
CONSISTENCY OF 
RISK LOADED PREMIUMS 

John M. Cozzolino 

229 



Consistency of Risk Loaded Premiums 

BY John M. Cozzolino, Ph.D. 

Director 

Underwriting Education Institute 

The Lubin Schools 

Pace University 

ABSTRKT 

The meaning of consistency of increased limit factors (ILF) is 

reconsidered and a new test of the consistency condition is 

proposed. It is shown that the three major measures of risk 

satisfy the new consistency test with no restrictions. The 

problems of specifying consistent risk-loaded rates for high limits 

are discussed and a revised subtraction formula is given for the 

case where risk is measured by the certainty equivalent of an 

exponential utility function. Risk “profile” curves are suggested 

as a method to emphasize the objective aspects of risk load. A new 

practical meaning is suggested for the old consistency condition. 
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INTRODUCTION 

The paper begins with the statement of two different types of 

consistency which are discussed in the literatures of utility 

theory and the literature of layer pricing, as discussed in [21 by 

Miccolis. The meaning of the consistency test is reconsidered and 

a new test is proposed . The new consistency test is shown not to 

impose any limitations upon either utility, variance or standard 

deviation as measures of risk. It is suggested that the error in 

the old consistency test is caused by the assumption that the rate 

for a excess layer can be found by subtraction of the corresponding 

two rates for ground-up covers. This subtraction rule is a problem 

for risk-loaded rates but not for expected value rates. Miccolis 

showed the rate reduction due to layer splitting. It is shown 

similarly here for exponential utility. 

The next part of the paper provides a new formula for the premium 

of an excess layer when the measure of risk employed is Risk 

Ad justed Cost. The paper suggests that the old test for 

consistency is useful for detecting cases where the layer being 

tested ought to be split so that a lower pricing can be achieved. 

Finally, the paper provides a formal proof in appendix I of the new 

formula. It gives a separate discussion of the application of the 

exponential utility functions in appendix II. The last part, 

appendix III. is a lengthy illustration of the us8 of the 
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exponential utility functions and a comparison with the variance 

measure of risk shown by Miccolis. 

Having provided a complete road map for the parts of the paper, I 

now add one point which helps complete the connection. The 

research began with the goal of applying utility to the task of 

calculating risk loads. Consistency was realized to be a 

roadblock. Therefore the formal content of the paper begins with 

consistency. 

THE CONCEPT OF RISK LOAD 

The uncertainty in the cost of insurance is its distinctive 

feature. Furthermore, different insurance products have different 

degrees of cost uncertainty, and therefore different degrees of 

risk to the insurer _ In particular, policies with different upper 

limits of insurance coverage have very different degrees of risk in 

spite of their similarity in the type of risk. One idea of a risk 

load can be expressed as that amount which when added to the pure 

premium of each policy makes a risk averse insur ante company 

indifferent between the alternatives which the buyer might select. 

Another, perhaps more fundamental purpose for the risk load is to 

create an “adequate” rate which holds the chance of insolvency down 

to an acceptable level . If the business of insurance had to exist 

on only expected value rates, the nature of the business would be 

much like gambling, where the outcomes are prone to runs of both 

good and bad luck _ Management skills would matter little compared 
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to the role of luck. A risk-load improves the chance of solvency 

by giving a positive expected growth rate to the surplus, which is 

the cushion against insolvency. 

CONSISTENCY 

There are two kinds of consistency, whose discussion would 

logically fit within this topic; the consistency of Increased 

Limits Factors ( ILF’s) and the consistency of choice under 

uncertainty are both relevant. The first is defined in the paper 

by Miccolis [2] . The second is in the literature of Utility 

Theory. 

Consistency of risk loads amens lines 

Some would say that the risk load for automobile liability ought to 

be less than the risk-load for products liability. Such 

comparisons are based upon intuition about which things are more 

risky than others. Utility theory, a structure based upon axioms 

of consistency, is designed to give consistency of rankings by 

risk. Variance, as a measure of risk, may not give this kind of 

consistency and standard deviation also could fail in some 

situations. Among these later two risk load choices, variance is 

more likely to give this kind of consistency because it has a 

closer relationship to a utility function than does standard 

deviation. Pratt [3] shows that variance is the first order 

approximation to certainty equivalent when variance is small. 
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Consistency of increased limits factors 

Risk loads, as discussed by Miccolis in his 1977 PCAS paper CZI , 

and by Sheldon Rosenberg in his review of that paper, is the 

subject of our interest here. All risk load methods, including 

utility, variance , and standard deviation, can be inconsistent, but 

it happens less often for standard deviation. Standard deviation 

increases less rapidly as a function of loss size than does the 

variance which is the expectation of loss size squared. Therefore 

one would expect this statement is true also for policy limit which 

is the top loss size in the expectation integral. One purpose of 

this paper is to question wherein it is wrong for a rating bureau 

to publish rates which are inconsistent. What was the original 

motivation for the concern with consistency and what role does it 

play today? An example from the Rosenberg discussion of the 

Miccolis paper is presented next. All policies in this example 

have a $250,000 aggregate limit. 

The table giving “Increased Limits Factors’ for various per 

occurrence limits follows: 

TABLE 1 
__--__---_---_---_--------.~~ 

;P.O. LIMIT* ILF , , 
----------------------------: 

925,000 2.00 : 
s50.000 2.25 : 

SlOO ,000 2.80 i 
$250,000 3.20 ; 

I___-___-___-___-____________I 

* DENOTES PER OCCURRENCE LIMIT 

The test for inconsistency examines the ratio of the differences in 

ILFs to the differences in limits. It shows that the ratio based 
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upon the change from the 825,000 to the 350,000 limits is .01. 

This is computed as the ratio of (2.25-2.00) to the difference 

(50-25). The scale factor change of leaving off the factor of one 

thousand in the premium figures does not matter if done 

consistently. 4 similar calculation also shows that the 

corresponding ratio based upon the change from the $50,000 to the 

S100.000 limits is .Oll. This is the ratio of (2.80-2.25) to 

(100-50). Such an increase in the ratio identifies the condition 

of inconsistency. While this test is simple, the meaning is not so 

clear. It is not clear why this ratio ought to be declining. One 

possible motivation is to think of the premium difference as the 

price of coverage for the layer going from the lower limit to the 

higher limit. Per haps it is testing the condition that the price 

per unit of coverage declines as the layer is moved up the loss 

size scale. Where this motivation would be wrong is that the 

proper price of a layer of coverage is not the difference in 

premiums. when the premiums include a risk-load. One purpose of 

this paper is to revisit this idea of inconsistency and to suggest 

that it is no longer relevant. 

It will be shown that a new statement of the condition of 

consistency is almost always true for rates which are calculated 

based upon a probability distribution. This paper does suggest an 

important warning to those who base rates for excess layers upon 

differences computed from tables of risk-loaded increased limits 

factors. I suggest that the reason behind inconsistency is half 
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forgotten, and no longer relevant. Miccolis gives an example of 

inconsistencies on page 33. He wrote “The marginal premium per 

$1000 of coverage should decrease as the limit of coverage 

increases. If not, this implies negative probabilities.” Miccolis 

shows that consistency is a property obeyed by expected value 

premiums; he does not claim that it is a property of risk-load 

based premiums. Apparently, consistency is a test of whether the 

increased limits factors are based upon the use of a probability 

distribution. If the risk-loaded premium would necessarily obey 

the consistency test, then Miccolis would likely have shown it! 

His work on the risk reduction due to layering suggests that an 

inequality condition exists instead. This will be discussed later. 

THE NEW CONSISTENCY TEST 

What ought to be true is that the cost of a layer be a decreasing 

function of its starting (attachment) point. A higher layer ought 

not cost more than a lower layer when both have the same width. 

This will be shown to be true for any probability distribution and 

for any utility function of loss. If true, for a layer of any 

fixed size, then the price of the layer per unit of coverage will 

also decline because the division by size of the layer merely 

scales the function. The reason that this is so generally true is 

that the insurer pays something (all or part) for all losses above 

the attachment point. The higher the attachment point, the fewer 

losses get that high. Miccolis states essentially the same thing 

at the top of page 34. The sentence “Aside from the mathematical 
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interpretation of this consistency test, it has a very practical 

meaning. In general, it does not make sense to the insurance buyer 

to have to pay more for each additional 31000 of coverage since the 

probability of losses larger than some limit should be less than 

for a lower limit." 

PROOF OF THE NEW CONSISTENCY 

Let’s begin with the basic formulas for expected loss, risk 

ad justed cost, and the variance (actually the second moment) for 

the case where the frequency is assumed to follow the Poisson 

distribution. The symbol F represents frequency; it is the 

parameter of the Poisson distribution, and is also the mean number 

of claims. Here the f(x) is the density function for the severity 

distribution. F(x) is the integral of the density, called the 

cumulative distribution function. Let U(X) be an increasing 

function of the individual loss size x. Consider a layer which 

starts at an attachment point "a", and has size ” h ” . The largest 

1 oss completely covered is of size (a+h). Let U(x) be an 

increasing function of the individual loss size x. The expected 

value of U(X) will be denoted EU. It is found as: 

237 



Page 8 

The first integral is just F(a). It represents all the cases of 

individual loss where the loss is less than the attachment point. 

The second integral counts all loss cases within the insured layer, 

and the third integral counts losses above the limit. The 

expression for EU is a function of the attachment point, a, and the 

layer width, h. Those variables also appear in the limits of the 

three integrals, as well as in the integrand of the middle 

integral. We are interested in the derivative of the function EU 

with respect to the attachment point a. The result is: 

aEU(eOaTh’ s - ‘“u* Cx-a]f(x]dx aa I u 

From the formula for the derivative of definite integrals, one 

finds that all the terms coming from derivatives of the limits of 

integration happen to cancel each other. The remaining term, as 

shown above is the integral of the derivative of the former 

integrand. The negative sign in front results from the derivative 

of the argument of the function evaluated at (x-a) with respect to 

a. The U prime ( U’(x) ) stands for the derivative of the function 

U with respect to its argument. If and only if this derivative is 

positive, then the derivative of the function EU with respect to a 

is negative, and this is so for all positive values of h. To 

interpret this result, consider first the case where the function 

U(x) is just x itself. 
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a*h 
EL E FIN I Cx-alflxldx +hCl-FCaAhl) (3) 

a 
The expicted aggregate loss from this layer ii equation (3). When 

the function U(x) is the exponential function exp( rx ), then the 

Risk Adjusted Cost, which is the risk loaded Premium based upon 

exponential utility with risk aversion level r, is given by the 

R!X(a,a+h) = (F/rIx 

Its derivative with respect to a is a negative quantity, as shown 

in (5). 

s, 
a+h 

aa 
-F* I a '"c"-a~af<x)dx 

1. 1 (5) 

Thus the result is that the risk loaded premium for the layer is a 

decreasing function of the attachment point, a, for any positive 

value of h. The u new II consistency is true for all exponential 

utility functions regardless of the degree of positive risk 

aversion. With regard to variance as a measure of risk, it is well 

known that for Poisson frequency, the variance of the aggregate 

loss distribution is equivalent to the expected frequency 

multiplied bythe second noncentral moment of the severity 

distribution. When the function U(x) is x squared, the result is: 

4 

+h 
VAR(a,a*h) = Fx (x-a12f (xl dx * h2xIl-F(a+h)l 

I 
(6) 

a 
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This function also fits into the pattern of the first two cases and 

will have a negative first derivative. Thus we can conclude that 

the premium for an excess layer, which contains a risk load based 

upon variance or upon exponential utility with non-negative risk 

aversion, is a deer easing function of its attachment point 

regardless of the size of the width of the layer, h. Therefore, the 

“new” consistency holds, with no restrictive conditions, for both 

variance and for exponential utility. The condition is likely to 

be true also for other utility functions and for the standard 

deviation. The only condition upon the function is that it be an 

increasing function; this is also required of a function for it to 

be a utility function. However, the starting point for this proof, 

equation ( 1 ), which is essentially the expected utility on a per 

occurrence basis, while true for exponential utility and for 

variance, may not be true for other utility functions. Equation 

(8) is the real starting point. Apparently all of these possible 

bases for risk load will give premiums which have decreasing 

premium per unit of coverage as the attachment point is moved up 

the loss size scale. 

CONCLUSIONS ABOUT CONSISTENCY 

The result of this analysis so far is the conclusion that the old 

definition of consistency is flawed in the way it has been applied. 

In the case of risk-loaded premiums for excess layers, it must be 

replaced by the new definition and the new test for consistency. 

Perhaps the old consistency should be forgotten because its reason 

for existence is wrong when the pricing includes a risk-load. Its 
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practical meaning to many is just that the premium increases “too 

fast” as a function of the limit. It survives, giving the 

appearance of precision, but serving only as a vague condition for 

the expression of ‘too fast” . Another view of the use of the 

inconsistency condition is that it may be useful to detect 

situations where one carrier ought not to price so wide a layer 

because the price can easily be reduced by splitting that layer 

into two or more layers. It would detect some such situations, but 

would it detect all such? Which ought to be detected? 

RISK REOUCTION DUE TO LAYERING 

The more positive thrust of the Miccolis paper is to show the risk 

reduction due to layering of coverage. For risk-loaded ratemaking, 

we have an inequality in risk-loaded premiums. It is: 

P(XY) a P(x,z) + P(2.y) ror x < 2 < y (7) 

The inequality simply says that the premium for the coverage from x 

to y is more expensive than the coverage structured into two 

layers; the first layer is from x to z and the second layer is from 

2 to y- An important condition is that the two layers are not 

insured by the same insurer. The spreading, or subdividing of risk 

would not then be achieved. This is fundamental for risk reduction 

to exist. Often, we will consider that the two insurers writing 

the two layers have the same risk aversion. This is not necessary, 

but might be convenient for illustrations. 
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ItlPLICATIONS FOR PRICING 

The most important conclusion is that there does not exist a 

unique risk-loaded price of coverage between X, and Y, unless you 

define it as the coverage provided by only one policy and only if 

the degree of risk aversion is fixed. Once layering is allowed, 

the premium depends upon the layer details. There are some 

implications here for the pricing operations of both insurers and 

reinsurers. The problems raised for a rating bureau are larger 

because of some uncertainty about how its products will be used by 

its member companies. Some alternative choices for a rating bureau 

are the following: 

1. No Risk Load-Compute increased limits factors based upon 

expected value. This would give rates for excess layers also since 

the differences are correct for excess layers when there is no 

risk-load. This will not satisfy those who believe that risk-load 

is very important to the stability of the industry and that rating 

bureaus ought to maintain their practice of including it. 

Objectively, the function of computing risk load fits within the 

function of the rating bureau because that calculation is dependent 

upon the historic loss data from which the degree of variability is 

measured _ Without this measuf ement of actual variability, the 

risk-load would be entirely subjective and its theoretical 

connection to rate adequacy would not be easily demonstrable. 
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2. Publish risk-loaded ILF tables and also publish risk-loaded 

excess layer rates for some commonly used layers. This would be 

popular and would bring out the fact that layer premiums cannot be 

calculated by subtraction, but it could give rise to some cases of 

old inconsistency. This appearance of old inconsistency is 

considered undesirable even if the meaning of old consistency is 

not what it was previously thought to be. 

3. Assume Standard Layers-There could be layer breakpoints at 

every limit which is a whole number of half-million dollar units, 

for example. This would probably eliminate the occurrence of old 

inconsistency. If the use of half-million dollar layers did not 

achieve this elimination, then there would be some layer sizes 

which would accomplish this. Another point for discussion is 

whether there is a limit as the process of layer subdivision is 

carried to the extreme of infinitely many layers of infinitesimal 

width. This is somewhat similar to the case of fractional 

participation, the fundamental basis for w-0 rata forms of 

i nsur ante , as well as for most forms of risk sharing of investment 

projects . Paul Samuelson discussed the limits of risk sharing in 

1963 (4). In “Risk and Uncertainty: A Fallacy of Large Numbers”, 

his simple and elegant argument showed that the value of a small 

share approaches its expected value as the share gets very small. 

The same argument works also for layers just as it does for shares. 

A layer of coverage of size dx in excess of the attachment point x 
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can be evaluated using a series expansion for the utility function 

as was shown in (3) by Pratt. With the expected value as the limit 

of subdividing, an interesting question would be how close to this 

limit does the industry operate. Those familiar with the costly 

nature of reinsurance brokerage would be inclined to believe that 

the practical world of insurance operates at significantly 

different rates than the expected value rates except during the 

extremes of the soft market . Then the extreme competition does 

exist and drives the rates even lower than expected value rates. 

In other words, the limit of expected value pricing does not seem 

highly relevant in light of the actual behavior. 

LAYER RATES BY SUBTRACTION PLUS DIVISSON 

Let us now concentrate upon computing the risk loaded premium 

for an excess layer, but using exponential utility in place of 

variance. The risk adjusted cost, RAC, is the certainty equivalent 

defined in the theory of utility but specialized here to the family 

of all exponential utility functions. Cozzolino [1978], “A Method 

for the Evaluation of Retained Risk", shows that for a Poisson 

frequency with parameter F and a risk aversion level denoted by r, 

the RAC, which represents a risk loaded premium, can be found from 

equation 8. 

RAC = Lx [e(r*RASL1] 
r 
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The expression RAS stands for the Risk Adjusted Severity and it is 

computed from the severity distribution accordinS to the formula: 

RAS = -$LN erxlf C 1 IdI 1 (9) 

Here, LN stands for the natural logarithm. The result of the above 

two expressions is the simpler expression, equation (10) which will 

be the basis of the subsequent equations. 

RAC = fx 
is 

-erxlfwdl -1 (10) 

RAC is the “certainty Equivalent” of utility theory. It is the 

premium for the risk represented by the severity probability 

distribution f( 1 ), in combination with the Poisson frequency with 

parameter F. Notice that F appears only as a multiplicative factor. 

RAC/F then represents a rate. The next step is to study this in 

more detail. The symbol 1 represents the individual loss from the 

severity distribution. The symbol L represents the loss to the 

i nsur er if he insures the layer from x to y. An alternative 

description is that there is coverage of amount (y-x) in excess of 

x, also called the attachment point. Thus L is a function of 1, 

and of x, and of y. It is shown in equation 11.. 
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= 0 for 0 < 1 s x 
L(l,x,yl = = (1-x) for x < 1 s y (11) 

= (y-xl for y c 1 < 00 

It can easily be shown that such payout functions are additive. 

Thus the claim is that: 

LU.x.yI = L(l.x.21 4 L(l,z.yl for all z in (x,yI (12) 

The loss from the policy of amount (Y-X) in excess of x can be 

expressed as the sum of the losses from two policies. They are the 

coverage of amount (z-x) in excess of x plus the coverage of amount 

(y-z) in excess of z. This can also be seen in terms of the graph 

of figure I which shows the three loss functions being discussed. 

FIGURE I 

P--t by cwrrier CL) 

co 

so 
- zoExcess of 80 

a0 
WWl 30 Excess of 

10 
50 

IXCO soExcess of 50 
0 0 30 50 70 110 

3irnlI lcsrr Cl> 

In the example of the graph, the x value is 50, the y value is LOO, 

and the z value chosen is 80. The sum of losses from the 30 excess 

of 50 plus the 20 excess of 80 equals the loss from the policy for 
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50 excess of 50. This is true at any individual loss size 1, the 

abscissa of the graph. 

With the loss function L now established, and its additivity 

demonstrated, we can now express the RAC equations in terms of L as 

follows: 

I 

0 

RACtx.yl = $ 
ii 

er*Lf(lldl -1 

I 

(13) 

Note that the loss function specified in equation (11) is the L in 

equation (13). That is why the RAC is a function of both x, and Y. 

The real working equation is with the definition of L(l,x,~) 

substituted into the last equation. It is given in equation (14). 

The additivity of the L loss function, equations 11, and 12, and 

the RAC equation (13), are all used in Appendix I to shows how to 

derive the last equation. Equation 14 can be further expressed in 

RACtx.yl = F* 
x 

ftlldl + I 

Y 

eCN(l-X’f~lldl 
r 0 X 

(141 

+ ec”Y-x)ofWdl -1 I 
Y 

terms of the premium functions of the sub layers from x to z and 

from z to y. The final result is equation 15 which follows: 

RACtx,yl = AACtx,zl + RAC~z.y)wer”(Z-X’ (15) 
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Equation 15 is the main result. It is a useful tool for layer 

pricing. Notice that when r = 0 it implies that additivity is 

corrrect in the case of premiums based upon expected value, since e 

to the zero power is unity. This corresponds to expected value 

pricing, and is in agreement with the Miccolis results. Not ice 

that the factor r in the exponent is positive for a risk averse 

decision maker, and the factor (z-x) is also positive, so that the 

exponential factor in the second term of the equation is a positive 

number greater than one. Therefore, deletion of this exponential 

factor would decrease the right-hand side of the equation. The 

result is a fundamental inequality, stated first, without proof, as 

equation 7. It is equation 16. This inequality also shows, by 

turning it around algebraically, that the price of a layer, when 

computed by subtraction, is 

RAC(x, yl > RAC[ x,zl + RACkyl for all r > 0 (16) 

overestimated. This is shown by the following revised form of 

equation 16, shown next: 

RAC(z.yl (RAC(x.vl - RAClx.z) Foranux<tandanyz<y.(17) 

The two premiums in the subtraction shown in equation 17 are for 

Premiums for coverages in excess of attachment point x. More often, 

these terms would be representing ground up coverages and so x 
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would then be zero. Since subtraction of risk loaded premiums 

gives an overestimate of the correct premium, we can turn equation 

15 around to obtain a very useful correction form. It is equation 

18. 

RAUz,yl = RAC(x,yl-RAC(x,zl 
*r*tz-x) 

I 
(18) 

This says that the premium computed by subtraction must be divided 

by a number greater than one to yield a correct result. The 

implication is that the correct answer is smaller than the answer 

obtained from subtraction. The difference, 

RAC cx,yl-RAC(X,Zl- RAC(2.Y) 
=RISKREDUCTIONDUETOSPLITING(x,y~ (19) 

is the risk reduction due to layering. This was first computed by 

Miccolis, shown on his p. 49, for variance as a measure of risk. 

How similar are the results? An example given by Miccolis is 

repeated here in appendix III so that the comparison can be seen. 

CONCLUSIONS 

An important implication of equation 18 is that there is no need 

for tables of increased limit factors for excess layers; the 

equation makes that information directly computable from the 

ground-up rates. It is interesting that the correction factor is 

not a function of the probability distribution but a function only 
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of the risk aversion level and of the layer endpoints. All of the 

results shown so far which involve the family of exponential 

utility functions are valid for all risk aversion levels greater 

than or equal to zero. The user of these results should be aware, 

however, that for high enough risk aversion and/or high enough 

limits, the old inconsistency will always occur. This is not a 

manifestation of some obscure flaw in the theory of utility. 

Instead, it is simply a warning that layer splitting is essential 

to enable reasonable pricing. It simply demonstrates the need for 

layering the coverage, just as is usually done. 

Experience with applications of utility analysis suggests that 

every company ought to have its own utility function which serves 

to represent the attitude toward risk of that company. Larger 

companies ought to be less risk averse than smaller companies, 

although the choice is the prerogative of management. 

The risk aversion can also be determined in the same way that 

Miccolis used to determine the coefficient of variance for 

calculating risk load. This method was to set the coefficient to 

result in a 5% risk load for a policy with the basic limit. 

Utility theory is useful to improve the understanding of risk 

loads, their meaning, and their implications. It will probably be 

a useful tool to help insurance company actuaries develop pricing 

rules. Appendix II gives some of the considerations relevant for 

the decision of whether to use utility. However, for a rating 
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bureau, utility theory is not a complete theory of insurance 

pricing _ A current influence upon the developing ideas of industry 

risk-load is the changing ideas of the role of the service bureau. 

In response, the bureau can give the risk-load as a function of the 

risk aversion level so that the subjective aspect of risk-load, 

selection of the company’s risk aversion level, is left to the 

insurer , while the objective Part, determined from data, is 

recognized as an essential bureau function. The graph of the risk 

adjusted cost function, as a function of the risk aversion level, 

for all risk aversion levels is a simple way to do this. In fact, 

it can be shown that the RAC function, as a function of the risk 

aversion level, uniquely encodes all of the probability information 

contained in the loss distribution. 

This property of the complete family of exponential utility 

functions is known from the theory of transforms. The transform is 

the same function as the expected utility. Therefore the risk 

profile curve, which is the graph of RAG as a function of the risk 

aversion level, is as objective a measure of risk as is possible. 

Increased limits pricing is an essential topic today in light of 

the increasing popularity of large risk retention by the buyer. 

The increased risk retained by the insurer is something which the 

industry must maintain a careful awareness of. The risk of writing 

a policy is a strongly increasing function of the limits of 

coverage. The understanding provided by the theory of utility is 

useful for both insurers and regulators. 
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APPENDIX I: PROOF OF EQUATION 15 

The starting points are equation 11, which defines the loas to the insurer 

who insures the excess layer from x to y, already denoted L(l,ny), and the 

equation which gives the RAG for that layer. Our goal is to express it as a 

function of RAC(xz) and RAC( z,y), which are the risk-loaded premiums 

of the two contiguous layers into which the (x,y) layer might be broken. 

Let us begin by applying the definitkms to the sublayers. These are: 

RAC(x,r I = 5% iJ 
X z 

f(lld1 + er*“-x’f(l)dl 
0 J 

X 

nd. 

+ e r*(z-Xl f J 
I 

(lId1 -1 

RAC(r.yl = >fi 
IJ 

x Y 
f(lIdl + J er*cL-z’f (1 Id 

0’ Z 

/ 
+ er*(Y-Z’)mf (1 )dl 

I, 
-1 

Y I 

(21) 

(221 

The loss functions corresponding to these two layers are L(l,xz) and L(1,r.y). 

Tbse can be expressed in the same form as equation 11. 

i 

= 0 for 0 < 1 < x 
L(lscs I = =(I-xlforxCl<z 1 

= (z-xl for z < I < m 

(23.3) 

i 

=o for 0 < 1 < 1 
L (1 s.y 1 = = (1-z) for z < 1 < y 

= (y-2) for y < 1 < 00 

TIIQ next step in prpmmtion is to write Qquation 12 which expreoooo the layer 
kmeo from ecrch layer srr the term in each layer. 
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This will oxprwe the L(l,x,y) in terms of four kss size intervals mther then three. 

cl zm 0 + 0 for 0< I <x 
-- I = (l-xl + 0 f x< l<z. 

(l-xl = (z-xl + (I-21 f:f = < 1 <Y 
(Y-4 r: (2-x) + (y-z) for Y< 1< = 

The first step in the proof of equation 15 is to begin with equation 14 and 

to split the middle integml, which goes from x to y Into two integrals 

corresponding to the layers of the table above. The result is: 

RAC(x.yl = FM 
(I 

x I 

f(lldl + J e r”‘l-x)f (1 Idl -1 
0 X I 

+ ,+-,, ~zye”“-z’f(I)dl +erHo’-z$fIildl]] 

The expmeeion above for RAC(X,Y) has two curly brackets on its right hand 

elde. The following expreeeion can be added into the flret bracket and 

balanced by eubtmction wtthln the eeoond bmcket. 

er*Iz-xlwf (1 Idl J 

I 
Z 

The resulting equation appeam (18: 

RAUx.y = F x Z 1 FM IJ f (IId + J e rr(l-x)f (1 Id1 + 
0 X 

+ 9” [[er*(z-x)] 

+ er*(z-x)-f(l Idl -1 ) + J 
Z 

[-jfU)dl + ~Ye”“-z’fUIdl +era’Y-z’~f~iIdll] 
Z Z 
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The new negative term In the second bmcket can be replaced by its 

equivakbnt value shown in the next equatti: 

The equation for RAC(x,y) now hks llke the following: 

RAC(x.yl = gs r 1 
x z 

f(I)dl + e’*(‘-x’f~lldl + r 
1 

c ‘0 ‘X 
0 

+ e r*(z-x’ J f (1 IdI 
Z 

[ J:,,,,, + I’,rncl-z)f 
a0 

(Ildl +e r*(y-21 f( 

0 Z 
J 
Y 

At this point it is easy to recognize that w have equation 15: 

RAC(x,yl = RAC(x,zl + RAC(z,ylner”‘Z-X’ 

1 IdI -1 ]] 

-1 + 
I 
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PERSPECTlVES IN THE APPLlCATlON OF UTILITY THEORY 

There are two utility theories. The one used by economists to rationalize the 

purchase of possible market baskets of goods has nothing to do with risk. 

Many people, never exposed to the utility theory of risk, erroneously assume 

that they learned something, about it in their required course in economics. 

Where would ycu’have studied this relatively new risk theory? The theory of Von 

Neumann and Morgenstem is the one we are concerned with. It is a theory 

based upon three consistency axioms for choice among lotteries. The 

properties of the utility curve are derived from the axioms. There are several 

books which contain this theory, including references 1, 2, 8, 9, 10, 14, and 

17 for example. There are several more under the subject name ‘Statistical 

Decision Theory”. The book by Moms DeGroot, entitled ‘Optimal Statistical 

Decisions” is an excellent example and a fine pressentation of the derivation from 

the axioms. 

Another perspective is that other applications areas exist in addition to 

insurance. Oil and gas exploration is another highly risky business. Some cf 

those practitioners also apply utility theory and there is an extensive literature 

on risk. Operations research people often tended to be the users and trustees 

of the knowledge of utility theory in general, but the study of risk is mpidly 

growing, including new disciplines called risk management and risk analysis. 

Another perspective is that the theory cf utility has developed 

considerably over the years and there is now a general realization that the 

exponential family of utility functions is the simplest to apply. It is unique in its 

‘portfolio property’ which is additivity of the values of independent random 
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variables. Without this, the complication of evaluating hundreds or thousands of 

‘lotteries’ would be insurmountable. With this type of function, the expected 

utility is essentially the moment generating function, which we know from 

probability theory, so the mathematics is already in place. Science usually 

begins with the simplest model, when the choice is available, proceeding to 

more complicated models only when experience reveals the need to do SO. 

That is how we ought to proceed. 

The family of exponential utilities is a one parameter family. The parameter is 

called the local risk aversion function, so named by John Pratt, who explored 

the properties of many functional forms of utility functions. The fact that this 

function is a constant for the exponential is often called the ‘wealth 

independence’ property. It is reasonable to expect that every decision maker 

has their own individual risk aversion level, the parameter of the exponential. 

We can make the measurement of risk more objective by computing and 

showing the spectrum of certainty equivalent values for each possible risk 

aversion level from zero to infinity. This graph has been called the “Risk Profile 

Curve”. Lotteries can be compared against each other by comparing their risk 

profile curves. Reference [5] gives the details of “Risk Profile Dominance*. In 

practice we find that real decision makers want to know how they “ought to” 

behave regarding risk. Utility theory was not meant to answer that question. 

One widely accepted idea is the greater the wealth the smaller the risk 

aversion. When constructing a theory which involves a whole population of 

companies or individuals, we often find a Pareto distribution of wealth levels. A 

simple model for the population of risk aversions is that each individual’s risk 

aversion level is the reciprocal of their wealth level. 
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in my experience, I was fairly succeeaful In advising oil exploration companies 

when I recommended that their rtsk avemfon level be taken as the reciprocal of 

their expiomtlon budget. In many cases, Individuals in pceitione of 

rwponeiblllty are found to be tco rfsk averse compared to this guideline and 

the advice is often welcome news. Personality traits can Influence thts but 

probably ougM not to. 

Applying exponential utillty theory ls simple because you only need one 

number, the rtsk aver&m level, to get started. For the application to risk 

loads, for example, we can determine the rtsk aversion level which gives the rtsk 

load of 5% for the basic limits policy. This will be illustrated In Appendix 9 

whkh containe the example. In geneml, since only one parameter need be 

determined, one past deciskn k sufficient too determine the past risk 

avemkn level. An altemattve to uing the parameter r is provided by Van Slyke 

[16]. He recommends a risk toiemnce type of pammeter and calls It capacity, 

Intending it to be measure of capacity. A model such as this would be very 

ueeful tf lt found geneml acceptance. 

The intorerted mdet ougM to examine one general reference, such as IS] or 

1101, and the two papers by Pratt [lS] and Samwbon 1161. 

The Idea that the local risk aversion ougM to be decllnlng wlth wealth is 

l ppeeling to many peopie and wee flmt expreeeed by Kenneth Arrow. 

Reference [l@] quickly aseumes declining risk aversion wtth wealth. An 

attermtlve, but dmiiar, hypotheeta b that of popuiatbn heterogeneity; ail 

Indtvldwb In the poputatbn have different risk aversion ievela 
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The weatlthier indhridusle have the smaller risk aversion levels. Thslr risk 

avemlon levels all remain constant, I think that this possfblllty needs empirical 

testfng rather than debate becauw these two hypotheses am dlffkuft to 

dlstlngulsh between. The slmpier of the two models ls that of population 

heterogeneity. This model as assumed by Lintnsr 1121 in his esrly derivation of 

the capital asset prking model. 

An objsction to exponential utiltty theory was exprsesed by f&hard Wall ln his 

mvlew of the dkcuwion paper by Cozzollno and Kleinman in the Dkcusslon 

Paper Program of 1062. Wofi states that Whlk the chamcterktk of con&ant dsk 

avemlon k extremely useful, . . . . R prcvtdes no limit on the number of 

Independent rtska which a particular insurer mlght be wililng to write, gfven no 

external constnints.~ in his next paragraph Woil states that “This lmplkation 

of exponsntlal utlllty flies In the face of the historkai and lntultive notion that 

then is always some limit to the amount of burinees one is willing to wrtte with a 

given amount of capital.” lhls objection to exponential utility b less real than 

Imagined because lt is not the role of risk aversion to itmlt the amount of 

buslness written. The reatistk nsture of the IimItatIon b the limitation of the 

capaolty available to any ineurer. Some think that capacity Is not real, perhsps 

juet a construct of the regulators. But another natural cause of limltatkn for any 

bustness ls the flnfte nature of the stock of good opportunftka avaliabk in the 

whofe world. A8 an Insurer trys to obtain more risks of a given type, the quality 

declines; the additionai rtsks are not of the same quality. in that caee ot 

declining quality, rkk aversion will ako play a role; the iowr quallty of the 

marginal risk makes It more d&y and so lt fails to meet a constant cutoff. 
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in all buslneases, there are very real llmltatione of the number of good prospects 

available. Much of the effort expended in many businesses is that of finding the 

opportunities worthy of Investment. 

If the utility function really had decreasing local risk aversion, then as the insurer 

takes mare rtsks whose expected profit is positive, the insurer’s risk aver&n 

would decline and become less of a restrlctlon on the acceptance of marglnal 

rfsks. Perhaps thls proves that the desired restrlctlon Is not the role of utlllty but 

rather the result of some other general aspect of business. 

One last consideration; don’t wait to find the ‘perfectly correct’ utlllty curve 

before beginning to apply this methodology. LJtlllty curves, llke probabiilty 

distributions, am never perfectly correct, afthough we can distinguish that some 

am better than others. As for wealth independence, if you thlnk that the utility 

curve is changing over time, then you can reestimate the risk aversion 

perlodkalty, perhsps annuslfy, es is done for other financial parameters of 

business firms. Slow changes are easily handled this way. 
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The Miccolis paper, “On the Theory of Increased Limits and Excess of Loss Pricing,” 

is very complete but did not illustrate all of the capabilities it contains. The formula for the 

covariance between the excess loss of two adjacent layers was given (equation 39 of that 

paper) but it was not illustrated. The capability of computing the variance-based risk-loaded 

premiums for excess layers was illustrated. 

The formula (equation 43 of that paper) was stated as a formula for the amount of 

risk reduction due to layering. In addition, it can be used to compute the correct 

variance-based, risk-loaded premium for an excess layer; it is also a formula for the 

correction of a premium determination by subtraction of ground-up rates. It seems useful to 

illustrate those here because the main purpose is to illustrate RAC-based risk-loaded 

premiums. The presence of variance-based risk-loads in the same paper is useful to aUow 

comparisons. 

Example A will be the Miccolis example of a lognormal severity distribution with the 

parameters p equal to 8.9146, and u equal to 1.7826. The mean frequency is given as 0.1 

losses per year. This is a long-tied distribution, appropriate for the medical malpractice 

loss of one doctor. The annual expected loss of this frequency and severity combination is 

$3,644. The distribution of annual aggregate loss has a variance of 2.4181EO9 squared 

dollars, and the standard deviation is $49,174. 

In example A, the formulas supplied by Miccolis for partial integral, partial mean, 

and partial noncentral second moment were used to produce the layer results shown in the 

following tables: 
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Table A-III-1 
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Table A-III-Z 

Layer # 

1 

2 

3 

4 

S 

6 

7 

Exp. Loss Exp. Loss 
Freq in layer below & inc. 

above layer 

492.25 0.02483 492.25 

373.81 0.01426 866.06 

491.68 0.00725 1,357.74 

881.85 0.00190 2,239.58 

378.00 0.00091 2,617.59 

418.45 0.00030 3,036.04 

124.56 0.00019 3,160.60 

14 I 21.99 I 0.00000 I 3.600.45 

15 20.04 o.ooooO 3,620.49 

Sum = 3.620.49 

Exp. Loss 
zero to top 

1.112.92 

1.578.95 

2.082.39 

2.810.61 

3.333.67 

3.404.62 

3.437.58 

3.492.80 

3.576.42 

3.592.00 

3,610.32 

3,617.23 

3,620.49 

Exp. Loss 
Excess 
Laver 

728.22 

262.78 

260.27 

32.97 

55.21 

56.21 

27.42 

15.58 

18.32 

6.91 

3.26 
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Table A-IU-3 

(All variance figures have been divided by 1000) 

The variance scaling was reversed before computing the standard deviation, in this 

and all similar tab&. 

The righthand column of the table above shows the variances of ground up layers 

(from zero to the tops of the numbered layers). The next thing of interest would be to show 
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the variance of the excess loss for each numbered layer. If subtraction of ground-up layer 

variances were correct, the results would be just the differences of the successive numbers in 

that column, after the entry for the bottom layer. Subtraction results are shown in the next 

table after a correction determined by the Miccolis formula. The correction term is shown 

separately in the next column. The variance of the excess loss in the top layer is also useful 

in computing the correlation, shown in the next column, between the ground-up layer which 

excludes the top layer shown in the layer column and the top layer itself. The first entry 

here is for row 2 of the table; that represents the correlation between excess loss in layer one 

and excess loss in layer two. The third row is the correlation between excess loss in the 

combined first two layers and excess loss in the third layer counting up from the bottom. 
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Table A-III-Q 

2 1 55,627 

3 t 128,320 

II 4 I 387.751 

5 1 591.562 

6 1 957.964 

7 r 1.119.50s 

8 1,211,530 

9 1,402,290 

10 1,675,739 

11 1,864,866 

12 2,CQ3,755 

13 2,224,928 

14 2,343,264 

15 I 2,418,124 

VarlExcess 
I 

Var Reduction 
I 

Correl of 0,T 
Layer w/top layer 

21,746 I 

10,579 I 23,302 I 0.733945 ll 
22,349 I 50,344 1 0.691373 // 

113.786 I 145,645 I 0.590111 II 
46.140 I 157.671 I 0.583871 II 

106.129 I 260.273 1 0.516184 II 
19,651 141,894 0.515368 

6,307 85,715 0.508690 

25,115 165,644 0.473712 

48,628 224,821 0.429720 

24,613 164,514 0.404548 

14,273 124,616 0.381568 

38,012 183,161 0.331595 

14,698 103,637 0.286408 

9,674 65,187 0.216404 

A risk charge of 5% of the expected value pure premium was used by Miccolis to as 

a standard to determine the coefficient of variance in the pricing formula. The coefficient 

was determined to be 2.559B06. The following table gives the resulting premiums for all 

ground-up layers and all excess layers. 
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Table A-III-5 

Lambda = 2.56E-06 
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Table A-III-6 

2 25,COO 50,000 

3 50,000 lCO,COO 

4 I 100,ooo I 300,cOO 

] 

Percent for 
zfm to top 

4.76 

8.27 

13.62 

26.09 

33.00 

42.31 

45.70 

8 I 1.300.000 I 1,5oo,c0O I 47.42 

9 I 1.500.000 I 2.000.000 I 50.68 

11 I 3.OOO.ooo I 4.c00.000 I 57.16 

Percent for 
excess layer 

4.76 

5.49 

10.20 

28.56 

31.00 

51.06 

41.48 

32.87 

68.89 

69.67 

84.15 

84.48 

88.37 

This verifies the often stated opinion that the risk load is a larger fraction of the 

excess layer premium than it is of the primary premium. While it is also quite large for very 

high limits primary policies, those ground-up coverages in the top half of the list are not 

often written as single policies because of their high risk loads, which can be avoided by the 

common combination of primary plus excess covers. Excess layers, on the other hand, can 

be kept small to hold down their expected losses, but their percentage risk loads are still high 
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because of their risk strucuue. A sufficiently thin excess layer approaches the risk 

characteristics of the Poisson distribution which has a long tail for the cases of small 

frequency. 

The next example is similar to the first example; it has the same Poisson frequency 

but the severity is piece wise constant with constant density withii each layer. The layers 

have the same frequency within the layer for each layer as for the lognormal, but the mean 

and variance within each layer will be somewhat different than for the lognormal. The main 

motive for this difference is to facilitate the calculation of the IUC within each layer. Based 

upon the lognorm& the RAC is difficult to compute because the moment generating function 

for the lognormal can only be expressed as a series expansion. The lognormal has all 

moments but the series is difficult to express in any simple form. In addition, the motive 

also exists to illustrate how easy the BAC is to compute when each layer is approximated as 

a rectangular density function. 

EXAMPLE B 

Table A-III-l remains the same in the B example as in the A table, because the layer 

frequencies have been kept the same. But the layer mean (the mean of all aggregate loss 

from losses whose size is within that layer) is just the layer frequency multiplied by the 

average of the upper and lower endpoints of the layer. Because of the Poisson frequency 

within each layer, the variance of aggregate loss (the variance of the sum of all losses whose 

sire is within that layer) is given as the frequency in that layer multiplied by the second 

noncentral moment of the layer severity. The formulas for these and for the RAC within a 

layer are given at the end of this appendix. 
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The next five tables repeat the last five tables so the reader can se-e the size of the 

differences between the hvo models. The next hvo tables have some differences from their 

example A counterparts. 

Table A-III-7 

Sum = $4,385.72 1 
- I 
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Page A III-1 I 

(All variance figures have been divided by 1000) 

Layer # 
I 

Variamx Freq 
I 

Above Layer 
I 

VarimCe 
I 

VarK.ayer 
in Layer below % incl. zero to top 

1 I 15.661 I 0.024827 I 15,661 I 31,178 

2 I 15.413 I 0.014258 I 31,074 I 66,718 

3 I 40.899 I 0.007247 I 71,973 I 144,438 

4 I 231.533 I 0.001903 I 303.506 I 474,815 

5 I 161.996 I 0.000912 I 465,502 1 693,407 

6 I 358,160 I 0.003298 I 823,662 1 1,121,292 

7 I 146.199 I 0.000188 I 969.861 1.287.084 

8 84,480 0.000145 1,054,341 1,379,865 

9 186,989 O.COOO84 1,241,330 1,577,459 

10 296,547 0.000037 1,537,877 1,872,758 

11 211.807 o.oooo2o 1.749.684 2.070.251 
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Table A-HI-9 

3 1 144,438 1 23,959 

4 1 474.815 1 147,378 

5 1 693.407 1 49.689 

6 1 1.121.292 I 125.573 

7 1 1.287.084 1 20.191 

I 8 1 1.379.865 I 6.361 

24,428 1 0.615219 

53.761 I 0.644774 

182.999 1 0.610913 

168.903 I 0.543396 

302.312 1 0.508375 

145.601 I 0.481853 

86.420 I 0.476027 

The variance-based risk-loaded premiums for the B example are given in the next 

tables, with their percentages of risk load. The X value used is that which gives the 5% risk 

load for the basic policy whose limit is $25,000. 
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Table A-III-10 
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Table A-III-11 

The differences between the examples A and B are now evident and are apparently 

minor, based on comparison of the two sets of 5 tables for each. The next series of tables 

will focus upon the differences between variance risk load and RAC, and upon the properties 

of RAC as a risk-loaded premium, all entirely based upon the B example. 

The first idea to illustrate is that the risk aversion level can be selected on the same 

basis as the A coefficient of variance was selected. The result is that the risk aversion level 

is r = 4.93E-06, also a very small number. The reciprocal of the risk aversion level wiIl 
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also be noted since this is sometimes called risk tolerance. For the stated risk aversion level 

the risk tolerance is $202,840 indicating a very small insurer. The set of premiums 

calculated by RAC for the ground-up policies is given in the next table. 

Table A-III-12 

Risk Aversion = 4.93E-06, Risk Tolerance = $202,840 

The reason that the results are not given for the higher policy limits is that the 

premium becomes very large for the higher limits at this large risk aversion level. If an 

insurer is so risk averse that it requires a 5% risk load at a policy limit of $25,000, it is too 

risk averse to write policy limits of $500,000 or more. That conclusion seems reasonable in 

light of the fact that most small primary companies do not wrim high limits policies. 

Another risk aversion level to consider is that which makes the premium for top 

policy limits as determined by RAC equal to that determined by variance with the same A we 

have been using, 2.559E-06. This is .5682E-O6 and it corresponds to a risk tolerance of 

%1,759,944. 
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Table A-III-13 

Risk Aversion = 5.68E-07, Risk Tolerance = $1,759,944 

I I 
Layer # 

1 

2 

3 

4 

5 

E. Loss for 
Policy Limit zero to top 

25,000 1,560 

50,000 2,049 

100,OGO 2,586 

300,000 3,501 

500,000 3,783 

6 1 1,000,000 I 4,085 

7 I 1.300.000 I 4,158 

8 1 1,500,000 I 4,191 

9 I 2.000.000 I 4.249 

10 I 3.000.000 I 4.309 

11 I 4.000.000 I 4.338 

12 I 5.000.000 I 4.354 

13 7,500,ooo 4,374 

14 -O,~,~ 4,382 

15 4,386 

RAC! of 
layer 
ZerotOtOp 

1,569 

2,068 

2,628 

3,642 

3,994 

4,586 

4,813 

5.058 

5.264 

5.468 

I 6,154 

8.1 1 6,955 

9.3 1 7,452 

10.1 I 7,722 

11.7 1 8,285 11 

14.8 1 9,102 

17.6 1 9.636 

20.4 10,017 

28.9 10,667 

39.1 11,000 

61.0 11,254 
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The next table shows the premiums for all excess layers. Also shown for perspective 

are the expected loss, the risk-load as a fraction of the premium, and the variance-based 

premium.This is at the same risk aversion level last used. 

Table A-III-14 

Risk Aversion = 5.682EG7, Risk Tolerance = $1,759,944 

VaI 
Premium 
EXUX4 Layer Rx 
Layer Loadas 

Exp. Loss 
Excess 
Layer Start Top 

1.569 I 1.640 I 0.5 

489 492 I 517 I 0.6 

538 544 599 1.2 

958 1,292 4.5 

296 409 4.9 

341 624 11.4 

79 124 7.6 

35 50 5.3 

65 124 12.4 

79 196 22.9 

100,ooo 1 300,ooo 

300,000 500,000 

500,000 L~,~ 
=E 
Looo,ooo WQ~ 
1,300,ooo 1,500,ooo 

1.500800 2,ooo,ooo 

282 

73 

2.OOO.ooo I3.uOO.000 61 

3.m.ooo l4.000.000 37 I 95 I 23.5 

4.000.000 I 5.000.000 16 21 I 54 I 23.9 

40 I 130 I 49.1 
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Table A-III-15 

Risk Aversion = 5.682E-07, Risk Tolerance = %1,759,944 

In spite of the small size and high risk aversion represented in the table above, this 

insurer is able to write most of the excess layers evaluated. The premiums are excessively 

large for the top six layers. Apparently, risk sharing works very well, but there are enough 

larger insurers, with smaller risk aversion to write these excess layers at lower cost. 
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The “Risk Profile Curve is a graph of the RAC as a function of the risk aversion 

level. Here it is a graph as a function of the risk tolerance which is the reciprocal of the risk 

aversion. Risk tolerance is an amount of money and so may appear more meaningful.” 

Figure two is the risk profile curve for the top excess layer,which starts at 7.5 million 

dollars and runs to 15 million dollars. At low risk tolerance, the risk loaded premium is 

very large but then it declines, approaching the expected loss pure premium which is just 

$4.00. 

Risk Profile Curve for Basic Police 

Risk Tolerrxe xn Stlillions 



Page A III-20 

160 

140 

120 

100 

80 

60 

40 

20 

0 

FIGURE 2 

RISK PROFILE CURVE FOR TOf 2 EXCESS POLICY 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Risk Tolerance in SMillions 

The Equations 

When using a piecewise constant density for severity, where each layer has a constant 

density, the formulas needed for the results presented are given below. The set of three 

equations is for aggregate loss for alJ losses whose size is between the lower end point 

4, and the upper end point, Li of layer i. The expected amount of aggregate loss, given the 

frequency Fi, in this layer is: 

EL(Liwl, Li) = ++ 
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In the special case when the layer has zero width, the expected loss is Fi x Li itself. The 

Variance in the layer, also based upon the rectangular severity is given by the next equation: 

vm(Li-l, Li) =Fi 
L&+LI-,.L1+Lj 

3 

When the layer endpoints are the same, the VAR is just 

VAR(L,-,,L,) =qLf 

The RAC in the layer, a function of risk aversion level r, has the following formula: 

RAC(Li-,tL,) =(+I * 
1 

exp(r.L,)-exp(r.L,-,I -1 
f. (Li-Lj-l) 1 

The special case when the layer has zero width has the special formula as follows: 

RAC(L~,~,L~) = ($1 .[exp(r.Lj) -11 

The special cases of zero width usually occur when there is a policy limit. Then all the 

layers above are effectively collapsed into a degenerate layer at that limit and the frequency 

of the degenerate layer is the frequency above that layer. This is very conveniently organized 

into a spreadsheet format. 




