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ABSTRACT 

This paper contains a new approach to analyzing loss statistics which uses 
stochastic processes. The author views loss statistics ae samples from a 
specific type of stochastic process. The author believes that type of process 
is the most consistent with the realities of insurance statistics, and he 
explains why. Using that mathematical framework the author develops a formula 
for credibility when the complement of credibility is applied to trend. The 
paper also contains a formula for trending data that is more consistent with the 
stochastic approach (and hence the realities of insurance statistics) than the 
trend line. 



A STOCHASTIC APPROACH 
TO TREND AND CREDIBILITY 

Joseph A. Bow 

Even though insurance and econometric statistics are driven by random forces, 

actuaries usually treat them as deterministic. For instance, actuaries tend to 

assume that insurance losses follow some perfect line or exponential curve over 

time. Since that implies the growth in losses is a function oE time alone, we 

are implicitly assuming that ic is time alone that causes loss cost levels to 

change. 

Of course, we all realize that assumption is false. But, we also recognize that 

we must reflect inflation and other environmental changes in raremaking. So. in 

the absence of better models we use deterministic models. This paper contains 

a new model that reflects the randomness in econometric data. 

Why the Trend Line Doesn't Work. 

'I don't know where we've come from. 

I don't know where we're going to. 

And if all this should have a reason.... 

We would be trhe last to know.' -John Kay 

Trend lines often produce unrealistic results when they are used on econometric 

data. Consider the United States Consumer Price Index when it began to come out 

of its inflationary spiral in the early 1980's. At that time a CPI prediction 

based on a trend line would err for two reasons: not only because the projected 

increase since rhe lasr: actual observed point would be too high; but also because 

the fitted trend line value at the last observation rime would be higher than the 

actual observed CPI at that observation time. 



For example, the curve below represents that specific set of circumstances. The 

trend line represents a loglinear fit to the CPI during 1977-83. 'C' represents 

the predicted 1985 CPI log using the trend from 1977-83. 'D' is the actual 

recorded 1985 CPI Log. The difference C-D is Large because the recorded1983-87 

CPI log increase (.131) was below the wend (.374). And it is larger yet because 

the 1983 recorded CPI log 'B' was below the trend Line value 'A'. 

In this case trend line analysis works very poorly. It does so because its 

fundamental assumptions are contrary to the way economic systems work. 



On one hand, the trend Line marhematics assumes there is a straight line (or 

exponential curve in the case of loglinear fit) underlying the data. It assumes 

that the only reason the data do not lie on that straight line is that each point 

is imperfectly observed. In mathematic terms it assumes there is an observation 

error (with common variance E') at each point. 

On the other hand, with econometric data the prediction error does not result 

from imperfect observation of the existing data as much as it results from year- 

to-year changes in the trend. There is really no logical reason for the CPI to 

follow a perfect exponential curve. The fact that it increased by 4% in 1984 

does not mean it has to increase by exactly 4% in 1985 (although it does make it 

more likely). The trend line and regression have many reasonable applications 

in physics and chemistry; where laws of nature require that one variable be 

related to another by some precise formula. But at present there are no formulas 

that specify the behavior of econometric data. So. the author believes 

econometric data reflects randomtrendwithminimal observation error rather than 

constant trend with significant observation errors. so, regression on 

econometric data may yield large errors. Some observers then conclude ic is 

futile. 

Unfortunately, the premiums and lasses that are the actuary's stock in trade are 

econometric quantities. They inflate verql much like rrhe CPI. So actuaries need 

a realistic way to predict econometric quantities. 

A Realistic Model 

The argument above suggests we should assume that trend is random but there is 

no observation error. That follows from the fact chat econometric data may be 

a series of numbers, but those numbers represent the aggregate actions of an 

enormous number of individuals. 



For instance, the CPI is an aggregate of the buying and selling decisions of 

everyone in the United States. Those millions of people buy or sell 

independently, but their actions tend to be guided by two parameters: what 

others are doing (market prices) and what they see as the trend of the economy 

(historic inflation and other inputs). Assuming that broad econometric changes 

are a result of many small changes["; and that those changes tend to be 

proportional to the price level when the changes occur; results in the model 

below 

n( t, +A.A) 
y(t+A)=y(t). fI 

i=l 
(1+c, (A) 1 

Where : 

y is the econometric variable being observed (e.g. the CPI). 

(t,t+A) is the time period over which y changes. 

n(t, t+A, A) is the number of small changes in y made between times t and 

t+A. The actual number of changes, n. is random, but it is distributed 

around a mean of AA. 

c,(A) is the percentage effect on y of the 'ith' change. The c,(A) are 

random, but identically and independently distributed about some mean C(h). 

Those bold presumptions about the pattern of y deserve further explanation. As 

stated earlier, econometric data represents a broad aggregate of the decisions 

of millions of people. If we say there are k annual exchanges between buyers and 

sellers; and prices agreed to by buyers and sellers change in an average of lOON% 

of the k exchanges; then we can expect l=kN changes over rhe course of the year. 

So long as the k occur evenly throughout the year, Al-kN changes should occur in 

the interval (t,t+A). 



Further, the changes occur with a constant frequency. And each change's 

occurrence is independent of the other changes. So. the number of changes 

n(t, t+A,A) follows a Poisson distrfbution with mean AA (see pages 21-22 in (2j). 

Each time a price changes, the change only affects one of the k exchanges. So 

each change c,(A) is very small. The size of each individual CI is random; but 

the product of A changes (the Iterated product above) should average to the long- 

term trend of inflation l+G. So, ~[l+c,(A)l should be roughly the A'th root of 

lffi. As one can see, when A is very large and G remains fixed, E[l+c,(A)l will 

be very close to one. So E(c,(A)l will be very close to zero. 

Importantly, the resulr of all those changes should be their product, not their 

SIllA. That is because I believe buyers and sellers consider the overall price 

level (y) rather than the last particular price for their exchange when the price 

change is determined. 

Because there are so many exchanges each year, I believe A is so large that the 

limit as A-- is a close approximation co the real world. To that end, I shall 

define n(t,r+A,A) co be distributed Poisson(AA) (where A--). The c,(A)'s should 

be distributed with a mean approximately equal to the X'ch root of l+G. However, 

taking the Taylor's series expansion by Z of (l+G)*, h(l*Gl/A is a very close 

approximation co the A'th root of l+G (at least as long as A--, so l/A-O, the 

Taylor's series approximation works). 

Of course, that suggests chat the expected value of the ~~(1)'s will be zero as 

A--. But, bear in mind that as the c,(A)'s go to zero, A-m. So, the product 

averages to (l+G)*. 

I have deliberately failed to prescribe rhe distribution of the c,(A) 's. While 

I have good reasons co believe the number of changes will follow a Poisson 

distribution, I have no such information on rhe distribution of change amounts. 

On the other hand, the central limir law suggests that the only important 

characteristics of their distribution are the mean and variance. 
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Now the mathematic framework is set, I will use the phrases 'very small' and 

'very large' for the c, and n throughout the rest of the paper. That should be 

taken as the case where A--. Further, to simplify matters, I will set A=1 and 

let c,=c,(A), n=n(~,c+1,1). 

Since the year-to-year change is the limit of a" interated product, it is easier 

to work with the natural logarithm of y(t) 

x(t~l)=ln(y(t+1)) =x(c) + : 1*(1*c,) 
i-l 

But ln(l+c,) is very close to zero, and each C, is very small. So, the Taylor 

series expansion ln(l+c,)=c,-c:+2c:-3c:+.... will contain a small term c,, and 

powers of cI that are orders of magnitude smaller. That indicates l"(l+c,) will 

be very close to c, when A is large and c, is approximately the small quantity 

ln(l+~l/A. So. when A-- 

x(t*1) =x(t) l f ci 
1'1 

The y(t) cu?xe was driven by a driving trend (l+G)'. So. if r=ln(l+G) the 

expected value of EC, should be T. Since the sizes of the changes are 

independent of the number of changes (n), T must equal pn'pc. Sincep,;A-m, pC 

must equal (T/A)-0 as noted earlier. Further, the variance of each 

x( C+ll -x(t) =Cc, is o:=Ao:+Ap: because of the formula for the collective 

variance of a count and amount distribution (Ano:+p,o, * * (31) 

But there is another way to look at the variance. Since the variance generated 

by the combination of n and the CI 's should converge to the variance 

o:-Var Ml) Ix(O) I , we should require that A(af,l*pS.~)=o: for each A. So, the 

limit as A-- of the variance Ato:+ vs, must clearly be the fixed variance a:. 

so, eve" though the precise distribution of the c,'s, is undetermined: of+pf 

must implicitly be a function of A(the mean number of changes per unit time). 

Specifically, 

o:+p:=o:/ A 



so. the only other criterior for the c,(A) ‘S is that their variance be 

(&A) -(p:/A) As stated earlier, the central limit law will ultimately suggesr 

that all other characteristics of rhe distribution of the c,(A) 's are irrelevant. 

In fact X(C) is a special form of stochastic process. Since ~ar(clso:/A is 

finite, the central limit law indicates 

is approximately a normal distribution (-N(F,=T/~. a:/n)) when n is very large 

and fixed. But practically, since n-Poisson(A) and A--. n has an extremely 

small relative standard deviation (a,/p,=fl/A=l/fl-01 So, n may be regarded 

as being nearly invariant when it is large: and for all practical purposes, the 

total change follows a normal distribution. 

I: c, -~(nT/n. n'o:/nl =N(T, no:=Ao:) . 

These produce the seemingly contradictory results that o:=A(o:+p:l and a:=Ao:. 

But noting that &(Ec,) = T, pf must equal T'/A'. So, as A--, p$=T2/A2-0 and 

oz,=o:/A-0 That means p: goes to zero like l/A2 whereas a$ only decreases like 

l/A. So, the o: term predominates and the other p; term is functionally zero. 

And 0: is roughly equal to Aa:. In fact, at the limit as A-m, a: is equal to 

A&. 



Economerric Data as a Random Walk 

As I stated earlier. x(t) is actually a special form of stochastic process 

called a random walk. The expected increase between times t and s is r(s-c). 

And T does not vary with .s or t. Further, the changes over any two disjoint 

intervals (x(a) -x(b) and x(s)-x(t)) are statistically independent with means 

proportional to the time difference. Mathematically, E[x(a) -x(b) l=T(a-b) and 

E[x(s)-x(t)]=r(s-t) In the language of stochastic processes, that means x has 

stationary, independent increments. 

But what about the variance? Since the starting point x(O) has not been 

defined, it does not yet make sense to talk about Var(x(c)) But one can 

analyze Var(x(s) Jx(t)=u) Consider the changes that affect x as it moves from x(t) =u 

to x(s) Since L was the parameter used to denote the (very large) expected 

number of changes per unit time we expect very close to n=A(s-c) changes of size 

Cl, . . . . C". The analysis of the previous section shows that :he conditional 

distribution x(s) (x(C) =u is a normal distribution with mean 

E(n)-T/A=A(s-t). i"/l=(s-t)T and variance no:=A(s-t)cf. 

But that discrete model of economic change (each choice of 1 and the distribution 

of the c,(A) '5) has an underlying assumption about the variance of the first 

year's trend. In fact, since the trend and variance are assumed to be 

independent of the starting value x(O), one could define a2 by 

iig hf.,. =Var(x(l) IX(O) ‘Ul =d 

Since the a: are independent of u, they are all equal. So we may use the o2 

they all equal as oXz. And, 



That result is entirely independent of the family of distributions (c,(Al 1. as 

long as each c,(A) distribution obeys the parameters imposed upon it. In other 

words, for any appropriate family of distributions [C(A) 1, the limiting 

variances will always be proportional solely to time. The above argument shows 

the resulting variances between times must be sc~me constant variance parameter(o$ 

multiplied by the time difference. 

That allows us to form some conclusions about this econometric 'random walk'. 

1) The conditional distributions x(s) I(x(t)=k) are normal distributions 

with mean and variance proportional solely to distance and starting 

point 

[x(s) 1 (XC cl =k) ] -Nk* (s-c) T, (s-t) 0~1 

The variance is entirely independent of the starting point and is 

related solely to distance. 

2) Since only the mean in 1) was influenced by the starting point x(C) =k. 

The distribution of x(s)-x(c) is solely a function of the time 

difference s-t, i.e. it is -if((s-cl~,(s-tld) 

3) The process is piecewise continuous. Said another way, it produces 

piecewise continuous random walks. This is because 

x(t+A) -N(x(t) +AT,Aoz) means that for any 'small' E 

b-d 11p P(x(e+A)E(x(t)-E,x(t)+E))=l 

4) The random functions x(t) generated by the process, while continuous, 

will almost certainly be nondifferentiable (i.e. fractals). That is 

because the random nature of the process dictates that while 

x(c+Al-x(t) may show a slope of M; x(t+A/Z)-x(t) being random, will 

show some different slope. 

The above conclusions form the classic conditions for a random walk propelled by 

a constant force (T). 351 



Insurance Dam and Imperfect Observation 

Of course the goal of most actuarial analyses is to find a better way to use 

historical insurance data to predict future losses. That requires recognizing 

hoth random change and observation error. There is an underlying propensity to 

loss X(C) that results from a continuous random walk. But since insurance data 

only provides a random sample of the underlying propensity to loss, insurance 

datausually represents some 2(t) The observedvalues B(C) differ from each x(t) 

by some independent error variables E (t) - N(0,E2). So, insurance data is 

characterized by both random change and observation error. 

With the prior analysis of econometric data switching between an exponentially 

trending stochastic process y(t) and its linear trending cousin x(t)=ln(y(t)) ; 

it is important to specify which one models insurance data. Insurance data is 

a reflection of a propensity to loss that is always positive and is subject to 

exponential inflationary pressures. So insurance data represents y(t). 

Further, since the driving force behind the increase in y(t) is severity 

(inflation) rather than frequency, the errors l (t)=P(t)-y(t) should be 

proportional to y(t). Taking the log transform x(c)=ln(y(t)),d=ln(p(t)) yields 

an x subject to a linear random walk. And 2 is such that each X(C) -2.(f) is from 

a set of independent, presumably identically distributed "le(t) -N(O.E'). 

The insurance problem then reduces to: 

'Given prior observations P(l), P(2) . . . . z(n) of log(j7, what is the best 

predictor of y(n+t)=exp(Z(n+t)) ?' 



The Distribution of Future Losses - A Backward Auoroach 

'Forward into the past' 

-Firesign Theatre 

Obviously, finding the best predictor of 9(t*n) will involve finding the 

probability distribution of x(n+t) given observed P(1). R(2), . . . . P(n). That 

distribution will involve finding the reverse likelihood of 

P(1). Z(2). . . . . R(n) given x(t*nl The process is complicated by the fact that 

each P(i) is derived from a compound process... first generating x(i) using a 

random walk, and then generating R(i) by adding observation error e(i) - 

N(0, Ez). Analyzing x(t+n)l(R(il. Z(j)) will be especially difficult because the 

characteristics of a random walk dictate that all three observations will be 

highly interdependent. Unfortunately, the dependence is through the related 

variable x(i), not direct. 

Tha: indirect dependence requires that parts of the analysis use x rather than 

2. To do so requires creating a distribution of x(i$?(i) rather than 

R(il(x(i) 

Determining that 'backward' distribution requires using both Bayes' Theorem and 

a uniform distribution on (--,+a) (a 'diffuse prior' distribution). Appendix I 

contains a 'reverse probability' theorem. That theorem shows that if the random 

variable A is a priori uniformly distributed on (- ~,+a.) (i.e. each possible value 

is equally likely), then the density function f(A=alE=b) is proportional to B 

given A (f(B=b(A=a) ). The constant of proportion is l/~f(E=b(A=xJcfx 

That theorem involves the essence of this 'backward' analysis. To determine the 

likelihood of each potential x(n+t) (f(x(n+t)l2(1), S?(2), . . . . g(n))) I will use 

f(*(l) , P(2), . . . , P(n) Ix(n+tll Along the way. 1 will note that 

f (x(i)IP(i)) -PC%(i) Ix(i)) (per Appendix I). 



In any event, to determine the likelihood of observing Z(1)=8,. n(2)=-%, ... 

. . . . %(n)=f, given x(n+t)=x,.,, it is first necessary to determine the likelihood 

of any x(1)=x,, x(2)=x,, etc. Then, going backward, while f(x,, x,, . . ..x.lx,,,) 

may be complicated, f&lx,,,) is distributed XV&.,-TV, to") , f(x,.,Ix,)-N(x,-T,~~) , 

f (xn-llXn) -N&-T. 0’) , f (X,-,1x,-,I -N(x,.,-T. 0’) . Because the random walk has no 

memory those may be combined. In other words, as long as S<U<Y, 

f(X(S) =x,1x(u) =x,Axlv) ‘XJ =f(x(s) =x,)x(u) =x,1 , so we may multiply the adjacent 

conditional probabilities to obtain the overall density, f(x,,x,,...,x,~x,.,) . 

Setting 

f(X(l) =x1, x(2) ‘%, . .x(n) =x,~x(n+cl ‘X,.,) - f(x,. x,. . . X”(X”.J I 

and using the independence of the random change over time, 

-f (x”lx”.c) .f (x”-lIx”) .f (x"-lJx".,) . . f&lx,) 

-(l/((dZ(JEol exp (-(x,.,-tT-~“)~/(2t~~)) 

‘(l/t (&%a) ) em 

~(l/(vzGJ)) exP 

~(l/(m-%Jl) exp 

-(X”-T-X,~,1’/(2(1~11 

- (x”.,-T-x”~,l’/ (20’) ) 

-(X2 !-T-x,) */ (202) ) 

-~1/((Jzii)~o~~~l exp 
‘7-l 

[-(l/2) ( (x”.c- CT-x,)~/(to') +(1/o') c (xi+T-xi*,)')l 
1=1 



Further, since the E,' s are independent, identically distributed, and independent 

of the q's 

-(l/((J2TE)) exp (-LY"-%)*/(2Ev) 

. Cl/ ( (Jzm ) exp (- efn-l-z".-,) '/(2E2) I 

. 

~(l/((&??iE)l exp (-(X,-iT,,)'/(2E")) 

-[l/(JZiSE)"l.exp[-(l/Z) W'$ (X,-fi)91. 
1-l 

So, since the e's are independent of the x's 

fLY,. x,, . . ., X", 2,, . . .I 2nIx".,l 

-~1/((2x)%"fEE')] .exp[-(l/Z) ((X,.,-tT-X"):/(td) 

n-1 
+ (1/02) c Lq+T-x,.,l*+ (l/E’) f (x1-R,)V I 

1=1 1'1 

Then, to eliminate the reliance on x,, . . . . x,, all that is necessary is to 

integrate over all possible x1's, i.e. 

f c?,. . . . , qJx"+,, [II 

- [l/ ( (2x)"cPJEE") .hi.. . dex'p [-(l/2) ((x,,.,-tT-x~12/(to2) 

n-l 
+(1/O') c (Xi+Z'-x,.,) '+ (l/E') f (xi-)?,,', 1 du, . . d+ dX, 

1=1 1=1 



Ultimately, the best predictors of q-C will maximize that function. But since 

it: is very unwieldy, a brief digression will illustrate what it means in concrete 

situations. 

Two Extreme Examvles 

To gain some insight into the structure underlying the 'best' predictor of x,,.~, 

I will analyze two extreme examples. One is the case of 'total determinism' 

(o'=O) The other is 'perfect observation' (E'=O) 

'Total determinism' (a2=O) fulfills all the criteria needed for regression: 

1) The underlying exposure X(C) is a straight line: and 2) The only reason the 

observed data X(C) do not fall on a straight line is the presence of 

independent, identically distributed. observation errors E(C) 

The fitted line x(c) =F+m(f-3 represents the regression estimate. Further, 

since the Vectors a,=[1, 1. . . . . I and a,=[-(n-1)/2,-(n-3)/2,..., (n-1)/21 are 

independent, we can use them to produce the regression. Since a, is a 'pure 

constant', x=a;G,l/la,~2. And, since a, is pure slope, m=a;[R,l/la,V. But, 

after some algebra, a;[P,l may be rewritten 

Which, after some series algebra become 

IYe1 (in-i?.) 
-‘YE ---j-- (P,., -2,) 

i=l 

(where K is constant with respect to [R,l and the in-i2 are the weights used on 

the differences Li?,.,-2,)). 



So. regression is based on averaging over the observation period. The prediction 

keys off an average value of x - roughly its predicted value at the middle of 

the obseration times. It adds a slope multiplied by the time elapsed since the 

middle of the observation times. The slope is computed by using a weighted 

average of year-to-year changes in 2. Just as the mean keys off the middle of 

the observation times, the weights applied to year-to-year changes place heavier 

weight near the middle of the observation period (Consider the shape of in-i’. 

It is a quadratic with a maximum at n/2). In short, regression is oriented 

toward the middle of the observation period. 

The 'perfect observation' case (E'=O) produces estimates based Largely on the 

latest point. Since the series has no memory, (i.e. u<v<t implies 

f(x(t)-x,lx(v) =x,1 - f(x(t)=x,lx(v)=P,/\~(U)=x~) the points prior to Z,,=X,, are 

irrelevant except for estimating trend. In other words, the best estimate of 

x(n+t) will be x,+tT. 

To estimate T, note that the perfect observation of the Pi's means there is no 

6, influencing either RI-2,~, or R,*,-f~. Consequently, each 2,.,-2, is 

independent. So, each 2,.,-Z, is an independent, identically distributed estimate 

of T. Thus, the best estimate of T is their average ?=(l/(n-1)) i&i.l-% 

Telescoping the differences produces T'= (P,-P,)/(n-1) Combining the tworesults 

yields the optimum estimate for x,,., 

x”.,=x,*T(~,-2,2,) / (n-1) 

(To verify the above verbal argument, set Pi=x, in the integral shown previously 

and maximize. The E' as a constant is superfluous.) So. the 'ierfect 

observation' case dictates that the constant be the last observed point and the 

trend be an equal weighting of the observed differences. 
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Summarizing, the tvo extreme cases both key off a fixed point and a trend from 

the fixed point. In the case where a'=0 the fixed point is the mean of the 

observed points and the trend is a weighted average of the annual change 

(alternately. one could view the trended mean x+(n/Z)T as the fixed point). In 

the perfect observation case (E'=o) the trend is a straight average of the 

annual changes. From another perspective, when E'=O the fixed point applies 

100% weight to the last observed point, and when o'=O the fixed point equation 

applies equal weight to all the observed points. 

In the typical case both E’ and u2 will be non-zero. The key question is 'Where 

will the fixed point and trend lie between those extremes?' 

The General Solution 

'The only solution... isn't it amazing' 

Jim Morrison 

Appendix III shows the best estimator of .xr." given observed 2:.&,.....&,, a 

predetermined trend T, and a predetermined ratio P/o'. It uses a weighted 

average of the trended observed points for the fixed point and the trend T beyond 

the fixed point. The weights do not lend themselves to a closed-form formula 

readily, but they are easy to compute. 

First, you compute the recursive values. P,. To start, set 

F,=l, F,=E’+d. 

Then, you calculate each succeeding F, using 

F,,,= (2E’+02) F,-E’F+, 



And then the best estimator of x,,, is 

(i.e. the weights for the fixed point are F,E21a-11). 

Unfortunately, that estimator depends on first choosing the average trend T and 

the variance relationship E’la’. Appendix IV contains an estimating formula for 

the trend, T. The author has not yet determined the best estimator for E2 and 

u2, but the estimating process used in appendices III and IV could be extended 

to produce an estimate for them as well. 

In any event, the formula provides a means of assigning weights for each of the 

last five available years of fire experience, or each of the last three years of 

workers compensation class experience, etc. That alone makes it useful. 

A useful by-product of the previous formula is a credibility formula to use when 

the complement of credibility is applied to straight trend. 

Specifically, when the ratemaking formula is 

ZL+(l-Z)(R+T)-R' 

Where L represents the rate based on raw experience, R is the existing rate, T 

is trend, and R' is the result of credibility. Then, the best credibility (2) 

is 

(where EZ and aa are as defined previously). 



To prove this. first note that 

R(i+l) =ZL.(i+l) +(1-Z) (T+R(i)) 

SO. 

R(i*l)=ZL(i+l)+(l-Z) (T+ZL(i)+(l-Z)R(i-1)) 

=ZL(i*l) +Z(l-Z1 (L(i) l T) +(1-212(R(i-11 +Tl 

And, extending the expansion 

R(i+l)=Z e (L(i-j)+jr) (1-Z)'. 
j=O 

SO. R is really an exponentially smoothed estimate of the loss level with 

smoothing parameter (1-z) 

Next, I will show that the F,EZ'n-'l weights are also exponential in character. 

A theorem from numerical analysis states that the results of a recursion relation 

a%,,,=bx,+cxne, will be K,I,~+&I~; where r, and I> are the roots of ax*-bx-c=O. 

In the case of the F,'s this means a linear combination of the form 

F,=K,[(2Ez+oZ+U~)/21' + K,[(2EZ'02-0~)/211 

But, as i gets very large, the larger root’s power will grow much faster than 

the smaller root’s, So, for large i 



Now, in the estimating formula for x,,,, the weights are F,E""-". So the 

smoothing parameter for successively older observed points is roughly 

FI-,E 2kz-1+1) / (f’,E”“-” ) =EZF,-,/F, , 

or 

2E'/(2E'+02+04537) 

Since (1-z) is the smoothing parameter, 

z = I-[2E"/(ZE*+o'+~)] = (t,2+.,~)/(2Ez+Oz+O~) 

which is the result we seek. 

Parenthetically, note that since trend is usually exponential rather than linear 

a logarithmic transform produces the formula L(i) '.(R(i) (l+r) )I-' rather than the 

linear sum formula ZL(i] +(l+Z)R(i) (l*T) 

The random nature of most economic forces creates random behavior in econometric 

data, especially insurance data. So. the most effective way to project 

econometric series involves viewing them as a random walks. Within the general 

framework that imposes, the projection becomes a compromise between: 1) formula 

trend and random observation; and 2) random trend and error-free observation. 

Two of the formulas presented in this paper illustrate the 'most accurate' 

estimators for random walk data. The author believes those formulas to be merely 

the beginning. Viewing insurance data as a random walk will give actuaries many 

opportunities to refine our formulas and thereby make better predictions. 

The author wishes to acknowledge the assistance of Greg DeCroix. Greg's 

assistance in finding the recursion formula for the F,'s was invaluable. The 

author also wishes to thank Darlene Hodges, who typed many revisions of this 

paper. 
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DIFFUSE PRIORS AND BAYES THEOREM 

Many problems seek an unknown quantity (such as the best rate to charge) which 
could, a priori, be any number. They can be solved through uniform distributions 
on infinite intervals. Those are called diffuse priors. For example, a basic 
problem in statistics involves the following scenario: Observed data from a 
normal distribution x,, x2. . . . . xn are available. There are sufficient data 

points to give an acceptable estimate of the mean (x) and variance (#), but the 
distribution of the true mean ,u is desired. A priori, all the potential 

PE (--. -) are equally likely candidates, but obviously the p close to x deserve 
greater probability. 

If p and the x, were restricted to some finite interval (a, b) then Bayes' 

theorem would yield 

fcCII [x,1 ) =f( IX,] Ip) .f (p) /f( [x,1 ) =f( [x,1 Iv) (b-a)“-’ 

In other words, since b-a is constant, Bayes theorem indicates the likelihood of 
p given [x,] is proportional to the likelihood of thoee [x,1 given p. 

The problem lies when the Lx,] and p, a priori, take any value in (--,-I with 

equal likelihood (i.e. they are uniformly distributed on (--.m) ). The solution 
involves the use of 'diffuse priors' (uniform distributions on infinite sets). 
The author is not familiar with whatever approaches to diffuse priors are 
currently used by others, but I hope to convey enough of my thinking to solve the 
practical problems underlying this paper. 

Co"ceptually, one could use the infinitesimal, I, sometimes used in mathematical 

logic. I is a (entirely theoretical) constant that is infinitely close to zero, 
but "on-zero. So 
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Thus, if we use the a priori distribution 

f(u)=I, f([x,l)=I'; 

so. the probability of p given the observed [x,1 is proportional to the 

probability those [x,1 would be observed when p is the underlying mean. 

In the event the [x,1 come from a normal N(p,u2) distribution, a2 may be 

determined fairly accurately from the observed x,'s. So, 

which probability formulas'q reduce to a normal distribution for the mean 

But, since 

/ 
exp[(-(n/(202)) IF-~)~)ld~=~Jzsi/Jii 

we conclude that x=1, and 

p-N(i?, d/n) . 
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In general, if A and B have uniform diffuse prior distributions, then 
P(A=a(i?=b)=P(B=blA=a)X. In other words, the probability Of A given B is 
proportional to the probability of B given A. 

tlathematical Niceties 

At least one article ['I suggests that Bayes' original concept of a uniform 

distribution on t-m, m) consisted of a normal distribution with infinite 

variance, e.g. 

Of course, that inevitably produces a specific mean and mode for the prior 

distribution of p, According some specific p that favored status makes the 

distribution somewhat less than uniform. But, if one were seeking to prove some 

G(x)=0 for a uniform distribution on (--. -1 ; one could say: If 

;l~ G(xlN(~,d)) q O. 

For d p. G(x)=0 holds for the uniform distribution on C-m, -) 

The author has two alternate, but potentially mathematically equivalent, 

approaches. The first one involves a limit of uniform distributions. In this 

case the requirement is that 

lim G(xlU(a,. b,))-0 
n-- 

(U(a,. b,) representing the uniform distribution on the interval (a,, b,)) 

More important, that result must hold for all sequences [a,] and [b,] such that 

a,--- and bn--, 
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More generally, one could require that G(x(f,]-0 for all sequences of density 

functions [f,] with an infinite, flat limit. Specifically, 

lim (non-zero domain of fJ - (--, -) 

and 

lim[max(f,(x) )/min(f,(x))l=lC*l 
n-- 

Whichever definition you choose, it is clear that the formulas earlier in this 

p=p=r , which use I, hold. 

Pitfalls 

The typical problem with diffuse priors is actually a problemwith finite uniform 

distributions, too. There may be uncertainty over what is co be uniformly 

distributed. For example, when developing a prior distribution for the mean, p, 

of a normal distribution it is fairly clear that p should be uniformly 

distributed on (--,-I. But what about the variance, o*? Should a2 be uniformly 

distributed on IO,-) , or should a be uniformly distributed on (--.-I? Making 

o* uniformly distributed inherently makes 'small' a2 more likely than making a 

uniformly distributed. So, when it is not clear what should be uniformly 

distributed, diffuse prior distributions are inappropriate. 

Fortunately, in this paper the author has used diffuse priors solely for 

estimating means. So, the variance issue is moot. But, there are other 

situations, outside the scope of this paper, where problems may arise. 
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INTRODUCTORY LEMMAS 

Before proceeding to prove that the FIE""-" 's are the best weights for 

hirrtorical experience, it will be helpful to prove two lemmas. 

Lemma 1: Weiahted Sauared Difference Theorem. 

The weighted sum of squared differences equals the squared difference 
from the weighted mean plus the squared differences. Mathematically, 

f 
i=l 

w, (a,-x)2= ( fz Wr) (x- [ (EW,d,) EW,l ) 2 + (l/m,) 
i=l 

e I: WiW,(di-aj)~ 
i=ljsi 

Practically, this jeans that ehe estimate x which minimizes the weighted 
squared differences from the observed points [a,] is the weighted average of 

the al-s. Further, the residual error after choosing that best estimate 

consists of squared differences between the aI's. Each such difference is 

weighted by the weights of the two d,'s in the difference. 

The most straightforward way to prove this involves placing the weighted mean 
inside the sum and using brute force. 

e 
i=l 

w, (a,-x) *= e W,( I mja,/Cw,) -xl +b,-(Cw,a,/m,)l j2 
i=l 

Expanding the square, 

=i$ Ew,a,/Ew,) -xl’+2 I m,a,/Cw,) -xl L3,-Ehja,/Cw,)l +[a,-E:w,d,/EW,) I’). 
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Then, distributing the summation across the three sums, 

Noting that ~IV,af=~W3a,, the polynomial equals 

Computing the square in the last term, note that 

~w,[al-(Dv,a,/~W,)l' 

-Z:w,a,Z -2 C:w,a,) (EW,d,) / EW,) + m,, mqa,)~/ (CW,)', 

=(l/EWJ [czw,a:) (Ew,) -z(~p~w,a,a,, +(D+i)21 , 

= (l/EWJ [m,a:) (EW,) +~Cw,Wj(a,af-2ala,)1, 
lj 

Splitting the sums up into the cases where j is less than, equal to, or 
greater than i. 

4 

-(1/&J [ E VW& + 3' E 
i--2 j-1 izl j=i+l 

w,w,a: 

+ Ewjaf - f fIilwlw,a,a, - "2 e wlwja,a, - Wafl . 
i-2 j=l i=l j-i+1 
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Subtracting the cW:aj terms that cancel, and interchanging i and j in two of 

the indices 

.(l/EW,) [ f! Yw,wja: l f! itlw,w,a; - 
is2 j=l i52 j=l 

it2 >: w,w,a,a, - e i~lw,w,a,a,l . 
i=2 j=l 

Collecting terms 

-(1/)3W,) f 9 z+ 
2=2 j=l 

(W,W,d, w,w,a:-2~,+3,~,) I 

Adding the case where i-j; (a,-a,)=0 

= (l/CW,) .f3 E W,W,(a,-a,)l 
1'1 js.i 

Now, substituting that result back into 1) yields the lemma: 

Ew,ta,-x)‘=(X:w,) (X-EW,d,/~W,l)~+(1/Yzw,~~ I: W,W,@-a,)'. 
1 j<i 

&voneneial Incenral Theorem 

A textbook theorem used to analyze multivariate normal distributions states 

7 exp(-(l/l) [(x-G)~/a~+Hl)du-aJZiiexp(-H/2), 
-a 
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The proof is comparatively simple. 

variable of integration (x) . So 

9 exp(-(l/2) 
-m [ (X-G) ‘/oz+Hl ) dx.exp 

m 
(-H/2) fexp((x-G)'/(2o'))du. -m 

Exp (-H/2) is constant with respect to the 

But up to the constant l/(oJzsi) the integral is simply the density of a 

normal N(G,021 distribution. So its integral is oJs;r. Thus, the theorem 

holds: 

=eXP ( -H/2 1 .ofl=oJzii exp ( -H/2) 

Lemma 2) .InteuaL of Keiehted Suuared Differences 

7 exp(-(1/2)CW,(x-a,)')dK 
-m 

-JS exp I- (l/2) ‘F j$iW,W,b,-a,)‘) / tCw,, I 

This lemma is a straightforward combination of Lemma 1 and the exponential 

integral theorem. 
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PROOF OF THE FIXED POINT ESTIMATOR FORMULA 

To prove that 

is the best estimator for xwc, I need co first integrate the x,,., density 

function. Then, the formula will result from some simple algebra which proves 

the recursion relation. 

Using a diffuse prior argument 

2) fCX".,~~,, 4, . ., 9,) 

-Kf ( [P,l;lx,.,) , 

-K(1/~(2x)wJEE~J)~f . ..fexp~-~1/2)~~x"..-tT-x")*/~co") 
*" XI 

Combining the K into K' (a function independent of x,,.~) multiplied by an 

exponent of squared differences 

3) -K' ([x,1';, E', a', t. T)' exp[-(l/2) K" (E'. al, t) -3 
i=l 

P,E*cn-i~ (R,+(n-i+t) T-x,,J21 

Showing that the estimator from 1) minimizes that sum of squared differences 

will then suffice to show it is the best estimator of x,,,, 

To solve the multiple integral from 2) I need to first prove a theorem 
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hIlCiDie Inteeral Theorem 

Given: 

1) observed points L2,l: distributed around unknown means [x,1?; 

2) generated by a normal stochastic process with mean increase T and 

variance parameter 6; 

3) where each of the [Z1l differ from the [x,1 by an independent N(O. E') 

distribution; 

4) and the times between valuation are c, (so f(x,.,lx,) -N(t,T, C,d) ) ); 

the integral 

4) 1(x,.,)-f . . . fexp(-(l/2) [(1/E2) [i~I(i,-X,)21 
X” Xl 

-K( [&I:, [C,l~.E’,~~,n.exp(-(l/Z) [(l/Fn.,) f F,EZ1n-” (R,+T( f 
i=l j-i 

t,) -x”*1) *I ) 

Where, 

5) F,=l 

F “., = t,o’ ( f 
i-1 

F,E”“+‘) l E’F, 
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I will prove it using mathematical induction. The proof for n-l is trivial. 

Next, I must show the result holds for 1(x,.,) when it holds for 1(x,.,). 

Note that 

I(X”.,) -I . . . lexp(-(l/2) [(l/E’) ?sP,-XJ’I 
x,*1 Xl i=l 

+[ x ~x,+t,T-x~.,)*/(t,o*)ll) dr,, a.., du,,, 
i-1 

So. pulling out the terms that are constant wirh respect to x,, . . . . x, 

-;“*,exp (-(l/Z) [ C%.,-X”.,) */E2+ (X”.,+t,,,T-X”.I) / ( t,.,oZ) 1 1 

.I . . . I exp(-(1/2)[[(1/E2) [i~l(f,-x,i21 
X” Xl 

+[ i=l(x~+t'T-x',')'l(t,o')l])du,. ..,I du,.l. ?I 

Then the inner 'II' integrals may use the induction hypothesis 

-I exp(-(l/Z) [(~2,.,-x,.,)2/E'~(~~.,+t~.~ T-x”.,)‘l(c,.,o~) I) ~I(X,.,)dx”., ) 
%I 

-xp(-(l/z) (l/F,.,) [ e 
i=l 

F,E”“-‘I (f,+T( f t,) -x,.,1 ‘1 ) dx,., . j-i 
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Where 

A=(~~,,,-x,.,)~/E~+(X,.,*~,.~T-~~.,)'/(~,.,~~) +(1/F,,,) e 
i=l 

F,E”“-” (%,+Tf e C,) -x~.~)‘. 
j-i 

Now to evaluare A. the first step is to apply the integral of weighted squared 

differences lemma (lemma from the previous appendix) using xnel asx. 

Specifically, 

7) l eXP(-A/Z)&., 
J&+1 

-(2x/ [(l/EZ) +(1/(c,.,oZ) )+(1/F,.,) e 
i=l 

F,Ez’“-‘, ] ) I,2 

+ [ (l/ (F".,E2) ) e FjE*'-') (.?,*T( 
i=l 

e C,) -&.,) ‘I 
j-i 

+ [ (I/ ( t,,l~'Fn,,) ) E 
i=l 

FiP- (22,+Tct1t,) -xn.J*l] j=i 

/[(l/E*) +(l/(C,.,a:) 1 +L1/F,.,Ii~lFIE’ln-I1l) 
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That produces quite a long expression. But, noting that the long 'sum of the 

weights' term 

(1/E)2+(1/(t,.,02)) + (l/F,,,) e 
i=l 

F,E2'll-" 

- (l/(E't,.,o*F,.,)) [c,.,~~F,.,+E~F,.,'~,.,~'E~ f 
i-l 

FiEz'"-" ] ; 

and combining the co2 terms 

=(I/ (C,.,Ezo'Fn.,) ) [t,.,o* x F,E2'""-") +E2Fn+,] 
i=l 

Then, plugging that back in 7) 

1 exp(-.4/2)du,., 
G-1 

[ [ (L+t,.l -$,.,)'/ (t,.,E'a') 1 + [ Cl/ (Fn,,E2) ) 9 PIE*'"-" (Z,+T( f! ) -Y?n.,,2] 
i-l j-i 

+[(l/F,f.~) f c 
i-1 

i=l jsi 
FiFjE2'2"-i-" (Pj+T( r C,) -2,) 'I 

k=j 

+ [ (l/ ( t,,.,ozFn.,)) e 
i=l 

F,E2'n-" &+TC"? t,) -Xn,,)'l]) j=i 
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That is still quite a lengthy expression. But, part of it may be reduced 

immediately. Since the multiplier in front of the function and the middle two 

terms in the sum are constant with respect to xm.*, 

-K’ ( l-f?d I '-I, [t,]:",E',a',T) . exp I -(F,.,t,.,E'o'/ (2F,.,) I 

. [I (& + tn.l T-~,.,)'/(t,.,E*o'l I +[ (l/(C,,.,o'F,,,) 1 f F,E*'a-i) (d,+T?i?t,) -xns2)l]]} 
i=l jxi 

That is reduced, but still lengthy. Applying the top of the quotient to the 

sums 

+[E' e 
f=1 

FiEzcn+ Gi+T??tjl -~,,,,~l]'} j=i 

Adding the n+l term to the sum 

n+1 n+1 
-K' exp(-(l/21 (l/F,,,! i~lF,E2c"+'1 (Z,+T( ,x,)-x,.,)') 

,'I 

Then plugging that back in the original formula in 6) 

I(n+2) =KK' exp (-(l/Z) (l/F,,,)n~lF,E"""‘l' (8,+T?i1tj) -x~.~I~) , 
i=l j-i 

-K(Lqlf-, [t,lf”, 6’.a’,Tl WV{- (l/2) Cl/F,., 

So the induction hypothesis is proven and the integral evaluation theorem 

holds. 
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The Best Estimator 

Now that we know the density function f(x,.,J[f,l~,E2,0~,T), the next step is to 

show that the estimator 

is the optimum estimator for xnrF. The key is to show that the true x,,.~ is 

normally distributed around e,,, 

f(x,.,l Gil?. EZ,02,T) -N(e,.,.6*) 

Then, since e,,,, is both the mean and the mode of the distribution, it must be 

the best estimator. 

Plugging the results of the integration theorem into the earlier formula for 

f(%.,l , 

-Kexp (-(l/2) (l/F',,, ) 2 F,E2'"-" 

i=l 
(Z,+(n-i+c) T-x,,,)~) 

Using the weighted sum of squares lemma (Lemma 1) from appendix II. (note 

F'"., =co'( 2 
i=l 

F,E""‘") +E2F, instead of d(CF,E 2'n-1)) +E,F, because of the CO* in the 

last term) 

-K exp{(-(1/2) (l/F',.,)[[(x,.,- [ E FIE2'n-i1(~~c(n-i+t)T)])/( e FJ2'n-i'))a 
i=l i=l 
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Noting that the second term in the sum is constant with respect to x,,,,, and 

using the definition of the F,‘s in 5). 

-K exp( (-(l/Z) ((F’,.,-E”F,)/(ta2F’,,,)) 

.(x,.,- [ if F,E*‘“-” ki,+ (II-i+C) 2-1 I / [illFIEZ’n-‘)l j2) ) i! 
i-1 

-K exp( (-(l/Z) [l/ (fa*F’,,,/(~‘,.,-E’F,)) I /LY,.,-e,,,)* 1. 

Since the K is merely a constant which will be adjusted to make the 

distribution integrate to 1. 

f(x,.,) -We,,,. [ tdF,.,/ (Fn., -E’FJ I I 

Which completes the proof as soon as I show that the F,‘s produced by 5) 

follow the recursion rule 

F2=E’+o’ 

F,,,= (ZE’+o’) Fk-E’F,., 

377 



Appendix III 
Page 9 

The proof involves fairly straightforward algebra. 

F **, =o* 
i=l 

F,E”*‘” .E2Fk 

k-l 
=02Fk+E202 x F,E2”-‘-” +E2Fk 

i=l 

k-l 
= ( 02+EZ) Fk+E2 ( a2 x FiE2’*-‘-” ) 

i=l 

Applying the definition of the F,‘s to the sum, 

= (o*+E’) Fk+E2 (F,-E’F,.,) 

= (02+2E’) Fk-E4Fr., 

So, the F,‘s fulfill the recursion ruie, and thus, e,., is the best estimate. 
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ESTIMATING THE TREND 

The best estimate of the trend is a weighted average of differences between 
adjacent points 

The weights are somewhat complicated, but not overly difficult to compute. 

where the G, are recureively calculated from n down, e.g. 

Gi=G,.,+[ (E"+2EZ"2F,)/(F,F,.,)] . 

To prove that is the best estimate of the trend T, I will follow several steps. 
Firat, I will isolate the terms that involve T from the probability function for 

2i,2x, . ..I%. That will represent the function I must maximize. Maximizing it 

will involve minimizing a sum of squared differences between T and the 

differences between adjacent points (,?,.1-&). 

Before minimizing that function, I must show it is independent of the time (t) 
since the last observation. Then, I will convert it from functions of T and 
differences between faraway points ;il-4 into differences between T and 

differences between adjacent points 2,+,-P,. That will produce a complicated set 

of weights for each difference &.,-2,. Next, I will simplify those weights to 

show they are the weights in equations 1) and 2). 
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The Function to Minimize - The New Distribution of Observed Points 

The previous appendix showed that the distribution of the potential observed 

points $, . . . . % given a future value xn.C was proportional to a term involving 

x,., and a constant, e.g. 

(K,,&.K, conetant w.r.t. x,.,1 

That made e,,, the best estimator of x".~. I would like to isolate T the way I 

isolated x,., to produce a formula 

^ ^ 
f(X,,X,, . ..I %b,,+,. 7'. 'J's E') =K,exp (-K,(~-T)2-K,(e,.,-x,.,)2+K,) 

(K,,&,K,,K, constant w.r.t. both x,., and T). 

Then, the expression TO will represent the best (maximum likelihood) estimator 
of T. 

The first step is to combine the terms involving TWI , e.g. to find 
 ̂  ̂

f(X,.X,. . . ..%lx.... 2-a 02, E*) =K,exp (-g(T)-K,(e,+,-x,.,)'+K,) 

Thankfully, finding g(T) is fairly easy. Simple inspection of the multiplier of (en,,-x,,,J2 

shows it is independent of T as well as x,,+~. The function g(T) then xsimply 

represents the terms 'cast off' as constant when integrating over the x1's plus 

the x, terms cast off when the weighted squared differences between many 

individual terms and x".~ were combined (at the end of appendix III). 
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First, let me discuss out the terms cast off when integrating over the Xi’s. 

The terms cast off into the constant when evaluating the multiple integral over 
xl were 

l-1 
exp -(l/2) *Il-1-jl (zj+(l-j) T-Gl)’ 

l-l 
+tt~E'o*/ (F,FILI)) c 

~'1 Ej 
F,FkE2(21-2+*' (&+(j-k) ~-?,)‘l} 

(C,=l, except for t,=C, and F,:,=F,., , except for F,:, which is 

tU'~F,E *b-1) +E'F, _ ) 

Which, after moving some EZ terms outside the sums, 

l-1 
3) = exP(-(l/z) [(t,o*/(E'F,:,)) c FjEac“jl (ij+(l-j)T-.$l]2 

J=l 

l-1 

+ (t,o*/ (E*F~F~:,) ) C 
J'l F' 

FjFfi2(aJ-J-*I (&+(j-k) T-s?~)']} 

SJ 

For simplicity, let me call the first term A, and the second 8, to get 

4) = expt -(l/z) [AI+BIl l 

But there is another T term to add. When the final individual terms 

(Z,+(t+n-i) T-x,,,)* were combined by the weighted sum of squares theorem in 

appendix III (to get (e,,,-x,,,)"), the following terms were 'cast off'. 

5) =pt -(l/2) [(l/F-,.,) (l/f F,E2"'-")~ 
1=1 

=exp (-(q/2)) 

3s 1 
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Combining all the terms involving T, I get 

6’ g(T) =-(1/Z) [C”+ A,+ 

Looking back at the pieces of g(T), it is much more difficult to work with than 
it needs to be. First, it uses t, and F;-two clumsy expressions. But, aa we 

will see later, the sum g(T) is actually independent of t. 

Before proving that, I need to prove several lemmas. One will be used to prove 
the independence from t. The others will be used later to simplify g(T). 

Before showing g(T) is independent of t, I need to make a brief digression. I 
will need several lenunas to complete the analysis. Since I need one of them to 
prove g(T) is independent of t, I should prove them before discussing g(T) 
further. 

Interchange of Sum Indices Lemma. 

Proof: the indices on either side describe the case where b<ain. 

AII alternate version, where bsaw, is 

hb,b);c 5 h(a,b) 
b=l a=b 

Sum of the F,'s 
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Proof: Using the summation definition of the F1's from appendix III 

n 
F Il.1 =o'[x E 2t='-a'F,] +E'F,. 

a=1 

Simple algebra produces the result. 

Partial Sum of the F,'s Lemma. 

Proof: 

Using equation 9) twice produces the result. 

Sum of the iF,'s Lemma. 
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Proof: Noting that a=il 

Using the interchange of sum indices lemma 8) 

Using the formula for the partial sum (equation 10)) 

Distributing the sum across the addition and pulling terms constant relative to 
b outside the sum. 

Removing one term from the first sum 

II-1 n-1 
nF,.,-nE’F,-E’F,-E’ [ E”n-b’Fb] +E2 [&E”“‘bl Fb] 

x 
02 

3x4 
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NOW, the problem summing from b-0 to n-l is that F. is undefined. Since it 

occurs where b-l, F,-E’F,=O , it appears Foal/E2 (Nets that then 

F,=Ez+oz~(a2+ZE1)F,-~‘F~). And the equation is 

= nFfl.1 -(n-l) E’F,+&‘” 

a= 

Partial Sum of the F,‘s Lemma 

n 
12) c aE”n-‘)Fa=(1,‘a2) {nF,.,- (n-1) E’fn- (b-l) E2(“-‘~“)Fb+ (b-2) E2Lrr-‘b-z))Fbl } 

a=b 

Proof: sane basic argument as equation 10). 

Telescoping Sum Lemma 

j-1 
13) &+(j-k) T-2,)" (j-k) c l2i.I 

I=k 

j-1 

Proof: set 

j-i 
kit+ (j-k) ~‘-2~) ‘= ( lFkk(%.l -~i-T)iz=(j-k)z(T-(l/(j-k))'~1(%.l-~i))2 

l=k 

and then use the weighted sum of squares theorem from appendix II. 
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aIT1 is Indenendent of t 

Now that those lemmas are proven, I must show the 't' in g(T) may be replaced 
with '1'. 

Since the trend is something reflected in the observed points Z,.....?", rather 

than something instrinsic to the length of the projection period (t), it seems 
that estimated trend (T') should be independent of t. That will follow from the 
independence of g(T) from t. 

To prove g(T) is independent of t, all that is necessary is to show that the few 

terms in g(T) that contain a t are actually constant with respect to t. 
Reviewing equations, 3), 5), and 6), those are C,,*A,+B,. E.g. 

g(T) --(1/Z) (K*C,+A,+B*) , 

where K is the terms that are obviously constant with respect to t. 

First, rewrite C, by replacing 1 and j with j and k to get 

n-1 
14) A,+B,+C,=(ta'/ (E'F,:, ) 1 c FjE'In-jj (2j*(n-j) T-?n,)' 

;r=1 

n-1 

+ (to'/ (EzFnFn:l 1) c 
F 

F,P,E*'z"+t' (&+( j-k) T-4)' 

~'1 ij 

+ (l/F,,:, ) (l/g F,Ezcn“')' 2U"-J-kl (&+ (j-k) T-2,) 2. 

1=1 
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Then, the strategy is to convert the expression above into an expression in t 
times a double sum constant relative to t. Then I will show the expreseion in 
t is actually constant relative to t. The first step is to note that the first 
term is the cue where j=n for the second term (with j playing the role of k). 

= (to’/ (E’F,F,:, 1 ) 2 c F,F~‘““-‘-*’ b&+ (j-k) T-2,)' 
)=I krj 

NOW the double sums in each term are identical and independent of t. so, we may 
set 

= [(CO'/ (E'F,F,,:,)) +(1/F,;, I (l/f FEE""-'))I% 
1-1 

NOW, all that remains is to show that is independent of t. Using the ‘Sum of the 
F,'s Lemma' 9) (and correcting for the difference betwen the definition of F,:, 

and F,,, ) 

Performing more algebra 

=F( (Cd/F,:, ) [F,:, / (E'F,(Fn:, -E*FJ )I ) 

=F{ Co2E'F/(F n .:, -E'FJ 1 

=K E'F,/f E""-"Fi 
111 
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Which is independent of t. So, in equation 3), 5) and 6) we may treat the t's 
as l’s and the F,=,'a as F,.,. 

The next step is to convert the expression involving the differences between 
faraway (j and k) terms to differences of adjacent terms (i and i+l). 

a(T) as Differences Between Adjacent Points 

g(T) can be converted to the following expression involving differences between 
adjacent terms. 

15) g(T) = [c”+ A1+B11/2=-(01/2E2) (U(T)*V(T))+K; 

where K is constant with respect to T; and 

and, 

(Notice that U and V are identical except for the terms to the left of the double 

sum. If the F,,., -E’F, in V were simply F,.,, V could be combined into the sum 

over the l's in U). 

TO prove that, I must state equations 3), 5) and 6) without t; perform some 
algebra to simplify the sums; then use the Telescoping Sum Lemma 13). 
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First, let me point out that when 't' is replaced by 'l', 

l-1 
181 =-(l/Z)[I (a’/ (E’F,.,) ) c F,E2”-j) (5+(1-j) T-*,la) 

J=l 

l-1 
(d/ (@F~F~.~) ) C 

J=l F. 
F,F@~~‘-j-* &+ (j-k) T-2,) 2 ) 

IJ 

That unwieldly expression can be simplified considerably. The first step is to 
note that in the first term the sum over j and the expression to the right form 
the case where j=l in the second term, so 

=-(1/2)[$1 (02/ (E’FIF,.,) ) i c F~F&~~~-J-* (&+ (j-k) T-Cj) 2, 
~'1 krj 

Then, the sum in the second multiplier in the second term can receive the benefit 
of the 'sum of the F,‘s lemma 9). 

+i(oa/ (F,,,I (F,,,- E2F,) I ) f c FjF#‘a-j-k) (&+ (j-k) T--?j) ‘)I. 
;1=1 krj 

389 
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Then, the second term may be combined with the case where l=n in the first term 
to get 

+(.[ (a*/ (E~F,F,,~) ) + CO*/ (F,.~(F,.,-PF,) ) ) ] .f C FjF*E2~~n-j-~l (4+ (j-k) T-S,il)1)] 
3=1 krj 

Using sOme algebra to simplify the multiplier in the second term 

+([ to'/ (E'F,(F,,,- E*F,111~f cF,F$ *(*n-j-k1 

J=l krj 

(&+ (j-k) T-2,) ')]- 

Then, all that remains is to use the telescoping sum lemma and cast off the 
* x1,-&-(2-%) terms (since they are constant with respect to t. 

n-1 
=-(L+/2E')( (l/ (FIFl,r) 1 i ~FjF~z~2~-j-~).~j-k~J~1~~i.l-%-~z~ 

~:l ksj 1=k 

-(a~/2E')((l/(F,F,,,)) f c F,F$"2"-j-k).(j-k) 
j-l 
c (4.2 -21-n 'I 

J=l kij l=k 

Noting that j-k=0 when j-k; 9 x K(j-k)= 2 x K(j-k), so 
j-1 ksj j=2 k<j 

g(T)=-(a*/(2E’ll (U(T)+V(T))+K 

SO, g(T) may be described as weighted squared differences between T and the 
differences between adjacent points. 
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U/T1 and V(T) as Sums Over Differences Between Adiacent Points 

The next step is to simplify 16) by repeatedly using the 'interchange Of Sum 
indices' lemma., e.g. 

n-1 
21) V(T) =c (2i.,-)?l-n’ 

1=1 
j{+I g, (j-k) E’(‘“-‘q*bFjFk/ (Fn(F,.I-EZF,,)) . 

The proof of each involves repeated and straightforward use of the two 
interchange of sums lemmas. 

Summins the Weiahts Over i and k 

TO make the expressions for U(T) and V(T) more tractable, the last two sums 
should be simplified. Their sum is 

The proof involves using the lemmas proved earlier for the sum of the F,'s 

(equations 9) and 10)) and the sum of the iF,'s lemmas (equations 11) and 12)). 

The first step is to split the j-k term and pull the constants across the 'k' 
sum. 
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Using equations 9) and 11) on the two sums, 

Pulling out the terms that are constant with respect to j, 

= (l/o") E2"-" { (F~,~-E'E;) [ c jE2"s"Fj1 
j=l+l 

1 

- (iF,,,- (i-l)E’F,+E*‘) [ c .E”“-“Fjl } 
j=l+l 

Summing the 'j' sums using equations 10) and 12) 

= (E”‘.‘, ,ol (F,.,-E2F,) [1F,.,-(l-l)E2F,-iE2'1-"F,.,+(i-1)E"'~"~"'Fi] 

(12 

Multiplying those polynomials in the F’s and collecting and cancelling terms 
produces 

= q(F,,, [ (I-i) F,.,-(l-i-l) E'Fl+E"l 

Which is exactly equation 22). 
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Summina U(T) Over 1 

The sum over "1" in U(T) may be computed to produce 

23) U(Tl=i-$?+r EZ-(n-i)E'l"‘"F,.,/F,-IE'F,/F,., 

Before I show that, let me note that U has become too long to be tractable. So, 

let me break it up into three terms. Using eq-uatians 20) and 22) 

n-2 n-1 
rJ(T)=z (&sl-S?i-nz . c (E"'~"/u')(F,.~[(~-~)F,.~-(I-~-~IE~F~+E~~~ 

1=1 1=1+1 

-E'F,[(I-i+l)F,,,- (I-i) E2Fl+Ez'l -EZ1[F ,*I -E’F,l }/ (F,F,.,) 

Pulling out the constant terms and collecting coefficients produces 

n-2 
24) U(T)=(l/o') c (~i.l-)il-T)2[Ai-Bi-C~l , 

151 

where 

25) AI=E-='F,., c I( (I-i)E"/F1) -( (I-i-l) E"'*l'/F1.l) +(E"/(FIFI.,)) 1 , 
l-1+1 

i-l-1 
26) Bi=E-‘(‘-‘)Fi c [((I-i+l)E2'/F1) -( (I-i).Ea"'l)/F,.l) +(E"/(FIFI,I) )I , 

1=1+1 

n-1 
27) Ci= c [ (E"/F~) -(E"""/FI.,) 1 , 

l-1*1 
393 
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Next, I must simplify each expression. Note that the second term within the sum 
of A is nearly the first term evaluated at a higher index. E.g. 

=E-'I{[ nel (I-i)E"/F,]- $ (I-i)E"/F,] 
1=1+1 1=1+2 

n-1 
+I c 1=1+1 

2E”“1’/ (F,+,l + ~I~$lls.l,F,Fl.LI I). 
+ 

Then, the second and third term telescope to produce 

= E-2fF,.,((EZ'I'r'/~i.,) -(n-i) E*"/F, 

n-l n-l 

+[ c 
1=1+1 

2E2”-1’/F1.11 + [ c E”/ (F,F,,,) I). 
1=1+1 

Then, combining the last two terms, and distributing the multiplier 

28) AI=E'-(n-i)E""~"F,.,/F, 

n-1 
+E-"F. . [ I.1 c (E'+ZE 2('+1'Fl) / (F,FI.l) I 

1=1+1 

394 
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Simplifying B, in a similar fashion produces 

Simplifying C is simpler. The sums telescope to produce 

Then, combining equations 28) for A,, 29) for B,, and 30) for C, into equation 

24) 

n-2 
U(T) = (l/O') c ($.,-&-T)'{E'- (n-i) E2’“-11Fi,1 -3 + (n-i-1) E2C”elml)~, 

1=1 FD Fi.1 F. 

Which is exactly equation 23). 

395 
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Summins VlTl 

V(T) may also be summed to produce 

n-l 
31) V(T)=(l/o') c (~~.,-~,-T)2((n-i)E""-f'F,.,/F, 

1=1 

+ 
E”“-‘-“Fi,l 

(F,.I-~*~,) + 

E"2"-" (F,,,-E'Pi) 

(F,(F,.,-E*F,) 1 

The proof requires using the equation for the sum over j and k (22) on equation 
21). Then, simple algebra produces the result. 

Combinins U/T) and V(T) 

NOW that the sums in U(T) and V(T) have been simplified, the next step is to 
combine them to produce the complete weights 

32) g(T)=-( 12E'l op) (U(T) +vl(n I +K 

,[E*-( 2E'F')-(E~'~'"/F,,,) +E-"(F,,,-E"FI)G1l) 
F 1.1 
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To prove it, we need to combine equation 23) for U(T) and equation 31) for V(T) 
and simplify the result. Combining the two equations produces 

-ZE'F,/F,.,+(n-i+l) E2'n-1a11~I/~,, 

n-1 
'1+2,z'~.r'F~l/[F,F,,,) I]) 

+E”*“-1’(F,*, -E'F,) / (F,,(Fn.,-E'Fn) ) 

-(n-i+11 E~l~-i'l~F,/F,-E~'~~i'~'F,/ (Fnel -E’F,) -+/F,] ) 

That is an incredibly long expression. But thankfully, many of the U and V terms 
cancel or combine (at least for i between 1 and n-2) to produce 

n-1 

+,z+, 
(E"+2EZ"'"F,) /(F,F,.,)] ] ) 

-(I/ (HEW)) ($-%~,-n2(~z+~4F,/(F~h,,-E*F,) l Ez'n"' (F,-.PF,.,)/ (F,(F,.,-PF, 

-2E'F.-r/FD-ELF".l/(F,,,-EzF,) -P/F,) 

jY7 
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Then, noting that the definition of the G, from equation 2), and combining some 

of the terms in the second product 

g(T) =K-(1/(2&J')) (~~(%.,-4-n'[E'-2E'F,/F,.,-E'i""/F,., 

+E-2i(F1.1-EfFi) G,., '-(l/ZE'o'l) (%-%.,-TJ'.{EZ+E~(F,-E'F,~I)/(FD.l-E'F,) 

-E""'" (Fn-EzFn.l) / (F,(F,., -E'F,J) -2E'F,.,/F,-E="/F,l 

Then, combining some of the terms applied to (%->,,,.,-T)' 

Which yields the result in 32). 

g(T) =K-(l/ (2E’a’)) c (~~.,-~~-T)'[E2-2E'F,/F,,,-E"'/F,.,+E-z'(F~.,-E'F~)G1] 
1=1 

Which could be restated as 

n-1 
33) g(Yi-I q K-(1/(2E’o’)) c (q.,-2i,-n*wi, 

1=1 

Where the W, are the weights from 1) that should be the weights used to average 

the LC,., -&j's to produce T'. 

398 
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The Final Formula 

Producing the final estimate is now a fairly straightforward process of using the 
weighted sum of squares theorem from appendix II to restate g(T), and then 
showing T' minimizes it. 

Applying the weighted sum of squares theorem to equation 33) produces 

II-1 n-1 n-1 
g(T)=K-(1/(2EW)) (c w~).(T-[(~ w-i(;i,.,-2))/z ~~1)' 

1-1 111 1=1 

+ other terms that do not involve T. 

Combining the first and last terms into the constant 

Which is clearly maximized by setting 

n-1 n-1 
34) ?w=[C wi(2i.,-2i,I/~ wi 

1=1 1'1 

SO, T’ is the best estimator 
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