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Introduction 
Inflation has moved fran a minor annoyance to a m,jor 

element in Casualty insurance rate &ing. Twenty years ago 
it was sufficient to adJust automobile rate levels without 
any trend of loss severity or frequency. Presently, this 
minor annoyance has become a ma,jor element in the rate making 
process. This development has led to the necessity of 
estimating these trends by state. However, no standards 

have been specifically developed for evaluating credibility 
of state trend line versus country wide trend lines. 

Standards for developing credibility adJusted state trend 
lines are developed in this paper. The general approach is a 
direct extension of the RUhlmann & Straub (1970), "Credibility 
for Loss Ratios." The results obtained apply to much more 

general models than simple linear trend. In fact, credibility 
standards have been developed for arbitrary linear regression 
models. 
Expected Severity Over Time 

To put our thoughts into perspective, let us consider a 
concrete example of estlmatlng expected severity over time for 
total private passenger BI total limits severity. 1 

Sk e Automobile Bodily InJury data In this paper hss been 
supplied by the Insurance Services Office. 
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FIGURE 1 
State #l 

Private Fkasenger 
-alY ww 
Total Limits Severities 

Period 

7-9/m 
104.2 70 

/ l-3 71 
4-6/71 
?-9/71 

lo-12fll 
1-3/z 
4-6/72 
7 -9/e 

lo-&Z/72 
l-3/73 
b-6/73 

t # of Clalma 
ptl 

Observed 
Severity 

xtl 

1738 
1642 
1794 
2051 
2079 
2234 
2032 
2035 
2n5 
2262 
2267 
2517 

Figure 1 shows Private Egsaenger Automobile data from a 
particular state giving a number of claims in each calendar 
quarter along with the observed severity. Time is denoted by 
an index, t, for which observations are available from time 
n to time 1. Time runs backwards for ressona of computational 
ease below. In figure 1, we also introduce notation Pts 86 
the number of claima, and xta aa the observed severity in 
time period t and state a. 

It is our objective to estimate the expected value of x 
wer time given 6: 

E(xts) = vts 

Two competing choices for a tie1 to estimate nts are time 
series analysis, where the major emphasis lies on the inter- 
dependence of the xiJ for various I and J, and the 
regression model, where uts is considered a linear combl- 
nation of other observed variables. These two approaches are 
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not entirely independent since it is possible to create a model 

which contains both the elements of interdependence of the xiJ 
and also a mean value uts which Is dependent upon observed 

values of other variables. The problem of dealing with such a 

model is the practical one of producing estimates of the auto- 

covarlance function of the x 
iJ 

for different I and J at 

the same time ss estimating the regression coefficients. How- 

ever, the results of the analyala below will foXLOw In large 
measure for either choice of model. 
The Classical Trend and Regression Model 

We will make the @lcular choice to model this expected 
value ss a linear trend: 

P at = as + bat 

If we introduce the two column mEltrIces, 

then we will be able to write the expected value of xta In 
matrix form, 

%a = yLps 
Notice that this mtrix formulation of uts 5.6 not limited to 
a simple trend, but would apply also for models where 

LY uts a i=1 si ati 

In this case, B al 

h2 
Pa= : 0 . 

B sr 

and the r by 1 matrix of independent variables is 

310 



CHARLES A HACHEMEISTER 

Ystl 

Y ( ) yat2 
ts= : ' 

yLr 
While we vi11 only discuss the trend model In the numerical 
eutmple given below, all the theoretical resulta follow for 

this mOre general nrAe1. 
For develoment of the classical regression results, it 

will be necessary to deal with our data in matrix formulation. 
We vi11 refer to the column matrix of severities for a given 
state aa 

X 
ns 

X6 = xn-l,s . c J : 

xls 
For each state we will also refer to the n by r matrix 

of Independent variable observations over time ss 

For our trend model this Is a 12 by 2 matrix. The first 
column of which Is all l's; the second column of which has 
entries which go fran I.2 to 1. 

With regard to the number of claims, it wIU be valuable 
to Introduce an n by n square matrix with zeros In the 
nondiagonal elements and with the number of claims for each 
time period going down the nraln diagonal: 
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We WILL also find It necessary to refer to the mean value of 

the process for various time periods for a given state, %I3 P % - 
i J 

n-1,s 
. 
: 

%s 
for which 

now follows. 
Time Series linpllcatlons 

In a time series model one does not usually consider 
that the mean value uts as dependent upon other variables, 

%s' The direction of the investigation In such models Is 
concerned tith the n by n autocovarlance matrix 

C8 - ED&l - IJ& 

It is not the intention of this paper to pursue the time series 
direction of analysis. However, the results developed In this 
paper hold in large measure with an arbitrary autocowlance 
matrix. 

We wll.l follow the Bt;hlplann, Straub formulation in which 
the variance of xts Is proportional to the number of claims: 

,3 

and the severity xts Is independent from time period to time 
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This Is, of course, an over simplification of the real 
world. With these assumptions we find the a x n auto- 

covarlance matrix In terms of matrix Ps, defined above, as 

Basic Summary Statistics 

There will be certain statistics which will arise 

frequently In our discussion of the trend example. Figure 2 

defines the mmary statistics that we will need below. Note, 

of course, that only those statistics which involve xts are 
random variables. 

FIGURE 2 
BBslc Summary Statistics 

f = E P 
t=1 ts 

t/p-s 

5 = Jl p~st2/p.s 

x = 5, 
S G1 ts ts x 19s 

izs = e P tx /P tl ts ts .s 

P . . = E P*s 
s=l 

f= E P&/P 
s-1 . . 

p= i! P F/P., 
SC1 -s 

;;= z P.&/P 
s=l . . 

ST= E P*,qJP 
s=l . . 

'Note particularly that this Last assumption implies that 
there are no seasonal factors affecting the data. 
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FIGURE 2 (continued) 

%x0 = zs - Yisf 
- -- 

atx = xt - x t 

State Wide Full Credibility Trend Estimates 
Were we to follow the classical generalized least squares 

estimiation procedures for @s, we would find In terms of the 
matrices defined above 

For our psrtlcular trend example these results become: 

c =x 
S S 

- csg 

and 

Fooled lkta 
figure 3 comptxres the private passenger BI severity 

experience from state to state. Figure 4 contains the values 
for the 8~ statistics needed to calculate the estimates 
of slopes and Intercepts contained on Figure 3. For our 
purposes we will consider that these five states n&e up the 
entire country. However, the analysis can be generalized to 
any number of states. Accordingly, we will refer below to N 
states. The right-hand two columns of this flsre show the 
pooled data being the sum of the data elements frun the five 
states for commble time periods. 
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1 2 
t of Tot F+---- & ilot s - 

Tim8 Cl8iu lhwtlty clblm Scrsritr Clalm8 Swtrltr Clmlm &verity Clnlmm flevwl~ Clalmr &krrrity 
hrlod t ‘t1 pt2 =t2 

m8 
1% 
2051 
2419 
2234 
2'532 
235 
2115 
2262 
2267 
2517 

,622 u64 
1742 l&3 
1523 1597 
1515 1444 
1622 1342 
16~ 1675 
1964 lb73 
1515 1448 
1527 1464 

1749 
2 

2: 
1471 

pt3 Xt3 'tb 

b.n 
:?z 

gi 
352 
331 
287 
Yb 

$2 

Xt4 

1213 
1010 1146 

zz 
1532 
1953 
1123 
u43 
-3 

1762 1306 

Pt. ‘to pt. Xt. 

2470 l621 2396 159 1676 2148 

- 62.39 - 17.11, - b3.B - 27.01 - 11.87 - 43.35 

1147 
1357 
1329 
1204 
9% 

ml 
UT7 
I2218 
9% 

Ei 
LLZL 

1759 
1685 
1479 
1763 
1674 
2103 
1532 
1622 
1828 
215s 
2233 
299 

29m 
3172 

;zz 
2693 
2913 
3275 
2w 
256j 
3017 

lb56 
14% 

3 
lb02 
cm 
1606 

t7z 
1573 
1613 
1690 

13939 
15918 
lb-2 
14703 
u545 
14tio 
16pb 
u76b 

zit 
14174 
15826 

1623 
1579 
16gr, 
lea2 
1827 
2033 
1836 
1853 
lsg3 
2324 
2c127 
2157 



1 2 3 

1%l55 19,895 13,735 

6.54972 6.4~71 6.6990~ 

9.88889 53.22398 56.91&4 

2,060.s 1,511.22 1,805.w 

u,750*36 9,481.W 11,577.m 

n=99w u.n393 l2.0306!3 

-748.091@ -207.Q975 -p1.01641 

55,881. 18,725. 60,776 

FIGURE 4 
Values of Summry 

Statistics by State 

4 

4,152 

6.660@9 

56.79143 

l,3%98 

8,666.54 

Iz't24a2 

-345.04749 

68,275. 

5 "Countrywide" 

36,110 174,047 

6.43725 6.52511 

53.75876 54.66964 

b599.83 1,865.40 

10,152.19 119647.75 

12.32061 12.09264 

-146.3cofJ5 -524.21257 

7,573, 99807 
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Just as we have a need to be able to refer to all the 
data within a state In a concise fashion, we will have a need 
to refer to all of the data country wlde In a concise fashion. 

To this end for severities we define the n x N by 1 CO~UIIUI 
of severities as 

P 

x= . 

0 

% , 

; . 

the n x N by r matrix of Independent variable observations 
a8 

and the super matrix of numbers of claims mstrlces as the n x N 
matrix 

Also, we will consider the n x N by 1 column matrix of mean 
values : 

% 

E(X) = P - 

i) 

p2 : 
. 

It vi11 also be necessary for us to use the autocovariance 

% 
0 
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matrix of aILL of the severities country wide: 

E[XX']- w' = C= 

It Is important to note that since this Msuperw autocovarlance 
matrix Is made up of the state autocovarlance matrices down 
the super diagonal with zero elements elsewhere, this model 
specifically considers that the observations from one state 
are Independent of those from another state. 

In terms of these super matrices, the pooled Ucountry 
wide" estiarates of p become: 

; = (YI c-4p-Y c-lx 

State Versus "Countryw lde" Trend 
The estimates of the Intercept and slope of the trend 

line shown on figure 3 vary substantially from state to state. 
Without credibility the only two alternatives available to the 
decision maker is whether to consider the data from the other 
states to be from the 6eme basic population as the state In 
question, and therefore use the country wide estimate; or to 
consider that the state data was sufficiently different, and 
therefore throw out the data from other states using only the 
state estimate. Hgure 5 compares the country wide severity 
data with that of state #&. Notice that the country wide data 
lies uore closely about the least squares trend line, although 
the country wide line lies substantially above the state line. 
One Is not exactly happy with the trend line estimate for the 

state because of the very wide variation of the data points 

about that line. In this Instance, one might be mDre ready 

to accept the country wide versus the state trend. 
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Figure 5 

State no. 4 H “Countrywide” State no. 4: 0 
Countrywide: x 

2.600 

2.5al 

2.400 

2,300 

2.200 
/ Y 

2,100 - 

2.~ - 

1.900 - 

l.soo - 
0 

1,700 - 

0 

1,400 
0 

- 

1.300 - 0 

0 

1.m 0 - 

12 11 IQ 9 8 7 6 5 4 3 2 1 
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However, state versu6 country wide are not the only two 

choices. It' one were to believe that the dl6trlbUtiOn of xt6 
varied from state to state and had to choose an optimal 
decision over al.l of the states, a ccqound declslon problem, 

then It Is not clear whether the choice should be a state wide 
or a country wide trend. The exact solution of this problem, 
produces a credlblllty weighting between the two trends, aa 
will be seen below. 

Alternatively, if one 16 only making a single declslon 
for one state but If It 16 believed that the distribution of 
x Is a random pick from sane set of distributions governed 
by an Index, Say es, then the result 16 the 8-e a6 the 
compound declslon. 

figure 6 contains the estimated trend lines for each of 
our five states and the heavier line a6 that for country wide. 
It Is clear from looking at this figure that the slopes and 
intercepts vary from state to state. In the compound problem 
of trying to choose a set of trend lines for all of the states 

to optimize the total trend choice, one should act 8s If the 
slopes and Intercepts do have a dlstrlbutlon which 16 
reflected in these differences. 

With the lntroductlon of an Index es to describe these 
distrlbutlon6, we need to reformulate the state data In terms 
of this Index. Mrst of all, the es become functions of es 

‘6 = JOB) 

as does the expected value of xts given es 

Eht6b6 1 = pt6(es) = rtsJNeJ 
The autocovarlance matrix Is In general a matrix function of 

‘6 

c6 = c6(e6) 
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In this paper we will pursue the case of where the autocovar- 

lance matrix Is knuun up to a scalar multiplier, the variance 
of x t6 which 16 a function of es: 

c6(e6 1 = B(e6)p;1 

Eqmted Values Over 8 
It vi11 be necessary below to take expected values of 

~ar10~6 fUnCt10m 0f 8. 
B(e): 
The expected value of the column matrix B Is equal to a 
column matrix p without SUbSCript 

Eb(e)l = f3 l 

The covarlance matrix of the B(8) will be denoted by the r 

by r matrix: 

E[B(e6 )B’ (es)1 - BB’ = rrxr . 

The expected vahe of pt6 is now: 

ErClt6(es )I = qsa 

With a natural extension to the column mtrlx p, wlthln a 
state and then country wide to p 85: 

E[P~(~~)I = y6f3 and Eh4+.,e,)l = Yf3 

We vi11 also find It necessary to refer below to the column 
matrix of autocovarlances between a particular mean value and 
that of aU other mean values: 

where elj I.6 the Mnecker delta: 
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{ 

1 l=J 
"IJ - 

0 IfJ 

The autwowlance matrix of the mean values Is a super matrix 

of n x n matrices down the super diagonal with zero elements 
elsewhere: 

Ebw' I - E[lrlEt~’ I - 

'l?L 

0 

0 
y2r% . 

. 
. 

The state variance 16 also a variable now, which depends upon 

'6' The expected value of the autocovsrlsnce matrix for a 
given state I.6 denoted by: 

Elc,(es)l - V6 

However, In our cue we w0.l. take: 

The 
Is: 

extension of this to the country wide autoccwarlance matrix 

= (J2p-l EIC] - V = 

Estlms.tion of p,(e,) 
With this prel.iminkty background, it 16 now possible to 

consider estimates of the mean value of the trend line at any 
point of time. we take the usual conditions of unbiasedness 
and minimum variance: 
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= alJ(8j ) 

E((tI; - ~lJ(e))21 5 dlj - ~lJ@H21 (1) 
where we will accept the estimator p* 

U 
as the optimal estl- 

matOr, If (1) holds for all possible estimators CI U' 
F'olloting Biihlmam and Straub, we vi11 consider estl- 

nators of the form: 

' ' %SXt6 
6=1 td 

-Q~+X’A 

Where we introduce the column vector of coefficients for state 
and country wide as 

and 

While we require our estimator to be unblssed, this will 
happen automatically because of the Inclusion of the additive 
constant of ~b In the estimator. Accordingly, to determine 
our estimator we will minimize: 

To do this, we take the partial derivative of @ 
U 

with 
respect to Qo set to 0 

2= 2E[c5, + x"A - ~lpj)l = 0 

to find: 

% = Ehlj (eJ )I - E[p’ ]A = B’ [YIJ - Y' A] 

The column vector of partial derivative6 Of @ lj with respect 
to A Is set equal to 0, 

a 
-$ = 2E[ICPA + X(s - P,pp - 0 
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finding: 

EI(C + w’ )A t ~“01 = E~wl~(~j)l 

after taking conditional expectations holding the es for 
6 = 1 t0 N, coastant and rearranging terms. krylng out 

the expectation over the 86, we find: 

[V + E(Iw' ) - E~)E(IA' > IA = Eh& ) 1 - E[P wlj (ej ) 1 

To this point the analysis has been quite general vithout 
depending upon the form of V or of the form of the auto- 
covariance matrix of the u. To proceed It Is necessary for 
us to aSSUE V and the autocovarlance matrix of u to be 
comprised of n by n matrices of state data down the super 
diagonal with zeros elsewhere. Lf this Is the case for each 
state, we may now write: 

(vs + Y6rY;)A6 = Y6rY 6 
ij d 

which Immediately indicates that 

(2) 

A6 = 0 for 6 # j 

If we premultlply (2) for state j by YiVi', we find: 

(I + Y;V;$f)rjAj = Yjv;+fJrYIJ 

Antlcl~tlng later results, let IS pause for a moment to define: 

xJ=p.J 
(Y*v% r)-l 

J&l J 
and the credibility matrix:3 

31%e K 
J 

matrix only exists If r Is positive definite. 
However, the 2 

Li 
matrix always exists even when K 

J 
does not; 

and may be written in the form: 

325 



REGRESSION MODELS 

This Immediately yields: 

YjAj = ZjYlj 

Combining this wlth (2), we now find: 

AJ= J J v-4 r[I - zplJ 

Premultlplylng this by F 
3 

and rearranging terms, since 

rjvj4jrII - zJ I = zJ 

we find: 

“‘“3 = ijZjYlj 

for the case where C j 16 known up to a scalar multiplier4 
which depends upon 8 . Recall that In the cas.e of greatest 
Interest to u6 cj = 'k(ej)p;l. Now since 

% = 8’ [I - zj lYiJ 

we can finally write our estimator a6: 

G lj = [;jzj + B’ (1 - zj 1 lYiJ 

It Is particularly interesting and satisfying to note that 
this estimator holds for any Y 

U' 
In other words, we have 

credibility adjusted the regression coefficients. 
Relation to the B&lmann, Straub Model 

The form of the estimator In the B*&iLmann, Straub model 
was: 

c u =X'A 

4 If c j is some more complex function of eJ' become6 
a function of 8 J such that In general 
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without an additive constant. If this model were followed 
through for the regression ca6e, one would find: 

G ij = qzj + $3’ (1 - zj 1 lYIJ 

which 16 the same as the estimator above, except for d, which 
Is equal to the expression: 

d= k 
S-1 

6;z6r’+3/ E p’ zsr’lg . 
s-l 

In the unlvarlate case of almann and Straub the parameter 
equivalent of j3 cancelled entirely from the estimator. 
However, in the multlvariate case, this Is not so; 60 that 
there Is no benefit to using the estimator without the 
additive constant. 
Parameter Estimation 

To apply our credlblllty model to real data, we need to 
be in a position to estimate the various elements which are 
not directly observable within It. Up t0 this point we have 
been able to be very general In the form of the autocovarlance 
matrix within a given state. At this point, we sacrifice this 
generality to be able to produce unbiased estimators of the 
parameters In question. The esslest parameter to deal. with 
Is the column matrix 8. The least squares estimate of B, 
using pooled data, is unbiased: 

E(6) = E[(Y'FY)-&X] = p 

For an estimator of expected value of the state variance 

8, let us consider the mean square error for a given state: 

< = & fl Pts(xts - Cts12 l 

In matrix terms this becomes: 
-2 
'6 = & (ysxs - x,P,Y,(Y;p,Y, P-y6X6 > 
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Following the classical evaluation of the expected value of the 
mean square error as outlined in Goldberger, 5 we note that the 
above matrix is a 1 by 1 matrix and further that the trace 
of any two matrices Is Independent of the order of multlpll- 
cation: 

tr(m) = tr(BA) 

60 that we nray evaluate the expected value of q as: 

(n - r)E(z) = E tr[Ps(I - Y6(ybPSY6 P-y6 )X,f I 

since 

I- ys(rsp6y6 )-~6p, annihilates Y6B(g6)B1(8s)Fs 

this becomes: 

or 

(n - r)E(z) = tr[P6(I - ys<~6p6y6 )-4;P6 Iv, 1 

E(e) = & ltrInXn - tr &.I% , 

so that 3 Is an unbiased estimator of 2. We shall take 
the unwelghted average of these state mean square errors a6 
our overall estimator of *2: 

which Is clearly unbiased. 
The estimator of the covarlance matrix of the B(B) Is 

somewhat more difficult to find an estimator for. First of 
all, consider: 

. 
G= 

6=1 
- ms - 3’ l 

To evaluate the expected value of G, let us first consider 
expected values of matrices of estimators of the 6,. In 

5,s Econometric Theory"; John Wiley & Sons, Inc. - l%ge 166 
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particul6.r, we note: 

;j* = 'YJPJYJr4jPjxJF P6YJY;P6Ysr1 , 

60 that: 

E(gjks > = 19’ + [r + 02(Y6P6Y6)-118J6 . 

At this point we nou vlsh to consider the expected value of 

Pa;* To evaluate this expected value, we vlll as6ume: 

E;i = E (rPx)-l(YjPjYj);j$; 
W 

Using this relationship, ve find: 

E(ms) = BP' + (Y'H)-1(Y~P6Y6)I' + (Y'P+$ 

USiN 8. Simi1J3l- StldJSiS for E’ yields: 

i;^al= ! z'(Y'P Y )(YIPY)" and 
j=l J J j J 

N 

E@ ) = BP* + 2 (y1 pY)‘l(rjpjyj)r(rjpjyj)(rpY)-l + 
j=l 

+ (Y' pu)'V 

Combining our results ve find: 

E(G) = [I - E (r~)~1(~~6~6)(r~)~~(y;14K)lr 
L 6~1 

+ (N - i)(rpl)'l% 

If we introduce the 

n-1- 
6=1 

r by r matrix 

(r PY)-+Y;P~Y,)(Y~~)-~(Y;P~Y~) , 

an unbiased estimator for r is 

H =I-'(G - (N - l)(Y'gY)-'3) . 

However, since r 16 smetrlc we will take our estimator as 
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Form of the Estimators for the Trend Example 
To put the above theoretical results into perspective, 

let us translate them into the trend example. The 2 by 2 
matrix of weighted Independent variable6 becomes: 

1 
YkP6Y6 = Pa6 5 ( ) f c 

The slope and Intercept are: 

The estimate of average variance is: 

“=&-Jzl .s xs it P (% -uQ4,) 

!J!he elements of ? are denoted as: 

The K matrix wlthln the credibility form then becomes: 

Thus the credibility formula becomes: 
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P 
.6 

z6 = f, + (Es, + $22,P*s + fisU&2 - G612F;s21 x 

'.S + '622 -'6, 
X 

-'621 '.S + '6-n > 

Using the data shown in figure 4 these estinBtor6 take 
on the dues a6 shown in Figure 7. 

Numerical Value of the estimates 

II= .6lo17 
-.00066 

r"= ( 241,550 
-13,819 

%=( -874,219 -49,179 

%= (-i:$g 

5 = ( -87% -49,479 957 

K4 = 
( 

-47,466 
-844,260 

KS = -838,835 -47,194 

-.00468 
*a537 

-13,819 
805 1 

9,073 
l&327 1 

9,097 
160,691 1 

8,914 
15735% > 

8,6fs 
153,154 1 

8,923 
G-i', 6% 

G - (N-l)(Y'P+&+ = 

( 
147,451 -8,415.88 

= -8,544.26 496.3438 > 

d = 44,057,744 

zl = ( 
1.2489 
4.0219 -:% ) 

z2 = 
( 

1.3871 -.0&g 

6.48% -.2165 ) 

z3 = ( 
1.3680 -.07x! 
7.a261 -.2854 1 

z4 = 
( 

1.1083 -.0&o 
6.cec~ -03052 > 

z5 = 1.2376 595842 -.0570 -.0708 

Using these numerical values, we find the credibility 
adJusted slopes and intercepts. These are cornsred tith the 
state and country tide slopes and intercept6 on figure 8. 
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FIGURE 8 

State 

Intercept: 

Slope: 

Intercept: 
Slope: 

Intercept: 
Slope: 

Intercept: 
Slope: 

Intercept: a 
Slope: b 

a 
b 

a 
b 

a 
b 

a 
b 

State Credibility 
Data AdJusted Data 

2470 2473 
-62.39 -61.98 

l&l 1587 
-17.14 -12.19 

2096 w7 

-43.31 -39-64 

1538 1566 
-27.81 -10.85 

1676 1740 
a.87 -18.68 

Countryvide 
Data 

2148 

-43.35 

2148 
-43.35 

2148 

-43.35 

2148 
-43.35 

2148 
-43.35 

Figure 9 compare6 the state trend line denoted by S and 
the country wide trend line denoted by C with the credi- 
bility adjusted trend line denoted by A. In all of the 
states, except state # 4, the credibility adJusted trend line 
is virtually the same a6 the state trend line. However, in 
state #, with a smaller claim volume, the credibility adjusted 
trend line is %ach different from the state trend line. State 
#$ trend lines clearly point out a dl6tre66ing aspect of the 
credibility @usted trend line. The credibility adjusted 
trend line has a lower trend than both the country wide and 
state trend lines. In fact, a closer examination of the 
other state trend line graphs will ahow that the credibility 
adJusted trend for state #2 16 also lower than both state and 
country wide. In state #l the credibility adjusted slope is 
less than for the state but the credlblllty adjusted trend 
line lies above both the state and country wide lines for the 
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Srrtc no. 1 state no. 2 

C C 

2.m - 

s 
A 

1 12 1 

state no.3 state no. 4 

C 

2.ow - 

P 2. 13.735 P ,* 4,152 

l.Mo* 3 I 
12 

l.cwJ ’ I 
1 12 1 

state no. 5 

’ 4: 
C: Countrvwidc 

P,-36.110 

l.ow I 
12 

Comparison of 
Credibility Adjusted Trend Lines 

with State and Countrywide Lines 
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time period from our observed values were taken. 
These strange results arise from our choice of model. 

That is, we have assumed that not only can the trend for a 
given state be considered as being a pick from a distribution 
of trends, but al60 that the level of severity for a random 
pick over some distribution of average severity levels. 
However, If we were to reflect upon what a proper model for 
trend would be, it Is fairly easy to conclude that the level 
of severity as embo&ed by the intercept, a in the trend 
line, is distinctly different from state to :tate and should 
not be credibility adJusted for. 

It is possible to alleviate this defect by changing the 
basic credibility naodel. In order to more adequately discuss 
this, it Is necessary for us to first discuss the effect of 
linear transformations of the independent variables on our 
credibility estimate, G 

Invariance of G,, 
U' 

Under 'Iransformations of the Independent 
Variables 

The column matrix Yts describes the values of r 
variables which are observed at time t. Such that 

This mean value could just as well be described by a linear 
combination of transformed variables Y:s 

The easiest example of this is simple scaling and translation 
of each of the independent variables. Inour casewewould 
define time about an origin and with a scale such that the 
weighted average of the scaled times was zero and the sample 
variance of the scaled times was equal to one. This trans- 

formation would be accomplished by a matrix: 
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( 

1 0 
Ts = 

-f/at, list* 

This matrix can be considered a mapping of Yts 

Kowever , it is not necessary to merely consider simple loca- 

tions scaling transformations; but any arbitrary linear trans- 

formation on YtE will not affect the credibility estimate 

kE* 

An arbitrary transformation TE 

YTE = TEYtS 

from which 

Y,' = YET; 

will generate: 

and Y,"tPsY; = TsY;PsYsf 

follow immediately. 
In order that the mean value estimate still holds, the 

inverse transformation must be applied to g, 

%s = Y;EaE = Ybf~: = @z = T;-'g, 

Similarly, If the mean value were to hold using the country- 
wide g, this same transformation needs to be applied: 

With regard to the transformed estimates of $,, it follows 

from the above that: 
4x+ 
BE 

= T;-‘; 
6 

With regard to the countrywide estimates g, a transformed 
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estimate will be denoted 86: 

The transformed g, will uov generate a transformed I' 
matrix which varies by state, denoted by: 

This will lead to a transformed credibility matrix: 

combining these elements to find the transformed estimate: 

It Is Immediately clear that this estimate is identical with 

the original untransformed estimate. 
Origin and Scale Transformations for the Trend Model 

One of the immediate lmpllcatlons of the above results is 
that the credibility results found above would have been the 
same If our time data had been transformed to have zero mean 
and unit variance. Using the result of this transfonnetlon 

1 
* 

Yts = 
( J 

t - cs 

‘tE 

simplifies the credibility form since 

Y;PsY; = PeEI 

However, now the p matrix varies from state to state. 
EqJlicltly 
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< + 2aabrs + cab2 ats(aab + $Ub2 
= 

%s('ab + cEob2) a2,ab2 

The transformed credibility constant ICi now takes on the 
simple form: 

The transformed credibility matrix: 

still has the same general form as in the untransformed case. 
The Bz, 8: and estimated values of rs, + Ki and 21 are 

shown in figure 10 by state for the scale and location trans- 
formation. 
Mixed bdels 

The upsetting results for the credibility adJusted trend 
line shown above in figure 9 came about because the mean value 
uts Is modeled In the same fashion for each state, specl- 

flcally assuming that both slopes and Intercepts were distri- 
buted about some mean value slope b and mean value lnter- 
cept a. If we were to pause for a moment to think about our 
personal model of the trend situation; we would be more 
inclined to believe that while the av&rage dollar at any point 
and time would vary Substantially fromstate to state, the 
rate of change in the average dollar would tend to be the 
same from state to state. The modeling implication of this is, 
first of all, not to use a trend line; but to use an ex- 
ponential trend. We will not pursue this direction In this 

pap-. However, this analysis will be carried out in further 
research on this subject. 
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FIGURE 10 

Estimates for Scaled t 

Transformed 
State 

State Coefficients 

l ( 2:~!~.04) 

E 2 (‘%.66) 
3 (%.21) 

4 ("'-;iiol) 

5 (YL8) 

Transformed Transformed Transf omed Transformed 
Countrywide Credibility 
Coefficients r K t4itrlx 

96 991 -30 318 
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CHARLES A. HACHEMEISTER 

Restricting our thinking to the trend line model, the 
credibility model which is most meaningful would be one in 
which only the slope is considered to be a variable from state 
to state, but where the intercept is a constant: 

ptE(8E) = as + b(eE)t 

This sort of model Is directly analogous to the B&lmann, 
Straub introduction of treaty conditions in their paper, 
which allow the severities to be modified by some function 

before entering the credibility formula. 
We have shown above that scale and translation formula- 

tion will not affect our final credibility estimate. For 
ease of exposition in this section, we will assume that the 
time values In our trend line have been chosen so that the 
weighted average of observed times Is zero and the weighted 
sample variance iE equal to one. The modifications to our 
basic credibility model, because of the constant values as 
within the mean value utE fonnti, are fairly simple. For 
the regular credibility model $, was the same function of 

8 for all states. In our mixed model this function varies 
fkn state to state: 

The expected v&ue of this function varies from state to 
state: 

E~BE(8E)I = $3 = 

We have chosen to denote this expected value as 0 to avoid 
confusion with the function of 8, BE. The covsxtance matrix 
r,” is: 
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E~B,(~,)B'(~,)1 - ,B,B’ = r; = 
with the only non-zero entry being , 

If we introduce for state j 

to define: 

% = p.jm.j + Kbj’ 
The credibility matrix for our mixed model becomes: 

z3 = 

Using the same theoretical development as in the regular 

credibility model, for the mixed model leads to: 

The oily difference is this estimate is that 

B' 6 
P 

replaces 

. This estimate may be written for the trend case without 
recourse to matrices simply as: 

; &I = aj + [6,sj + 

Using the formulas for the mixed model, the constant K, 
the credibility and finally the credibility adJusted slopes 

are shown on figure 11. For this mixed model, our credibility 
results are much mre pleasing since the credibility adJusted 

6 It Is Important to note that this result holds for any 

mixed model, not just for out trend case. The most general 

mixed model, of course, allows arbitrary elements of @, to be 
considered independent of 0 

6' 
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FIGURE 11. 

Number 
of Claims 

State Over 3 Years 

6 P .6 

1 100,155 

2 19,895 

3 13,735 

4 4,152 

5 36,110 

Credibility AdJusted Slopes 
Without Intercept AdJustments 

Transfomed 
State 

Credibility Slope 
A* 
b 

4,565 * 95G -216.04 -213.17 

4,518 .814g - 59.66 - 76.54 

4,550 07512 -150.21 -150.21 

4,406 .4852 - 98.01 -126.22 

4,443 .@04 - lc1.68 

Transformed 
Credibility 
AdJusted 
Slope 

-* b 

- 53.79 -1%. 16 

Transformed 
Countrywide 

Slope 
** b 

-150.11 

-150.88 

-150.36 

-152.80 



slope must lie between the state and countrywide slopes. 
Further, some general ObEeNations can be made concerning the 
relative size of credibility to be given to state data. With 
this five state base as countrywide for most states, the 
number of claims that are observed show extremely high 
credibility. Only for the smallest state #+, with 4,lz 
claims observed over three years is credibility lower than .5. 
Of course, for practical application, the credibility standard 
should be developed using all of the states not just five. 
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Dlscusslon by Al Qulrln of Credibility for Regression Models 
with Application to Wend 

This paper considers an arbitrary linear regression model, 
incorporates the BUhlmann Straub formulation of the model, 
extends the estimator form considered In the SUhlmann Straub 
model, exhibits the relationship between the least squares 
estimators, and finally derives computational results lnvol- 
vlng simple linear trend. 
Arbitrary Llnesx 
Regression We1 Ebts> = y.. = Y;,& (1) 
Considered 

BWmann-Straub 
Formulation 
Incorporated 

(2) E(&) - $, = uz/Pts 

E(xisxJs) - ulsujs = 0, 1 f 3 (3) 

BUhlmana-Straub cts = xlA (h) 
Rstlmator For711 

Extended to ;;ts = q,+ x'A 

Relationship of Least 
Square6 Estimators 

using (4b) 
* 
uts = Isi;,zs + B' (1 - z2 )lY,, 

using (4.a) fi ts = R$z, + 8' (I - z2 Huts 

(4b) 

c ~;zsr-lg 
Where d = ' 

z p' z,r-lp 
S 

Adequate accountability for Inflation has become the 
single most Important need in Property and Casualty Insurance 
ratemaklng today. IA response to this need, Mr. Hachemelster*s 
paper developing credibility standards for arbitrary linear 
regression models and In particular, developing crediblllty 
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adJusted state trend lines, should prove to be Invaluable. 
In his Introduction, the author mentions that I(no 

standards have been specifically developed for evaluating 
(the) credlblllty of state trend lines vs. countrywlde trend 
lines." Although not specifically developed for analyzing 
trend, a credibility procedure has been used for some time 

by the Insurance ServiCeS Office (ISO) in their trend 
calculations, at least in private passenger automobile 
insurance. IA each state, the determination of the average 
annual change in paid claim costs and claim frequencies Is 

accomplished by credibility neighing the state and country- 
wide average annual changes. These average annual changes 
are taken from linear and exponential. least squares trend 
lines for paid claim costs and claim frequencies, respect- 
ively. The credibility weights assigned are based on the 
latest year ending number of claims. Unfortunately, the 
theoretical justlflcatlon for this approach Is no deeper than 
assuming the number of claims has a misson distribution, 
and approldmatlng probabilities by the use of the ~orml 

dlstrlbutlon. The standard for full credibility Is 10,623 
claims and reflects a probability of .s that the number of 
claims till be within k2.55 of the expected number of claims 
(on the assumption that the mean is equal to the variance). 
Partial credlbllltles are obtained using the formula 8 = 

E&p where P Is the latest year ending number of 
claims needed for partial credibility Z. The theoretical. 
soundness of this procedure has been proven deficient by 
several authors, but up until this point in time, the 
theoretical advantages of alternative procedures do not seem 
to outweigh the practical advantage of slmpllclty (both In 
explanation to state Insurance departments and In mathematical 

computation) present IA the current procedure. Prommyown 

344 



AL OUIRIN 

point of view, even though I feel that simplicity is a much 
overrated virtue In the very technical business of insurance 
ratemaking and that theoretical soundness should be of primary 

importance, I sm convinced that any alternative credibility 
procedure will face the rather strict test of practical 
expediency before being implemented by those in the business 
of pricing Insurance. With regard to Mr. Hachemeister'6 
paper, It Is precisely Its simplicity In practical application 
(as well a6 Its theoretical tildlty) which leeds me to 
believe that it will someday soon become extensively utilized 
IA calculating trend. 

In the first half of the paper, the author states the 
problem of State ~6. countrywide trend, Introduces notation, 
displays data for a computational example, presents basic 
sunznary statistics, and reviews the ClaSSiCal and generalized 
linear regression model. Although the author has made mention 
to the point, it should be reiterated that even though the 
form of the estimator 

g6 = (y'&1y6)-1y;c,'1x S 
foXLow that obtained In classical generalized least squares 
estimation and that the theoretical results hold in general 
for the positive-definite matrix C6, the assumption made 
regarding autocorrelation IA deriving numerical results is 
not that of generalized least squares. In particular, recall 
that the classlcal generalized least squares formulation of 
the state s trend model is 

i) E(xts) = uts = a6 + bst t=1 ,...,n 

ii> E(xtS ) - u;, = cts = u~/P,, s = l,...,N 

The n x n positive definite matrix C allows for both 
S 

heteroscedssticity and autocorrelation, i.e., for both 
iii) E(gs) - ~2, = CT;, Vt 
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and 

iv> Ebisxj6) - ui6ujs = 0, l#J 

not holding. However, in deriving numerical results, 

Hachemelster dis~ows autocorre~atlon by 666ULhlg that iv) 

holds. IA other words, should these problem be found to 
occur In trend data, further computational refinements will 
become necessary in practlarl appllcatlon. 

An approach to the aolutlon of the problem of state v6. 
countrywide trend, is theA formulated as a Compound decision 
problem. In particular, the mean value uts of a "credl- 
bllity adJusted state s trend line" Is modeled as 

VI Clts(es) = at(es) + bt(e6 )t 

where for each state 6 and each time period t, one acts 
a6 If the slopes and Intercepts were distributed about some 

mean slope Ebt(e6 )I and some mean intercept E[a$g,)]. 
Best linear unbiased estirmtors (BLUE) are then Considered 
of the form 

s!l Jl %S”tS = % + x’ A 

and are found to be 

vii> Pt, = ri;,z, + B’ (1 - zs Huts 

The application of this result to real data reqUires that 
estimates be made of various parameters not directly obser- 
vable within the credibility model (e.g. z6 IA vii) is 
a function of KS which in turn depends on estimates of 

2, VY and r). Because of the need for these estimates, 
assumptions iii) and Iv) are lnade to simplify the derivation 
of numerical results. 

The invariance property of cts for any linear trans- 
formation of the Independent variables follows In a straight- 
folvard manner. Using this result, Hachemelster performs a 
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scaling and translation on the linear trend model so that the 
weighted average (using # claims as weights) of scsled times 
In zero and the sample variance of scaled times is equal to 
unl ty. Finally, a mixed model is employed, to avoid the 
distressing results obtained WheA state Intercepts are credi- 

bility adjusted, 60 that the flnsl model chosen Is 

bts(e6) = a6 + b(es)t . 

Note that In this model the Intercept varies by state but Is 
a6sumed con6taAt over all time periods. For each state 6 
and each time period t the slope Is still considered to be 
distributed about some mean slope. The effect of the estl- 
u&ed form In this mixed model Is that slopes sTe credibility 
adjusted while Intercepts are not. 

To Investigate the credibility standard6 developed and 
to evaluate the procedure finaLly decided upon In credl- 
blllty adjusting state trend lines, consider the transformed 
simple linear trend model which credibility adjusts slopes 
wlthout Intercept ad,justments. 

Here, 

u&) = a6 + HesIt 
where 

and 

Eb,(@,)l = s@ = 

The estimator becomes for state s 
i2 ts = [86Zs + 6” ( f - zs > lYts 

3 a6 + [uses + 21 - zb6 )It 

where 

5% = P*,/(P., + $,I 
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DISCUSSION 

Note that the credibility parameter I& satisfies the general 
definition demonstrated by BUhlmann that It be equal to 

expected value of process variance (= t?) 

' variance of the hypothetical means (= g6) 

Ihe %s' 6 vary by state but a single constant K value 
could be adopted should the 

Kb6" 
developed for all states 

6hOW the same stability (centered around 4,500) 6s those 
developed for the five selected states. 
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