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Introduction

Inflation has moved from a minor annoyance to a major
element in Casualty insurance rate making, Twenty years ago
it was sufficient to adjust automobile rate levels without
any trend of loss severity or frequency. Presently, this
minor annoyance has become a major element in the rate making
process, This development has led to the necessity of
estimating these trends by state. However, no standards
have been specifically developed for evaluating credibility
of state trend line versus country wide trend lines,

Standards for developing credibility adjusted state trend
lines are developed in this paper. The general approach is a
direct extension of the Blhlmann & Straudb (1970), "Credibility
for Loss Ratios." The results obtained apply to much more
general models than simple linear trend, In fact, credibility
standards have been developed for arbitrary linear regression
models,

Expected Severity Over Time

To put our thoughts into perspective, let us consider a
concrete example of estimating expected severity over time for
total private passenger BI total limits severity.l

1The Automobile Bodily Injury data in this paper has been
supplied by the Insurance Services Qffice.
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FIGURE 1
State #1
Private Passenger
Bodily Injury
Total Limits Severities
Time Observed
Periad t # of Claims Severity
Fia X1
7-9/70 12 7861 1738
10-12/70 1 9251 16k2
1-3/71 10 8706 1794
L-6/71 9 8575 2051
7-9/71 8 7917 2079
10-22/71 7 863 2234
1-3/72 6 9456 2032
k-6/72 5 8003 2035
7-9/72 4 7365 2115
10-12/72 3 7832 2262
1-3/73 2 7849 2267
4-6/73 1 9077 2517

Figure 1 shows Private Passenger Awvtomobile data from a
particular state giving a number of claims in each calendar
quarter along with the observed severity. Time is denoted by
an index, 1, for which observations are available from time
o to time 1. Time runs backwards for reasons of computational
ease below, In figure 1, we also introduce notation I%s as
the number of claims, and X, 88 the observed severity in
time period t and state s.

It is our objective to estimate the expected value of x

over time given s:

E(xts) = Peg
Two competing choices for a model to estimate By, @are time
series analysis, where the major emphasis lies on the inter-
dependence of the xiJ for various 1 and Jj, and the
regression model, where Heg is considered a linear combi-
nation of other observed variables. These two approeches are
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not entirely independent since it is possible to create a model
which contains both the elements of interdependence of the xij
and also a mean value Heg which is dependent upon observed
values of other variables, The problem of dealing with such a
model 1s the practical one of producing estimates of the auto-
covariance function of the xiJ for different 1 and J at
the same time as estimating the regression coefficients. How-
ever, the results of the analysis below will follow in large
measure for either choice of model.
The Classical Trend and Regression Model

We will make the particular choice to model this expected

value as a lipear trend:

Hoy = as + bst

If we introduce the two column matrices,

as 1l
BS = b H Yts = .

8
then we will be able to write the expected value of xts in

matrix form,
= L]
Mis YtsBs

Notice that this matrix formulation of Big is not limited to
a simple trend, but would apply also for models where

Bsiysti

In this case,

By = | -

Per
and the r by 1 matrix of independent variables is
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Ystl

Ysta
ts .

.

Ystr
While we will only discuss the trend model in the numerical
example given below, &ll the theoreticel results follow for
this more general model.

For development of the classical regression results, it
will be necessary to deal with our data in matrix formulation.
We will refer to the column matrix of severities for a given
state as

X =| *p-1,8 | .

For each state we will also refer to the n by r matrix

of independent variable observations over time as

For our trend model this 1s a 12 by 2 matrix, The first
column of which is all 1's; the second column of which has
entries which go fram 12 to 1.

With regard to the number of claims, it will be valuable
to introduce an n by B square matrix with zeros in the
nondiagonal elements and with the number of claims for each
time period going down the main diagonal:
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P
ns

We will also find it necessary to refer to the mean value of
the process for various time periods for a given state,

for which

now follows,
Time Series Implications

In a time series model one does not usually consider
that the mean value T dependent upon other variables,
Y The direction of the investigation in such models is

ts’
concerned with the n by n autocovariance matrix

Ce = E[XSX;] - Hgkg
It is not the intention of this paper to pursue the time series
direction of analysis. However, the results developed in this
paper hold in large measure with an arbitrary autocovariance
matrix.
We will follow the Buhlmann, Straub formulation in which
the varlance of Xy o is proportional to the number of claims:
E(xis) - “is = ?ﬁ—
ts

and the severity x is independent from time period to time

ts
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period:2

B(x =0 14

is Js) ”15"Js
This 1s, of course, an over simplification of the real

world. With these assumptions we find the n x n auto-

covariance matrix in terms of matrix Ps’ defined above, &s

Ce = ozspsl
Bagic Summary Statistics
There will be certain statistics which will arise
frequently in our discussiop of the trend example. Figure 2

defines the summary statistics that we will need below. Note,
of course, that only those statistics which involve Xy o are

random varisbles,

FIGURE 2
Basic Summary Statistics
: >
P = P P = P
I | s« g=1 °F
s ! ek
t = P, t/P t = t /
[} t=1 ts / - gml .8 8 ..
£ 5 p? Z. 71
= Pt /P t- = P t /P
8 t=l ts B s=1
xts = t ts/P. x= L P.sxs/P..
s=l
—_ § _ % —
xt = P, tx /P xt = P xt /P
s tal ts ts/ .8 s=1 .5 8/ ..,

2Not.e particularly that this last assumption implies that
there are no seasonal factors affecting the data.
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FIGURE 2 (continued)

2 @ 2 2
ofzs_ts-ts df;=t -t
Opxs = ¥ = Xgbs Opx = Xt - Xt
2 2 2 32

State Wide Full Credibility Trend Estimates

Were we to follow the classical generalized least squares
eatimation procedures for aB, we would find in terms of the
matrices defined above

For our perticular trend example these results become:

a =X -t
58

s 5

~
and bs = Utxs/dzs
Pooled Data

Figure 3 compares the private passenger BI severity
experience from state to state. Figure U contains the values
for the summary statistics needed to calculate the estimates
of slopes and intercepts contained on Figure 3. For our
purposes we will consider that these five states make up the
entire country. However, the analysies can be generalized to
any oumber of states. Accordingly, we will refer below to N
states. The right-hand two columns of this figure show the
pooled data being the sum of the data elements from the five
states for comparable time periods.
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PICURE 3

Private Passenger

Bodily Injury
Total Limits Severities
by State
13 2 3 ] b "Countrywide”
# of # of # of ¥ of # of # of
Time Claims Severity Clsime Severity Claims Severity Claims Severity Claims Severity Clsims Severity
Period t Pur Xxey Peo t 23 Pt3 Xeq Pt'l Xe) Py X Pt. X,
7-9/10 12 7661 1738 1622 1364 1147 1759 L7 1223 29 1h56 13939 1623
12-12/70 11 51 16L2 1742 1498 1357 1605 396 1146 3172 1499 15918 1579
1=3/71 10 8706 1794 1523 1597 1329 1479 3u3 1010 3046 1609 1kg52 1699
L6/T1 9 857s 2051 1515 1bk4 1204 1763 3 1257 3068 1751 1703 1882
7-9/T1 8 7917 2079 1622 1342 998 1674 315 1426 2693 1482 135ks 1827
10-12/71 7 8263 2234 1632 1675 o/ g 2103 328 1532 2919 1572 1180 2009
1-3/12 6 9456 2,2 1964 1479 1277 15%2 352 1953 3275 1606 16324 1836
4-6/72 5 8o 273 1515 1448 1218 1622 331 1123 2697 173% 13764 1853
7-9/72 k7365 2115 1527 1464 B96 1828 287 1343 263 1607 12738 1893
10-12/72 3 83 2262 1768 1831 1003 21%% 384 1243 1017 1573 13588 222k
1-3/73 2 T8L9 2267 1654 1612 1108 23 321 1762 3242 1613 17k 2027
4-6/73 1 9077 2517 1861 71 121 2059 342 1306 3k25 1690 15826 2157

Intercept %, 2170 1621 2296 1538 1676 2148
Slope %, - 62,39 -17.1h -3.2 - 27.81 - 11.87 - 13.35



FIGURE 4

Values of Summary
Statistics by State

91¢

State: 1 2 3 4 5 "Countrywide"
P 100,155 19, 895 13,735 h,152 36,110 174,047
1?5 6. 54972 6.41171 6. 6998 6. 66089 6.43725 6. 52511
& 5. 88889 53.22398 56. 9180k 56. 79143 53.75876 5. 6696k
x, 2,060.92 1,511.22 1, 805.84 1,352.98 1,599. 83 1,865.40
x—t,B 12,750.36 9,481.90 11,577.80 8, 666. 54 10,152.19 11,647.75
o, 11.99009 12.11393 12.03068 12.k2kop 12.32061 12.09264
Crys -748.09102 -207. 975 -521,01641 -345. 04749 -146.30085 -524.21257
A, 55,861. 18,725. 60,776. 68,275. 7,573 99807
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Just as we have & need to be able to refer to all the
data within a state in a concise fashion, we will have a need
to refer to all of the data country wide in a concise fashion.
To this end for severities we define the n x N by 1 column

of severities as

as
n
Y
Y= 2 s
YN
and the super matrix of numbers of claims matrices as the n x N
matrix
P
1
»p O
P= 2. .
PN

Also, we will consider the n xX N by 1 column matrix of mean
values:

EX) = p = .

It will also be pecessary for us to use the autocovariance
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matrix of all of the severities country wide:

~

"0
C2
E[xx']-mu=c=\ . )
O .
\ o /
It is important to note that since this "super" autocovariance
matrix is made up of the state autocovariance matrices down
the super diagonal with zero elements elsewhere, this model
specifically considers that the observations from one state
are independent of those from another state.

In terms of these super matrices, the pooled "country
wide" estimates of B become:

g = (vey)y e x

______ A it a2 I M2
Versus LOULILI Yy WLiUC Py -—faivy

The estimates of the intercept and slope of the trend

states to be from the same basic population as the state in
question, and therefore use the country wide estimate; or to
consider that the state data was sufficiently different, and
therefore throw out the data from other states using only the
state estimate., Figure 5 compares the country wide severity
data with that of state #i. Notice that the country wide data
lies more closely about the least squares trend line, although
the country wide line lies substantially above the state line.
One is not exactly happy with the trend line estimate for the
state because of the very wide variation of the data points
about that line. In this instance, one might be more ready

to accept the country wide versus the state trend.
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Figure 5

State no. 4 vs "Countrywide’’ Statenc. 4: o
Countrywide: x

Severity

2,600 r
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2,400
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1,900
1,800
1,700
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319



REGRESSION MODELS

However, state versus country wide are not the only two
choices. If one were to believe that the distribution of Xy o
varied from state to state and had to choose an optimal
decision over all of the states, a compound decision problem,
then it is not clear whether the choice should be a state wide
or a country wide trend. The exact solution of this problem,
produces a credibility weighting between the two trernds, as
will be seen below.

Alternatively, 1f one is only making a single decision
for one state but if it is believed that the distribution of
x 1s a random pick from some set of distributions governed
by an index, say 93, then the result is the same as the
compound decision,

Figure 6 contains the estimated trend lines for each of
our five states and the heavier line as that for country wide,
It is clear from looking at this figure that the slopes and
intercepts vary from state to state., In the compound problem
of trying to choose & set of trend lines for all of the states
to optimize the total trend choice, one should act as if the
slopes and intercepts do have a distribution which is
reflected in these differences.

With the introduction of an index 65 to describe these
distributions, we need to reformulate the state data in terms
of this index. First of all, the Bs become functions of 68

B, = B(6,)
as does the expected value of Xy o given 6s

E[xtsles] = uts(es) = Y11;53(95)
The autocovariance matrix is in general a matrix function of

e
]

C, = cs(es)
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In this paper we will pursue the case of where the autocovar-
iance matrix is known up to a scalar multiplier, the variance

of xts which is a function of 65:
-1
cs(es) - OZ(GS)PE

Expected Values Over 6
It will be necessary below to take expected values of

various functions of 6.

B(6):

The expected value of the column matrix B is equal to a
column matrix B without subscripts

E[B(8)] =B .

The covariance matrix of the B(6) will be denoted by the r

by r matrix:
E[B(OS)B'(GS)] - BB = Frxr .

T
The expected value of Hyg is now:

Elu, (8,)] = Y1 B

With a natural extension to the column matrix g within a
state and then country wide to u as:

E[“S(es)] = YSB and E[“(el’.'.,eN)] = YB

We will also find it necessary to refer below to the column
matrix of autocovariances between a particular mean value and
that of all other mean values:

erytkslk

Y'Y, 8
Eluug, (6,)] - vpp'Y,, = | "2 “tkak
N Yo

where 513 is the Kronecker delta:

322



CHARLES A, HACHEMEISTER

1l 1=
sy -
Bodo 143

The autocovariance matrix of the mean values is a super matrix
of n x n matrices down the super diagonal with zero elements

elsevhere:
Yll‘Y'l O
YZI‘Y'a
Elua' ] ~ EB[p)E(nr ] = .
O 0T,
2 .
°b(es)‘

The state variance is also a variable now, which depends upon
68. The expected value of the autocovariance matrix for a
given state is denoted by:

E[cs(es)] =V
However, in our case we will take:
-1
v, = PE
The extension of this to the country wide autocovariance matrix
is:

E[C] = V= . = 2pt

Estimation of pia(ej)

With this preliminary background, it is now possible to
consider estimates of the mean value of the trend line at any
polat of time, We take the usual conditions of unbilasedness

and minimum variance:
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Hijy = B, (6,)
A 2
- < -

B (i, uij<e))21_E{uiJ uyy(6)%) (1)
where we will accept the estimator ”13 as the optimal esti-
mator, if (1) holds for all possible estimators uiJ

Following Buhlmann and Straub, we will consider esti-

mators of the form:
n

" +2 + XA
13 =% g=1 ta= l Xs*es = %

Where we introduce the column vector of coefficlents for state

and country wide as

*e 1
A.s = ?bs and A = ?2
Fs Ay

While we require our estimator to be unbiased, this will
happen automatically because of the inclusion of the additive
constant of @ in the estimator. Accordingly, to determine
our estimator we will minimize:

2
0y = El{q, + XA - um(ej)l ]

To do this, we take the partial derivative of ¢ with

i)
respect to a, set to O

0
i) _ - -
% —2E[ao+ XA um(ea)] 0

to find:
% = Elug,(6,)] - Elw la = g' (¥, - Y'A]

The column vector of partial derivatives of ¢
to A is set equal to O,

3
—hl = 2E[x0 A + X(ay - by (6,01 =0

13 with respect
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finding:
1 -
E[(C + wu' )A + uay] = E[uui‘j(aj)]
after taking conditional expectations holding the es for

s =1 to N, constant and rearranging terms. Carrying out
the expectation over the 95, we find:

[V+ E(uu') - B(u)E(u' ))A = E[uuiJ(GJ)] - E[u]E[uiJ(GJ)]

To this point the analysis has been quite general without
depending upon the form of V or of the form of the auto-
covariance matrix of the pu. To proceed it is necessary for
us to essume V and the autocovariance matrix of p to be
comprised of n by n matrices of state data down the super
diagonal with zeros elsewhere. If this 1s the case for each

state, we may now write:

(vs + Y I )As = Y IY, %3 (2)

which immediately indicates that
A.s =0 for s ¢
If we premultiply (2) for state J by Yavsl, we find:
I+ vy o)va, = vvily ry
(T4 YV YDA = YyVy YTy
Anticipating later results, let us pause for a moment to defines
- -1
K, =P (TVr
J -J( JJ )
and the credibility matrix:3

-1
z, = P.J(P.JI + KJ)

3The Kﬁ matrix only exists if I' 1s positive definite.

However, the ZJ matrix always exists even when Kﬁ does not;

and may be written in the form:

- - -1
.zJ = YBVJ]YJI‘(I + Y'JVJ]YJI‘)
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This immediately yields:

YA, =2Y,,
Jd J id
Combining this with (2), we now find:
A, =V III-2z0Y
J J*YJ [ J]iJ

Premultiplying this by X‘ and rearranging terms, since

YBVJlYJF[I 2,1 = 2,

we find:

A'
Xihy = PyZyYyy

-4

for the case where C 1 is known up to a scalar multiplierh

which uepenu.s upon 6 . neca,u. that in the case of greatest

interest to us C 02(6 Now since
@ = 81T - 2,1y,

we can finally write our estimator as:

It is particularly interesting and satisfying to note that
this estimator holds for any Yi 3 In other words, we have
credibility adjusted the regression coefficients.

Relation to the Buhlmann, Straub Model

The form of the estimator in the Bihimsnn, Straub model

was:

= X'A

=D/

qu C,j is some more complex function of 8 30 63 becomes

a function of 91 such that in general

(stsly ) le ]

J

)
8]
(=N
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without an additive constant. If this model were followed
through for the regression case, one would find:

by, = [BY2, + ag' (T - 2,)1,

which is the same as the estimator above, except for d, which

is equal to the expression:
N N
a= I 5;zsr'la/ z g'zsr'le .
8=l s=l

In the univariate case of Buhlmann and Straub the parameter
equivalent of B cancelled entirely from the estimator.
However, in the multivariate case, this is not so; so that
there is no benefit to using the estimator without the
additive constant.
Parameter Estimation

To apply our credibility model to real data, we need to
be in a position to estimate the various elements which are
not directly observeble within it, Up to this point we have
been eble to be very general in the form of the autocovariance
matrix within a given state. At this point, we sacrifice this
generality to be able to produce unbiased estimators of the
perameters in question. The easiest parameter to deal with

is the column matrix pg. The least squares estimate of g,

using pooled data, is unbiased:
E(B) = El(Y PY) " ] = p

For an estimator of expected value of the state variance

dz, let us conmsider the mean square error for a given state:

a
A 1 Z ~ 2
& = P (x, . -p._ ).
s n-7r t=1 ts' ts ts

In matrix terms this becomes:
82 1l

= (x*P X -mPY(rPY)dex)
5 ne=-T BE 8§ 8 S 8§ 8 5 &5 & S 88
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Following the classical evaluation of the expected value of the
mean square error as outlined in Goldberger,5 we note that the
above matrix is a 1 by 1 matrix and further that the trace
of any two matrices 1s independent of the order of multipli-

cation:
tr(AB) = tr(BA)
s0 that we may evaluate the expected value of 8§ as:
- = - Tyt
(o - )E(F) = Etr[P (I - Y (NPY) lxsps)xsx;]
since
I- YS(Y;P;YB) lrgrg annihilates YSB(es)Br(es)!;
this becomes:

(n - r)E(S‘i) = tr[Ps(I - YS(Y‘SPSYS)-]YEPS)VS]

2 1
or K&Z) = g terT - tr Ir)a_]o2 ,

so that 8§ is an unbiased estimator of 02. We shall take
the unweighted average of these state mean square errors as
our overall estimator of 02:
N

A

02 ) % szi ei
which is clearly unbiased,

The estimator of the covariance matrix of the B(6) is

somewhat more difficult to find an estimator for. First of
all, consider:

A

.
6= L (rP)M(rp Y )E, - BB, - B) .

s=1
To evaluate the expected value of G, 1let us first consider
expected values of matrices of estimators of the Bs' In

5"Econometric Theory"; John Wiley & Sons, Inc. - Page 166
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particular, we note:
8 B '17: { -1
BB = (Y, PY ) YPXXPY(YPY )",
J © LYY J J oJ e e o o0
80 that:
A A = (o 38 i=1
E(,p;) = 88" + [ + o"(Y,RY ) "Jo,, .

At this point we now wish to consider the expected value of

AL LWhls PO

BB.. To evaluate this expected value, we will assume:
b % -1 A A
' = 1 ]
BBy P} (rF) (YJPBYJ)BJBS
Using this relationship, we {ind:
E(BBL) = B8' + (M PY)H(YIBY, )N + (v PY) P
Using & similar analysis for Bg' yields:
AA N A~ -1
e’ = L gg'(Y'P.Y )Y PY)" and
PRGN A I

N
E(fB') = pp' + 351 (Y‘l’:f)‘l(ugpdarJ I (¥yP,Y, )(r Pty

N
E(G) = [I - L (re)Hupy )y H)'l(Y'BPSYs).'I‘

o

=L
+ (8- 2)(rp) IR

If we introduce the r by r matrix

N ‘¥ 1
T=1- L (re) (x Ry Ny P)"(YRY),
8=

H=T"Yc - (8 - 1)(x 1) 1?) .

However, since I' 1is symmetric we will take our estimator as
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= 3(H+ H)

Form of the Estimators for the Trend Example
To put the above theoretical results into perspective,
let us translate them into the trend example. The 2 by 2

matrix of weighted independent variables becomes:

1
YPY =P
88 .8\ T
The slope and intercept are:

t
8
B ()(‘ s Oxs/%s
° sS Utxs/d:_'.s

The estimate of average variance is:

& = ﬁ(EEfTST 2 Ps (ois ozxs/dis)

The elements of f are denoted as:

P = (;ai‘ cab\)
= A a
Cab c%

The K matrix within the credibility form then becomes:

b o'

. Z.5.%
o ( %tg_ + Ot -Opt - Ot

= 22 A2 A 2 o ~ =
U%s(oacb - oab) Ogpt - Rt Ogpt * si

Thus the credibility formula becomes:
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P
Z = - — X
8 P ., (k. +k )P _+ k. k -k k..
B o3 8dl B2a blL dbgd
/P.s + kgop 'Eslz \

Using the data shown in figure 4 these estimn tors take
on the values as shown in figure 7.

Figure 7
Numerical Value of the estimates
= '9}95:’ =+ 00468 G - (N-1)(v' P¥)" 52 -
\ - .60537
£ (21;1 ,550 -13,819 ) _ (1!47,1;51 -8,415.88 )
\ -13,819 805 | =\ -8,54h.26  496.3438
= ’)"9, 179 9: 073 -
K = ( 874,219 160,327 ) & = b, 057, 7k
_ -48, 080 9,097 f1.2485  -.0435 )
K = (-85& 430 160,691) Zy = ( h.0219 .24k )
[ -h9,k79 8,91k ) g o (L3871 -.0699)
K= ( 819,957 157,5% / 2= |6hs  -.2165)
K -47,466 8, 664 g o (1-3680 -.0712)
b7\ -84h,260 153,154 / 37\ T.@61 -.2854 )
X = ( -47,19% 8,923) 2 = (1.1083 -.0610)
5~ \-838,835 157,632 ) =\ 6.e2  -.3052,
Z - 1'2376 - 0570
5= | 5.5842 -,0708
Using these numerical values, we find the credibility
adjusted slopes and intercepts, These ere compared with the

state and country wide slopes and intercepts on figure 8.

331



REGRESSION MODELS

FIGURE 8
State State Credibility Countrywide
Data Adjusted Data Data
1 Intercept: a 2470 2473 2148
Slope: b -62.39 -61,98 -43,35
2 Intercept: a 1621 1587 2148
Slope: b -17.14 -12.19 -43.35
3 Intercept: a 2096 2077 2148
Slope: b 43,31 -39. 64 -43.35
4 Intercept: a 1538 1566 2148
Slope: b -27.81 -10.85 -43.35
5 Intercept: a 1676 1740 2148
Slope: b -11.87 -18.68 -43.35

Flgure 9 compares the state trend line denoted by S and
the country wide trend line denoted by C with the credi-
bility adjusted trend line denoted by A. In all of the
states, except state # 4, the credibility adjusted trend line
is virtually the same as the state trend line, However, in
state #4, with a smaller clalm volume, the credibility adjusted
trend line is Buch different from the state trend line, State
#+ trend lines clearly point out a distressing aspect of the
credibility adjusted trend line. The credibility adjusted
trend line has a lover trend than both the country wide and
state trend lines. Im fact, a closer examination of the
other state trend line graphs will ahow that the credibility
adjusted trend for state # is also lower than both state and
country wide. In state #l the credibility adjusted slope is
less than for the state but the credibility adjusted trend
line lies above both the state and country wide lines for the

w
[F%)
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time period from our observed values were taken.

These strange results arise from our choice of model.
That is, we have assumed that not only can the trend for a
given state be considered as being a pick from a distribution
of trends, but also that the level of severity for a random
pick over some distribution of average severity levels,
However, if we were to reflect upon what a proper model for
trend would be, it is fairly easy to conclude that the level
of severity as embodied by the intercept, a in the trend
line, 1s distinctly different from state to state and should
not be credibility adjusted for.

It is possible to alleviate this defect by changing the
basic credibility model. In order to more adequately discuss
this, it 1s necessary for us to first discuss the effect of
linear transformations of the independent variables on our
credibility estimate, aiJ'

Invariance of ﬁij Under Transformations of the Independent
Variables
The column matrix Y s describes the values of r

t
variables which are observed at time t. Such that

_ 1
Hig = YtsBs

This mean value could just as well be described by a linear

combination of transformed variables Y:;

* %
Hes = YegPs
The easiest example of this is simple scaling and translation
of each of the independent variables. 1In our case we would
define time sbout an origin and with a scale such that the
weighted average of the scaled times was zero and the sample
variance of the scaled times was equal to one. This trans-

formation would be accomplished by a matrix:
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1 0

/O /%

This matrix can be considered a mapping of Yts to Y:s:

However, it 1is not necessary to merely consider simple loca-
tions scaling transformations; but any arbitrary linear trans-
formation on Yts will not affect the credibility estimate

a, .
ts
An arbitrary transformation Ts will generate:
Y* TY
ts ~ “s'ts
from which
*
Y =T
8 8”5
and Y PY cTyRY T
8 B8 58688

follow immediately.
In order that the mean value estimate still holds, the
inverse transformation must be applied to Bs
* * * -1
= Y = ' =
Heg = YtsBs YtsBs = Bg T; Bs
Similarly, if the mean value were to hold using the country-
wide g, this same transformation needs to be applied:
* -1

B, =T 7B
With regard to the transformed estimates of Bs’ it follows
from the above that:

A% =1~

Be = LB

With regard to the countrywide estimates E, a transformed

335



REGRESSION MODELS

estimate will be denoted as:
-
B, = TL B

The transformed B will nov generate a transformed T

matrix which varies by state, denoted by:

* ) IS §
ry = T
This will lead to a transformed credibility matrix:

PR A
s~ 8788

combining these elements to find the transformed estimate:
* AR % R *, . ¥
Meg = [BgZg + Bg(I - 2)1¥y,
It is immediately clear that this estimate is identical with
the original untransformed estimate.

Origin and Scale Transformations for the Trend Model
One of the immediate implications of the above results is

that the credibility results found above would have been the
same if our time data had been transformed to have zero mean

and unit variance. Using the result of this transformation

1

Y*
ts t -t
5
Cis

simplifies the credibility form since

P P I
5 SYS = «5

However, now the I' matrix varies from state to state.

Explicitly
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* (‘cis oabs )
Fs = 2
%abs  Obs
T a2 T a2
) (ai + 20bt, + Tv® o, (g, + T o )
- T a2 2 .2
Ops(Tgp + T,007) 0% ;0P
The transformed credibility constant K: now takes on the
simple form:

The transformed credibility matrix:
*, -
(P I+K)™

2t = p
s 5

'8
still has the same general form as in the untransformed case.
The ﬁ:, é: and estimated values of F:, K: and Z: are
shown in figure 10 by state for the scale and location trans-
formation.
Mixed Models

The upsetting results for the credibility adjusted trend
line shown sbove in figure 9 came about because the mean value
Hee is modeled in the same fashion for each state, speci-
fically assuming that both slopes and intercepts were distri-
buted about some mean value slope b and mean velue inter-
cept a. If we were to pause for a moment to think about our
personal model of the trend situation; we would be more
inclined to believe that while the avarage dollar at any point
and time would vary substantially from state to state, the
rate of change in the average dollar would tend to be the
same from state to state. The modeling implication of this is,
first of all, not to use a {rend line; but to use an ex-
ponential trend. We will not pursue this direction 1a this
paper. However, this analysis will be carried out in further

research on this subject.

337



3EE

Transformed Transformed Transformed Transformed Transformed
State Countrywide Credibility
State Coefficients Coefficients T K Matrix
A A% * * »*
s Bs B& FE KS ZS
. {2,061 ) (1,864 ) [ 95058 -29,596Y (10,24 31,k15Y [ .okok -.1483)
-\ -216.04) \ -150.11/) \-29,596 9,651/ \31,415 100,904 | \-.1483 .513)
5 (1,511 \ (1,870 ‘) ( 97,433 -30,135) (10,244 31,661 ( <9068  -.2348
-59-66) -150. 88 -30,135 9,751 (31 661 102,367) -.2348 -2235)
3 (1,806 ) (1,858 ) ( 9,511 -29,227) ( 10,244 30,919) ( .8911 -.2&69)
-150.21 \ ~150.36 -29,227 30,919 97,868 / \-.2k69  .1915
oo (L33 ) (1,860 ) (93,168 -20,811) (10,2bk 30,559 (.51 -.2530
' \ -98.01/ \ -152.80/ \-29,811 10,000/ \ 30,539 95,443/ \-.2530 .1193 )
s (160 ) (1,869 \ { 96,991 -30,318 [ 10,24k 31,320 [ .9222 -.2119)
\anes) U Thawas) (30,318 93017 ) (310320 100,108 ) \-i2119 13136
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Restricting our thinking to the trend line model, the
credibility model which is most meaningful would be one in
which only the slope 1s considered to be a variable from state
to state, but where the intercept is a constant:

u (6.) = a_+ (6 )6

This sort of model is directly analogous to the Buhlmann,
Straud introduction of treaty conditions in their paper,
which allow the severities to be modified by some function
before entering the credibility formula.

We have shown above that scale and translation formula-
tion will not affect our final credibility estimate. For
ease of exposition in this section, we will assume that the
time values in our trend line have been chosen so that the
welghted average of observed times is zero and the weighted
sample variance is equal to one. The modifications to our
basic credibility model, because of the constant values a
within the mean value Hig
the regular credibility model B, wvas the same functlion of
Bs for all states. In our mixed model this function varies

formula, ere fairly simple., For

from state to state:

The expected value of this function varies from state to

a'5
E(B (6,)]= B = ( . )

We have chosen to denote this expected value as sa to avoid

confusion with the function of 6, Bge The covariance matrix
F* is:
s

state:
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.« (O O
E(B (6, )B' (6_)] - PP = Tg = 2 )

with the only non-zero entry being °§'
If we introduce for state

Koy = /%,

to define:

2oy = B y/(B g+ )

The credibility matrix for our mixed model becomes:

5 o)

Using the same theoretical development as in the regular
credibility model, for the mixed model leads to:

nyy = [BYZ, + Js'(I - 200,

The only difference is this estimate is that Js' replaces
B'.6 This estimate may be written for the trend case without

recourse to matrices simply as:

aij =8+ [bJZbJ + b(1 - ij)]i

Using the formulas for the mixed model, the constant K,
the credibility and finally the credibility adjusted slopes
are shown on figure 11. For this mixed model, our credibility
results are much more pleasing since the credibility adjusted

6It is important to note that this result holds for any
mixed model, not just for out trend case. The most genersl
mixed model, of course, allows arbitrary elements of Bs to be

considered independent of 65.
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Number

of Claims

State Over 3 Years

s P
5

1 100,155
2 19,895
3 13,735
IR hi1s52
5 36,110

Kpe
b, 565
4,518
4, 550
L, 406
b, 443

FIGURE 11 .

Credibility Adjusted Slopes
Without Intercept Adjustments

Transformed
Transformed Credibility Transformed
State Adjusted Countrywide
Credibility Slope Slope Slope
st S* %{- ;*
. 9564 -216. 0k ~213.17 -150.11
. 8149 - 59.66 - 76.54 -150. 88
7512 -150.21 -150.21 -150.36
L4852 - 98.01 =126.22 -152.80
. 8904 - 41.68 - 53.79 -152.16
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slope must lie between the state and countrywide slopes.
Further, some general observations can be made concerning the
relative size of credibility to be given to state data. With
this five state base as countrywide for most states, the
number of claims that are observed show extremely high
credibility. Only for the smallest state #4, with 4,152
claims observed over three years 1is credibility lower than .S5.
Of course, for practical application, the credibility standard
should be developed using all of the states not just five,
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Discussion by Al Quirin of Credibility for Regression Models
with Application to Trend

This paper considers an arbitrary linear regression model,
incorporates the Blhlmann Straud formulation of the model,
extends the estimator form considered in the Blihlmann Straub
model, exhibits the relationship between the least squares
estimators, and finally derives computational results invol-
ving simple linear trend.
Arbitrary Linear

e el B(x) <y = Tty o
2 2

ggﬁizi:2;§2raub E(xﬁs) - = cs/pts (2)
Incorporated E(xisxjs) - 4y =0, 4 £ (3)
Bihlmann-Straub ﬁt = X'A (La)
Estimator Form 8

Extended to Gts =a, + x'A (¥v)
Relationship of least
Squares Estimators

~
using (4b) U = fﬁgzs + g (T - za)]yts
using (4a) Gts = [3;25 + pg'(I - 22)]Yts
-1
Z gzl B

Where d = 5——-———:T—
Z p'zI' B
B

5

Adequate accountabllity for inflation has become the
single most important need in Property and Casualty insurance
ratemaking today. In response to this need, Mr. Hachemeister's
paper developing credibility standards for arbitrary linear
regression models and in particular, developing credibility
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adjusted state trend lines, should prove to be invalusble.
In his Introduction, the author mentions that "mo
standards have been specifically developed for evaluating
(the) credibility of state trend lines vs. countrywide trend
lines," Although not specifically developed for analyzing
trend, a credibility procedure has been used for some time
by the Insurance Services Office (ISO) in their trend
calculations, at least in private passenger automcbile
insurance. In each state, the determination of the average
annual change in paid claim costs and claim frequencies is
accomplished by credibility weighing the state and country-
wide sverage annual changes. These average annusl changes
are taken from linear and exponentisl least squares trend
lines for paid claim costs and claim frequencies, respect-
ively. The credibility weights assigned are based on the
latest year ending number of claims. Unfortunately, the
theoretical Justification for this approach is no deeper than
assuming the number of claims has a Poisson distribution,
and approximating probabilities by the use of the normal
distribution. The standard for full credibility is 10,623
claims and reflects a probability of .99 that the number of
claims will be within #2.5% of the expected number of claims
{on the assumption that the mean is egual to the variance),

Partial credibilities are obtained using the formula Z° =
P .. .

10,63 * where P is the latest year ending number of
2
claims needed for partial credibility 2. The theoretical
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point of view, even though I feel that simplicity i{s & much
overrated virtue in the very technical business of insurance
ratemsking and that theoretical soundness should be of primary
importance, I am convinced that any alternative credibility
procedure will face the rather strict test of practical
expediency before being implemented by those in the business
of pricing insurance. With regard to Mr. Hachemeister's
paper, it is precisely its simplicity in practical application
{as well as its theoretical validity) which leads me to
believe that 1t will someday soon become extensively utilized
in calculating trend.

In the first half of the paper, the author states the
problem of state vs. countrywide trend, introduces notation,
displays data for a computational example, presents basic

summary statistics, and reviews the classical and generaiized
linear regression model. Although the author has made mention

o [N

to the point, it should be reiterated thai even though t
form of the estimator

Pg = (yécs Ys/ Y% s

follows that obtained in classical generalized least squares
estimation and that the theoretical results hold in general
for the positive-definite matrix Cs, the assumption made
regarding autocorrelation in deriving numerical results is
not that of generalized least squares. In particular, recall
that the classical generalized least squares formulation of
the state s trend model is

Y wmie o [ £ _ _
1)} L\th} = uts = Bs + DST; LV = dye0s,y0
2 2 2 _

11) E(xts) ~up =y = S/bts s =1,...,N

The n x n positive definite matrix CS allows for both
heteroscedasticity and autocorrelation, i.e., for both

2 2
111) E(xis) -, =05, Wt

[¥37
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and
iv) E(xisxjs) - Uy Uy = 0 14

oot holding., However, in deriving numerical results,
Hachemeister disallows autocorrelastion by assuming that iv)
holds. In other words, should these problem be found to
occur in trend data, further computational refinements will
become necessary in practical application.

An approach to the solution of the problem of state vs.
countrywide trend, is then formulated as a compound decision
problem, In particular, the mean value Beg of a"
bility adjusted state s trend line" 1s modeled as

v) hye(6,) = a,(0.) + By(8, )t

credi-

where for each state s apd each time period t, one acts
as if the slopes and intercepts were distributed about some
mean slope E[bt(es)] and some mean intercept E[at(es)].

Best linear unbissed estimators {BLUE) are then considered
of the form

~
‘H) 1 = M .

RS B T YO T

v =

M=

0% ab + X'A

i e

s=1 1

and are found to be

vi1) By = [Bz, + (T - 2) My,

8
The application of this resuit to real data reqguires that
estimates be made of various parameters not directly obser-

vable within the credibility model {e.g. 29 in vii) is

& function of K which in turn depends on estimates of

A ~ & PR
Cu 1Vl wiTsSC Sovimales,

e
assumptions 1i1) and iv) are made to simplify the derivation

The invariance property of ats for any linear trans-
t

rmation of the independent variables follows in a st

forward manner. Using this result, Hachemelster performs a

(8]
£
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scaling and translation on the linear trend model so that the
weighted average (using # claims as weights) of scaled times
in zero and the sample variance of scaled times is equal to
unity. Finally, & mixed model 1s employed, to avoid the
distressing results obtained when state intercepts are credi-
b1lity adjusted, so that the final model chosen is

uts(es) =a + b(Gs)t .

Note that in this model the intercept varies by state but is
assumed constant over all time periods. For each state s
and each time period ¢ +the slope is still considered to be
distributed about some mean slope. The effect of the esti-
mated form in this mixed model is that slopes are credibility
adjusted while intercepts are not.

To investigate the credibility standards developed and
to evaluate the procedure finally decided upon in credi-
bility adjusting state trend lines, consider the transformed
simple linear trend model which credibility adjusts slopes
without intercept adjustments.

Here,

uts(es) =8 + b(es)t

Pofs) - <:§5>)

rley(6,0) = - (*) .

where

and

The estimator becomes for state s
~ A~ ﬁ'
Ues [B'szs +s (I- zs)h"ts

a, + [Gsz'bs + b2 - zbs)]t

where

“os = p.s/(p.s + Kg)
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and

Ky = /oy -

Note that the credibility parameter Kﬁs satisfies the general
definition demonstrated by Bihlmann that it be equal to

expected value of process variance (= de)
2

Y

variance of the hypothetical means (= %)

The Kbs's vary by state but a single constant K value
could be adopted should the Kbs's developed for all states
show the same stability (centered around 4,500) as those
developed for the five selected states.,
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