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Abstract

Given a Bayesian Markov Chain Monte Catlo (MCMC) stochastic loss reserve model for two separate lines of
insurance, this paper describes how to fit a bivariate stochastic model that captures the dependencies between the
two lines of insurance. A Bayesian MCMC model similar to the Changing Settlement Rate (CSR) model, as
described in Meyers (2015), is initially fit to each line of insurance. Then taking a sample from the posterior
distribution of parameters from each line, this paper shows how to produce a sample that represents a bivariate
distribution that maintains the original univariate distributions as its marginal distributions. This paper goes on
to compate the predicted distribution of outcomes by this model with the actual outcomes, and a bivariate model
predicted under the assumption that the lines are independent. It then applies the Watanabe-Akaike Information
Criterion to compare the fits of the two models.
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1. INTRODUCTION

Recent attempts to apply enterprise risk management principles to insurance have placed a high
degree of importance using stochastic models to quantify the uncertainty on the various estimates.
For general insurers, the most important liability is the reserve for unpaid losses. Over the years, a
number of stochastic models have been developed to address this problem. Some of the more
prominent nonproprietary models are those of Mack (1993, 1994), England and Verrall (2002) and
Meyers (2015).

As good as these models may be, they fall short of quantifying the uncertainty in the insurer’s
liability as they do not address the issue of correlation (or more generally — dependencies) between
lines of insurance. The failure to resolve this problem analytically has resulted in judgmental
adjustments to various risk-based capital formulas. Herzog (2011) provides a summary of some

current practices.

Zhang and Dukic (2013) describe what I believe to be a very good attempt at solving this
problem. As this paper uses their paper as a starting point, it would be good to provide an outline

of their approach’.

1 As this paper deals with lognormal models of claim amounts, its description of the Zhang-Dukic ideas are not as
general as they put forth in their paper. Their results apply for more general copulas, where this paper deals only with
the more specialized multivatiate lognormal distribution.
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But first, we need to set our notation. Let €, be the cumulative paid claim amount in line of

insurance X for accident year, » = 1, ...., Kand development year 4 = 1, ... , K. Since this paper
works with Schedule P data taken from the CAS Loss Reserve Database,” we can set K = 10. In
this paper, X will be CA for Commercial Auto, PA for Personal Auto, WC for Workers
Compensation, or OL for Other Liability.

Now suppose that we have models for two different lines of insurance such as

log(C) ~ Normal (123,57 )

log (€L, )~ Normat (122,07 ) -

As we shall see below, the parameters pj; will be functions of » and 4 and the parameters O'j(
will be subject to constraints for each line X. That feature can be ignored for now as we are setting

up the problem.

As shown in Meyers (2015), it is possible to use a Bayesian MCMC model to generate a large

10000
sample, say of size 10,000, from the posterior distributions of {{’ ﬂ:; },{'_O-X }} for each line of
=]

d
insurance X.

The idea put forth by Zhang and Dukic is to fit a bivariate Bayesian MCMC model of the
following form given the Bayesian MCMC models described by Equation (1.1).

log(Cj;) ~ Multivariate Normal #j; R (o-f )2 O-;( o o-j (1.2)
log (C:; , o) -p-o; (0';)2

The correlation parameter, p, describes the dependency between Line X and Line Y.

Zhang and Dukic then use a Bayesian MCMC model to obtain a large sample from the posterior

distribution:

2The CAS Loss Reserve Database is on the CAS website at
http://www.casact.org/research/index.cfmrfa=loss reserves data
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The asterisk (*) on the x# and o parameters calls attention to the fact that the posterior
distributions from the models in Equation (1.1) may, and often do, differ significantly from the
corresponding marginal posterior distributions from the models in Equation (1.2). To the actuary
who prepares loss reserve reports, this presents a problem. Typically actuaries analyze their reserves
by individual line of insurance. With a Bayesian MCMC model, they can quantify the uncertainty of
the outcomes for that line. Now suppose that there is a demand to quantify the uncertainty in the
sum of losses for two or more lines of insurance using the Zhang-Dukic framework. They will need
to explain, for example, why the univariate distribution for Commercial Auto produces different
results than the marginal distribution for Commercial Auto when combined with Personal Auto.

And the marginal distribution could be different still when combined with Workers Compensation.

Scalability is also a problem. For example, the univariate model used in this paper has 31
parameters. Using this model with the bivariate Zhang-Dukic framework yields a model with
314+31+1=063 parameters. In theory, Bayesian MCMC software can handle it, but in practice I have
found that running times increase at a much faster rate than the number of parameters. I have
coded models using the bivariate Zhang-Dukic framework that work well for some pairs of loss
triangles, but others took several hours of running time to obtain convergence of the MCMC

algorithm.

The purpose of this paper is to present a framework similar to that of Zhang and Dukic that

preserves the univariate models as the marginal distributions.

Before we go there, we should note that a suboptimal model might produce artificial
dependencies. To illustrate, consider Figure 1.1 below where y, and y, are independent random
deviations off two parabolic functions of x. We want to fit a bivariate distribution to the ordered
pair (5,(x), 1,(x)) of the form:

2
o c-p-C
M ~ Multtvariate Normal a , ! 1P 1% (1.3)

2
I | 6,p-0, O
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The lower left plot of Figure 1.1 shows a scatter plot of y,(x) — & and y,(x) — 4, for the
(suboptimal) model g4(x) is a constant. The lower right plot is a scatter plot of y,(x) — £4(x) and y2(x)

— W,(x) for the (correct) parabolic model. This example shows how suboptimal models for the

marginal distribution can cause an artificial nonzero correlation the multivariate model.

The next section will describe the data used in this paper. Section 3 will describe the univariate
(marginal) models and illustrate some diagnostics to test the appropriateness of the model. Section
4 will show how to obtain a random sample from the posterior distribution of parameters subject to
the constraint that the marginal distribution is the same as those obtained by the corresponding
univariate models. Section 5 will describe statistical tests to test the hypothesis that the correlation
parameter, p, in the bivariate distribution is significantly different from zero. Section 6 will address

the sensitivity of the results to the choice of models, and Section 7 will discuss the conclusions.

This paper assumes that the reader is familiar with Meyers (2015).
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Figure 1.1 — Illustration of Artificial Correlation
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2. THE DATA

The data used in this paper comes from the CAS Loss Reserve Database’. The Schedule P loss
triangles taken from this database are listed in Appendix A of Meyers (2015). There are 200 loss
triangles, 50 each from the CA, PA, WC and OL lines of insurance. Univariate models from all 200

loss triangles will be analyzed in Section 3 and 6.

At the time of writing the monograph, Meyers (2015), I did not envision a dependency study.
But it turned out that there were 102 within-group pairs of triangles (29 CA-PA, 17 CA-WC, 17 CA-
OL, 14 PA-WC, 15 PA-OL and 10 WC-OL) that were suitable for studying dependency models.
Preferring to use loss triangles that have already been vetted, I decided to stick with these within-

group pairs of triangles.

This paper will provide detailed analyses for two illustrative insurers (Groups 620 and 1066) for
the CA and PA lines of business. The complete loss triangles and outcomes are in Table 2.1 below.
The upper data triangle used to fit each model is printed with the ordinary font. The lower data

triangle used for retrospective testing is printed with bold and italicized font.

A complete list of the insurer groups used in this paper is included in a spreadsheet titled

“Appendix.” The sheets in the Appendix contain:

e The 200 groups along with the associated calculations in Section 3.
e The R scripts that produce the univariate model calculations described in Section 3 and 6.
e The 102 within-group pairs with associated calculations in Sections 4 and 5.

e The R scripts that produce the bivariate model calculations described in Sections 4, 5 and 6.

3 .
http://www.casact.org/research/index.cfm?fa=loss reserves data
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AY  Premium

1 30224
2 35778
3 42257
4 47171
5 53,546
6 58,004
7 64,119
8 68,613
9 74552

10 78,855

AY  Premium

1 48,731
2 49951
3 52434
4 58191
5 61,873
6 63,614
7 63,807
8 61,157

9 62,146
10 68,003

AY Premium

1 5103
2 5196
3 6,947
4 9482
5 10,976
6 11,893
713,029
8 12511
9 14372

10 7,371

AY Premium

I 24988
2 26,082
329,606
4 33802
5 37261
6 35849
7 35053
8 33254
9 29101

10 29,149

DY1
4381
5,456
7,083
9,800
8793
9,586

11,618

12,402

15,095

16,361

DY1
15,318
15,031
16,994
17,717
17,842
20,266
18,778
19,900
20,395
20,622

DY1
1,060
1,224
1,252
1,606
1,750
1,125
1,403
1,541
1,986
1,970

DY1
5,135
5,655
6,648
5,722
5,906
6,439
6,934
6,194
5314
4,301
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Table 2.1 — Data for Illustrative Insurers

DY2
9,502
9,887

15211

17,607

19,188

18,297

22,293

27,913

27,810

28,545

DY2
7.740
30,132
31,614
33,767
31,117
37,466
33,216
36,442
35,797

36,466

DY2
3,034
3,751
3,568
3,875
4,038
4,322
3,746
4,620
4,532
2,730

DY?2
11,980
15,108
17,982
14,677
14,864
15,146
15,703
12,183
10,915
9,758

DY3
15,155
13,338
21,091

23,399
26,738
25,998
33,535
39,139
35,521
40,940

DY3
35411

37,946
39,599
42,741

39,436
45,721

42,030
43,585
43,816
44,589

DY3
4,580
5,735
5,265
5,439
5,662
5,263
5,800
5,746
4,817
3,214

DY3

16,368
19,498
23,078
19,356
18,305
19,187
19,748
15,282
13,854
11,914

Group 620 - Commercial Auto

DY4

18,892
17,505
27,688
29918
31,572
31,635
39,252
45,057
44,066
50,449

Group
DY4

40,204
42371
44,943
46,881
44,871
50,641
47,695
49,177
47,687
50,539

DY5
20,945
20,180
28725
32,131
34218
33,760
42,614
47,650
48,308
54,212

DY6

21,350
20,977
29,394
33,483
35,170
34,785
44,385
50,274
50,061
56,722

620 - Personal Auto

DY5

42388
43,875
46,342
49,117
46,810
52,244
49,252
52,052
50,468
52,860

DY6

43,726
44,518
47,653
50,419
47421
53,241
50,002
53,150
51,085
53,886

Group 1066 - Commercial Auto

DY4
5,243
4,902
6,102
6,507
6,293
6,036
6,737
6,171
5653
3,376

DY5
4,178
5,295
6,607
8,021
6,779
6,462
7,078
6,462
5,932
3,502

DY6
4,347
5,486
6,315
8,098
7,048
6,617
7,110
6,680
5,988
3,605

Group 1066 - Personal Auto

DY4

18,163
23,097
25,334
21,906
20,075
21,576
21,300
17,315
15,179
13,216

DY5

20,189
23,819
26,596
22,497
21,779
22,539
21,948
18,550
15,537
13,740
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DYo6

20,462
24,296
26,983
22,732
22277
22,941
22,004
18,697
16,083
14,098

DY7
21,721

21,855
29,541

33,686
36,154
35,653
44,643
50,505
51,337
57,658

DY7
44217
44,738
47,866
50,641

48,209
53,794
50,546
53,420
51,598
54,610

DY7
4,399
5,941
6,343
8,282
7,048
6,647
7,225
6,714
6,036
3,744

DY7
20,715
24,622
27,096
23,149
22425
23,037
22,043
18,876
16,057
14,427

DY8

21,934
21,877
29,580
34,702
36,201
35,779
44,771
50,554
51,904
57,734

DY$

44277
45,089
48,085
50,787
48,724
54,093
50,799
53,488
51,754
54,796

DY$8
4,598
5,976
6,370
8,300
7,047
6,649
7,346
6,713
6,038
3,750

DYS

20,749
24,735
27,150
23,207
22,466
23,029
22,136
19,014
16,088
14,448

DY9
21,959
21,912
29,595
34,749
36,256
35,837
45,241
50,587
52,016
57,883

DY9

44,400
45,094
48,097
50,942
48,815
54,468
50,887
53,649
51,756
55,048

DY9
4,582
5977
6,445
8,328
7,047
6,654
7,366
6,728
6,051
3,777

DY9
20,720
24,736
27,195
23,197
22,424
23,135
22,211
19,040
16,101
14,491

DY10
21,960
21,981
29,705
34,764
36,286
35,852
45,549
50,587
53,895
57,906

DY10
44,431
45,146
48,241
50,980
49,133
54,471
50,890
53,659
51,914
55,080

DY 10
4,629
5,977
6,419
8,378
7,047
6,654
7,366
6,729
6,043
3,780

DY10
20813
24,741
27,206
23,254
22,536
23,174
22,210
19,210
16,137
14,513
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3. THE CHANGING SETTLEMENT RATE (CSR) MODEL

The univariate model used in this paper will be a minor modification to the CSR model used in

Meyers (2015). Here is the model. Let:

1.

2.
3.
4.

7.

a, NNormal(O,\/l_O) forw=2,...,10. a,=0.

logelr ~ Uniform(-1, 0.5).

B, ~ Uniform(-5, 5) ford=1, ... 9. p,,=0.

Si=1,85, =85, 0 ~-y— w2 "0 for w=2,...,10. y ~ Normal (0, 0.05),
0~ Normal(0, 0.01).

M,, = log(Premium ) + logelr + o, + S, S,

w

10
crj =Za'_, ai ~ Uniform(0, 1).

i=d

log(C,,) ~ Normal(x,,, ©,).

This model differs from the CSR model described in Meyers (2015) in three aspects.

1.

The parameter y, allows for a speedup (or slowdown when y is negative) of the claim
settlements. By including the ¢ parameter, this version of the CSR model allows the
settlement rate to change over time.

Forcing o, = 0 eliminates some overlap between the ¢, parameters and the /logelr
parameter. In the Meyers (2015) version of the model, a constant addition to each ¢,
parameters could be offset by a subtraction in the /Joge/r parameter. Correcting features of
this sort tend to speed up convergence of the MCMC algorithm.

The MCMC software used for the calculation described in this paper is Stan. See

http://mc-stan.org for installation instructions. I have found that, in general, the MCMC

algorithm implemented by Stan converges faster than that of JAGS. Stan also allows one
to compile a model (in C++) in advance of its use. Using a compiled model can greatly
speed up the processing when one uses the same model repeatedly (as we will do below)

with different inputs.
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The R script that implements this version of the CSR model is available in the appendix
spreadsheet. The script produces a sample from the posterior distribution of the parameters for line

X,

bl

10000

L ) o) e )

10000
Following Meyers (2015), the script then simulates 10,000 outcomes{‘_Cfm} from which we

=1
can calculate various summary statistics such as the predictive mean and standard deviation of the
outcomes and the percentile of the actual outcome. Table 3.1 gives a summary of the result of

these calculations for the Commercial Auto (X=CA) and the Personal Auto (X=PA) lines of

business.

Figure 3.1 gives the test for uniformity of the predictive percentiles of this version of the CSR
model. When compared with Meyers (2015) Figure 22, we see that allowing the claim settlement
rate to change over time improves the model so that the percentiles are (within 95% statistical

bounds) uniformly distributed for all four lines.
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Table 3.1. CSR Models on Ilustrative Insurer Data

CA Insutet Group 620 Outcome Percentile = 39.24
W Premium Hstimate Std. Devw, C.V Outcome
1 30,224 22,119 0 0.0000 21,960
2 35,778 21,896 453 0.0207 21,981
3 42,257 30,068 685 0.0228 29,705
1 17,171 34,052 852 0.0250 34,764
5 53,546 36,638 1,106 0.0302 36,286
[ 58,004 35,192 1,342 0.0381 35,852
7 64,119 43,387 2,305 0.0508 45,549
8 68,613 53,215 4061 00763 50,587
9 74,552 53,166 7,439 0.1348 53,895
10 78,855 63,922 17,493 0.2737 57,906
Total 553,119 397,656 27,378 0.0688 388,485
PA Insurer Group 620 Outcome Percentile = 65.14
W Premium Nstimate Std. Devw. C.V, Outcome
1 48,731 44,535 0 0.0000 44,431
2 49,951 435,453 366 (.0081 45,146
3 52,1341 18,304 386 0.0080 18,211
4 58,101 51,003 457 0.0090 50,980
5 61,873 48,335 a1l 0.0106 49,133
[ 63,614 54,243 712 0.0131 54,471
7 63,807 50,779 77 0.0173 50,890
8 61,157 52,674 1,351 0.0256 53,659
9 62,146 52,704 2,437 0.0462 51,914
10 68,003 52,910 5125 00969 55,080
Total 589,907 500,941 8,700 0.0174 503,945
CA Insurer Group 1066 Outcome Percentile = 12.59
W Premium Fistimate Std. Dew CMV. Outcome
1 5,103 4,727 0 0.0000 4,629
2 5,196 6,077 363 0.0597 5,977
3 6,947 6,439 415 0.0645 6,419
4 0,482 7,855 6200 0.0789 8,378
5 10,976 7,300 606 (0.0830 7,047
[ 11,893 6,218 659 0.1060 6,654
7 13,029 7017 867 01218 7,366
8 12,511 7,260 1,160 0.1598 6,729
9 14,37 8,305 2,13 0.2424 6,043
10 7,371 9,299 4,380 04710 3,780
Total 06,880 70,597 7,573 01073 63,022
PA Insurer Group 1066 Outcome Percentile = 81,50
W Premium Fistimate Std. Dev. C.V. Outcome
1 24988 20,5858 0 0.0000 20,813
2 20,082 24943 2001 00116 24741
3 29,606 27,471 367 0.0134 27,206
4 33,802 23,274 328 0.0141 23,254
5 37,261 22,564 367 0.0163 22,536
[ 35,849 22,960 466 (.0203 23,174
7 35,053 23,370 605 0.0259 22,210
8 33,254 18,117 66Y 0.0369 19,210
9 29,101 15,515 985 0.0635 16,137
1 29,149 11,704 1,727 U.1476 14,513
Total 314,145 210,804 3,617 0.0172 213,794
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Figure 3.1. Uniformity Tests for the CSR Model
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While the observation that the CSR model performs well on a large number of old triangles with
outcome data is encouraging, it should not relieve the actuary from testing the assumptions
underlying their model of their current data. Traditional tests, such has those provided by Barnett
and Zehnwirth (2000) plot residuals (i.e. differences between observed and expected values) along

accident year, development year and calendar year dimensions.

The Bayesian MCMC models in this paper provide a sample of size 10,000 from a posterior
distribution of parameters. Given that we have this large sample, I consider it to be more
informative if we take a subsample, I, of (say) size 100, then calculate the standardized residuals for
each wand 4 in the upper loss triangle, and 7 in the subsample

log (CX)— e
X od i od
RS = = (3.1).

io-d

iel

In general we should expect these residual plots to have a standard normal distribution with
mean 0 and standard deviation 1. Figure 3.2 shows plots of these standardized residuals against the
accident year, development year and calendar year for the illustrative insurers. I have made similar
plots for other insurers as well. For accident years and development years, the plots have always
behaved as expected. Deviations for the early calendar years as shown in two of the four plots are
not uncommon. I have chosen to regard them as unimportant, and attach more importance to later

calendar years.

If the standardized residual plots look like those of the illustrative insurers, we should not have to

worty about artificial correlations.
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Figure 3.2 — Standardized Residual Plots for
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4. ATWO-STEP BIVARIATE MODEL

The last section presented a univariate model that performed well on data in the CAS Loss Reserve
Database. This section shows how to construct a bivariate distribution that has the univariate

distributions as marginal distributions.

To shorten the notation let

O = B, ol o ol 7, 67

for line Xand 7= 1, ... 10000.

10,000

The first step is to obtain the univariate samples, {‘QX ‘{Cﬁ}}:oim and {;GY‘{CL}}’:I

where

Cj; € Upper Trangle of line X and Cfd € Upper Triangle of line Y. Then repeatedly for each 4

use Bayesian MCMC to take a sample from the posterior distribution of { p|{Cf§},{C:; , ,.EJX ,I.QY}

where phas a B(2,2) prior distribution translated from (0,1) to (-1,1). Next we randomly select a

10,000 . .
single p from that sample and use {_HX, o, p} to calculate the derived parameters in the
i I 1] I ‘-:1

bivariate distribution given by Equation (1.2). This amounts to using the two univariate
distributions as the prior distribution for the second Bayesian step. From that two-step bivariate
distribution, one can simulate outcomes from the “posterior” distribution of parameters and

calculate any statistic of interest. Be reminded that this can be different from the usual Bayesian

posterior distribution {I_Qx,iﬂy,ip‘{ij},{C;}}

10,000
that comes out of the Zhang-Dukic
i=1

approach.
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At first glance, one might expect the run time for 10,000 Bayesian MCMC simulations to be
unacceptably long. But there are a number of considerations that allow one to speed up the

calculations.

1. The MCMC simulation is for a single parameter that runs much faster than a multi-parameter

simulation that one normally runs with stochastic loss reserve models.
2. We have a good starting value, p=10. The burn-in period is short and convergence is rapid.
¥

3. Since we are repeatedly running the same model with different inputs, we need only compile
the model once, which the Stan software permits.
4. Using the “parallel” package in R allows one to distribute the simulations to separate cores on

a multi-core computer.

Taking these factors into account, my laptop” usually turns out this bivariate distribution in about
6 minutes. As I mentioned above, the R scripts that produce these calculations are made available to

the reader in the Appendix.

The purpose of getting a bivariate distribution is to predict the distribution of the sum of the
outcomes for the two lines of insurance. Table 4.1 gives results analogous to Table 3.1 for the sum
of CA and PA lines for the two illustrative insurers. Also included are the sums of the two lines

predicted under the assumption of independence. Figure 4.1 contains histograms of the two-step

posterior distributions for p for the illustrative insurers.

4 Apple MacBook Pro with quad-core processor — purchased in late 2013.
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Table 4.1. Combined CSR Models on Illustrative Insurer Data®

Insurer Group 620 Outcome Percentile = 41.34
W Premium Estimarte Std. Dew. C.V. Outcome
1 78,955 66,647 0 0.0000 66,391
2 85,729 66,928 567 0.0085 67,127
3 94,691 78,326 844 0.0108 77,946
Two-Step Bivariate 4 105,362 85,532 1,006 00118 85,744
Model 5 115,419 84,311 1,189 0.0141 85,419
6 121,618 90,935 1,516 0.0167 90,323
7 127,926 95,970 2452 0.0255 96,439
8 129,770 105,514 4,259 0.0402 104,246
9 136,698 107,501 7,770 0.0723 105,809
10 146,858 118,650 18,581 0.1566 112,986
Total 1,143,026 900,614 28,999 0.0322 892,430
Insurer Group 620 Outcome Percentile = 44.05
W Premium Estimate Std. Dew. CW. QOutcome
1 78,955 66,654 0 0.0000 66,391
2 85,729 67,349 586 0.0087 67,127
3 94,691 78,372 789 0.0101 77,946
Indepencence 4 105,362 85,054 972 0.0114 85,744
Assumption 5 115,419 84,973 1,225 0.0144 85,419
6 121,618 89,435 1,528 0.0171 90,323
7 127,926 96,166 2470 00257 96,439
8 129,770 105,890 4,269 0.0403 104,246
9 136,698 107,870 7,810 0.0724 105,809
10 146,858 116,833 18,172 0.1555 112,986
Total 1,143,026 898,597 28,667 0.0319 892,430
Insurer Group 1066 Outcome Percentile = 26.62
w Premium Estimate Std. Dew. CW. Qutcome
1 30,091 25,610 0 0.0000 25,442
2 31,278 30,680 444 0.0145 30,718
3 36,553 33,773 580 0.0172 33,625
Two-Step Bivariate 4 43,284 31,429 710 0.0226 31,632
Maodel 5 48,237 29,451 693 0.0235 29,583
6 47,742 30,056 813 0.0270 29,828
7 48,082 30,392 1,047 0.0344 29,576
8 45,765 25,397 1,329 0.0523 25,939
9 43,473 23,672 2,208 0.0933 22,180
10 36,520 21,726 5,018 0.2310 18,293
Total 411,025 282187 8,617 0.0305 276,816
Insurer Group 1066 Outcome Percentile = 29.78
w Premium Estimate Std. Dev. CV. Outcome
1 30,091 25,615 0 0.0000 25,442
2 31,278 31,020 464 0.0150 30,718
3 36,553 33,910 552 0.0163 33,625
Indk:pcncn:ncc 4 43,284 31,129 705 0.0226 31,632
Assumption 5 48,237 29,804 709 0.0237 29,583
6 47,742 29,178 810 0.0278 29,828
7 48,082 30,487 1,056 0.0346 29,576
8 45,765 25,376 1,333 0.0525 25,939
9 43,473 23,819 2,236 0.0939 22,180
10 36,520 21,003 4,733 0.2253 18,293
Total 411,025 281,401 8,417 0.0299 276,816

*1 attribute the differences in the “Estimate” column by insurer to simulation error. The expected values for the
bivariate and independence assumptions are equal.
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Figure 4.1 — Posterior Distribution of p for CSR Model
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Table 4.1 and Figure 4.1 are notable in two aspects. First, the output from the bivariate model is

not all that different from the output created by taking independent sums of losses from the
univariate model. Second, the posterior distributions of p from the two-step bivariate model have a

fairly wide range. The posterior distributions of p for both groups are predominantly negative.

Typically the posterior mean p over all the within-group pairs of lines is not all that different

from zero. Figure 4.3 shows the frequency distribution of posterior mean ps from the insurer group

sample.
Figure 4.3 — Posterior Mean ps from the Within-Group Pairs of Lines
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This section concludes with a test of uniformity of the outcome percentiles of the within-group
pairs for the sum of two lines predicted by the two-step bivariate model and the independence
assumption. As Figure 3.1 shows, the univariate models pass our uniformity test, one would think

that a valid bivariate model would also pass a uniformity test. Figures 4.4 and 4.5 show the results.

It turns out that both the two-step bivariate model and the independence assumption pass the
uniformity test, with the independence assumption performing slightly better. This suggests that the
lines of insurance are independent for many, if not all, insurers. In the next section we will examine

the independence assumption for individual pairs of loss triangles.
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Figure 4.4 - Uniformity Tests of Outcome Percentiles
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Figure 4.5 - Uniformity Tests of Outcome Percentiles
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5. MODEL SELECTION®

Let’s start the discussion with a review of the Akaike Information Criteria (AIC).

Suppose that we have a model with a data vector, x, and a parameter vector 6, with p parameters.

Let é be the parameter value that maximizes the log-likelihood, L, of the data, x. Then the AIC is
defined as

AIC=2-p—2-L(é). (5.1)

Given a choice of models, the model with the lowest AIC is to be preferred. This statistic
rewards a model for having a high log-likelihood, but it penalizes the model for having more

parameters.

There are problems with the AIC in a Bayesian MCMC environment. Instead of a single
maximum likelihood estimate of the parameter vector, there is an entire sample of parameter vectors
taken from the model’s posterior distribution. There is also the sense that the penalty for the

number of parameters should not be as great in the presence of strong prior information.

To address these concerns, Gelman ez a/ (2014) and Vehtari and Gelman (2014) describe a
statistic, called the Watanabe-Akaike Information Criterion (WAIC) that generalizes the AIC in a

way that is appropriate for Bayesian MCMC models’.

First define the computed log pointwise predictive density (made specific for this paper) as

55 1 10000
_ e X Y
Lo _leog 10000 Zl: ¢(1°g (C-M)’log (C ) ;

=F)aG)
i=1

_a’f,ia”,,_p) . (5.2)

where @is a multivariate normal distribution such as that given in Equation(1.2). The Ly, statistic
replaces the log-likelihood L in Equation(5.1) with an average log-likelihood taken over the sample

from the posterior distribution.

Next, define the effective number of parameters py ¢ as

6 For more information about the model selection statistics in this section, see Section 7.2 of Gelman, ez. 4.

7 Another popular statistic designed for Bayesian MCMC models is the Deviance Information Criterion (DIC) that is
available in the MCMC software WINBUGS and JAGS. Gelman e 4/ (2014) and Vehtari and Gelman (2014) make the
case that the WAIC is a better statistic as it is based on the entire sample from the posterior distribution as opposed to a
point estimate.
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55
— X 1 4
Pouc —ZEVarf[Iog(qﬁ(Iog(C s ) ,Iog(C )

w{iAG)
=

Iﬂx,,ﬂ’,fp))]. (5.3)

Pwaic has the property that it decreases with the tightness of the prior distribution. Of possible
general interest is that Vehtari and Gelman discuss situations, e.g. flat priors and a large number of
data points, where py,c 1s equal to the nominal number of parameters, p. But none of that applies
to the examples in this paper where we have only 110 observations, some non-flat priors and, in

addition, have some constraints between some of the parameters.

The final expression for the WAIC is analogous to Equation (5.1) and is given by

WAIC=2-p, . —2-L,, . (5.4)

The WAIC statistics for the bivariate two-step model were calculated with the posterior
10000

. For the model that assumes independence of the univariate models,

distribution { 6%, 0", p}

=1

v 10000
the WAIC statistics were calculated with the posterior distribution { o, .0 ,0} . Table 5.1 gives
! f =

these statistics for the illustrative insurers. The lower WAIC statistic for the assumption of

independence is the preferred model for both insurer groups.

Table 5.1 — WAIC Statistics for the Illustrative Insurer Groups
For the CSR Model

Group Model Pwarc Ly WAIC
620 Bivariate 31.09 255.31 -448.44
620 Independent 27.23 252.92 -451.38

1066 Bivariate 30.89 180.41 -299.04
1066 Independent 27.12 178.03 -301.82

The WAIC statistics for the a// the within-group pairs, given in the Appendix, indicate that the

assumption of independence is the preferred model!
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6. ILLUSTRATION OF MODEL SENSITIVITY

In discussions with my actuarial colleagues over the years, I have sensed a general consensus among
most actuaries is that there is some degree of dependence between the various lines of insurance.
But as pointed out in the introduction, using a suboptimal model can lead to artificial dependencies.
This section takes a stochastic version of a currently popular model and demonstrates that it is
suboptimal for our sample of insurers. It also shows that given this model, there are significant
dependencies between the various lines of insurance suggesting that the “general consensus” is

understandable given the state of the art that has existed over the years.

One of the most popular loss reserving methodologies is given by Bornhuetter-Ferguson (1972).
A key input to the loss reserve formula given in that paper is the expected loss ratio, which must be
judgmentally selected by the actuary. Presentations by Clark (2013) and Leong (2013) suggest that
the Bornhuetter-Ferguson method that assumes a constant loss ratio provides a good fit to industry

loss reserve data.

Actuaries who want to use data to select the expected loss ratio can use the “Cape Cod” model

that is given by Stanard (1985). A stochastic version of the Cape Code model can be expressed as a
special case of the CSR model by setting the parameters ¢, = 0 for w=1,..., 10, y = 0 and 6 = 0.
Let’s call this model the Stochastic Cape Cod (SSC) model.

Figure 6.1 gives the standardized residual plots of the SCC model for the illustrative insurers that
are analogous to those in Figure 3.2. Figure 6.2 gives the posterior distribution of the p parameters
for the two-step bivariate SCC model. Noteworthy is that the mean p for Group 1066 is quite high
compared to any of the results for the CSR model. In Table 6.1 we see that the WAIC statistic for
Group 1066 is lower for the bivariate model than the independent model indicating that the

bivariate model is favored. The reverse is true for Group 620.
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Figure 6.1 — Standardized Residual Plots for the SSC Model

CA B20 CA B20 CA B20

ot ot ot

o ™ o ™ o ™

ot ot ot

m m m

o — o — o —

H o H o 4

e e e

- o - o - o

c L c L c L

. > 4 @€ & 10 . > 4 @€ & 10 . > 4 @€ & 10
Accident Year Development Yeaar Calendar Year
PA 620 PA 620 PA 620

ot ot ot

o ™ o ™ o ™

ot ot ot

m m m

o — o — o —

H o H o 4

e e e

- o - o - o

c L c L c L

. > 4 @€ & 10 . > 4 @€ & 10 . > 4 @€ & 10
Accident Year Development Yeaar Calendar Year
CA 1066 CA 1066 CA 1066

ot ot ot

o ™ o ™ o ™

ot ot ot

m m m

o — o — o —

H o H o 4

e e e

- o - o - o

c L c L c L

. > 4 @€ & 10 . > 4 @€ & 10 . > 4 @€ & 10
Accident Year Development Yeaar Calendar Year
PA 1066 PA 1066 PA 1066

ot ot ot

o ™ o ™ o ™

ot ot ot

m m m

o — o — o —

H o H o 4

e e e

- o - o - o

c L c L c L

. > 4 @€ & 10 . > 4 @€ & 10 . > 4 @€ & 10
Accident Year Development Yeaar Calendar Year

Casualty Actuarial Society E-Forum, Winter 2016

24



Dependencies in Stochastic Loss Reserve Models

Figure 6.2 — Posterior Distribution of p for SCC Model
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Table 6.1 — WAIC Statistics for the Illustrative Insurer Groups
For the SCC Model

Group Model Dwarc Ly WAIC
620 Bivariate 17.79 122.10 -208.62
620 Independent 16.34 121.55 -210.42
1066 Bivariate 23.61 18.99 9.24
1066 Independent 14.53 6.68 15.7

By examining the standardized residual plots in Figure 6.1 across accident years we can see a
possible explanation for these results. First note that the standardized residual plots for the SCC
model are not as well behaved as the similar plots for the CSR model in Figure 3.2. But the pattern
of the errors in the CA and PA plots are dissimilar for Group 620, but similar for Group 1066. The

similarity of the plots for Group 1066 leads to the overwhelmingly positive posterior distribution of

p, and the indicated preference of the bivariate model over the independent model.

Over the entire sample of insurer groups, the bivariate model was the preferred model for 39 of

the 102 within-group pairs of triangles.

It is also worth noting that, as shown in Figure 6.3, the SCC model fails the uniformity test that

the CSR model passed, as shown in Figure 3.1.

Here we see an example where the suboptimal SCC model leads to artificial dependencies
between lines, whereas the less suboptimal CSR model leads to independence between lines for our

sample of insurer loss triangles.
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Figure 6.3. Uniformity Tests for the SCC Model
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7. SUMMARY AND CONCLUSIONS

The purpose of this paper was to illustrate how to build a model that creates a bivariate
distribution given two univariate Bayesian MCMC models that preserve the original univariate
distributions. While this modeling technique was applied to lognormal stochastic loss reserve
models, it should not be difficult to apply this two-step approach to other Bayesian MCMC models

using bivariate copulas as was done by Zhang and Dukic.

While a statistical study such as that done in this paper can never carry the weight of a
mathematical proof, its conclusion was derived from the analysis of a large number of within-group
pairs of loss triangles. It should be noted that these loss triangles came from NAIC Schedule Ps

reported in the same year.

The conclusion that the within-group pairs of loss triangles are independent for the CSR model

may come as a surprise to some. But the evidence supporting this conclusion is as follows.

1. The univariate models pass two fairly restrictive tests (i.e. the retrospective test in Figure 3.1
and the standardized residual tests in Figure 3.2) that could disqualify many suboptimal
models. Thus we should not expect to see an artificial appearance of dependency due to a

bad model.

2. The retrospective results of Section 4 indicate support the independence assumption for the
bivariate two-step model. The range of ps for the 102 within-group pairs contained both
positive and negative values, which appear to be random in light of the tests performed in

this paper.

I feel fortunate that I was able to find a model that indicated independence between lines of
insurance. Before taking on this line of research, there was no guarantee that I would be able to find
such a model. In fact, initially I did not believe the independence results that I was getting. The
lesson learned is that if one has a model with statistically significant dependences between lines of

insurance, one should search for a more optimal model.

The reason that the dependency problem is so important is that risk-based insurer solvency
standards are based on the total risk to the insurance company. Ignoring a true dependency could
understate the total risk faced by an insurer. On the other hand, too stringent of a solvency standard
could limit the supply of insurance. If this holds, then the current practice in some jurisdictions

could limit the supply of insurance.
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While retrospective results can be informative, there is a need for criteria testing the
independence assumption that can be applied prospectively. That was the purpose of Section 5.
The prospective test consists of; (1) fitting the two-step bivariate model; (2) fitting a bivariate model
that assumes independence; and (3) calculating the WAIC statistic to see which model is favored. It
turned out that the WAIC statistic favored the independence assumption in every one of the 102

within-group pairs of triangles.

So for now, the CSR model with the independence assumption is looking pretty good. But in
light of the high stakes involved, assumptions of this sort need a stringent peer review and

replication with new and different data. Ilook forward to seeing this happen.
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