
A Practical Introduction to Machine Learning
Concepts for Actuaries

Alan Chalk, FIA, MSc, and Conan McMurtrie MSc

Abstract

Motivation. Supervised Learning - building predictive models based on past examples - is
an important part of Machine Learning and contains a vast and ever increasing array of
techniques that can be used by Actuaries alongside more traditional methods. Underlying
many Supervised Learning techniques are a small number of important concepts which are
also relevant to many areas of actuarial practice. In this paper we use the task of predicting
aviation incident cause codes to motivate and practically demonstrate these concepts. These
concepts will enable Actuaries to structure analysis pipelines to include both traditional
and modern Machine Learning techniques, to correctly compare performance and to have
increased confidence that predictive models used are optimal.

Keywords. Machine Learning; Supervised Learning; loss function; generalisation error;
cross-validation; regularisation; feature engineering.

1. INTRODUCTION

This paper introduces the Machine Learning (ML) concepts used in Supervised

Learning (building predictive models based on examples). There are a large

variety of powerful and useful Supervised Learning techniques. There are a much

smaller number of fundamental concepts which need to be understood and used

to ensure that these techniques are applied correctly. In this paper we focus on the

latter, discussing key ML principles that are relevant to many tasks that Actuaries

may be involved with. We use a simple text-based task to illustrate the various

ideas. Throughout, we introduce ML parlance and compare ML approaches to

those used in traditional statistical and standard Actuarial work.

The key principles that we discuss are:

• The loss function

• Model evaluation measures
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• Generalisation error and model validation

• Feature scaling

• Regularisation

• Feature engineering

We have chosen a text mining example to illustrate the ideas. As an exercise 
in Natural Language Processing (NLP) though, this paper has some glaring 
omissions, in particular that of using traditional NLP and more modern deep 
learning methods to understand the topics of each sentence. Instead, we use 
logistic regression, a technique that allows us to illustrate the basic ML concepts 
in practice. Logistic regression is a member of the family of generalised linear 
models, a set of models widely used by Actuaries. Hence the ideas we discuss 
here are immediately relevant to a large part of actuarial work.

In the interest of space we limit ourselves to Supervised Learning (SL). In Machine 
Learning parlance the collection of items for which we have labelled historical 
data are called “examples”. The various pieces of information that we have to 
describe each example are called “features”. Supervised Learning is that part of 
ML where the tasks involve finding relationships between features of examples 
(e.g. risk factors of customers) and something we would like to predict (e.g. claims 
frequency) and then forming predictions for new examples. Other areas of ML 
such as unsupervised learning and reinforcement learning, are beyond the scope 
of this paper.

The material covered in this paper can be found in many texts, for example, Hastie 
et al. [1] (chapters 2 and 7). Our treatment of the material focuses on its practical 
application to the kind of tasks carried out by Actuaries and we hope it will be a 
useful addition to the literature.

2. THE TASK

The task we use is that of predicting aviation accident cause codes from sentences 
that describe the causes. Though this is a text based task, most of the techniques
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are broadly applicable to any prediction task (e.g. pricing) and, as we will see, the 
nature of this task allows us to sense check our models and their predictions.

The illustrative task we have chosen is motivated by the following possible scenario. 
Claims handlers in an insurance company have historically coded every claim 
with a cause code. These cause codes are very useful for analysts. They can look 
at the trends in frequency or cost of claims split by the cause codes, and they can 
build separate pricing models for the different types of claim. They are useful 
for underwriters who can understand the sources of risk and for the managers 
of claims departments, who can predict demand for the different types of claims 
handling specialities. Now imagine that the claims handling system is changed. 
This could be a change in the IT system itself or a change in the staff that handle 
the claims. As a result of the change, claims are either not coded at all to a cause 
code or they are coded inaccurately.

The ongoing lack of information would seem to be a serious problem. We can 
overcome this problem if under both the old and new systems, claims narratives, 
the few sentences or paragraphs describing the claim, are typed into the system 
by the claims handlers. We can then create an algorithm which uses the claims 
narrative to work out the cause code and use it to identify incidents that may 
have been incorrectly classified a nd t o e stimate t he c ause c odes f or incidents 
which were not classified at a ll. We aim here to do exactly this, based on publicly 
available data for aviation accidents. The data we use comes from the National 
Transportation Safety Board (NTSB) database.

2.1 The NTSB Accidents Database

The National Transportation Safety Board (NTSB) is an independent Federal 
agency charged by the Congress with investigating every civil aviation accident in 
the USA. As part of fulfilling their remit, they make available detailed information 
about every incident they investigate. The full database can be found at the 
following link: http://app.ntsb.gov/avdata/. After investigating the accidents, 

the NTSB records their conclusions, which they call “Findings” or “Narratives”. 
They express these in text form (typically in a few sentences) and in a coded form.
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For our purposes the “Findings” in text form and in coded form are the only two

fields of the NTSB database that we use.

The Findings codes are provided at various levels. At the highest level there are

five codes:

• 01 - Aircraft, i.e., a problem with the aircraft.

• 02 - Personnel Issues (Human Error), i.e., some form of human error, typically

of the pilot.

• 03 - Environmental Issues. These are often weather related or obstructions

near the landing area.

• 04 - Organisational Issues. These relate to incidents which are deemed to

have arisen due to deficiencies in the operational procedures of any organi-

sation involved in the accident. This can include the company operating the

aircraft or the Federal Aviation Authority.

• 05 - Not determined.

Within each of these codes there are various levels of sub-codes. For example, sub-

codes for Personnel Issues include Experience/Knowledge and Action/Decision. 
However, we limit our task in this paper to predicting the high level codes. The 
types of models that would best deal with the hierarchical nature of these codes 
are beyond our scope in this paper.

3. EXPLORATORY DATA ANALYSIS

In this section we have a first look at the NTSB data, in order to understand the 
nature of our task. (The extent to which data exploration should be done before 
model building is not obvious, and is discussed in Section 3.5 below.)

3.1 Example Narratives

Our dataset is composed of 9,825 accident narratives covering accidents over the 
period 2008-2015.
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An example of an accident narrative is:

“A total loss of engine power due to the fatigue failure of a third stage

turbine wheel blade.”

It is fairly obvious reader that this sentence expresses a problem with the aircraft

and should therefore be coded as code 01-Aircraft. Likewise the following accident

narrative:

“The fatigue failure of a tail rotor blade during an external load lift.”

clearly refers to an issue with the aircraft.

On inspection of additional narratives and codes, however, it is clear that some

text narratives are incorrectly coded. For example, in this accident narrative:

“The flight instructor’s failure to maintain directional control during

the landing.”

is also coded 01-Aircraft, whereas it should be coded as 02-Human Error.

We may also suspect that some of the accident narratives may be difficult for a

computer to categorize correctly. For example:

“The early rotation of the airplane to an angle at which the fuselage

contacted the runway.”

is obviously pilot error, but there is no mention of pilot or error in the narrative.

Some of the narratives are quite long. For example, the following narrative coded

as an organisational issue:

“The failure of company maintenance personnel to ensure that the

airplane’s nose baggage door latching mechanism was properly con-

figured and maintained, resulting in an inadvertent opening of the

nose baggage door in flight. Contributing to the accident were the

lack of information and guidance available to the operator and pilot

regarding procedures to follow should a baggage door open in flight

and an inadvertent aerodynamic stall.”

The last incident above is coded as 01-Aircraft, 02-Human Error, and 04-Organisational
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Issues failures to do with the aircraft, the pilot and the procedures themselves.

This demonstrates another challenge and that is, that our algorithms need to be

able to predict multiple causes.

Overall, we can see that the problem might be a challenge for a human being, and

certainly for an algorithm.

3.2 The Most Frequent Words

As part of our initial data exploration, we are interested in seeing the most frequent

words used in the narratives for each of the cause codes. We would hope to find

that different words are used to discuss the different causes. Indeed, this is what

we did find. Looking only at cause codes 01-Aircraft, 02-Human Error and 03-

Organisational Issues, Figure 1 shows (as expected) that the most frequent words

are indeed different. Words like “engine”, “loss” and “failure” are associated

with code 01-Aircraft, words like “failure” and “pilot” are associated with code

02-Human Error and words like “collision” and “encounter” are associated with

code 03-Environmental Issues.

This suggests one or two points for our model building process.

• A simple model based on the count of each word that occurs in the narrative

should be able to achieve some predictive accuracy.

• Such a model might “get confused” by certain words. For example, the word

“failure” occurs frequently in both code 01-Aircraft and code 02-Human

Error.

• We might be able to mitigate the above by counting not just words, but

pairs of words. We would then treat the phrases “pilot error” and “engine

failure“ differently. In the field of Natural Language Processing word pairs

are known as bi-grams.

We immediately notice that even the simplest Exploratory Data Analysis (EDA) 
is influencing not only the kind of model we are intending to use, but also the 
features that we will use within that model (e.g. bi-grams). We note in Section 3.5
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Figure 1: The words most frequently used for the different cause codes.

that overdoing the EDA is a risk. It could lead us to focus on models that suit 
features of the data that we happened to have noticed, and to ignore possibly 
much more important features that we did not notice.
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3.3 Feature Engineering

When an Actuary creates a predictive model (for claims frequency, say), he will 
have to decide on risk factors to be included in the modelling process. These 
might include the age of the policyholder and the geo-location. The data which is 
fed into the model will typically be one record per customer per year, with each 
record containing all the risk factors and whether or not the customer reported 
any claims.

In Machine Learning parlance, each record is called an example, and the risk 
factors are called features. We use features to represent the example, and we seek 
to find a relationship (or function) between the features and whether or not the 
customer filed any c laims. Sometimes, the features we really need are not included 
in the raw data. For example, in car insurance power-weight ratio may not be 
in the raw data. Within health insurance, height-weight ratio may not be in the 
raw data. If the model we are using is exceedingly flexible or powerful, it might 
be able to find these relationships even without us calculating t hem. However, 
for simple models such as generalised linear models, we need to calculate such 
features ourselves. We need to use our domain expertise and understanding of 
the real world to propose and calculate features. This is called feature engineering. 
Likewise, enriching internally gathered data with external data sources is feature 
engineering.

Finding and exploring new features is critical to creating good or improved 
models. Many hours might be spent on fine tuning a model to gain some small 
improvement, whereas finding a new and useful feature would provide significant 
improvement.

For our task in this paper, given the type of models that we fit, w e n eed to 
manually find a  way to represent t he n arratives by f eatures s o t hat we c an fit 
models. The simplest way to do this is to count the occurrences of selected specific 
words in each narrative, and we discuss this is further detail next.
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3.4 Word Counts

Possibly the simplest thing we can do is count the number of occurrences of each

word in each accident narrative and then to use these counts to try to predict

the cause code. To keep this manageable, we exclude very common words like

“the” and “and”. We then take only the most common remaining words. The ten

most common words are: pilot, failure, landing, loss, control, resulted, maintain,

engine, power and airplane.

As an example, consider the following narrative:

“The pilot’s spatial disorientation and loss of situational awareness.

Contributing to the accident were the dark night and the task require-

ments of simultaneously monitoring the cockpit instruments and the

other airplane.”

We would represent this narrative as follows:

pilot failure landing loss control resulted maintain engine . . .

count 1 0 0 1 0 0 0 0 . . .

Each narrative is thus represented by a set of features. The modelling problem is

now similar to building a claim frequency model in a pricing exercise. For such a

model we might have a few million rows of records and each row would contain

certain features related to the insured, the policy and the risk and whether or not

this insured had a claim. The data for a frequency model could be set out as:

age region aircraft type . . . claim

policy 1 25 R1 A1 . . . Yes

policy 2 30 R2 A2 . . . No
...

Likewise the data for our model here is laid out as:
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pilot failure landing . . . cause code 1 cause code 2 cause code 3

narrative 1 1 1 0 . . . Yes No No

narrative 2 0 1 2 . . . No No Yes
...

3.5 Practical Tips

Should you explore your data before starting to build models? Actuarial work on

a problem invariably includes an exploratory review of the data before starting

to build models. Exploratory Data Analysis (EDA) can be split into two parts;

checking that the data is correct and then a high level exploration (often visual) of

relationships within the data. The latter often informs, possibly only informally

or even subconsciously, some of the decisions taken during the model building

process. Within the Machine Learning paradigm, it is not obvious that we should

inspect the data in this way before model building. It leads to a risk that our

(incorrect) thinking will “contaminate” the process of model building. After all,

some ML techniques are so powerful that they can (at least theoretically) find

almost any true relationship between the features and what we need to predict.

The ML paradigm is to use an appropriate technique and then “let the data do

the talking”.

A compromise is to follow the following steps:

• Carry out a first EDA for data quality / checking purposes only.

• Fit a first set of models using automated techniques and measure the model

accuracy

• Only then go back and carry out further EDA as required.

Regardless of the extent that EDA is done prior to model fitting, it is good practice 
that within the final model documentation, it is recorded which aspects are purely 
data driven and which are the result of judgement or the imposition of our prior 
beliefs on the model structure and parameters.
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4. LOGISTIC REGRESSION

Now that we have engineered a set of features that can be used to represent

each example, we can move onto our first model. We will start with a logistic

regression. Logistic regression is part of the generalised linear model family and

will have been used in practice by many Actuaries in building frequency models

for insurance claims frequency.

As mentioned previously, one difference between our task here and other tasks, is

that each narrative can have more than one label. For example, when building

claims frequency models, each policy can have 0 or 1 or 2 . . . claims. When

described like this (rather than as a continuous frequency per unit exposure),

such a problem is called “multi-class”. That is to say, each policy can belong to

the class of insureds that claim once, or the class that claims twice and so on.

In this example each policy can belong to one and only one class. However, in

our case each policy can belong to more than one class. Such a problem is called

“multi-label”. There are specific ways of dealing well with a multi-label problem,

but because they are not broadly relevant to Actuarial work we do not use them

here. Rather, we simply focus on predicting whether or not a narrative has been

coded as cause code 01-Aircraft.

4.1 Results

The result of application of Logistic Regression is a scoring algorithm which can be

applied to existing examples or to new examples. The score to be assigned to the

claims narrative is based on the features that we fed into the Logistic Regression.

In our case, these are word counts. Once a logistic regression model has been

fitted, in order to decide which cause code to assign a given claims narrative, we

carry out the following steps:

• Find the score for each word in the claims narrative.

• Sum all the word scores to give a score for the sentence.

• Convert the score into a “probability” that the claims narrative should be
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Word Score
failure 0.73
landing 0.10
due 0.83
gear 1.03
line -0.74
hydraulic 3.60
extension 1.97
Sentence score 7.53

Table 1: Logistic regression scores for predicting cause code 01-Aircraft for the
narrative “The failure of the hydraulic landing gear extension systems due to a
ruptured line.”

coded with a given cause code.

• Based on the probability, assign or do not assign the cause code to the claims

narrative.

As an example, after having trained a model to predict cause code 01-Aircraft (a

problem with the aircraft) based on the top 500 most frequently occurring words,

consider classifying the following narrative:

“The failure of the hydraulic landing gear extension systems due to a

ruptured line.”

The scores for each word and for the whole narrative are shown in Table 1.

The score for the whole narrative is seen to be 7.53. To convert this into a

probability, logistic regression uses the logistic function. The logistic function of x

is
1

1 + exp[−x]
.

The logistic function of the 7.53 score for the claims narrative is therefore

1
1 + exp[−7.53]

= 0.999

Assuming for now that we will classify any narrative with a probability of more
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than 0.50 as cause code 01, we do indeed classify this narrative as a problem with 
the aircraft.

4.2 Interpretation

Many ML techniques result in models which are not easily interpretable. By this 
we mean that, if an interested party were to ask for the exact formula to use to 
make future predictions, it would be difficult to give the answer in a  simple form. 
For certain applications this can matter a lot. For example, we might predict a 
medication to be efficacious for one patient and not for another, and, when we 
were challenged as to which features drive this conclusion and the magnitude of 
the effect of each feature, we would be unable to give a simple answer. Medical 
professionals might find it difficult to take decisions based on the output of such 
a model. In an insurance context, a model which predicts that a customer should 
have a price increase, but leaves an underwriter unable to understand exactly why 
this is the case, may be difficult for the underwriter to implement in practice .
(We will actually see later that often, with some effort, even the more complex ML 
models can be interpreted to some extent.)

The predictions given by a logistic regression can be easily understood, and hence, 
we can gain insight into what words will drive the prediction of a future example. 
For example, looking at words with the highest absolute score gives us an idea 
of which words will cause a sentence to be classified one way or the o ther. The 
ten words with the largest (absolute) scores for predicting cause codes 01, 02 and 
03 are shown in Table 2. We would have expected that sentences with words like 
“turbine”, “oil” and “cylinder” would lead us to predict that a narrative is cause 
01-Aircraft, and that is indeed the case.

Words having a high absolute score are not necessarily the most important words 
for classification of future e xamples. Indeed, the careful reader may have been 
surprised that the word “pilot” is not present in cause 02-Human Error above. The 
above words may have high scores, but they may not occur very frequently. The 
scores for the ten most frequently occurring words are shown in Table 6. We see 
that indeed the word “pilot” does have quite a high score in the model predicting

Casualty Actuarial Society E-Forum, Spring 2016 13



A Practical Introduction to Machine Learning Concepts for Actuaries

01-Aircraft 02-Human Error 03-Environment
word score word score word score

1 rod 10.77 spin 18.31 dark 13.36
2 lock 10.23 distraction 14.18 bird 10.56
3 oil 10.21 federal -13.57 winds 10.31
4 trim 10.11 delay 13.55 deer 9.79
5 turbine 10.02 controller 12.57 tailwheel -8.30
6 throttle 9.98 mechanic 11.79 testing -7.63
7 design 9.54 distracted 11.00 cracking -7.57
8 cylinder 9.54 see 10.99 actions -7.44
9 gross 9.07 medical 10.72 pin -7.28
10 door 8.76 recent 10.39 model -5.75

Table 2: The words with highest absolute scores from the three fitted logistic
regression models. The meaning of these words and why they would indicate a
particular cause is mostly clear. We note, though, these words do not necessarily
occur very often.

cause 02-Human Error, but not in the other two models.

cause 01-Aircraft cause 02-Human Error cause 03-Environment

pilot -0.01 2.89 -0.22
failure 0.73 0.51 0.04
landing 0.10 0.43 0.14
loss 0.27 0.34 0.28
control 0.52 0.78 -0.39
resulted 0.27 0.24 -0.05
maintain 0.54 0.72 0.19
engine 0.33 0.28 -0.58
power -0.16 -0.58 0.41

Table 3: Scores for the 10 most frequently occurring words.

Hence, we see that although the predictions of a logistic regression are easily 
interpretable, we still need to take care in how we use our interpretation.

Reviewing the errors made by these models is instructive. Consider the following 
narrative which is coded as cause 02-Human Error (typically pilot error), but
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which was not predicted as such by the model:

“The pilot’s failure to maintain airspeed and aircraft control, resulting

in an aerodynamic stall.”

This is obviously pilot error as it contains the phrase “pilot’s failure”, yet the 
logistic regression fails to classify it correctly. The reason for this misclassification 
is that the word “failure” is more often associated with the failure of a part of the 
aircraft than it is with pilot failure. Were we to represent the document not just by 
word counts but by counts of phrases of two words (bi-grams) such as “pilot’s 
failure”, we should expect to see some improvement in accuracy. The process of 
considering which extra features to calculate and to add to the model input is 
called “feature engineering”.

4.3 How It Works

Each time we use a model, we should try to understand how it works. This is 
especially important for certain Machine Learning models where it is not obvious 
at first sight what the model is d oing. Logistic regression is not what we might 
call a Machine Learning model. It has a long history in traditional statistics and is 
part of the generalised linear model family. Nonetheless, we provide some brief 
comments below.

Consider a logistic regression model used to find the true p robability, p , of an 
insured customer having an accident. In order to create a useful model, we relate 
p for each customer to the features of that customer. The features might be things 
like age, vehicle type and so on. If we are using n features in our model, then for 
customer j we will refer to his features as:

x(1
j), x(2

j), . . . , x(n
j).

We need to convert these features into our estimate of p(j), the true risk for 
customer j. We will do this by finding a coefficient for each feature,

β1, β2, . . . , β j.
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These coefficients are the scores we referred to in subsection 4.1 above.

Finding these coefficients is hard (see Section 5) , but once it is done, the process

for finding p is exactly the same as our discussion in subsection 4.1. We first find

η(j) = β1x(j)
1 + β2x(j)

2 + · · ·+ β jx
(j)
n .

Then we say that

p(j) = logistic[η(j)].

In our example in subsection 4.1, η worked out to 7.53 and then we had

logistic(7.53) =
1

1 + exp[−7.53]
= 0.999.

Using the logistic function ensures that output of the model is between 0 and 1.

The main work of this model is done by finding

η(j) = β1x(j)
1 + β2x(j)

2 + · · ·+ β jx
(j)
n .

If η(j) is large, the estimated p(j) will be large, and, if used for classification, the

example is classified as 1 or “Yes”. If η(j) is low, the estimated p(j) will be small,

and, if used for classification, the example is classified as 0 or “No”. η(j) depends

on the β’s in a linear way. Hence, the model is just a simple linear model at

heart and really only gives us access to simple ways to find relationships between

features of the examples and things we wish to predict about the examples. In our

task this might be not such a limitation since the value for most of the features is

only 0 or 1 most of the time and, therefore, the relationship for any one feature can

be expressed in a linear way. However, more generally, it should not be surprising

if models that can express non-linear relationships can do bettter than “vanilla”

logistic regression.

4.4 Practical Tips

• Reproducibility. Logistic regression is not an equation that can be solved

with a simple formula. When using some software, a very slightly different
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answer may result each time the logistic regression is run, even when using

the same data. It is often a good idea to specifically set the random seed

used by the software to ensure reproducibility.

• Check the default settings of your software. Regularisation, an idea we will

discuss in a following section, is such an obvious thing to do, that some

software now do it by default. In particular sci-kit learn, the Python module

used for this project will carry out some form of regularisation by default

and we needed to ensure that it was “turned off”, in order to produce the

results in this section.

4.5 Summary and Next Steps

So far we have a seen a simple logistic regression model. There are, however,

many unanswered questions:

• How good is our model?

• Even if we know our model is good for existing examples, how do we know

if our model is any good for future examples?

• We used the 500 most frequently occurring words? We could equally as well

only have used the top 10 occurring words or the top 2000. How do we

know which is best?

• We saw that some words occur very frequently and some occur far less

frequently. This means that the average word count will be much higher

for some words than for others. Does this matter? Can we do anything to

check?

• Can we add other features to our model which will help improve predictive

power?

To answer these questions, we will need to discuss various key areas of Machine

Learning practice:

• Model evaluation measures (Section 6)
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• Generalisation and model validation (Section 7)

• Feature scaling (Section 8)

• Regularisation (Section 9)

• Feature engineering (Section 10)

Before discussing model evaluation, we consider another critical aspect of Machine 
Learning thought, the loss function.

5. LOSS FUNCTIONS

The idea of telling the machine exactly what matters and then letting the machine 
automatically find t he b est m odel w ithin a  c lass o f m odels i s f undamental to 
Machine Learning thought. We tell the machine “what matters” by defining 
a “loss function” which is high when the fitted m odel i s “ bad” i n s ome way 
and “low” when the fitted model is g ood. We then simply have a minimisation 
problem: we need to minimise the loss function. (The meaning of loss function 
in this paper should not be confused with its use in actuarial work where it is 
sometimes taken to mean the distribution function for claims severity.)

There is often a duality between looking at predictive modelling as a task in 
maximising some kind of statistical likelihood or probability on the one hand, 
or treating the task as loss function minimisation on the other hand. In this 
section we demonstrate this duality for the logistic regression model discussed 
in Section 4. In other words, solving the problem of logistic regression from a 
maximum likelihood perspective gives exactly the same result as treating the 
problem as an exercise in minimising the sum of errors where the value of each 
error is defined by a certain loss f unction. Why bother with loss functions when 
maximum likelihood gives the same answer? It turns out that they provide 
flexibility in designing powerful ranges of m odels. This flexibility is not as easily 
available under the probabilistic approach.
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5.1 The Maximum Likelihood Approach

Let us start with the maximum likelihood approach to logistic regression. We will

show how this works from first principles. (Reading this section is not critical for

the flow of the paper, but will give useful insight into the link between traditional

approaches and more general ML techniques.)

We step away from our text prediction task for a moment and consider a model to

predict whether or not a customer will make an insurance claim. A traditional

view of logistic regression is as follows: for any customer we are looking at, let

“Claim” be a random variable which takes value 1 if that customer ends up making

a claim and 0 if not. Let p be the probability that the customer will make a claim,

i.e., Pr[Claim = 1] = p. In other words, “Claim” follows a Bernoulli distribution

with probability p. If we had to guess in advance whether a customer would make

a claim and we knew the value of p, we would guess “yes” if p > 0.5. However,

we don’t know p for new customers. In fact, we don’t even know the value of

p for existing customers, we only know whether or not they made a claim. It is

possible that p, the true risk of a customer making a claim, is 0.99, yet they were

fortunate and did not have an incident in the past year.

We saw in subsection 4.3 that solving a logistic regression requires us to find the

best set of βs where:

η(j) = β1x(j)
1 + β2x(j)

2 + · · ·+ β jx
(j)
n (1)

and

p(j) = logistic[η(j)]. (2)

The traditional statistical way is to approach this from a probabilistic perspective. 
We certainly know whether each existing customer has claimed or not. Let a(j) = 1 
if customer j claimed and 0 otherwise. Assume for now that we know p(j) for 
customer j. If they did indeed claim, then the likelihood of this is p(j). Since in 
this case, a(j) = 1, we can express this as:

(p(j))a(j) = (p(j))1 = p(j).
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Likewise if they did not claim, then the likelihood of this is 1 − p(j). Since in this

case, a(j) = 0, we can express this as:

(1 − p(j))(1−a(j)) = (1 − p(j))(1−0) = (1 − p(j))1 = 1 − p(j).

So, regardless of whether the customer claimed or not, we can write this expression

more generally as:

(p(j))a(j) × (1 − p(j))(1−a(j))

because, if the customer did claim, then the first part of the expression works out

correctly and the second part is just 1 and vice versa.

Our aim is then to find the set of p(j) such that the likelihood is maximised across

all customers. Assuming that each customers’ claims experience is independent,

the likelihood for all our data is:

L(β) =
m

∏
j=1

(p(j))a(j) × (1 − p(j))(1−a(j)).

Note that we cannot manipulate the p(j) directly since we have decided in advance

(through equations 1 and 2) that each p(j) is defined by the features of that

customer and by the βs. Since we assume that the features are fixed, all we can

do to maximise the likelihood is to find the set of βs that achieves this. That is

why we write the likelihood as a function of β, i.e., we write L(β) and not L(p).

As usual in this type of approach, we take logs to simplify things. We refer to the

log of the likelihood as log(L(β)) = l(β) and we have

l(β) = log

(
m

∏
j=1

(p(j))a(j) × (1 − p(j))(1−a(j))

)

=
m

∑
j=1

a(j) log p(j) + (1 − a(j)) log(1 − p(j))

Hence the problem of finding the maximum likelihood solution to logistic regres-

sion is to find the βs that maximise the above expression i.e.

β̂ = argmax
β

m

∑
j=1

[
a(j) log p(j) + (1 − a(j)) log(1 − p(j))

]
(3)
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where

p(j) = logistic

[
n

∑
i=1

βix
(j)
i

]

5.2 The Loss Function Approach

Imagine that you have two possible solutions to a problem. How do you choose 
one solution over the other? You need a way to evaluate each solution. One way 
to evaluate solutions is to calculate the predictions and to charge some kind of 
loss for each incorrect prediction. We sum these charges and call the sum the 
”loss”. We can do this for every solution which is provided to us and we then 
simply choose the solution with the smallest loss.

If we are predicting something which can be classified a s o ne o f a  number 
of categories, we could simply say that the contribution to the loss is 1 if the 
prediction is wrong and 0 if the prediction is correct. The overall loss will then 
simply be the total number of errors made by the predictive algorithm. For 
obvious reasons this is known as the zero-one loss.

Consider the zero-one loss function further. If the result of a logistic regression 
for a customer is that p = 0.75, then since p > 0.5 we classify that customer as 
Claim = 1. If in fact that customer does not claim, then the loss is 1. The same 
loss would occur if p = 0.51 or p = 0.99. However, given that the customer did 
not claim, we might instinctively feel that a predictive algorithm which found 
p = 0.51 is better than one which finds p  = 0 .99. There is a loss function, called 
“cross entropy”, which deals well with this issue and also has theoretically useful 
properties. If a is the actual class (which is either 0 or 1) and p is the result of our 
classifier, then cross entropy is defined as follows:

CE(a, p) = −a log p − (1 − a) log(1 − p)

To see how this works, consider the case when a = 0 (i.e., the customer did not 
claim). Then we have:

CE(a = 0, p) = −0 log p − (1 − 0) log(1 − p) = − log(1 − p).
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If p = 0.99 then the cross entropy is:

CE(a = 0, p = 0.99) = − log(1 − 0.99) = +4.6.

and if p = 0.51 then the cross entropy is:

CE(a = 0, p = 0.51) = − log(1 − 0.51) = +0.71

Clearly the loss gets smaller as p gets closer to zero.

If we use cross-entropy as our measure of loss, then the best βs are the ones which

minimize the loss across all customers, hence we need to find:

β̂ = argmin
β

m

∑
j=1

[
−a(j) log p(j) − (1 − a(j)) log(1 − p(j))

]
= argmax

β

m

∑
j=1

[
a(j) log p(j) + (1 − a(j)) log(1 − p(j))

]
(4)

We can now see that the equation for finding the βs using Maximum Likelihood

(equation 3) is exactly the same as that for finding the βs using the cross-entropy

loss function (equation 4). Many Actuaries may be used to thinking of finding the

best solution to a model as a maximum likelihood problem. Understanding that

this is infact identical to minimising a loss function provides a bridge to many

Machine Learning techniques.

We are now ready to move on to the questions raised at the end of Section 4, and

we start with a discussion of how best to evaluate model performance.

6. MODEL EVALUATION

Consider this question:

How good, objectively, is your model?

A comprehensive answer for a claims severity model might be:

90% of the time my model predicts claims severity within 50% of the 
actual outcome and the remaining 10% of the time it is never more 
than 80% out.
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Practitioners involved in building insurance pricing models often “know” that 
the generalised linear model that they fitted is the “best” in some way because 
it was arrived at by a process of stepwise selection, that AIC / BIC (Akaike /
Bayes Information Criterion) was minimised, or some other statistical process was 
followed in fitting the m odel. However, these statements are not really helpful. 
The best model from amongst many bad models is not necessarily a good model. 
Nor are these definitions of best particularly e nlightening. Therefore, thinking 
through what measure should be used to evaluate model performance and to 
compare this measure between alternative models is a useful process. In this way 
we can objectively measure model performance, find the best model and know 
whether or not it is fit for purpose.

In practice, there are various reasons that we might decide not to use the best 
performing model. For example, it may take a prohibitively long time to find the 
correct parameters for the model. It might be that even if we know the parameters 
of a model, when we get a new claims narrative to classify, it takes a long time 
to run it through the model. There is also the issue of model transparency and 
interpretability (see the discussion in subsection 4.2).

Despite the above, measuring model performance plays a key part in deciding 
which model to use. Even if the model with the best performance is not used, 
it can act as a benchmark so that we know how far short the models actually 
implemented are of best performance.

This section motivates and describes some possible model evaluation measures 
for our task. We then choose one measure which we use throughout the rest of 
our work.

6.1 Classification or Regression

The measure we use depends first and foremost on whether the thing that we 
wish to predict is categorical or continuous. In Machine Learning (and statistical) 
parlance, models which predict a continuous variable are called regression models 
and models which predict categorical variables are called classification models.
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Moving back to our cause code example, our task is classification. The thing

that we are predicting; should a narrative be coded with a given cause code, is

categorical. We will focus, therefore, on performance measures for categorical

models.

6.2 Accuracy

The simplest way to measure model performance is to find the proportion of

predictions that the model gets right. The accuracy of the logistic regression

models fitted in Section 4.1 are shown in Table 4.

Model description code 01 code 02 code 03
Logistic regression (500 words) 81.4% 91.2% 83.2%

Table 4: Accuracy for the logistic regression models based on the top 500 frequently 
occurring words.

The accuracies seem quite high - around 80% or above. However, this is misleading. 
Consider, for example, cause code 01. The proportion of narratives with this cause 
code is 76%. Therefore, a naive classifier which simply predicts that every claims 
narrative should be cause code 01 will achieve an accuracy of 76%. In this light, the 
performance of 81.4% shown in Table 4 is less impressive. Such naive classifiers 
can be spotted if we separately consider model performance on those examples 
which are due to the cause code and those which are not. The accuracy of the 
naive classifier is 100% on those examples due to the cause code but 0% for those 
which are not. Performance measures exist which do take this into account, and 
we look at those next.

6.3 Precision and Recall

In a sample of 1,572 narratives that were not used in fitting the logistic regression, 
1,180 are coded with cause code 01 and 392 are not. Those with the cause code 
we call positives, and those without we call negatives.
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Of the 1,180 positives, 1,051 were correctly classified as positives - we call these

true positives. The other 129 were incorrectly classified as negatives. We call these

false negatives. In the statistical literature, false negatives are known as Type II

errors.

Of the 392 negatives, 257 were correctly classified - we call these true negatives.

The other 164 were incorrectly classified as cause code 01. We call these false

positives. In the statistical literature, false positives are known as Type I errors.

These numbers are not very useful in their raw form, but we can turn them into

performance measures. Two key metrics are derived from these figures:

• Precision: the percentage of things we classified as positive that are true

positives. In our case, this is

1, 051
1, 051 + 164

= 0.865.

• Recall: the percentage of positives that we managed to identify. In our case,

this is
1, 051

1, 051 + 129
= 0.891.

Precision tells us how much we “care” that an example has been classified as 
positive. In medical tests, this is crucial. It tells us how much it matters that a 
patient receives a positive test result. Consider a test which shows positive 100%

of the time on patients which have the disease, and shows positive only 5% of the 
time for patients without the disease. At face value this seems like a pretty good 
test. However, if out of every 1, 000 patients tested only one has the disease then 
in total we will have about 6 positive tests of which only 1 will be a true positive. 
Precision is therefore 1 

1
+5 = 0.17. A patient who gets a positive test only has a 

relatively small chance of having the disease (albeit far higher than the population 
in general).

For our naive model, Recall would be 100%, i.e. we would identify all positives, 
but Precision would be 1,081

1,081
+392 = 0.75. Hence our logistic regression has a better 

Precision than the naive model.
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6.4 The F1 Score

Recall and Precision are useful measures, but sometimes it is useful to encapsulate

both of them into a simple measure. A formula often used for this purpose is:

2 × Precision × Recall
Precision + Recall

.

In our case this evaluates to:

2 × 0.86 × 0.91
0.86 + 0.91

= 0.878.

This is variously known as the F-measure, F-score or F1 score.

The F1 score for the naive model is:

2 × 1 × 0.75
1 + 0.75

= 0.858

which is worse than our logistic regression. Hence on the (fairly arbitrary) trade-

off between Precision and Recall encapsulated in the F1 score, we would prefer

the logistic regression to the naive model.

6.5 Confusion Matrix

If we label every narrative with cause code 01 as “Y” and the others as “N”, we

can write down the results as shown in Table 5. The numbers down the diagonal

are the correctly classified cases. This is known as a confusion matrix, and it can

be useful for spotting problems with models, especially when there are a large

number of mutually exclusive classes.

Predicted Y N
Actual

Y 1,051 129
N 164 228

Table 5: Confusion matrix for the logistic regression model for cause code 01.
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6.6 ROC curves and AUC

Receiver Operating Characteristic (ROC) curves and their associated Area Under

the Curve (AUC) measure are an alternative model performance measure. To

discuss these, we consider the case of RADAR set up to identify aircraft. Flocks of

birds can be mistaken for aircraft if the RADAR are set to be too sensitive. We

can reduce the problem (of having many false positives arising from flocks of

birds) by reducing the sensitivity of the RADAR. However we might then not

identify all aircraft (i.e. we will have many false negatives). Thus, at one extreme

we can reduce sensitivity to zero, in which case there will be no false positives,

but there will also be no true positives because nothing at all is picked up. At the

other extreme, we can set the sensitivity so that the RADAR picks up absolutely

everything. Everything which is an aircraft will be picked up, but everything

which is not an aircraft will also be picked up.

The sensitivity of the RADAR therefore controls a trade off between the true

positive rate (the % of all positives which are correctly classified) and the false

positive rate (the % of things which are not positives but which are classified as

such).

We note that:

True Positive Rate =
true positives
all positives

=
true positives

true positives + false negatives
= Recall

The False Positive Rate is not directly related to Precision or Recall. Rather, it

is related to yet another measure, Specificity. Specificity is the percent of actual

negatives which are correctly identified:

Specificity =
true negatives
all negatives

=
true negatives

true negatives + false positives

and

False Positive Rate = 1 − Specificity =
false positives
all negatives

Clearly, the True Positive and False Positive Rates cannot be less than 0 or more 
than 1. The trade off between them traces out a curve known as the Receiver 
Operating Characteristic (ROC) curve. The area under the ROC curve (AUC)
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cannot be less than 0 nor more than 1. A perfect model will have an AUC of 1. A

model which is naive and no better than random guesswork will have an AUC of

about 0.50.

Within our setting, and given the output of the logistic regression, instead of

classifying examples as cause code 01 when p > 0.5, we can classify examples as

cause code 01 when p > 0.01 or p > 0.99 or indeed any threshold. As we vary the

threshold we trace out the ROC curve and we can also calculate the AUC. The

result is shown in Figure 2.
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Figure 2: ROC curves for the logistic regression model fitted in Section 6 and for 
the naive model. We can see that the naive model is not useful for separating 
between examples that should be classified as cause 01 and those which should 
not be. On the other hand the logistic regression clearly has some power.

Whilst AUC provides a single metric which can be used to compare models, it is 
not at all obvious that this is a sensible measure to use in choosing models in our 
context. We will, after all, set the threshold at a particular value. Does it help if 
our model is better than other models over a range of threshold values? Although 
the reader may not agree with this, our point here is to illustrate that the thought 
process itself is important. The choice of model performance measure may affect 
the model that will be chosen and therefore should not be lightly undertaken (or
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undertaken by default).

6.7 Bespoke Measures

The most useful measure is one which is relevant to the business problem being 
considered. Consider insurance pricing in a market which is only marginally 
profitable and which is very price e lastic. Any significant underpricing will bring 
in lots of highly unprofitable b usiness w hereas over p ricing w ill l ose t op line 
revenue but have little impact on profit. If profit is a key performance metric, the 
measure used for Model Performance may need to reflect this asymmetry.

Actuarial practitioners often carry out a “decile analysis” which involves splitting 
the data into deciles based on the predictions output by the model ranked in 
increasing order. For each of these deciles, the average prediction and the average 
actual outcome is calculated. A plot is then made of the actual outcome (y-axis) 
against the predicted outcome (x-axis). If the model is “good”, the resulting line 
will slope upwards and have a slope of roughly one. We can do this for our 
logistic regression and for the naive model and the results are shown in Figure 3.

This approach does demonstrate whether or not the model is achieving any 
predictive power. However, it can be difficult to compare between models, because 
it does not distill model performance to one number. Also, even if we do distil 
this graphic to a single number, it is not obviously related to business objectives.

As an aside, we note that actuarial practitioners often call these graphs “uplift 
curves”. There is a form of modelling, used in marketing, personalised medicine 
and elsewhere, called “uplift modelling”. This modelling has nothing to do with 
these curves, and this notation can therefore be confusing when talking to people 
in these fields.

6.8 Summary and Next Steps

We have looked at various model performance measures relevant to our classifica-

tion task. We have noted that good practice in model building should include a
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Figure 3: Decile analysis of the the logistic regression model carried out in
Section 4. It can be seen that examples that the logistic regression classifies as
cause 01 with a high value of p are indeed mostly cause 01. However, the set
of examples classified by the logistic regression as not being cause code 01 and
which have a value of p close to zero are still in fact more than 20% cause code 01.

deliberate and thoughtful choice of performance measure. For our purposes we

will use Accuracy because:

• It is simple.

• It is easy to communicate; i.e., it is meaningful to say that “90% of the time,

our model correctly identifies whether or not a narrative should be coded as

cause 01”.

• For our purposes, the cost of errors are “symmetric”, i.e. it is equally bad to

code a narrative as cause 01 when it is not as it is to miss coding it as cause

01 when it should be.

• There is no specific downstream process which relies on our analysis through

which we could consider more bespoke model performance measures.

We have now addressed the first question raised in subsection 4.5, “How good is 
our model?” and we move on to the next question, “Even if we know our 
model
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is a good for existing customers, how do we know if our model is any good at all 
for future customers?”

7. GENERALISATION ERROR AND MODEL VALIDATION

We have fitted our model based on data on existing n arratives. How do we know 
if our model will be any good for narratives that we have not yet seen and those 
that will be written in future? Given the real world context of our own task, we 
must immediately admit that we cannot have any guarantee at all. This is because 
the staff in the NTSB who write the narratives and code them could start, from 
tomorrow, writing the narratives in a totally different style, or coding them in a 
different way. They may realise that all coding to date was simply wrong and a 
new approach is needed. In addition, there is a more subtle risk. It could be that 
across some forms of sentences our model predicts very poorly, but these types 
of sentences are not frequently in the sample data. Something could change in 
the future causing these kinds of narratives to become much more common. In 
this case, model performance will deteriorate in practice even though NTSB staff 
behaviour has not changed.

Likewise, there are no guarantees in predictive modelling for pricing. Claims-

making behaviour can change across the whole population or within segments. 
The model can be a poor predictor of frequency for a given segment, and that 
itself can be the cause of an increase of that type of insured so that overall, the 
model performs poorly and profitability reduces.

This thought process leads us towards the problems of the model refresh process 
and optimal timing of model refreshes. This is critical within modelling depart-

ments which may support 100’s of models. We do not consider these issues in 
this paper inasmuch as they are not specific t o M achine L earning. T hey exist 
regardless of what type of model is used.

Ignoring for now what might change in the future, how do we know if our 
model will perform well even if nothing changes? To be precise, we are satisfied 
assuming that future examples will have the same distribution of features that we
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currently see, and we are also satisfied assuming that the unknown relationship 
between features and the thing we are trying to predict remains the same. But we 
still wish to answer the question, how accurate can we expect our model to be for 
examples we have not yet seen? Generalisation and validation, two ideas which 
are very much part of the Machine Learning thought process, will help us answer 
this question, and we now discuss them in some detail.

7.1 The Train-Validation-Test Paradigm

The expected error that our model makes on future, unseen examples is called 
generalisation error. As we use more features and models of increasing complexity, 
it is possible that the relationship we find b etween f eatures a nd w hat we are 
predicting is only due to the vagaries of the data we are looking at and will not 
apply to future examples.

Traditionally, Actuaries (and Statisticians) have used measures such as AIC or BIC 
(Akaike / Bayes Information Criterion) to control for this problem. The approach 
taken in Machine Learning is different and very straightforward. We divide the 
data that we have available to us now into two datasets. The first dataset is used 
for fitting t he m odel. T he s econd d ataset i s c alled t he t est s et; i t i s p ut “into 
a vault” and not used until the end of the model building process. The first 
dataset is used to fit m odels. We c an fi t as  ma ny di fferent mo dels as  we  like. 
This may include models from different families (e.g. logistic regression, random 
forests, or even mixtures of the two). Finally, once we have completed our model 
building process, we take the test dataset “out of the vault” and calculate the 
errors of all our different models over the test data. We chose the model with the 
best generalisation error over the test data. Nowhere within our model building 
process (except possible in the EDA data quality checks) have we seen this data. 
Therefore, if our final model has a  given generalisation error over the test data, 
we can reasonably assume that this is reflective of future model performance.

In carrying out our calculations for this paper we followed the same process. On 
starting our task, we put 20% of our data into the vault. We will only take it 
out of the vault in Section 11 in order to chose our final model and to estimate
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generalisation error.

We next show how the first d ataset c an b e s plit i nto t raining a nd validation 
datasets in order to assist model fitting.

7.2 Model Validation, Bias and Variance

Some models are very complex and have various sets of parameters that need 
fine t uning. At first sight, standard logistic regression is  not one of  th ese. There is 
only one set of parameters - the βs, and any statistical software can easily find 
the best βs. We easily found the best βs when we fitted the model in Section 4. 
However, we had used only the top 500 most frequently occurring words and we 
were left with the question of how many words we should use: the top 10? the 
top 500? the top 5,000? If we use too few words, the model will perform poorly 
because it does not pick up important relationships between words and cause 
codes. This source of error is known as bias. If we use too many words, the fitted 
model will just pick up the vagaries of the sentences we are using and the fitted 
βs will vary greatly according to which sentences we happen to have access to. 
This source of error is known as variance. Hence the optimal number of words to 
use is a parameter which needs to be selected. Only after the parameter for the 
number of words has been set can a logistic regression be fit. Such parameters are 
known as hyper-parameters.

To help with this decision, we cannot use the test dataset. It is in the vault and can 
only be used to choose our final m odel. If we start making modelling decisions 
based on the test dataset, the model we fit is likely to perform better on the test 
dataset than on future, unknown examples. Neither can we use the dataset we are 
using for modelling. If we use that, we will simply find that the larger the number 
of words we use, the better. This is exactly the overfitting we are looking to avoid.

Instead, we split the remaining data (randomly) into a training set and a validation 
set. In our case, we put 80% into the training set and 20% into the validation set.

Next we fit many models on the training dataset, and we measure the accuracy 
on both the training dataset and the validation dataset for each model. The result
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is shown in Figure 4. The error on the training dataset reduces as the number of

words used increases, not a surprising result. There are only 6,000 or so narratives

in our training data. By the time we include 2,000 different top words in the

model, we have 2,000 ways to push the fitted model towards perfectly predicting

the 6,000 narratives. We can almost perfectly memorise the exact relationship seen

in the sentences from the training set. However, there is no guarantee that the

specific relationships we memorise will hold for unseen sentences in the validation

set or for future unknown sentences. The validation error first reduces and then

increases. This is also often seen. There is a trade-off between learning what is

generally important and over-fitting the training data.
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Figure 4: Training and validation curves for the number of words used. The 
training curve improves as model complexity increases while the validation curve 
follows a U shape. Too few words leads high model error due to bias, while too 
many words leads to high model error due to to variance.

The best validation error occurs at 200 words and then almost again at around

400-500 words. It is a little difficult to make a decision from the validation curve 
because it is bumpy. This is not surprising - there are only 1,600 narratives in the

validation data, and therefore results are quite volatile. k-fold cross-validation is a 
technique to help with this volatility and we turn to it next.

Casualty Actuarial Society E-Forum, Spring 2016 34



A Practical Introduction to Machine Learning Concepts for Actuaries

7.3 Cross-validation

In the previous section we split our first d ataset i nto t raining a nd validation 
datasets. This split is random and different splits would give slightly different 
results. This will especially be the case when the validation dataset is quite small 
(as for our task). Instead, we can split the first dataset into multiple ( e.g. five 
in this discussion) parts. We take the first p art a nd t reat i t a s a  validation set 
and the other four parts as our training data and we carry out the process of 
the previous section. We then take the second part and treat it as the validation 
and the other four parts as our training data and we again carry out the process 
of the previous section. We do this for all five parts, resulting in five validation 
curves. Finally, we average them to get a more stable validation curve. This is 
called 5-fold cross-validation. In general this technique is known as k-fold cross 
validation (k-fold CV). k, the number of folds, is often chosen to be five or t en. We 
can take this to the extreme, using the same number of folds as there are examples. 
Then for each fold, all the training data is used except one example. This is called 
Leave-Out-One Cross Validation (LOOCV).

Figure 5 compares simple cross-validation with 5-fold CV. It can be seen that the 
curves are similar, but the 5-fold CV curve is smoother.

It is now clear that the best validation error occurs when we use around 250 words 
and beyond that model performance deteriorates.

7.4 Practical Tips

Training and validation curves should look sensible. If they don’t, they are 
probably wrong. For example, a validation curve that is below the training curve 
(i.e. has a lower error rate) is probably wrong.

Validation curves do not always look nicely U shaped. They can be flat, or they 
can reduce but not increase again. As practitioners come across such cases, they 
should investigate that the data, models, parameters and so on are appropriate.

A related point is whether or not we should expect the training curve to smoothly
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Figure 5: A comparison of cross validation and 5-fold cross validation curves. It 
can be seen that the they are similar, but the 5-fold CV curve is smoother.

reduce as model complexity increases. If the models are nested so that the possible 
solution set for more complex models includes every possible solution set of every 
simpler model, then we would expect the training curve to reduce smoothly.

In our case, solutions to the more complex models do indeed include all of 
the solutions to all of the less complex models. However the training curve in 
Figure 4 does not reduce perfectly smoothly. This is because we are measuring 
model performance based on Accuracy which is different to the measure (loss 
function) used for fitting (cross-entropy as discussed in Section 5 ). Figure 6 shows 
cross-entropy (scaled to be visible on the same axis as Accuracy) together with 
Accuracy. It can be seen that the cross-entropy does indeed reduce smoothly as 
model complexity increases.

Overall then, training and validation errors should “make sense”. If they don’t 
the reasons should be investigated.
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Figure 6: A comparison of cross validation curves based on Accuracy and Cross 
Entropy (CE). Since logistic regression minimises CE, the curve based on CE is 
smooth.

7.5 Summary and Next Steps

We have seen that there is no guarantee that models will perform well in the 
real world. This is because things may change in the real world which make 
our model obsolete or which expose weaknesses in our model which were not 
previously important or even known. We have also seen that even without such 
changes, there is a risk that we overfit our models to the data we have available. 
We discussed a solution to this which involves putting a test dataset “in the vault” 
and then using validation techniques on the remaining data. Using the techniques 
in this section have shown us that a logistic regression model based on the top 250 
words is a reasonable choice for cause code 01. The 5-fold cross-validation error is 
0.183 (Accuracy of 0.817). Of course we have no idea of what the Accuracy will be 
on the test set, but we should expect it to be slightly worse than this.

We now turn to the next question we raised in section 4.5, “We saw that some 
words occur very frequently and some occur far less frequently. This means that 
the average word count will be much higher for some words than for others. Does
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this matter? Can we do anything to check?”

8. FEATURE SCALING

In this section we discuss feature scaling, a data preparation method which is

necessary before certain Machine Learning techniques can be used and without

which they will fail to produce sensible results. At this stage we have not yet

discussed such techniques. We motivate wanting to carry out this data preparation

procedure from our preference to be able to compare scores.

8.1 Results

When we apply feature scaling, the classification results that we get from logistic

regression will be exactly the same, but the scores for the word features will be

more comparable. The results are shown in Table 6 below where the score for

“pilot” is now one of the highest scores.

without feature scaling with feature scaling

pilot 2.89 1.44
failure 0.51 0.26
landing 0.43 0.2
loss 0.34 0.16
control 0.78 0.37
spin 17.45 1.48
distraction 13.75 1.21
federal -15.28 -1.04
delay 17.19 1.21
controller 11.37 1.18

Table 6: Scores from the model for cause 02-Human Error, with and without 
feature scaling. Feature scaling leads to scores being of similar magnitude.

As mentioned above, the true motivation within Machine Learning for feature 
scaling is that without it, certain methods would fail. We will see more of this in 
Section 9.
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8.2 How It Works

In subsection 4.2 we saw that scores for important words that occur infrequently

are far higher than important words which occur frequently. For example, in our

training data, the word “pilot” occurs 3,429 times and has a score of 2.89 when

classifying cause 02-Human Error. On the other hand, the word spin occurs only

36 times and has a score of 18.31 when classifying cause 02-Human Error. Which

of these two words is more important to us in classifying a general example? The

score of the word “pilot” is probably high enough to tip the balance to classifying

as cause 02-Human Error in the 3,429 examples where it occurs and so it is almost

certainly more important. Thus, the fact that its score is so much lower could be

misleading.

Is it possible to change the features in such a way that their scores more closely

reflect their importance? Before adjustment, the feature for the word “pilot” is one

in the 3,429 examples where it occurs and zero otherwise. On average its value

is 0.545. Similarly, the average of the feature for the word “spin” is 0.006. We

simply adjust each feature so that on average it has a mean of zero and standard

deviation of one. We find the mean and standard deviation of each feature (across

all training examples). As we have seen, the mean of the feature for the word

“pilot” is 0.545. The standard deviation for the feature “pilot” is 0.499. In every

example we now take the feature for the word “pilot” (which is either zero or one

since there is no narrative in which the word “pilot” occurs more than once) and

deduct the mean and divide by the standard deviation. If the word ”pilot” was in

a narrative so that the feature was one, the feature becomes:

1 − 0.545
0.499

= 0.91.

Applying the same process to the feature for the word “spin” leads to the value 1

being transformed to
1 − 0.00573

0.0755
= 13.18.

Applying a transformation to each of the features separately to make their magni-

tudes broadly similar is called feature standardisation. The particular method we
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used above is sometimes called Z-score normalisation. An alternative is to ensure 
that each feature lies between zero and one. This can be done by deducting the 
minimum value and dividing by the range. (Interestingly though, this would not 
be useful for our data.)

8.3 Practical Tips

Feature scaling is so critical to some Machine Learning procedures, it is often built 
in to the programs that carry out those procedures so it is not necessary to carry 
it out explicitly. Clearly, one needs to know which procedures do require feature 
scaling and whether or not it is done automatically within the code. Explicitly 
carrying out feature scaling and turning off any automatic scaling within the 
software can lead to a more transparent process.

9. REGULARISATION

Now that we have covered loss functions and feature scaling, we are able to 
approach a very important idea within Machine Learning, regularisation. We 
will motivate this topic by referring back to our discussion in Section 7 where we 
found that using the most frequently occurring 250 words was optimal in terms 
of finding a logistic regression model which did not overfit the training data and 
hence generalised well. Our approach was to fit models over the top 10 words, 
then over the top 20 words, then the top 30 and so on. After 250 words, adding 
extra words increased cross validation error.

This approach has an obvious weakness. Within the setting of our task, it could 
well be that within the top 250 words there are words which do not help the 
model to generalise and indeed, there could be words amongst the many less 
frequent words which would help generalisation. What is more problematic is 
that for more general tasks, there is no obvious order at all in which to add the 
features. What we really need is a method that is allowed to use all the features 
but somehow avoids becoming too complex, leading to poor generalisation. A 
solution to this problem, often used in Machine Learning, is called regularisation.
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9.1 Results

For cause 02-Human Error, the best 5-fold cross validation error (error of 0.183, 
Accuracy of 0.817) was previously achieved with the top 250 most frequently 
occurring words. If, instead, we use the top 5,000 words, but control model 
complexity using a type of regularisation called L2 regularisation, the best 5-fold 
cross validation error is reduced to 0.173 (and Accuracy increases to 0.827). This 
does not guarantee that when we finally take the test dataset out of the vault, the 
regularised model will perform better, but an improvement of 1% for little extra 
modelling effort is worthwhile in our context (where the naive model achieves 
75% Accuracy).

When we carry out regularisation, we only accept more complex models if they 
provide a reasonable improvement in model performance on the training set. The 
amount of performance improvement needed in order to accept a more complex 
model is controlled by a parameter. We will explain in further detail below 
that the optimal value for this parameter can be found using cross validation. 
Figure 7 shows the result of this search. It can be seen that as the parameter 
allows models of increasing complexity (increasing values on the x-axis), we first 
see improvement on validation error, but when the parameter allows the models 
to get too complex, validation error suffers.

We will also discuss below a form of regularisation called L1 regularisation. We 
will explain that this has the nice property that it will set many of the βs to zero. 
When β is zero for a feature, the word relating to that feature is not being used at 
all in the model. Hence, L1 regularisation selects which words are important out 
of the full vocabulary of words that we choose to use. When we used a vocabulary 
of the top 5,000 words with L1 regularisation, the number of words used in the 
fitted model for cause 01-Aircraft was 1,244 (though model validation error was 
not as good as under L2 regularisation).
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Figure 7

9.2 How It Works

As discussed previously, the power of a model to generalise (over new data)

suffers when the models become overly complex and so overfits the training data.

If we could tell the computer that there is a trade off between the complexity and

training error, the computer would then not blindly increase model complexity

just because the training error reduces. Regularisation achieves exactly this.

We have previously seen (Section 4), that the βs which are found are the result of

minimising a loss function

β̂ = argmin
β

m

∑
j=1

[
−a(j) log p(j) − (1 − a(j)) log(1 − p(j))

]
.

All a computer does when it solves a logistic regression, is to solve this minimisa-

tion problem. If we add to this loss function a cost for model complexity, then 
the solution that is found will be forced to balance training error against model 
complexity. This could very well provide a good solution.

How can we represent model complexity within the loss function? This is a 
hard question, especially since we have not defined “ complex” i n a  w ay we 
can measure. An approach which works well in practice, follows. For logistic
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regression, consider the values for the βs. If there are lots of βs with non-zero

values, the model is complex. We might try simply adding the values of all the βs

and using this value to reflect model complexity, but then positive and negative

values will cancel out. The most obvious alternatives are to add the squared values

or the absolute values. If we use the sum of the squared values, the problem is

now simply to find:

β̂ = argmin
β

[
m

∑
j=1

[
−a(j) log p(j) − (1 − a(j)) log(1 − p(j))

]
+ λ

n

∑
i=1

β2
i

]
.

where we have also introduced a new parameter λ which controls the trade-off 
between model complexity and training error.

Regularisation using the squares of the βs is known as L2 regularisation. Regulari-

sation using the absolute values of the βs is called L1 regularisation and is known 
as the LASSO (Least Absolute Shrinkage and Selection Operator). Although we 
do not give the reason here, using the LASSO has the interesting outcome that 
many of the βs will be zero.

There is an important issue that arises when trying to implement the above. λ 
provides a trade-off between model complexity and training error. We decided to 
measure model complexity based on the size of the βs but the βs are not really 
unique. They depend on the scale of the features. If we measure a feature using 
centimetres, the β for that feature will be far smaller than if we measure that 
feature in kilometres. Results of regularisation, therefore, depend on the possibly 
arbitrary scale of the features. To deal with this, some form of feature scaling is 
always recommended before carrying out regularisation (unless all features are of 
a similar scale).

Finding solutions to regularised logistic regression is straightforward other than 
finding the best trade off between model complexity and training error, i.e., the 
best value for λ. Since λ is a hyper-parameter, as with the parameter for the 
number of words in Section 7, we find it using cross validation. We simply try a 
range of values for λ and for each we fit the regularised model on training data 
and find the validation error. The result of this process is shown in Figure 7 and
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has already been discussed above. We note, however, that the values on the x-axis

are in fact 1
λ often referred to as C. This allows increasing values on the x-axis to

represent increasing model complexity.

9.3 Practical Tips

Often, the curve produced whilst searching for the optimal model complexity

will reduce quickly and then be flat over a long range. It may be that the very

best cross-validation error is achieved when the model is quite complex, but a

validation error almost as good is achieved earlier on using a much simpler model.

Given the downsides of using more complex models, it is probably better to use

the simpler model. Ad-hoc methods to chose the appropriate model complexity

exist, but the main idea is to use a well reasoned approach (and not to be tempted

to see performance on the test dataset).

10. FEATURE ENGINEERING

In this section we apply regularisation to help us explore further feature engi-

neering. We create features which we think likely to improve model performance

and use k-fold cross-validation, logistic regression and regularisation to decide

whether or not to include the new features. We find that if too many features are

added, regularisation does not find the best model. However, with some care,

model performance (as measured by Accuracy using 5-fold cross validation) does

improve.

10.1 n-grams

Bi-grams are phrases of two words and tri-grams are phrases of three words.

Consider the narrative:

The failure of company maintenance personnel to ensure that the 
airplane’s nose baggage door latching mechanism was properly config-

ured and maintained, resulting in an inadvertent opening of the nose
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baggage door in flight.

In this narrative, bi-grams are, “the failure”, “failure of”, “of company”, “company 
maintenance”, “maintenance personnel”, “personnel to” and so on. Tri-grams are 
“the failure of ”, “failure of company”, “of company maintenance” and so on.

Rather than simply taking all bi-grams and tri-grams, we take only those that 
occur more frequently than would happen by chance given the frequency of 
their constituent words. For example, out of 226,340 words in the narratives, the 
word “go” appears 25 times and the word “around” appears 36 times. Were they 
to appear independently of each other, the phrase “go around” would be very 
unlikely to appear even once, yet it appears 22 times.

The bi-grams chosen in this manner include: go around, timely manner, avia-

tion administration, dynamic rollover and situational awareness, which are all 
clearly meaningful. The tri-grams chosen in this manner include: federal aviation 
administration and instrument meteorological conditions and other meaningful 
phrases.

In the same way, quad-grams are phrases of four words and included phrases 
such as “loss of engine power”.

Initial results from using bi-grams and tri-grams as features were disappointing, 
Accuracy did not improve. Adding quad-grams to this extended feature set also 
showed no improvement. However when we kept the original features (based on 
frequently occurring words) and added quad-grams only, performance improved 
from an Accuracy of 82.7% to 84.1%.

10.2 Lexical Diversity

Lexical diversity measures the diversity of words used in a text. We define it here 
as the number of words in the text divided by the number of unique words in the 
text. A low value implies a large diversity of words and the minimum it can be is 
one. For example, in the sentence “The animal ate the animal.” there are 5 words 
but only 3 unique words, so the lexical diversity is = 1.67.
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Figure 8 shows that lexical diversity does vary between narratives according

to what cause code or codes the narrative is describing. The figure shows the

distribution of lexical diversity for the given categories, and it can be seen that

lexical diversity is high for cause codes describing incidents due only to the

environment.
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Figure 8: The distribution of lexical diversity for the given categories. It can be 
seen that lexical diversity is high for cause codes describing incidents due only to 
the environment

Adding lexical diversity to our features did not further improve accuracy, however.

10.3 Practical Tips

Regularisation searches a certain part of all possible solutions. In our work we 
found that mindlessly adding many features and assuming that regularisation 
will find t he b est m odel d oes n ot n ecessarily l ead t o a  g ood o r parsimonious 
model. Hence, domain expertise and some careful thought is necessary in model 
development.

In our task we could inspect the incorrect classifications made when using single 
words only and could try to understand why bi and tri-grams would not help to
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correct those errors. In a more general setting such as predicting claims frequency 
there would be no obvious way to understand why certain extra features are 
not helpful. Nevertheless, it is important to be honest, however much we might 
think that a feature should be useful. If it is not, we need to admit that there is 
no support for our hypothesis in the data. Incidentally, this does not mean we 
cannot use the feature as a rating factor, only that we should note in our model 
documentation that we have chosen to use something which is not supported by 
the data and which could, therefore, potentially harm model performance.

10.4 Summary and Next Steps

We have now covered many of the key Machine Learning ideas relevant for 
creating a proper structure for applying Supervised Learning techniques. Feature 
scaling and regularisation allow us to fit m odels w here t here m any features, 
whilst limiting the risk of overfitting. F eature e ngineering p rovides a  way to 
improve model performance - if good features can be found. Splitting our data 
into training, validation and test datasets and using the test dataset only at the 
very end of all model fitting r educes t he r isk o f o ver-fitting an d po or model 
performance (generalisation error). With this structure in place, the natural next 
steps in our analysis are the application of techniques from traditional Natural 
Langauge Processing as well as more recent Machine Learning based ideas (such 
Gradient Boosting and Deep Neural Networks) in order to try to improve model 
performance. This however, is beyond the scope of this paper and instead we now 
conclude by taking the test data “out of the vault” and finding the model with 
the lowest generalisation error.

11. CONCLUSIONS

11.1 Model Comparison

Since we have been very careful not to use our test set for any part of the fitting 
on any of the models, we can now, finally, take our test set out of the vault and
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measure performance of the various models. We can be reasonably sure that, so

long as recording practice at the NTSB does not change and the distribution of the

types of accident do not change, the accuracy of our methods on the test set will

reflect accuracy on future, as of yet unseen, examples. Table 7 shows the results.

Model description 5-fold test
cross validation

Logistic regression (top 500 words) 81.0% 81.3%
Logistic regression (top 250 words) 81.7% 81.3%
Logistic regression (5000 words and regularisation) 82.7% 83.2%
As above but 1250 words and 4-grams 84.1% 83.8%
Gradient Boosting (using trees of depth 4) 83.4% 83.5%
BoosTexter 83.8% 82.8%

Table 7: 5-fold cross-validation and test set Accuracy for the various models in
this paper.

Logistic regression using the 1,250 words chosen from an earlier model together

with 4-grams performs best on the test set. Although this model is more complex

than some of the earlier models, the performance improvement on the test set is

significant, and therefore, we chose to proceed with this model.

It is of interest to see which cases the model does not correctly classify. Over half

of cases incorrectly classified would probably have been classified the same by a

human being using the same narrative. For example:

The ground crewman’s failure to follow the tow bar disconnect stan-

dard operating procedures.

is classified by our predictor as not being due to cause 0 1-Aircraft. However, the 
NTSB code does flag this c ause. The reason for this could be that the extended 
narratives, which we have not used, contain additional information. Beyond this, 
the models remain imperfect because they consider words such as “failure” out of 
context, that is, without knowing whether the narrative refers to pilot failure of 
a failure of some part of the aircraft. Domain specific Natural Language models 
or modern forms of Neural Networks would be expected to provide improved 
performance in this task.
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11.2 Conclusions

Machine Learning techniques for Supervised Learning are very easy to apply in

practice. Open-source and proprietary software make using the most modern

techniques as easy as fitting a generalised linear model. However, with increased

model complexity comes the risk of choosing models that will actually perform

more poorly in practice.

The concepts we have discussed:

• the loss function

• choosing a model evaluation metric deliberately rather than by default

• using training, validation and test sets to correctly understand model gener-

alisation error

• using feature engineering to enrich the data

• using feature scaling to ensure correct fitting of certain model types

• and using regularisation together with cross validation to find the best of a

set of models

are key parts of the model building pipeline that is required for the fitting and 
choosing of appropriate models. Where not already done so, these can be easily 
integrated to the work flow of actuarial teams.
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