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Casualty Rate Prediction for Oil Tankers 
Douglas McKenzie 

A model of oil tanker casualties is presented which permits an e.upected casualty 
ratefor each tanker to be calculated based on its age and casualty history. These 
expected rates are shown co be good predictors of both the actual cosuoly 
expertence and the probability of total loss. The model is based on thefindings 
that 1) the casualty behavior of an individual tankerfollows a Poisson distrtbution 
and 2) the Poisson parameters for all tankers of a specific age follow an 
exponential disttibzltion. As n result. Bayes’ theorem can be used to calculateeach 
tanker’s expected casualty rate given its age and casualty history. 

Ocean Marine Insurance 

A brief summary of ocean marine premium-setting practices is given to provide 
context for the risk model presented.’ 

A five-year average of claims is used as an estimate of the financial risk 
associated with small partial losses (eg. less than S100.000) of a particular 
owner’s fleet of ships. A fleet of five ships with five years of claims history is 
often considered to be self-rating for this component of the hull 81 machinery 
insurance. 

Premiums also have to be established for large partial losses and total losses. 
These events are much less frequent, so. for most owners. having just a few 
ships. the rates are established using industry-wide statistics. These general 
rates are then multiplied by factors which reflect higher or lower relative risk of 
a particular fleet as compared to the larger fleet from which the statistics were 
taken. These factors. called ‘relativities’. are developed for age, size. trade (ie. 
routes traveled). flag (ie. nationality of registered owner) and anything else that 
the underwriter believes might affect the risk of loss. 

Hull & machinery insurance is generally carried by commercial insurers so the 
attempt to define a specific fleet’s (ie. owner’s) level of risk is expected The 
underwriting cycles in ocean marine insurance. however. are pronounced hence 
the actual premiums that are charged may not always directly reflect that 
risk.’ After several years of disappointing underwriting results, though. the 
early ’90s have seen rates. deductibles and exclusions all increase 
dramatically. In addition to the overall rise in premiums, underwriters are 
making unprecedented efforts to identify ‘substandard’ vessels that require 
special attention even to the point of contracting ship inspections. 

The liability side of ocean marine insurance. called P&Z insurance for 
protection and indemnity. is largely handled by mutualized shipowner groups 
known as the ‘PM clubs. ‘Advance calls’ are prepaid by the shipowners early 
in the year and ‘supplementary calls’ are made tf the aggregate of advance calls 
do not cover all the claims that year. Unlimited coverage is provided except for 
oil pollution with a $500 million limit with another layer of S200 million of 
protection available commercially. 

It is. perhaps, somewhat less clear than with hull fnsurers how the P&I clubs 
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allocate the total calls required to the specific fleets at risk since the statisttcs 
available are even more limited. Access to supplementary calls may make the 
question less compelling than with hull insurance in the commercial arena. 
Underwriters for the commercial layer of oil pollution coverage, though, are 
trying to improve selectivity. Just this year, for example, London underwriters 
agreed on a schedule of rates depending on age and hull design features as 
indicators of risk. 

It is also pertinent to note that at this time, and for the foreseeable future, 
freight rates are generally depressed and cannot support the aging fleet’s 
replacement needs. Many in the industry feel that insurers could help this 
situation by pricing insurance for the substandard ships high enough to drive 
them into the scrap yards. 

It appears, from the description above. that tmproved estimates of risk could be 
of use to the industry at this time. This paper presents a new model of tanker 
risk which combines the two types of risk estimates currently being used into a 
single. consistent framework based on ‘reported casualties’. The two lypes of 
esrlmatcs that are combined are: 

Five-year averaging of claims within a fleet for the more frequent, small 
losses and 

Statisttcally dertved rates for the rare, large losses calculated by looking 
across all the fleets. 

The model presented represents a first attempt at this consolidation and much 
work remains to be done. 

Contents of the Paper 

* ‘Reported casualties’ are introduced as a surrogate for actual claims. 
* The statistics of these reported casualties are then described. 
* The method used to calculate an expected casualty rate for each ship, using 

the statistics, is described. 
l Modifications to the basic model are briefly discussed. 
* Comparison of the calculated casualty rates with actual casualty experience 

is made for 1991 and 1992. 
* The expected casualty rates are used to predict the probability of total loss. 
l Areas in which further research is needed are discussed. 

Reported Casualties 

Combining the two types of rtsk estimates requires a new variable to overcome 
the general unavailability of claims information. Even marine underwriters 
may not have reltable five-year claims information if the fleet being considered 
is new to them. 

Lloyd’s List, a daily newspaper published by Lloyd’s of London Press, provides a 
suitable variable. The List reports casualties tncurred by all types of ships all 
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around the world. These casualties. reported by the network of Lloyd’s agents 
following ship activities all around the world, are used as a surrogate for 
claims. 

The New York-based Tanker Advisory Center has compiled a unique database 
which includes every oil tanker casualty reported in Lloyd’s List since 1964. 
The Center has kindly made this database available to Pyramid Systems to 
make the analysis reported here possible. 

This analysis focuses on 2.500 privately-owned oil tankers which incur 
between 350 and 450 casualties each year that are reported in the List. These 
casualties range in severity from plugged fuel lines to total loss. They do not 
usually have financial impact associated with them. The overall frequency of 
these casualties (1 per ship every 5-7 years) is seen to lie between the more 
frequent small insurance claims and the less frequent large claims. 

There are a few points to make about these casualties before describing their 
statistical behavior: 

l Virtually all ‘serious’ incidents undoubtedly appear as reported casualties. 
This common sense expectation is supported by the experience of 
government-owned vessels. These ships have substantially fewer reported 
casualties than privately-owned vessels. however. they have essentially the 
same number of serious casualties. This is probably due to mechanisms 
which can render the small casualties incurred by government ships invisible 
to the Lloyd’s network but not the serious ones. 

l The Lloyd’s reporting network provides a reasonably uniform mechanism that 
does not introduce any obukms biases. There are certainly other networks 
that are more comprehensive in specific areas but they would introduce 
considerable bias because of uneven interest in some ships over others - eg. 
ships that visit American ports or ships insured by Lloyd’s or ships of a 
certain flag etc. 

l There is a wtde variety of types and severities of incidents reported by Lloyd’s 
This analysis only considers the fact of the incident. not the type or severity. 

The Statistics of Reported Casualties 

The purpose of the model is to quanfffy the propensity to have casualties for each 
of the 2,500 tankers of interest. This can then be used to estimate other 
things as well, for example, the probability that the ship will become a total 
loss during the following 12 months. 

The method presented is based on the fact that the occurrences of casualties 
are described very well by conventional probability distributions. The 
discussion of these distributions is broken up into two parts: First. the 
number of casualties that occur during any one calender year and second. the 
number of casualties that have occurred since a tanker first enters service. 
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Annual Casualty Experience 
The first component of the basic model is the use of the Pofsson disb-lbutton to 
describe the number of casualties that a tanker has in one year. The single 
parameter of the distribution. A. is the average number of casualties in a year, 
This parameter provides the quantification of the propensity to have casualties 
that we are trying to establish for each tanker. The fleet average is about 0.17 
casualties per tanker per year. 

An estimate of i, could be made from the tanker’s own average annual rate over, 
for example. the last five years or even over its entire lifetime. This paper 
describes a different method for estimating i. which takes into account the 
statistical behavior of the entire fleet. 

The second component of the basic model is the use of the e.xponential 
distribution to characterize the variation of the E.‘s for tankers of a particular age. 
That is. 

pdfo. / a+?e=;r) = e (“!>.a 

where I.., is the average number of casualties for all ships of age ‘a’. 

The expected value for the probability of ‘n’ casualties occurring for all of these 
vessels (as opposed to just one specific vessel) is calculated from: 

= (An)” / (1iAa)““” 

showing that the frequency of casualties for ships of the same age are expected 
to follow a geometric distribution. This formulation can be described as a 
Bayesian model with a Poisson process. a prior distribution of a degenerate 
Gamma function (ie. exponential) and a posterior distribution of a degenerate 
negative binomial Me. geometric). General derivations are presented by 
Dropkin.” 

[ Thfs space keeps Figure I & its text together on the next page ! 
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Figure 1 shows the actual frequencies of casualties for three different ages. 
The theoretical results are shown for both the geometric and Poisson 
distributions with the same i.. The geometric distribution is superior to the 
Poisson at all three ages. In fact. the geometric distribution matches the 
actual data well at all ages considered. ie. from 0 to 34. 

IFigure 1 - Annual Casualtv Fresuencies - Actual Cornoared to Theorv 

5 -2 0.2 

‘Toial 5111ps 383 z-7 917 

i. / = 0.094 1.10 = 0.146 ;.I: = 0.227 

The ships used at each age to calculate the ia’s were drawn from all relevant 
ships at risk over the most recent 5 years. For example. consider the 383 ships 
that are used to establish 1.1 = 0.094. 89 of these ships were 1 year old (ie. 1 
year old at their last ‘birthday’) on 1 f 1 I92 and they incurred 8 casualties 
during 1992. Similarly. 77 of the ships were 1 on l/ l/91 and incurred 8 
casualties during 199 1. 76 ships were at risk during 1990 and had 3 casualties 
while 74 ships, during 1989. had 6. The oldest group of ships used were 67 
vessels that were 1 on 1 / 1 / 88 and incurred 11 casualties during 1988. 

When all 35 ages (0 to 34) are considered the L’S are seen to follow a 
reasonably smooth progression shown in Figure 2. The solid dots are’ the 
actual L’S calculated from the raw data. The light lines are the limits of the 
95% confidence intervals around the actual 1.;~. ie. we are 95% confident that 
the ‘real’ i.a’s lie within the band of the light lines. The solid line is just a 
fitted curve with which age-specfic casualty rates can be conveniently 
calculated. The contldence 
intervals are determined 
from the variance of the o 30~ 

Figure 2 - ha as a Function of Age 

casualty ratio which. tbr 
the geometric distribution. ‘Is 
is given by ‘ha*( l+ha)/ # ships. ‘1 z. 

At this time, there is no 015 
completely satisfactory ‘i ,. 
explanation for the drop in 
casualty rate after I7 years. ~1.05 
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Lifetime Casualty Experience 
Since the annual number of casualties, ma, of tanker ‘t’ at age ‘a’, follows a 
Poisson distrtbution, with parameter bla. then the number of casuaities 
accumulated by a single tanker after ‘a’ years. Nta, must also follow a Poisson 
distriburlon, with parameter eta given by: 

ha = rk h, k=Otoa-I 

Capitals indicate @zf&ne, or cumulative, (as opposed to cuurunl) variables or 
parameters. 

That the lifetime experience follows a Poisson distribution is demonstrated 
through iterative convolutions of the annual experience. In general, 

PR(N ~~IS=ZI) = 2, PR(~-njyrs=a-~) * pr(nIse=a-I). II = OWN 

where ‘PR’ indicates the probability for the lifetime number of casualties and 
‘pr’. the probability for the annual number.’ At the end of the second year. for 
example, this becomes 

PR(N)YIs=~) = 2” PR(N-III~ws=I) L: prh)age=l), n=OtoN 

= x:, PtfN-n)age=O) * pfln(aye=l), n=OtoN 

= c” e-in, j&N~nj/(N-n)! * +I &in/n!, n = 0 to N 

= .+@*).tll (k,o+hr,)N/N! 

ie. a Poisson distribution with parameter AU = irf~ + hIl. Repeated convolutions 
yield Poisson parameters, AU, given by: 

hta = At la-ll + kt ,a-il. where AO = 0 
= zk htk. k=Otoa-1 

Because the i.ta’s vary with age it is not clear how the AU’S ought to vary across 
the fleet for any given age. This is because the distribution of the sum of 
independent variables, such as the L’S. even with simple distributions, like 
the exponential, are usually difficult. It turns out, in this case though. that 
the hta’s, like the hta(s, are also distributed exponentially. This is implied from 
the fact that the frequency of @time casualties, like the frequency of annual 
casualties, nearly follows a geometric distribution. That the AU’S are 
distrtbuted exponentially is crucial to the basic model and discussed hrrrher in 
the section “Calculating the Expected Casualty Rate”. 
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Figure 3 shows the actual lifetime frequencies of casualties for three different 
ages. The theoretical results are shown for both the geometric and Poisson 
distributions with the same A. The geometric distribution matches the actual 
data reasonably well at all three ages, while the Poisson grossly deviates at the 
larger values of A for 10 and 15 year old tankers. The geometric distribution 
matches the actual data reasonably well at all ages considered, le. from 0 to 
34. 

Figure 3 - Lifetime Casualty Frequencies - Actual Compared to Theory 
Table entrles are rhe number of ships fhat inrurred the # of casualties shown in the lefi 
hand column. For each we the actual s of shius is shown IAcr.1. the # Dredicted bv the 
geomerric dlsfribunon IG&.r arld the R that w&d have been predicted had we useh the 
Poisson distriburion (Poi.). 

P of I Year Old ShiDs 10 Year Old ShiDs I5 Year Old Ships 
CasualtIes Act. Gee. Rx. Act. Cm. POi. Act. GW. POi. 

0 335 331.1 326.4 184 182.9 96.5 238 260.7 82.4 
1 39 44.8 52.2 114 112.2 153.3 238 189.9 198.5 
2 7 6.1 4.2 63 68.8 121.3 137 134.3 239.2 
3 1 0.8 0.2 48 42.2 64.6 104 95.0 192.1 
4 1 0.1 24 25.9 25.7 67 67.1 115.8 
5 12 15.9 8.2 35 47.5 55.8 
6 8 9.7 2.2 17 33.6 22.4 
7 10 6.0 0.5 15 23.7 7.7 
8 4 3.7 0.1 15 16.8 2.3 

29 --!I 5.7 51 40.4 0.8 
Total Shtps 383 473 917 

~1=0.16 AIrI= 1.59 ,ZIS-2.41 

There is a slight systematic difference between the actual frequencies and 
those given by the geometric distribution for tankers that have been in service 
longer than 10 years. The number of ships wtth no casualties is overstated 
while the number of ships with one casualty is understated. This effect, seen 
in Figure 3 for the 15 year old ships. is discussed later in the section 
“Modifications to the Basic Model”. 

When all 35 ages (0 to 34) are considered the ha’.3 are seen to follow a 
reasonably smooth progression shown in Figure 4. The solid dots are the 
actual A*‘S calculated from the raw data. 
95% confidence intervals 

The light lines are the limits of the 

around the actual A~‘.s, ie. 
we are 95% confident that 
the ‘real’ A.‘S lie within the 
band of the light lines. The 
solid line is just a fitted 
curve with which age- 
specfic lifetime casualty 
rates can be conveniently 
calculated. The confidence 
intervals are determined 
from the variance of the 
lifetime casualty rat10 given 

n. Figure 4 - IL as a Function of Age 
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by A,*( l+~)/ # ships. The drop in casualty rate between 22 and 29 years is not 
satisfactorily explained at this time. 

Calculating the Expected Casualty Rate 

The calculation of Ala. the casualty rate for tanker I’ at age ‘a’, is based on the 
assumption that ‘htsl& = .AM/A~. 

This assumption follows from an effort to understand why the ~t~‘s are 
exponential. An explanation could be that the hta’s are not really independent 
at all because )~ii~ remains more or less constant over a tanker’s lifetime. 
This condition eliminates the complexities of convolutions and assures that 
the lifetime casualty rates will be exponential. It also implies that AUJA~ will 
be constant and have the same value. hence hta/ha = ntJAaas specified, 

Special importance is asstgned to this ratio because of its perslstence. It will be 
referred to as the ‘casualty relativity’, W. of the shfp because It spectjies an 
indluidual shfp’s risk relatlue to the rest oftheJleet. 

The calculations proceed in three steps: Bayes’ theorem is first used to 
calculate an expected value for its given Nts as described below. Then, Rt is 
calculated from Rt = hta/Aa. Finally, the expected value of hta is calculated 
from bra = Rt * )a. 

The development of EIlzr.) begins with 

where pdfIh 1 aa~~=a. its) is obtained from Bayes’ theorem as follows 

Hence, Ell\r, 1 Nta) I1 +Nta) t (~,P’Jm+ll / (1 +A.$N~+Q~ 

(~a)~= ,’ (1 +~a)++‘) 

(l+Nra) * ~a, 

(l+Aa) 

which yields Rt = ( I+NwJ / (i+n,). hta is then calculated as Rt * ~a. 
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Modifications to the Basic Model 

There are two modifications that are made to the basic model as described 
above. 

The first relates to the systematic error in Zgeffme casualties for ships that have 
been in service more than 10 years. The basic model overstates the number of 
these ships which have not incurred any casualties and correspondingly 
understates the number that have incurred only one. Other frequencies are 
predicted accurately. 

A change in the assumed distribution of A’s from the exponential to the more 
general translated Gamma function eliminates this systematic error. The 
effect of this change on the calculation of R was studied for all ages between 9 
and 23 for N = 0.1.2 and 3. It was found that for N = 0 the basic model 
predicted a smooth drop in R from 0.42 at 9 years old down to 0.22 at 23 years 
whereas the more accurate model yielded a constant R of 0.42 between 9 and 
23 years of service. Similarly for N = 1 the more accurate model predicts a 
more or less constant R of 0.50 for ships older than 13 years. For N = 2 and 3 
there was no significant difference between the basic model and the more 
accurate model. 

The basic model has been modified by replacing the R value calculated by the 
exponential model by the constant value found above. This method of making 
the modfflcation was chosen for two reason: First, the calculations with the 
translated Gamma function are much more complex and time consuming than 
those with the exponential hence avoiding them with no loss in accuracy is 
convenient. Second, the roughly 800 ships that are affected by this are at 
below-average risk whereas the value of the model is in its ability to accurately 
quantify the risk of those ships that are at above-average risk. 

The second modification results from the basic model’s tendency to exaggerate 
the deviation of a tanker’s casualty ratefrom the avemge mte. For example. 
tankers that the model identifies as being at high risk. do have many 
casualties. but not quite as many as predicted. Similarly, tankers identified as 
being at low risk, do have very few casualties, but slightly more than predicted. 

At this time there is no satisfactory explanation for this ‘regression towards 
the average’ but, nonetheless. a satisfactory, heuristic correction is made with: 

R correcred = R o'74 

For all practical purposes the range of corrected R-values is 112 to 3. 
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Comparison of Expected Casualty Rates with Actual Rates 

casualties in 1991 
On l/1/91 there were 2,420 privately-owned tankers. The basic model was 
applied using the same kind of casualty information presented earlier but only 
using data before 12/31/90. Values for h were calculated for all of the ships. 
Adding up all the h’s yielded a 
total prediction of 436.6 Figure 5 - 1991 Casualties, Pred. & Act. 
casualties for an average rate ysk casurlity -- if of Casualties -- 

of 0.180 (436.6/24201. The fleet 9 Rare “an” #sllips ihdicred &pal& 

was then broken up into the 6 ,,. ,,,&“,:~~: ‘izi :~~:~‘:~:~ 101 -0.37 

risk groups shown in Figure 5. , .I 
* 124 -1.20 

-I 
o.2zs-o,3, 5 

299 i9.9 AID.1 94 +1.40 

The lowest risk group includes ::z 
ships with I’S less than 75% of 3,0 

~:$$~-~,“~ 128 45.1 Lt 7.8 39 -0.78 

the average rate. These 1043 
ships (43%) collectively had an 
actual casualty rate of 0.097 

>72 32.0 5 6.8 40 +1.18 
58 35.2 I i.5 27 .1.09 

2420 436.6 iz?.~ 425 

!101:1043) while the predicted rate was 0.101 1105.0/1043). Since this rate is 
about half the lleet average of 0.180, the group is labeled ‘0.5’. 

The average risk group, labeled ‘1 .o’, consists of all ships with >. between 75% 
and 125% of the average rate. With 820ships. this group is 34% of the fleet. 
Collectively they experienced a casualty rate of 0.151 (124/82Ol while the 
predicted rate was 0.170 (/39.4/8201. 

The remaining 557 (23%) of the ships are spread between the four high risk 
groups which run from 1.5 up to 3 times the average rate. These ships, all 
taken together, had a casualty rate of 0.359 (84+39+40+27/557), twice the average 
rate, while the predicted rate was 0.345 (79.9+45.1+32.Os35.2/5571. 

The predictions seem to match the actual results well but verifying this 
requires that the difference between the actual and predicted number of 
casualties be looked at carefully. These differences are expected to be the 
result of the Poisson processes themselves and not ‘error’. In this sense, these 
differences are part of the prediction - they must occur, otherwise the model 
cannot be correct. The issue, then, is determining whether the actual 
differences are consistent with the statistics of the model. To do this, the z- 
values given by z = (A-PI/n are considered - ‘A’ and ‘P’ are the predicted and 
actual number of casualties and CT is the expected standard deviation. Taken 
all together, the z-values should behave like a random sample from the unit 
normal distribution. N(O.1). 

The mean of the z’s is 0.14 (p>.8) with U= 1.15 (~2.3). These values are 
comfortably consistent with N(0.1). Further. there is no evidence of skewness 
Icoef. of skew= -0.521 and only slight evidence of negative kurtosis (coef. of 
kur= -1.50). There were no tables available to calculate p values for skew and 
kurtosis since n = 6 is so small. An alternate measure, a 3 df ChiP test 
constructed to maximize the effect of any kurtosis. yielded pzO.29. 
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Casualties in 1992 
On l/ l/92 there were 2.507 privately-owned tankers. The basic model was 
again applied using, in addition. the casualties incurred during 1991. New 
values for ). were calculated for all of the ships. Adding up all the h’s yielded a 
total prediction of 448.8 casualties for an average rate of 0.179 (446.8/25071. 
Figure 6 shows the fleet broken up into the same 6 relatfw risk groups. 

The first thing to note for 1992 is that the actual number of renorted 
casualties, 34:: is only 76% of 
the total predicted. This is 4.7 
<I‘S below the prediction 
lp’o.o002%). This large 
difference is unlikely to be part 
of normal variation. Possibly 
this reduction is due to the 
increased deductibles and 
exclusions mentioned In the 
introduction. resulting in more 

Figure 6 - 1992 Casualties, Pred. &Act. 
RlSk Caslmlty -. tt of camames -- 
Croup Rate Hanee bShips Predicted u 

0.5 -0.134 1115 111.9r11.1 95 
1 .o 0.134-0.221 812 135.8 112.6 98 
1.5 0.224-0.313 313 83.1 f10.z 67 
2.0 0.313-0.403 137 48.4 + 8.1 32 
2.5 0.403-0.492 59 25.8 * 6.1 21 
3.0 0.492- 71 43.8 + a.4 28 

-- - 
casualties going unreported. 2507 a-48.8 223.0 341 

If all of the L’S are scaled down Figure 7 - 1992 Casualties, Pred. &Act. 
to 76% of their calculated Revised Predictions 
value we will still be able to ask c‘asllalt~ -- il Of Casllaltles --. 
assess the model’s ability to C;rouR Rate Ram% d?jtlip_s Revised Prrd. Acrual 1 

quantitatively discriminate 0.5 -0.102 1115 85.0 t 9.6 95 +l.OJ 
between the different ask 1.0 t>.lo2-0.170 812 103.2 +10.8 98 -0.48 

levels. Figure 7 shows that 1.5 0.17~~~3s 313 63.1 + 8.i 67 +0.45 

the scaled-down predictions 2.0 0~~~306 137 36.8 i 6.8 32 -0.71 

agree well with the actuals. 2.5 0.306-0.374 59 19.6 * 5.1 21 +0.27 
3.0 0.374- 71 33.3 i 7.0 28 -0.76 

The z-values have a mean of - -- 

0.03 and ~7 = 0.73. again, 
2507 341.0 341 

comfortably consistent with the expected N(O.l). The skewness of 0.33 
continues to be insignificant and the kurtosis is - 1.26. The two year 
persistence of negative kurtosis is noted with no explanation. 

Predicting the Risk of Total Loss 

There is a direct relatfon between the probabiltty oJ a ship becoming a total loss 
and its predicted casualty rate. This is established by analyzing all 202 total 
losses, both actual and constructive, that have occurred to privately-owned 
tankers since 1976. The basic model was applied to each of these ships based 
on their age and casualty record on I/ 1 of the year they were lost. Account 
was made. in these calculations. for the fact that more casualties were 
reported in the ’60s and early ’70s than are reported now. 
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The TLs were then grouped into the same 6 risk groups used before. Pigun 8 
shows an estimate of how many ship-years at risk there have been, in each 
risk group, during the 17 years since 1976. These estimates were made by: 
First, assuming 2,500 ships were at risk each year. Second. assuming the 
percentage of ships in each risk group has been relatively constant and can be 
estimated by averaging the percentages in the ‘91, ‘92 and ‘93 fleets. The ratio 
of TLs to number of ships at risk is then given along with its TV. The n shown 
reflects no model error, only variation 
implied by the statistics of the Poisson NgUrr: 8 - 202 ‘I&i firom ‘76 to ‘92 
distribution. Actual and Fitted 

fUsk 

The three high rfsk groups are pooled Grout WU?.% *I!& a Fit 

in the last hne of Ngure 8. The shtpa 0.5 1~00 24 0.13% f0.03 0.13% 
in this pool, with risk = 2.4 (le. 1.0 14,100 74 0.52% kO.06 0.48% 

casualty rate is 2.4 times the average), l.5 5,300 37 0.70% +_a.11 0.82% 

are 3x more likely to be reported as total 2.3 2,300 40 1.74% kO.27 1.17% 

losses than average and J Ox more I&e@ 2.5 1,100 18 1.64%50.39 1.51% 

to be reported os total losses than the 3.0 1,100 ‘3 0.82% f0.27 1.86% 

Low rtsk shtps. -- 
42,500 202 0.48% to.03 0.48% 

There is no formal prediction of total IMOM High mk Gmu~ 
loss rates to compare with the actual 2.4 4,500 67 1.4996f0.18 1.44% 

values, however. it Is seen that, 
generally. as the risk goes up, the rate of TLs goes up. A straight line of total 
loss rate vs risk fits well to the three lowest risk groups and the pooled high 
risk group. The hne is given by 0.69&&k-0.31) and can be used as a ‘predictor’ 
for the total loss probabihty of a ship where r&.k = ?.t/havcragc. 

In actual practice, the total loss probabilities for ati ships are scaled, after 
being calculated, so that 7 total losses are predlcted for the coming year stnce 
this has been the consistent fleet experience since 1985. 

Summary and Areas of Further Research 

The statistics of oil tanker casualties reported in Lloyd’s List are found to 
follow Poisson’s distribution for individual tankers whtle the Poisson 
parameters for ah tankers of the same age are found to follow exponential 
distributions. Bayes’ theorem permits the calculation of the casualty 
relativity, R, for each ship given its age and lifetime number of casualties. An 
estimate of a ship’s casualty rate is made by multiplying the average casualty 
rate for tankers of the same age by R. 

The predicted casualty rates permit the tankers to be separated into six risk 
groups in order to check their accuracy. The predicted number of c;isualties for 
each group was found to be consistent with the number actuahy incurred 

The usefulness of the predicted casualty rate was demonstrated by showtng 
that the probability of total loss correlates with the predicted rate. 
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Oil spills and other serious casualties are currently being examined as their 
frequency varies with A and also with age and R separately. 

There are three other areas which need additional attention: 

The uncertainty in A 
Experience-based ratings can suffer from the infrequency of the events. The 
principal effect that this has on the h’s is a relatively large variation for a given 
N. (U for A is (l+N)1/2/(l+n) as compared to the expectedvalue of (l+N)/(l+~).) 
One purpose of Dropkin’s paper, in fact, was to point out this problem in the 
arena of auto insurance for individuals. For oil tanker casualties, it could be 
useful to address this problem by using additional information to select a 
value for i, slightly different from its expected value. For example. a tanker 
with an owner who has few casualties, could be assigned a ), somewhat less 
than the expected value, while a tanker with an owner who has many 
casualties could be assigned a h somewhat greater than the expected value. 

R may change with time 
The basic model assumes that the casualty relativity. R. is constant 
throughout a tanker’s lifetime. There are some circumstances. though, where 
this may not be reasonable. for example, after a tanker is sold to a new owner. 
It would be desirable to identify. as quickly as possible, when recent casualty 
experience may indicate a change from the historical experience. 

utilizing claims infomlation 
Establishing a relationship between actual claims and h could increase the 
utility of the model. 
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