 278 280 282 
1987 130 251 314 375 387 392 398 
1908 135 273 352 421 446 456 
1989 138 283 387 487 1990 136 277 362 q 

1991 155 279 459 
1992 160 500 

Cumulative Closed Claim Count 

Accident Months of Development 
Year 12 24 36 48 60728498 
1985 32 a4 119 137 153 182 208 227 
1988 36 09 116 134 165 202 226 
1987 42 118 142 195 244 288 
1988 31 117 169 232 294 
1989 29 144 213 279 
1990 33 135 196 
1991 41 132 
1992 40 



Exhibit 2 

COMPARISON OF AVERAGE PAYMENT AND AVERAGE RESERVE TRENDS 

Average Reserve per Open Claim 

Accident Months of Development 
Year 12 24 36 48 a- 
1985 $3,693 $5,655 $9,270 $10,104 -$k a9 -0 
1966 7.258 10,604 12.948 14.222 16:QQl 231250 24:519 

$2?,361 

1987 5,864 8,113 10,810 14,367 21,678 28,934 
1986 %--J 11,436 15,481 25.095 28.039 
1989 10,110 13,770 30,221 33,213 
1990 8,291 22,444 34,464 
1991 11,158 32,197 
1992 12,983 

Indicated 
Trend 15.6% 29.5% 31.1% 34.3% 32.7% 32.3% 26.8% 

Average Payment per Closed Claim 

Accident Months of Development 
Year O-12 12-24 24-36 36-48 48-80 60-72 72-64 84-96 
1985 $402 $539 $2,971 $8,620 $9,199 $12,889 $17,084 $16.634 
1986 110 919 5.487 9,129 12,403 18.452 19,533 
1987 706 1,115 5,644 4,928 12,994 14,948 
1986 161 862 5,762 9,477 14,085 
1989 724 541 4,003 II ,709 
1990 518 1,394 7,635 
1991 517 1,494 
1992 525 

Indicated 
Trend 12.9% 12.0% 11.5% 6.7% 14.2% 8.6% 14.3% 



Exhibit 3 

EXAMPLE MEDICAL MALPRACTICE DATA 

Ratios of Closed to Pmjected Ultimate Claims 

Accident Months of Development 
-122436- Year 48 60 7284- 98 

1985 12.2% 31 .Q% 45.2% 52.1% 58.2% 69.2% 79.1% 96.3% 
1986 12.8% 31.6% 41 .I% 47.5% 58.5% 71.8% 80.1% 
1987 10.6% 29.6% 35.7% 49.0% 61.3% 71.9% 
1988 6.8% 25.5% 36.9% 50.7% 84.2% 
1989 5.8% 
1990 7.1% 
1991 8.9% 
1992 8.0% 

29.0% 42.9% 56.1% 
29.2%1-l 
28.8% 

Adjusted Cumulative Closed Claim Count 

Accident Months of Development 
Year 12 A- 36 48 807284- 96 
1985 21 76 111 148 169 189 211 227 
1988 23 81 119 158 181 203 226 
1987 32 115 168 223 256 286 
1988 37 
1989 40 

132 143j+q 257 294 
279 

1990 37 133 196 
1991 37 132 
1992 40 



Exhibit 4 

EXAMPLE MEDICAL MALPRACTICE DATA 

Cumulative Paid Losses Adjusted for Closum Rates 

ACddant 
Year 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 

7 
6 

24 
IQ 
12 
21 

106 
123 
82 

153 
157 

Months of Development 
96 
61,582 

354 817 1,287 1,771 
554 1,272 1.852 
337 I.129 
627 

lncurrsd Losses Adjusted for Closure Rates and Reserve Changes 

Accident Months of Development 

1987 640 2,610 3,663 4,634 4,481 4,938 
1998 733 3,108 4.671 8,008 6,114 
1989 361 3,490 5,042 7,373 
1990 991 4,185 6,348 
1991 I.344 4.890 
1992 1,579 

1. All dollar amounts am in thousands. 



Accident 
Year 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 

Exhibit 5 

EXAMPLE MEDICAL MALPRACTICE DATA 

Ultimate Loss Projections 

Unadjusted Methods Adjusted Methods 
Development Seventy Hindsight Development Severity Hindsight Weighted 

_ Incurred Paid Proiection Method Paid Pmiection Method Average Incurred 
$2.351 $1,902 $1,901 32,242 $2,414 

3,399 
5,317 
7,979 

11,222 
14.748 
22.083 
19.360 

32.300 
3,454 
4,536 
8,149 
9.697 

13,215 
12,250 
10.141 

$2,300 
3,354 
4,885 
7,586 58,797 
9,818 8,382 

11,247 11,049 
13,372 14,924 
17,740 20,673 

3,160 2,741 2,874 3,075 
4,649 3,519 3,714 4.279 
6,438 5,254 5,249 $5,413 5,808 
7,831 4,878 0,107 6,430 6,783 
3,871 7,326 8.877 8,838 7,999 
9,814 7,591 7,763 8,128 9,263 

12.419 9.984 9,717 10,273 11,335 

Selected Weights 

Unadjusted Methods Adjusted Methods 
Accident Seventy Hindsight Development Seventy Hindsight Development 

Incurred Year Paid Paid Proiedion Method Incurred Pmiedion Method 
1985 2 1 1 2 1 1 
1986 2 1 1 8 4 2 
1987 2 1 1 9 6 3 
1988 1 1 1 1 4 4 6 8 
1989 1 1 1 1 4 4 8 8 
1990 1 1 1 1 4 4 8 8 
1991 1 1 1 1 4 4 8 8 
1992 1 1 1 1 4 4 8 8 

1. All dollar amounts are in thousands. 



Accident 
Year 
1985 
1996 
1967 
1988 
1989 
1990 
1991 
1992 

Exhibit 6 

ESTIMATED TOTAL RESERVES 

Seleded Losses Indicated Estimated 
Ultimate Paid Reserves Ultimate 

e2*2JA.ld&m 
283 

3,075 1,898 1,177 282 
4,279 1,771 2,508 398 
5,806 1,852 3,954 458 
6,783 1.129 5,654 497 
7,999 627 7,372 483 
9,283 157 9,106 459 

11,335 21 11,314 500 

Total $50,782 $9,037 941,745 

(5) (6) VI (8) 0 (10) 
Indicated 
Open& Indicated Selected 

Claims ISNR Averaae Coefficient lndiC&?d 
Closed Claims Reserve 

Date to (3M61 (4) - t5) 
227 36 $18,333 
226 56 21,018 
266 112 22,393 
294 164 24,110 
279 218 25,938 
196 267 27,610 
132 327 27.847 

40 460 24,596 

of Lwwmal Parameters 

?4-- 
3:6 

8.5995 1.5908 
8.7009 1.6236 

3.8 8.7279 1.6544 
4.0 8.7702 1.6832 
4.2 8.8152 1.7104 
4.4 8.8520 1.7380 
4.6 8.8294 1.7602 
4.8 8.8557 1.7832 

1. Amounts in columns (I), (2). and (3) are in thousands of dollars. 



Exhibit 7 

SELECTEDCLAIM SIZE DISTRIBUTIONS 

$50 
100 
250 
500 
750 

1,000 
1,250 
1,500 
2.000 
2.500 
3.500 
5.000 
8,000 
7,500 
8,500 

10,000 
12,500 
15,000 
20,000 
25,000 
35,WO 
50,000 
60,000 
75,000 
85,000 

100,000 
125,000 
150,000 
175,000 
200,000 
225,WO 
250,000 
275,000 
300,000 
350,000 
400.000 
450,000 
500,WO 

iG?a 
0.00139 
0.00549 
0.02812 
0.06897 
0.10893 
0.14405 
0.17806 
0.21001 
0.26564 
0.31402 
0.39369 
0.48100 
0.52587 
0.58142 
0.81120 
0.85070 
0.70072 
0.74028 
0.79521 
0.83318 
0.88178 
0.91994 
0.93492 
0.95108 
0.95822 
0.98885 
0.97598 
0.98167 
0.98559 
0.98837 
0.99043 
0.99200 
0.99321 
0.99421 
0.99563 
0.99658 
0.99727 
0.99777 

0.00138 
0.00535 
0.02476 
0.06290 
0.10021 
0.13495 
0.16668 
0.19694 
0.24955 
0.29555 
0.37186 
0.45649 
0.50043 
0.55520 
0.58482 
0.62430 
0.67482 
0.71516 
0.77194 
0.81180 
0.86389 
0.90547 
Q.92224 
0.94053 
0.94876 
0.95877 
0.96956 
0.97640 
0.98119 
0.98484 
0.98722 
0.98921 
0.99076 
0.99204 
0.99390 
0.99517 
0.9Q610 
0.99677 

0.00158 
0.00590 
0.02802 
0.08446 
0.10155 
0.13588 
0.16730 
0.19682 
0.24837 
0.29337 
0.38799 
0.45082 
0.49391 
0.54772 
0.57890 
0.61584 
0.86585 
0.70595 
0.76270 
0.80280 
0.85546 
0.89839 
0.91583 
0.93497 
0.94386 
0.95429 
0.96586 
0.97328 
0.97852 
0.98232 
0.98519 
0.98741 
0.98915 
0.99081 
0.99273 
0.99419 
0.99526 
0.99605 

AccidentYear 
B!B 

0.00169 0.00181 0.00194 
0.00825 0.00653 0.00885 
0.02657 0.02888 0.02737 
0.06461 0.06435 0.06453 
0.10097 0.09990 0.09952 
0.13452 0.13282 0.13182 
0.16516 0.16247 0.16085 
0.19392 0.19047 0.18824 
0.24413 0.23933 0.23803 
0.28795 0.28201 0.27775 
0.36071 0.35297 0.34718 
0.44171 0.43222 0.42489 
0.48399 0.47373 0.46570 
0.53693 0.52585 0.51703 
0.56573 0.55429 0.54512 
0.60425 0.59242 0.58283 
0.65394 0.64182 0.83186 
0.69396 0.68176 0.67184 
0.75097 0.73903 0.72898 
0.79158 0.78009 0.77030 
0.84533 0.83495 0.82593 
0.88977 0.88087 0.87299 
0.90004 0.89996 0.89274 
0.92822 0.92117 0.91480 
0.93748 0.93099 0.92509 
0.94885 0.94311 0.93784 
0.96136 0.95856 0.95211 
0.96947 0.96539 0.96155 
0.97525 0.97171 0.96836 
0.97947 0.97638 0.97343 
0.98268 0.97995 0.97732 
0.98519 0.98275 0.98039 
0.98718 0.98497 0.96283 
0.98882 0.98885 0.98491 
0.99128 0.98982 0.98800 
0.99295 0.99158 0.99018 
0.99421 0.99302 0.99182 
0.99514 0.99410 0.99305 

Ll9cLL 
0.00229 
0.00766 
0.03002 
0.06895 
0.10498 
0.13775 
0.18740 
0.19508 
0.24310 
0.28484 
0.35397 
0.43097 
0.47128 
0.52191 
0.54959 
0.58671 
0.63494 
0.67406 
0.73043 
0.77110 
0.82590 
0.87238 
0.89195 
0.91385 0.92573 
0.92410 0.93475 
0.93681 0.94589 
0.95109 0.95833 
0.96057 0.96654 
0.98745 0.97246 
0.97258 0.97685 
0.97651 0.98022 
0.97983 0.98288 
0.98213 0.98500 
0.98425 0.98680 
0.98742 0.98948 
0.98966 0.99137 
0.99138 0.99281 
0.99283 0.99388 

0.00348 
0.01125 
0.03951 
0.08595 
0.12719 
0.16384 
0.19840 
0.22644 
0.27788 
0.32148 
0.39280 
0.47050 
0.51050 
0.58031 
0.58723 
0.62315 
0.68931 
0.70639 
0.75921 
0.79688 
0.84700 
0.88889 
0.90832 
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Exhibit 8 

ESTIMATEDPROBABILINLEVELSFORRESERVES 

Without Parameter Uncertainty 

$860 $1,177 $2,508 $3,954 $5,654 $7,372 $9,106 $11.314 $41,745 
Ratio to 

- EstimatedProbability Level 
0.0008 0.0001 0.0000 o.oow 0.0000 o.woo 0.0000 0.0000 o.woo 0.3 

0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 

0.0115 0.0024 o.owo o.oooo 0.0000 0.0000 0.0000 0.0000 0.0000 
0.0519 0.0202 0.0017 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1322 0.0743 0.0174 0.0051 0.0004 0.0007 0.0003 O.WOl o.oow 
0.2424 0.1710 0.0748 0.0376 0.0095 0.0123 0.0075 0.0031 0.0000 
0.3835 0.2955 0.1918 0.1368 0.0710 0.0792 0.0826 0.0421 0.0006 
0.4794 0.4278 0.3567 0.3134 0.2491 0.2576 0.2378 0.2095 0.0479 
0.5815 0.5541 0.5359 0.5281 0.5200 0.5200 0.5179 0.5162 0.5074 
0.6670 0.6665 0.6960 0.7213 0.7667 0.7596 0.7749 0.7981 0.9452 
0.7375 0.7599 0.8182 0.8579 0.9140 0.9070 0.9230 0.9434 0.9990 
0.7962 0.8330 0.9001 0.9389 0.9757 0.9719 0.9805 0.9892 1.0000 
0.8449 0.8874 0.9492 0.9753 0.9946 0.9932 0.9982 0.9985 1 .oooo 
0.8842 0.9262 0.9760 0.9914 0.9990 0.9987 0.9994 0.9999 1.0000 
0.9150 0.9530 0.9894 0.9973 0.9999 0.9998 0.9999 l.OOW 1.0000 
0.9384 0.9708 0.9956 0.9992 1.0000 1.0060 1 .oow 1.0000 l.OWO 
0.9558 0.9823 0.9983 0.9998 1.0000 1 .oooo 1.0000 l.WOO 1.0000 
0.9685 0.9895 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9777 0.9939 0.9998 1.0000 I .oooo 1.0000 1.0000 1.0000 1.0000 
0.9844 0.9965 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9892 0.9981 1.0000 1.0000 1.0000 l.OOOCl l.OOM) 1.0000 1.0000 
0.9926 0.9989 1 .oooo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9950 O.QQQ4 1.0000 1 .oooo 1.0000 1 .oooo 1.0000 1.0000 l.OOW 
0.9967 0.8997 1.0000 1.0000 1.0000 1 .oooo 1.0000 1 .oooo 1.0000 
0.9978 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1 .oooo 1.0000 
0.9985 0.9999 1 .oooo 1.0000 1.0000 1.0000 1 .oooo 1.0000 1.0000 
0.9990 1.0000 1.0000 1.6000 1.0000 1.0000 1.0000 l.OWO l.OOW 
0.9994 1.0000 1 .oooo 1.0000 1.0000 1.0000 1.0000 1.0000 l.OWO 
0.9996 1 .oooo 1.0000 1.0000 1.0000 1.0000 1 .oooo 1 .oooo l.OOW 
0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1 .oooo 1 .oooo 1.0000 
0.9998 l.WW 1.0000 1.0000 1.0000 1 .oooo 1.0000 1.0000 1.0000 
0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

NOTE. - 

ExpectedResewe 

1. Reserve estimatesareinthousands. 
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Exhibit 9 

ESTIMATE OF CONTAGION PARAMETER 

(1) (2) (3) (4) (5) (‘3) 
Indicated 

Estimated Indicated Selected 1993 
Accident Ultimate Earned Frequency On-Level Claims 

Year Claims &~~?.uras (21/(3\ Fraauency ~51~8.700 
1985 263 5,907 4.45% 5.34% 465 
1986 282 4,965 5.68% 8.86% 579 
1987 398 7,719 5.16% 5.91% 514 
1988 458 7,922 5.78% 8.48% 564 
1989 497 11,361 4.37% 4.79% 417 
1990 463 7,525 6.15% 6.58% 572 
1991 459 8,376 5.48% 5.73% 499 
1992 500 8.649 5.78% 5.91% 514 

Indicated Trend 
Arithmetic Average 
Variance Estimate 
Indicated c Value 

2.3% 
516 

3,158 
0.0099 



Exhiw 10 

ACCkht 
Year 
lQ85 
1986 
1987 
IQ88 
1989 
1990 
1991 
lQQ2 

(1) (2) 
Indicated Lognormal 

Parameters 
.-A 

8.5995 1.5908 

ESTIMATES OF PARAMETER UNCERTAINTY FOR MEANS 

8.7009 1.6236 54 2 21,018 2,920 139,662 71,526 
8.7279 1.6544 108 6 22,393 3,322 319,139 373,623 
8.7702 1.6632 152 12 24.1 IO 3,821 539.092 746,291 
8.8152 1.7104 188 30 25,936 4,366 831,265 2.2??,671 
8.8520 1.7360 166 101 27,610 4,890 1,256,128 4,180,470 
8.8294 1.7602 147 180 27,847 5.044 1,?84,293 9,390,86? 
8.8557 1.7832 120 340 24,596 4,260 2,588,688 8,436,909 

(3) (4) (5) 
Estimated Expected 

(8) 
Variance 

Number of Claims Average Explained Ifl 
s% 

rve 

E(w) va)ianw Seleded 
0 $18,333 2,267 69,525 40.192 

Selected Contagion Parameter. 0.0099 

(91 (10) 

ImPlied Selected 
b value b value 

-0.0581 o.oooo 
-0.0477 o.oooo 
0.0091 0.6091 
0.0147 0.0147 
0.0574 0.0574 
0.0974 0.0974 
0.1742 0.1742 
0.0720 0.0720 

1. Amounts in columns (S), (7) and (8) are in millions. 



Exhibit 11 

ESTIMATE OF OVERALL MIXING PARAMETER 

(1) (2) (3) (4) (5) (6) 0 (8) (9) P) 
Indicated Unlimited Indicated Indicated Indicated 
Unlimited Pure 1993 1993 Indicated 1993 

Indicated Selected Indicated Pure Premium Unlimited Unlimited 1993 Limited 
Accident Limited Coefficient Unlimited Selected Premium at 1993 LOSS Severity Limited Loss (4)x 

Year 
1985 

Severitv of Variation Sev$W3 Freouency (3)x(4) Level (61~8.700 01516 Severitv (9)x516 
66,525 5.0 ( 4.45% $397 01.554 $13,520 $26,202 $22,916 $11,825 

1986 10.904 5.0 11,572 5.68% 657 
1987 10,751 5.0 11,399 5.16% 588 
1988 12.677 5.0 13,605 5.78% 788 
1989 13,648 5.0 14,736 4.37% 644 
1990 17.276 5.0 19,081 8.15% I.173 
1991 20,181 5.0 22,892 5.48% 1.244 
1992 22,670 5.0 25,882 5.78% 1,496 

Indicated Trend 
Average (000) 
Variance Estimate (000,000) 
Average Limited Severity 
Corresponding Unlimited Severity 
E (X ‘IL) (ow,oOO) 
Selected 1993 Claim Counts 
Explained Variance (000,000) 
Implied b value 
Selected Overall b value 

1. Columns (7) and (10) are in thousands. 

2.168 18,866 36,562 30,547 15.762 
1,836 14,237 27,591 23,976 12,372 
I.844 16,046 31,097 26,599 13,725 
1,274 1 I.085 21,483 19.219 9,917 
1,957 17,024 32,992 27,987 14,441 
1,750 15,223 29,502 25,415 13,114 
1,774 15,436 29,915 25,723 13.273 

18.6% 
$13,054 

3,082,16? 
$25,298 

29,346 
4,536 

516 
4,02?,361 
-0.00542 

0 



ESTIMATEDPROBABILITYLEVELSFORRESERVES 

With Parameter Uncertainty 

Exhibit12 

ExpectsdResenre 
3660 61.177 $2,508 $3,954 $5,854 37.372 $9,106 $11,314 $41,745 

Ratio to 
Exoected Estimated Probability Level 

0.3 0.0008 0.0001 0.0000 0.0000 O.OOW 0.0001 0.0008 0.0000 0.0000 
0.4 0.0115 
0.5 0.0519 
0.6 0.1322 
0.7 0.2424 
0.8 0.3635 
0.9 0.4794 
1.0 0.5615 
1.1 0.8670 
1.2 0.7375 
1.3 0.7962 
1.4 0.8449 
1.5 0.8842 
1.6 0.9150 
1.7 0.9384 
1.8 0.9558 
1.9 0.9685 
2.0 0.9777 
2.1 0.9844 
2.2 0.9892 
2.3 0.9926 
2.4 0.9950 
2.5 0.9967 
2.6 0.9978 
2.7 0.9985 
2.8 0.9QW 
2.9 0.9994 
3.0 0.9996 
3.1 0.9997 
3.2 0.9998 
3.3 0.9999 

0.0024 
0.0202 
0.0743 
0.1710 
0.2955 
0.4278 
0.5541 
0.6665 
0.7599 
0.0330 
0.8873 
0.9262 
0.9530 
0.9708 
0.9823 
0.9895 
0.9939 
0.9965 
0.9981 
0.9989 
0.9994 
0.9997 
0.9998 
0.9999 

0.0001 
0.0037 
0.0264 
0.0936 
0.2152 
0.3749 
0.5421 
0.6899 
0.8043 
0.8840 
0.9350 
0.9652 
0.9822 
0.9912 
0.9958 
0.9980 
0.9991 
0.9996 
0.9998 
0.9999 
1.0000 
1.0000 
1.0000 
I .oow 
1.0000 
1.0000 
1 .oooo 
1.0000 
l.OOW 
1.0000 

1.0000 
1.0000 
l.OWO 
1.0000 
1.0000 
1.0000 

NOTE: - 
1. Resatveestimatesarainthousands. 

0.0000 
0.0015 
0.0151 
0.0686 
0.1851 
0.3549 
0.5401 
0.7028 
0.8239 
0.9032 
0.9500 
0.9755 
0.9885 
0.9948 
0.9977 
0.9990 
0.9996 
0.9998 
0.9999 
l.OOW 
1 .owo 
l.OWO 
1 .owo 
1.0000 
1.0000 
1.0000 
1 .oooo 
1.0000 
l.OWO 
1.0000 

0.0006 0.0026 
0.0083 0.0211 
0.0439 0.0779 
0.1284 0.1798 
0.2597 0.3120 
0.4137 0.4511 
0.5630 0.5789 
0.6898 0.6661 
0.7879 O.??OB 
0.8589 0.8347 
0.9080 0.8818 
0.9409 0.9159 
0.9623 0.9402 
0.9761 0.9575 
0.9849 0.9697 
0.9904 0.9783 
0.9939 0.9845 
0.9961 0.9888 
0.9975 0.9919 
0.9984 0.9941 
0.9990 0.9957 
0.9993 0.9968 
O.SQQ8 0.9976 
0.9997 0.9982 
0.9998 0.9987 
0.9999 0.9990 
0.9999 0.9992 
0.9999 0.9994 
l.WOO 0.9996 
l.OOW 0.9997 

0.0117 
0.0541 
0.1382 
0.2527 
0.3775 
0.4965 
0.6007 
0.6874 
0.7570 
0.8118 
0.8543 
0.8870 
0.9122 
0.9315 
0.9464 
0.9578 
09667 
0.9735 
0.9788 
0.9830 
0.9863 
0.9889 
0.9910 
0.9926 
0.9939 
0.9950 
0.9959 
0.9966 
0.9971 
0.9976 

0.0008 
0.0101 
0.0502 
0.1400 
0.2733 
0.4248 
0.5688 
0.6800 
0.7840 
0.8527 
0.9011 
0.9341 
0.9584 
0.9712 
0.9810 
0.9874 
0.9916 
0.9944 
0.9962 
0.9975 
0.9983 
0.9988 
0.9992 
0.9994 
0.9996 
0.9997 
0.9998 
0.9999 
0.9999 
0.9999 

0.0000 
0.0000 
0.0001 
0.0052 
0.0638 
0.2630 
0.5476 
0.7769 
0.9051 
0.9826 
0.9858 
0.9944 
0.9977 
0.9990 
0.9995 
0.9998 
09QQ9 
0.9999 
l.OOW 
l.WOO 
1.0000 
1.0000 
1 .owo 
1 .oooo 
l.OOW 
l.WOO 
l.WOO 
1.0000 
l.OOW 
l.WOO 
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Exhibit 13 

Estimated Aggregate Reserve Cumulative Densities 

.~~~~~~.‘.‘~~~~~~~~~ Without Parameter Uncertainty ___ With Parameter Uncertainty 



Exhibit 14 

Estimated Aggregate Probability Density Functions 

______ t . ..__ t __.... t . . . . . . } . . f.....i __._.. i . . . . . . i...-l 

~wr-wcbOrNc9bw~ oIc4lvNcJOOvJc9c9m r-wQor~c9bwwbwm0reJ0 m9~waorcvm+mc eamOttttbltbtdu3wwuJ 3 wwwwwwwwwwww 

Reserve Amount (000,000) 

.~.....~.~~~~~~~~~~~ Without Parameter Uncertainty - With Parameter Uncertainty 



This appendix summarizes the analysis of another data set using the methods presented in this paper. 

The data used are those provided to the panelists for the Advanced Case Study session of the 1992 

Casualty Loss Reserve Seminar, as summarized in Exhibit A-i. The first two pages of that exhibit give a 

summary background information regarding the data source while the last three pages give summary 

triangles and exposure information. Included are eighteen years of development for eighteen accident 

years including data on paid and outstanding losses, claims closed with payment, reported claims, open 

daims and earned exposures. 

Our analysis indicated that there seemed to be changes in the percentage of reported claims that are 

paid for the various accident years. It appears that the court decision cited in the background material 

resulted in a higher proportion of reported claims being paid than the levels prior to that decision. We 

noted other changes in these ratios in the data. We thus selected paid counts, as opposed to reported, 

as the denominator in calculating severities in our severity and hindsight projection methods. 

We used four projection methods to estimate ultimate reported counts, The first two were development 

factor methods applied to historical paid claims and historical incurred claims (paid claims plus 

outstanding claims). The third method estimated ultimate paid claims as the product of the number of 

ultimate reported claims and the forecast percentage of ultimate claims that will be paid. We used 

development factor methods applied to the historical ratios of paid to closed (defined to be reported 

minus open) claims. We considered trends in both the resulting reported frequencies and indicated 

percentages paid to temper the leveraging effect of development factor methods for more immature 

years. 

The fourth method was a hindsight method based on frequencies. This method is similar to what we 

used to estimate losses, as described in the main portion of this paper. 
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Exhibit A-2 summarizes these pro&&ions and shows our selections and various diagnostics. These 

projections indicate an increase in estimated ultimate reported frequency in 1967 after a general 

decrease in prior years, as shown in column (12), and a marked increase in the percentage of reported 

that are estimated to be paid as shown in column (13). 

After an analysis similar to that for the sample medical malpractice data, we noted that there appears to 

be a change In the rate at which ctatms are being closed. We thus considered loss projections based on 

paid loss data adjusted to remove this apparent change. Exhibit A-3 then shows a summary of our 

uftimate loas proJections similar to Exhibit 5. 

Exhibit A-4 then summarizes the assumptions we used to estimate the distribution of aggregate reserves 

before consideration of parameter uncertainty. In this case we assumed that claims closing with 

payment would have lognonnal dlstnbutions with unlimited means equal to the average reserve per 

estimated future paid claim, shown in column (3). We assumed that all claims closing with payment 

would have a coefficient of variation equal to 1.25 and judgmentally scaled this back as shown in column 

(7). Though 1.25 may seem arbitrary and possibly low, its selection was based on discusslons with the 

source of these sample data. 

We have also elected to combine acctdent years 1984 and prior. This is due primatily to the relettve 

scarcity of data for those years and the resulting “noise” in estimates for individual accident years. 

As with the analysis in the main section of this paper, we assumed that open and IBNR claims both had 

the same loss distribution. Again, this is more of a convenience than a requirement of this approach. In 

this case, however, we assumed that the distribution of claims dosing with payment would be lognormal 

and included $0.01 losses in the input distribution with the complement of the probability of a claim 

closing with payment. We then adjusted the remaining distribution accordingly. Exhibit A-5 shows an 

example using eccldent year 1986. 
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Exhibit A-6 shows the resulting aggregate distributions for the reserves without consideration of 

parameter uncertainty, similar to Exhibit 6. As can be seen from this exhibit, the rather large number of 

claims results in relatively little variation in aggregate amounts. Virtually all of the distribution is within 

5% of the expected value of $203.2 million. 

Exhibit A-7 corresponds to Exhibit 9 and results in an estimate for the overall contagion parameter of 

0.0097. As shown in Exhibit A-2, however, due to changes that appeared in the data we used several 

different forecasting methods to estimate ultimate paid claims with variance among the methods as 

shown in column (10) of Exhibit A-2 and summarized in column (2) of Exhibit A-6. 

Assuming our forecasts of the percentage of ultimate reported claims that will be paid, we can translate 

these variance estimates for ultimate paid claims to variance estimates for reported claims, as shown in 

column (4) of Exhibit A-6. We calculated the amount shown for 1984 and Prior as the sum of the 

corresponding amounts for the individual accident years. 

We then solved for the contagion parameter, using the ultimate reported count estimates In wlumn (1) 

and the variance estimates in column (4) to derive the estimates in column (5). In most accident years, 

the variance in the estimates is greater than what would be expected from a Poisson distribution. In 

addition to this variance for individual accident years, there is additional variation from year to year as 

shown in Exhibit A-7. We thus selected our contagion parameters as the sum of the indicated 

parameters in column (5) and the overall indicated parameter shown in Exhibit A-7. 

Exhibit A-Q shows our estimates of the mixing parameters for the individual years. Since we assume 

that the losses are unlimited we oan easily determine the indicated standard deviation, and hence 

variance using the unlimited mean and assumed coefficient of variation. Column (10) then shows the 

variance explained using the seleded contagion parameters from Exhibit A-6 and the claim counts and 

claim size variances. Column (11) shows the variance among methods and shows that, except for 

accident years 1985 and 1991, the variance in methods exceeds what can be explained by our other 
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assumptions. Column (12) gives the resulting implied values for the mixing parameter b while column 

(13) shows our selections. 

As wlth Exhibit If, we also calculated the variation in ultimate losses over the accident years, shown in 

Exhibit A-IO. In this case the observed variance exceeds the amount that can be explained with the 

overall contagion parameter and our estimates of claim wunt and claim size distributions. This then 

implies an additlonal mixing parameter of 0.00069 shown at the bottom of Exhibit A-10. 

We then calculated the individual distributions for each of the accident years separately. using the 

estimates of contagion and mixing parameters shown in Exhibits A-8 and A-Q. We used the overall 

mixing parameter from Exhibit A-10 to refiect additional uncertainty In our final convolution of the 

distributions for individual accident years. 

Exhibit A-11 then presents 8 summary of our estimates for the individual yeers and for the aggregate 

reserves. As with the analysis in the main section of thii paper, the introduction of parameter uncertainty 

markedly widens the aggregate distribution. Whereas without parameter uncertainty, 90% of the losses 

were within 2.5% of the expected, with parameter uncertainty this percentage drops to 33%. Without 

parameter uncertainty 99.9% of the reserves were within 5% of the expected while with parameter 

uncertainty 60% fall in this range and we would have to widen the range to 20% to capture more than 

99% of the indicated values. Exhibits A-12 and A-l 3 show these comparisons graphically. 
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Exhibit A-l 
Page I of 5 

BACKGROUND INFORMATION RELATING TO SAMPLE DATA 

These data are based on actual bodily injury liability experience for an insurer, 
though we have randomly disturbed the true data to protect the identity of the 
insurer. The liability coverage is not particularly long-tailed and does m contain 
exposure to continuing damage or latent exposure claims such as asbestos or 
pollution. 

For your information, the incremental paid counts and amounts and the 
incremental reported counts as well as outstanding counts and amounts were all 
multiplied by values selected randomly from a lognormal distribution. The 
corresponding normal distribution [that of In(X)] had a mean of 0 and a standard 
deviation of 0.05. Thus the data should be close to “real.” The exposures 
shown have also been modified from the actual data, however the underlying 
frequencies and pure premiums remain unchanged from that which would have 
arisen from the randomly perturbed data. 

We have included five summary triangles: 

1. Cumulative Paid Losses. Total loss payments at annual valuations for each 
accident year. 

2. Outstanding Losses. Carried case reserves, without any actuarial or bulk 
adjustments, valued at successive year-ends. 

3. Cumulative Paid Claims. Total claims closed WA payment at annual 
valuations. 

4. Outstanding Claims. Total claims open at year-end valuation dates whether 
or not the claim subsequently closes with payment. 

5. Reported Claims. Total claims reported to the insurer, whether or not the 
claim subsequently closes with payment. 

The accident years shown are real. Losses included are total direct losses and 
the insurer has experienced some drift to higher policy limits over time. This drift 
has been gradual and somewhat consistent over the time period under 
consideration. The exposure counts are not inflation-sensitive but do not reflect 
changes in the mix of exposures between lower and higher risk insureds that 
may have occurred over time. Similar to the drift in policy limits there has been a 
general, and gradual, drift to a greater proportion of lower risk insureds in this 
book. 

The exposures are relatively homogeneous over time and contain no claims from 
outside the United States. There have been no changes in the overall mix of 
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Exhibit A-l 
Page 2 of 5 

legal jurisdictions affecting these claims. There was, however, a notable legal 
decision near the end of 1986 affecting claims under this coverage. You can 
assume that this change made it easier to initiate claims and more difficult for 
the insurer to settle those claims early as compared to the situation prior to that 
time. 

You may note a decrease in payments and reported claims during calendar year 
1991. This is not the result of the random disturbances we introduced in the 
data but is present in the actual data. The Company is unable to provide a 
specific explanation as to the reason for this decrease. 
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SampDatafaAdmmdCasaSludy ExhibilA-I 

Page3ofS 

Accident 

-Y!xL 
1974 
1975 
1976 
1977 
1976 
I 979 
1980 
1961 
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1983 
1984 
1985 
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1967 
19% 
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1,754 11,258 20.624 27.857 31,360 33.331 34,061 34.227 34,317 34,378 
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SaF+de Data for Advancad Case Study EXhibttA-1 
PaQeSof5 

Accident Mmths or Davskpmmt 
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(1) 

SAMPLE BODiLY INJURY LIABILITY LOSS DATA 

Projections of the Ultimate timber of Claims Closed with Payment 

(2) (3) (4) (5) (6) (7) (8) (9) 

Mbit A-2 

UO) 

Indicated 
Selected We&h& VNblWe 

ACCldeti Development Percent Hinds&ht Development Percent Hindsight Weighted in Selected 
x x Incuned Paid Frewencv Paid lnwnedO Jz.?I&.~ - -5 Me*& 

0.0 1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1966 
1987 
1988 
1989 
1990 
1991 

2.145 2,145 2,143 

2,344 2.345 2,345 
2.603 2.610 2.608 
2:826 2:827 2:828 
2,718 2,715 2,716 
2,994 2,987 2,996 
3,085 3,075 3.083 
2,865 2,857 2,864 
2,924 2,907 2.911 
2,941 2,919 2.930 
2,661 2,620 2,640 
2.660 2.626 2,643 
3.066 2,978 3.023 
3,879 3,676 3,813 
4.718 4.279 4.585 
5,233 4,540 5,014 
5,398 4,516 5,137 
3.903 3.990 4,574 

2.647 
2,639 
3.018 
3,728 
4,373 
4.641 
4,821 
4,447 

(131 (741 

1 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 
I 
1 
1 
1 
1 
1 

115) 

0 0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

0 
0 
0 
0 
I 
1 
1 
1 
1 1 
1 1 
I 1 
2 3 
2 3 
2 3 
2 3 
2 2 

2:603 0.0 
2,826 0.0 
2,718 0.0 
2,994 0.0 
3,081 18.7 
2,862 12.7 
2.915 53.7 
2,930 80.7 
2,642 218.5 
2.642 147.5 
3,019 766.8 
3,755 4.5966 
4,446 23.048.9 
4,783 60,976.5 
4,898 84,230.l 
4.275 76472.0 

W (17) U8) US) 
Future 

Estimated Indicated Indicated Number 
Inmated Percent 

Number Number Future Paid 
Accident U&mate Rewrted Percent Rewxted Number IBNR Paid Paid H8)1 
x m Fre&ency J$j-, to’y;;o ODen 111)-(14) toDate M-07) [1l&if6)1 

1974 4,170 0.379 
49.7; 

0 0 2,145 0 - 
1975 4.719 0.429 4:717 1 2 2,344 0 0.0% 
1976 6,016 0.456 51.9% 5,015 7 1 2,603 0 0.0% 
1977 5,904 0.492 47.9% 5,900 3 4 2,826 0 0.0% 
1978 5.366 0.442 51.2% 5.366 2 0 2.717 1 50.0% 
1979 6$8 0.529 47.2% 6;348 4 0 2;est 2 50.0% 
1980 7,154 0.596 43.1% 7,154 6 0 3,080 1 16.7% 
198t 6.900 0.575 41.5% 6,895 11 5 2,860 2 12.5% 
1982 6,602 0.660 44.2% 6,602 f0 0 2,915 0 0.0% 
1983 7,216 0.656 40.6% 7,214 18 2 2,925 5 25.0% 
1984 6,534 0.594 40.4% 6,531 15 3 2,636 8 33.3% 
1985 5,808 0.528 45.5% 5,802 55 6 2,817 25 41.6% 
1986 6,120 0.510 49.3% 6.111 94 9 2,958 61 59.2% 
1987 7,319 0.563 51.3% 7,282 242 37 3,559 196 70.3% 
1988 6,232 0.588 54.0% 8,105 693 127 3,771 675 82.3% 
1989 9,002 0.643 53.1% 8.267 1,142 715 3,241 1,642 83.0% 
1990 8,918 0.637 54.9% 7,314 2,007 1,604 1,923 2,973 82.3% 
1991 7,982 0.614 53.6% 4,044 2,366 3,938 339 3,936 62.4% 
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Exhibl A-3 

SAMPLE BODILY INJURY UASIUTY LOSS DATA 

P7ojections of the Ultimate Losses 

Paid Methods Adjusted 
Unadjusted Paid Methods Incurred for Claims Closing Changes 

A&dent Devel- Severhy DeveC DeVel- Sevedty Weighted 
x e Method HindsiaM m wment MethoP m m 

1974 $19,246 $19,245 $19.246 $19,246 $19.245 $19,246 
1975 23.159 23.159 23,162 23,161 23.159 23.160 
1976 
1977 
1976 
1979 
1960 
1961 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 

26,397 26,397 
30.649 30.049 
31;996 311994 
34,559 34,563 
36,012 36.023 
35,221 35,231 
34,478 34,464 
37.941 37.864 
37,474 37,371 
36,715 36,505 
47,818 47,338 
63,861 62,577 
83,555 80,717 
99,338 94,900 

110,157 105,279 
127250 104,212 

26,430 26,400 26,397 26.406 
30,054 30,061 30,063 30,057 
31,971 32,021 32.023 32,003 
34,510 34,572 34,572 34,554 
35,955 36,012 36.011 35.999 
35,131 35,221 35,217 35.199 
34,344 34,426 34,423 34,416 
37,811 37.768 37.765 37.812 
36,979 37,214 37,205 37,205 

$36,409 36,543 36,394 36.407 $36,429 36,463 
47,044 46,916 47,063 47,054 47.055 47,117 
62,799 60,585 61.685 61,571 62.844 62.173 
79,763 74,706 78.746 78.001 79,268 78.809 
90.936 64,444 91,348 89.375 91,514 90.845 
94.066 92,617 102,640 95,849 96,509 96,101 
04,090 67.770 312,670 91,947 96,203 94,044 

Selected Weights 

Paid Methods Adjusted Indicated 
Unadjusted Paid Methods Incurred for Claims Closing Changes Variance 

A&dent Devel- SWfSily Deve!- Da&- severity in Selected 
Year ocment Method Hindsiaht ovment wment Method Hindsioht Methods 
1074 1 1 2 2 2 0 
1075 1 1 2 2 2 2 
1976 1 1 2 2 2 194 
1977 1 1 2 2 2 31 
1978 1 1 2 2 2 453 
1979 1 1 2 2 2 650 
1980 1 1 2 2 2 655 
1961 1 1 2 2 2 1,547 
1962 1 1 2 2 2 2,102 
1983 1 1 2 2 2 3,455 
1984 1 1 2 2 2 25,279 
IQ85 1 1 2 

i 
2 2 3 7,936 

1986 1 1 2 2 2 3 50,266 
1967 1 1 2 2 2 2 3 676.278 
1988 1 1 2 2 
1989 1 1 2 2 i 

2 3 4,689,756 
2 3 13.592.826 

1090 1 1 2 2 2 2 3 26.607.766 
IQ01 0 1 2 2 0 2 3 20.489.727 

I. Dollar amounts are in thousands. 
2. Variance amounts are in mitkxs. 
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Exhibit A-4 

SAMPLE BODILY INJURY DATA 

Summary Reserve and Claim Indications 

(1) (2) (3) 
Indicated 

Indicated Average 
Future Claim lo 

Accident Indicated Paid be Paid 
fW(7) Year Reserves Claims 

19&4& 
prior $404 17 $23,785 
1985 404 25 18.160 
1988 1.129 61 18,508 
$987 4,144 198 21,143 
1998 12,808 875 18,878 
1989 31,813 1,542 20,501 
1990 64,709 2,973 21,786 
1991 88,593 3.938 22.508 

(4) (5) (6) 0 
Selected 
Perceflt Selected 

to be Coefftcient 
Total Number Paid (2)/ Of 

Oven ISNR ff4)+(5)1 &tit&~9 

77 17 18.1% 1.050 
55 8 41 .O% 1.075 
94 9 59.2% 1.100 

242 37 70.3% 1.125 
893 127 82.3% 1.150 

1.142 715 83.0% 1.175 
2,007 1,804 82.3% 1.200 
2,388 3.938 02.4% 1.225 

Total $203,198 9,408 $21.598 8.599 8,438 72.2% 

1. Amounts in column (I) are in thousands. 
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Exhibit A-5 

SAMPLEBODILYINJURYDATA 

SeveritylnputforAccidentYear1986 

Selected 
IwJf 

StepFunction Distiution 
Loss Approximation .408+ 

Am for~Loonormal .592xfl~ 
SO.01 0.40800 

950 
2,316 
4,356 
7,117 

10,625 
14,909 
19,994 
25,902 
32,651 
40,259 
46,743 
56.118 
68.399 
79,598 
91,720 

104,601 
118,829 
133.822 
149.791 
166,746 
164,696 
203,651 
223,619 
244.808 
266,629 
289,687 
313,791 
338.949 
365.186 
392,455 
420,817 
450,281 
480,793 
512,420 
545.140 
578,984 
613,932 
650,000 

0.00007 
0.02575 
0.11754 
0.26685 
0.43335 
0.58465 
0.70853 
0.79769 
0.66274 
0.90770 
0.93837 
0.95890 
0.97260 
0.96170 
0.90774 
0.99176 
0.99444 
0.99623 
0.99743 
0.99824 
0.99879 
0.99916 
0.99942 
0.99959 
0.99971 
0.99980 
0.99986 
0.99990 
0.99993 
0.99995 
0.999% 
0.99997 
0.99998 
0.99999 
0.99999 
0.99999 
0.99999 
1.00000 

0.40804 
0.42324 
0.47758 
0.56598 
0.66454 
0.75411 
0.82627 
0.88023 
0.91874 
0.94541 
0.96352 
0.97567 
0.90378 
0.98917 
0.99274 
0.99512 
0.99671 
0.99777 
0.99848 
0.998% 
0.99928 
0.99950 
0.99%6 
0.99976 
0.99983 
0.99988 
0.99992 
0.99994 
0.99996 
0.99997 
0.99998 
0.99998 
0.999% 
0.99999 
0.99999 
0.99999 
0.99999 
1.00000 

1. Theamwntsinc~umn(l)arebesedon 
alognonnaldishibutionwimmean18,508 
andcoefficientofvariation1.100. 
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Exhibit A-8 

SAMPLEBODILYINJURYDATA 

Estlmetecl Probability Levelsfor Reseves Without Parameter Unceitainty 

ExpectedReserve 
$404 $I.129 $4,144 $12,608 $31,813 $84,709 $88,593 $203.198 

Ratio to 
Exoected EstimatedPmbabltity Level 

0.300 0.0030 0.0001 0.0000 0.0000 O.WW O.WW 0.0000 0.0000 o.oooo 
0.0433 0.0117 0.0001 0.0000 O.WW O.WW 0.0000 0.0000 ODOW 0.500 

0.800 
0.700 
0.750 
0.800 
0.825 
0.850 
0.875 
0.900 
0.925 
0.950 
0.975 
1.000 
1.025 
I.050 
1.075 
1.100 
1.125 
I.150 
1.175 
1.200 
1.225 
1.250 
1.275 
1.300 
1.350 
1.400 
1.500 
I .800 
1.800 
2.000 
2.500 
3.000 

0.0998 
0.1884 
0.2368 
0.2978 
0.3281 
0.3590 
0.3903 
0.4217 
0.4530 
0.4842 
0.5149 
0.5451 
0.5744 
0.8028 
0.6303 
0.6567 
0.8820 
0.7083 
0.7291 
0.7507 
0.7710 
0.7902 
0.8082 
0.8250 
0.8548 
0.8803 
0.9202 
0.9478 
0.9788 
0.8915 
0.9991 
0.9999 

0.0445 
0.1189 
0.1703 
0.2342 
0.2893 
0.3082 
0.3443 
0.3833 
0.4228 
0.4822 
0.5014 
0.5398 
0.5770 
0.8130 
0.8475 
0.6602 
0.7110 
0.7397 
0.7865 0.8572 
0.7913 0.8848 
0.8140 
0.8348 
0.8537 
0.8709 
0.9002 
0.9238 
0.9583 
0.8757 
0.9928 
0.9978 
0.9999 
1 .oooo 

1. Wllaramountsereinlhousands. 

0.0020 
0.0208 
0.0502 
0.1024 
0.1383 
0.1813 
0.2305 
0.2849 
0.3433 
0.4048 
0.4868 
0.5285 
0.5883 
0.8449 
0.8973 
0.7449 
0.7878 
0.8251 

0.9077 
0.9288 
0.9423 
0.9549 
0.9730 
0.9842 
0.9948 
0.9984 
0.9999 
f.WW 
I .oooo 
1.0000 

0.0000 
0.0001 
0.0011 
0.0088 
0.0205 
0.0424 
0.0792 
0.1348 
0.2098 
0.3028 
0.4079 
0.5177 
0.8238 
0.7187 
0.7985 
0.8818 
0.9090 
09422 
OS346 
0.9782 
0.9&30 
0.9933 
0.9984 
O.B981 
o.eees 
0.9999 
1 .woo 
1.0000 
1.0000 
l.WW 
I .woo 
I .oooo 

o.woo O.WW 0.0000 
o.oow o.ww o.oow 
o.ww o.woo 0.0000 
o.ww o.woo o.owo 
o.ww o.ww 0.0000 
0.0005 0.0000 0.0000 
0.0034 o.woo 0.0000 
0.0188 0.0013 o.oooo 
0.0584 0.0132 0.0013 
0.1533 0.0727 0.0242 
0.3118 0.2388 0.1885 
0.5104 0.5089 0.5050 
0.7019 0.7883 0.8340 
0.8482 0.9222 0.9715 
0.9329 0.D819 0.9975 
0.9752 0.9970 0.9999 
0.9921 0.9997 I .oooo 
0.9979 1.0000 f.OWO 
0.9995 
0.9999 
l.WOO 
I .oooo 
f.WOO 
1 .woo 
1 .oooo 
1 .oow 
l.OOW 
1.0000 
l.WOO 
1.0000 
I.OOW 
f.WOO 

1.0000 
1.0000 
1.oooo 
f.oooa 
1.0000 
1.0000 
l.WW 
I .woo 
1.0000 
1.0000 
1.0000 
f.WW 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1 .oooo 
1.0000 
1.0000 
I .oooo 
1.0000 
1 .oow 
l.WOO 
1.0000 
1.0000 
I .oooo 
I .woo 

o.woo 
o.owo 
o.oow 
o.owo 
0.0000 
0.0000 
o.oow 
0.0000 
0.0013 
0.0242 
0.1885 
0.5050 
0.8340 
0.9715 
0.@875 
0.9999 
1 .owo 
l.OWO 
l.OWO 
f.OOW 
1.OWO 
l.OWO 
1.0000 
I .oooo 
l.OWO 
I .oooo 
I .oooo 
1 .oooo 
~.OOOO 
1.oooo 
1 .oooo 
1.0000 

0.0000 
o.owo 
o.oow 
O.WOO 
o.woo 
o.oow 
o.oow 
0.0000 
0.0000 
0.0009 
0.0458 
0.4951 
0.9488 
0.9994 
1.0000 
1 .oooo 
I .oooo 
I .oooo 
1.0000 
l.OOW 
1.oooo 
1.0000 
f.OOW 
1.0000 
1.wOo 
1 .oow 
I .oooo 
1.0000 
1.0000 
1.0000 
1 .oow 
l.OOW 
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Exhibit A-7 

SAMPLE BODILY INJURY DATA 

Selection of Overall Contagion Parameter 

lndiceted Indicated 
Ultimate Selected is92 

Accident Reported On-Level Claims 
326.~ FwauenwFreaUBncvox13.000 

f 974 0.378 0.571 7.423 
1975 0.429 0.831 8;203 
1976 0.458 0.858 8,528 
1977 0.492 0.892 8,998 
1978 0.442 0.808 7.904 
I 979 0.529 0.711 9,243 
19B0 0.598 0.783 io.i79 
1981 0.575 0.738 9.594 
1982 0.800 0.753 8.789 
1903 0.858 0.805 10,485 
1984 0.594 0.713 9.288 
1985 0.528 0.819 8,047 
1988 0.510 0.585 7.805 
1987 0.583 0.831 8,203 
1988 0.588 0.844 8,372 
1989 0.843 0.888 8,944 
1990 0.837 0.867 0,871 
is91 0.814 0.828 8,184 

Indicated 
Trend 2.3% 

Arithmetic Average 
Estimate of Variance 
Indicated Overall Contagion 

Parameter 

8,758 
753,387 

0.0097 
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Exhibit A-8 

SAMPLE BODILY INJURY DATA 

Selected Conlagfon Parameters 

(1) (2) (3) (4) (5) (6) 
Estimated 

lndicatad Varianca tndicatad 
Estimated Varianca Estimated in Individual Selected 

Accident UKImate in Selected Proportion Reported Contagion Contagion 
Paid pW3~x~3~ parameter Parametec Year &g~&! Methods 

19&l& 
Prior 85,889 384.2 - 1‘338.7 0.0000 0.0097 
1985 5,808 147.5 45.5% 712.5 -0.0002 0.0098 
is86 8.120 766.8 49.3% 3,f 54.7 -0.0001 0.0098 
1987 7,319 4.598.8 51.3% 17,488.4 0.0002 0.0099 
1988 8,232 23‘048.9 54.0% 79,042.8 0.0010 0.0108 
is89 9,002 80.978.5 53.1% 218.258.8 O.WZB 0.0123 
1990 8,ei 8 84,230.l 54.8% 279,482.0 0.0034 0.0131 
1991 7,982 78.972.0 53.8% 287.918.8 0.0041 0.0138 
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Exhibit A-Q 

SAMPLE BODILY INJURY DATA 

Estimates of Mixing Parameters 

(1) (2) (3) (4) (5) (6) 0 
Estimates Based on Claims With Payment dx’) 

Selected Indicated Based on 
Estimated Coefficient 

Accident Average of 
Year ReSeNe VaIiatiOfl 

1984 a 
Prior $23,785 1.050 
1985 18.180 1.075 
1988 18,SO8 1.100 
1987 21,143 1.125 
1988 18.878 1.150 
1989 20.501 1.175 
is90 21,788 1.200 
1991 22,508 I .225 

Standard Indicated Indicated Reported 
Deviation Variance E(X=) Percent Claims 
0x12) (3)x(3) (4)+(1)xff) Paid &b&L 

524,953 822.865 1 .I 07.440 
17.372 301.788 582.932 
20.359 414.481 757.027 
23,788 585.788 1 ,Of 2.794 
21,477 481.279 810.072 
24.089 580.284 1,000.555 
28,iie 882.213 I .155.971 
27,572 780.232 1.288.842 

fa.i% 214.927 
41 .O% 230.802 
59.2% 448.180 
70.3% 71 I .994 
82.3% 888.889 
83.0% 830.481 
82.3% 851.384 
82.4% 790.509 

(8) (9) W) (11) (12) (13) 

Estimated Variance 
Accident Number of Claims Explained in Implied Selected 

Year ODen J&& Variance Selected Value b b Value 
19848 

Prior 
1985 
1988 

77 17 18,830 34,377 0.1181 0.1181 
55 8 11.880 7,938 -0.0258 0.0000 
94 9 34.989 50.288 0.0138 0.0138 

1987 242 37 1401177 878]278 0.0544 0.0544 
1988 893 127 423.955 4.8B9.758 0.0379 0.0379 
1989 1,142 715 3.027,879 13,582,828 0.0200 0.0200 
1990 2,007 1,804 13.818,138 28,807.788 0.0082 0.0082 
i9ef 2,388 3,938 46.708,007 20,409,727 -0.0082 0.0000 

NOTE: 
1. Amounts in columns (4). (5) (7) (I 0). and (1 I) are in millions. 
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ExhibitA- 

SAMPLE BODILY INJURY DATA 

Estimate of Overall Mixing Parameter 

(1) (2) (3) (4) (5) 
Estimated 

Indicated Pure Indicated 
Estimated Pure Premium 1892 

Accident Ultimate Earned Premium at 1992 Loss 

1975 23;180 11;000 
1978 28.408 ll.OW 
1977 30,057 12,000 
1978 32,003 12,000 
I 979 34,554 12,ooo 
1980 35.999 12.000 
1981 
1882 

35;199 12;gw 
34,418 11.000 

1983 37.812 I 1,000 
1984 37,205 lf.WO 
1985 36,483 I 1,000 
1988 47.117 12,000 
1887 82.173 13,000 
1988 78.809 14.6W 
is69 80.845 14,wo 
1990 98.101 14,wo 
1991 Q4.w 13,000 

A. Indicated Trend 
B. Average (000) 
C. Variance Estimate (OW.WO) 
D. Wmated 1992 Ctaims Repartad 
E. Indicated Severity (OW) (AX) 

2;105 71547 98,111 
2.401 7.985 103.805 
2,505 7,728 100,484 
2,887 7,833 99,229 
2,880 7,848 99,388 
3.OW 7,308 96,044 
2,833 6.701 87-l 13 
3.129 8,831 86,203 
3,437 8,757 87.841 
3,382 8,188 80,f 84 
3,315 5,808 72,904 
3,928 6,161 80,093 
4,783 8,983 90.518 
5,829 7,602 98.828 
8,488 8,129 105.877 
7,w7 8,143 105,859 
7,234 7.798 101,374 

7.0% 

F. Selected Cdaffktent of Vartattan 
0. lndicatd Standard Deviation (000) (ExF) 
H. Indkated Varfance (OW,WO) (GxG) 
I. Indicated E(X*f(~,~) (H+ExE) 
J. Selected Overall Contaglon Parameter 
K. Explained Variance (000,000) 
L. Indicated Overall BIbring Parameter 
M. Selected Overatl Mixing Parameter 

993,421 
93.442,417 

8,758 
$10.888 

I .250 
$13.336 
i77.849 
291.877 

0.9097 
87,31?.2al 

o.m6e 
o.ow8e 

I. Amounts In columns (1) and (5) are in thousands of dollars. 
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Bxhlbft A-ll 

SAMPLEBODILYINJURYDATA 

19846 
AcatdentYear 

BxpactadReserve 
$404 3404 $1.129 $4,144 $12,606 $31,813 364.709 $88,593 9203,198 

RaUolo 
Estimated Probabillly Level 

0.0128 0.0001 O.OOWJ 0.0000 0.0000 0.0000 o.oooo o.oooo 0.0000 
0.1059 0.0116 0.0005 0.0016 O.OQOl o.oooo 0.0000 0.0000 0.0000 

0.300 
0.500 
0.800 
0.700 
0.750 
0.800 
0.825 
0.850 
0.875 
0.900 
0.925 
0.950 
0.975 
1.000 
1.025 
1.050 
1.075 
1.100 
1.125 
1.150 
1.175 
1.200 
1.225 
1.250 
1.275 
1.300 
1.350 
1.400 
1.500 
I.606 
1.800 
2.060 
2.506 
3.600 

0.1925 
0.2840 
0.3468 
0.3993 
0.4252 
0.4508 
0.4754 
0.5001 

0.6448 0.0081 
0.1170 0.6488 
0.1705 0.0930 
0.2344 0.1573 
0.2695 0.1983 
0.3664 0.2397 
0.3445 0.2864 
0.3834 0.3357 

0.0192 0.0039 
0.0848 0.0375 
0.1425 0.0817 
0.2152 0.1489 
0.2559 0.1904 
0.2988 0.2367 
0.3428 0.2866 
0.3874 0.3388 

0.0084 

0.5235 0.4228 0.3865 0.4321 0.3924 
0.5467 0.4623 0.4380 0.4761 0.4462 
0.5690 0.5614 0.4893 0.5190 
0.5904 0.5398 0.5395 0.5603 
0.8115 0.5770 0.5877 0.5998 
0.6310 0.6130 0.6338 0.6371 
0.6505 0.6475 0.6768 0.6722 
0.6685 0.6801 0.7169 0.7049 
0.6862 0.7109 0.7533 
0.7030 0.7396 0.7866 
0.7188 0.7664 0.8164 
0.7344 0.7911 0.8429 
0.7486 0.8139 0.8662 

0.6867 
0.9045 

0.7627 0.8347 
0.7755 0.8536 
0.7880 0.8708 
0.8109 0.9001 
0.8315 0.9235 
0.8865 0.9562 
0.8942 0.9756 
0.9334 0.9927 

0.7352 
0.7630 
0.7885 
0.8117 
0.8326 
0.8515 
0.8688 

0.4993 
0.5506 
0.5995 
0.6454 
0.6880 
0.7273 
0.7826 
0.7948 
0.8231 
0.8481 
0.8703 
0.8896 
0.9063 

0.0000 
0.0001 
0.0014 
0.0111 
0.0250 
0.0502 
0.0908 
0.1494 
0.2259 
0.3175 
0.4187 
0.5225 
0.6219 
0.7113 
0.7875 
0.8489 
0.8961 
0.9308 
0.9552 
0.9718 
0.9828 

0.9198 0.8839 0.9208 
0.9442 0.9098 0.9437 
0.9817 0.9303 0.9804 
0.9826 0.9588 0.9808 
OQQ24 0.9758 0.9909 
0.9986 0.9918 0.9980 

0.0758 
0.1116 
0.1561 
0.2089 
0.2886 
0.3335 
0.4013 
0.4700 
0.5374 
0.8017 
0.6616 
0.7160 
0.7846 
0.8070 
0.8434 
0.8742 
0.8998 
0.9210 
0.9381 
0.9519 
OQ629 
0.9783 
0.9875 
O.Qml 
0.9988 
0.9999 

0.9898 
0.9940 
0.9364 
0.9990 
0.9997 
1.0000 
i.ooilo 
I.0060 

o.oooo 

0.9990 

o.woo 
0.0001 

l.OOQO 

0.0621 
0.0071 
0.0194 
0.0455 
0.0925 
0.1658 
0.2657 
0.3859 
0.5150 
0.6395 
0.7484 
0.8351 
0.8985 
0.9413 
oQ673 
0.9834 
0.9915 
0.9980 
0.9980 
0.9990 

0.0000 
0.0000 

1 .oooo 

0.0000 
0.0000 

1.0000 

0.0009 
0.0033 
0.0127 
0.0394 
0.0982 
0.2007 
0.3449 
0.5113 
0.8715 
0.8018 
0.8927 
0.9478 
0.9770 
0.9967 
0.9964 
0.9988 
0.9996 
0.9999 
1.0000 

1 .oooo 
1 .oooo 
1 .oooo 
I.6060 

I.0000 
1 .oooo 
1.0000 
1.6060 

0.9578 0.9978 O.QQQ8 0.9972 0.9996 1 .oooo 1.0000 1.0000 1.0006 
0.9859 0.9999 1.0000 0.8898 I .oooo 1.0006 1.0000 1 .oooo 1.0600 
0.9949 1 .oooo 1.0060 1 .oooo 1.0000 1 .oooo 1.0060 1.0000 I .oooo 

1. Dottaramountserainthouaands. 
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Exhibit A-12 

Estimated Aggregate Reserve Cumulative Densities 

l- . . . . . . ______.._..._. ._.. ._......_.. . . . . ..-.. -.. . . . - I. . . . . .- . . ..- -. ,, ,__ ._. 

0.9 -- 

0.8 -- 

0.7 -- 

$$ 0.6 -- .- 
CL 
p" 0.5 -- ," 

: 0.4 -- 

0.3 -- 

0.2 -- 

0.1 -- 

0 ;;i;;;;:;;i;;;;;;, 
OoJ*rcBalO~bu3cooNt r-r-.bhr-~~a~comcmQ 8 8882fi!i! ~~ol*oiwonl*tomo”~apa~l~ rrrrNlvoIcwc3t9c9 
rrrrrrrrrrrrr~r~~~~N~~~~~~~~~~~~~~~~~~ 

Aggregate Reserve (000,000) 

.“.~~~‘...~~~.~‘~~- WIthout Parameter Uncertainty - Wth Parameter Uncertainty 



Exhibit A-l 3 

Estimated Aggregate Probability Density Functions 

Reserve Amount (000,000) 

~~.~~.‘~‘~~~~.~~~~~~ Without Parameter Uncertainty - With Parameter Uncertainty 
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A NOTE ON SIMULATION OF CLAIM ACTIVITY FOR USE IN 

AGGREGATE LOSS DISTRIBUTIONS 

Abstract 
Aggregate loss distributions have been used in a number of different applications over the last few 
years. These applications have usually focused on the distribution of losses at ultimate or final 
values and have not studied how losses move to ultimate values over time. The approach outlined 
in this note models claim activity through the use of transition matrices. Individual claim activity 
is then incorporated into an aggregate loss simulation model to determine a number of 
distributions of interest. 
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This note will present an overview of how to determine the distribution of paid, case, and 

incurred but not reported (IBNR) losses over time in a manner consistent with the determination 

of aggregate loss distributions. The method is based on determining severity distributions for 

both paid and case incurred losses at different valuations, determining transition matrices to model 

claim changes over time, and simulating many years of claim activity. This method may require 

much computer time and, if it is to be company specific, detailed loss stratification data. While 

these requirements may by burdensome the method also permits an analysis of the distribution of 

loss development factors and of run off ratios. 

In 1988 Hayne outlined an approach’ using collective risk theory to measure the variability 

of loss reserves. The approach used in this note is an application of the use of collective risk 

theory such that claim development may be introduced into the process. 

When the Insurance Services Ofice (ISO) prepares a review of increased limits factors 

they track the severity distribution over time. This is done because IS0 is interested in the 

distribution of losses at their ultimate vatues. ISO’s supplementary exhibits show triangles of 

pareto parameters obtained from fitting curves to accident year case incurred losses at various 

valuations. These fits and the relationship between the curves are used to determine the final 

severity curve upon which indicated increased limits factors are based. This material generally 

shows the average size of loss increases as the accident year matures. 

Severity distributions are needed in determining aggregate loss distributions. Much has 

been written about the use of aggregate distributions and there are a few methods to use to 

calculate an aggregate distribution. 2~ In a recent papefi Bear and Nemlick use aggregate loss 

distributions to quantify the expected impact of swing rated reinsurance contracts. In 1980 Patrik 

and Johns used the notion of supporting surplus as measured by the use of an aggregate loss 

distribution to determine the appropriate load for working cover reinsurance treaties. All of these 

methods use severity distributions at ultimate or final values. IS0 uses severity distributions at 
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different valuations in their increased limit reviews but do not measure how individual claims 

change from one valuation to another. Transition matrices could be used to model this activity. 

In the formulation of the algorithm used in this paper I am using the severity distribution format as 

used by He&man and Meyers (probability of loss in certain intervals is specified, the loss within 

an interval is uniform). Appendix A sheets one and five show the severity distributions for paid 

and incurred losses at twelve, twenty four, thirty six, and forty eight month valuations. The 

average loss is shown at the bottom of each column. Sheets two through four and six through 

eight show the transition matrices to go from one valuation to the next. Since I am using severity 

distributions consisting of twenty intervals each transition matrix is twenty by twenty. The second 

column in sheet 2, the column labeled “0”. shows the movement of claims in the first loss interval 

($0 to $5,000) at twelve months to other loss intervals at twenty four months. In this example 

45% of claims remain in the first interval. Twenty five percent of claims move up an 

interval(95,OOO to SlO,OOO), 15% move up two intervals, 10% three intervals, and 5% four 

intervals. Other columns show how losses in other intervals are expected to move during the 

course of the development period. You will note; entries in each column sum to one, amounts 

beneath the diagonal represent positive development (claims get larger), and entries above the 

diagonal represent negative development (claims get smaller). In terms of matrix notation if S, is 

the severity vector at the first valuation and T,, is the first to second valuation transition matrix 

then S,, the severity distribution at the second valuation, equals T,, . S,. This can be extended so 

that S, = T,, . S,, S, = T,, S, and so on. The ultimate severity distribution can be obtained kom 

the initial severity distribution at twelve months and all the transition matrices. 

This approach can be used for paid losses as well as case incurred losses. If paid and 

incurred transactions are used from the same set of losses you should be able to produce the same 

ultimate severity distribution in both instances. The illustrative paid and case incurred material 
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(strictly hypothetical and not based on any data set) contained in Appendix A produce roughly the 

same severity distribution at forty eight months. 

These initial severity distributions and transition matrices are used to model the paid and 

case incurred activity on a claim by claim basis. This routine is then used in a simulation program 

to calculate an aggregate loss distribution. The final aggregate loss distribution is similar to one 

produced using the He&man - Meyers algorithm. This approach extends the aggregate loss 

distribution over development and payment periods in a way which is consistent with the ideas 

underlying the collective risk model. 

To illustrate this I used the following algorithm to produce aggregate losses: 

I. Randomly select the number of claims for a year from a negative binomial distribution 

with mean equal to 126 (approximately) and variance 378. The mean number of 

claims was selected so that the expected ultimate loss amount is about $5,000,000. 

2. For each claim randomly select a report lag from a Poisson distribution with mean 

equal to one half If the lag is greater than two, cap the lag at two. This was done so 

that all years would be at ultimate values at the end of six development years. For 

purposes of simplification the initial severity distributions and transition matrices do 

not vary as a firnction of lag. In this example if the lag for a claim is one year the 

twelve month severity distribution is used as the twenty four month severity 

distribution and all transition matrices are adjusted accordingly. In practice the initial 

severity distributions and transition matrices would likely vary as a function of lag 

because claims which are reported later usually have higher average values. 

3. For each claim randomly select a loss interval from the case incurred loss severity 

distribution at twelve months. Within the interval randomly select a loss amount on 

the assumption that losses are uniformly distributed in the interval. This is the value of 

the claim at twelve months. 
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4. For each claim at twelve months enter the appropriate column of the twelve to twenty 

four month transition matrix (based on the loss interval) and randomly select a loss 

interval for the twenty four month valuation (determined by the row). If the loss 

interval does not change use the twelve month loss value at the value of the claim at 

twenty four months. if the loss interval changes randomly select a loss amount on the 

assumption that losses are uniformly distributed in the new interval. 

5. Repeat step four for the other development periods until the claim is at ultimate. This 

produces a series of case incurred claim amounts for an individual claim at different 

loss valuations. 

6. When the final or ultimate loss interval is determined work backwards using the paid 

transition matrices and paid severity distributions to determine the payment history for 

the claim. For example, suppose a claim is in the tenth loss interval at development 

period four (this is ultimate). It is possible to determine what loss intervals the claim 

could have been in at period three (i.e., those columns that have a non-zero entry in 

the tenth row of the transition matrix) and to randomly select a period three loss 

interval based on the relevant transition matrix and the period three paid severity 

distribution. That is, the probability of being in the tenth interval at period four equals 

C(t,,j . sj), j = 1 to 20 where sj is the probability of being in the j* interval of the 

period three severity distribution and t,ej is the tenth row of the period three to four 

transition matrix. Randomly assign a column j based on the ratio of t,,j . sj to C(t,,j . 

sj). 

7. When all payment values for a claim are determined accumulate the paid and case 

incurred values and repeat steps two through six until all claims as specified in step 

one are finished. 

8. Repeat steps one through seven for the desired number of simulation years. 
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I ran this procedure for 10,000 years using the materiaI in Appendix A. The table below 

shows the average paid and case incurred values generated by the simulation: 

Case 
Valuation Paid Loss Incurred 

Loss 

12 697,224 1,160,996 

24 1,768,930 2,729,345 

36 3,289,626 4,095,227 

48 4,486,742 4,783,310 

60 4,927,417 4,982,895 

72 5,010,529 5,010,529 

More importantly I accumulated various distributions about average values. Rather than 

show tables of the resultant distributions I will illustrate them graphically. (The program output 

can be used to calculate means, variances, deciles, etc.) Exhibits A through G show the graphs of 

a number of distributions. 

Exhibit A, Sheet two shows the distribution of losses at ultimate values. I have labeled 

this “Outstandimg Losses at Time 0” because it represents the a priori distribution’of loss before 

any experience has been registered. This graph was prepared using losses at their ultimate values 

after the simulation had worked through all of the transition matrices, Using the accumulated loss 

arrays by year it is also possible to determine the distribution of outstanding losses (case 

outstanding and IBNR) at the end of any valuation. The distribution of outstanding losses is 

obtained by subtracting paid losses from ultimate losses. Exhibit A, Sheets three through five 

shows the distribution of outstanding losses at the end of the first, second, and third valuation 

respectively. Exhibit A, Sheet one shows these distributions on the same graph. This illustrates 

the reduction in average outstanding loss as well as variance over time. It is important to realize 

that these distributions are on an a priori basis. To determine the variability of reserves given a 
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particular amount of reported losses at a specified valuation it would be necessary to determine 

the outstanding loss distribution on a conditional basis. Ifvariability arouse only from claim 

counts and the first valuation severity distribution (i.e., there were no IBM claims or case 

development) the conditional variance of outstanding losses at the first valuation would be zero. 

Exhibit B shows similar graphs for IBNR reserves. These distributions were calculated by 

subtracting case incurred losses from ultimate losses. Exhibit B, Sheet one, as in Exhibit A, Sheet 

one, shows the reduction in average IBNR reserves and variance over time. 

Exhibits C and D were determined from the accumulated loss arrays too. These graphs 

show the distribution of incremental (calendar year) paid and case reported losses respectively for 

a variety of valuations. 

Exhibits E and F show the distribution of paid and case incurred loss development factors. 

The substantial reduction in loss development factor variance as losses mature is particularly 

noticeable in the sheet one of both exhibits. This type of analysis could be helpful in establishing 

credibility standards for development factors or to help select the underlying curve to use to 

model loss development factors for other variability of loss reserve approaches.6,7 

Exhibit G shows the distribution of run off ratios of loss reserves as of twelve months. I 

used case incurred loss development factors to estimate ultimate losses and calculated the run off 

ratio by dividing ultimate losses less paid losses at twelve months by estimated ultimate losses at 

twelve months less paid losses at twelve months. I did not allow for sufficient room in the 

program output to show the tail of the distribution - in this example it appears there is continued 

risk of adverse run off in excess of 50% of carried reserves, This type of analysis might be used 

to test different IBNR reserving methods under different claim department reserving practices8 

I have tried to outline a straightforward approach that might be used to help quantify the 

variability of a number of different reserve amounts or loss development measures. I am aware 

that specifying the transition matrices for different development periods on both a paid and case 
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basis could be time consuming and that once accomplished the simulations could take a great deal 

of computer time. However, there is no substitute for data and it is appealing that such transition 

matrices could be tailored to individual claim department practices and empirical severity 

distributions. In addition computer performance continues to improve making large simulation 

exercises more practical. 

I am also aware that this method does not address parameter risk. This is an important 

source of risk and the variance indications obtained from this approach should be viewed 

accordingly. 
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Appendix A 
Sheet 1 

Distribution of Case lncurred Losses 

Case Incurred Loss 
Severity Distribution at . . . Months 

I Las3 Range 12 1 24 1 36 1 48 

0 - 5,000 .67000000 .32550000 .25080000 .22572000 
5,000 - 10,000 .12000000 .22950000 .202625OO .21757375 

10,000 - 25,000 .07OOOOfKI .16100000 .I7547500 .17683250 
25,000 - 50,000 .0505OOOO .119OOOOG .I4227500 .14393500 
50,000 - 75,000 .04000000 .075OWJO .09372500 .09615250 
75,000 100,000 .02000000 .03300000 .05100050 .05313625 

100,000 _ 150,000 .OlOOOOOO .02150000 .03345OOO .03432750 
150,000 - 200,000 .OWOOOOO .0145OOOO .01999000 .01866400 
200,000 - 250,000 .OlOOOOOO .01250-000 .01435000 .01419650 
250,000 - 300,000 .00500000 .00760000 .00699450 
300,000 - 350,000 .002OOOOO .00382500 .OO377000 
350,OOG - 400,000 .00100000 .00251000 .00258875 
400,000 - 450,000 .0005OooO .00130000 .00178900 
450,ooo - 5oO,OOO .00045Om .00143350 
500,000 - 600,000 .00028000 .00090475 
600,MIO - 700,000 30017500 .00072225 
700,ooO - 800,000 .lmO9000 .00052500 
800,000 - 900,000 .00005500 .00031450 
9owoo - 1,000,000 .000020#0 .00027800 

1,000,ooo - 1,000,000 .00000500 .00014175 

Average 15,175.oo 28,040.OO 37,228.OO 39,693.29 
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Appendix A 
sheet 5 

Distribution of Paid Losses 

Paid Lms 

I 

Severity Distribution at . . . Months 
Loss Range 12 1 24 I 36 I 48 

0 - 5,000 
5,ooo - lO.cm 

10,000 - 25,000 
25,000 - 50,000 
50,000 - 75,000 
75,000 - 100,ooo 

100,000 - 150,000 
150,000 - 200,000 
200,000 - 250,000 
250,000 - 300,000 
300,000 - 350,000 
350,000 - 400,000 
400,000 - 450,000 
450,000 - 500,000 
500,ooo - 600.000 
600,o-oo - 700,000 
700,000 - 800,000 
800,000 - 900,000 
900,000 - UW~ 

1,000,000 - l,@RooO 

.839OOOOO 
,022oOOOO 
.034OOoKl 
.032WOOO 
.03800000 
.015OoOoO 
.0110OoOO 
.006ooooO 
.003OOOc+ 

.51179000 

.17924CQO 

.13807ooo 

.05549000 

.04215000 

.01655000 

.02880000 

.00126m 

.01753000 

.00673000 

.00173000 

.00%3000 

.00003000 

.28148450 

.20094000 

.18165150 

.14032750 

.07695400 

.04276350 

.03588lOO 
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.01828910 

.30739710 

.00331240 

.00231130 

.m57470 

.00035740 

.BOO23830 

.ooo14590 

.00005470 

.0OOlI3080 

.225187&l 

.21704890 
,I7642663 
.14364213 
.09596605 
.05302065 
.03435765 
.01871986 
.01425819 
.a0947793 
.00536202 
.!I0199542 
.00149668 
.00100664 
.00063843 
.00069786 
.00037797 
BOO13853 
.00011645 
.00006443 

Average 10,845.OO 21,630.13 33,768.83 39,673.48 
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Chain Ladder Technique 
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Abstract 

This paper considers the application of loglinear models to claims reserving. The models encompass 

the chain ladder technique and extend the range of the powible analyses. By bringing the methods 

within a statistical framework, a coherent strategy for testing goodness of tit and for forecasting 

outstanding claims is produced. Improvements to the basic chain ladder technique are given which 

use Bay&an methods. 

Key Words Claims Reserving, Linear Models, Bayes and Empirical Bayes Methods, State SF 

Models, The Chain Ladder Technique. 
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1. Introduction 

Forecasting outstandiig claims and setting up suitable reserves to meet these claims is an important 

part of the business of a general insurance company. Indeed, the published profits of these companies 

depend not only on the actual claims paid, but on the forecasts of the claims which will have to he 

paid. It is essential, therefore, that a reliable estimate is available of the reserve to be set aside to 

cover claims, in order to ensure the linen&d stability of the company and its profit and loss 

account. There are a number of methods which have proved useful in practice, one of which is 

extensively used and is known as the chain ladder technique. In recent years, a statistical framework 

for analysing this data has been built up, which encompasses the actuarial method, extending and 

consolidating it. The aim of this paper is to bring together there results and to illustrate how the 

chain ladder technique can be improved and extended, without altering the basic foundations upon 

which it has been built. These improvements are designed to overcome two problems with the cbaia 

ladder technique. Firstly, that not enough connection is made between the accident years, resulting 

in an over-param&sed model and unstable forecasts. Secondly, that the development pattern is 

sssumed to bs the same for all accident years. No allowance is made by the chain ladder technique 

for any change in the speed with which Aims are settled, or for any other factors which may change 

the shape of the run-off pattern. Before describing the methods for overcoming these problems, we 

first define the chain ladder linear model, and show how it can be used to give upper prediction 

bounds on total outstanding claims. 

2. The Data 

It will be aslnuned throughout this paper that the data is in the form of a triangle. It should be 

emphasised that this is for notational convenience only: there are no problems in extending the 

methods to other shapes of data. The year in which the policy is written will be called the 

underwriting year, accident year or year of business. In the years after the policy was written the 

company may receive claims related to that policy, and theac claims are indexed by their business 

year and the delay. The following data set, which is taken from Taylor and Ashe (1983) will be ussd 

for illustrative purposes. The data is given in the form of incremental claims in each delay year. 



357848 766940 610542 482940 527326 574398 146342 139950 227229 67948 

352118 884021 933894 1183289445745 320996 527804 266172 425046 

290507 1001799 926219 1016654 750816 146923 495992 280405 

310608 1108250 776189 1562400 272482352053 206286 

443160 693190 991983 769488 504851470639 

396132 937085 947498 805037 705960 

440832 847631 1131398 1063269 

359480 1061648 1443370 

376686 986608 

344014 

The data may take a slightly different shape if one or more of the corners is truncated, but this 

paper will consider trianglea of data (without loss of generality). The first column will be labelled 

delay year 1, rather than delay year 0. 

Sometimes, the rows are standardii by dividing by a measure of the volume of business, such as 

the premium income. Thii is reversed when predictions of outstanding claims are made. For the 

above triangle the exposure factors are: 

610 721 697 621 600 552 543 503 525 420. 

The incremental claims relating to business year i and delay year j will be denoted Zij, so that the 

set of data ohserved is 

{ Zi j : kl,..., t; j=l,..., t-i+l) 

The statistical approach uses the incremental claims, but the chain ladder technique is applied to the 

cumulative claims, which are defined by: 

The problem is to forecast out&anti claims on the basis of past experience. in other words to till 

396 



in the lower right hand triangle of claims. Sometimes it is also useful to extend the forecasts beyond 

the latest delay year (i.e. to the right of the claims run-off triangle). The standard actuarial 

technique does not attempt to do this. 

3. Linear Models and the Chain Ladder Technique 

This paper will concentrate on the chain ladder technique. It its familiar form, this assumes that the 

cumulative claims for each business year develop similarly by delay year, and estimates development 

factors ss ratios of sums of cumulative claims with the same delay index. Thus the estimate of the 

development factor for column j is 

r-j+1 
is cij 

i-j+l- 
C 'i,j-1 
i=, 

(3.1) 

The model on which this is based is 

E ( Cij I C<, 3 Ci, 7 . . v Ci,j-l ) = Aj Ci,j-l j=2,...,t. (3.8 

and (3.1) is an estimate of Xj . It has the advantage that it is relatively straightforward to calculate, 

but there is no clear b&i on which to examine the properties in greater detail. It can be seen 84 a 

useful %ugh-and-ready” estimation method. 

The expected ultimate Icea, E ( Ci, ) , is estimated by multiplying the latest loss, Ci,t_i+l , by the 

appropriate estimated X-values : 

estimate of E ( Ci, ) = ( fi xj ) Ci,r-i+l . (3.3) 
j=*-i+? 

The chain ladder technique produces forecasts which have a row effect and a column effect. The 

column effect is obviously due to the parameters { Aj ; j=2,...,t f. There is also a row effect since 

the estimates for each row depend not only on the parameters { Aj ; j=2,...,t ), but also on the row 

being considered. The latest cumulative claims, Ci,r-i+lr can be considered as the row effect. Thii 

leads to consideration of other models which have row and column effects, in particular the two-way 

397 



analysis of variance model. The connection is tirst made with a multiplicative model. This uses the 

non-cumulative data, Zij , and models them according to: 

E ( Zij ) = Uj Sj 

where Ui is a parameter for row i, 

S j is a parameter for column j 

A multiplicative error structure is assumed. 

AlSO &Sj =l 
j=l 

(3.4) 

Sj is the expected proportion of ultimate claims which occur in the jth development year. 

Ui is the expected total ultimate claim amount for business year i (neglecting any tail factor). 

Kremer( 1982) showed that the following relationships between the parameters hold: 

A. - 1 sj = +- cil2) 
I-I 4 kj 

s, = 
j$ 

and Ui = E( Cit ). (3.8) 

(3.6) 

(3.7) 

Estimators of { Si ; izl,..., t } and { Uj ; j=l,..., t ] can be obtained by applying a linear model to 

the logged incremental claims data. Taking logs of both sides of equation (3.4), and assuming that 

the incremental claims are positive: 

E ( Yij ) = B + ai + Bj (3.9) 

where Yij = log zij 

and the errors now have an additive structure and are assumed to have mean zero. 



The errors will also be assumsd to be identically distributed with variance os, although this 

distributional assumption can be relaxed. 

The usual rmtriction is placed on the parameters to ensure a non-singular design matrix, in thii case 

‘I1 = p1 = 0. 

Now equation (3.9) can be written in the form of a linear model. Suppose, for example, there are 

three years of data. 

Then 

Yll 1 

Yll = Yll = 

Y,l Y,l 

_ _ 

10000’ 10000’ 

1 1 0 0 0 0 1 1 0 0 

YlS YlS 

1 1 1 1 0 0 0 0 0 0 

YPZ YPZ 1 1 0 0 0 0 0 0 1 1 

YSI YSI - - I I 1 1 0 0 1 1 0 0 

1 1 0 1 0 0 

(3.10) 

Kremer (1982) derived the normal equations for the chain ladder linear model and also examined the 

relationship between the linear model and the crude chain ladder kchnique. By reversing the 

transformation it can he shown that 

Ui = e”’ ec 2 e pi 
j=1 

Kramer showed that if the estimak of Ui is obtained by “hatting” the paramekre in the above 

identity, the remit is very sio&u to that obtained &om the chain ladder technique. The resuiting 

estiiak of Ui ia not the maximum likelihcmd estiiak, neither is it unbiased, but it does serve the 

purpcms of illustrating the similarity bstween the chain ladder kchnique and the two-way analysis of 

variance. 

Furthermore, if alI the geometric means are replaced by arithmetic means the estimators of the 

paramekre of the models are equivalent. Thus the two estimation methods, the chain ladder method 

and the linear model, will produce identical results. The structure of the models is identical and the 

only difference is the &ii kebniqua. It can ha argued that the line.ar model estimates are beat 
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in a statistical sense, but it should be emphasised that in using the linear model instead of the crude 

chain ladder technique, there are no radical changes. 

In general, a loglinear model applied to this data takes the form 

where 

Y=xp+e 

y is the vector of logged incremental claims, 

X is the design matrix, 

fl is the parameter vector and 

g is a vector of errors. 

Apart from the chain ladder linear model, other models which have been suggested as suitable for 

ciaims data include a gamma curve (suggested by Zehnwirth (1985)) 

and an exponential tail (suggested by Ajne (1989)) in which the first few delay years follow the 

chain ladder model and the later delay years follow an exponential curve. 

The statistical treatment facilitates the production of standard errors 88 well as point forecasts. This 

is a considerable advantage over the ad hoc methods, and allows ‘safe’ upper limits on ouktanding 

claims to be set. The statistical analysis is more comprehensive and allows a greater study of the 

models, their tit to the data and any unusual features in the data. Also, Bayesian methodology can 

be incorporated to allow the structured input of other information, and to extend the range of the 

analysis by including empirical Bayee and state space methods. Thii has beneficial consequences for 

the stability of the predictions. 

With reference to the computing aspects, Renshaw (1989) has shown how these models can be 

implemented in GLIM, and Christofidea (1990) has used the spread-sheet package SuperCafc.5. 
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