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Dependencies in Stochastic Loss Reserve Models 

Glenn Meyers, FCAS, MAAA, Ph.D. 
 _________________________________________________________________________________________  
Abstract 
Given a Bayesian Markov Chain Monte Carlo (MCMC) stochastic loss reserve model for two separate lines of 
insurance, this paper describes how to fit a bivariate stochastic model that captures the dependencies between the 
two lines of insurance.  A Bayesian MCMC model similar to the Changing Settlement Rate (CSR) model, as 
described in Meyers (2015), is initially fit to each line of insurance.  Then taking a sample from the posterior 
distribution of parameters from each line, this paper shows how to produce a sample that represents a bivariate 
distribution that maintains the original univariate distributions as its marginal distributions.  This paper goes on 
to compare the predicted distribution of outcomes by this model with the actual outcomes, and a bivariate model 
predicted under the assumption that the lines are independent.  It then applies the Watanabe-Akaike Information 
Criterion to compare the fits of the two models. 
Key Words: Bayesian MCMC, Stochastic Loss Reserving, Correlation, Dependencies. 
 _________________________________________________________________________________________  

1. INTRODUCTION 

Recent attempts to apply enterprise risk management principles to insurance have placed a high 

degree of importance using stochastic models to quantify the uncertainty on the various estimates.  

For general insurers, the most important liability is the reserve for unpaid losses.  Over the years, a 

number of stochastic models have been developed to address this problem.  Some of the more 

prominent nonproprietary models are those of Mack (1993, 1994), England and Verrall (2002) and 

Meyers (2015).    

As good as these models may be, they fall short of quantifying the uncertainty in the insurer’s 

liability as they do not address the issue of correlation (or more generally – dependencies) between 

lines of insurance.  The failure to resolve this problem analytically has resulted in judgmental 

adjustments to various risk-based capital formulas.  Herzog (2011) provides a summary of some 

current practices.   

Zhang and Dukic (2013) describe what I believe to be a very good attempt at solving this 

problem.  As this paper uses their paper as a starting point, it would be good to provide an outline 

of their approach1. 

                                                 
1 As this paper deals with lognormal models of claim amounts, its description of the Zhang-Dukic ideas are not as 
general as they put forth in their paper.  Their results apply for more general copulas, where this paper deals only with 
the more specialized multivariate lognormal distribution.  
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But first, we need to set our notation.  Let  be the cumulative paid claim amount in line of 

insurance X for accident year, w = 1, …. , K and development year d = 1, … , K.  Since this paper 

works with Schedule P data taken from the CAS Loss Reserve Database,2 we can set 𝐾 = 10.  In 

this paper, X will be CA for Commercial Auto, PA for Personal Auto, WC for Workers 

Compensation, or OL for Other Liability.   

Now suppose that we have models for two different lines of insurance such as 

   (1.1) 

As we shall see below, the parameters  will be functions of w and d and the parameters  

will be subject to constraints for each line X.  That feature can be ignored for now as we are setting 

up the problem. 

As shown in Meyers (2015), it is possible to use a Bayesian MCMC model to generate a large 

sample, say of size 10,000, from the posterior distributions of  for each line of 

insurance X.   

The idea put forth by Zhang and Dukic is to fit a bivariate Bayesian MCMC model of the 

following form given the Bayesian MCMC models described by Equation (1.1). 

   (1.2) 

The correlation parameter, ρ, describes the dependency between Line X and Line Y. 

Zhang and Dukic then use a Bayesian MCMC model to obtain a large sample from the posterior 

distribution: 

                                                 
2 The CAS Loss Reserve Database is on the CAS website at 
http://www.casact.org/research/index.cfm?fa=loss_reserves_data 

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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  . 

The asterisk (*) on the µ and σ parameters calls attention to the fact that the posterior 

distributions from the models in Equation (1.1) may, and often do, differ significantly from the 

corresponding marginal posterior distributions from the models in Equation (1.2).  To the actuary 

who prepares loss reserve reports, this presents a problem.  Typically actuaries analyze their reserves 

by individual line of insurance.  With a Bayesian MCMC model, they can quantify the uncertainty of 

the outcomes for that line.  Now suppose that there is a demand to quantify the uncertainty in the 

sum of losses for two or more lines of insurance using the Zhang-Dukic framework.  They will need 

to explain, for example, why the univariate distribution for Commercial Auto produces different 

results than the marginal distribution for Commercial Auto when combined with Personal Auto.  

And the marginal distribution could be different still when combined with Workers Compensation. 

Scalability is also a problem.  For example, the univariate model used in this paper has 31 

parameters.  Using this model with the bivariate Zhang-Dukic framework yields a model with 

31+31+1=63 parameters.  In theory, Bayesian MCMC software can handle it, but in practice I have 

found that running times increase at a much faster rate than the number of parameters.  I have 

coded models using the bivariate Zhang-Dukic framework that work well for some pairs of loss 

triangles, but others took several hours of running time to obtain convergence of the MCMC 

algorithm.  

The purpose of this paper is to present a framework similar to that of Zhang and Dukic that 

preserves the univariate models as the marginal distributions. 

Before we go there, we should note that a suboptimal model might produce artificial 

dependencies.  To illustrate, consider Figure 1.1 below where y1 and y2 are independent random 

deviations off two parabolic functions of x.   We want to fit a bivariate distribution to the ordered 

pair (y1(x), y2(x)) of the form:  

  (1.3) 
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The lower left plot of Figure 1.1 shows a scatter plot of y1(x) – µ1 and y2(x) – µ2 for the 

(suboptimal) model µi(x) is a constant. The lower right plot is a scatter plot of y1(x) – µ1(x) and y2(x) 

– µ2(x) for the (correct) parabolic model.  This example shows how suboptimal models for the 

marginal distribution can cause an artificial nonzero correlation the multivariate model.  

The next section will describe the data used in this paper.  Section 3 will describe the univariate 

(marginal) models and illustrate some diagnostics to test the appropriateness of the model.  Section 

4 will show how to obtain a random sample from the posterior distribution of parameters subject to 

the constraint that the marginal distribution is the same as those obtained by the corresponding 

univariate models.  Section 5 will describe statistical tests to test the hypothesis that the correlation 

parameter, ρ, in the bivariate distribution is significantly different from zero.  Section 6 will address 

the sensitivity of the results to the choice of models, and Section 7 will discuss the conclusions. 

This paper assumes that the reader is familiar with Meyers (2015). 
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Figure 1.1 – Illustration of Artificial Correlation 
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2. THE DATA 

The data used in this paper comes from the CAS Loss Reserve Database3.  The Schedule P loss 

triangles taken from this database are listed in Appendix A of Meyers (2015).  There are 200 loss 

triangles, 50 each from the CA, PA, WC and OL lines of insurance.  Univariate models from all 200 

loss triangles will be analyzed in Section 3 and 6. 

At the time of writing the monograph, Meyers (2015), I did not envision a dependency study.  

But it turned out that there were 102 within-group pairs of triangles (29 CA-PA, 17 CA-WC, 17 CA-

OL, 14 PA-WC, 15 PA-OL and 10 WC-OL) that were suitable for studying dependency models.  

Preferring to use loss triangles that have already been vetted, I decided to stick with these within-

group pairs of triangles. 

This paper will provide detailed analyses for two illustrative insurers (Groups 620 and 1066) for 

the CA and PA lines of business.  The complete loss triangles and outcomes are in Table 2.1 below.  

The upper data triangle used to fit each model is printed with the ordinary font.  The lower data 

triangle used for retrospective testing is printed with bold and italicized font. 

A complete list of the insurer groups used in this paper is included in a spreadsheet titled 

“Appendix.”  The sheets in the Appendix contain: 

• The 200 groups along with the associated calculations in Section 3. 

• The R scripts that produce the univariate model calculations described in Section 3 and 6. 

• The 102 within-group pairs with associated calculations in Sections 4 and 5. 

• The R scripts that produce the bivariate model calculations described in Sections 4, 5  and 6. 

  

                                                 
3 http://www.casact.org/research/index.cfm?fa=loss_reserves_data 

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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Table 2.1 – Data for Illustrative Insurers 
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3. THE CHANGING SETTLEMENT RATE (CSR) MODEL 

The univariate model used in this paper will be a minor modification to the CSR model used in 

Meyers (2015).  Here is the model.  Let: 

1.  for w = 2, … ,10.  α1 = 0. 

2. logelr ~ Uniform(-1, 0.5). 

3. βd ~ Uniform(-5, 5) for d = 1, … ,9.  β10 = 0. 

4. S1 = 1, Sw = Sw-1 
. (1 – γ – (w-2) . δ) for w = 2, … ,10. γ ~ Normal (0, 0.05),                          

δ ~ Normal(0, 0.01). 

5. µwd = log(Premiumw) + logelr + αw + βd 
. Sw. 

6. ,  ai ~ Uniform(0, 1).  

7. log(Cwd) ~ Normal(µwd, σd). 

This model differs from the CSR model described in Meyers (2015) in three aspects. 

1. The parameter γ, allows for a speedup (or slowdown when γ is negative) of the claim 

settlements.  By including the δ parameter, this version of the CSR model allows the 

settlement rate to change over time. 

2. Forcing α1 = 0 eliminates some overlap between the αw parameters and the logelr 

parameter.  In the Meyers (2015) version of the model, a constant addition to each αw 

parameters could be offset by a subtraction in the logelr parameter.  Correcting features of 

this sort tend to speed up convergence of the MCMC algorithm.  

3. The MCMC software used for the calculation described in this paper is Stan.  See 

http://mc-stan.org for installation instructions.   I have found that, in general, the MCMC 

algorithm implemented by Stan converges faster than that of JAGS.  Stan also allows one 

to compile a model (in C++) in advance of its use.  Using a compiled model can greatly 

speed up the processing when one uses the same model repeatedly (as we will do below) 

with different inputs. 

  

http://mc-stan.org/
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The R script that implements this version of the CSR model is available in the appendix 

spreadsheet.  The script produces a sample from the posterior distribution of the parameters for line 

X, 

. 

Following Meyers (2015), the script then simulates 10,000 outcomes  from which we 

can calculate various summary statistics such as the predictive mean and standard deviation of the 

outcomes and the percentile of the actual outcome.   Table 3.1 gives a summary of the result of 

these calculations for the Commercial Auto (X=CA) and the Personal Auto (X=PA) lines of 

business. 

Figure 3.1 gives the test for uniformity of the predictive percentiles of this version of the CSR 

model.  When compared with Meyers (2015) Figure 22, we see that allowing the claim settlement 

rate to change over time improves the model so that the percentiles are (within 95% statistical 

bounds) uniformly distributed for all four lines. 
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Table 3.1.  CSR Models on Illustrative Insurer Data 
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Figure 3.1.  Uniformity Tests for the CSR Model 
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While the observation that the CSR model performs well on a large number of old triangles with 

outcome data is encouraging, it should not relieve the actuary from testing the assumptions 

underlying their model of their current data.  Traditional tests, such has those provided by Barnett 

and Zehnwirth (2000) plot residuals (i.e. differences between observed and expected values) along 

accident year, development year and calendar year dimensions.   

The Bayesian MCMC models in this paper provide a sample of size 10,000 from a posterior 

distribution of parameters.  Given that we have this large sample, I consider it to be more 

informative if we take a subsample, I, of (say) size 100, then calculate the standardized residuals for 

each w and d in the upper loss triangle, and i in the subsample 

   (3.1). 

In general we should expect these residual plots to have a standard normal distribution with 

mean 0 and standard deviation 1.  Figure 3.2 shows plots of these standardized residuals against the 

accident year, development year and calendar year for the illustrative insurers.  I have made similar 

plots for other insurers as well.  For accident years and development years, the plots have always 

behaved as expected.  Deviations for the early calendar years as shown in two of the four plots are 

not uncommon.  I have chosen to regard them as unimportant, and attach more importance to later 

calendar years.   

If the standardized residual plots look like those of the illustrative insurers, we should not have to 

worry about artificial correlations. 
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Figure 3.2 – Standardized Residual Plots for the CSR Model 
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4. A TWO-STEP BIVARIATE MODEL 

The last section presented a univariate model that performed well on data in the CAS Loss Reserve 

Database.  This section shows how to construct a bivariate distribution that has the univariate 

distributions as marginal distributions. 

To shorten the notation let  

 

for line X and i = 1, … ,10000. 

The first step is to obtain the univariate samples,  and  where 

 Then repeatedly for each i, 

use Bayesian MCMC to take a sample from the posterior distribution of  

where   has a β(2,2) prior distribution translated from (0,1) to (-1,1).  Next we randomly select a 

single  from that sample and use  to calculate the derived parameters in the 

bivariate distribution given by Equation (1.2).  This amounts to using the two univariate 

distributions as the prior distribution for the second Bayesian step.  From that two-step bivariate 

distribution, one can simulate outcomes from the “posterior” distribution of parameters and 

calculate any statistic of interest.  Be reminded that this can be different from the usual Bayesian 

posterior distribution  that comes out of the Zhang-Dukic 

approach.  
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At first glance, one might expect the run time for 10,000 Bayesian MCMC simulations to be 

unacceptably long.  But there are a number of considerations that allow one to speed up the 

calculations. 

1. The MCMC simulation is for a single parameter that runs much faster than a multi-parameter 

simulation that one normally runs with stochastic loss reserve models. 

2. We have a good starting value, .  The burn-in period is short and convergence is rapid. 

3. Since we are repeatedly running the same model with different inputs, we need only compile 

the model once, which the Stan software permits. 

4. Using the “parallel” package in R allows one to distribute the simulations to separate cores on 

a multi-core computer.  

Taking these factors into account, my laptop4 usually turns out this bivariate distribution in about 

6 minutes.  As I mentioned above, the R scripts that produce these calculations are made available to 

the reader in the Appendix. 

The purpose of getting a bivariate distribution is to predict the distribution of the sum of the 

outcomes for the two lines of insurance.  Table 4.1 gives results analogous to Table 3.1 for the sum 

of CA and PA lines for the two illustrative insurers.  Also included are the sums of the two lines 

predicted under the assumption of independence.  Figure 4.1 contains histograms of the two-step 

posterior distributions for ρ for the illustrative insurers.  

                                                 
4 Apple MacBook Pro with quad-core processor – purchased in late 2013. 
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Table 4.1.  Combined CSR Models on Illustrative Insurer Data5 

  

                                                 
5 I attribute the differences in the “Estimate” column by insurer to simulation error.  The expected values for the 
bivariate and independence assumptions are equal. 
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Figure 4.1 – Posterior Distribution of ρ for CSR Model 
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Table 4.1 and Figure 4.1 are notable in two aspects.  First, the output from the bivariate model is 

not all that different from the output created by taking independent sums of losses from the 

univariate model.  Second, the posterior distributions of ρ from the two-step bivariate model have a 

fairly wide range.  The posterior distributions of ρ for both groups are predominantly negative. 

Typically the posterior mean ρ over all the within-group pairs of lines is not all that different 

from zero.  Figure 4.3 shows the frequency distribution of posterior mean ρs from the insurer group 

sample. 

Figure 4.3 – Posterior Mean ρs from the Within-Group Pairs of Lines 

 

This section concludes with a test of uniformity of the outcome percentiles of the within-group 

pairs for the sum of two lines predicted by the two-step bivariate model and the independence 

assumption.  As Figure 3.1 shows, the univariate models pass our uniformity test, one would think 

that a valid bivariate model would also pass a uniformity test. Figures 4.4 and 4.5 show the results. 

It turns out that both the two-step bivariate model and the independence assumption pass the 

uniformity test, with the independence assumption performing slightly better.  This suggests that the 

lines of insurance are independent for many, if not all, insurers.  In the next section we will examine 

the independence assumption for individual pairs of loss triangles. 
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Figure 4.4 - Uniformity Tests of Outcome Percentiles 
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Figure 4.5 - Uniformity Tests of Outcome Percentiles 
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5. MODEL SELECTION6 

Let’s start the discussion with a review of the Akaike Information Criteria (AIC). 

Suppose that we have a model with a data vector, x, and a parameter vector θ, with p parameters.  

Let  be the parameter value that maximizes the log-likelihood, L, of the data, x.  Then the AIC is 

defined as 

 .  (5.1) 

 Given a choice of models, the model with the lowest AIC is to be preferred.  This statistic 

rewards a model for having a high log-likelihood, but it penalizes the model for having more 

parameters. 

There are problems with the AIC in a Bayesian MCMC environment.  Instead of a single 

maximum likelihood estimate of the parameter vector, there is an entire sample of parameter vectors 

taken from the model’s posterior distribution.  There is also the sense that the penalty for the 

number of parameters should not be as great in the presence of strong prior information. 

To address these concerns, Gelman et. al. (2014) and Vehtari and Gelman (2014) describe a 

statistic, called the Watanabe-Akaike Information Criterion (WAIC) that generalizes the AIC in a 

way that is appropriate for Bayesian MCMC models7. 

First define the computed log pointwise predictive density (made specific for this paper) as  

 . (5.2) 

where φ is a multivariate normal distribution such as that given in Equation(1.2).  The LWAIC statistic 

replaces the log-likelihood L in Equation(5.1) with an average log-likelihood taken over the sample 

from the posterior distribution. 

Next, define the effective number of parameters pWAIC as  

                                                 
6 For more information about the model selection statistics in this section, see Section 7.2 of Gelman, et. al.. 
7 Another popular statistic designed for Bayesian MCMC models is the Deviance Information Criterion (DIC) that is 
available in the MCMC software WINBUGS and JAGS.  Gelman et. al. (2014) and Vehtari and Gelman (2014) make the 
case that the WAIC is a better statistic as it is based on the entire sample from the posterior distribution as opposed to a 
point estimate. 
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 . (5.3) 

pWAIC has the property that it decreases with the tightness of the prior distribution.  Of possible 

general interest is that Vehtari and Gelman discuss situations, e.g. flat priors and a large number of 

data points, where pWAIC is equal to the nominal number of parameters, p.  But none of that applies 

to the examples in this paper where we have only 110 observations, some non-flat priors and, in 

addition, have some constraints between some of the parameters. 

The final expression for the WAIC is analogous to Equation (5.1) and is given by  

 . (5.4) 

The WAIC statistics for the bivariate two-step model were calculated with the posterior 

distribution .  For the model that assumes independence of the univariate models, 

the WAIC statistics were calculated with the posterior distribution .  Table 5.1 gives 

these statistics for the illustrative insurers.  The lower WAIC statistic for the assumption of 

independence is the preferred model for both insurer groups. 

Table 5.1 – WAIC Statistics for the Illustrative Insurer Groups 
For the CSR Model 

Group Model pWAIC LWAIC WAIC 
620 Bivariate 31.09 255.31 -448.44 
620 Independent 27.23 252.92 -451.38 
1066 Bivariate 30.89 180.41 -299.04 
1066 Independent 27.12 178.03 -301.82 

 

The WAIC statistics for the all the within-group pairs, given in the Appendix, indicate that the 

assumption of independence is the preferred model! 
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6. ILLUSTRATION OF MODEL SENSITIVITY 

In discussions with my actuarial colleagues over the years, I have sensed a general consensus among 

most actuaries is that there is some degree of dependence between the various lines of insurance.  

But as pointed out in the introduction, using a suboptimal model can lead to artificial dependencies.  

This section takes a stochastic version of a currently popular model and demonstrates that it is 

suboptimal for our sample of insurers.  It also shows that given this model, there are significant 

dependencies between the various lines of insurance suggesting that the “general consensus” is 

understandable given the state of the art that has existed over the years. 

One of the most popular loss reserving methodologies is given by Bornhuetter-Ferguson (1972).   

A key input to the loss reserve formula given in that paper is the expected loss ratio, which must be 

judgmentally selected by the actuary.  Presentations by Clark (2013) and Leong (2013) suggest that 

the Bornhuetter-Ferguson method that assumes a constant loss ratio provides a good fit to industry 

loss reserve data. 

Actuaries who want to use data to select the expected loss ratio can use the “Cape Cod” model 

that is given by Stanard (1985).  A stochastic version of the Cape Code model can be expressed as a 

special case of the CSR model by setting the parameters αw = 0 for w = 1,…, 10, γ = 0 and δ = 0.  

Let’s call this model the Stochastic Cape Cod (SSC) model. 

Figure 6.1 gives the standardized residual plots of the SCC model for the illustrative insurers that 

are analogous to those in Figure 3.2.  Figure 6.2 gives the posterior distribution of the ρ parameters 

for the two-step bivariate SCC model.  Noteworthy is that the mean ρ for Group 1066 is quite high 

compared to any of the results for the CSR model.  In Table 6.1 we see that the WAIC statistic for 

Group 1066 is lower for the bivariate model than the independent model indicating that the 

bivariate model is favored.  The reverse is true for Group 620. 
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Figure 6.1 – Standardized Residual Plots for the SSC Model 
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Figure 6.2 – Posterior Distribution of ρ for SCC Model 
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Table 6.1 – WAIC Statistics for the Illustrative Insurer Groups 
For the SCC Model 

Group Model pWAIC LWAIC WAIC 
620 Bivariate 17.79 122.10 -208.62 
620 Independent 16.34 121.55 -210.42 
1066 Bivariate 23.61 18.99 9.24 
1066 Independent 14.53 6.68 15.7 

 

By examining the standardized residual plots in Figure 6.1 across accident years we can see a 

possible explanation for these results.  First note that the standardized residual plots for the SCC 

model are not as well behaved as the similar plots for the CSR model in Figure 3.2.  But the pattern 

of the errors in the CA and PA plots are dissimilar for Group 620, but similar for Group 1066.  The 

similarity of the plots for Group 1066 leads to the overwhelmingly positive posterior distribution of 

ρ, and the indicated preference of the bivariate model over the independent model. 

Over the entire sample of insurer groups, the bivariate model was the preferred model for 39 of 

the 102 within-group pairs of triangles.  

It is also worth noting that, as shown in Figure 6.3, the SCC model fails the uniformity test that 

the CSR model passed, as shown in Figure 3.1. 

Here we see an example where the suboptimal SCC model leads to artificial dependencies 

between lines, whereas the less suboptimal CSR model leads to independence between lines for our 

sample of insurer loss triangles. 
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Figure 6.3.  Uniformity Tests for the SCC Model 
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7. SUMMARY AND CONCLUSIONS 

The purpose of this paper was to illustrate how to build a model that creates a bivariate 

distribution given two univariate Bayesian MCMC models that preserve the original univariate 

distributions.  While this modeling technique was applied to lognormal stochastic loss reserve 

models, it should not be difficult to apply this two-step approach to other Bayesian MCMC models 

using bivariate copulas as was done by Zhang and Dukic. 

While a statistical study such as that done in this paper can never carry the weight of a 

mathematical proof, its conclusion was derived from the analysis of a large number of within-group 

pairs of loss triangles.  It should be noted that these loss triangles came from NAIC Schedule Ps 

reported in the same year.   

The conclusion that the within-group pairs of loss triangles are independent for the CSR model 

may come as a surprise to some.  But the evidence supporting this conclusion is as follows. 

1. The univariate models pass two fairly restrictive tests (i.e. the retrospective test in Figure 3.1 

and the standardized residual tests in Figure 3.2) that could disqualify many suboptimal 

models.  Thus we should not expect to see an artificial appearance of dependency due to a 

bad model. 

2. The retrospective results of Section 4 indicate support the independence assumption for the 

bivariate two-step model.  The range of ρs for the 102 within-group pairs contained both 

positive and negative values, which appear to be random in light of the tests performed in 

this paper.   

I feel fortunate that I was able to find a model that indicated independence between lines of 

insurance.  Before taking on this line of research, there was no guarantee that I would be able to find 

such a model.  In fact, initially I did not believe the independence results that I was getting.  The 

lesson learned is that if one has a model with statistically significant dependences between lines of 

insurance, one should search for a more optimal model. 

The reason that the dependency problem is so important is that risk-based insurer solvency 

standards are based on the total risk to the insurance company.  Ignoring a true dependency could 

understate the total risk faced by an insurer.  On the other hand, too stringent of a solvency standard 

could limit the supply of insurance.  If this holds, then the current practice in some jurisdictions 

could limit the supply of insurance. 
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While retrospective results can be informative, there is a need for criteria testing the 

independence assumption that can be applied prospectively.  That was the purpose of Section 5.  

The prospective test consists of; (1) fitting the two-step bivariate model; (2) fitting a bivariate model 

that assumes independence; and (3) calculating the WAIC statistic to see which model is favored.  It 

turned out that the WAIC statistic favored the independence assumption in every one of the 102 

within-group pairs of triangles. 

So for now, the CSR model with the independence assumption is looking pretty good.  But in 

light of the high stakes involved, assumptions of this sort need a stringent peer review and 

replication with new and different data.  I look forward to seeing this happen. 
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