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ABSTRACT

The meaning of consistency of increased limit factors (ILF) is
reconsidered and a new test of the consistency condition is
proposed. It is shown that the three major measures of risk
satisfy the new consistency test with no restrictions. The
problems of specifying consistent risk-loaded rates for high limits
are discussed and a revised subtraction formula is given for the
case where risk is measured by the certainty equivalent of an

exponential utility function. Risk “profile” curves are suggested
as a method to emphasize the objective aspects of risk load. A new

practical meaning is suggested for the old consistency condition.
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INTRODUCTION
The paper begins with the statement of two different types of
consistency which are discussed in the literatures of wutility
theory and the literature of laver pricing, as discussed in [2] by
Miccolis. The meaning of the consistency test is reconsidered and
a new test is proposed. The new consistency test is shown not to
impose any limitations upon either utility, variance or standard
deviation as measures of risk. It is suggested that the error in
the old consistency test is caused by the assumption that the rate
for a excess layver can be found by subtraction of the corresponding
two rates for ground-up covers. This subtraction rule is a problem
for risk-loaded rates but not for expected wvalue rates. Miccollis
showed the rate reduction due to layer splitting. It is shown

similarly here for exponential utility.

The next part of the paper provides a new formula for the premium
of an excess layer when the measure of risk employed is Risk
Adjusted Cost. The paper suggests that the old test for
consistency is useful for detecting cases where the layer being

tested ought to be split so that a lower pricing can be achieved.

Finally, the paper provides a formal proof in appendix I of the new
formula. It gives a separate discussion of the application of the
exponential utility functions in appendix II. The last part,

appendix III, is a lengthy illustration of the use of the
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exponential utility functions and a comparison with the variance

measure of risk shown by Miccolis.

Having provided a complete road map for the parts of the paper, I
now add one point which helps complete the c¢onnection. The
research began with the goal of applying utility to the task of
calculating risk loads. Consistency was realized to be a
roadblock. Therefore the formal content of the paper begins with

consistency.

THE CONCEPT OF RISK LOAD

The wuncertainty in the cost of 1insurance 1is 1its distinctive
feature. Furthermore, different insurance products have different
degrees of cost uncertainty, and therefore different degrees of
risk to the insurer. In particular, policies with different upper
limits of insurance coverage have very different degrees of risk in
spite of their similarity in the type of risk. One idea of a risk
load can be expressed as that amount which when added to the pure
premium of each policy makes a risk averse insurance company
indifferent between the alternatives which the buyer might select.
Another, perhaps more fundamental purpose for the risk load is to
create an "adequate” rate which holds the chance of insolvency down
to an acceptable level . If the business of insurance had to exist
on only expected value rates, the nature of the business would be
much like gambling, where the outcomes are prone to runs of both

good and bad luck. Management skills would matter little compared
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to the role of luck. A risk-load improves the chance of solvency
by giving a positive expected growth rate to the surplus, which is
the cushion against insolvency.
CONSISTENCY

There are two kinds of consistency, whose discussion would
logically fit within this topic; the consistency of Increased
Limits Factors (ILF’s) and the consistency of c¢hoice under
uncertainty are both relevant. The first is defined in the paper
by Miccolis ([2]. The second is in the literature of Utility

Theory.

Consistency of risk loads among lines

Some would say that the risk load for automobile liability ought to
be less than the risk-load for products liability. such
comparisons are based upon intuition about which things are more
risky than others, Utility theory, a structure based upon axioms
of consistency, is designed to give consistency of rankings by
risk. Variance, as a measure of risk, may not give this kind of
consistency and standard deviation also could fail in some
situations. Among these later two risk load choices, variance is
more likely to give this kind of consistency because it has a
closer relationship to a wutility function than does standard
deviation. Pratt [3] shows that wvariance is the first order

approximation to certainty equivalent when variance is small.
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Consistency of increased limits factors
Risk loads, as discussed by Miccolis 1in his 1977 PCAS paper (2],
and by Sheldon Rosenberg in his review of that paper, is the
subject of our interest here. a&ll risk load methods, including
utility, variance, and standard deviation, can be inconsistent, but
it happens less often for standard deviation. Standard deviation
increases less rapidly as a function of loss size than does the
variance which is the expectation of loss size squared. Therefore
one would expect this statement is true also for policy limit which
is the top loss size in the expectation integral. One purpose of
this paper is to question wherein it is wrong for a rating bureau
to publish rates which are inconsistent. What was the original
motivation for the concern with consistency and what role does it
play today? An example from the Rosenberg discussion of the
Miccolis paper is presented next. All policies in this example
have a $250,000 aggregate limit.
The table giving “Increased Limits Factors" for wvarious per

occurrence limits follows:

TABLE 1

e e e e e e e oo e e o e ot e o e e )
] ]
IP.O. LIMITx ILF :
He et i
! $25,000 2.00 |
! $50,000 2.25 |
1$100,000 2.80 |
1$250,000 3.20 |
] 1

* DENGTES PER OCCURRENCE LIMI

The test for inconsistency examines the ratio of the differences in

ILFs to the differences in limits. It shows that the ratio based
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upon the change from the $25,000 to the $50,000 limits is .01.
This is computed as the ratio of (2.25-2.00) to the difference
(50-25). The scale factor change of leaving off the factor of one
thousand in the premium figures does not matter if done
consistently. A similar calculation also shows that the
corresponding ratio based upon the change from the $50,000 to the
$100,000 limits is .011. This is the ratio of (2.80-2.25) to
(100-50). Such an increase in the ratio identifies the condition
of inconsistency. While this test is simple, the meaning is not so
clear. It is not clear why this ratio ought to be declining. One
possible motivation is to think of the premium difference as the
price of coverage for the layer going from the lower limit to the
higher limit. Perhaps it is testing the condition that the price
per unit of coverage declines as the layer is moved up the loss
size scale. Where this motivation would be wrong is that the
proper price of a layer of coverage is not the difference in
premiums, when the premiums include a risk-load. One purpose of

this paper is to revisit this idea of inconsistency and to suggest

that it is no longer relevant.

It will be shown that a new statement of the condition of
consistency is almost always true for rates which are calculated
based upon a probability distribution. This paper does suggest an
important warning to those who base rates for excess layers upon
differences computed from tables of risk-loaded increased limits

factors. I suggest that the reason behind inconsistency is half

235



Page 6

forgotten, and no longer relevant. Miccolis gives an example of

inconsistencies on page 33. He wrote "The marginal premium per
$1000 of coverage should decrease as the limit of coverage
increases. If not, this implies negative probabilities." Miccolis
shows that consistency is a property obeyed by expected value
premiums;: he does not <c¢laim that it is a property of risk-load
based premiums. Apparently, consistency is a test of whether the
increased limits factors are based upon the use of a probability
distribution. If the risk-locaded premium would necessarily obey
the consistency test, then Miccolis would likely have shown it!
His work on the risk reduction due to layering suggests that an
inequality condition exists instead. This will be discussed later.

THE NEW CONSISTENCY TEST

What ought to be true is that the cost of a layer be a decreasing
function of its starting (attachment) point. A higher layer ought
not cost more than a lower layer when both have the same width.
This will be shown to be true for any probability distribution and
for any utility function of loss. If true, for a layer of any
fixed size, then the price of the laver per unit of coverage will
also decline because the division by size of the layer merely
scales the function. The reason that this is so generally true is
that the insurer pays something (all or part) for all losses above
the attachment point. The higher the attachment point, the fewer
losses get that high. Miccolis states essentially the same thing

at the top of page 34. The sentence "Aside from the mathematical
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interpretation of this consistency test, it has a very practical
meaning. In general, it does not make sense to the insurance buyer
to have to pay more for each additional $1000 of coverage since the
probability of losses larger than some limit should be less than

for a lower limit."
PROOF OF THE NEW CONSISTENCY

Let’'s begin with the basic formulas for expected loss, risk
adjusted cost, and the variance (actually the second moment) for
the case where the frequency is assumed to follow the Poisson
distribution. The symbol F rvepresents frequency; it is the
parameter of the Poisson distribution, and is alsoc the mean number
of claims. Here the f(x) is the density function for the severity
distribution. F(x) is the integral of the density, called the
cumulative distribution function. Let U(x) be an increasing
function of the individual loss size x. Consider a layer which
starts at an attachment point "a“, and has size "h". The largest
loss completely covered is of size (ath). Let U(x) be an
increasing function of the individual loss size x. The expected

value of U(X) will be denoted EU. It is found as:

+h

a
EU = U[O]xff(x)dx . j Ulx-a) £ (x)dx+U (h)x
Q 3

fix)dx (1)
+h

o e—— g
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The first integral is Jjust F(a). It represents all the cases of
individual loss where the loss is less than the attachment point.
The second integral counts all loss cases within the insured layer,
and the third integral counts losses above the limit. The
expression for EU is a function of the attachment point, a, and the
layer width, h. Those variables also appear in the limits of the
three integrals, as well as in the integrand of the middle
integral. We are interested in the derivative of the function EU

with respect to the attachment point a. The result is:

+h
3EU(g,a+h) __T ‘o
5o | U’ (x-alf(x)dx (2)

From the formula for the derivative of definite integrals, one
finds that all the terms coming from derivatives of the limits of
integration happen to cancel each other. The remaining term, as
shown above is the integral of the derivative of the former
integrand. The negative sign in front results from the derivative
of the argument of the function evaluated at {(x-a) with respect to
a. The U prime ( U’(x) ) stands for the derivative of the function
U with respect to its argument. If and only if this derivative is
positive, then the derivative of the function EU with respect to a
is negative, and this is so for all positive values of h. To
interpret this result, consider first the case where the function

U(x) is just x itself.
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a+h

EL = Fu{| (x-@)f(xJdx +hU-Flash)) 3)

a

The expected aggregate loss from this laver is equation (3). When
the function U{x) 1is the exponential function exp( rx ), then the
Risk Adjusted Cost, which 1is the risk loaded Premium based upon

exponential utility with risk aversion level r, is given by the

s*h
RACCa. a+h) = (Fir)x Lecﬁzldx ~1 + f eT¥Oale () g + @
2

e¢T*h)i(1-F(a+h))

Its derivative with respect to a is a negative quantity, as shouwn

in (5).
a+h
az:c = ~Fw L er-tx-a)“f(x)dx (s)

Thus the result is that the risk loaded premium for the layer is a
decreasing function of the attachment point, a, for any positive
value of h. The “new" consistency is true for all exponential
utility functions regardless of the degree of positive risk
aversion. With regard to variance as a measure of risk, {t is well
known that for Poisson frequency, the variance of the aggregate
loss distribution is equivalent to the expected frequency
multiplied bythe second noncentral moment of the severity

distribution. When the function U{x) is x squared, the result is:

+h
VAR(a,ash) = Fx T (x-8)8F (x)dx + hex (1-F(a+h)) } (6)
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This function also fits into the pattern of the first two cases and
will have a negative first derivative. Thus we c¢an conclude that
the premium for an excess laver, which contains a risk load based
upon variance or upon exponential utility with non-negative risk
aversion, is a decreasing function of its attachment point

regardless of the size of the width of the layer, h. Therefore, the

w "

new" consistency holds, with no restrictive c¢onditions, for both
variance and for exponential utility. The condition is likely to
be true also for other utility functions and for the standard
deviation. The only condition upon the function is that it be an
increasing function; this is also required of a function for it to
be a utility function. However, the starting point for this proof,
equation (1), which is essentially the expected utility on a per
occurrence basis, while true for exponential utility and for
variance, may not be true for other utility functions. Equation
(8) is the real starting point. apparently all of these possible
bases for risk load will give premiums which have decreasing
premium per wunit of coverage as the attachment point (s moved up
the loss size scale.
CONCLUSIONS ABOUT CONSISTENCY

The result of this analysis so far is the conclusion that the old
definition of consistency is flawed in the way it has been applied
In the case of visk-loaded premiums for excess lavers, it must be
replaced by the new definition and the new test for consistency.
Perhaps the old consistency should be forgotten because its reason

for existence is wrong when the pricing includes a risk-~load. 1Its
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practical meaning to many is just that the premium increases "too
fast® as a function of the limit. It survives, giving the
appearance of precision, but serving only as a vague condition for
the expression of “too fast™. Another view of the use of the
inconsistency condition is that it may be wuseful to detect
ought not to price so wide a layey
because the price can easily be reduced by splitting that layer

into two or more lavers. It would detect some such situations, but

would it detect all such? UWhich ought to be detected?

RISK REDUCTION DUE TO LAYERING
The more positive thrust of the Miccolis paper is to show the risk
reduction due to layering of coverage. For risk-loaded ratemaking,

we have an inequality in risk-loaded premiums. It is:

P(x,y) 3 P(x,2) + P(2,y) for x<z<y

The inequality simply says that the premium for the coverage from x
to y is more expensive than the coverage structured into two
layers; the first layer is from x to z and the second layer is from
Z to v¥. An important condition is that the two layers are not
insured by the same insurer, The spreading, or subdividing of risk
would not then be achieved. This is fundamental for risk reduction
to exist. Often, we will consider that the two insurers writing

the two layers have the same risk aversion. This is not necessary,

but might be convenient for illustrations.
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IMPLICATIONS FOR PRICING

The most important conclusion is that there does not exist a
unique risk-loaded price of coverage between X, and Y, unless you
define it as the coverage provided by only one policy and only if
the degree of risk aversion 1is fixed. Once layvering is allowed,
the premium depends upon the layer details. There are some
implications here for the pricing operations of both insurers and
reinsurers. The problems raised for a vrating bureau are larger
because of some uncertainty about how its products will be used by
its member companies. Some alternative choices for a rating bureau

are the following:

1. No Risk Load-Compute increased limits factors based upon
expected value. This would give rates for excess layers also since
the differences are correct for excess layers when there 1is no
risk-load. This will not satisfy those who believe that risk-load
is very important to the stability of the industry and that rating

bureaus ought to maintain their practice of including it.

Objectively, the function of computing risk load fits within the
function of the rating bureau because that calculation is dependent
upon the historic loss data from which the degree of variability is
measured. Without this measurement of actual variability, the
risk-load would be entirely subjective and its theoretical

connection to rate adequacy would not be easily demonstrable.
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2. Publish risk~loaded ILF tables and also publish risk-loaded
excess layer rates for some commonly used layers. This would be
popular and would bring out the fact that layer premiums cannot be
calculated by subtraction, but it could give rise to some cases of
old inconsistency. This appearance of old inconsistency is
considered undesirable even if the meaning of old consistency is

not what it was previously thought to be.

3. Assume Standard Layers-There could be layer breakpoints at
every limit which is a whole number of half-million dollar units,
for example. This would probably eliminate the occurrence of old
inconsistency. If the use of half-million dollar layers did not
achieve this elimination, then there would be some layer sizes
which would accomplish this. aAnother point for discussion is
whether there is a limit as the process of layer subdivision is
carried to the extreme of infinitely many layers of infinitesimal
width. This is somewhat similar to the case of fractional
participation, the fundamental basis for pro vata forms of
insurance, as well as for most forms of risk sharing of investment
projects. Paul Samuelson discussed the limits of rvisk sharing in
1963 (4). In “"Risk and Uncertainty: a Fallacy of Large Numbers*,
his simple and elegant argument showed that the value of a small

share approaches its expected value as the share gets very small.

The same argument works also for layers just as it does for shares.

A layer of coverage of size dx in excess of the attachment point x
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can be evaluated using a series expansion for the utility function
as was shown in (3) by Pratt. UWith the expected value as the limit
of subdividing, an interesting question would be how close to this
limit does the industry operate. Those familiar with the costly
nature of reinsurance brokerage would be inclined to believe that
the practical world of insurance operates at significantly
different rates than the expected value rates except during the
extremes of the soft market. Then the extreme competition does
exist and drives the rates even lower than expected value rates.
In other words, the limit of expected value pricing does not seem

highly relevant in light of the actual behavior.
LAYER RATES BY SUBTRACTION PLUS DIVISION

Let us now concentrate upon computing the risk loaded premium
for an excess layer, but using exponential utility in place of
variance. The risk adjusted cost, RAC, is the certainty equivalent
defined in the theory of utility but specialized here to the family
of all exponential utility functions. Cozzolino [1978], "a& Method
for the Evaluation of Retained Risk", shows that for a Poisson
frequency with parameter F and a risk aversion level denoted by r,
the RAC, which represents a risk loaded premium, can be found from
equation 8.

RAC = Ex[etrnrasiy] ()
r
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The expression RAS stands for the Risk Adjusted Severity and it is

computed from the severity distribution according to the formula:

L4

RAS = Z-=LN Le”‘f(ndl (9)

Here, LN stands for the natural logarithm. The result of the above
two expressions is the simpler expression, equation (10) which will

be the basis of the subsequent equations.

RAC = -f; Le’“lfu)dl -1 (10)

RAC is the "certainty Equivalent® of utility theory. It is the
premium for the risk represented by the severity probability
distribution f(l), in combination with the Poisson frequency with
parameter F. Notice that F appears only as a multiplicative factor.
RAC/F then vrepresents a rate. The next step is to study this in
more detail. The symbol 1 represents the individual loss from the
severity distribution. The symbol L represents the loss to the
insurer if he insures the layer from x to y. An alternative
description is that there is coverage of amount (y-x) in excess of
x, also called the attachment point. Thus L is a function of 1,

and of x, and of y. It is shown in equation 11.

245



1
T

Page 16

= 0] for 0 C 1 £ x
L(l.xy) = = (l-x) for x <1 £y (11)
= (y-x) for y (1 {( =

It can easily be shown that such payout functions are additive.

Thus the claim is that:

LC.xy) = LUl.x,2) + L(l.z.y) for all z in (x.y)  (12)

The loss from the policy of amount (y-x) in excess of x <c¢an be
expressed as the sum of the losses from two policies. They are the
coverage of amount (z-x) in excess of x plus the coverage of amount
(y-z) in excess of z. This can also be seen in terms of the graph

of figure I which shous the three loss functions being discussed.

FIGURE I
Payaut by cerrier CL)
ey 2
so
<o E
=0 E" mmm zoExcess of 80
Tz E wm 2o Excess of 50
o E rrrrn so Excess of 50
30 aa =0 = 0 S50 2110

wirwle lowss <1>

In the example of the graph, the x value is 50, the y value is 100,
and the z value chosen is 80. The sum of losses from the 30 excess
of 50 plus the 20 excess of 80 equals the loss from the policy for
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50 excess of 50, This is true at any individual loss size 1, the
abscissa of the graph.
With the loss function L now established, and its additivity
demonstrated, we can now express the RAC equations in terms of L as

follows: ©

RAC(x.y) = —E— _Ler'Lf(I)dl -1 (13)

Note that the loss function specified in egquation (11) is the L in
equation (13). That is why the RAC is a function of both x, and y.
The real working equation is with the definition of UL{1,x,y)
substituted into the last eaquation. It is given in equation (14).

The additivity of the L less function, equations 11, and 12, and
the RAC equation (13), are all used in Appendix I to shows how to

derive the last equation. Egquation 14 can be further expressed in

Y
RAC(x,y} = E—u{eou_[ Fedl » [ e Rl
r o %

) (14)
+ er*‘v-*’j'fmdl -1 ]
Y

terms of the premium functions of the sub layers from x to z and

from z to y. The final result is equation 15 which follows:

RAC(x,y) = RAC(x,z) + RAC(z,y)wef"¢Z"%) (s
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Equation 15 is the main result. It is a useful tool for laver
pricing. Notice that when r = 0 it implies that additivity is
corrrect in the case of premiums based upon expected value, since e
to the zero power is unity. This corresponds to expected value
pricing, and is in agreement with the Miccolis results. Notice
that the factor v in the exponent is positive for a risk averse
decision maker, and the factor (z-x) 1is also positive, so that the
exponential factor in the second term of the equation is a positive
number greater than one. Therefore, deletion of this exponential
factor would decrease the right-hand side of the equation. The
result is a fundamental inequality, stated first, without proof, as
equation 7, It is equation 16. This inequality also shows, by
turning it around algebraically, that the price of a layer, when

computed by subtraction, is

RAC(x.y) > RACI(x,2) + RAC(z,y) for all r> 0 (16)

overestimated. This is shown by the following revised form of

equation 16, shown next:

RAC(z,y) <¢RAC(x,y) — RACI[x,z) Forenux<zandenyz<y (17)

The two premiums in the subtraction shown in equation 17 are for
Premiums for coverages in excess of attachment point x. More often,

these terms would be representing ground up coverages and SO X
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would then be zero. Since subtraction of risk loaded premiums
gives an overestimate of the correct premium, we can turn equation

15 around to obtain a very useful correction form. It is equation

18.

RAC(z,y) = RAC(x, y)-RAC(x,z)

erl(z-x) (18}

This says that the premium computed by subtraction must be divided
by a number greater than one to yield a correct result. The
implication is that the correct answer is smaller than the answer

obtained from subtraction. The difference,

RAC (x,y)-RAC(X,Z)- RAC(Z.Y)
= RISKREDUCTIONDUE TOSPLITING (x,y)  (19)

is the risk reduction due to layering. This was first computed by
Miccolis, shown on his p. 49, for wvariance as a measure of risk.
How similar are the results? An example given by Miccolis is

repeated here in appendix III so that the comparison can be seen.
CONCLUSIONS

An important implication of equation 18 is that there is no need
for tables of increased limit factors for excess layers; the
equation makes that information directly computable from the
ground-up rates. It is interesting that the correction factor is

not a function of the probability distribution but a function only
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of the risk aversion level and of the layer endpoints. All of the
results shown so far which 1involve the family of exponential
utility functions are valid for all risk aversion levels greater
than or equal to zero. The user of these results should be aware,
however, that for high enough risk aversion and/or high enough
limits, the old inconsistency will always occur. This is not a
manifestation of some obscure flaw in the theory of utility.
Instead, it is simply a warning that layer splitting is essential
to enable reasonable pricing. It simply demonstrates the need for

layering the coverage, just as is usually done.

Experience with applications of utility analysis suggests that
every company ought to have its own utility function which serves
to represent the attitude toward risk of that company. Larger
companies ought to be less risk averse than smaller companies,

although the choice is the prerogative of management.

The risk aversion can also be determined in the same way that
Miccolis used to determine the coefficient of wvariance for

calculating risk load. This method was to set the coefficient to
result in a 5% risk load for a policy with the basic limit.
Utility theory is useful to improve the understanding of risk
loads, their meaning, and their implications. It will probably be
a useful tool to help insurance company actuaries develop pricing
rules. Appendix II gives some of the considerations relevant for

the decision of whether to use utility. However, for a rating
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bureau, utility theory is not a complete theory of insurance
pricing. A current influence upon the developing ideas of Industry
risk~load is the changing ideas of the role of the service bureau.
In response, the bureau can give the risk-~load as a function of the
risk aversion level so that the subjective aspect of risk-load,
selection of the company’s risk aversion level, is left to the
insurer, while the objective part, determined from data, Iis
recognized as an essential bureau function. The graph of the risk
adjusted cost function, as a function of the risk aversion level,
for all risk aversion levels is a simple way to do this. In fact,
it can be shown that the RAC function, as a function of the risk
aversion level, uniquely encodes all of the probability information

contained in the loss distribution.

This property of the complete family of exponential wutility
functions is known from the theory of transforms. The transform is
the same function as the expected utility. Therefore the risk
profile curve, which is the graph of RAC as a function of the risk
aversion level, is as objective a measure of risk as is possible.

Increased limits pricing is an essential topic today in light of
the increasing popularity of large risk retention by the buyer.
The increased risk retained by the insurer is something which the
industry must maintain a careful awareness of. The risk of writing
a policy is a strongly increasing function of the limits of
coverage. The understanding provided by the theory of utility is

useful for both insurers and regulators.
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Appendix 1 Peage 1
APPENDIX |: PROOF OF EQUATION 15

The starting points are equation 11, which defines the loss to the insurer
who insures the excess layer from x to y, already denoted L{),x,y), and the
equation which gives the RAC for that layer. Our goal is to express it as a
function of RAC(x,z) and RAC( z,y), which are the risk-loaded premiums

of the two contiguous layers into which the (x,y) layer might be broken.

Let us begin by applying the definitions to the sublayers. These are:

E X r
RAC(x.,z) = ——-{ f £(1)dl f T =X Ie (1141
r (1) %
w @1)
o erraoofeclydl -1 ]
4
and,
F z Y (1-23
= F . . Te(l-2
RAC(z.y) = & [ jo_ £C1ydl L e £(1)dl
| Cw | (22)
+  eTRYTEN £(1)dl -1 }
], .
The loss functions corresponding to these two layers are L(x,2) and L(},2,y).
These can be expressed in the same form as equation 11.
= 0 for 0 ¢ 1 ¢ x
Lllxax ) = = (l-x) for x €1 < x
= (2-x}] for 2z ] ¢ =
(23)
= 0 for 0 C] €=
L{lay ) = = (l-z) for z {1 <y

(y-z) for y ] (=

The next step in preparation is to write equation 12 which expresses the layer
losses from each layer as the terms in each layer.
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This will express the L(I,x,y) in terms of four loss size intervals rather than three.

0 = 0 + 0 for O | (x
(1-%x) = (1-x) + Q for x < I <xz
(1-x) = (x-x) + (l-2) for z 1<y
(y-x) = (z-x) + (y-z) for YL 1 =

The first step in the proof of equation 15 is to begin with equation 14 and
1o split the middle integral, which goes from x to y into two integrals
corresponding to the layers of the table above. The result is:

F x *
RAC (x.y] = -—{j (Al + [ et IRl -1 ]
r o] X

' «©
. F rR{E-%) rx<l-z2) UL XEVES 3 f(l)dl}
_r..[[e ]Ule F(1)dl +e L ]
The expression above for RAC(X,Y) has two curly brackets on its right hand

side. The following expression can be added into the firet bracket and
balanced by subtraction within the second bracket.
«©
eT {ET-X) £(]11dl
4
The resulting equation appears as:
X z

£C1)dl » _[ eT U100 194
[+] x

»oerm o E(hdl -1 }+
b 4

- F,
RAC(x,y) = = “’

Yy
eT"1Tp (] 34] +eF*ty-D) fmdl]}
254 4

[—JZF(I)dI+J
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The new negative term in the second bracket can be replaced by its

equivalent vaiue shown in the next equation:

-ffmdl - +J'l:€(l)dl
z [}]

The equation for RAC(x,y) now looks like the following:
X z
RAC(x,y} = f—-[[ Fe13dl + [ et Iz 1)dl 4
r 0

b3

+ e""'*’fftlel -1 ]+
F rR{Z-x) *
' r'[[e ]

z Y
[meduj QT I 4] vt Y B £(1)d] ]}
0 x y

At this point it is easy to recoghize that we have equation 15;

RAC(x,y) = RAC(x,z) + RAC(z,y)xeFT™(Z2-X)
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PERSPECTIVES IN THE APPLICATION OF UTILITY THEORY

There are two Utility theories. The one used by economists to rationalize the
purchase of possible market baskets of goods has nothing to do with risk.
Many people, never exposed to the utility theory of risk, erroneously assume
that they leamed something about it in their required course in economics.
Where would you have studied this relatively new risk theory? The theory of Von
Neumann and Morgenstern is the one we are concerned with. It is a theory
based upon three consistency axioms for choice among iotteries. The
properties of the utility curve are derived from the axioms. There are several
books which contain this theory, including references 1, 2, 8, 9, 10, 14, and
17 for example. There are several more under the subject name "Statistical

Decision Theory". The book by Morris DeGroot, entitled *"Optimal Statistical
Decisions" is an excellent example and a fine pressentation of the derivation from

the axioms.

Another perspective is that other applications areas exist in addition to
insurance. Qil and gas exploration is another highly risky business. Some of
those practitioners also apply utility theory and there is an extensive literature
on risk. Operations research people often tended to be the users and trustees
of the knowledge of utility theory in general, but the study of risk is rapidly

growing, including new disciplines called risk management and risk analysis.

Another perspective is that the theory of utility has developed
considerably over the years and there is now a general realization that the
exponential family of utility functions is the simplest to apply. Itis unique in its

"portfolio property® which is additivity of the values of independent random
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variables. Without this, the complication of evaluating hundreds or thousands of

"lotteries* would be insurmountable. With this type of function, the expected
utility is essentially the moment generating function, which we know from
probability theory, so the mathematics is already in place. Science usually
begins with the simplest model, when the choice is available, proceeding to
more complicated models only when experience reveals the need to do so.
That is how we ought to proceed.

The family of exponential utilities is a one parameter family. The parameter is
called the local risk aversion function, so named by John Pratt, who explored
the properties of many functional forms of utility functions. The fact that this
function is a constant for the exponential is often called the ‘wealth
independence® property. It is reasonable to expect that every decision maker
has their own individual risk aversion level, the parameter of the exponential.
We can make the measurement of risk more objective by computing and
showing the spectrum of cenrtainty equivalent values for each possible risk
aversion level from zero to infinity. This graph has been called the "Risk Profile
Curve”. Lotteries can be compared against each other by comparing their risk
profile curves. Reference [S] gives the details of “Risk Profile Dominance*. In
practice we find that real decision makers want to know how they “ought to"
behave regarding risk. Utility theory was not meant to answer that question.
One widely accepted idea is the greater the wealth the smaller the rigk
aversion. When constructing a theory which involves a whole population of
companies or individuals, we often find a Pareto distribution of wealith levels. A
simple model for the population of risk aversions is that each individual's risk

aversion level is the reciprocal of their wealth level.
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In my experience, | was fairly successful in advising oil exploration companies

when | recommended that their risk aversion level be taken as the reciprocal of
their exploration budget. In many cases, individuals in positions of
responsibllity are found to be too risk averse compared to this guideline and
the advice is often weicome news. Personality traits can infiuence this but
probably ought not to.

Applying exponential utility theory Is simple because you only need one
number, the rsk aversion level, to get started. For the application to riek
loads, for example, we can determine the risk aversion level which gives the risk
load of 5% for the basic limits policy. This wiil be iliustrated In Appendix 3
which containe the example. In general, since only one parameter need be
determined, one past decision is sufficient too determine the past risk
aversion jevel. An alternative to uing the parameter r is provided by Van Slyke
[18]. He recommends a risk tolerance type of parameter and calis it capacity,
intending it to be measure of capacity. A model such as this would be very

useful if it found general acceptance.

The intereated reader ought to examine one general reference, such as [2] or
[10], and the two papers by Pratt [13] and Samuelson [15}.

The idea that the local risk aversion ought to be declining with wealth is
appealing to many people and was firet expressed by Kenneth Arrow.
Reference [19] quickly assumes declining risk aversion with wealth. An
altemnative, but similar, hypothesis is that of population heterogeneity; all
Individuais in the population have different risk aversion levels.
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The weatithier individuals have the smailer risk aversion levels. Their risk
aversion levels all remain constant. | think that this possibllity needs empirical
testing rather than debate because these two hypotheses are difficult to
distinguish between. The simpler of the two models Is that of population
heterogeneity. This model as assumed by Lintner [12] in his early derivation of
the capital asset pricing model.

An objection to exponential utility theoty was expressed by Richard Woil in his
review of the discussion paper by Cozzolino and Kieinman in the Discussion

Paper Program of 1982, Woll statas that *While the characteristic of constant risk
aversion is extremely useful, ....it provides no limit on the number of
independent risks which a particular insurer might be willing to wiite, given no
extemal constraints.® In his next paragraph Woll states that *This implication
of exponertial utility flles In the face of the historical and Intuitive notion that
there is always some {imit to the amount of business one is willing to write with a
given amount of capital.® This objection to exponential utility is less real than
imagined because it is not the role of risk aversion to limit the amount of
business written. The realistic nature of the limitation is the limitation of the
capacity avaliable to any insurer. Some think that capacity Is not real, perhaps
juet a construct of the regulators. But another natural causs of limitation for any
businese Is the finite nature of the stock of good opportunities available in the
whole world. As an Insurer trys to obtain more riske of a given type, the quality
declines; the additional risks are not of the same quality. in that case of
declining quality, risk aversion will also play a role; the lower quality of the
marginal risk makes it more risky and so it fails to meet a constant cutoff,

259



Appeidin 2 Page 5
in all businesses, there are very real limitations of the number of good prospects

available. Much of the effort expended in many businesses Is that of finding the
opportunities worthy of investment.

If the utility function really had decreasing local risk aversion, then as the insurer
takes more risks whose expected profit is positive, the insurer's risk aversion
would decline and become less of a restriction on the acceptance of marginal
risks. Perhaps this proves that the desired restriction is not the role of utility but
rather the resuit of some other general aspect of business.

One [ast consideration; don't wait to find the "perfectly correct® utility curve
before beginning to apply this methodology. Utility cuives, like probabiliity
distributions, are never perfectly correct, although we can distinguish that some
are better than others, As for weaith independence, if you think that the utility
curve is changing over time, then you can reestimate the risk aversion
periodically, perhaps annuaily, as is done for other financial parameters of
business firms. Slow changes are easily handled this way.

UTILITY REFERENCES
1. Borch, Kari H., "The Economics of Uncertainty”, Princeton Studies in
Mathematical Economics, Princeton University Press, Princeton, NJ, 1068,

2. Bowers, N. L., Jr.,, H. U. Gerber, J. C. Hickman, D. Jones, C. J. Nesblt,
"Actuarial Mathematice®, The Soclety of Actuaries, itasca IL, 1986,



Appendin 2 Page ©

8. Brockett, P. L., and Linda L. Golden, "A Class of Utility Functions
Functions Containing all the Common Utility Functions ", Management
Science, Vol.33, No.8, August, 1988.

4. The CAS Committee on Theory of Risk, "Risk Theoretic Issues in Loss
Reserving"®, Presented at the CAS Annual Meeting, November 1984,

5. Cozzolino, J. M., "A New Method for the Evaluation of Retained Risk”,
Joumal of Risk and Insurance, Vol. XLV, No. 8, Sept. 1978.

6. Cozzolino, J. M., "The Evaluation of Loss Control Options®, Journal of
Risk and Insurance, Vol. XLV, No. 8, Sept. 1978,

7. Cozzolino, J. M. and Naomi B. Kleinman, "A Capacity Management Model
based on Utility Theory ", Discussion Paper Program, 1082.

8. Freifelder, Leonard R., "A Decision Theoretic Approach to Insurance
Ratemaking®, Huebner Foundation for Insurance Education, Monograph No.
4, Philadelphia, 1976.

9. Gerber, Hans U., "An Introduction to Mathematical Risk Theory®, Huebner
Foundation for insurance Education, Monograph No. 8, Philadeiphia, 1979.

10. Gupta, 8.K,, and J.M. Cozzolino, Chapter 11, "Decisions Under Uncertainty
with Risk Aversion®, In *Fundamentals of Operations Research for Management”,
Holden-Day, 1975, pp. 231-264,

11. Hewitt, Charles C., Jr., "Decision Making Through Utility Theory*,
appesarsnlg the RANDOM SAMPLER Section of The Actuarial Review, May 1084,
pPP. Sand 11,

12. Lintner, J., "Valuation of Risky Assets and the Selection of Risky Investments
ll;(s,tsock Portfollos and Capital Budgets®, Review of Economic Studies, February,
1 .

18. Pratt, J. W., "Risk Aversion in the Smaif and in the Large®, Econometrica,
Vol. 82, No. 1-2, Jan-Apiil, 1064.

14. Raiffa, Howard, "Decision Analysis: Introductory Lectures on Cholces under
Uncertainty®, Addison-Wesley, Reading, MA, 1068,

15. Samuelson "Risk and Uncertainty: A fallacy of large numbers®, Scientia 6th
Series, 57th Year, May-April 1963 (4 pages).

16. Steeneck, L. R., "Reinsuring the Captive/Specialty Company®, PCAS, Vol.
LXX, 1983,

261



Appendix 2 Page 7

17. Von Neumann, John, and Oskar Morgenstern, *Theory of Games and
Economic Behavior®, Princeton University Press, Princeton, NJ 1944,

18. Van Siyke, O.E., Discussion of *Reinsuring the Captive/Specialty
Company" PCAS, Vol. LXXil, 1685,

19. Venter, Gary G., "Utility with Decreasing Risk Aversion®, PCAS, Vol. LXX,
1088,

262



Page A TII-1
APPENDIX Il

The Miccolis paper, "On the Theory of Increased Limits and Excess of Loss Pricing,"
is very complete but did not illustrate all of the capabilities it contains. The formula for the
covariance between the excess loss of two adjacent layers was given (equation 39 of that
paper) but it was not illustrated. The capability of computing the variance-based risk-loaded
premiums for excess layers was illustrated.

The formula (equation 43 of that paper) was stated as a formula for the amount of
risk reduction due to layering. In addition, it can be used to compute the correct
variance-based, risk-loaded premium for an excess layer; it is also a formula for the
correction of a premium determination by subtraction of ground-up rates. It seems useful to
illustrate those here because the main purpose is to illustrate RAC-based risk-loaded
premiums. The presence of variance-based risk-loads in the same paper is useful to allow
comparisons.

Example A will be the Miccolis example of a lognormal severity distribution with the
parameters u equal to 8.9146, and ¢ equal to 1.7826. The mean frequency is given as 0.1
losses per year. This is a long-tailed distribution, appropriate for the medical malpractice
loss of one doctor. The annual expected loss of this frequency and severity combination is
$3,644. The distribution of annual aggregate loss has a variance of 2.4181E09 squared
dollars, and the standard deviation is $49,174.

In example A, the formulas supplied by Miccolis for partial integral, partial mean,
and partial noncentral second moment were used to produce the layer results shown in the

following tables:
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Table A-IIJ-1
Layer Definitions Top Frequency in
Layer #  Start Layer
1 $ 0 $ 25,000 0.075172
2 25,000 50,000 0.010569
3 50,000 100,000 0.007011
4 100,000 300,000 0.005343
5 300,000 500,000 0.000992
6 500,000 1,000,000 0.000614
7 1,000,000 1,300,000 0.000110
8 1,300,000 1,500,000 0.000043
9 1,500,000 2,000,000 0.000061
10 2,000,000 3,000,000 0.000047
11 3,000,000 4,000,000 0.000017
12 4,000,000 5,000,000 0.000008
13 5,000,000 7,500,000 0.000008
14 7,500,000 10,000,000 0.000003
15 10,000,000 15,000,000 0.000002
Total Frequency = 0.10000
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Table A-IN-2
Exp. Loss Exp. Loss Exp. Loss
Freq in layer below & inc. | Exp. Loss Excess
Layer # above layer zero to top | Layer
1 492.25 0.02483 492.25 1,112.92 1,112.92
2 373.81 0.01426 866.06 1,578.95 466.03
3 491.68 0.00725 1,357.74 2,082.39 503.44
4 881.85 0.00190 2,239.58 2,810.61 728.22
5 378.00 0.00091 2,617.59 3,073.40 262.78
6 418.45 0.00030 3,036.04 3,333.67 260.27
7 124.56 0.00019 3,160.60 3,404.62 70.95
8 59.97 0.00014 3,220.57 3,437.58 32.97
9 104.17 0.00008 3,324.74 3,492.80 55.21
10 112.64 0.00004 3,437.38 3,549.00 56.21
11 58.90 0.00002 3,496.28 3,576.42 27.42
12 35.62 |  0.00001 3,531.90 3,592.00 15.58
13 46.56 0.00000 3,578.46 3,610.32 18.32
14 21.99 0.00000 3,600.45 3,617.23 6.91
15 20.04 0.00000 3,620.49 3,620.49 3.26
Sum = 3,620.49




(All variance figures have been divided by 1000)

Table A-II-3
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Variance Freq. Variance Var of layer

Layer # in Layer above layer | below & incl. | zero to top
1 6,229 0.024827 6,229 21,746
2 13,753 0.014258 19,982 55,627
3 35,873 0.007247 55,855 128,320
4 160,588 0.001903 216,442 387,751
5 147,215 0.000912 363,657 591,562
6 296,676 0.000298 660,334 957,964
7 141,951 0.000188 802,285 1,119,508
8 83,722 0.000145 886,007 1,211,530
9 180,154 0.000084 1,066,161 1,402,250
10 274,697 0.000037 1,340,858 1,675,739
11 203,442 0.000020 1,544,300 1,864,866
12 158,942 0.000012 1,703,242 2,003,755
13 282,726 0.000004 1,985,968 2,224,928
14 189,530 0.000002 2,175,498 2,343,264
15 242,625 0.000000 2,418,124 2,418,124

Total Var= 2,418,124

Std. Dev. = 49,174.42

The variance scaling was reversed before computing the standard deviation, in this

and all similar tables.

The righthand column of the table above shows the variances of ground up layers

(from zero to the tops of the numbered layers). The next thing of interest would be to show
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the variance of the excess loss for each numbered layer. If subtraction of ground-up layer
variances were correct, the results would be just the differences of the successive numbers in
that column, after the entry for the bottom layer. Subtraction results are shown in the next
table after a correction determined by the Miccolis formula. The correction term is shown
separately in the next column. The variance of the excess loss in the top layer is also useful
in computing the correlation, shown in the next column, between the ground-up layer which
excludes the top layer shown in the layer column and the top layer itself. The first entry
here is for row 2 of the table; that represents the correlation between excess loss in layer one
and excess loss in layer two. The third row is the correlation between excess loss in the

combined first two layers and excess loss in the third layer counting up from the bottom.
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Table A-IIT-4
Var of layer Var/Excess Var Reduction | Correl of O,T
Layer zero to top Layer w/top layer
1 21,746 21,746
2 55,627 10,579 23,302 0.733945
3 128,320 22,349 50,344 0.691373
4 387,751 113,786 145,645 0.590111
5 591,562 46,140 157,671 0.583871
6 957,964 106,129 260,273 0.516184
7 1,119,508 19,651 141,894 0.515368
8 1,211,530 6,307 85,715 0.508690
9 1,402,290 25,115 165,644 0.473712
10 1,675,739 48,628 224,821 0.429720
11 1,864,866 24,613 164,514 0.404548
12 2,003,755 14,273 124,616 0.381568
13 2,224,928 38,012 183,161 0.331595
14 2,343,264 14,698 103,637 0.286408
15 2,418,124 9,674 65,187 0.216404

A risk charge of 5% of the expected value pure premium was used by Miccolis to as
a standard to determine the coefficient of variance in the pricing formula. The coefficient
was determined to be 2.559E-06. The following table gives the resulting premiums for all

ground-up layers and all excess layers.
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Lambda = 2,56E-06

Page A III-7

Exp. Loss zero | Exp. Loss Premium zero | Premium
Layer# to top Excess Layer to top Excess layer
1 $1,113 $1113 $1,169 $1,169
2 1,579 466 1,721 493
3 2,082 503 2,411 561
4 2,811 728 3,803 1,019
5 3,073 263 4,587 381
6 3,334 260 5,785 532
7 3,405 71 6,269 121
8 3,438 33 6,538 49
9 3,493 55 7,081 119
10 3,549 56 7,837 181
11 3,576 27 8,349 S0
12 3,592 16 8,720 52
13 3,610 18 9,304 116
14 3,617 7 9,614 45
15 3,620 9,808 28
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Table A-III-6
P is)

Layer

Definitions Percent for Percent for

Layer # Start Top Zero to top excess layer
1 $ 0 $ 25,000 4,76 4,76
2 25,000 50,000 8.27 5.49
3 50,000 100,000 13.62 10.20
4 100,000 300,000 26.09 28.56
S 300,000 500,000 33.00 31.00
6 500,000 1,000,000 42.37 51.06
7 1,000,000 1,300,000 45.70 41.48
8 1,300,000 1,500,000 47.42 32.87
9 1,500,000 2,000,000 50.68 53.79
10 2,000,000 3,000,000 54.72 68,89
11 3,000,000 4,000,000 57.16 69.67
12 4,000,000 5,000,000 58.81 70.10
13 5,000,000 7,500,000 61.20 84.15
14 7,500,000 10,000,000 62.37 84.48
15 10,000,000 15,000,000 63.09 88.37

This verifies the often stated opinion that the risk load is a larger fraction of the

excess layer premium than it is of the primary premium. While it is also quite large for very

high limits primary policies, those ground-up coverages in the top half of the list are not

often written as single policies because of their high risk loads, which can be avoided by the

common combination of primary plus excess covers. Excess layers, on the other hand, can

be kept small to hold down their expected losses, but their percentage risk loads are still high
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because of their risk structure. A sufficiently thin excess layer approaches the risk
characteristics of the Poisson distribution which has a long tail for the cases of small
frequency.

The next example is similar to the first example; it has the same Poisson frequency
but the severity is piece wise constant with constant density within each layer. The layers
have the same frequency within the layer for each layer as for the lognormal, but the mean
and variance within each layer will be somewhat different than for the lognormal. The main
motive for this difference is to facilitate the calculation of the RAC within each layer. Based
upon the lognormal, the RAC is difficult to compute because the moment generating function
for the lognormal can only be expressed as a series expansion. The lognormal has all
moments but the series is difficult to express in any simple form. In addition, the motive
also exists to illustrate how easy the RAC is to compute when each layer is approximated as

a rectangular density function.

EXAMPLE B

Table A-III-1 remains the same in the B example as in the A table, because the layer
frequencies have been kept the same. But the layer mean (the mean of all aggregate loss
from losses whose size is within that layer) is just the layer frequency multiplied by the
average of the upper and lower endpoints of the layer. Because of the Poisson frequency
within each layer, the variance of aggregate loss (the variance of the sum of all losses whose
size is within that layer) is given as the frequency in that layer multiplied by the second
non-central moment of the layer severity. The formulas for these and for the RAC within a

layer are given at the end of this appendix.
7
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The next five tables repeat the last five tables so the reader can see the size of the

differences between the two models. The next two tables have some differences from their

example A counterparts.

Table A-II-7
Exp. Loss
Exp. Los in | Freq above | below & E. Loss for | Exp. Loss
Layer # layer in layer incl. Zer1o to top excess layer
1 $ 939.65 939.6542 $ 939.65 $1,560.32 $1,560.32
2 396.33 396.3317 1,335.99 2,048.88 488.56
3 525.85 525.8496 1,861.84 2,586.49 537.61
4 1,068.61 | 1,068.6149 2,930.45 3,501.48 914.99
5 396.72 396.7247 3,327.18 3,782.98 281.50
6 460.49 460.4910 3,787.67 4,085.30 302.31
7 126.41 126.4126 3,914.08 4,158.10 72.80
8 60.24 60.2403 3,974.32 4,191.33 33.24
9 106.13 106.1288 4,080.45 4,248.51 57.18
10 117.06 117.0581 4,197.51 4,309.13 60.62
11 60.11 60.1075 4,257.61 4,337.76 28.62
12 36.07 36.0670 4,293.68 4,353.78 16.03
13 48.58 48.5772 4,342.26 4,374.12 20.34
14 22.49 22.4920 4,364.75 4,381.53 7.41
15 20.97 20.9707 4,385.75 4,385.72 4.19
Sum = $4,385.72
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Table A-11I-8
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Layer # Variance Freq | Above Layer Variance Var/Layer
in Layer below & incl. | zero to top

1 15,661 0.024827 15,661 31,178
2 15,413 0.014258 31,074 66,718
3 40,899 0.007247 71,973 144,438
4 231,533 0.001903 303,506 474,815
5 161,996 0.000912 465,502 693,407
6 358,160 0.000298 823,662 1,121,292
7 146,199 0.000188 969,861 1,287,084
8 84,480 0.000145 1,054,341 1,379,865
9 186,989 0.000084 1,241,330 1,577,459
10 296,547 0.000037 1,537,877 1,872,758
11 211,807 0.000020 1,749,684 2,070,251
12 162,969 0.000012 1,912,654 2,213,166
13 307,655 0.000004 2,220,309 2,459,268
14 198,144 0.000002 2,418,453 2,586,218
15 265,628 0.000000 2,684,081 2,684,081

Sum = 2,684,081 (Scaled by E-04)

Std. Dev.= $ 51,808
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Table A-III-9
Var of Layer Var of Excess | Var Reduct Correll of O,T
Layer zero to top Layer By Layering with top layer
1 31,178 31,178
2 66,718 11,113 24,428 0.615219
3 144,438 23,959 53,761 0.644774
4 474,815 147,378 182,999 0.610913
5 693,407 49,689 168,903 0.543396
6 1,121,292 125,573 302,312 0.508375
7 1,287,084 20,191 145,601 0.481853
8 1,379,865 6,361 86,420 0.476027
9 1,577,459 26,062 171,532 0.451003
10 1,872,758 52,817 242,482 0.419143
11 2,070,251 25,760 171,733 0.390379
12 2,213,166 14,692 128,224 0.367209
13 2,459,268 42,743 203,359 0.330303
14 2,586,218 15,841 111,109 0.281305
15 2,684,081 13,980 83,883 0.220475

The variance-based risk-loaded premiums for the B example are given in the next

tables, with their percentages of risk load. The A value used is that which gives the 5% risk

load for the basic policy whose limit is $25,000.
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Table A-I1-10
E. Loss for Exp. Loss Premium Premium
Layer # Zero to top Excess Layer zero to top Excess Layer
1 $1,560 $1,560 $1,640 $1,640
2 2,049 489 2,220 517
3 2,586 538 2,956 599
4 3,501 915 4,717 1,292
5 3,783 282 5,557 409
6 4,085 302 6,955 624
7 4,158 73 7,452 124
8 4,191 33 7,722 50
9 4,249 57 8,285 124
10 4,309 61 9,102 196
11 4,338 29 9,636 95
12 4,354 16 10,017 54
13 4,374 20 10,667 130
14 4,382 7 11,000 48
15 4,386 4 11,254 40
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Table A-II-11

Layer

Definitions % Risk-Load % Risk-Load

Layer # Start Top zero to top Excess Layer
1 $ 0 25,000 4.86 4.86
2 25,000 50,000 7.69 5.50
3 50,000 100,000 12.50 10.24
4 100,000 300,000 25.76 29.19
5 300,000 500,000 31.93 31.11
6 500,000 1,000,000 41.26 51.53
7 1,000,000 1,300,000 44.20 41.51
8 1,300,000 1,500,000 45.73 32.87
9 1,500,000 2,000,000 48.72 53.84
10 2,000,000 3,000,000 52.65 69.04
11 3,000,000 4,000,000 54.98 69.73
12 4,000,000 5,000,000 56.54 70.11
13 5,000,000 7,500,000 59.00 84.32
14 7,500,000 10,000,000 60.17 84.55
15 10,000,000 15,000,000 61.03 89.51

The differences between the examples A and B are now evident and are apparently
minor, based on comparison of the two sets of 5 tables for each. The next series of tables
will focus upon the differences between variance risk load and RAC, and upon the properties
of RAC as a risk-loaded premium, all entirely based upon the B example.

The first idea to illustrate is that the risk aversion level can be selected on the same
basis as the A coefficient of variance was selected. The result is that the risk aversion level

is r = 4.93E-06, also a very small number. The reciprocal of the risk aversion level will
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also be noted since this is sometimes called risk tolerance. For the stated risk aversion level
the risk tolerance is $202,840 indicating a very small insurer. The set of premiums
calculated by RAC for the ground-up policies is given in the next table.

Table A-1T1-12

Risk Aversion = 4.93E-06, Risk Tolerance = $202,840

RAC of % Risk-Load
E. Loss for | layer ZEro to top Var Prem
Layer # Policy Limit | zero to top Zero to top zero to top

1 $ 25,000 $1,560 $1,640 5.1 $1,640
2 50,000 2,049 2,225 8.6 2,220
3 100,000 2,586 2,995 15.8 2,956
4 300,000 3,501 5,307 51.6 4,117
5 500,000 3,783 7,292 92.8 5,557

The reason that the results are not given for the higher policy limits is that the
premium becomes very large for the higher limits at this large risk aversion level. If an
insurer is so risk averse that it requires a 5% risk load at a policy limit of $25,000, it is too
risk averse to write policy limits of $500,000 or more. That conclusion seems reasonable in
light of the fact that most small primary companies do not write high limits policies.

Another risk aversion level to consider is that which makes the premium for top
policy limits as determined by RAC equal to that determined by variance with the same A we
have been using, 2.559E-06. This is .5682E-06 and it corresponds to a risk tolerance of

81,759,944,
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Risk Aversion = 5.68E-07, Risk Tolerance = $1,759,944
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RAC of % Risk-Load
E. Loss for | layer zero to top Var Prem
Layer # Policy Limit | zero to top zero to top zero to top

1 25,000 1,560 1,569 0.6 1,640
2 50,000 2,049 2,068 0.9 2,220
3 100,000 2,586 2,628 1.6 2,956
4 300,000 3,501 3,642 3.9 4,717
5 500,000 3,783 3,994 53 5,557
6 1,000,000 4,085 4,447 8.1 6,955
7 1,300,000 4,158 4,586 9.3 7,452
8 1,500,000 4,191 4,660 10.1 7,122
9 2,000,000 4,249 4,813 11.7 8,285
10 3,000,000 4,309 5,058 14.8 9,102
11 4,000,000 4,338 5,264 17.6 9,636
12 5,000,000 4,354 5,468 20.4 10,017
13 7,500,000 4,374 6,154 28.9 10,667
14 £0,000,000 4,382 7,200 39.1 11,000
15 15,0000,00 4,386 11,254 61.0 11,254
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The next table shows the premiums for all excess layers. Also shown for perspective

are the expected loss, the risk-load as a fraction of the premium, and the variance-based

premium. This is at the same risk aversion level last used.

Table A-ITI-14

Risk Aversion = 5.682E-07, Risk Tolerance = $1,759,944

Var
Exp. Loss | RAC of Premium
Excess Excess Excess Layer RI
Start Top Layer Layer Layer Load as
$0 25,000 1,560 1,569 1,640 0.5
25,000 50,000 489 492 517 0.6
50,000 100,000 538 544 599 1.2
100,000 300,000 915 958 1,292 4.5
300,000 500,000 282 296 409 49
500,000 1,000,000 302 341 624 11.4
1,000,000 1,300,000 73 79 124 7.6
1,300,000 1,500,000 33 35 50 53
1,500,000 2,000,000 57 65 124 12.4
2,000,000 3,000,000 61 79 196 229
3,000,000 4,000,000 29 37 95 235
4,000,000 5,000,000 16 21 54 23.9
5,000,000 7,500,000 20 40 130 49.1
7,500,000 10,000,000 7 15 48 49.7
10,000,000  }5,000,000 4 14 40 69.6
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Table A-III-15

Risk Aversion = 5.682E-07, Risk Tolerance = $1,759,944

Var
Exp. Loss | RAC of Premium
Excess Excess Excess Layer RI
Start Top Layer Layer Layer Load as
$ 0 $ 25,000 $1,560 $1,640 $1,640 4.8
25,000 50,000 489 517 517 55
50,000 100,000 538 602 599 10.6
100,000 300,000 915 1,412 1,292 35.2
300,000 500,000 282 452 409 37.7
500,000 1,000,000 302 1,069 624 71.7
1,000,000 1,300,000 73 158 124 53.8
1,300,000 1,500,000 33 55 50 40.0
1,500,000 2,000,000 57 225 124 74.5
2,000,000 3,000,000 61 1,292 196 95.3
3,000,000 4,000,000 29 652 95 95.6
4,000,000 5,000,000 16 379 54 95.7
5,000,000 7,500,000 20 222,912 130 99.9
7,5000,000 10,000,000 7 86,181 48 9.9

In spite of the small size and high risk aversion represented in the table above, this

insurer is able to write most of the excess layers evaluated. The premiums are excessively

large for the top six layers. Apparently, risk sharing works very well, but there are enough

larger insurers, with smaller risk aversion to write these excess layers at lower cost.
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The "Risk Profile Curve is a graph of the RAC as a function of the risk aversion
level. Here it is a graph as a function of the risk tolerance which is the reciprocal of the risk
aversion. Risk tolerance is an amount of money and so may appear more meaningful.”
Figure two is the risk profile curve for the top excess layer,which starts at 7.5 million
dollars and runs to 15 million dollars. At low risk tolerance, the risk loaded premium is
very large but then it declines, approaching the expected loss pure premium which is just

$4.00.

FIGURE 1
Risk Profile Curve for Basic Policy

2000 Q_F!C_=B_RETMIUH In Dollar)

1800%
.

1600

[ (Thal crve apprpaches $1540 = Tho expacted Lock)

o] 0.5 1 1.5 2 2.5 3 3.5
Risk Tolerance in $Millions

281



Page A 120

FIGURE 2

RISK PROFILE CURVE FOR TOP EXCESS POLICY
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The Equations
When using a piecewise constant density for severity, where each layer has a constant
density, the formulas needed for the results presented are given below. The set of three
equations is for aggregate loss for all losses whose size is between the lower end point
L;; and the upper end point, L; of layer ;. The expected amount of aggregate loss, given the
frequency F,, in this layer is:

Liy*+Ly

BL(Ly,, L)) = F;=%%
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In the special case when the layer has zero width, the expected loss is Fi x Li itself. The
Variance in the layer, also based upon the rectangular severity is given by the next equation:

L} 4Ly, .Ly+L}
3

VAR(L,_,, L;) =F,
When the layer endpoints are the same, the VAR is just

VAR(L, ,,L,) =F;L}

The RAC in the layer, a function of risk aversion level r, has the following formula:

exp(r.L;)-exp(zr.L; ;) _

1
r. (LI-LI—I)

RAC(L,,, L) = (4.

The special case when the layer has zero width has the special formula as follows:

F
RAC(L; ,,L;) = (—Ei-) [exp(r.L;) -1)

The special cases of zero width usually occur when there is a policy limit. Then all the
layers above are effectively collapsed into a degenerate layer at that limit and the frequency
of the degenerate layer is the frequency above that layer. This is very conveniently organized

into a spreadsheet format.






