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CONTROVERSIES IN THE FOUNDATIONS OF STATISTICS 

BRADLEY EFRON 

1. Iatmdda. Statistia scans IO be a diiuh sobjoct for nuthanrticians, pethaps boxuse its 
elusive and wide-ranging chanctcr mitipta agains tbe tnditional theorem-proof method of 
presentatii. II may come as some comfort then that statktii is rko a di&ult subject for statistic*n~ 
WC are now cekbnting tbe approximate bicententdal of I contnwetsy cowemily the basic natwe of 
~r~isks. The twu main factions in thii philosophii b8ttk. the Baycsians and the frequentis% blve 

260 



232 BRADLEY EFRON [April 

alternated dominance several times, with the frequentists currently hohiing an uneasy upper hand. A 
smaller third party, perhaps best caffed the Fisherfans, snipes away at both sides. 

Statistics. by definition, is uninterested in the special case. Averages are the meat of statisticians, 
where “average” here is understood in the wide sense of any summary statement about a large 
population of objects. “The average 1.Q. of a college freshman is 109” is one such statement, as is “the 
probability of a fair coin falling heads is l/2.” The controversies dividing the statfsticaf world revolve 
on the following basic point: just which averages are most relevant in drawing inferences from data? 
Frequentists, Bayaians, and Fisherians have produced fundamentally different answers to this 
question. 

This article will proceed by a series of examples, tather than an axiomatic or historical exposition 
of the various points of view. The examples are artiffciaffy simple for the sake of humane presentation, 
but readers should be assured that real data are susceptible to the same disagreements. A 
counter-warning is also apt: these disagreements haven’t crippled statistics, either theoretical or 
applied, and have as a matter of fact contributed to its vitality. Important recent developments, in 
particular the empirical Bays methods mentioned in Section 8, have sprung directly from the tension 
between the Bayaian and frequentist viewpoints. 

2. ‘The norstud dbrtrfbotfou. All of our examples will involve the normal distribution, which for 
various reasons plays a central role in theoretical and applied statistics. A normal, or Gaussian, 
random variable x is a quantity which possibly can take on any value on the real axis, but not with 
equal probability. The probability that x falls in the interval [e, b] is gfven by the area under Gauss’ 
famous bell-shaped curve, 

For convenience we indicate such a random variable by 

’ (2.3) x - N/h d), 

with or instead of o as the second argument by convention. 
Figure 1 illustrates the normal distribution. The high point of &,.,.(x) is at x * ~1, the curve falling 

off quickly for 1 x - cc I> o. Most of the probability, 99.7%. is within ? 3 o-units of the central value 
p. We can write x - N(p. CT’) as x = p + E, where E - X(0, cr’); adding the constant p merely shifts 
e -X(0,&) p units to the right. 

,,-3~v ~-20 ac--cb p La+=- (r+2w p+30 

FIG. 1. The normal diiribulion. Ihe random quantity x -X(&d) occun in [a b] with probability equat 16 the 
shaded area. 68% of the probability ir in the intend [c -o,p +o], 95% in (p -2o.p +20), 99.7% in 
[AL-3a*+3u]. 
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The parameter @ is the “mean” or “expectation” of the random quantity E. Using “E” to indicate 
expectation, 

The reader may wish to think of E{g(x)] for an arbitrary function g(x) as just another notation for the 
integral of g(x) with respect to d+,,,(x)& 

Intuitively, E{g(x)) is the weighted average of the possible values of g(x), weighted according to the 
probabilities &,,(x)cfx for the infinitesimal intervals [x,x + dr]. In other words, E(g(s)] is a 
theoretical average of an infinite population of g(x) values, where the .r’s occur in proportion to 
b.(x). 

It is easy to see, by symmetry, that p is indeed the theoretical average of x itself when 
; - N(p, 0’). A more difficult calculation (though easy enough for friends of the gamma function) 
gives the expectation of g(x)= (x -pp. 

(2.6) E{(x - p)‘) = ,f- (x -p)‘A..(x)rfx = d. 
-* 

llte parameter o, called the “standard deviation,” sets the scale for the variability of x about the 
central value P, as Figure I shows. A K(1, W) random variable will have almost no perceptible 
variability under repeated trials, 997 out of 1OGU repetitions occurring in [.S97, 1.003], since D = UT’. 
A X(1,1@) random variable is almost all noir and no signal, in the evocative language of 
communications theory. 

‘The normal distribution has a very useful closure property that makes it as easy to deal with many 
observations as with a single one. Let x,, x2, x,, . ., X. be n independent observations, each of which is 
X(~I. or), p and (r being the same for all n repetitions. Independence means that the value of x,, say, 
does not affect any of the other values: observing x, >p does not increase or decrease the 34% 
probability that xzE [p,~ + u], etc. A familiar (non-normal) example of independent variables 
x,.xzrx,, is given by successive observations of a well-rolled die. 

Let 

be the observed average of the n independent K(p,a*) variables. It is easy lo show that 

W) i - N(p. d/n). 

The distribution of f is the same as that for the individual x, except that the scaling parameter has 
been reduced from o to u/\/n By taking n sufficiently large we can reduce the variability of i about 
p to an arbitrarily small level, but of course in real problems n is limited and f retains an irreducible 
component of random variability. 

In all of our examples (I will be assumed known to the statistician. The unknown parameter p will 
be the object of interest, the goal being to make inferences about the value of p on the basis of the 
data x x x I, 2. 3,. . ., x.. In 1925 Sir Ronald Fisher made the fundamental observation that in this 
situation the awage f conrains all possible information about cc. For any inference problem about ~1, 
knowing g is just as good as knowing the entire data set x,, x2, I~, .,x,. In modern parlance, f is a 
“suffkient statistic” for the unknown parameter p. 

It is easy to verify sufficiency in this particular case. Given the observed value of .r, a standard 
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probability calculation shows that the random quantities x, - g, x2 - f, x, - 4.. ., L - g have a joint 
distribution which does not depend in any way on the unknown parameter p. In other words, what’s 
left over in the data after the statistician learns f is devoid of information about p. (Ibis deceptively 
simple principle eluded both Gauss and Laplace!) 

3. Pre~nerttM eathstathnt d the menn. The statistician may wish to estimate the unobservable 
parameter p on the basis of the observed data x1, x2,x,, . ., x.. “Estimate” usually means “make a 
guegs i (Jr, x2, x3,. . .I x) depending on x1, x2,. .,x, with the understanding that you will be penalized 
an amount which is a smooth increasing function of the error of estimation I$ -p 1.” The usual 
penalty function, which we shall also use here, is (/i -tY, the squared-error loss function originally 
introduced by Gauss. 

Fisher’s sufficiency principle says that we need only consider estimation rules which are a function 
of i. The most obvious candidate is f itself, 

(3.1) /i(X,,Xl,..., r)=li. 

This estimation rule is “unbiased” for p ; no matter what the true value of ~1 is, 

(3.2) ES=p. 

Unbiasedness is by no means a necessary condition for a good estimation rule, as we shall see later, 
but it does have considerable intuitive appeal as a guarantee that the statistician is not trying to slant 
the estimation process in favor of any particular p value. 

The expected penalty for using fi = i is, according to (2.6) and (2.8) 

(3.3) E(C-py=02/n. 

Gauss showed that among all unbiased estimation rules ~(x,,x2,...,xn) which are linear in 
x,.x>, x,. . ..x”, the rule rf = x‘ uniformly minimizes E(k -a)’ for every value of c. In the early 
1940’s this result was extended to include any unbiased estimator at all, linear or nonlinear. The proof, 
which depends on ideas Fisher developed in the I97B’s, was put forth separately by H. Cramer in 
Sweden and C. R. Rao in India. 

If we agree to abide by the unbiasedness criterion and to use squared-error loss, f seems to be the 
best estimator for p. It is helpful for the stutistieian to provide not only a “point estimator” for TV, i in 
this case, but also a range of plausible values of p consistent with the data. From (2.8) and Figure 1 we 
see that 

(3.4) Prob((f-~(~Zo/ti/n)=.95, 

which is equivalent to the statement 

(3.5) Prob(f-2cr/~n~pCP+2cr/~/n)=.95. 

The interval [f -2cr/dn,x +Zo/\/n] is called a “95% confidence interval” for p. The theory of 
confidence intervals was developed by J, Neytnan in the early 1930’s. As an example, suppose n = 4, 
D = 1, and we observe xi = 1.2, x2 = 0.3, x1 = 0.7, x,=0.2. Then i = 0.6 and the 95% confidence 
interval for ,u is [ - .04,1.6]. 

All of this seems so innocuous and straightforward that the reader may wonder where the grounds 
for controversy lie. The fact is that all of the results presented so far are “frequentist” in nature. That 
is, they relate to theoretical averages with respect to the X(&, or/n) distribution of g, with p assumed 
fixed at its true value, whatever that may be. Unbiasedness itself is a frequentist concept; the 
theoretical average of C; with fi held fixed, EL equak F. Results (3.3) and (3.5) and the Cram&-Rao 
theorem, are hequentist statements. For example, theproper interpretation of (3.5) is that the interval 
[f-Zo/~n,gf +Zo/~n] covers the true value of jz with frequency 95% in a long series of 
independent repetitions of 1 - X(#, o’ln). 
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Nobody doubts that these results are true. The question raised by Bayesians and Fisherians is 
whether frequentist averages are really relevant to the process of inference scientists use in reasoning 
from noisy data back to the underlying mathematical models. We turn next to the Bayesian point 
of view. 

4. Bayesian estimation of the tnean. So far we have considered p to be a fixed, albeit unknown. 
quanuty. Suppose though that p itself is a random variable, known to have the normal distribution 
with mean m and standard deviation s. 

(4.1) p - .qm, s2), 

m and x being constants known to the statistician. For example, if p is the true I.Q. df a person 
randomly chosen from the population of the United States, (4.1) holds with m = 100 and s = 15 
(approximately). About 68% of 1.0.‘~ are between 85 and 115, about 95% between 70 and 130, etc. 
Information like (4.1X a “prior distribution for JL“ in the language of the Bayesians, changes the 
nature of the estimation process. 

Standard 1.0. tests are constructed so that if we test our randomly chosen person to discover his 
particular p value. the overall test score’, say .f. is an unbiased normally distributed estimator of p as 
in Section 3. 

(4.2) ilp- .Q. d/n), 

with g/\/n about 7.5. We can expect .? to be within 7.5 1.0. points of p 68% of the time, etc. The 
notation “P lp” emphasizes that the .V(p,o’/n) distribution for i is conditional on the particular 
value taken by the random quantity ,u. The reason for this change in notation will be made clearer 
soon. 

Bayes’ theorem, originally discovered by the remarkable Reverend Thomas Bayesaround 1750, is 
a mathematical formula for combining (4.1) and (4.2) to obtain the conditional distribution of fi given 
i. In this case the formula gives 

(4.3) p/f-.qrl+C(i-m),D), 

where 

For example, if 1 = I60 (and m = 100. s = 15, u/d/n = 7.5) then 

(4.5) JI 1 f - .\‘(148,(6.7)‘). 

Expression (4.5), or more generally (4.3), is the “posterior distribution for p given the observed 
value of f.” It is possible to make such a statement in the Bayesian framework because we start out 
assuming that ,u itself is random. In the Bayesian framework the averaging process is reversed; the 
data X is assumed fixed at its observed value while it is the parameter p which varies. In (4.5) for 
example. the conditional average of p given i = 160 is seen to be 148. If we randomly selected an 
enormous number of people, gave them each an 1.0. test, and considered the subset of those who 
scored l&l. this subset would have an average true I.Q. of 148; 68% of the true I.Q.‘s would be in the 
interval [I48 - 6.7, 148 t 6.71, etc. 

How should we estimate p in the Bayesian situation? It seems natural to use the estimator@*(X) 
which minimizes the conditional expectation of (a - fi ‘)’ giwn the observed value ofi. From (4.3) it is 
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easy to derive that this “Bayes estimator” is 

(4.6) p ‘(i) = m t C(f - m ). 

[April 

the mean of the posterior distribution of p given f. Having observed f = 160, the Bayes estimate is 
148. not 160. Even though we are using an unbiased I.Q. test, so many more true I.Q.‘s lie below 160 
rather than above that it lowers the expected estimation error to bias the observed score toward 100. 
Figure 2 illustrates the situation. 

posterior distribution 
of true 1.0. for a 

test 

70 85 loo 115 130 145148 160 

95% probability 

FIG. 2. LO. scores have a ~‘(llUl.(lS)‘) distribution in the population ar a whole. A randomly selected person 
scoring 160 on a normat unbiased 1.0. test tith standarddcviafion 7.5 points is estimated to have a true 1.Q. of 148. 
The probability is 95% that the person’s true 1.0. is in rhe interval (134.6. 161.41. 

Confidence intervals have an obvious Bayesian analogue, from (4.3). 

(4.7) Prob(p ‘(a) - 2dD 5 p S p ‘(i)t 2vD Ii) = .9S. 

‘The notation Prob{. If) indicates probability conditional on the observed value of f. In the 1.0. 
example, Prob(134.6S p f 161.8/f = l&l}= .95. 

Nobody (well, almost nobody) disagrees with the use of Bayesian methods in situations like the 
I.Q. problem where there is a clearly defined and well-known prior distribution for p. The Bayes 
theory, as we shall see. offers some striking advantages in clarity and consistency. These advantages 
are due to the fact that Bayesian averages involve only the data value i actually seen, rather than a 
collection of theoretically possible other li values. 

Difficulties and controversies arise because Bay&an statisticians wish to use Bayesian metho& 
when there is no obvious prior distribution for p, or going even further, when it is clear that the 
unknown p is a fixed constant with no random character at all. (For example, if ~1 is some physical 
constant, such as the speed of light, being experimentally estimated.) It is not perversity that motivates 
this Bayesian impulse, but rather a we&documented casebook of unpleasant inconsistencies in the 
frequentist approach. 

As an example of the kind of ditliculties frequentists experience, let us reconsider the 1.0. 
estimalron problem, bur without assuming knowledge of the prior distribution (4.1) for p. In other 
words, assume only that we observe f - K((r,o’/n), o/v/n = 7.5, and wish to estimate p. Having 
observed f = 160, Ihe results of Section 3 lell us to estimate p by t = 160, with 95% confidence 
interval (& -2a/dtt,sP +tol\/nj = [145,175]. 

Suppose now that the frequentist receives a letter from rhe company which administered the 1.0. 
tesr: “On the day the score of f = 160 was report@, our test-grading machine was malfunctioning. 
Any score i below 100 was reported as 100. The machine functioned perfectly for scores i above 
loo.” 
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It may seem that the frequentist has nothing to worry about, since the score he received, i = 160, 
was correctly reported. However, the reason he is using fi = P to estimate p is that it is the best 
unbiased estimator. The malfunction of the grading machine implies that fi is no longer even 
unbiased! 

If the true value of p equals 100. the machine functioning as described in the letter produces 
E.f = 103, a bias of + 3 points. To regain unbiasedness the frequentist must replace the estimation rule 
fi = i with b’ = f - A(i), where the function A(i) is chosen to remove the bias caused by the machine 
malfunction. 

The correction term A(f) will be tiny for f = 160, but it is disturbing that any change at all is 
necessary. The fetter from the grading company contained no new information about the score 
actually reported. or about I.Q.‘s in general. It only concerned something bad that might have 
happened but didn’t. Why should we change our inference about the true value of p? Bayesian 
methods are free from this defect; the inferences they produce depend only on the data value 1 
actually observed, since Bayesian averages such as (4.6), (4.7) are conditional on the 
observed i. 

How can a Bayesian analysis proceed in the absence of firm prior knowledge like (4.1)? Two 
different approaches are in use. The “subjectivist” branch of Bayesian statistics attempts to assess the 
statistician’s subjective probability distribution for the unknown parameter P, before the data is 
collected, by a series of hypothetical wagers. These wagers are of the form “would you be willing to 
bet even money that p 7 85 versus 1 5 85? Would you be willing to bet two-to-one that fi C 150 
versus p 2 150? _. .” The work of L. J. Savage and B. deFinetti shows that a completely rational 
person should aways be able to arrive at a unique (for himself) prior distribution on p by sufficiently 
prolonged self-interrogation. 

The subjectivist approach can be very fruitful in cases where the statistician (usually in 
collaboration with the experimenter, of course) has some vague prior opinions about the true value of 
p. which he is [tying to update on the basis of the observed data 1. Because it is subjective, the method 
is not much used where objectivity is rhe prime consideration, for example in the publication of 
controversial new scientific results. 

Another line of Bayesian thought, which might be (but usually isn’t) called “objective Bayesian- 
ism,” attempts. in the absence of prior knowledge, to produce a prior distribution that everyone would 
agree represents a completely neutral prior opinion about p. In the 1.Q. problem, such a “flat” prior 
might take the form p - N(0, =), whereby we mean p - .\.(O, s’) with s2 going to infinity. From (4.3). 
(4.4) we get 

(4.8) pJi- .v(s,o’/n). 

This result has a lot of appeal. The Bayes estimator p * equals the frequentist estimator 6 = f. The 
95% Bayes probability interval (4.7) is the same as the 95% frequentist confidence interval (3.5). 
Moreover, because (4.8) is a Bayesian statement, the letter from the I.Q. testing company has no effect 
on it. We seem to be enjoying the best of both the frequentist and Bayesian worlds. 

An enormous amount of effort has been expended in codifying the objective Bayesian point of 
view. Bayes himself put forth this approach (apparently with considerable reservations-his paper 
appeared posthumously and only through the efforts of an enthusiastic friend) which was adopted 
unresetwdly by Laplace. It fell into disrepute in the early 1900’s, and has since been somewhat 
revived by the work of Harold Jeffreys. One ditliculty is that a “Rat” prior distribution for p is not at 
all flat for p’, say, so expressing ignorance seems to depend on which function of the unknown 
parameter one is interested in. A more pernicious difficulty is discussed in Section 8; in problems 
involving the estimation of several unknown parameters at once, what appears to be an eminently 
neutral prior distribution turns out to imply undesirable assumptions about the parameters. 

5. Fi&erian eatlmation of the mean. Ronald Fisher was one of the principal architects of 
frequentist theory. However, he was a lifelong critic, often vehemently so, of the standard frequentist 
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approach. His criticisms moved along the same lines as those of the Bayesians: why should we be 
interested in theoretical averages concerning what happens if infinitely many P values are randomly 
generated from X(r, o’lrr), with ir fired? We only have one observed value of i in any one inference 
problem, and the inference process should concentrate on just that observed value. 

Fisher was also opposed to the Bayesian approach, perhaps because the type of data analysis 
problems he met in his agricultural and genetical work were not well suited IO the assessment of prior 
distributions. With characteristic ingenuity he produced another form of inference, neither Bayesian 
nor frequentist. 

The relation i - n’(g, u’/ n) may be written 

(5.1) i=/lt&, E -N(O,cr’/n). 

We obtain the observation f by adding normal noise, E - X(0, u’/n), to the unobservable mean r.t. 
Expression (5.1) can also be written as 

(5.2) @=2-E. 

It is obvious, or at least was obvious to Fisher, that in a situation where we know nothing a priori 
about p, observing i tells us nothing about E. As a matter of fact, said Fisher, if we can learn 
something about E from i then model (5.1) by itself must be missing some important aspect of the 
statistical situation. We shall see this argument again, in more concrete form, in the next section. 

BE-X(O,u*/n)then -E- S(0, cr’ln) because of the symmetry of the bell-shaped curve about 
its central point. Fisher‘s interpretation of (5.2) was 

(5.3) p/f-X(f,u2/n). 

This looks just like the objectivist Bayesian statement (4.8). but has been obtained without recourse to 
prior distributions on ~1. The interval statement following from (3.3) is 

(5.4) Prob(P-2o/~/n~pdf+2rr/~/n~fJ=.95. 

This is a “fiducial” probability statement, in Fisher’s terminology. 
In the fiducial argument randomness resides neither in the data % as in frequentist calculations, 

nor in p. as in Bayesian calculations. Rather it lies in the mechanism which transforms the 
unobservable c to the observed i. (In the case at hand, this mechanism is the addition of 
E - X(O,cr’/n) to p.) Fiducial statements such as (5.4) are obtained as averages over the random 
transformation mechanism. 

The fiducial argument has fallen out of favor since its heyday in the 1940’s. Most. though not all, 
contemporary statisticians consider it either a form of objective Bayesianism. or just plain wrong. 
Applied to the simultaneous estimation of several parameters, the fiducial argument can lead to 
disaster, as shown in Section 8. 

Lest the reader feel sorry for Fisher, two other of his novel ideas on averaging, conditional 
inference and randomization, are still very much in vogue, and are the subjects of the next two 
sections. 

6. Cnnditionaf inference. We return to the frequentist point of view, but with a twist, “condition- 
ing.” introduced by Fisher in 1934. Conditional inference illustrates another major source of 
ambiguity in the frequentist methodology, the choice of the collection of theoretically possible data 
values averaged over to obtain a frequentist inference. 

Suppose again that we have independent normal variables x,, xtr 1%. _, x., each x, - ,t’(p. o*), but 
that before observation begins the number n is randomly selected by the flip of a fair coin, 

16.1) 
10 l/2 

“= with probability 
loo l/2. 
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We still wish IO estimate p on the basis of the data x,. x2, x,, .,x.. and n with (I a known constant as 
before. 

The conditional distribution of f giwn the obsemd vabr of n is 

fin -X(p,d/n) 
as at (2.8). The observed average f by itself is not a sufficient statistic in this situation. We also need to 
know whether n equals 10 or 100. Without this knowledge we still have an unbiased estimator of p, 
namely fi = f but we don’t know the standard deviation of p. 

What is the expected squared error off = f in this situation? Averaging (3.3) over the two values 
of n gives 

Fisher pointed out that this is a ridiculous calculation. It is obviously more appropriate to assess the 
accuracy of b conditional on the value of n actually observed, 

There is nothing wrong with (6.3). except that the average squared enor it computes is irrelevant to 
any particular value of R and x‘ actually observed! If n = 100 then (6.3) is much too pessimistic about 
the accuracy of 2. while if n = 10 it is much too optimistic. 

This may all seem so obvious that it is hardly worth saying. Fisher’s surprise was to show that 
exactly the same situation arises, more subtly, in other problems of statistical inference. We will 
illustrate this with an example involving the estimation of two different normal means, say p, and p2, 
on the basis of independent unbiased normal estimates for each of them, 

(6.5) f, - N(p,, 1). h - .w.b I), 

i, and f2 independent of each other. (For simplicity we have assumed that both estimates have 
o’ln = 1.) The IWO dimensional data vector (i,, &) can take on any value in the plane, but with high 
probability lies no more than a few units away from the vector of means (~,,p~). 

Given no further information we would probably estimate (~,,~1) by (i,,.&). (But see Section 8!) 
However, we now add the assumption that (p,, pI) is known to lie on the circle of radius 3 centered at 
the origin, 

(6.6) (h p2) = 3(cosB,sin 0) -x<es?r 

The statistical problem, as illustrated in Figure 3, is to estimate the unknown parameter 0 on the basis 
of (f,, i,). 

Let us indicate the polar coordinates of (lit, a,) by 

i = arctan(h/i,), r*v/i:+i:. 

Then 8 is the obvious estimator of 0. It is unbiased, Eb = 8, with expected squared error 

E(i - 6)== .I2 

(obtained by numerical integration; (6.8) makes the convention that 4 - B ranges from - n to n for 
any value of 0, the largest possible estimation error occuting if (i,, ft) is antipodal to (9,. fi2). This 
convention is unimportant because the probability of (e^ - 6) > n /2 is only .0014). 

The unobvious fact pointed out by Fisher is that I plays the same role as did “PI” in cxamplcs 
(6.lH6.4). 

(i) We distribution of r does not depend on the true value of 6. (For readers familiar with the 
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data vcct~r i,. ia 
is observed to 
lie on this 
circle 

.e,sine) 

FIO. 3. The model i, - S(,L,. I) indepsndenr of ii - .M(,,. 1). with (p,,fiJ known fo tie on a circte of radius 3 
centered at the origin. We wish toesIimate rhe angular location 0 of (s,, pJ on the circle. The data vector (i,. iJ is 
observed to have polar coordinates (4, r). 

bivarlate normal density, this follows from the circular symmetry of the distribution (6.5) of (i,, i,) 
about (or,, 141 

(ii) If r is small, then 6 has less accuracy than (6.8) indicates, while if I is large then 6 has greater 
accuracy that (6.8) indicates. Table 1 shows the condifional expected squared error E{(i - @y/r) as a 
function of r. 

In Fisher’s terminology, r is an “ancillary” statistic. It doesn’t directly contain information about 0, 
because of property (i), but its value determines the accuracy of 6. It now seems obvious that we 
should condition our assessment of the accuracy of d on the observed value of r. If I = 2, as in Figure 
3, then E{(6 - 6yI r) = :18 is more relevant to the accuracy of 0 than is the unconditional expectation 
E(8 - ey= .12. 

Unconditional 
Value 

, 1.5 2 2.5 3 3.5 4 4.5 5 E(i - 0)’ 

E((i-19)‘;r) .26 .I8 .14 .i2 JO .09 .08 .07 .l? 

TABLE 1. Tbe conditional expected squared error of estimation in the circtc problem. E((6 - .V)‘i r). as a function 
-7-T of the ancillary statistx r = X/x, + I> Tbe aecura~y of 8 improves as r increases. Fisher argue$ that E((& -. O)‘lr) 

is a more retevanr measure of the accuracy of B than is the unconditional expectanon E(8 - S)‘. 

Many real statistical problems have the property that some data values are obviously more 
informative than others. Conditioning is the intuitively correct way to proceed, but few situations are 
as clearly structured as the circle problem. Sometimes more than one ancillary statistic exists. and the 
same data value will yield different accuracy estimates depending on which ancillary is conditioned 
upon. More often no ancillary exists, but various approximate ancillary statistics suggest themselves. 
What the circle example reveals is that frequentist statements like (6.8) may be true but irrelevant. 
Fisher’s point was that the theoretical average of (e^ - 0)2 should be taken not over ali possible data 
values, but only over those containing the same amount of information for 8. So far it has proved 
impossible to codify this statement in a satisfactory way. 

A Bayesian would agree that it is correct to condition one’s opinion of the accuracy of 6 on the 
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observed value of r, but would ask why not go further and condition on the observed value of (a,,.&) 
itself, This is impossible in the frequentist framework, since if we reduce our averaging set to one data 
point, there is nothing left to average over. Bayesian inferences are always conditional on the data 
point actually observed. In the circle problem the natural flat prior is a uniform distribution on 
8 ~I-lr, tr], With this prior distribution it turns out that E{(B - @l(fi.4)] equals E((e’- Oylr = 
d/i: + a:) as given in Table 1, so in this particular case the objective Bayesian and conditional 
frequentist points of view agree. (Notice that in the first expectation “8” is the random quantity, while 
in the second it is “ti” which varies.) 

7. Randotttlsatien. Randomization is yet another form of inferential averaging introduced by R. 
A. Fisher. In order to discuss it simply we must change statistical problems, from estimation theory to 
“hypothesis testing.” The data are now in the form of 2n independent normal observations 
x:lrX17X3 ,..., X”, y,,y*,y, ,... ,Y”, 

(7.1) x, - .\ (Pt. Q2h Y, - N(pz, u ‘1 i=1,2 ,..., ft. 

qith D known, pi and p2 unknown. We wish to test the “null hypothesis” that pz = pi versus the 
“alternative hypothesis” that pl> pi. often written 

(7.2) H:fiz=pr versus A:/~>>/L,. 

(For our purposes, pt < r~i is assumed impossible.) 
In hypothesis testing the null hypothesis H usually plays the role of a devil’s advocate which the 

experimenter is trying to disprove. For example, the x’s may represent responses to an old drug and 
the y’s responses to a new drug that the experimenter hopes is an improvement. Because there is a 
vested interest in discrediting H, conservative statistical methods have been developed which demand 
a rather stiff level of evidence before H is declared invalid. The frequentist theory, which is dominant 
in hypothesis testing, accomplishes this by requiring that the probability of falsely rejecting H in favor 
of A, when H is true, be held below a certain small level, usually .05. A test satisfying this criterion is 
said to be “.05 level” for testing H versus A. 

With the data as in (7.1) it seems natural to compute i = Z;xi In, f = X;y,Ia, and reject H in 
favor of A if 

(7.3) g-f>C. 

The constant c is chosen so that if H is true then Prob(f -i > c) = .W. Standard probability 
calculations show that c = 2.326.o/dn is the correct choice. The theory of optimal testing 
developed by J. Neyman and E. Pearson around 1930 shows that (7.3) is actually the best .OS level test 
of H versus A, in the sense that if A is actually true then the probability of rejecting H in favor of A 
is maximized. 

The x’s and y’s we observe are actually measurements on some sort of experimental units, perhaps 
college freshmen or white mice or headache victims. Let us denote these units by U,, U,, U,, , . ., L. 
The opportunity for randomization arises when we have an experiment in which we can decide 
beforehand which n of the units are to be X’S, and which n are to be y’s, If we are lazy we can just give 
the first n units we happen to have at hand the x treatment and the last a the y treatment. This is 
begging for disaster! The first n headache victims may be those with the wotst headaches, the fiat n 
mice those in the cage with the heavier animals, etc. An experiment done in the lazy way may have 
probability of falsely rejecting the null hypothesis much greater than .OS because of such uncontrolled 
factors. 

In his vastly influential work on experimental design, Fisher argued that the choice of experimental 
units be done by randomization. That is. the assignment of the n units to the x Ireatment group and 
the n units to the y treatment group be done with’equal probability for each of the (Zn!)/(n!)2 such 
assignments. A random number generating device is used to carry out the randomization process. 
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Fisher pointed out that randomized studies were likely to be free of the type of experimental biases 
discussed above. Suppose for example that there is some sort of “covariate” connected with the 
experimental units, by which we mean a quantity which is thought to affect the observation on that 
unit no matter which treatment is given. For example, weight might be an important covatiate for the 
white mice. Heavy mice might respond less well to the stimulus than light mice. If n is reasonably 
huge, say 10. it is very unlikely [hat the randomized experiment will have all the heavy mice in the x 
group and the light mice in the y group. This statement applies equally to every covariate, whether or 
not we know it atfects the response, and even if we are unaware of its existence. 

None of this has anything to do with averaging. The connection comes through Fisher’s next 
suggestion: that we compute theoretical averages not over the hypothesized normal distributions, but 
instead over the randomization process itself. Suppose that if all 2n experimental units had received 
treatment x, the observations would have been Xt, XI,. . ., X2., X, being the observation on unit U,. 
The capital letters indicate that these are hypothetical observations and not nccessatily the observed 
data. Under the null hypothesis H, treatment y is the same as treatment x. so we can indeed consider 
all 2n units IO have received trealment x. In this case the observed data x,, x2,. . .,x., y,, y2.. . ,, y. 
coincide with the theoretical values X,, X2,. .,X2.. Let Y(x) be the indices of those units actually 
assigned to the x treatment and Y(y) those assigned to the y treatment. Then, if H is mte, 

If the study has been randomized then i is merely the average of n randomly selected X’s and f the 
average of the remaining n X’s, 

The randomization (or “permutation”) test of H analogous to (7.3) is consrructed as follows: 
(i) Given the observed data x*,x2 ,..., x., yI.y2 ,..., yn. define u,=xt, u~=xz,..., u”.,,= 

y,, ., utn = y.. (Notice that, if H is true, the u’scoinclde with the X’s of the previous paragraph.) 
(ii) For each partition P = (Y,, .YJ of (I, 2,, ,, 2n) into two disjoint subsets of size n, calculate 

(7.5) WibQMt- ,&u,/n. 

(iii) List all (2n!)/(n!)’ values of (jJ -f)* in ascending order. 
(iv) Reject H in favor of A if the value of i -i actually observed is in the upper 5% of the list, 
The randomization test has a .OS chance of falsety rejecting H, where the probnbiliry .05 now refers 

IO an overage taken over a// (2n!)/(n!)’ random assignments of ~natmenf types IO experimenml units. 
The test is still of the form “reject H in favor of A if f - f > c,” except that c no longer equals the 
constant 2.326.olVn. Instead t is a function of the set of values {u,. u2,. ., u,.) constructed in {i). 
For each set {r,.t+, . . ., uz.), c is selected to satisfy (iv). 

The randomization test has one big advantage over test (7.3). Its .05 probability of falsely rejecting 
H remains valid under any null hypothesis that says the 2n x’s and y’s are generated by the same 
probability distribution, normal or otherwise. As a matter of fact. no randomness at all in the 
observations need be assumed. We can just take the null hypothesis to be that each unit U, has a fixed 
response X connected with it, no matter whether it is given the x or y treatment. This last statement 
reemphasizes that the randomization test musl involve a non-frequentist form of averaging. 

Randomization, or at least inference based on randomixation. appears heretical to a Bayesian 
statistician. The true Bayesian must condition on the assignment (Y(x), Y(y)} of units to treatments 
actually used, since this is part of the available data, and not average over all possible partitions that 
might have bum (Fishers arguments on ancillarity seem to point in exactly the same direction, which 
is to say directly opposite to randomization!) 

One aspect of randomization makes both frequentists and Bayesians uneasy. Suppose, just by bad 
luck, that the randomization process does happen to assign all heavy mice to the x treatment and all 
light mice to the y treatment. Can we still use the .05 level randomization test to reject H in favor of 
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A? The answer seems clearly not, but it is difficult to codify a way of avoiding such traps. To put things 
the other way, suppose we know the weights w,, IV?, IV,, ,, win of the mice before we begin the 
experiment. Under reasonable frequentist assumptions there will be a unique best way (Y(x),Y(y)] 
of assigning the mice to the treatments for the purpose of testing treatment x versus treatment y, one 
that optimally equalizes the weight assignments to the two groups. Statisticians trained in the 
Fisherian tradition find it difficult to accept such “optimal experimental designs” because the element 
of randomization has been eliminated. 

8. Stein’s Phenomenon. The reader may have noticed that the controversies so far have been more 
academic than practical. All philosophical factions agree that in the absence of prior knowledge 
[f-2.cr/\/n,x+2~u/\/n] is a 95% interval for F, the disagreement being over what “95%” 
means. This situation changes, for the worse. when we consider the simultaneous estimation of many 
parameters. 

Suppose then that we have several normal means p,, p2,, ., p’I to ewmate. for each one of which 
we observe an independent. unbiased normal estimate 

(8.1) i, - .\‘(N.. 1) independently i = I..?, . k. 

(Once again we have taken the variance &/n equal to 1 for the sake of convenience.) The natural 
analogue of squared error loss when there are several parameters to estimate is Euclidean squared 
distance. To simplify notation. let i = (.?,.P2,. . .,&) be the vector of observed averages. c = 
(p,. pa.. , pk) the vector of true means. and 6 = (/;,.J.&. .,i,) the vector of estimates. Then the 
squared error misestimation penalty IS 

Before pursuing the problem of estimating p on the basis of x, we note an elementary but 
Important fact. This fact. which can be proved in one line by readers familiar with the multivariate 
normal distribution. is that for every parameter vector p we have 

(8.3) Prob{!/i/l>Jlr Il]>.SO. 

That is, the data vector I tends to be farther away from the origin than does the parameter vector 11, 
no matter what p is. Table 2 shows that for k = IO the probability is actually quite a bit greater than 
.50 for moderate values of 11~ I!. 

Suppose that k = 10. and we observe a data vector P with squared length j/f/(* = 12. Assume also 
that we have no prior knowledge about p. Looking at Table 2, it seems to be a very good bet that 
;!c iI’< 12. For 11~1 I? in the range [0,40], which is almost certainly thecase if I/xl/’ = 12. more than 75% 
of the time we have l/xll>!!r I!. However, this is a frequentist “75%: calculated with /r fixed and li 
varying randomly according to (8.1). The analogue of the objective Bayesian argument presented in 
Section 4 gives quite different results. 

IIP II 0 6 12 18 24 30 40 66 

Proh(llflj>‘ifi ;$} 1.00 ,967 ,904 ,857 ,822 ,795 ,762 .719 

TABLE 2. Tix probability rhar i/ill Z I)* Ij is always greater than .5. For rhe case k = 10 the probabilities arc much 
greater than .S for moderate values of 11~ /I. 

Given our complete prior ignorance about the parameter vector p, it seems natural to urn a flat 
prior of the form p, - .\‘(O. x) (that is. I*, - .Y(O, s’) with s’ -tx) independently for i = 1.2,. ., k. This 
leads to the posterior distribution (4.8) for each parameter p,, 

(84 p, i, - .cyn, 1) 
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independently for i = 1,2,. ., k. This of course is a Bayesian statement, with the t’s fixed at their 
observed values and the c,‘s varying randomly according to (8.4). Reversing the names of the fixed 
and random quantities in Table 2 gives 

(8.5) Prob(llCll>lln11111111’=12)=.w4. 

It now seems to be a very good bet that 11~ ]I > IIxI/. As a matter of fact, 

(8.6) ~~~~~ll~Il~ll~ll~~~~~~~ 

for every observed data vector f! Fisher’s fiducial argument of Section 5 also leads to (8.4)-(8.6). 
Equations (8.3) and (8.6) show a clear contradiction between the frequentist and Bayesian points 

of view. Which is correct? There is a most surprising and persuasive argument in favor of the 
frequentist calculation (8.3). This was provided by Charles Stein in the mid 1950’s and concerns the 
estimation of p on the basis of the data vector f (or equivalently the estimation of the parameters 
(~,,p~,. ., pr on the basis of I,, Pr,. ., %). 

The obvious estimator is 

(8.7) @(%)=i, 

which estimates each p, by g,., as at (3.1). This estimate has expected squared error loss 

(8.8) E@-pi!‘= k 

for every parameter vector p. What Stein showed is that if k, the number of means to be estimated, is 
2 3, then the esttmator 

has 

(8.10) Ellj-pj!‘<k 

for every c! (This particular form of i was developed jointly with W. James in 1960.) From a 
frequentist point of view, fi estimates p uniformly better than does 6. It is also better from a 
Bayesian point of view: given any prior distribution on /L, estimating by p rather than fi results in a 
lower overall expected squared error of estimation (averaging now over the randomness in fi and the 
randomness in x). 

Stein’s estimator is based~on (8.3). Since I/# I! = /IflJ tends to be greater than l/p /I with high 
probability, a shrinking factor [l -(k -2)//k/p] ts used to give an estimate nearer p. The shrinking 
factor is more drastic when !(li]r is small. With k = IO, I/P/!* = 12. we have fi = (.333]i. If instead 
/Ii 1r = &IO then i = [.99]i. Figure 4 gives a schematic illustration. 

Notice that the origin 0 plays a special role in the construction of &, even though there is nothing 
in the statement of the estimation problem that favors 0. As a matter of fact, we can change the origin 
to any other point in k dimensional space, 0’ say, and obtain a different Stein estimate, 

fi’=U+ [ 1-H (i-o’). 3 
which is also uniformly better than @. 

Stein’s result has created a host of difficulties for frequentists and Bayesians alike, which we can’t 
pursue here. The implications for objective Bayesians and fiducialists have been especially disturbing. 
The seemingly Aat prior distribution leading to (8.4) isn’t flat at all: it forces the parameter vector to 
relatively far away from any prechosen origin D’. If a satisfactory theory of objective Baycsian 
inference exists, Stein’s estimator shows that it must he a great deal more subtle than previously 
expected. 
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FIG. J Stein‘s estimate # is obtained by shnnking the obvious estimate fi = t toward the ongin 0. The shrinking 
factor is more extreme the closer lltli lies to 0. Stein and lamer showed that Ell,i - p /II < Ellfi - p 112 for every p. 
We can choose any other ongin 0’ and obtain a dtRerent Skin estimate. p’, whtch atso dominates P. 

The trouble with the multiparameter esrimation problem is not that it is harder than estimating a 
single parameter. It is easier. in the sense that dealing with many problems simultaneously can give 
extra information not otherwise available. The trouble lies in finding and using the extra information. 
Consider the Bayesian model (4.1). With just a single p to estimate this model must be taken on pure 
faith (or relevant experience). However. if we have several means to estimate, pl.p2,. . . pt. each 
drawn independently from an X(m, s’) population. the data I,, &. .,.& allows us to estimate m and 
s’, instead of postulating their values. Plugging the estimated values into (4.6) gives an “empirical 
Bayes rule“ very much like the Stein rule (8.11). Empirical Bayes theory, originally developed by 
Herbert Robbins in the early 1950’s, offers some hope of a partial reconciliation between frequentists 
and Bayesians. 

9. Some last comments. The field of statistin continues to flourish despite, and partly because of. 
its foundational controversies. Literally millions of statistical analyses have been performed in the past 
50 years, certainly enough to make it abundantly clear that common statistical methods give 
trustworthy answers when used carefully. In my own consulting work I am constantly reminded of the 
power of the standard methods to dissect and explain formidable data sets from diverse scientific 
disciplines. In a way this is the most important belief of all, cutting across the frequentist-Bayesians 
divisions: that there do exist more or less universal techniques for extracting information from noisy 
data, adaptable to almost every field of inquiry. In other words, statisticians believe that statistics 
exists as a discipline in its own right, even if they can’t agree on its exact nature. 

What does the future hold? At a recent conference Dennis Lindley, of University College, 
London. gave a talk entitled, “The future of statistics-A Bayesian 2lst century.” My personal 
subjective probability is .15 on that eventuality. The big advantage of subjective Bayesianism. which is 
what Professor Lindley was referring to, is its logical consistency. Philosophers who investigate the 
foundations of scientific inference usually wind up being repelled by frequentism and attracted to the 
Bayesian argument. 

But consistency isn’t enough. Subjective Bayesianism must face the challenge of scientific 
objectivity. This is the ultimate stronghold of the frequentist viewpoint. If the 21st century is Bayesian, 
my guess is that it will be some combination of subjective, objective, and empirical Bayeaian, not 
significantly less complicated and contradictory than the present situation. The complexity of the 
problems statisticians are asked to deal with is increasing at an alarming rate. It is not unusual these 
days to deal with data sets of a million numbers, and models with several thousand parameters. As 
Section 8 suggests. this trend is likely to exacerbate the difficulties of producing a logically consistent 
theory of statistics. 
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