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Residual Loss Development and the UPR 
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______________________________________________________________________________ 
Abstract.  Traditional reserve estimators such as chain-ladder and Bornhuetter-Ferguson model unpaid losses as 
a function of accident period versus lag to payment or reporting.  The result of primary interest is expected 
future losses; these are derived from intermediate results such as lag factors and loss ratios. 

With certain adjustments, traditional estimators may also be used for the statutory Unearned Premium Reserve, 
or UPR, for long-duration contracts.  This reserve is governed by SSAP 65, the most important requirement of 
which is “Test 2”, that earnings be recognized in proportion to the expected emergence of losses and expenses.  
Here the estimators model unincurred losses by issue month versus lag to incurral.  The result of greatest interest 
is now the set of lag, or earnings, factors. 

Adjustments are necessary to accommodate the decline in exposure due to cancellations, the deficiency of recent 
diagonals in the issue-to-incurral lag triangle due to unreported losses, and the unusual shapes and weight of tails 
for immature business.   In particular, it is convenient to develop not losses per se but partial loss ratios to 
premium remaining in force, thus “factoring out” the effect of cancellations and leaving the results correct on a 
no-cancellation basis. 

In this paper we suggest taking this adjustment one step further, and developing loss ratios to the product of 
premium in force and a set of positive a-priori earnings factors, the final earnings factors being the product of the 
a-priori factors and these “residual” earnings factors.  In the case of automobile extended service contracts, there 
exists an excellent model for such a-priori factors, published by Kerper and Bowron in 2007 [1], but the technique 
is not dependent on any particular underlying model. 

We demonstrate that this procedure (a) improves the robustness of the estimators to lack of perfect homogeneity 
in the data, (b) greatly simplifies the specification and calculation of tail factors, and (c) facilitates the use of 
reference factors to improve the estimates at lags where the experience data is sparse. 

______________________________________________________________________________ 

1.  INTRODUCTION 

1.1 Statutory Requirements for the Unearned Premium Reserve 
Statement of Statutory Accounting Principles 65 (SSAP 65) defines three tests for the adequacy 

of the Unearned Premium Reserve (UPR) for contracts longer than 12 months in duration:  Test 1, 
provision for refunds, Test 2, earnings to be proportional to emergence of losses and expenses, and 
Test 3, provision for unincurred losses and expenses.  Of these, Test 2, which requires that the UPR 
be no less than the gross premium multiplied by the ratio of expected future to total losses, 
including expenses, is normally dominant.  More importantly, a UPR created to satisfy, and just 
satisfy, Test 2 will release earnings in such a way as to make immature inception-to-date loss ratios 
useful predictors of ultimate loss ratios, and thus give management an accurate measure of the 
performance of the business in question. 

1.2  Satisfaction in Aggregate 
SSAP 65 need only be satisfied in aggregate, for all of a company’s long-duration contracts 

together.  But it is the common practice of writers of long-duration contracts to calculate the UPR at 
the contract level, using either predefined “strings” (vectors of UPR factors by lag) or formulas.  
Only then do they accumulate this UPR over accounting segments of interest, and finally sum it 
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across the entire company.  The company’s implied goal is that satisfaction of statutory requirements 
by most individual contracts will ensure satisfaction for most accounts and that satisfaction for most 
accounts will ensure satisfaction in aggregate. 

The actuary testing the carried UPR typically starts by comparing average carried UPR factors 
with those indicated by experience, over reasonably homogeneous subdivisions of accounting 
segments, such as term groups.  A close fit suggests, though it does not prove, that the carried UPR 
factors are satisfactory contract by contract, and will produce loss ratios that are reasonable 
predictors of ultimate experience.  At the least it is, provisionally, a negative result in a management-
by-exception sense, allowing attention to be focused elsewhere.  The actuary also sums the indicated 
UPR’s across each accounting segment, and finally across the entire company, to test the aggregate 
carried UPR for satisfaction of SSAP 65.  

While the author believes this is a correct procedure it should be pointed out that it is really a 
matter of how the requirement that Test 2 be satisfied in aggregate is interpreted.  Does this mean that 
the UPR must be no less than the aggregate inforce premium multiplied by aggregate future losses 
divided by aggregate ultimate losses (a “ratio of aggregates” definition), or does it mean that the 
UPR must be no less than the aggregate, over some exhaustive and mutually exclusive set of 
subdivisions, of premium multiplied by future losses divided by ultimate losses (an “aggregate of 
UPR’s” definition)?  We believe that the only sensible interpretation of the requirement is the latter.  
This is explained in Appendix A. 

1.3  Estimation in Detail 
Strings or formulas can give a UPR for each contract or for any collection of contracts, however 

small.  But strings or formulas must be validated; this requires subdivisions that have enough 
experience to be credible, as well as being reasonably homogeneous. 

Subdividing for homogeneity considers factors such as account, contract type (mechanical repair, 
GAP, etc.), insured product (automobile, boat, appliance, etc.), term in months, term in miles, and 
manufacturer’s warranty.  But using too many factors simultaneously may produce subdivisions with 
too few contracts for reliable estimates of UPR factors.  So the actuary often must settle for 
reasonable, but not perfect, homogeneity.   

Within a subdivision, we may use conventional methods to estimate UPR factors, loss ratios, and 
unincurred losses, provided certain adjustments are made to accommodate cancellations, unreported 
losses in policy month versus accident lag triangles, and the possibility of tail factors.  For complete 
details of these adjustments see [2].  Here we propose a further adjustment to improve accuracy with 
imperfectly homogeneous data, to simplify greatly the projection of tails, and to weight the results 
against a simple set of reference factors to remove noise from the development at the later lags.  The 
adjustment is similar to that used in the All-Terms Factors model, described in [2], to obtain residual 
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ATF’s, and we call it “residual loss development”.  It requires a matrix of a-priori expected earnings 
factors, by issue month versus lag; for automobile service contracts; this may be derived contract by 
contract from exposure models such as that of Kerper and Bowron (KB) [1],[2]. 

2.  BACKGROUND AND METHODS 

2.1  Estimators of Earnings Factors 
We consider estimators to be applied to experience data within a subdivision and to return 

earnings factors representing averages across the contracts in the subdivision.  If these earnings 
factors resemble similar averages using the company’s carried strings or formulas, we shall regard the 
strings or formulas as confirmed at that level of aggregation; otherwise, we shall take the results as 
evidence of a need for change. 

Our suggested technique of residual loss development may be applied in conjunction with many 
underlying development methods.  For concreteness in the discussion we assume that the estimators 
of earnings factors are in the chain-ladder family, and the estimators of future losses are in the 
Bornhuetter-Ferguson family, both of which have proven reliable in the context of extended service 
contracts.  These families encompass variations in depth and weighting of average development 
factors, graduation of development or lag factors, and choice of expected loss ratios. 

These estimators do require adjustment to cope with cancellations and with unreported losses in 
the issue-period-versus-incurral-lag triangle.  For the purpose of this paper the most significant such 
adjustment is to develop, not losses per se, but partial loss ratios; this quite neatly produces earnings 
factors on a no-cancellation basis as required for SSAP 65 Test 2. 

 Losses include loss adjustment expenses where available; in practice the DCC component of 
such expenses may be negligible and the A&O component may be assumed to earn in parallel with 
the losses themselves.  Issue periods and lags may be of any length but are normally (and will be 
assumed to be) of length one month. 

The lag factors are normalized to total 1.00 and are then called earnings factors, since they 
represent the fraction of gross premium to be earned at each lag according to the principle of SSAP 
65 Test 2.  Their reverse cumulative sums represent SSAP 65 Test 2 UPR factors at the moment of 
issue and the beginning of each subsequent month; the first such factor will be 1.00.  It is usually 
assumed that contracts are written uniformly throughout each month, so that there are potentially 
T+1 months with nonzero earnings factors (including the initial 1.00) if the term of the contracts is 
T.  The experience may include some “goodwill” claims incurred even later; these may be handled 
by allowing the tail to extend beyond the term, or by treating all goodwill claims as if paid in the last 
month of the term and accepting the usually small misstatement of earnings in that month.  
Administrative systems usually require strings or formulas with exactly T factors after the initial 1.00. 
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2.2  Imperfect Homogeneity 
It is not common for every subdivision of an account to be entirely homogeneous as regards 

factors that affect the earnings pattern.  If all contracts in a subdivision have identical term in 
months, they still may differ in factors such as term in miles, manufacturers’ basic warranties, 
manufacturers’ power-train warranties, and odometer readings at issue.  They may also differ in 
expected loss ratios, i.e. premium adequacy; while the loss ratio does not affect the earnings pattern 
of an individual contract, heterogeneity in loss ratios may affect the average earnings pattern of a 
subdivision. 

Heterogeneity that is random over time, but stationary, presents little problem.  Estimated 
earnings factors will be correct for the static mix, and, if it continues, will be correct on average for 
new contracts.  Heterogeneity that changes over time is more serious.  If contracts written in the 
early issue months of our lag triangle differ from those written later, then the resulting estimated 
earnings pattern may not be correct for either group of contracts, or even for a consistent mixture of 
the two, because each lag includes a different proportion of earlier and later contracts. 

2.3  Residual Loss Development 
By residual loss development we mean dividing the known cells of a loss triangle by an a-priori 

earnings pattern, developing the quotients, and multiplying the resulting earnings factors by the a-
priori earnings pattern for both known and projected cells.  The a-priori factors explain part of the 
observed pattern; we develop the residuals; the final estimate is the combination of a-priori and 
residual patterns. 

Let the matrix L = [Lij] represent losses for issue month i incurred at lag j, and reported through 
month i+n (and therefore a “triangle” populated only for i+j<=n+1).  Similarly, let E = [Eij] 
represent exposures, such as premiums or numbers of contracts, for issue month i still in force, i.e. 
not cancelled, as of lag j.  It is important to note that expirations, whether by months or miles, have 
no effect on the status of being “still in force”; the analysis is much simpler if the effect of 
expirations is allowed to emerge via the earnings factors rather than the exposure. 

We are interested in completing L to a fully-populated “rectangle” Lc by estimating values for the 
future portion where i+j>n+1, as well as for the unreported portions of cells in the original L.  For 
SSAP 65 Test 2, we may be particularly interested in the earnings factors, or expected values of a 
row of Lc, normalized to total 1.  In completing L to Lc we may need future exposures; we assume 
that we have already completed E to a rectangle Ec, for example by applying chain-ladder to E to 
estimate contract persistency rates, usually a straightforward procedure. 

Finally we assume we have already estimated a vector b = (bj) of cumulative report lag factors, for 
example by applying chain-ladder to a triangle of losses by incurral month versus report lag, again 
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usually a straightforward procedure.  In the absence of reliable report-date data we may let b 
represent cumulative incurral-to-payment lag factors, in which case L should contain only losses 
paid through the valuation date.  This amounts to defining report date as payment date.  In the 
absence of report or payment dates, it is possible to estimate b from a single issue-to-incurral 
triangle, simultaneously with the earnings factors, though we do not discuss this further here. 

There are then several possible procedures for completing L to Lc, and estimating earnings 
factors: 

• Conventional loss development applied directly to L (and possibly involving E) yields first a 
vector of lag factors f=(fj ), then a set of ultimate losses by month i , and finally the future 
values of Lij for each cell i,j.  The factors fi will not usually be satisfactory for SSAP 65 
Test 2 analysis because they confound the effects of cancellations and losses.  Moreover, 
the method fails for the issue-versus-incurral lag triangle L unless all losses are reported in 
the month of incurral, as the recent diagonals of L will be deficient because of unreported 
losses.  A crude but common workaround is to suppress the last few diagonals, which 
sacrifices potentially useful recent information.  A better approach is to adjust the latest 
diagonals for the expected unreported fractions, setting La

ij = Lij / b(n+2-i-j) , but the 
resulting lag factors faj still confound cancellations with losses. 

• Exposure-adjusted loss development completes the triangle R of loss ratios to inforce exposure, 
adjusted for the expected fraction reported to date, to the rectangle Rc, where Rij = 
Lij/Eij*b(n+2-i-j).  This yields a vector of lag factors g=(gj), which now reflect the emergence 
pattern of losses on a no-cancellation basis.  If Rc is eventually converted to Lc, the 
cancellations are accounted for by the decline in the exposures E.  This step, which is not 
always necessary if the lag factors are the main result of interest, must include the 
previously unreported fraction of “known” cells as well as the entirety of “future” cells. 

• Residual loss development completes the triangle R* of loss ratios to inforce exposure, 
adjusted for the expected fraction reported to date and for the expected fraction earned in each 
period j, to the rectangle R*c, where R*ij = Lij/Eij *b(n+2-i-j) *Aij, where A=[Aij] gives the 
fraction of losses incurred in month i expected, a-priori, to emerge at lag j.  This yields a 
vector of residual lag factors h=(hj), which is multiplied by Aij to produce a matrix of final 
lag factors G=[gij], on a no-cancellation basis. 

The a-priori earnings matrix A may be derived by applying a formula to each contract and taking a 
weighted sum over the contracts remaining in force in each cell.  Normalization over each row may 
be deferred until inside the loss development calculations. 

For automobile service contracts, the Kerper-Bowron (KB) exposure model [1],[2] is an excellent 
basis for deriving A.  For contracts of other types (usually simpler), any reasonable earnings pattern, 
such as pro-rata after manufacturer’s warranty, may be used; normally subject to a minimum positive 
value so that some earnings are possible at any lag. 

Note that the technique described here is independent of the method used to estimate the 
earnings factors f from the original L and E, or g from R, or h from R*.  Typically this will be some 
member of the chain-ladder family, with suitably-chosen depth of averaging, weighting, tail factors, 
and so forth, but it could be, e.g., a regression model.  Similarly, the technique is independent of the 
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method used to complete the triangles.  Typically this will be Bornhuetter-Ferguson, with Cape Cod 
expected loss ratios, or with Gluck decay factors giving a spectrum of possibilities from pure chain-
ladder through pure Cape Cod.  These methods are usually very satisfactory for Warranty business, 
with its characteristic high frequency and narrow size-of-loss distribution. 

The Test 2 UPR factors, to be applied to gross inforce premium, are the reverse cumulative sums 
of the vector g or of the rows of the matrix G. 

If a collection of contracts is perfectly homogeneous in earnings pattern, and losses emerge 
“noiselessly”, then residual loss development will produce the same completed loss rectangle Lc as 
exposure-adjusted loss development, independent of A, provided the rows of A are all proportional 
to each other.  Each row of G from residual loss development will then be identical to the vector g 
from exposure-adjusted loss development.  In the normal situation with random fluctuations in 
emerging losses this will no longer be true, in general, for the chain-ladder estimator.  For any L, a 
constant A will produce results from developing R* identical to those from developing R, so simple 
exposure-adjusted loss development is a special case of residual loss development, and the two 
methods may be handled by common program code. 

The matrix A should normally be of full length to cover the terms of all contracts in the data, 
even if the data itself is immature, for reasons explained in Section 2.4.2 below.   

If residual loss development is to have its expected beneficial effects, then the a-priori earnings 
factors in A should in fact reflect knowledge of the contracts included in each row of L.  Usually 
they will be averages over those contracts of formula earnings factors, or of earnings factors 
corresponding to UPR “strings” assigned to the contracts on an administrative system.  Since they 
represent the expected emergence pattern of losses for that issue month, these averages ideally should 
be weighted not by contracts (which would ignore differences in expected loss costs) nor by actual 
premiums (which would ignore differences in expected loss ratios) but instead by theoretical 
premiums proportional to expected loss cost.  Expected loss costs differ for two main reasons: the 
products insured (for example autos by manufacturer, make, and model) and the contract provisions 
(term, manufacturer’s warranty, etc.).  When the mix of products is not homogeneous over time, it 
may be necessary to derive an expected loss cost for each contract, using, for example, hierarchical 
credibility over the relevant characteristics.  When just the contracts differ over time, it may be 
sufficient to use contract relativities estimated simultaneously with the KB or other a-priori earnings 
factors; this is part of the All-Terms Factors (ATF) model described in [2]. 

2.4  Advantages 
Residual loss development has several useful features that improve or facilitate the estimation of 

earnings and UPR factors for long-duration contracts. 
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2.4.1  Handling of Heterogeneous Data. 

Residual loss development circumvents the problem of imperfectly homogeneous data, with mix 
changing over time, precisely because A is a matrix, with a different a-priori emergence pattern for 
each issue month.  If A correctly captures the changes in expected earnings patterns by issue month, 
these will be correctly propagated in the final development factors gij and the projected future losses 
Lij.  Each row of G will be a better representation of the earnings pattern of its contracts than the 
average vector of factors g that would have been produced by development of loss ratios to inforce 
premium alone.  The residual factors hj are still averages across issue months; the loss development 
process by itself cannot be expected to detect or compensate for heterogeneity.  It is the matrix A 
that converts h into the matrix G.  Any positive matrix A will mechanically produce results, but only 
a reasonable A will produce reasonable results.  Fortunately it is usually easy to construct a 
reasonable A. 

In this discussion we confine our attention to the estimation of earnings factors, not the 
completion of the loss triangle proper.  But it goes without saying that residual loss development can 
improve the cell-by-cell accuracy of the completed loss triangle Lc, since G contains a separate set of 
factors for each issue month, rather than a single average set. 

2.4.2  Simplification of Tail Projections 

Tails are necessary in projecting earnings factors for long-duration contracts whenever the 
available data is shorter than the longest term of the contracts in question.  Projecting a tail usually 
requires considering its starting lag, its length, its shape, and its weight relative to the preceding 
known lags (or the number of such “lookback” lags to average to estimate the weight) [2].  
Specifying length and shape requires information beyond that contained in the loss triangle, and this 
information must be passed as parameters to a program executing the loss development calculations.  
This complicates the logic of that program and of any programs calling it.  Residual loss 
development, on the other hand, already captures all the information necessary to specify the shape 
of a tail in the a-priori earnings factor matrix A, provided A includes factors for both known and 
projected lags.  The tail of the residual earnings factors may simply be taken as constant (which gives 
pro-rata UPR factors).  The result will be a separate tail for each row in the final matrix of earnings 
factors G, and each such tail will have the shape specified by the corresponding row of A. 

2.4.3  Development of Sparse Triangles 

When the data in a loss triangle is sparse, earnings factors estimated by loss development may be 
very irregular.  A common solution to this problem is to take a weighted average of the raw earnings 
factors and a set of reference factors, usually derived by formula or from a larger volume of related 
experience.  As with tail shapes, having to pass reference factors as separate parameters may 
complicate the logic of the loss development program and of all programs calling it.  Residual loss 
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development circumvents this problem by including all necessary reference factor information in the 
matrix A.  The specified “credibility” weight is applied to the measured residual earnings factors, and 
its complement to a set of constant factors.  The result will be a separate set of smoothed factors in 
each row of the final matrix of earnings factors G. 

2.5  Examples 
2.5.1  Construction of illustrative triangles 

To illustrate the above concepts we start with the following 12 x 12 matrix Ec of inforce 
exposures, both known and (already) projected; Ec incorporates growth, shows the effect of a 
moderate amount of cancellations, and, for verisimilitude, includes some randomness in written 
premiums and cancellations.  A simplifying assumption here is that each month’s writings take place 
at the beginning of the month, so that the first column represents written exposure and the 
remaining eleven columns represent exposure still in force after cancellations to date: 

 0 1 2 3 4 5 6 7 8 9 10 11 
1 216054 194448 183646 177164 172843 170683 168522 166361 164201 162040 162040 162040 
2 179896 161907 152912 147515 143917 142118 140319 138520 136721 134922 134922 134922 
3 206126 185513 175207 169023 164901 162839 160778 158717 156656 154594 154594 154594 
4 254353 228918 216200 208570 203483 200939 198396 195852 193309 190765 190765 190765 
5 208020 187218 176817 170576 166416 164336 162255 160175 158095 156015 156015 156015 
6 195239 175715 165954 160096 156192 154239 152287 150334 148382 146430 146430 146430 
7 236256 212631 200818 193730 189005 186642 184280 181917 179555 177192 177192 177192 
8 211880 190692 180098 173742 169504 167385 165267 163148 161029 158910 158910 158910 
9 242908 218617 206472 199184 194326 191897 189468 187039 184610 182181 182181 182181 

10 218130 196317 185411 178867 174504 172323 170142 167960 165779 163598 163598 163598 
11 270039 243035 229534 221432 216032 213331 210631 207930 205230 202530 202530 202530 
12 263241 236917 223755 215858 210593 207961 205328 202696 200063 197431 197431 197431 

In the present context we have the luxury of specifying the exact parameters generating the loss 
triangle L.  In addition to the exposure (the known part E of Ec) these include a loss ratio, a loss 
emergence pattern for each issue month, and the cumulative fractions of losses reported as of each 
lag from incurral.  To illustrate the effect of heterogeneity in a particularly simple way, we initially 
take all of these remaining parameters as fixed or “noiseless”: a loss ratio of 70% for all issue years, 
cumulative fractions reported of (0.3  0.7  0.9  1  1  1  …), and two separate loss emergence patterns, one 
for the first six months and one for the last six months, respectively as follows: 

1 2 3 4 5 6 7 8 9 10 11 12 
0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 

The discontinuity in earnings patterns might exist because the manufacturer has lengthened its 
factory warranty.  The resulting L becomes: 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 2291 2062 1948 3758 9166 14482 17874 17644 17415 13921 6015 2062 
2 1908 1717 1622 3129 7632 12058 14882 14692 13051 9015 2146 0 
3 2186 1968 1858 3585 8745 13817 17052 15150 11630 4427 0 0 
4 2698 2428 2293 4424 10791 17049 18938 14541 6151 0 0 0 
5 2206 1986 1875 3618 8825 12549 12046 5096 0 0 0 0 



Residual Loss Development and the UPR 

Casualty Actuarial Society E-Forum, Spring 2017 9 

6 2071 1864 1760 3396 7455 9161 4845 0 0 0 0 0 
7 2803 2523 2383 2069 1570 1329 0 0 0 0 0 0 
8 2514 2262 1923 1443 603 0 0 0 0 0 0 0 
9 2882 2334 1715 709 0 0 0 0 0 0 0 0 

10 2329 1630 660 0 0 0 0 0 0 0 0 0 
11 2243 865 0 0 0 0 0 0 0 0 0 0 
12 937 0 0 0 0 0 0 0 0 0 0 0 

 

This L is of course much smaller than the typical triangle analyzed for Warranty business, which 
might be of size 120 x 120 with contracts of term 72 or 84 months, but this should fit more 
comfortably on the reader’s screen.  We assume here that all contracts contributing to L have term 
12 months, though some may expire earlier because of “miling out”.  Because of our assumption 
that contracts are written at the beginnings of months, just 12 columns are needed here. 

Our known discontinuity in the earning pattern of the contracts being written might be expected 
to have been accompanied by a discontinuity in expected loss costs and therefore in either rates or 
loss ratios or both.  For simplicity in this illustration we assume that the rates were adjusted to keep 
the loss ratios constant and that the effect is therefore buried in the growth of written exposures and 
is of no consequence to the model. 

Here we identify report date with payment date and assume that our triangle L contains paid 
losses only, and that we have a separate triangle P of paid losses by incurral month versus payment 
lag, from which we have already estimated payment lag factors of (0.3  0.4  0.2  0.1  0  0 …) and the 
corresponding cumulative reported fractions (0.3  0.7  0.9  1  1  1  …). 

2.5.2 Conventional loss development 

From L alone we may apply conventional loss development (chain-ladder, loss weighted, no 
judgment adjustments) to obtain the following vector f of conventional lag factors: 

0.0364 0.0301 0.0269 0.0420 0.0969 0.1524 0.1731 0.1525 0.1296 0.0985 0.0425 0.0190 

The reader may confirm this calculation (and those to follow) using his or her preferred loss 
reserving software, or may consult Appendix B for the algorithms expressed as J language code. 

These factors confound the effects of cancellations with the effects of the underlying loss 
emergence pattern and of the lag in reporting losses; they will not do to derive UPR factors.  It is 
possible to correct for the effect of unreported losses at this stage while leaving the effects of 
cancellations and loss emergence pattern commingled; this yields an improved vector fa: 

0.0218 0.0197 0.0186 0.0308 0.0739 0.1219 0.1520 0.1501 0.1481 0.1316 0.0731 0.0585 

This may be useful for a quick projection of future incurred losses, but is still not suitable for 
deriving SSAP 65 Test 2 UPR factors. 
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2.5.3  Exposure-adjusted loss development 

To adjust for declining exposure as well as for unreported losses, we convert L into the triangle 
R of loss ratios to expected reported fractions of inforce exposure: 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 0.0106 0.0106 0.0106 0.0212 0.0530 0.0848 0.1061 0.1061 0.1061 0.0955 0.0530 0.0424 
2 0.0106 0.0106 0.0106 0.0212 0.0530 0.0848 0.1061 0.1061 0.1061 0.0955 0.0530 0 
3 0.0106 0.0106 0.0106 0.0212 0.0530 0.0848 0.1061 0.1061 0.1061 0.0955 0 0 
4 0.0106 0.0106 0.0106 0.0212 0.0530 0.0848 0.1061 0.1061 0.1061 0 0 0 
5 0.0106 0.0106 0.0106 0.0212 0.0530 0.0848 0.1061 0.1061 0 0 0 0 
6 0.0106 0.0106 0.0106 0.0212 0.0530 0.0848 0.1061 0 0 0 0 0 
7 0.0119 0.0119 0.0119 0.0119 0.0119 0.0237 0 0 0 0 0 0 
8 0.0119 0.0119 0.0119 0.0119 0.0119 0 0 0 0 0 0 0 
9 0.0119 0.0119 0.0119 0.0119 0 0 0 0 0 0 0 0 

10 0.0119 0.0119 0.0119 0 0 0 0 0 0 0 0 0 
11 0.0119 0.0119 0 0 0 0 0 0 0 0 0 0 
12 0.0119 0 0 0 0 0 0 0 0 0 0 0 

The “noiselessness” of L and the differences between its first and last six months are obvious 
here.  Developing R yields a vector g  of lag factors adjusted for both declining exposure and 
unreported losses; these may be taken as a reasonable candidate for average earnings factors: 

0.0171 0.0171 0.0171 0.0294 0.0720 0.1201 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 

They differ from the previous vector fa mainly in the early lags, where cancellations are concentrated. 

Here, in applying chain-ladder, in averaging each column of development factors, the weights are 
the denominators (which are themselves loss ratios) multiplied by the numerator inforce exposures 
(see [2]).  This properly recognizes the volume of experience contributed by each issue month, 
which otherwise would be flattened out when taking loss ratios. 

2.5.4  Residual loss development 

For residual loss development, we imagine that the actuary knows that the earnings pattern 
changes after six months – perhaps by applying a formula to the individual contracts – but that this 
knowledge is imperfect, so that the actuary’s a-priori loss emergence patterns are not quite the same 
as the patterns underlying the actual data; we take his or her matrix A to be the following: 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 0.0204 0.0204 0.0204 0.0408 0.0816 0.1224 0.1361 0.1361 0.1361 0.1224 0.0952 0.0680 
2 0.0204 0.0204 0.0204 0.0408 0.0816 0.1224 0.1361 0.1361 0.1361 0.1224 0.0952 0.0680 
3 0.0204 0.0204 0.0204 0.0408 0.0816 0.1224 0.1361 0.1361 0.1361 0.1224 0.0952 0.0680 
4 0.0204 0.0204 0.0204 0.0408 0.0816 0.1224 0.1361 0.1361 0.1361 0.1224 0.0952 0.0680 
5 0.0204 0.0204 0.0204 0.0408 0.0816 0.1224 0.1361 0.1361 0.1361 0.1224 0.0952 0.0680 
6 0.0204 0.0204 0.0204 0.0408 0.0816 0.1224 0.1361 0.1361 0.1361 0.1224 0.0952 0.0680 
7 0.0233 0.0233 0.0233 0.0233 0.0233 0.0465 0.0930 0.1395 0.1550 0.1550 0.1550 0.1395 
8 0.0233 0.0233 0.0233 0.0233 0.0233 0.0465 0.0930 0.1395 0.1550 0.1550 0.1550 0.1395 
9 0.0233 0.0233 0.0233 0.0233 0.0233 0.0465 0.0930 0.1395 0.1550 0.1550 0.1550 0.1395 

10 0.0233 0.0233 0.0233 0.0233 0.0233 0.0465 0.0930 0.1395 0.1550 0.1550 0.1550 0.1395 
11 0.0233 0.0233 0.0233 0.0233 0.0233 0.0465 0.0930 0.1395 0.1550 0.1550 0.1550 0.1395 
12 0.0233 0.0233 0.0233 0.0233 0.0233 0.0465 0.0930 0.1395 0.1550 0.1550 0.1550 0.1395 
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For residual loss development we divide R by A to obtain the following triangle R*: 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.5197 0.5197 0.5197 0.5197 0.6496 0.6929 0.7795 0.7795 0.7795 0.7795 0.5568 0.6236 
2 0.5197 0.5197 0.5197 0.5197 0.6496 0.6929 0.7795 0.7795 0.7795 0.7795 0.5568 0 
3 0.5197 0.5197 0.5197 0.5197 0.6496 0.6929 0.7795 0.7795 0.7795 0.7795 0 0 
4 0.5197 0.5197 0.5197 0.5197 0.6496 0.6929 0.7795 0.7795 0.7795 0 0 0 
5 0.5197 0.5197 0.5197 0.5197 0.6496 0.6929 0.7795 0.7795 0 0 0 0 
6 0.5197 0.5197 0.5197 0.5197 0.6496 0.6929 0.7795 0 0 0 0 0 
7 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0 0 0 0 0 0 
8 0.5102 0.5102 0.5102 0.5102 0.5102 0 0 0 0 0 0 0 
9 0.5102 0.5102 0.5102 0.5102 0 0 0 0 0 0 0 0 

10 0.5102 0.5102 0.5102 0 0 0 0 0 0 0 0 0 
11 0.5102 0.5102 0 0 0 0 0 0 0 0 0 0 
12 0.5102 0 0 0 0 0 0 0 0 0 0 0 

 

Developing R* (with LDFs weighted as described above) yields the residual lag factors h: 

0.0680 0.0680 0.0680 0.0680 0.0824 0.0889 0.1010 0.1010 0.1010 0.1010 0.0721 0.0808 

 

Multiplying h by A yields a matrix of lag factors G, adjusted for declining exposure, unreported 
losses, and expected emergence patterns: 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 0.0153 0.0153 0.0153 0.0307 0.0743 0.1204 0.1518 0.1518 0.1518 0.1366 0.0759 0.0607 
2 0.0153 0.0153 0.0153 0.0307 0.0743 0.1204 0.1518 0.1518 0.1518 0.1366 0.0759 0.0607 
3 0.0153 0.0153 0.0153 0.0307 0.0743 0.1204 0.1518 0.1518 0.1518 0.1366 0.0759 0.0607 
4 0.0153 0.0153 0.0153 0.0307 0.0743 0.1204 0.1518 0.1518 0.1518 0.1366 0.0759 0.0607 
5 0.0153 0.0153 0.0153 0.0307 0.0743 0.1204 0.1518 0.1518 0.1518 0.1366 0.0759 0.0607 
6 0.0153 0.0153 0.0153 0.0307 0.0743 0.1204 0.1518 0.1518 0.1518 0.1366 0.0759 0.0607 
7 0.0176 0.0176 0.0176 0.0176 0.0214 0.0462 0.1048 0.1572 0.1747 0.1747 0.1248 0.1258 
8 0.0176 0.0176 0.0176 0.0176 0.0214 0.0462 0.1048 0.1572 0.1747 0.1747 0.1248 0.1258 
9 0.0176 0.0176 0.0176 0.0176 0.0214 0.0462 0.1048 0.1572 0.1747 0.1747 0.1248 0.1258 

10 0.0176 0.0176 0.0176 0.0176 0.0214 0.0462 0.1048 0.1572 0.1747 0.1747 0.1248 0.1258 
11 0.0176 0.0176 0.0176 0.0176 0.0214 0.0462 0.1048 0.1572 0.1747 0.1747 0.1248 0.1258 
12 0.0176 0.0176 0.0176 0.0176 0.0214 0.0462 0.1048 0.1572 0.1747 0.1747 0.1248 0.1258 

The average of these earnings factors, weighted by exposure and normalized to total 1, is: 
0.0166 0.0166 0.0166 0.0237 0.0460 0.0807 0.1267 0.1547 0.16400 0.1569 0.102 0.0954 

 

In this artificial example we know the earnings factors underlying the construction of L: 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
2 0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
3 0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
4 0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
5 0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
6 0.0152 0.0152 0.0152 0.0303 0.0758 0.1212 0.1515 0.1515 0.1515 0.1364 0.0758 0.0606 
7 0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 
8 0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 
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9 0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 
10 0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 
11 0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 
12 0.0169 0.0169 0.0169 0.0169 0.0169 0.0339 0.0847 0.1356 0.1695 0.1695 0.1695 0.1525 

with normalized average 
0.0161 0.0161 0.0161 0.0232 0.0444 0.0746 0.1159 0.1430 0.1611 0.1540 0.1258 0.1097 

from which it becomes apparent that the fact that the actuary chose an a-priori earnings factor matrix 
slightly different from the actual earnings patterns underlying L had some effect, but small, on the 
final estimated earnings pattern.  If the actuary had in fact used the actual earnings pattern as the a-
priori pattern, the final estimated earnings pattern would replicate it exactly. 

 
2.5.5  Tails 

Now suppose we have only the last eight rows and the first eight columns of L, but have all 
twelve columns of the last eight rows of Ec and of A.  Residual loss development will automatically 
append a tail to each row of the final projected factors, bringing that matrix to shape 8 x 12: 

 1 2 3 4 5 6 7 8 9 10 11 12 
5 0.0164 0.0164 0.0164 0.0329 0.0761 0.1245 0.1603 0.1603 0.1280 0.1152 0.0896 0.0640 
6 0.0164 0.0164 0.0164 0.0329 0.0761 0.1245 0.1603 0.1603 0.1280 0.1152 0.0896 0.0640 
7 0.0190 0.0190 0.0190 0.0190 0.0220 0.0479 0.1111 0.1666 0.1478 0.1478 0.1478 0.1330 
8 0.0190 0.0190 0.0190 0.0190 0.0220 0.0479 0.1111 0.1666 0.1478 0.1478 0.1478 0.1330 
9 0.0190 0.0190 0.0190 0.0190 0.0220 0.0479 0.1111 0.1666 0.1478 0.1478 0.1478 0.1330 

10 0.0190 0.0190 0.0190 0.0190 0.0220 0.0479 0.1111 0.1666 0.1478 0.1478 0.1478 0.1330 
11 0.0190 0.0190 0.0190 0.0190 0.0220 0.0479 0.1111 0.1666 0.1478 0.1478 0.1478 0.1330 
12 0.0190 0.0190 0.0190 0.0190 0.0220 0.0479 0.1111 0.1666 0.1478 0.1478 0.1478 0.1330 

2.5.6  Reference factors 

Finally suppose that we replace our original L with a triangle of the same overall design but with 
random “noise” in each cell, so that the estimated earnings factors by residual loss development are 
somewhat erratic.  By taking a weighted average of residual and constant earnings factors, we may 
obtain a weighted average of the final earnings factors from experience with the a-priori factors A.  It 
is convenient to define the weights given to experience as credibility-style factors e/(e+k), where e 
is the total inforce exposure used in the estimation of each earnings factor and k is a constant 
selected, at the present time, by judgment.  In the following example k = 500000.  The “noisy” L is 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 2853 1339 3536 475 7087 9807 3423 21225 9950 25801 3605 1722 
2 2624 2877 2569 2911 9244 4584 21792 5848 17088 16688 1757 0 
3 3899 3497 2663 7143 8355 26151 31550 24792 14522 1265 0 0 
4 1585 3359 3849 6444 12068 16469 33179 12498 2681 0 0 0 
5 2115 672 1858 2625 5589 20017 17969 610 0 0 0 0 
6 3997 2477 298 1404 12537 10841 6107 0 0 0 0 0 
7 5305 2551 3698 1272 824 1435 0 0 0 0 0 0 
8 1341 3047 1572 245 1197 0 0 0 0 0 0 0 
9 3674 2758 1665 1176 0 0 0 0 0 0 0 0 

10 321 903 358 0 0 0 0 0 0 0 0 0 
11 1146 807 0 0 0 0 0 0 0 0 0 0 
12 596 0 0 0 0 0 0 0 0 0 0 0 
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The final earnings factors by pure residual loss development are: 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.0173 0.0168 0.0175 0.0242 0.0676 0.1165 0.1746 0.1267 0.1215 0.2071 0.0524 0.0579 
2 0.0173 0.0168 0.0175 0.0242 0.0676 0.1165 0.1746 0.1267 0.1215 0.2071 0.0524 0.0579 
3 0.0173 0.0168 0.0175 0.0242 0.0676 0.1165 0.1746 0.1267 0.1215 0.2071 0.0524 0.0579 
4 0.0173 0.0168 0.0175 0.0242 0.0676 0.1165 0.1746 0.1267 0.1215 0.2071 0.0524 0.0579 
5 0.0173 0.0168 0.0175 0.0242 0.0676 0.1165 0.1746 0.1267 0.1215 0.2071 0.0524 0.0579 
6 0.0173 0.0168 0.0175 0.0242 0.0676 0.1165 0.1746 0.1267 0.1215 0.2071 0.0524 0.0579 
7 0.0199 0.0193 0.0201 0.0139 0.0195 0.0447 0.1206 0.1313 0.1398 0.2649 0.0862 0.1199 
8 0.0199 0.0193 0.0201 0.0139 0.0195 0.0447 0.1206 0.1313 0.1398 0.2649 0.0862 0.1199 
9 0.0199 0.0193 0.0201 0.0139 0.0195 0.0447 0.1206 0.1313 0.1398 0.2649 0.0862 0.1199 

10 0.0199 0.0193 0.0201 0.0139 0.0195 0.0447 0.1206 0.1313 0.1398 0.2649 0.0862 0.1199 
11 0.0199 0.0193 0.0201 0.0139 0.0195 0.0447 0.1206 0.1313 0.1398 0.2649 0.0862 0.1199 
12 0.0199 0.0193 0.0201 0.0139 0.0195 0.0447 0.1206 0.1313 0.1398 0.2649 0.0862 0.1199 

and the normalized average of these factors is: 
0.0187 0.0181 0.0189 0.0187 0.0419 0.0781 0.1457 0.1291 0.1313 0.2380 0.0704 0.0910 

The final earnings factors by weighted-average residual loss development are: 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.0181 0.0177 0.0184 0.0283 0.0721 0.1194 0.1635 0.1307 0.1275 0.1631 0.0773 0.0638 
2 0.0181 0.0177 0.0184 0.0283 0.0721 0.1194 0.1635 0.1307 0.1275 0.1631 0.0773 0.0638 
3 0.0181 0.0177 0.0184 0.0283 0.0721 0.1194 0.1635 0.1307 0.1275 0.1631 0.0773 0.0638 
4 0.0181 0.0177 0.0184 0.0283 0.0721 0.1194 0.1635 0.1307 0.1275 0.1631 0.0773 0.0638 
5 0.0181 0.0177 0.0184 0.0283 0.0721 0.1194 0.1635 0.1307 0.1275 0.1631 0.0773 0.0638 
6 0.0181 0.0177 0.0184 0.0283 0.0721 0.1194 0.1635 0.1307 0.1275 0.1631 0.0773 0.0638 
7 0.0207 0.0202 0.0210 0.0162 0.0206 0.0454 0.1120 0.1342 0.1456 0.2069 0.1261 0.1310 
8 0.0207 0.0202 0.0210 0.0162 0.0206 0.0454 0.1120 0.1342 0.1456 0.2069 0.1261 0.1310 
9 0.0207 0.0202 0.0210 0.0162 0.0206 0.0454 0.1120 0.1342 0.1456 0.2069 0.1261 0.1310 

10 0.0207 0.0202 0.0210 0.0162 0.0206 0.0454 0.1120 0.1342 0.1456 0.2069 0.1261 0.1310 
11 0.0207 0.0202 0.0210 0.0162 0.0206 0.0454 0.1120 0.1342 0.1456 0.2069 0.1261 0.1310 
12 0.0207 0.0202 0.0210 0.0162 0.0206 0.0454 0.1120 0.1342 0.1456 0.2069 0.1261 0.1310 

with averages 
0.0195 0.0191 0.0198 0.0218 0.0446 0.0799 0.1360 0.1326 0.1372 0.1865 0.1034 0.0997 

 

2.4.3  UPR factors 

The actuary will usually be interested in the incremental earnings factors G mainly for the fact 
that their reverse cumulative sums give factors to be applied to gross premium to obtain a UPR with 
desirable properties.  In the context of UPR factors, I should mention the suggestion of John 
Sopkowicz that this technique might be even more usefully applied to claim counts versus inforce 
contract counts than to losses versus inforce premiums.  This is an excellent point as it eliminates, as 
a source of noise, differences over time in rate adequacy, and we often do use analysis of claim 
count emergence patterns in related contexts, such as when using data with multiple terms to derive 
emergence patterns for each separate term in our All-Terms Factors model, or when analyzing 
frequency in ratemaking.  The technique may indeed be applied whatever the definition of L and E. 

Figure 1 compares the average UPR “curves” obtained from L by conventional loss 
development, conventional loss development adjusted only for unreported losses, exposure-adjusted 
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loss development, and residual loss development, with the actual average UPR curve implicit in the 
construction of L. 

 

 

 
Fig. 1.  UPR curves estimated from data in L and E 
 

In this case residual loss development makes the UPR more conservative than simple exposure-
adjusted loss development, reflecting the fact that the most recent six months’ experience (which 
does not contribute to the estimated earnings factors by exposure-adjusted loss development at the 
later lags) is more conservative than the first six months' experience.  The residual loss development 
shown here used the actuary’s imperfect estimate of a-priori earnings factors; had it been perfect, the 
residual UPR curve would be identical to the actual curve. 
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Figure 2 compares the average UPR curves obtained from the last eight rows and first eight 
columns of L, by conventional loss development with tails appended to each row to bring the 
projection to lag 12.  Residual loss development facilitates such tails by providing the expected final 
shape in the a-priori earnings factor matrix, allowing the residual earnings factors to be extended 
with a constant tail.  

 
Fig. 2.  UPR curve with tail after lag 8 months, compared with actual underlying UPR pattern 

In the case at hand the tail is somewhat lighter than the actual last four lags (averaged across the last 
eight issue months), because the actuary’s assumed a-priori earnings pattern for the last six months is 
lighter in the tail than the actual earnings pattern underlying L.  Because the earnings curve (the 
negative slope of the UPR curve) is normalized to total 1, the lighter tail causes earnings to increase 
at the earlier lags and makes the entire UPR curve less conservative.  The differences between A and 
the actual earnings pattern of L were pronounced enough to show up in this illustration; in practice 
the actuary’s formula-based A might be closer to the mark.  It is also possible to adjust the weight in 
the tail to reflect the average residual earnings factors for a lookback period shorter than the entire 
known history of L; we show this here with the “lookback 3” curve.   
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Figure 3 compares average UPR curves developed from a noisy triangle Lr , together with the 
reference factors given by A and a normalized weighted average of the two.  Residual loss 
development makes the use of reference factors particularly easy, since the weighting is done at the 
residual-factor stage and the complement of the weight is applied to constant factors. 

 
Fig. 3.  UPR curve estimated from experience weighted against reference factors. 

In this case the weighted average follows experience closely at the early lags, where several issue 
months contribute to the average development factors, and follows the reference factors at the later 
lags, where a smaller volume of exposure contributes to the averages. 

3.  CONCLUSIONS 

Residual loss development is an enhancement to the adjustments required in the analysis of long-
duration contracts for satisfaction of statutory UPR requirements and for providing accurate 
performance information to management, ownership, and regulators.  It improves the analysis of 
imperfectly homogeneous segments, of immature segments requiring tail projections, and of 
segments with small volumes of experience.  It may be possible to adapt this technique to policy or 
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accident year analysis of other lines of business, particularly those for which the lag to settlement has 
a practical maximum. 
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APPENDIX A.  Meaning of Satisfaction in Aggregate for SSAP 65 Test 2 

In Section 1.2 we remarked that the requirement that SSAP 65 Test 2 be satisfied in aggregate for 
a company’s long-duration contracts is subject to two interpretations, the ratio of aggregates, in which 
future and ultimate losses are considered only at the aggregate level, or the aggregate of UPR’s, in 
which future and ultimate losses are considered separately for a collection of reasonably 
homogeneous subdivisions of the company’s business, and the aggregate Test 2 criterion is built up 
from the separate criteria for the subdivisions, so that, in particular, satisfaction in aggregate may be 
guaranteed by satisfaction in detail. 

To illustrate the difference, consider two company’s books of business with in-force premiums P0 
and P1, with future expected losses L0 and L1, and with expected ultimate losses U0 and U1, with all 
these quantities assumed to be greater than zero.  Suppose each company’s book of business 
satisfies SSAP 65 Test 2, with carried UPR equal to P0L0/U0 for the first company and P1L1/U1 for 
the second.  This amounts to treating each company’s business as internally homogeneous, or 
otherwise regarding its UPR as satisfying the ratio-of-aggregates definition.  It is certainly reasonable 
to expect that a merger of the two companies would leave the combined carried UPR in compliance. 

But the ratio of aggregates for the combined companies will lead to the same UPR as the 
aggregate of UPR’s if and only if 

P0L0/U0 + P1L1/U1 = (P0+P1)(L0+L1)/(U0+U1) 

A bit of algebra shows that this is true if and only if 

(U1L0 – U0L1)(P0U1 – P1U0) = 0 

which holds if and only if the UPR factors are equal or the expected loss ratios are equal: 

L0/U0 = L1/U1    or    U0/P0 = U1/P1 

Similarly the aggregate of the carried UPR’s will be less than the ratio-of-aggregates Test 2 if and 
only if both the UPR factors and the loss ratios differ in the same direction, and the aggregate of the 
carried UPR’s will be greater than the ratio-of-aggregates Test 2 if and only if both the UPR factors 
and the loss ratios differ in opposite directions. 

So the two definitions do not produce the same result except when the expected loss ratios are 
equal (a reasonable assumption when combining contract-by-contract UPR’s within a homogeneous 
subdivision, but often not valid across subdivisions) or when the UPR factors are identical (not 
common).  But the difference will not often be material.  An fairly extreme example might be a book 
of mature business with average UPR factor about 50% and loss ratio about 70%, to which is added 
an incipient book of business with UPR factor 1.00 and loss ratio 100%; if the inforce premium for 
the new book is one-fifth that of the mature business, then the ratio-of-aggregates UPR will be 
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about 4.8% greater than the aggregate of the separate UPR’s.  If the mature and incipient business 
were reversed, then the ratio-of-aggregates UPR would be about 3.8% less than the aggregate of the 
separate UPR’s. 

In principle the Pi’s are known while the Li’s and Ui’s must be estimated.  Curiously, it may be 
harder to fix the value of Pi than to estimate Li and Ui.  More precisely, Pi depends on the definition 
of “in force”; which may attempt to exclude expired contracts or may exclude only cancelled 
contracts.  Common estimators of Li are indifferent to this choice, as long as each contract is 
considered in force at least as long as it is possible for a loss to emerge; they will simply return 0 for 
the estimated earnings factor at any later lag.  If Pi is extended to P*i by inclusion of some expired 
contracts with 0 future losses, then L*i = Li while U*i=(P*i/Pi)Ui, so 

(Test 2)*i=P*iL*i/U*i = PiLi/Ui = (Test 2)i 

But when we combine inhomogeneous blocks of business to get a ratio-of-aggregates UPR, the 
result will depend on the definition of inforce; for example 

(Test 2)*agg = (P*0 +P*1)(L*0 + L*1)/(U*0 + U*1) = (K0P0 + K1P1)(L0+L1)/(K0U0 + K1U1) 

where Ki = P*i/Pi , and this will not, in general, equal 

(P0 + P1)(L0 + L1)/(U0 + U1) = (Test 2)agg 

For these reasons we conclude that the only reasonable interpretation of SSAP 65, where a 
company’s business is subdivided into natural and reasonably homogeneous segments, is that the 
Test 2 criteria may be summed across such subdivisions to obtain the aggregate Test 2 criterion. 
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APPENDIX B.  J Code 

The illustrations in this paper were generated by a simple model of the procedure coded in the 
language J.  To make the calculations replicable and to allow the reader to experiment with variations 
we include the code here. 

A bit of a digression is in order here.  About 60 years ago the late Kenneth Iverson, then teaching 
applied mathematics at Harvard, introduced the language APL in a small book entitled “A 
Programming Language”; this book later won Dr. Iverson the Turing Award.  APL is basically a 
linearized mathematical notation convenient both for conveying algorithms in print and for parsing 
by a computer as a high level interpreted language.  Dr. Iverson later joined IBM and in 1962 
brought out the first APL interpreter, on an IBM mainframe.  The language was extended by IBM 
and several other companies and was adopted by many users in the financial and actuarial 
communities.   At one time it was not unusual for papers in the Proceedings of the Casualty 
Actuarial Society to include a page or two of APL code to illustrate their algorithms.  This was 
especially convenient because of the extreme conciseness of APL. 

APL takes arrays such as vectors and matrices as its fundamental objects and, partly for this 
reason, is admirably suited for many actuarial models such as life contingencies and P/C loss 
development.  Many of APL’s primitive functions are structural operations on arrays, not all of 
which are conveniently expressible in conventional mathematical notation.  About 30 years after 
developing APL, Dr. Iverson, joined by Roger Hui, undertook to systematize the theory of 
operations on arrays and to create a new language, what APL would have been if he had it to do 
over again.  The result is the language J.  This language is a tour de force: elegant, concise, 
comprehensive, uncompromisingly systematic.  The J interpreter and development environment are 
in the public domain, available free for all common computer platforms at the web site 
jsoftware.com, and are supported by Mr. Hui and by a large community of users. 

The author recognizes that another language, R, has become a de facto standard for much work 
in CAS publications, and for good reason: R has an enormous library of contributed statistical 
packages, tested and validated, including several specifically actuarial packages.  R also operates on 
arrays, and borrows some ideas from the original APL, but is not nearly as simple, consistent, or 
thorough in managing arrays as is J.  For this reason actuaries looking for a language both to express 
their thoughts and to build libraries of models – or even just to prototype models eventually to be 
ported to other languages – would do well to consider J.  A few days’ experimentation, using the J 
interpreter interactively and writing small programs, will suffice to get started. 

The following code is a simple model of residual loss development and at the same time of 
conventional loss development, loss development adjusted for unreported losses, and loss 
development adjusted for declining exposures, all of which may be treated as special cases.  The 
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code is in the form of a script – a simple text file – which may be edited by any text editor and 
parsed by the J interpreter.  Comments are preceded by the J word NB. 

This is only a fragment of a complete library for triangle analysis, which would also include 
functions for managing contract and claims data, producing printed reports, etc., along with 
additional stochastic and deterministic estimators.  In anticipation of these purposes this model 
defines a triangle as a structure containing not only the matrix proper but also additional information 
such as cumulative and lag status, cell sizes, and dates.  The script starts out with a description of the 
triangle structure, sets the print precision, and loads a couple of addon packages that will be needed.   
 
NB. This script contains operations on triangles of actuarial data. 
 
NB. By triangle we mean a matrix of losses or similar quantities, together with 
NB. structural and date information, represented as a vector of boxes containing: 
NB. a.  Numeric matrix proper 
NB. b.  1 if lagged, 0 otherwise [default: 1] 
NB. c.  1 if cumulative, 0 otherwise [default: 1] 
NB. d.  cell size on first axis [default: 1] 
NB. e.  cell size on last axis (must be <=(d)) [default: (d)] 
NB. f.  earliest month on first axis, as yyyymm 
NB. g.  latest known month on last axis, as yyyymm 
NB. h.  latest known or projected month on last axis, as yyyymm 
 
NB. It is assumed that the initial cells along the first axis and the final known 
NB. cells along the second axis are complete; if the cell size is greater than 1, 
NB. the last cell on the first axis and the first cell on the second axis may be 
NB. fragments. 
 
NB. The triangle is so called because its known portion has three "corners"; when 
NB. completed to include future periods it takes the shape of a rectangle. 
 
(9!:11)10 
require 'plot' 
require 'stats/distribs' 
 
 

Next we define some small functions useful in an actuarial context.  Notice that the primitive 
objects of J itself are spelled with ASCII punctuation marks or with one (or occasionally more) 
letters or punctuation marks followed by ‘.’ or ‘:’.  This makes it impossible to overwrite them with 
user-defined objects, the names of which cannot include punctuation.  These small functions are 
defined tacitly, that is, with no explicit reference to their left and right arguments x and y, though we 
refer to the arguments using x and y in the comments.  J has extraordinary flexibility in the 
composition of functions, which facilitates functional programming of this type. 
 
NB. Trimming and extending arrays 
TrimB=: ]}.~[:+/[:*./\e.~     NB. Trim leading items found in x from vector y 
TrimE=: TrimB&.|.             NB. Trim trailing items found in x from vector y 
TrimV=: [ TrimE TrimB         NB. Trim items in x from both ends of vector y 
TrimX=: (_1{.]),~]TrimE~_1{.] NB. Trim extra copies of last item from end of y 
ExtE=: [{.],[#_1{.]           NB. Extend y to length x with copies of last item 
ExtB=: ([:-[){.([#1{.]),]     NB. Extend y to length x with copies of first item 
MinL=: ]{.~[>.[:#]            NB. Overtake y to give it a minimum length x 
RowMat=:,.&.|:                NB. Make vect y into 1-row mat; leave mat unchanged 
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NB. Delimited character vectors and arrays of boxed character vectors 
UnD=:[:<;._2 }.,({.~:{:)#{.   NB. CV y delimited by first char to vector of boxes 
UnD1=:[:UnD,                  NB. CV y delimited by x to vector of boxes 
UnD2=: [:>[ UnD1&.> LF UnD1 ] NB. CV y delimited by x and LF to matrix of boxes 
UnCSV=: ','&UnD2              NB. CV y from .csv format to matrix of boxes 
ToD1=:[:}:[:;[,&.>~[:":&.>]   NB. Vector y of boxes to CV delimited by x 
ToD2=:[:;LF,&.>~([:<[:;ToD1)"1  NB. Matrix y of boxes to CV delim by x and LF 
ToCSV=: ','&ToD2              NB. Matrix of boxes to .csv format 
 
NB. Operations on months represented as numeric yyyymm: 
ThisM=: 3 : '10000 100 #. 2{.6!:0 ''''' 
IncrM=: 4 : '10000 100#.0 1+10000 12#:(x-1)+10000 12#.10000 100#:y' 
PrevM=: _1&IncrM 
FollM=: 1&IncrM 
LastM=:PrevM@:ThisM 
NextM=:FollM@:ThisM 
DiffM=: -&(10000 12&#.@:(10000 100&#:)@:<:) 
 
NB. Other supporting functions 
Fill=:([:#[){.],[}.~[:#[:,]   NB. Fill vector y with defaults from vector x 
Round=: ([:<.0.5+]) : ([*[:<.0.5+%~)  NB. Round y to nearest multiple of x 
 
 

Now we come to some functions that manipulate triangle of the specified structure.  These 
functions are defined explicitly, as a series of lines which may reference the arguments x and y 
explicitly.  The expression 3 : 0 specifies that a monadic function (i.e., with right argument only) or 
an ambivalent function (may have a right argument only, or both arguments) is defined by the 
following code up to the first line consisting of a single right parenthesis.  The meaning of various 
control structures should be evident. 
 
 
TriDflts=: 3 : 0  NB. Complete triangle structure y with default values 
if. 0=L.y do. y=.,<y end. 
't lg cm c0 c1 e k p'=.((0 0$0);1;1;1;1;0;(LastM '');0) Fill y 
c1=.c1<.c0 
if. e=0 do. e=.>.(1-c1*{:$t) IncrM k end. 
if. p=0 do. 
    if. lg do. 
        if. 3=#$t do. xx=.({:$t)<:((c0%c1)*i.0{$t)+/((c0%c1)*i.1{$t)+/i.2{$t 
        else. xx=.({:$t)<:((c0%c1)*i.#t)+/i.{:$t 
        end. 
        p=.((-.*./0=,t*xx)*c1*({:$t)-1) IncrM k 
  NB. If cells below diag all 0, dflt p for lagged tri equals k 
    else. p=.(c1*({:$t)->.(1+k DiffM e)%c1) IncrM k 
  NB. Default p for non-lagged tri is determined by its length 
    end. 
end. 
z=.t;lg;cm;c0;c1;e;k;<p 
) 
 
 
LagTri=: 3 : 0  NB. Convert y from date to lag triangle 
z=.'t lg cm c0 c1 e k p'=.TriDflts y 
if. lg=0 do.  
    if. 3=#$t do. z=.((i.#t)|.!.0"0 2 ((c0%c1)*i.1{$t)(|.!.0"0 1)"2 
t);1;cm;c0;c1;e;k;<p 
    else. z=.(((c0%c1)*i.#t)|.!.0"0 1 t);1;cm;c0;c1;e;k;<p 
    end. 
end. 
) 
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UnlagTri=: 3 : 0  NB. Convert y from lag to date triangle 
z=.'t lg cm c0 c1 e k p'=.TriDflts y 
tt=.((>.1+p DiffM e)%c1){."1 t 
if. lg=1 do. 
    if. 3=#$t do. z=.((-(c0%c1)*i.1{$t)(|.!.0"0 1)"2 (-i.#t)|.!.0"0 2 
t);0;cm;c0;c1;e;k;<p 
    else. z=.((-(c0%c1)*i.#t)|.!.0"0 1 tt);0;cm;c0;c1;e;k;<p 
    end. 
end. 
) 
 
 
CumTri=: 3 : 0  NB. Make triangle y cumulative 
tri=.'t lg cm c0 c1 e k p'=.TriDflts y 
if. cm do. z=.tri 
elseif. lg do. z=.(<1) 2}(<(1 KnownPart tri)*+/\"1 t) 0}tri 
elseif. 1 do. z=.(<1) 2}(<+/\"1 t) 0}tri 
end. 
) 
 
 
DiffTri=: 3 : 0  NB. Make triangle y incremental 
tri=.'t lg cm c0 c1 e k p'=.TriDflts y 
if. -.cm do. z=.tri 
elseif. lg do. z=.(<0) 2}(<(1 KnownPart tri)*(}.-}:)"1 (0,.t)) 0}tri 
elseif. 1 do. z=.(<0) 2}(<(}.-}:)"1 (0,"1 t)) 0}tri 
end. 
) 
 
 
KnownTri=: 3 : 0  NB. Known, or known or projected, part of triangle y 
NB. x is 0 for known part, 1 for known or projected part [default: 0] 
0 KnownTri y 
: 
tri=.'t lg cm c0 c1 e k p'=.TriDflts y 
if. lg do. z=.($t)(]0}~[:<[{.[:>0{]) LagTri x KnownTri UnlagTri tri 
else. z=.((<.(0>.1+(x{k,p) DiffM e)%c1){."1 t);lg;cm;c0;c1;e;k;<x{k,p 
end. 
) 
 
 
KnownPart=: 3 : 0  NB. Flags known, or known and projected, part of triangle y 
NB. x is 0 for known part, 1 for known and projected part [default: 0] 
0 KnownPart y 
: 
tri=.'t lg cm c0 c1 e k p'=.TriDflts y 
($t){.>0{x KnownTri (<([=])t) 0}tri 
) 
 
 
BandTri=: 4 : 0  NB. Band of x diagonals of triangle y, lagged 
tri=.'t lg cm c0 c1 e k p'=.LagTri TriDflts y 
z=.t*(KnownPart tri)*.-.KnownPart (<(-(x<.#t)*c0) IncrM k) 6}tri 
) 
 
 

Now the main function for the purposes of this paper, and the source of most of the illustrated 
factors:: 
 
 
LDFs=: 3 : 0  NB. LDF's, etc, by residual (or simpler) loss development 
NB. y is (loss triangle in standard format);(inforce exposures);(incremental 
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NB.   vector of report lag factors, OR triangle of losses by incurral month 
NB.   versus report lag) [default for last two items: 1;,1] 
NB. x is (depth);(vector or matrix proportional to a-priori lag factors); 
NB.   (cred constant)(maximum tail lookback);(Boolean vector with flags for 
NB.   unreported adjustment, inforce exposure adjustment, and residual adjustment);  
NB.   (maximum length of vector of report lag factors, if calculated) 
NB.   [default: _;(($%){:$>0{>0{y);0;_;0 0 0;6] 
NB. z is (matrix with rows ldfs, uldfs, cfs, residual lag factors);(matrix 
NB.   of final lag factors by accident period versus lag);<(vector of incremental 
NB.   report lag factors) 
 
NB. The credibility constant K produces credibility factor E%E+K, where E is 
NB. the sum of the denominator exposures at each lag, before a-priori adjustment. 
NB. For indications from experience only, use a-priori lag factors of length no 
NB. greater than the experience and set the credibility constant to zero. 
NB. To append a tail to the indications of experience, use a-priori lag factors 
NB. extending to the end of the tail and set the credibility constant to zero. 
 
NB. For a weighted average of experience and a-priori factors, set the credibility 
NB. constant >0.  If the a-priori pattern includes factors beyond the end of the 
NB. experience data, these will automatically be given full weight, thus appending 
NB. a tail, while the earlier factors will be a weighted average. 
 
'' LDFs y 
: 
'tri exp rpt'=.('';'';,1) Fill y 
'd ap K lkb flags supp'=.(_;'';0;_;'';6) Fill x 
tri=.'t lg cm c0 c1 e k p'=.DiffTri LagTri KnownTri TriDflts tri 
'rptadj expadj apadj'=.0 0 0 Fill flags 
'm n'=.$t 
if. 0 e.$ap do. ap=.($%){:$>t end. 
ap=.(%+/)"1 n MinL"1 m ExtE RowMat ap 
N=.{:$ap                      NB. Length including tail 
if. 0 e.$exp do. exp=.m$1 end.NB. Default exposure is constant 
exp=.N ExtE"1 ,.exp           NB. Matrix of exposures 
if. 2=#$>{.rpt do. rpt=.(%+/)supp{.RLFs rpt;'' end.  NB. Report lag factors 
rfs=.(i.m)|.!.0"0 1 (m,n)$+/\.(-n){.|.rpt  NB. Matrix of reported fractions  
E=.((m,n){.exp^expadj)*(rfs^rptadj)*(m,n){.ap^apadj  NB. Adjusted exposures 
lrs=.t%E                      NB. Loss ratios to adjusted exposures 
lrstri=.CumTri (<lrs)0}tri 
w=.}."1 (n{."1 exp^expadj)*rfs^rptadj  NB. Adj to weights for avg ldf's 
nums=.w*}."1 d BandTri lrstri NB. Numerators of ldf's 
dens=.w*}:"1 d BandTri (<(-c1) IncrM k) 6}lrstri  NB. Denominators of ldf's 
ldfs=.((+/nums)%+/dens),1     NB. Weighted average ldf's 
uldfs=.*/\.ldfs               NB. Ultimate ldf's 
cfs=.%uldfs                   NB. Completion factors 
lfs=.(}.-}:)0,cfs             NB. Lag factors 
xx=.d BandTri n{."1 exp       NB. Inforce exposure used in obtaining lag factors 
Z=.N{.(+/xx)([%+)K            NB. Credibility factors by lag 
rfs=.(n$(+/%#)lfs),(N-n)$((+/%#)(-lkb<.n){.lfs)  NB. Reference lfs 
   NB.  These are constant at %#lfs for first n factors, then equal the 
   NB.  average lfs over the lookback period for any tail. 
LFS=.(%+/)(Z*N{."1 lfs)+"1 (1-Z)*"1 rfs  NB. Cred-adj lag factors 
flfs=.(%+/)"1 LFS*"1 ap^apadj NB. Final lag factors 
z=.(ldfs,uldfs,cfs,:lfs);flfs;<rpt 
) 
 

This carries the model through the earnings factor stage which is the focus of this paper.  Additional 
functions may be included to estimate loss ratios by issue month, earnings factors from a single issue 
month versus incurral lag triangle, and future losses cell by cell, to project persistency, cancellations, 
and refunds, and so forth, and to use these results for such purposes as financial projections, 
estimates of ultimate loss and refund ratios, and tests of UPR factors for satisfaction of SSAP 65, 
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beyond the scope of this paper.  But the code shown above should serve to document the residual 
loss development algorithm for the actuary with some knowledge of J.  
 


