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Unbiased Development for Individual Claims—Taming the Wild
Burning Cost

Joseph Boor, FCAS, PhD, CERA

Abstract

The ultimate cost of an unpaid individual claim follows a probability distribution, and usually
will not be the exact point resulting from use of a loss development factor. So, when actuaries
apply loss development factors to individual claims, they often create biased estimates of excess
loss costs. Methods for creating a loss development probability distribution are developed. It
is shown that the results of those methods are unbiased not only in terms of developing losses
overall, but also projecting the ultimate costs in any layer. Methods to adjust the probability
distribution for other development maturities and different claim handling are provided.

Keywords: Excess loss development, stochastic loss development factor, large deductible reserv-
ing, excess loss reserving, unbiased development

1 Introduction

This paper presents a theory and methods for estimating ultimate costs in excess layers from
immature claims data. It is not unusual for actuaries to be encouraged to develop individual claims.
For example, a paper by Lowe, Jing and Lebens 2009 suggests that in some cases developing the
remaining open claims may be among the more accurate methods for estimating the reserve needs
of very mature years. However, as Holler and Philbrick 1996 noted, applying the loss development
factors derived from the entire body of claims to the large claims to get a “burning cost” estimate
of the excess losses underestimates the excess losses. Looking at things symmetrically, applying
unlimited! loss development factors to limited claims, and then eliminating the “developed” portion
above the limit will overestimate the limited losses.

So, an alternate approach to loss development is necessary. Holler and Philbrick 1996 suggest
strategies such as beginning with the distribution of claims as reported at an early maturity, then
adjusting the mean and variance to reflect changes in the severity distribution that are expected
as losses migrate to their ultimate values. This indirectly addresses the overriding issue with
developing individual claims—-that while aggregate claims may develop in a relatively predictable
fashion, the ultimate cost of an individual claim is best characterized by a probability distribution?.
It is not difficult to see that the probability distribution model explains the problems noted in
Holler and Philbrick. One might expect that the claims that develop into large claims might
have larger than average development. Hence, applying a standard development factor to those
claims underestimates their (excess) loss. However, it would of course be absurd to apply larger

!This statement assumes the claims handling underlying the loss development factors is a good match for that
employed on the book of business being analyzed.
2This is sometimes referred to as a “stochastic development factor”.
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than average development factors to all the claims. So, done properly, the implementation of a
probability distribution approach to loss development has potential to create unbiased estimates of
excess loss costs.

One may approach this in more than one way. The particular focus of this paper is developing a
single probability distribution that applies to all claims of a given maturity, and generates unbiased
estimates of the claims in any layer, including the various excess layers. There may be alternate
approaches that use different probability distributions for different claims, but this method is
presented because it is relatively tractable, yet it eliminates the bias in the burning cost approach.

This article contains general methodologies for computing probability distributions for loss de-
velopment, together with a toolkit of practical methods to implement the methodologies. Except
where noted otherwise?, the toolkit methods employ only functionality available in the most com-
mon spreadsheet software, so the tools may be implemented by any actuary with that software who
obtains the needed data. So, the tools enable broad use of probability distributions for loss devel-
opment. That has potential to significantly improve actuarial reserving for unpaid losses above a
large deductible, excess-of-loss reinsurance, and so forth. The discussion involves several changes
of variables and other transformations, but the reader will be rewarded with methods that produce
unbiased estimates of ultimate excess losses for reserving and pricing.

The basic concept of probability distributions for development of individual claims is not entirely
new. That process of using a probability distribution to gain a more accurate estimate of the
ultimate severity was previously articulated by Gillam and Couret 1997, and discussed in greater
detail by Mahler 1998. This approach builds on that concept and presents a different approach to
the distribution.

2 The Conceptual Approach

The key goal of this approach is to create a loss development factor distribution that, combined
with the immature losses, creates unbiased estimates of the excess loss costs. The core principle
begins with the severity distribution underlying the “raw” undeveloped losses?, “sx(x)”, and the
severity distribution expected at ultimate, “sy (y)”. Then one must create some severity distribution
for the development “sg(r)” generating a variable “R” such that independent samples from the
raw distribution, “X” and the development distribution “R”, generate a product X x R that
is distributed according to sy (y). Thus, R represents the desired distribution of possible loss
development factors. Even if X takes a single value, X x R represents possible values that X
may “develop”® to. In other words, given a very large body of claims, combining the products
of the undeveloped data and the development distribution would reproduce the ultimate severity
distribution (times the number of claims).

A few comments are in order before proceeding further. First, note that even in the presence

[P

of limited data, say, only “c” claims, > 7 | X X Ry, or for an interval >_; _; min{maz{X} x R}, —

3All the methods may be implemented on a common spreadsheet platform, but the author found implementing
the Fourier transform method using the approach in the spreadsheet program to be challenging.

4This paper will follow the standard convention from statistics that capital letters to the random variable as a
whole, whereas lowercase letters refer to specific instances or outcomes of the random variables.

®The term development is a bit of a misnomer as the development distribution f(r) could be determined so that
it is appropriate across the entire body of claims, including closed claims. Further, it is not designed to, say, create
a perfect predictor of the distribution of possible ultimate costs of a claim presently reserved at exactly $10,000.
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B,0}, T — B}, generates unbiased® estimates of the loss costs that will develop from those ¢ claims
in any interval such as [B,T] . By construction, extending a set of claims that fully represent sx (z)
through the distribution of R, produces sy (y). Therefore, it will represent the ultimate claims cost
in any interval of possible values of Y. So, one would say

Ed’istribution [X X R] = K (1)

where the expectation is across all possible values of X and it equals the full probability distribution
for Y. In other words, applying the spread induced by R to and across all sets of raw claims creates
an unbiased estimate of the entire distribution, values in various intervals, etc. for Y. So, this
creates a powerful tool for evaluating development into various bands of large losses.

Of note, then Mahler’s expression

> x5 ) 2

. X h
all claims «“x}’ /Xn

for the developed loss excess (of some limit /retention “L”) arising from a group of claims provides
an unbiased estimate of the potential ultimate cost of those claims that is excess of L.

Basic Criteria for X and Y

It stands to reason that, unless R is a constant, it will add what may be vaguely described as
“additional spread” to the distribution X. So one would strongly expect that if the variance of
X is larger than that of Y, then no independent R exists so that X x R has the same severity
distribution as Y. Similarly if X has a similarly vaguely defined “fatter tail” at the largest values
than Y, then no independent R exists to link them.

3 The Underlying Approach to Estimating R

Considering the discussion above, it appears that, given some severity distribution for the undevel-
oped losses that generates X, and some other severity distribution for the ultimate losses Y, one
seeks a third distribution R such that

X XR~Y, (3)

(where the “~” indicates that the two sides are essentially identical”.) It is often extremely difficult
to determine a distribution for such an R, but the process may be simplified somewhat by taking
natural logarithms of both sides to get

In(X) +1In(R) ~ In(Y). (4)

That simplifies an extremely complex multiplication-type problem, producing a more tractable
addition problem. However, it may be confusing to discuss a distribution labeled, for example,
“In(X)”. So, it should be helpful to use new variables to describe the logarithms, U = In(X),
Z =In(R), and W = In(Y"). Then

S A potential issue with late reported claims does exist, but a correction will be noted later in this article.
"Technically, that the cumulative density functions of the two sides are identical
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U+2Z~W. (5)

Note that converting the severity probability distribution sx of x to the severity distribution sy
for U = In(z) (and vice versa) requires a key principle from calculus. An example will illustrate the
issue that must be dealt with, and the resolution. Say, for example, that U is normally distributed
with mean  and variance 0. Then, its density function would be

w— )2
e o (6)

If one were to attempt to evaluate sx by simply substituting In(z) for u in that formula, one would
obtain

1 (In(x) — o)?
sx(x) 7=? exp — . 7
x(@) 7 =1 e (7
Usually, that is not even a probability distribution (usually its total integral is not unity (1.00)).
Obviously, in this case sx should be a lognormal distribution with parameters p and o. So, the
formula should be

1 In(z) — p)?
sxla) = o= M D ®)

The additional “1/2” factor illustrates a key principle involved in substituting a function of a vari-
able (in this case u = In(z)) for the main variable in a severity distribution. To keep a distribution
function that integrates to unity (1.00), one must follow the rules for substituting variables in in-
tegrals. In effect, that requires multiplying the expression in (7) by the %g(f) = 1/x needed in
equation (8). This illustrates the fact that, since In(z) grows more slowly, and generally has much
lower values that f(z) = x above unity, its values tend to be more compressed relative to the
x’s that gave rise to the In(z)’s. Therefore, and especially for large x, without the correction the
weights given to the sy (In(z))’s would be diluted.

Using that principle, one may note that

U () = sclexp(u); sx(exp(u)) explu) = suw);sx(exp(u)) = su(u) exp(—u);
SZ(ITIW = sg(r) = sr(exp(2)); sp(exp(z)) exp(z) = sz(2); sr(exp(z)) = sz(z) exp(—z); and,
‘°’W“y“(y” = sy (y) = sy (exp(w)); sy (exp(w)) exp(w) = sw(w); sy (exp(w)) = sw (w) exp(—uw).

(9)

So, using the exponential and logarithm functions and their derivatives, one may translate from
the original multiplicative equation for R to an additive problem, and vice versa.

3.1 A Basic Approach Using Matrices

Most modern spreadsheet packages contain the ability to perform matrix arithmetic. And the
process of adding the values of U to those of Z to produce the values of W may be mirrored
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numerically in a set of equations that create a matrix. The first step is to set up the discrete
analogues to U, Z, and W. A set of evenly spaced points is to be used to represent each probability
distribution. They will be organized so that the difference between each two adjacent points (of each
distribution) is equal to the “grid size” g. So, [U] is defined ® on the points 0, g, 2g, ..., lg indexed
by ¢ = 0,1,2,...,]. The brackets denote a vector or matrix. The probability density function at
each point, following equation (9), is

su(ig) = sx(exp(ig)) exp(ig). (10)

Further, ig represents an interval [(i —.5)g, (i +.5)g] of size g. So, one may estimate the probability
that u falls in the interval, taking sy (ig) as representative of the probability density function in
the interval. Then

Py [(i = .5)g, (i + .5)g] = gsu (ig) = gsx (exp(ig)) exp(ig) = [U];. (11)

[U] and the related vectors are used to clarify the difference between the actual distributions and
their discrete analogues. [U] contains the gsy(ig) = gsx(exp(ig)) exp(ig)’s for i = 0,1,2,...,1 from
equation (11); [Z] represents the gsz(jg) = gsr(exp(jg))exp(jg)’s for j = 0,1,2,...,m; and [W]
contains the gsyw (kg) = gsy (exp(kg)) exp(kg)’s for k = 0,1,2,...,n. Note that the number of points
in each vector (I, m, and n), may all be different depending on the spread of probabilities of Z
desired and how many of the sums (discussed later) are to be evaluated.

Now that the setup of the vectors is complete, one may set up the matrix equation for [Z]. This
uses the probabilities of the various combinations of ¢ and j that add to each k. In this example,
the lowest value of both i and j is zero. So, the only way to sum an index of [U]; and an index of
[Z]; to index W]p =0x gisifi=j=0. So, since X and R are independent, U and Z are too.
Therefore, the discrete probability [W]o is approximately [U]o x [Z]o ( the probability of a zero
occurring in both vectors). Similarly, with these vectors the only way to obtain k = 1 for [W]; is
if one of ¢ and j is zero, and the other equals one. So,

Wh = [U]o x [Z]1 + [U]1 x [Z]o, (12)
and for the general case of k
k
Wie =Y Ui x [Z]r—s. (13)
i=0

Of course, the above could possibly have different limits of summation depending on the limits
imposed by [, m, and n. For example, if [ < k = n, then the limit of summation could only go to
l.

Clearly, equation (13) represents a series of linear equations in the [Z];’s that target the DV],’s.
The various [U];’s are the coefficients. So, one may represent the approximate relationships with
the matrix equation

W] = ] x [2], (14)

8This example starts the index at zero to simplify the illustration. One could just as easily start with -1 or even
-10 to reflect possible downward development by factors of exp(—1) or exp(—10).
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Further [U*] is defined?, using the [U];’s, as

U 0 0
a | U Uy O
[u ] - u2 ul Uo (15)

(omitting the brackets on the individual values inside the matrix for simplicity).

Of course, this is only a “discrete” representation of the probability distributions of In(x), In(r),
and In(y). Hence, it will not generate the exact, or even a continuous, distribution for R, however
such a discrete approximation should reflect some of the basic characteristics of R. So it should
usually be preferable to simply multiplying each loss by a single loss development factor (as is done
in burning cost).

To complete the estimation, one may use the linear algebra formula for the [Z] generating the
[U*] x [Z] that has the least squared error'? in approximating [W)]

21 = (W) x| *])1 (W < ) (16)

where the upper T denotes transpose and the upper —1 denotes matrix inverse. Importantly, matrix
multiplication, matrix transposition, and matrix inversion functions are all available in the most
common spreadsheet software package (and likely other spreadsheet software as well). So, virtually
any actuary, when given the distributions sx and sy, can perform these calculations.

Of course, one seeks the distribution sg, not the vector [Z]. One way to use it is to convert [Z]
to samples from the probability mass function sz (recall that [Z] contains approximate probabilities
of intervals, not points), and then convert those to the probability function si at various values of
R. As a first step, for each of the values in [Z], and indexed by j

sz(jg) = sz(Z = jg) = |2];/9. (17)
Then, one may use equation (9) to get values of s at the points exp(0), exp(g), exp(2g), ...

sr(exp(jg)) = sz(jg) exp(—jg) = [Z]j exp(—jg) /9 (18)

That provides a sample of sg at the exp(jg) points. A curve of some kind may be fitted to them
to complete the construction of sg. Then, the Mahler excess function in equation (2) may be
computed for each claim.

There is a second way that the [Z];’s may be used. Each value [Z]; represents the probability
that Z falls in an interval between (j — .5)g and (j + .5)g. So, they also represent the probability
that R falls in an interval between exp ((j — .5)g) and exp ((j + .5)g). As long as the range of the
corresponding values from R cover a wide enough range, one could use the set of discrete points
exp(0), exp(g), exp(2g), ..., and assign each the probability of the interval they represent, [Z];.
The resulting discrete distribution could represent sp. One would simply take each undeveloped
claim and multiply it by exp(0), exp(g), exp(2g), ... with probabilities [Z]o, [Z]1, [Z]2, ... to

9Slightly different situations may arise when the lowest index of one or more of the vectors [U], [Z], or [W] is not
zero, but the conversion should be straightforward.

0Generally, since [Z] has m potential values and [[] has [ potential values, [W)] potentially has I + m values, so
there are typically more equations to solve than entries in [Z]. This is an overdetermined system of equations.
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estimate the range of ultimate values the claim might represent. Then, the amounts excess over
the deductible or attachment for each claim X, using all the X R = X exp(jg)’s, with probabilities
[Z]; may be used to compute the excess loss

m—1
> D max{X;exp(jg) — L,0}[2]; (19)

all claims «x/ j=0

An example of the calculations in this section may be found in Appendix A.
A Brief Note on Discrete/Numerical Analysis Approximations
Two campers are in the woods and see a hungry bear...

The first camper says ‘I hope I can run faster than the bear.’,
The second one says ‘I don’t need to run faster than the bear, I just need to run faster than you.’
-Old joke

As one may see in Appendix A, the discrete approximations above (and below) do not gener-
ate exact or perfect solutions. That is of course a general characteristic of numerical methods.
However, note that actuarial science is not itself a method for exactly computing exact losses, or
the exact cost of the claims covered by a loss reserve. The key questions to ask are ”Does it generate
a better approximation than burning cost?” and ”"Do I nevertheless have a method to make my
estimate more accurate?”.

3.2 An Improved Matrix Approach—Covering the Upper Range (or Another
Wider Range) of In(Y) =W

Experimentation with matrix calculations suggests that the accuracy may be improved by letting
the number of entries (rows) in [W] be much larger!'! than the number of rows in [I/]. This makes
sense, since equation (4) says that In(X)+In(R) ~In(Y"). Therefore, In(Y') = W should tend toward
larger values than In(X) = U. In fact, if X and R were constrained to be less than max(X) and
max(R), In(Y") would range up to max(In(X))+max(In(R)). Further, numerical analysts know well
that when the data and curves may contain mild distortions, so-called “overdetermined” systems
of equations, with more equations than variables to be solved for, often perform better than those
using square matrices. Therefore, one might replace equation (13) with (for each k indexing [W])
between kmin and kmaz, inclusive,

min(k,jmax)

Wik = > U] —52];- (20)

j=max(jmin,k—jmazx)

So, one might have a matrix [(/*] that looks like

"'Note, though, that using a large multiple of the number of elements in [Z] will increase the complexity, and thus
the likely error, in the matrix arithmetic.
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U 0 0
U U 0
Uy U Uy
) = , (21)
0 U U
I 0 0 U

but the earlier equation (16) for computing [Z] still applies. An example of the calculations may
be found in Appendix B.

Another approach would be to focus on the upper tail of the distribution. One might seek only
use versions of equation (21) that are above some value “kmin”. Then, [/*] might look like

ukmin ukmm—l ukmm—2
ukmin—i—l Z/{kmzn ukmin—l

w-| ] )
0 U U1
0 0 U

Some variations on that format exist depending on items such as whether kmin is larger than the
largest index of [U], specifically .

Experimentation with this approach suggests that it generally seems to be better conditioned
than the situations where [Z] and [W] are about the same size. Further, when the scopes of [U]
and [W)] (specifically, the ranges of the ig’s and kg’s) are limited to areas where the probability
distributions have substantial weight, the calculations seem to be better conditioned. Unfortunately,
if the development pattern under Z features very large development, but only on a very small
number of claims, then the truncated problem may not provide a proper estimate of Z. However,
there are some methods following that may be of assistance.

3.3 Enhancing the Results of the Matrix Calculations

There are a couple of types of error that were often observed in the calculation of [Z] using equation
(16). First, one should understand that, especially when very low values of [U]; or [W]; are used
in a matrix approach, the calculations may generate significant numerical error. The first type of
error that might be corrected tends to arise near the outlying values of jg where the actual values of
sz(7g) might be expected to be very low. The matrix calculations might have difficulty estimating
these very low values in conjunction with the calculation of the larger values near the main body of
the distribution sz. So, one might see output points here with negative probability, or very large
probability at one point followed immediately by very low probability. One could likely enhance
the quality of the final estimate of [Z]; at these points by fitting curves to extend the information
in the main body of the distribution, by limiting the fit to the upper end of the distribution as in
Appendix C, or, if the exact values are less material, simply by using judgment.

Next, in practice sometimes the probabilities in [Z] do not quite sum to unity. This may be

resolved by simply multiplying all the values [Z]; by a common correction factor i'[%g]_
J
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A last pair of corrections involve finding inaccuracies in the estimated mean and variance. For
background, given distributions for U and W, and the assumed independence of U and Z, then the
means and variances of three distributions satisfy

EU]|+ E[Z] = E[W], or E[Z] = E[W] — E[U], and (23)
Var[U] + Var|Z] = Var[W], or Var|Z] = Var[W] — Var[U].

So, since the distributions of U and W are known, the mean and variance of Z may be computed
before the matrix calculations begin. However, sometimes the errors in the matrix calculations lead
to a slightly different mean and variance for [Z]. First, one may consider the case where the mean
of the result of the matrix calculations is pz 4 e and the correct value is, not surprisingly, pz. The
straightforward solution is to move the index associated with each probability down by e/g. Or one
may replace the probability associated with each index j with the probability at j 4+ e/g. So, the
revised probability assigned in [Z]; would be the current value in [Z];,./,. Recognizing that e/g
may not be an integer, this may require interpolation. Straight linear interpolation may be used,
or the improved interpolation along the curve in Boor 2014 may generate better results.

The remaining correctable issue arises when the variance of [Z] does not match the value
projected in equation (23). Then, the values must all be moved uniformly closer to the mean,
or uniformly further away from the mean, in order to fulfill the mathematical identity. One may
simply employ the correction formula

(24)

Revised(121)) = 1211, gy VarVT-varp varzD| s
The formula is somewhat lengthy, but one may see that it simply replaces the distance from the
mean with a value scaled to produce the proper variance. As with the correction of the mean, it will
likely require interpolation. Further, if the result generates more or fewer points, the distribution
may need to be rebalanced to sum to unity overall.

Using these techniques, one may improve the utility of the calculated [Z] and consequently
obtain a better estimation of R. Examples of these methods may be found in Appendix C.

3.4 Fitting a Distribution for 7 by Mean and Variance Matching

As an alternative, one could consider determining the optimum choice from some family of dis-
tributions. For example, if one had reason to believe that the underlying distribution of R was a
lognormal distribution, then one could assume that In(R) has a normal distribution. And all that
would be needed is to determine the uz and oz. But, as stated previously, since In(R) = Z is
constructed to be independent of In(X) = U,

EW] = E[U|+ E|[Z]
Var[(W] = Var|U]+ Var|Z]
(25)

Thus, since the distributions of X and Y are known inputs, so are those of U and W. As noted
earlier, one could compute the normal parameters of Z, and hence the lognormal parameters of R.
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wr = EW]- E[U]
0% = Var[W]—Var[U].
(26)

Of course, one often assumes that the distribution of R comes from some other family (i.e., is
not lognormal). However, if the first and second moments are to be matched to choose the specific
distribution, then equations (26) may still be used to pick a specific sz from a family of distributions
corresponding to possible distributions of In(R). Then, an exponential change of variable (following
equation (9)) will provide the distribution for R.

3.5 Fitting a Distribution for Z by Matrix-Based Parameter Estimation

An alternative method for selecting the parameters of a specific distribution for Z from a curve
family involves a numerical method. In this case, one would select the best estimate of sz using
the solution finder routines available in spreadsheet software packages. For example, one may
desire that sz come from some class of distributions such as the Pareto, lognormal, etc. Then
one could fit the parameters of the distribution by choosing the parameters that result in the best
estimates of key values of W] when the discrete probability distribution corresponding to those
parameters is combined with the proper [U/*]. Effectively one would feed the matrix [Z] of the
Pareto distribution through the [/*] x [Z] process and compute the corresponding error in this
estimate of [Z]. Then, one would vary the parameters (as standard spreadsheet software does) to
minimize the error estimating [W] and find the best choice of parameters. Such a calculation is
shown in Appendix D. Admittedly, this is essentially another matrix approach. However, since the
type of distribution is specified, one should need fewer points, and less computational complexity,
to simply estimate the parameters of the distribution.

3.6 Matching the Pareto Alpha Parameter

When developing individual claims for excess layers, it may often be more important to just know
the upper end of the sg distribution. Further, the upper end of the sy distribution may itself result
from an extrapolation, often using a Pareto distribution. Therefore, it may be more important to
find an R that creates the Pareto character of Y than to find an R that generates a good match
across the entire domain of Y. This approach skips the intermediate step of taking logarithms U
and W of X and Y and estimates characteristics of R directly from X and Y. To do so, one may
begin with an assumption that Y’s Pareto parameters are « and yps, generating

a X ys
Y
and similarly that
B x x@
sx(x) = AL (28)

Of course, it must be that a < 3, since R adds “spread” to X. Then, a paper by Pederzoli and
Rathie 1980 states that if X and Y are independent, with a@ < 8, then R, the quotient of Y over
X, will follow the Pareto distribution
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af  (ym/zam)®
o+ 18 potl
which is itself a Pareto distribution. However, Y is actually dependent on X. So the above
represents more of a general guideline.

However, the distribution of the product of any Pareto distributions X and R generally has

a Pareto character at the upper severities, matching the lowest (thickest tail) of 8 and the R’s
power parameter “y”. Specifically, if X and R are Pareto distributions, then Y will have Pareto-
type character in the upper tail, corresponding to the lowest power parameter. To fully specify R,
one would assume that it has the parameters v and rjs, and v < . Then, if X has the Pareto
parameters listed earlier,

sr(r) = : (29)

sy (y) = (30)

B—n
One may see that as y gets large, the first term, which has Pareto power 7 (from R) will dominate
the final result.'? This indicates suggests that the Pareto power of R will generally match the
Pareto power of Y.

So, R may be estimated by simply matching the « parameter of the distribution of Y. Note
that even if X has too thin a tail'® to be a Pareto distribution, using a Pareto distribution with
parameter « for R will still mean that the power parameter of X x R will be a. For example,
consider the case where X is a constant.

Then, the primary goal is to find an R which, in conjunction with X will generate a distribution
X x R with a Pareto shape parameter of a. So, it is necessary to estimate « from the values of Y.
One may use the various upper percentiles of Iy, the cumulative distribution function associated
with the severity mass function sy. If one chooses p; and py to be probabilities fairly close to unity,
and their corresponding 100p; % and 100p2% percentiles are Fy L(p1) and Fy L(ps), then

In ( tz : >
RN (Fii(”z)). o
Fy (pl)
Alternately, one may use any other standard method to determine the Pareto power parameter in
the upper tail.

One may also correct the absolute value of the result. If the final distribution of X x R results
in probabilities for large values that are d% of the probabilities Y generates for the same values,
one need only alter the truncation point of R by (1/d)Y/® to create the desired absolute level of the
distribution of Y at the upper amounts. So, using this approach, a distribution for R that provides
the key Pareto-type characteristics at the upper limits of the distribution of Y may be computed.

B {(xMTM)7 (iUM?"M)ﬁ}‘

A

3.7 Fourier Analysis—A Heavily Mathematical Approach

Fourier analysis represents an advanced mathematical approach, using complex variables, to (among
other things) compute the distributions of sums and differences of random variables.!* For example,

12The calculations underlying this formula, which is likely not new, involve using u = In(z), etc. logarithmic
substitutions and standard calculus.

13When 8 = «, however, this process may not work.

14The reader that is not familiar with complex-valued functions, characteristic functions or Fourier transforms
should not let this digression become a deterrent. The use of those is limited to this section.
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when U and W are instances of well-known types of probability distributions, it might be possible
to find the distribution Z using characteristic functions (Fourier transforms). Such a transform of
some random variable, for example “T” would be

or(w) = Elexp(iwX)]. (32)
It is well known that when U + Z ~W that
v (W) X pz(w) = ew(w) (for all w). (33)

So
pz(w) = ew (W) + pu(w), (34)

and using the inverse of the characteristic function, (so as to simplify the formula)

sz(z) = 217T /OO exp(—iwz)i‘g((s)) dw, (35)

which may then be used to construct sg using equation (9). It is not difficult to see, though,
that even computing the Fourier transform is complicated (and uses complex numbers to boot).
So, at least insofar as a paper and pencil approach is involved, this Fourier transform approach
may be difficult to use on the less structured loss distributions associated with insurance claims.
Possibly, there may be packaged software that can reliably estimate whole complex functions and,
therefore, compute the needed transforms. The author is not aware of such software, but the
author rarely uses complex valued functions at work. A discussion of the discrete estimates of
Fourier transforms, and some discussion of when they are effective and ineffective may be found
in Halliwell 2014. However, a significant concern exists with any such approach. Since complex
analysis is not included on the Casualty Actuarial Society’s syllabus of examinations, this approach
may be too technical for many actuaries to use or understand.

3.8 Testing the Results

Noting that the different methods have different strengths and weaknesses, it may be prudent, after
estimating R, to run a Monte Carlo sample of X X R and see whether or not the result mirrors Y.
Usually, special attention should be placed on the larger values in the range of Y. Further, it may
be preferable to use more than one method and test each method to determine which one performs
best.

4 Finding Data and Using Data Effectively

Implementing the various procedures above requires having a severity distribution at the same
maturity as the claims to be developed, and the ultimate severity distribution (or least suitable
approximations to the two). Of course, if one has a benchmark ultimate loss distribution from some
source, and the sx severity distribution is from the actual claims to be developed, X x R, up to
approximations in the process, has to simply regurgitate the benchmark ultimate loss distribution
one began with. So, it would often be necessary to use external data to derive sg. It may be
appropriate, though, to modify sg to reflect differences between the characteristics of the data being
developed and the characteristics of the benchmark. Further, considering the difficulty inherent in
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obtaining severity distributions for immature data, it may be helpful to use adjustment processes
to adjust an sp distribution for data at 12 months maturity to develop sg’s suitable for data at,
say, 24 or 36 months maturity.

4.1 Using the Severity Distributions of a Larger Body of Claims

Using the severity distributions of a broader group that contains or matches the body of claims
to be developed provides a good alternative to datasets with limited credibility. Note that while
the 12 months and ultimate severity distributions of some line of business in a single state may
contain too few claims to reliably compute an sg for that state, the data from the entire country
for that line of business may well provide a good benchmark. So, it may be helpful to develop the
sp distribution from a broader dataset. Similarly, instead of using the data from a program'® or
class, it may be helpful to use an sg for the entire line of business. Lastly, although the discussion
of this approach is short, it should not diminish the relevance of the method. Not only can it solve
the problem of constructing sz for small programs and classes, it also eliminates the problem of
obtaining separate sx and sy distributions for each class.

4.2 Using the Severity Distributions Underlying Advisory/Rating Organiza-
tion Loss Costs/Rates

Another approach is to develop sy and sy from material provided by advisory or rating organi-
zations. For example, one might request (typically, at some cost) a sample of all the individual
claims at twelve months for the class underlying some increased limit or excess charge table. Then,
one might use that twelve month’s data to generate sx, and the organization’s loss distribution!®
underlying the increased limit or excess ratio table as sy. As long as the scope of the data in such
an sy is a good match for the scope of the data in the sy, those would provide the raw materials
needed to generate an sp. Further, it would appear to be fairly important that the sx distribution
and the sy distribution come from the same block of business, since the resulting sg is computed
using the differences between them. Consider, though, a small block of business that is a subset of
the original, presumably fairly homogeneous, block!”. Using the resulting sg from a slightly differ-
ent, but larger block of business'® would not be expected to generate significant error, especially if
the adjustments in the following section are used. Therefore, one might expect the resulting sg to
often have relatively small errors in estimating the loss development distribution for the modified
block. So, this could be a good source of data for computing sp for the slightly modified block of
business.

15 As will be seen later, it is possible to adjust sg for differences in claim handling, and adjustments of that sort
may be required.

161t should be noted that whatever loss cost “trend” adjustments that are needed to match the occurrence, etc.
periods of the two distributions will be done.

170r one that has development and reserving patterns that are otherwise similar to those of the original block of
business

18 As stated previously, the key questions to ask are ‘Does it generate a better approximation than burning cost?’
and ‘Do I nevertheless have a method to make my estimate more accurate?’.
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4.3 Modifying the Key Parameters of sz or X to Mirror Different Loss Devel-
opment Patterns

There are some fairly straightforward adjustments one might make to sp to make it useful for blocks
of business that have significant, but tractable, differences. For example, the time and expense of
computing an sg for data at 12 months may necessitate that the results be adjusted for use at 24,
36, etc. months. It would not be unusual for an insurance enterprise to have a large general liability,
commercial auto liability, or workers compensation program handled by in-house claims adjusters,
yet also have a similar program where losses are adjusted by a third party claims administrator
(“TPA”). It is also possible that the company might have some block of business that is administered
in-house, but has some claims with different features than the base program. Volume considerations
might necessitate that sg be computed from the main or “benchmark” program and reflect the loss
development distribution of the main program. But, quite often the basic loss development factors
for the “alternate” (for example, the TPA-administered) program!'® will be different than those of
the main program. It is possible to correct sg for the overall development difference. For example,
assuming sg is created so that the mean of R is LD Fyepehmark, and that the alternate program has
a loss development factor of LD Fjiernate- Then, one may use the formula

LDFalternate ) LDFalternate

LDFbenchmark " LDFbenchmark ‘ (36)

As one may see, this is similar to the calculations in Appendix C, Table 6 that were discussed
in subsection 3.3, when one considers the expansion of the intervals between the discrete “r” points
induced in Table 6. In fact, one could replace the formula in equation (36) with the calculations on
Table 6 in discrete cases?’. So, adjusting the random development distribution sg for differences
in overall development is fairly tractable.

On the other hand, it is often more preferable to leave R as computed and modify the X. In
that event, one could simply compute

SR,alternate(r) = SR <

Tod J= Tal LDFalternate
adjusted — Lalternate LDF
benchmark

for each Zyjternate in the dataset of claims. Then, one would apply the range of potential development
factors sg to the resulting xqgjusted’s in accordance with equation (2). In some respects, this is a
more straightforward process.

There is a more subtle aspect of reserving that may be considered as well. The differences in
loss development factors do reflect the relative levels of overall development. But, one should also
consider the accuracy of reserving. For example, suppose a TPA uses a strict formula approach to
reserving, where every claim is reserved at the average cost at the given maturity of the reserves
set by the benchmark adjusters. The loss development factors needed for the TPA will equal that
of the reference (in this case in-house) data. However, it should be clear that since the TPA’s
reserves feature no claims of above average size, combining the TPA’s data with sz will predict too
few excess losses. So, in that case, one may regard the benchmark data as being more accurately
reserved. In fact, to the extent that the variance in loss sizes in the X distribution mirrors the

(37)

19This is not intended to provide commentary on TPA-administered programs. It is merely used to provide an
example where the claims profile may be different than that of the standard program.

20Excepting that Table 6 is more oriented toward matching the logarithm of R to the logarithms of X and Y than
adjusting sr.
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differences in the losses at ultimate Y, one may regard greater variance as greater accuracy in
reserving. Of course, it is possible that some differences in reserves set by a claims staff may be
due to factors that do not relate to ultimate costs. So, variance should be regarded as an indicator,
not a perfect measure of the reserving accuracy in X.

An important aspect of the variance of the immature, undeveloped loss should be considered.
Even when there is too little data to construct a reliable loss distribution for the undeveloped
losses, there may nonetheless be enough to provide an acceptable estimate of the variance of the
undeveloped losses.

The key factor to match to the reference data is not the variance, though. It is the coefficient
of variation, ¢,. That is because correcting X jzernate, for example, for a higher development factor
raises the variance by % along with the values of X jternate- S0 it is important to either
use LDF-adjusted data or strictly use the coefficient of variation to compute the variance of the
alternate claims regime/alternate block of business.

So, at the start, a logical correction might be to simply expand or contract?! the variance of
the 2’s. For instance, if the variance?? is presently a? and the R was developed using a distribution
with a variance of 32, and px is the mean, then one may use

B
Ttransformed = WX + &(l‘ - 'UX) (38)

to get the desired variance. Then, one might apply R to each revised claim amount Ztrqns formed-
An alternate method is also needed. Although the method guarantees the needed variance of
Xiransformed, it has a substantial weakness. When X contains values that are small enough, and
g > 1, one may obtain negative values of Zt.qnsformed. Of course, often such values will be irrelevant
to the pricing of the excess layers. But, an alternative is needed for the cases where the smaller
losses affect the expected excess losses. Such an approach involves looking at the logarithms of
the values of X and using a power function (to some yth power)23 to approximately correct the
variance. The first steps involve computing the geometric mean pgeometric and adjustment factor

Hgeometric = E[ln(X)]
\/ln(c% [benchmark] + 1)
"y =

In(c2[alternate] + 1)

Then, one may compute the distribution with the “power” variance correction, by computing each

Ttransformed V1a
X

N
) Hgeometric (39)

This only technically promises the correct variance when X is a lognormal distribution. However, it
could be expected to produce reasonable results as long as X is not too different from a lognormal
distribution. Further, when it does not appropriately mirror the desired variance, the v parameter
could always be revised.

Ltransformed = (
Hgeometric

21This implicitly provides a rationale for adjusting the z’s rather than the distribution of R. The variance of the
z’s may be corrected up or down as needed, but computing a R with lower variance, since it is a distribution rather
than a set of values, is more complicated.

220y and B are reused here from subsection 3.6 to avoid using unfamiliar symbols, but of course they have a
completely different meaning in this context.

23The variable ~ is reused here to avoid using unusual variable names, just as with o and 3.
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So, with these changes, especially when the mean adjustment and variance adjustment are made
in tandem, it is possible to modify the claims data to make them suitable for combination with a
R from some not-too-different severity distribution.

4.4 Non-Matching, but Usable, Benchmarks

Subsection 4.3 opens up a large range of opportunities to use benchmark data. For example, insur-
ance company data might be used for claims severity distributions reported by TPA’s. Conceivably,
as long as the general curve is reasonably predictive of the range of development, it might be used
for claims severity data from other maturities. Of course, there is no reason to believe that similar-
developing subsets of some benchmark could not use the sp of the benchmark. So, once sp is
established for some benchmark, one might expect it to have wide applicability.

5 Pure IBNR Claims

A criticism that may be raised about the processes in this paper is that they do not recognize
true late reported or IBNR claims. One must also recognize the potential that the late reported
claims may be more severe than the remaining claims. If the late reported claims were part of the
distribution of the z’s, they would definitely affect the X x R combination. But they are not. They
are, however, part of the y’s. So, even though the severities of the late reported claims are not
included in X, X x R generates all the ultimate severities of Y. Therefore, the expected distribution
of possible z’s is sufficient for the distribution X x R to generate the full severity distribution Y.
By construction, R implicitly recognizes the missing, potentially larger, severities that would be
generated by the late reported claims.

However, the developed excess loss will be missing some claims counts across-the-board. For
example, if 10% of all the ultimate claim counts in some product line are as yet unreported at 24
months, and the x’s used in Mahler’s equation (2) for the excess loss estimate are the loss amounts
of the claims reported at 24 months, then the result will be deficient by 10% every time. That is
both bad news and good news. All the excess loss estimates must be adjusted, but the predicted
costs in each and every layer need only be corrected via a division by .9. That simple correction
(multiplying the end result of Mahler’s equation by the reported count development factor) suffices
to create fully unbiased predictions of the costs in the various layers.

6 Those Pesky Closed Claims

A common criticism from users of loss reserve reports covering excess programs is that some of
the claims projected to develop into the excess layer are already closed. In the context of this
paper it should be clear that if some large closed claims are expected in the dataset, removing
them would bias the resulting estimate of the ultimate excess loss. Thus, an alternative that does
not combine closed claims with the standard construction of R is desirable. The solution involves
simply removing the closed claim distribution within X from both: the severity distribution of the
claims reported to-date (sx); and, that of the ultimate claims (sy). To do so, one needs the total
number of expected claims to-date in X, “a”, the expected number of closed claims to-date in X

(A%

,“b7, the expected number of ultimate claims “c”, and the special distribution of the closed claims
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2

to-date in X, “sx ¢”. Then, one may compute the distributions of the open claims in X, “sx o
and the ultimate loss distribution excluding the claims closed in X, “sy,p”, as

asx(z) — bsx c(x)

sxo(r) = p— , for all x, and (40)
—b
syo(y) = CSy(y)c — ZX’C(y) for all y. (41)

The resulting sx o and sy,0 may then be used with all the techniques presented previously to
develop a random development distribution R for just the open claims.

7 Summary

Developing individual claims with standard, single-valued?* loss development factors generally un-
derstates the cost of the excess layers. Although eliminating the bias in that process is a challenging
problem, an overall framework for unbiased development of excess layers based on stochastic devel-
opment (probabilistic loss development factors) using a single development distribution was shown.
A number of methods for estimating the values of that probability distribution were developed.
Some involve a matrix approach, some involve differing approaches to curve-fitting, and some in-
volve the complexities of Fourier transforms. So, one may use more than one method to develop
the probability distribution for loss development, and mirror the use of multiple reserving methods
in underlying layers with multiple reserve indications for the losses in the excess layer(s). Further,
a number of methods for adjusting the distribution when data that exactly matches the reserving
situation is not available were discussed.

Hopefully, these methods will be broadly used. It is also hoped that other papers will expand the
tools available. As promised, though, the methods provided for computing this random development
factor offer a means to provide an unbiased development approach. Specifically, these methods
offer an opportunity to prepare unbiased estimates of claim groups such as losses excess of large
deductibles or losses excess of a specific retention. Those results may in turn be used in both
reserving and pricing. Consequently, this approach has the potential to improve the accuracy of
actuarial projections.
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A Example of the Matrix Method for Estimating Z and R

Suppose one begins by computing [U] from X and sy (whose values are given below), starting from
values of u that start at zero and are .3 apart.

Table 1: Calculation of [U] from Values of X

u (or .3i) | z =exp(u) | sx(z) | su(u) =zsx(z) | [U]i = .3su(u)
0 1.000 333 333 .100
3 1.350 494 .667 .200
.6 1.822 .549 1.000 .300
9 2.460 .339 .833 .250
1.2 3.320 1561 .500 .150
Therefore
10
.20
U = | 30 |. (42)
.25
15

Similar calculations for [WW],this time beginning with some given values of Y, yields the values
tabulated below.

So
.010

040

W)= | .100 | . (43)
185
235

Then the index j of [Z]; is set to cover 0, .3,.6, and .9. Following equation (14) the corresponding
matrix equation for [Z] using [U*] and W] is
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Table 2: Calculation of W] from Values of Y

w (or .3k) | y=exp(w) | sy(y) | sw(w) =ysy(y) | Wl = 3sw(w)
0 1.000 | 033 033 010
3 1.350 | .099 133 040
6 1.822 | .183 333 100
9 2.460 | .251 617 185

1.2 3.320 | 236 783 235
10 0 0 0 010
20 .10 0 O 040
30 20 .10 0 | x[Z]=] .100 (44)
25 .30 .20 .10 185
15 .25 .30 .20 235

That illustration shows the structure of the matrix equation (and [U/*]) . The columns of [U/*]
contain equal values from [U{], but they are offset, and have successively more and more preceding
zeros. Per the equation, that information can provide an estimate for [Z]. Even though [Z] has
four entries and [W] has five, standard linear algebra provides a way to find the four dimensional
array [Z] for which [U*] x [Z] best estimates®® [W)]. To provide a view of the calculations and the
characteristics of the various matrices, calculations for this numerical example follow.

The best estimate process generates a four by four system of equations by multiplying both
sides of equation (44) by [/*]7, the matrix transpose of [/*]. That gives the initial matrix equation

U < Ul < [2] = )" x ), (45)
or
10 20 .30 .25 .15 100 00
0 .10 .20 .30 .25 201020 0
el e 130020 10 0 | x [2] (46)
0 0 .10 20 .30
0 o0 o 10 20 25 .30 .20 .10
' 15 25 .30 .20
10 .20 .30 .25 .15 '8i8
_ |0 10 20 30 25 | |
0 0 .10 .20 .30 s |
0 0 0 .10 20 a
(47)

5 east sum of squared errors in estimating the various elements of [W).
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which may be reduced, using a popular spreadsheet program, to

2250 .1925 .1250 .0550 12050
1925 2025 1550 .0800 13825
1250 1550 1400 0800 | < E1= | 11750 |- (48)
0550 .0800 .0800 .0500 06550

Note that at this stage, the values still look tractable. Then, since [U*]T x [U*] is a four by four
matrix, it potentially has an inverse. Assuming such an inverse ([U/*]7 x [Z/{*])_l exists, then one
may solve for [Z]. In fact, [U*]T x [U]*] does have an inverse (as determined using the same popular
spreadsheet program) and it is

56.806 —87.931  22.413  42.241
o oen—l | —87.931 208.620 —198.275  80.172
(TN =1 99413 108975 460.344 —443.965 | (49)

42.241 80.172  —443.965 555.603

Note that this matrix, although an inverse of a matrix with strictly positive elements, all between
5% and 23%, has very large elements and some very large negative elements. So, one might expect
such matrices to magnify small errors or be “ill-conditioned”. In this case, though, in conjunction
with equation (48) it produces an accurate solution®® for the matrix equation of

2] = (50)

NSRS R

Having [Z] should allow us to estimate the excess losses from undeveloped losses. For example,
suppose one has only three losses reported so far, at $5,000, $50,000, and $75,000, and one seeks
the expected ultimate loss excess of $100,000. The first step is to follow the protocols of equation
(19). Those essentially say that we may take the probabilities generally represented by the [Z];’s
as representing the probability in intervals around the r = exp(jg)’s. So, each exp(jg) may be
taken as representative of the r-values in its representative interval with the probability of r lying
in the interval at [Z];. So, Table 3 shows how the ultimate excess loss may be estimated using the
discrete values associated with the [Z];’s.

Of note, using the [Z]-weighted average of the loss development factors (in other words, the
single loss development factor from, say, the chain-ladder method) would only produce an “esti-
mated” excess loss of $42,533. Note also that the $42,533 is unusually close to the excess value of
$54,226 because of the large weight on the highest development factor. In conclusion, though, the
results of Table 3 are directionally correct.

Another alternative is to compute the sp values using the [Z];’s at the z = In(r) points that
correspond to the ig’s, then fit a curve to them. Such an analysis is shown in Table 4. Note that the
increase in probability at higher limits in this example is unusual (one would expect s to decrease
slowly till 7 reaches either some large value or infinity). The fact that a uniform distribution
was used emanates from that situation, and the choice of a uniform distribution should not be

26Tt should be stated that ill-conditioned matrices do tend to magnify errors. The quality of the result above
appears to result from the fact that [4*]T x [U*] is only a four by four matrix.
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Table 3: Sample Calculation of Estimated Excess Loss Using [Z]

Index “j” [Z]; Wtd.

0 1 2 3 Average
2] 0.1 0.2 0.3 0.4
exp(.3j) =r = LDF 1.000 1.350 1.822 2.460
Loss 1 $5,000 $5,000 $5,000 $5,000
Developed $5,000 |  $6,749 | $9,111 | $12,298

Excess $100,000 $0 $0 $0 $0 $0
Loss 2 $50,000 $50,000 $50,000 $50,000
Developed $50,000 $67,493 $91,106 | $122,980

Excess $100,000 $0 $0 $0 $22.980 $9,192
Loss 3 $75,000 $75,000 $75,000 $75,000
Developed $75,000 | $101,239 | $136,659 | $184.,470

Excess $100,000 $0 $1,239 $36,659 $84.,470 $45,034

Total Est. Excess $54,226

considered normal. So, one should simply take this as an illustration of curve-fitting using [Z].
The poor quality fit that results, and the fact that the mean of the fitted distribution is less than
the average loss development factor (at least that per the point estimate approach) yields the very
unusual result that the fitted curve excess loss is less than that derived by burning cost. This
should be taken to reinforce the importance of matching the mean when the distribution of R is
determined. Fitting a curve of course differs radically from curve family to curve family?”.

So, by estimating [Z] representing sz, then dividing out the exponent of the matrix indices
(along with the scale factor) gives the severity distribution sg as noted in equation (9). So, when it
is effective, this discrete approximation may produce a useful estimation of the transition probability
density (and a consequently useful measure of the excess losses).

However, it must be noted that there are two concerns with the use of this specific method. The
first is that when one begins with 0 as an index of [Z], that represents a lower bound for R of 1.00.
So, one is beginning with a cap from below for r of unity. Thus, one is assuming that no claims will
develop downward?® under any circumstances. In most circumstances, such an assumption might
be thought of as unreasonable. A second concern arises from the setup of the matrix equations.
When using this method with a fairly large number (perhaps twenty or so) of values of z, or for
which values along long stretches of [U] or [W)] are near zero, computational error may cause the
numerical solution may be so far off as to be completely unreasonable. So, there is significant
motivation for improving this method.

2TOther than the two stalwarts of method of moments and the use of a solution routine to solve a least squares
problem (per the example in Table 9).

280f course, this may be resolved by accepting some negative indices, perhaps even only one negative index, for
the values of Z.
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Table 4: Sample Severity Curve Fitting and Calculation of Estimated Excess Loss Using [Z]

Index “j”
0 1 2 3
[Z]; 0.1 0.2 0.3 0.4
exp(.3j) =r 1.000 1.350 1.822 2.460
sr(r) = Z];/(.3exp(.37)) || 0.33333 0.49387 | 0.54881 | 0.54209

Uniform distribution of Best Fit:

Mahler Excess Function = [550 00 /¢ -5(rC — 100,000)dr,
for each claim amount C such that 2.7C' > 100, 000

Avg. Value s = .47953; Inverse=Interval Length = 2.0837 (Use 2.0)
sp-Wtd. Avg. of Points = Center of Interval=1.7378 (Use 1.7)
Selected Uniform Distribution with Mass .5 on [.7,2.7)

Loss 1 5,000 | Excess = 0
Loss 2 50,000 | Excess = 6,125
Loss 2 75,000 | Excess = 35,021
Total 41,146

B Example of How to Set Up the Key Calculations for an Overde-

termined Matrix

An overdetermined matrix system brings many more data points (values in [W]) that one would
attempt to match, but can create more complex matrix arithmetic. Per equation (14), though, the
calculations are specified and use functions available in at least one standard spreadsheet program.

An example will illustrate how to set up the matrix calculations. In it, the introductory setup
of U] and W] (as illustrated in the Appendix A example, with different values) will be presumed
to have already been completed. Further, the final conversion from [Z] to R (also illustrated in
Appendix A, again with different values) will be omitted as well. The focus will simply be on the

setup of the matrix arithmetic.
If one has the following vectors:

.080 7
.100
.140
180
180
.140
.100
.080
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for —2g, —1g, 0g, 1g, 2g, 3g, 4g, 5g;

.10
.20
U = | .30 (52)
.25
.15
for —1g, Og, 1g, 2g, 3g,; and
[Z] is set to cover —1g, Og, 1g, 2g;
then the matrix equation using [U*] x [Z] = [W] is
.10 0 0 0 7 [ .080 T
20 .10 O 0 .100
30 .20 .10 O .140
.25 .30 .20 .10 180
15025 30 20 | “EI= s (53)
0 .15 .25 .30 .140
0 0 .15 .25 .100
0 0 0 .15 | | 080 |

Clearly, one may then solve for [Z] using the methods of subsection 3.1, specifically, using equation
(16).

C An Example of How the Matrix Equation Output May be
Corrected

As noted in subsection 3.5 sometimes computer-based matrix arithmetic may distort the mean and
variance of Z somewhat. However, the author’s experience suggests it is likely to be possible to
remove much of the distortion. An example of the correction process follows.

One may numerically solve the discretized problem specified as:

e W is a normal distribution with mean 5.5 and variance .74 (W~N(5.5,.74));
o U~N(3,.49);

e both are discretized to [/] and [W)] with increments of .1;

the matrix equation covers W between 3.2 and 7.6 and U between 1.2 and 4.8; and

a discretized solution for Z ([Z])in increments of .1 between 1.2 and 3.6 is sought.
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The results of the calculation of [Z] are shown below:

©0.06384 ]
—0.02399
—0.01848
—0.00732
0.00756
0.02386
0.03937
0.05234
0.07509
0.05579
0.06094
0.06446
[Z]=| 0.06644 |. (54)
0.06686
0.06556
0.06228
0.11377
0.07348
0.05943
0.04086
0.01971
—0.00130
—0.01903
—0.03044
0.09551

One may clearly see that the values between 0.06384 and -0.00732 are dominated by error, while
0.00756 is suspect. At the bottom of the matrix 0.01971 is suspect, whereas -0.00130 through
0.09551 are in error. The results in the middle are initially presumed to be relatively accurate.

Of course, the problem in U and W has a known solution. The sum of two independent
normal distributions is itself a normal distribution, with a mean equal to the sum of the means
and a variance equal to the sum of the variances®. So, R~N(2.5,.25). So, the matrix results are
compared to the actual results in Table 5.

Interestingly, Table 5 essentially confirms the judgment-based assessment of which points are
valid and which are not. The “correct” points are also imperfect, but they are somewhat close
to the distribution. This illustrates how one might extract a useful approximation from a matrix
approximation that generates some amount of approximation error.

The results may be enhanced further. First, one may limit the computed points to those
between 1.7 and 3.1. Then, the probabilities only sum to roughly 92%. So, the probabilities
should be rescaled to total unity. Also, assuming that one did not know (as one generally would
not) that the distribution was a normal distribution, one would still know the mean and variance
of In(X) = U (3 and .49) and the mean and variance of In(Y) = W (5.5 and .74), since those

2%Note that the last two sum formulas are not unique to normal distributions, but apply to any two independent
distributions.
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Table 5: Comparison of Matrix-Estimated [Z] Distribution and Actual N(2.5,.25) Distribution

Estimated True

1x N(2.5,.25) | .1 x N(2.5,.25) | Estimation
In(r) ==z Value sz(z) Value sz(z) Error%
1.2 0.06384 0.00272 2247 %
1.3 -0.02399 0.00448 -635 %
1.4 -0.01848 0.00709 -361 %
1.5 -0.00732 0.01080 -168 %
1.6 0.00756 0.01579 -52 %
1.7 0.02386 0.02218 8 %
1.8 0.03937 0.02995 31 %
1.9 0.05234 0.03884 35 %
2.0 0.07509 0.04839 55 %
2.1 0.05579 0.05794 -4 %
2.2 0.06094 0.06664 -9 %
2.3 0.06446 0.07365 -12 %
2.4 0.06644 0.07821 -15 %
2.5 0.06686 0.07979 -16 %
2.6 0.06556 0.07821 -16 %
2.7 0.06228 0.07365 -15 %
2.8 0.11377 0.06664 71 %
2.9 0.07348 0.05794 27 %
3.0 0.05943 0.04839 23 %
3.1 0.04086 0.03884 5 %
3.2 0.01971 0.02995 -34 %
3.3 -0.00130 0.02218 -106 %
3.4 -0.01903 0.01579 -221 %
3.5 -0.03044 0.01080 -382 %
3.6 0.09551 0.00709 1247 %

distributions are known starting points. So, by subtraction, the mean of In(R) = Z would have to
be 2.5 and its variance would have to be .25. For the adjusted distribution, the mean is 2.46 and
the variance is .155. So, although the mean is relatively close, the variance contains serious error.

To correct this, two steps are needed. First, since the mean should be moved up by .04/.1 =40%
of the grid size. So, each point is assigned 60% of its current value and 40% of the value below.
The results are shown below

However, the problems with the variance remain. To understand the problem better, it is helpful
to compute the ratio of the standard deviation desired, v/.25 = .5, and the standard deviation
presently? in the estimated®!' distribution of [Z], v/.155 ~ .39. That ratio is approximately 1.25.

30 After correcting the mean.
31Note that since the distribution is discretized, some values may add up to something slightly different than unity
when they should add to unity and modest effects on the mean and variance may occur.
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Table 6: [Z] with Mean Adjusted to 2.5

Adjusted
In(r) =j [Z];
1.7 0.01555
1.8 0.03603
1.9 0.05122
2.0 0.07169
2.1 0.06899
2.2 0.06396
2.3 0.06850
2.4 0.07132
2.5 0.07245
2.6 0.07178
2.7 0.06908
2.8 0.10122
2.9 0.09733
3.0 0.07067
3.1 0.05246
3.2 0.01775

Then, if maintaining the grid size is not needed3?, one may simply expand the grid as j = 2.5 +
1.25 % (j — 2.5) to get the values in Table 7.

Alternately, linear interpolation using the reference values in Table 7, plus an approximate
1/1.25 correction for the grid size difference (essentially, there are now 23 points rather than 17)
produces the mean/variance adjusted distribution®® from the original grid in Table 5. Table 8
compares the results to the true distribution.

In this case, both the mean /variance adjusted®* distribution and the result of the original matrix
arithmetic have significantly more weight towards larger and smaller development. So, they would
tend to overestimate excess losses. However, that does not imply that the methodology will always
do so, and it should still be more accurate than applying the same loss development factor to all
claims.

Although the process is not presented in detail here, one could assign greater weight to the large
values in [W] by multiplying each of the equations (one for each “k’) represented by equation (13)
by an individual weight wy, and then creating [(/*] and [W] from the weighted values. One must
be careful, though to avoid placing too much weight, say, on the equations of the largest five k’s,
or the problem [U*] x [Z] = [W] will essentially become only a five dimensional problem.

32For example, if the goal is simply to provide a distribution between a discrete set of points (per equation (19))
to use as a proxy for the continuous distribution of R.

33Including a needed off-balance correction, so the probabilities sum to unity

34To a mean of 2.529 and variance of .2634
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Table 7: [Z] with Variance Adjusted to .25 by Expanding Indices

Adjusted

In(r)=j | [2];
1.5 0.01248
1.6 0.02512
1.7 0.03603
1.8 0.04742
1.9 0.05717
2.0 0.05537
2.1 0.05226
2.2 0.05346
2.3 0.05584
2.4 0.05739
2.5 0.05815
2.6 0.05773
2.7 0.05635
2.8 0.06536
2.9 0.08071
3.0 0.07811
3.1 0.06165
3.2 0.04819
3.3 0.03139
3.4 0.00996

D Example of Fitting a Distribution Using a Matrix-Type Ap-
proach.

For example, if one desired that sz follow a shifted (to negative one—to easily accommodate the
indices of [I/] and [W)] in the example beginning at (43) and (42)) Pareto distribution3’, then one
could fit the optimum Pareto parameters®® by minimizing a weighted sum of the squared errors
between the Pareto-generated discrete probability distribution at 0, 1, 2, and 3.

The light gray Pareto parameters at the top of the Table 9 were varied to obtain the lowest value
of the weighted sum at the bottom of the table. In most practical situations, numerical solution
software present in common spreadsheet programs may be used to find the optimum weighted sum
of squares in dark gray by varying the input Pareto parameters in light gray. In this case, the
numerical solution process in the software failed, but an approximate solution (and of course all
numerical solutions are approximate anyway) was found by varying the parameters in light gray
until changes in the parameters ceased to reduce the weighted sum.

35Use of the shifted Pareto is not intended to endorse its utility for modeling. It is merely used because its
calculation is simple.
362as is the shift, a is the power.
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Table 8: Comparison of Approximate Mean/Variance Adjusted Matrix-Derived [Z] Distribution
on Original Grid and Actual Distribution

Estimated True

1 x N(2.5,.25) | .1 x N(2.5,.25) | Estimation
In(r) =7y Value [Z]; Value [Z]; Error%
1.5 0.01248 0.01080 16 %
1.6 0.02512 0.01579 59 %
1.7 0.03603 0.02218 62 %
1.8 0.04742 0.02995 58 %
1.9 0.05717 0.03884 47 %
2.0 0.05537 0.04389 26 %
2.1 0.05226 0.05794 -10 %
2.2 0.05346 0.06664 -20 %
2.3 0.05584 0.07365 -24 %
2.4 0.05739 0.07821 =27 %
2.5 0.05815 0.07979 27 %
2.6 0.05773 0.07821 -26 %
2.7 0.05635 0.07365 -23 %
2.8 0.06536 0.06664 2%
2.9 0.08071 0.05794 39 %
3.0 0.07811 0.04389 78 %
3.1 0.06165 0.03884 59 %
3.2 0.04819 0.02995 61 %
3.3 0.03139 0.02218 42 %
3.4 0.00996 0.01579 37 %

Table 9: Ilustration of Minimum Weighted Sum of Squares Approach with Shifted Pareto Distri-
bution and Data from Equation (43)

Optimal Pareto Parameters TN = 2.79 a= 1.64
Pareto Squared

Index U] Values [Z] || U] x [Z] || W] Error | Weight
01]/0.1(0.0]0.0]0.0 0.2618 0.0262 || 0.010 [| 0.00026 4
1102]01]0.0]0.0 0.1411 0.0665 || 0.040 [| 0.00070 5
2103]|02]0.110.0 0.0855 0.1153 || 0.100 || 0.00023 6
31/04103]02]0.1 0.0562 0.1698 || 0.185 || 0.00023 7
41105(041]03]0.2 0.2243 || 0.235 || 0.00003 8

Weighted Sum = .0078
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Notes on Using Property Catastrophe Model Results

David Homer and Ming Li

Abstract

This article will discuss the use of results from popular Property Catastrophe mod-
els. It will explain common terms like Occurrence Exceedance Probability (OEP) and
Aggregate Exceedance Probability (AEP) and show how these are related to event
count and event size ideas. Simulation and the use of multiple models (blending) will
also be discussed.

Keywords. Catastrophe Modeling, Occurrence Exceedance Probability, OEP, Ag-
gregate Exceedance Probability, AEP, Probable Maximum Loss, PML.

1 Introduction

A reinsurance or insurance actuary will frequently need to work with the results of com-
mercial Property Catastrophe models. This work may include incorporating results such as
an average annual loss (AAL) into a pricing exercise or making additional calculations such
as simulating catastrophes in a capital model. This article will provide an introduction to
some of the simpler uses of commercial catastrophe models, including common terms, basic
calculations and simulation. Combining or blending of models will also be discussed.

1.1 Popular Cat Models

Two models will be reviewed along with their standard formats. These are Risk Management
Solution’s RMS platform and Verisk’s AIR platform.

1.1.1 AIR

The AIR output is provided in the form of sample data and some capital models refer to
this as pre-simulated data. Table 1 provides an example. The table values are illustrative
and don’t represent any particular exposures to actual losses. Columns are provided for
simulation number or year, event id, and claim size. This format is relatively easy to use
because it looks like a historical loss listing. This table is sometimes referred to as a year-
event loss table (YELT') because it provides loss detail by year and event. Note that Table
1 is missing year 2 and that year 3 has multiple events.

The mean and standard deviation of the annual loss from an AIR YELT created from n
simulated years with n, events in year y (which could be zero) are

n Ny

po= (3 osso)/m 1)
o oy loss, . ?
’ - J m(ER k), ®
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Table 1: AIR-style Year Event Loss Table (4 Years)

’ Year \ Event ID \ Loss ‘

1 1 100
3 2 500
3 3 300
4 4 100

The events within each year are summed by year before computing the annual mean and
standard deviation. For the annual mean, this is equivalent to a straight sum of all the
event-year data divided by the number of years n. For Table 1 we have

g = 250 = (100 + 500 + 300 + 100)/4 and (3)
o = 320 =/(100)2 + (500 + 300)2 + (100)2)/4 — 2502. (4)

1.1.2 RMS

The RMS output is provided in the form of a list of parameters for each event. Table 2
provides a brief description of each column. There are two columns that need additional
comment, Sdi and Sdc. These two columns represent an approximation that RMS uses to
represent the standard deviation of the loss for a given event. The standard deviation for the
event loss is the sum of an independent component, Sdi, and a correlated component, Sdc.
This split facilitates RMS calculations as the event loss is built up from components whose
individual losses are partially dependent on one another. Later on we will discuss events
that are split into subcomponents like Personal lines and Commercial lines. The Sdi-Sdc
split will be important then, but for now we can just think of their sum as the standard
deviation of the event loss.

Table 2: RMS-style Event Loss Table Parameters

’ Column Name \ Description

Event ID Unique identifier of the event

Rate Annual event frequency

Mean Average Loss if the event occurs

Sdi Independent component of the spread of the loss if the event occurs.
Sdc Correlated component of the spread of the loss if the event occurs.
Exposure Total amount of limits exposed to the event (Maximum loss)

Table 3 provides an example of RMS output. This table is often referred to as an event
loss table (ELT) because it provides event details. As before, the table values are illustrative
and don’t represent any particular exposures to actual losses.

The mean and standard deviation of the annual loss described by an RMS ELT with m
event rows are

pwo= f:l(Ratee)(Meane) (5)
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Table 3: RMS-style Event Loss Table

Event 1D \ Rate \ Mean \ Sdi \ Sdc \ Exposure ‘

1 10 | 500 | 500 | 500 | 10,000
2 .10 | 300 | 400 | 800 5,000
3 50 | 200 | 300 | 400 4,000
o = J > " (Rate,)((Sdi + Sdc,)? + Mean?). (6)
e=1
For Table 3 we have
p =180 = (.1)(500) + (.1)(300) + (.5)(200) (7)
o =T737= (500 + 500)* + 5007) +

(
(400 + 800)% + 300?) +
(300 4 400)% + 200%)] /2. (8)

These formulae can be derived by assuming each event is an independent collective risk
model (CRM) ! with Poisson mean Rate. and a severity distribution with mean Mean, and
standard deviation Sdi, + Sdc,.

A common use for these tables is to apply reinsurance terms and then estimate prices or
distributions net of reinsurance. This is straightforward with AIR-style data (Table 1) and
a bit more difficult with RMS-style data (Table 3). So it is common to use the parameters
from RMS-style data to simulate individual events and then work with the simulated data
directly. Simulating from RMS-style ELTs will be discussed in section 3.2.

1.2 OEP, Return Period, AEP and PML

The terms Occurrence Exceedance Probability (OEP), Return Period, Aggregate Exceedance
Probability (AEP), and Probable Maximum Loss (PML) are commonly used and commonly
confused. Sometimes OEP and AEP will be abbreviated as EP (Exceedance Probability)
[GKO05]. We will step through each term and explain it. To begin, it is useful to think of these
definitions in the context of a collective risk model with an annual event count distribution
and an event size distribution. Imagine simulating a set of losses from these distributions
and presenting the results in a form similar to Table 1. The statistics that we want, like
OEP and AEP, can then be computed from that table.

1.2.1 OEP

The Occurrence Exceedance Probability(OEP) curve O(z) describes the distribution of the
largest event in a year. In particular, O(z) is the probability that the largest event in a year
exceeds x.

LA collective risk model assumes a claim count N and claim sizes X;,4i = 1, ..., N with each X; independent
and identically distributed and each X; indepdendent from N.
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The distribution of the largest event in the year is not the same as the distribution of the
event size.

Consider our AIR-style (Table 1) losses. The empirical claim size distribution Fy(x)
shown in Table 4 reflects all event losses. In contrast, the OEP curve is derived from the

Table 4: Empirical Claim Count and Severity Distribution Derived from Table 1

|z |Pr(X=2)|[n|Pr(N=n)]
100 50% 0 25%
300 25% 1 50%
200 25% 2 25%

largest event in each year, which is shown in Table 5. Table 6 presents our empirical OEP

Table 5: Largest Events by Year Derived from Table 1

’ Year \ Largest Event ‘

1 100
2 0

3 500
4 100

curve.

Table 6: Empirical OEP Curve Derived from Table 1

PML,.. | OEP | Return Period
x O(z) | r=1/0(x)

0 75% 1.33
100 25% 4.00
500 0% 00

The OEP is often used by primary insurers to help select their catastrophe reinsurance
program limits and retentions.

1.2.2 Return Period

It is common to talk about a return period r instead of the OEP, where r = 1/O(x). It is
the expected number of years between events that exceed x.

1.2.3 PML

The dollar amount of loss z is often called the Occurrence Probable Maximum Loss (PML)
at return period 7, or simply the PML for the return period r. Thus,

1/r = O(z) = O(PMLoc) (9)

Casnalty Actnarial Society E-Forum, Spring 2017-1olume 2 4



Notes on Using Property Catastrophe Model Results

or

PMLoee(r) = O~ (1/r), (10)

where O~!(z) is the inverse OEP function. The OEP and the PML are linked. Sometimes
actuaries will refer to an OEP curve or a PML curve; they refer to the same thing. Table
6 represents an OEP or PML curve. The PML column shows dollars and the OEP column
shows probabilities, though often OEP is supplemented or replaced with its reciprocal, the
return period. As part of their rating process, AM Best asks companies for their Occurrence
PML losses for the 100-year return period for wind and for the 250-year return period for
earthquake. [Irw16]

1.2.4 AEP

The Aggregate Exceedance Probability(AEP) curve A(x) describes the distribution of the
sum of the events in a year. In particular, A(z) is the probability that the sum of the events
in a year exceeds .

The AEP is not the same thing as the OEP, but is often confused with it.

The AEP can be very different from the OEP when the probability of two or more events
is significant. The AEP and OEP can be similar when the probability of two or more events
is very small; they are identical when there is zero probability of two or more events. (See
appendix A.) The AEP is used to help consider the total volume of catastrophe events in a
year. The total losses by year from Table 1 are shown in Table 7 and used to compute an
empirical AEP in Table 8.

Table 7: Total Losses by Year Derived from Table 1

’ Year ‘ Total Losses ‘

1 100
2 0

3 800
4 100

Table 8: Empirical AEP Curve Derived from Table 1

PML,g; | AEP | Return Period
x Alz) | r=1/A(x)
0 75% 1.33
100 25% 4.00
800 0% 00

Note that our empirical OEP and AEP curves are not the same. However, our OEP and
AEP curves would be identical if year 3 did not have a second event.

Sometimes modelers will use the term aggregate PML which is defined in a manner
similar to the occurrence PML but with the aggregate distribution. The aggregate PML is
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essentially the inverse function of the AEP.
PML,(r) = A~ (1/r). (11)

It should be noted that PML is often used informally and its meaning is not always clear.
Usually PML used by itself is understood to mean Occurrence PML, but it can also refer to
an Aggregate PML. It may simply refer to an intuitive notion of a large loss without a well
defined statistical meaning.

2 OEP and the Collective Risk Model

Sometimes a reinsurance actuary will receive an OEP table or even part of one and be asked
to apply reinsurance terms for pricing. In these situations it is helpful to be able to reverse
engineer a claim count distribution Fy(n) and a severity distribution Fix(z) from the OEP
curve. Using the claim count and severity distributions one can then simulate individual
losses and apply reinsurance terms to the simulated data. It is easy to start with detailed
event loss data and compute the OEP curve as we did with Table 1 and Table 6, and just a
bit harder to go the other way.

Conversely, there may be situations where an actuary starts with the claim count dis-
tribution and claim size distribution and it may be convenient to compute the OEP curve
directly, without simulating.

These tasks are relatively easy if we assume that the vendor models can be represented
by a collective risk model with independent claim counts and independent and identically
distributed claim sizes. This is probably an oversimplication, but it provides a convenient
and useful framework.

2.1 Converting OEP Curves to Claim Count/Severity Curves

There is substantial information contained in the OEP and it is tightly connected to the dis-
tribution of the number of events in a year and the distribution of the size of an event. Given
the cumulative distribution function (cdf) Fx(z) for the claim size X and the probability
function Py(n) for the claim count N, O(x) can be written explicitly.

O(x) = Pr(M > z) where M = max(Xy,..., Xn) (12)
= 1-Pr(X;<zfori=1,..,N) (13)
= 1— Ex(Fx(z)Y) =1—PGF(Fx(z)) (14)

where PGF(z)? is the probability generating function for N. The claim size cdf Fx(z) may
then be derived from this equation. For some claim count distributions PGF(t)™! is easily
expressed and we obtain

Fx(z) = PGF (1 — O(x)). (15)

This process does not generally produce a unique size distribution Fx(z) because we need
to select the claim count distribution Fy(n) and its parameters. A different Fiy(n) will yield
a different F'x(z). However, the size distributions computed this way will be consistent with
the starting OEPs and the claim count assumption.

2The PGF of a discrete distribution is defined as PGF(t) = E(tV).
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2.1.1 OEP Conversion Example
Let’s take our empirical OEP (Table 6) and using the empirical PGF

PGF(t) = 0.25 + .5t + .25¢%, (16)

estimate F'x(100). In practice, we usually use the Poisson claim count assumption, but it
is convenient here to stick with the empirical figures. We don’t have a closed form for the
inverse function of the empirical PGF, but since it is a quadratic we can solve for the roots.

O(100) = .25 = 1 — (.25 + .5Fx(100) + .25(Fx(100))?). (17)

" 0 = —.25(Fx(100))* — .5Fx(100) + (1 — .25 — .25) (18)

The negative root yields

L 5=y — (9)(=25)(5)
- (2)(-25)

Table 9 completes this process. The inverted claim size curve is a coarse approximation (we
are only working with three points), but it is entirely consistent with the starting OEP.

F(100) (19)

Table 9: Claim Size Distribution from OEP

| = | O(z) | Inverted Fx(z) | Table 4 Fx(z) |

0 | 7% 0% 0%
100 | 25% 73% 50%
500 | 0% 100% 100%

2.1.2 OEP and the Poisson Distribution

For the Poisson claim count distribution we have

PGF(t) = exp(A(t—1)) (20)
O(z) = 1—exp(A(F(z)—1)) (21)
F(z) = HW' (22)

Equation 22 can be used to convert an OEP to an event size distribution if an estimate of A
is available. This is very convenient.
In theory, A may be estimated directly from O(z). 3

exp(—A) = Pr(0)=1-0(0) (23)
— A = —log(1—0(0)). (24)

3The OEP can “pack” both claim count and severity information if the count distribution is Poisson and
Fx(0) = 0. See appendix B
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This may be difficult to apply in practice since it is common to receive only a partial OEP
curve without an entry for zero or Pr(0) will be very nearly zero when the catastrophe
distribution includes frequent losses.

A common practice is to take the smallest claim size entry x,,;, of interest and compute

A= —log(1 — O(Zmin))- (25)
In this case, A represents the Poisson mean for claims greater than x,,;, and equation 22 is
applied to produce a claim size distribution for claims greater than z,,. Note, F'(2ynn) = 0.
2.1.3 OEP and the Negative Binomial Distribution

Using the mean-contagion form [HM83] for the Negative Binomial claim count distribution
we have

PGF(t) = (1—cA(t—1))7Ye (26)
O(x) = 1—(1—cA(F(x) —_1))—1/0 (27)
Fa) = 14220 _CAO(JC)) . (28)

3 Aggregation and Simulation of Cat Losses

A common use for catastrophe modeling output is to feed it into capital models to be
mixed with other sources of loss. Randomly drawn catastrophe losses are combined with
randomly drawn losses from other sources. In order to do this the capital model has to have
a mechanism for using the catastrophe output. In the case of AIR-style output it is often
as simple as randomly drawing a year and then looking that year up in a table like Table
1. In the case of RMS-style output, the capital model needs to use the parameter table to
perform its own simulation.

3.1 AIR

The YELT produced by AIR is essentially pre-simulated data and can be used directly
or re-sampled. One should be careful with re-sampling if the results are to be combined
with other AIR model results (for example, merging two companies’ cat results) because
the dependencies among events can be destroyed by independently sampling two separate
YELTSs that share perils. Two AlIR-style tables should be joined by common years and
events. Alternatively, one can draw a single random year and use the same year to extract
losses from both tables.

3.2 RMS

The RMS ELT contains parameters for both the number of events and the size of each event.

3.2.1 Number of Events

The number of events N can be simulated from a Poisson with mean A set to the sum of the
ELT rates.

A = ) Rate; (29)
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N ~ Poisson(\). (30)

3.2.2 Size of Events

A claim size can be simulated for each claim in two steps. First, we determine which event
occurs, that is, which ELT row are we using. This is done by drawing a random row/event
R from the ELT with each row/event having a probability in proportion to its rate.

U ~ Uniform(0,1) (31)
R = min{r:U <> Rate;/\} (32)

i=1
Second, now that we know which row or event we are using, we use the event parameters
to draw a random claim size X from a scaled Beta distribution. The Beta distribution
parameters a and b are computed as follows:

Meang 2 Meang Meang
= (e (1 i a5
Sdig + Sdcg Exposuregr Exposureg
Exposureg
b = o (P20 ) !
R aRr Meang ( )
X ~ (Exposureg)(Beta(ag,br)). (35)
The cdf for the Beta distribution is the incomplete Beta function
L(a+b) (=
F(z) = 8(a, b: :7/t“‘11—tb‘1dt. 36
(x) = Blabi) = iy o 0= (36)
In EXCEL one can generate a scaled beta variate with
= BETA.INV(RAND(),ag, br)*Exposureg. (37)

Table 10 illustrates RMS-style simulation using the parameters from our RMS-style ELT
(Table 3).

Table 10: RMS-Style Simulation using Table 3-ELT

Poisson | Uniform Beta Beta Scaled
Trial | Count Draw | Row | Parameter | Parameter | Beta

N U R a b X
1 1 0.70 3 11.5875 220.1625 204
2 0 — — — — —
3 2 0.15 2 14.9800 234.6867 272
3 - 0.40 3 11.5875 220.1625 168
4 1 0.05 1 3.3750 23.6250 268

This procedure works if the ELT does not have event parameters sub-divided by region or
line of business. When each event is sub-divided by region or line of business the simulation
process requires additional steps to preserve dependencies between sub-divisions. Table 11

Casnalty Actnarial Society E-Forum, Spring 2017-1olume 2 9



Notes on Using Property Catastrophe Model Results

Table 11: RMS-Style ELT with Two Sub-categories

Personal Lines Commercial Lines
Event ID | Rate | Mean | Sdi | Stc | Exposure | Mean | Sdi | Sdc | Exposure
1 0.1 300 | 400 | 300 3000 200 | 300 | 200 1000
2 0.1 100 | 371 | 267 1000 200 | 150 | 533 4000
3 0.5 100 | 224 | 200 2000 100 | 200 | 200 2000

provides an example of an ELT with sub-divisions. In order to simulate from Table 11 we
need to aggregate it to make it look like Table 3. The following approximation has worked
well for the authors.

1. Aggregate the event parameters as follows

Meanp = ZMeanR,k (38)
k
Exposure, = Y Exposureg, (39)
k
Sdip = /> Sdi}, (40)
k
SdCR = ZSdCR,k- (4:].)
k

2. Apply equations 33-35 to the results of step 1 (equations 38—41) to simulate the total
event loss X.

3. Allocate X to the sub-divisions Xj.

Meanmk

X, = X (42)

Meangy

This allocation is not perfect but it assures that the sub-categories sum to the simulated
total and preserves much of the component dependencies. The values in Table 11 can be
aggregated across Personal and Commercial Lines using equations 38-41 to reproduce our
simpler RMS-style ELT (Table 3).

4 Model Blending

The catastrophe models available in the market can produce a wide range of loss results.
Companies that use these models need to understand the model differences and determine
the best model(s) to manage their catastrophe risk. A common practice of using multiple
models is to blend the models together. For example, Florida Hurricane Catastrophe Fund
uses a weighted average of five models (RMS, AIR, EQE, ARA, FPM) in their ratemaking
[Inc16]. The benefit of model blending is that it reflects elements of a range of models,
stabilizes changes in individual models across time and yields a single set of results.

It is beyond the scope of this paper to discuss how to determine the weights that should
be used to blend the models. We will focus on the technical approaches that can be used to
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blend the models, assuming the weights have already been determined. The model blending
approaches can become quite complicated if we consider breaking down the models into
various components and blending them at the component level. However, those approaches
need to be supported by tremendous amount of independent research and the practical
difficulties have limited their applications. Below we will discuss two more straightforward
and much more widely used approaches for model blending: ELT/YELT blending and OEP
blending.

4.1 ELT/YELT Blending

When the YELT results are provided, we can blend them together by following the steps
below. For the sake of simplicity, we assume that the RMS (ELT) and AIR (YELT) loss
results are provided and the blending weights to be used are w RMS and (1-w) AIR, which
can be easily generalized to other cases if necessary.

1. Convert RMS ELT to YELT format using Monte Carlo simulation described in section
3.2.

2. Sample from a uniform distribution. For a given year, if the sampled value is less than
w, take the losses from the RMS YELT, otherwise take the losses from the AIR YELT.

3. Repeat the above for year 1 to year 10k to create a 10k blended YELT.

This process is illustrated in Table 12 for a 50/50 weighting. In terms of the OEPs of the

Table 12: 50/50 Blending of Models Using AIR-Style Table 1 and RMS-Simulation Table 10

Model Model | Event
Trial | Uniform | Selected | Count | Loss
1 0.599 AIR 1 100
2 0.041 RMS 0 -
3 0.401 RMS 2 168
3 - - — 268
4 0.925 AIR 1 100

component models, the theoretical OEP derived from blending the simulations is
Omix (%) = wWOms(x) + (1 — w)Oupp (), (43)

where w is the weight given to the RMS model. The advantage of this approach is that
it produces a blended set of results comprised of specific modeled events, it is simple to
implement, and it can be used to model dependencies with other portfolio results as long
as the same uniform draw and technique is used to blend the other portfolio results. Its
disadvantage is that the blended results with this approach could be different from the
blended OEPs that are usually presented to the management teams, regulatory bodies and
rating agencies.
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4.2 OEP Blending

In practice, the modeling results are often presented to various interested parties as sum-
maries like the OEPs instead of the underlying ELTs or YELTSs. The weighting factors are
usually directly applied to the dollar amounts x for a fixed return period r or exceedance
probability 1/r. Table 13 shows a 50/50 blend of RMS and AIR results derived from Tables
1 and 10. The Table 13 AIR PML for return period 2 was interpolated from Table 6 and

Table 13: 50/50 OEP Blending Using AIR-OEP Table 6 and RMS-Simulation Table 10

Return | AIR | RMS | 50/50
Period | PML | PML | PML

1.33 0 0 0
2 20 204 127
4 100 | 268 186
00 500 | 272 384

the RMS PML column was constructed from Table 10 RMS simulated losses.
The theoretical OEP for this approach, in terms of the occurrence PMLs, is

PMLyix(r) = wPMLyys(r) + (1 — w)PMLg;, (r) or (44)
Oblend(PMLmix> == 1/7” (45>

This is not equivalent to ELT/YELT Blending. The ELT/YELT blending essentially weights
probabilities at fixed amounts while the OEP blending weights dollars amounts at fixed
probabilties. A better name for OEP blending might be PML blending.

The OEP blending is certainly very intuitive and it has become a common practice
to present results this way. However, this only provides a high level summary of blended
results. For some calculations, actuaries need the underlying loss details by event. The
OEP conversion technique introduced in section 2.1 can be applied to the blended OEPs to
produce claim count and severity distributions that can be used in simulation models and
will yield the “blended” OEP curve.

5 Conclusion

It is helpful to understand the various terms used by consumers of catastrophe modeling and
their relationship with the traditional claim count/severity collective risk model (CRM).
In particular, one can avoid common areas of confusion:

1. The OEP and AEP are not the same.

The OEP and AEP keep track of different random variables, respectively, the largest
event each year versus the total of each year’s events.

2. The probable mazimum loss (PML) can be associated with the OEP or the AEP.

PML is often used informally and usually refers to the dollar amount x associated with
a particular return period r or exceedance probability 1/r, that is, the inverse OEP
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function,

PML(r) =z = O~ Y(1/r). (46)

Sometimes PML refers to the AEP, where it might be called the aggregate PML, and
it becomes the inverse AEP function (A7),

PML(r) =z = A~'(1/r). (47)

3. Blending OEPs is not the same as blending simulated results.

It is a relatively simple experiment to take two cat models and compare a 50/50 weight-
ing of their Occurrence PML curves (OEP blending) with the OEP curve produced
by simulating from one model half the time and the other model the rest of the time
(ELT/YELT Blending). These are not the same. The former weights dollar amounts
for a fixed exceedance probability or return period, while the latter weights probabili-
ties for a fixed dollar amount. It is an unfortunate use of language that OEP blending
actually refers to weighting PMLs or dollar amounts while ELT/YELT blending actu-
ally refers to weighting probabilities (or OEPs).

The OEP contains substantial information and it can be used to infer information about
all events. Catastrophe modeling can be viewed in the context of a collective risk model
(CRM) with a claim count distribution and a severity distribution. Understanding the
connection between the OEP and an underlying CRM allows one to go back and forth
between the two forms.

One can convert OEP output from a vendor model into claim count and severity distri-
butions that can then be included in a capital model that uses claim count/severity inputs.
Conversely, one can compute OEPs from a custom model, built from a traditional claim
count/claim size approach, and compare the custom results with vendor models.

The trick is to understand what the components are and how they are different.
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A  When are the AEP and the OEP alike?

The AEP is generally not the same as the OEP. However, the two can be similar when the
probability of 2 or more claim counts is very small. They are identical when the probability
of 2 or more claim counts is zero. To see this, recall that for a collective risk model with size
cdf Fx(z) and count probabilities Py(n) the aggregate distribution for

Z=X1+ ..+ Xy (48)

18

=2 Pu(n VF (), (49)
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where F' )((") (x) is the nth convolution of Fx with itself. Therefore, the AEP which is the
probability of annual losses Z exceeding a given amount z is 1 — Fz(z) or

A(w) =1 =3 Px(n)F{" (). (50)
Compare this to the OEP
O(z) =1 =) Pn(n)(Fx(z))". (51)

When Py(n) =0 for n > 1 then A(z) = O(z) because F)((l) = Fx. Similarly, A(z) ~ O(z) if

mmvm:immew4&mm (52)

is sufficiently small.

B OEP packing

Generally speaking, we need to add information about the claim count distribution to our
knowledge about the OEP in order to compute a size distribution consistent with the OEP.
However, if we can make two specific assumptions then we can compute a size distribution

solely from the OEP.

1. There is no point mass at zero in the claim size distribution, F'x(0) = 0.

2. The claim count distribution is Poisson.

We can imagine all the claim count and severity information as packed into the OEP when
these two conditions are met. The claims size distribution F'(x) is extracted as described
in section 2.1.2 and the Poisson mean is extracted from O(0). Recall from equation 22 for
Poisson counts that

log(1 — O(x))

F(x)=1+ 3

(53)

Adding that F'(0) = 0 implies
A = —log(1— 0(0)). (54)
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