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Abstract: 
When losses are reporred excess of a fixed amount, the effect of inflation 

on the trended values is to eliminate information from fhe lower end of the data 
for the older years. Consequently, the corresponding low end of the recent 
years is not used in analyses. A simple maximum likelihood solution is 
proposed which uses all the data. The price paid is that the frequency and 
severiiy distribution analyses are then intertwined. 

Introduction: 
In pricing any insurance or reinsurance contract, it is always necessaty to 

restate past loss data to current or future conditions. In doing this, the four 
elements are changes in exposure, development on known claims, IBNR 
claims, and trending for inflation. This note considers only the latter. When all 
claims are known from ground up, inflation is frequently represented by 
applying a common index to all claims from a given accident year; or, rarely, by 
different indices for different sizes of loss. 

For certain contracts there is another complication induced by inflation. 
Loss data in reinsurance and excess pricing is frequently only reported when 
the loss amount is excess of some value, for example half of the attachment 
point. Inflation makes losses in the older years economically equivalent to 
larger losses in the more recent years. For example, with a reporting level of 
$50,000, a $40,000 1985 loss will not be reported, whereas the same physical 
loss in 1990 may cost $60,000 and will be reported. With a constant reporting 
value, the net effect is that the on-level data is truncated from below by an 
increasing amount as one goes backward from the most recent year. In order to 
regard each year’s data as a sample from the same population for statistical 
purposes, one must use economically equivalent data across the years. This 
implies that the lower values of more recent data are not used, thus losing 
information. 

The solution using all data is approached starting from the most intuitive case of 
Poisson frequency and multinomial severity. There, the explicit maximum 
likelihood equations are given and solved. Next, the negative binomial is 
considered. Although its maximum likelihood equations can be written down, 
numerical solution of the minimization of the negative log-likelihood seems the 
way to go. From there, a heuristic argument leads to the form of the negative 
log-likelihood for a continuous severity distribution and either frequency 

366 



distribution. A consequence of the form is that frequency and seventy cannot be 
determined independently. 

The simplest version: Poisson-multinomial 
The typical problem is to estimate for a prospective year the frequency h 

of events and the severity distribution, having exposure information and past 
losses reported excess of a fixed amount. The losses are brought to ultimate, 
including IBNR losses, and indexed to the year of interest. This is, or course, 
the actuarially problematical part. 

For simplicity’s sake, it is first assumed that a number of loss ranges 
(“bins”) are defined, e.g. $1001 to $2000, $2001 to $5000, etc. The data is the 
number of events in each bin, by year. The information desired is the overall 
frequency of loss and the probability of a loss falling into each bin. This brings 
up a situation such as is pictured below: 

I 
probabilities 

P5 
P4 
P3 
P2 
Pl 

year: I 
exposure: 

El 
Poisson parameter: 

h 

N5 
N4 
N3 
N2 

3 

The dollar bins run vertically upward and the years run horizontally to the 
right. The $k are the number of event counts in each bin, by year. The 
underlying probability for an event to be in bin “i” is pi and the total number of 
seen events in bin “i” is Ni. The exposure index relative to the year of interest 
for year “k” is &k. The process is taken to be Poisson, with parameters given by 
the product of the exposure index and the Poisson parameter of the year of 
interest. The problem is to estimate both lambda and the probabilities for each 
bin. 

The complicating feature is the missing data (indicated by X) in bins 1 
and 2 for year 1, and in bin 1 for year 2. Usually, in order to compare 
economically equivalent data it is necessary to disregard the lower two bins for 
all years. This has two unfortunate consequences: First, the lower end of the 
available data may be higher than we require for the problem at hand. 
Alternatively, in order to get data low enough, we may be limited in the number 
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of past years that we could otherwise use. Second, we ignore perfectly good 
data (as much as any reinsurance data is perfectly good) which could add 
information. A caveat is appropriate here - the IBNR and development is more 
uncertain in the recent years, and this may temper one’s desire to use the data. 
The other side of the coin is that the older years’ data may also be suspect 
because of changes in the business mix and possible inappropriateness of the 
inflation indices. 

Happily, there is a maximum likelihood solution to the problem of using 
all the data. In order to provide it, begin by considering only year 2 (and drop 
the corresponding subscript to save typography). Given pl to p5, the probability 
of observing n1 to n5 is the multinomial formula 

A (Pi)“1 5 5 
M(ni ,..,n5) = T(N+l) - 

i-1 r(ni+l) ’ = - 
N=ix,ni andispi=l 

The Poisson probability with parameter h of observing N events is 

ANe-h 
‘VW = r(N+l> 

The key remark is that if the total is Poisson distributed with parameter h, 
the probability of observing np,.., n5 with no information on n1 is the sum over 
the probabilities of observing no events in bin 1, one event, two events, etc.: 

prob = vFoM(v.n2 ,.., n5)P(v+n2+..+n& 

I? (Pi)“1 = 
E (p, )vh(v+n2+-+n5)e-h 

i=2 Uni+l)v=o 1-(v+l) 

=e 

The effect is that of a multinomial in the observed counts times a factor which 
accounts for the reduced probability available to them. 

For any year, a similar formula holds, which can be obtained by thinking 
of merging all the empty bins and using the preceding derivation. The 
probabilities have individual Poisson parameters skh, and the product of the 
probabilities is the overall likelihood. Ignoring terms which do not depend upon 
h or pi, the negative logarithm of the likelihood (NLL) is the sum of the NLLs for 
each year: 

NLL = &lh( 1 -PI -p2) - iS3ni1 ( In[pi]+ln[h] } 
= 



+EpX(l-Pf ) - i52ni2 I ln[Pil+fn[~l ) 
= 

+&3X - i4 “13 { In[pil+W 1 + %i$ Pi - f ) 
z :: 

A Lagrange multiplier term y has been added, to facilitate solution. To find the 
maximum likelihood, we set equal to zero the partial derivatives with respect to 
‘y, X, and all the pi : 

a!+ => 

a(NLL)=Q => 
apl 

5 
Eppi =l 

i=l 

y3- 

Pl 
= y - (E, +@. 

“22 + “23 
P2 

= y-&lx 

“31 + “32 + “33 
p3 

=Y 

“41 + “42 + “43 
P4 

=Y 

a(NLL)=* => 
aP5 

a(NLL)=O =, 
ax 

“51 + “52 + “53 
p5 

=Y 

h= 
itNi 

q (1 ‘Pl -P2)+&2(’ -P1)+&3 

Thus, we end up with a nonlinear system of seven equations in seven 
unknowns. 

Fortunately, the solution is both intuitive and easily generalized. The 
values ekh are the mean total number of events, including the unseen events, in 
year “k”. Remembering that Nf is the total seen events in bin “i”, the solution can 
be expressed as 

Nl 
PI =- 

E3h 
N2 

p2=(E2+E3)h 

N3 
p3 = (El +&2+&3)X 
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N4 
” = (El +&2+&3)X 

N5 
” = (El +&2+&3)h 

That is, the probability for each bin is the total number of events 
seen in it divided by the expected total number of events that could 
have contributed. 

The quantity y is the mean total number of events 
y = (El +&2+&3)X 

and finally, the frequency parameter k is 
Nl N2 N3+N4+N5 

it = YZj- + (E2+E3) + (El +&2+&3) 

The expected frequency is a sum over bins of the exposure-leveled 
number of seen events. 

These rules seem quite intuitive. The generalizations to more complicated bin 
and/or date structures are fairly self-evident, as the same rules will still hold. 
Variable reporting levels by year would be one way the structure could be more 
complex. 

Negative Binomial: 
If the distribution is taken to be negative binomial instead of Poisson, 

when we go back to the discussion of year “2” the lemma is still straight-forward. 
The negative binomial probability with parameters (a,~) of observing N events 
is 

NB(N,a,p) = 
pNr(N+n)( 1 - p)Q 

r(N+l)r(a) 

with w h I mean = 1 
variance 1 

- P 
and - = - mean 1 -P 

The probability of observing n2 ,..,n5 with no information on nl becomes 

prob = 
(1 - p)Y(n2+..+n5+a) 

A 
(PPi)“i 

(1 - PPl) n2+..+n5+y-(,y12 r(fli+l) 

This has a similar form to the Poisson case, but with a different modifying 
function. The Poisson form is recovered in the limit p -> 0 with h held constant. 

The NLL for the three years has the corresponding changes. It is 
assumed that p, which governs the ratio of variance to mean, is held fixed, so 
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that the exposure changes manifest (proportional to the mean values) through 
the ok = ako. 

Apart from irrelevant quantities, the NLL is 

NLL = q a In 
[ 
’ - P(Pl +f’2) 

1-P 1 + @31+..+n51 NW - p(p1 +pp)l 

@3j+..gn51-‘) 

-t a2ct ,.F”pp,i 

Ink1 a+vl - i\ ni, { fnIPJ+ln[Pl ] 

+ (n22+..+I~2)ln[l - ppl] 

(n22+..+n52-1) 
z 

v-0 W+~+vl - i\Q I HPil+ln[Pl 1 = 
(nt+..+mj2-1) 

c 
v=o W3a+vl 

Again, the extensions to more complicated date or bin structures follow the 
same form. The partial derivative equations here are far more complex than in 
the Poisson case. At this point it is easier just to work directly with the NLL and 
do the minimization numerically, rather than trying for analytic solutions (this is 
why the Lagrange term has been omitted). 

Continuous distributions: 
Often parameterfzation of the loss distribution - for example by a Pareto 

famify - is of interest. Heuristically, this may be thought of as the limit where the 
bins become very small. All the ni are zero or one (except for the case of 
identical losses), and the probabilities pi are not independent, but given by the 
underlying distribution. Let us denote the lowest observable loss value for the 
year “k” by Lk; the underlying cumulative distribution function by F(x); and the 
corresponding probability density function by f(x), where we have supprbssed 
the explicit parameter dependence in the seventy distribution. 

The parallel to the discussion of year “2” is that there are n events xl,..,xn 
observed above the value L and the overall frequency is Poisson distributed 
with parameter h. By a similar development to the earlier discussion, the 
probability of seeing these n events with no information below L is essentially 

prob = e-h(l-F(L))hnft f(q) 
i=l 

The overall likelihood is the product of these for each year, as before: 
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likelihood = 
k=l 

The corresponding NLL is, ignoring irrelevant terms, 

NLL = kf, { Ekh[ 1-F(Lk)] - nkln(h) - i: ln]f(xik)] 1 
= = 

Letting N be the total number of seen events, this achieves the conceptually 
simpler and perhaps more familiar form 

N 
NLL = k!,&kk[l-F(Lk)] - Nln(h) - i5 ln[f(xi)] 

= 

Equating to zero the partial derivative with respect to h gives 

a=, N 

kz,&k[ l-F&k)] 
Z 

This equation is completely parallel to that of the last partial derivative in the 
multinomial case. It gives h as a function of the data and the parameters of the 
distribution. The parallel solution for h would be 

Ml M2 M3 
a = (Ef +E2+&3) + (E2+E3) +q 

where Ml is the total number of events greater than L1, M2 is the total number 
of events greater than L2 and less than LI, and M3 is the total number of events 
greater than L3 and less than L2. Since there are many fewer degrees of 

freedom in this case than in the multinomial, this value of k is unlikely to be the 
actual solution. However, it should provide a good starting point for the 
minimization of the NLL. 

If we denote the parameters in the seventy function collectively by the vector p , 
the partial derivative equations have the form 

Once more, numerical minimization is probab\y easier than trying to so\ve these 
equations. 
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The negative binomial case has a completely parallel development, with 
the probability of observing n events with no information below L being 

prob = 
(1 - p)al-(n+a) 

A 
{l - p[l-F(L)]}n+ar(a) ‘” i=l 

f(q) 

The likelihood and NLL for the three years have the corresponding changes. 
Again letting N be the total number of seen values, 

NLL = -aln[l-p] ki,Ek 
N 

SC 
- NW4 - i5 Wfb$l 

= 

+ ktl {(nk+Eka)ln[l-P(l-F(Lk))I - 
(n -1) 

c v o In[%a+v] ) 
= 

Conclusion: 
The price we pay for being able to use more data is that the frequency 

and severity maximum likelihood calculations are now interdependent. This will 
induce correlations between the frequency and severity parameters, which will 
manifest in the variance-covariance matrix’ resulting from the numerical 
minimization. In doing any model which allows for the uncertainty of the 
parameters, these correlations must be taken into account aw well as the 
parameter variance. 

We lose, except in the simplest case, the possibility of finding analytic solutions. 
Fortunately, we usually want numbers anyway, and the explicit construction for 
the NLL allows (relatively) straightfotward computation. 

Addendum: 
Since we have the NLL, we can also put in the possibility of trend by 

making h or a an explicit function of time, in an obvious extension. Then for a 
given severity distribution family, there will be at least four possible frequency 
distributions: trended and untrended Poisson and negative binomial. The 
decision between them can be made on the basis of the smallest NLL, with 
appropriate allowance for the different numbers of parameters. One way of 
doing this is to use the Akaikez criterion: add to the minimized NLLs the number 
of parameters in the fit, and choose the lowest value. 

‘The derivation of the variance-covariance matrix from the mixed partial 
derivatives of the NLL is given in, for example, Loss Distributions by Hogg and 
Klugman, John Wiley and Sons (1984) page 81 and following. 
2See the discussion in any good econometrics book, or go to Akaike, H. (1973). 
“Information Theory and the Extension of the Maximum Likelihood Principle,” 
in B.N. Petrov and F. Csaki, eds., 2nd International “Symposium on Information 
Theory, Akailseoniai-Kuido, Budapest, pp. 267-281 and the subsequent work, 
especially Akaike. H (1978). “On the Liieliiood of a Tie Series Model,” Paper 
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Appendix - a formal derivation 

Although a heuristic derivation of the continuous case was given earlier, the 
following is a formal derivation due to Ed Weissner which holds for either case. 

Let A = a random sample was observed 
B = of size N 
C = with precisely M observations 2 L 
D = and the observations (no particular order) are x1, . . ,xM 

The likelihood function is given by 

Now, 

L(X) = P[ACD] = N$P[ABCD] (law of total probabilities) 
I 

= N;MP[AB] P[C)AB] P[DlABC] 

AB obeys a Poisson law 

C]AB obeys a Binomial Law with n = N, # of successes = M, and 
probability of success p defined by 

p = 1 - F(L) for continuous 

= E pj 
i 2 i(L) 

for discrete 

DjCAB obeys a likelihood function that accounts for “no particular 
order” and draws each observation from the truncated distribution 

for continuous 

Pi 

i 27(L) pi 

for discrete 

Applying these to the likelihood above, it follows that for the continuous case 

presented at the Institute of Statisticians 1978 Conference on Time Series 
Analysis, Cambridge University, Cambridge, England, July 1978. 
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L(k) = NEM[q [ 
E j&j$‘-VP (F(MN-M][M! &] 

and in the discrete case 

L(h) = N;M [ .<... ] [ . . . . ] [* $&] 
I 

where the products n are i 2 2 for bin 1 missing, etc. Note that the 
i ;? i(L) 

combination of the binomial and “truncated multinomial” give the multinomial 
used in the text. 
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