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Abstract 
The Cape Cod method is a commonly used technique where the a priori loss ratio is calculated as the weighted 
average of the chain ladder ultimate loss ratios across all years with the “used” premium as the weights. It applies 
the same a priori loss ratio estimate (on a trended, current rates level) across all years, without consideration for 
any possible changes that may have occurred. A difficulty arises when the loss ratios show improvement or 
deterioration, which is a fairly common scenario. When this occurs, the amount of credibility that should be 
given to the shift is mostly left to guesswork. 
This paper uses the Kalman Filter to automatically smooth the loss ratios based on the amount of credibility 
inherent in the data in a manner that is robust and that is consistent with the Cape Cod method. It is shown how 
this method can be thought of as a credibility weighting between the Cape Cod and Chain Ladder techniques, 
each of which are possible at the two extremes. It is then shown how external predictive information, such as the 
state of the economy or the insurance cycle, can be incorporated to help produce more accurate results. 
Simulation results are presented that illustrate the error reduction this method can provide to both historical years 
and to the latest year. 
Keywords. Loss Reserving, Credibility, Smoothing, Kalman Filter, Trend 

______________________________________________________________________________ 

1. INTRODUCTION 

The Cape Cod or Stanard-Buhlmann (Stanard 1985) method is a commonly used technique where 
the a priori loss ratio is calculated as the weighted average of the chain ladder ultimate loss ratios across 
all years with the “used” premium as the weights. It applies the same a priori loss ratio estimate (on a 
trended, current rates level) across all years, without consideration for any possible changes that may 
have occurred. A difficulty arises when the loss ratios show improvement or deterioration, which is a 
fairly common scenario. This can happen as a result of using rate changes or trends that are not 
completely accurate, changes in policy wording, or temporary shifts in the exposure to loss caused by 
economic or other factors. When this occurs, the amount of credibility that should be given to the 
shift is mostly left to guesswork. Being too slow to give credit to improving experience can cause the 
company to miss out on profitable opportunities and also frustrate underwriting management, and 
detecting deterioration too late can cause declines in profitability and capital that could have been 
avoided. Being too slow to detect any type of change can also contribute to diminished confidence in 
the entire reserving process. On the other hand, reacting to noise too quickly will cause faulty decisions 
to be made with negative results as well. 

This paper presents a method that automatically smooths loss ratios based on the amount of 
credibility inherent in the data and that is consistent with the Cape Cod approach. If no credibility is 
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given to any changes, a single loss ratio will be indicated for all years, and the results will match the 
Cape Cod method. On the other extreme, if full credibility is given to the chain ladder indications 
from each year, the final results will match the Chain Ladder method. Anywhere in between can be 
thought of as a credibility weighting between these two methods. It is then shown how external 
predictive information, such as the state of the economy or the insurance cycle, can be incorporated 
to help produce more accurate results. 

1.1 Research Context 
Gluck (1997) improved upon the original Cape Cod technique by adding a decay factor which gives 

increased weight to the more local experience, effectively smoothing the data. But there is still little 
guidance as to how much credibility or smoothness should be used. (There are formulas in the 
appendix for approximating this, but they are difficult to follow and implement, and the iterative 
approach suggested to solve the equations is not guaranteed to converge to the optimal solution, and 
likely will not.)  

The Kalman Filter is a very popular smoothing algorithm used in many econometric applications. 
De Jong and Zehnwirth (1983) were the first to introduce its use into reserving and used it to help 
smooth development patterns. Both Zehnwirth (1996) and Wuthrich and Merz (2008) use the Kalman 
Filter to smooth the actual reserving estimates, but their formulations are much more complicated 
than a simple Cape Cod approach and will not be discussed here. Evans and Schmid (2007) use the 
Kalman Filter to derive smooth trend estimates but their approach is not suitable, nor intended, to 
apply directly to loss ratio estimates. None of these approaches demonstrate a simple, easy to 
understand framework that is in line with traditional actuarial practice, as the Cape Cod method does. 
The Kalman Filter formulas can also seem non-intuitive and hard to understand, making 
implementation of such an algorithm in the reserving context challenging. Finally, and also very 
critical, the indicated smoothness derived from the Kalman Filter or similar methods can be very 
volatile and inaccurate, essentially precluding its use in practice. As mentioned in Schmid et al. (2013), 
even the time series used for NCCI ratemaking is too short to reliably estimate the variance of the 
year-to-year changes, which is essential to determining the credibility. Having a smaller amount of data 
than NCCI would compound this problem. If this issue is not properly handled, such as by using the 
strategies that will be discussed in this paper, the Kalman Filter results cannot be relied upon. 

1.2 Objective 
The goal of this paper is to present a simple, easy to understand, and yet powerful and robust 

framework of applying the Kalman Filter to smooth loss ratio estimates that is consistent with the 
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Cape Cod method. This smoothing algorithm is applied to the on-level, trended ultimate Chain Ladder 
loss ratios with weights equal to the premiums divided by the LDFs, or the “used premiums”. The 
results of this algorithm are the a priori loss ratios to apply to each year via a Bornhuetter-Ferguson 
method. If the algorithm determines that no credibility or smoothness should be given, the result for 
each year will be the weighted average across all years, and the method will be equivalent to the Cape 
Cod. On the other extreme, if full credibility or maximum smoothness is indicated, the a priori loss 
ratios for each year will match those of the Chain Ladder method, and so the final results will be 
identical to the Chain Ladder as well. Anywhere in the middle, the method can be thought of as a 
credibility weighting between these two methods. 

This paper will also discuss the intuition behind the Kalman Filter formulas relating them to basic 
credibility theory. Many of the approaches mentioned apply the Kalman Filter on the logarithm of 
loss ratios, making it inconsistent with the Cape Cod approach and hard to determine the relative 
weights by year and requiring a messy bias correction if not using Bayesian software for calculation. 
Taylor and McGuire (2003) show a solution to this problem via what they call an EDF Filter, but the 
math required to implement it is complex. This paper applies the Kalman Filter on the loss ratios 
themselves but modifies the algorithm in a similar but simpler fashion to be able to handle 
multiplicative innovations, that is, the changes from year to year, and non-normally distributed errors. 
Strategies are also shown to make it robust so that it can be used in practice even with sparse, volatile 
data, and this is illustrated via simulation testing. 

1.3 Outline 
Section 2 discusses the intuition behind the Kalman Filter and shows how to apply it to model loss 

ratios, and section 3 shows how to make the algorithm more robust. Incorporating external predictive 
information is discussed in section 4, and examining multiple lines simultaneously is discussed in 
section 5. Finally, section 6 shows the results of running simulations using the methods discussed. 

2. THE KALMAN FILTER 

The method presented in this paper uses the Kalman Filter to determine the amount of smoothness 
or credibility that should be given to each year. The Kalman Filter was originally developed in 1960 
for use in signal processing (Kalman 1960) but has become very common for solving time series 
econometric models.  It is able to handle more complex types of models than are illustrated in this 
paper. For ease of understanding and implementation, a simplified version that contains only the 
needed components is discussed instead. 
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2.1 Intuition Behind the Kalman Filter 
To understand how this algorithm works, assume that rate and trend are both flat and that we are 

attempting to predict the expected loss ratio for year 2 where we know (for certain) that the loss ratio 
for year 1 was 70%. Before observing any experience from the second year, our prediction would be 
70%, the same as year 1. Assume that now we observe a (projected) loss ratio of 80% in the second 
year, which is still incomplete, and we want to estimate the expected loss ratio to be used in a 
Bornhuetter-Ferguson method to estimate the IBNR for the remainder of the year. If there was no 
loss volatility, we would assume that the 80% loss ratio will continue for the remainder of the year and 
this would be our estimate. On the other hand, if the loss volatility was extremely high such that the 
80% prediction for this year had a large degree of uncertainty, we would give it almost no credibility, 
and our estimate would be the year 1 estimate, which is 70%. More practically, our estimate should 
fall somewhere in between these two extremes and take into account both the volatility of the losses 
and the volatility of the year-to-year changes. If these two variances were equal, we would select the 
midpoint, 75%. More generally, the optimal credibility to give to the second year’s experience equals 
the variance of the year-to-year changes divided by the sum of the two variances, since this would 
produce the result with the lowest variance. Venter (2003) derives this result and shows that it is the 
basis for Buhlmann credibility. The variance of this estimate cannot be greater than each of the 
individual predictors; otherwise, we would just select one of them instead. The inverse of the variance 
equals the sum of the inverses of each of the variances. (Bolstad 2007) 

If we now want to estimate the expected loss ratio for year 3, similar logic would apply, except that 
now the variance of the year 2 estimate needs to be taken into account as well. The total variance of 
using the year 2 estimate for year 3 would equal the variance of this estimate plus the variance of the 
year-to-year changes. This variance would then be compared to the loss volatility to calculate the 
optimal credibility to give to the third year’s experience in the year 3 estimate. Once we have observed 
and predicted the loss ratio for the third year, this estimate can now be used to improve the prediction 
for the second year. To determine the amount of credibility to give to the year 3 estimate for the year 
2 result, a similar formula is used except that the variance of this predictor is compared against the 
variance of the year-to-year changes instead of the variance of the losses. 

This is essentially what the Kalman Filter does (the part that we are using, at least); the actual 
formulas are shown in the next section. 

2.2 Kalman Filter Formulas 
Similar logic is used to run the Kalman Filter. A first iteration is performed looking at the years (or 

quarters, etc.) going forwards. Then, once an initial estimate has been determined for each year, 
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another iteration is performed, this time, starting at the end and traveling backwards by year. This is 
done to back-smooth the results and modify the earlier estimates taking into account what is known 
about the later years, since the first iteration only considers the reverse. 

As alluded to in the previous section, two values are used in the first iteration for each prediction 
estimate and variance. The first represents the prediction for a particular year before observing the 
experience of that year, and the second represents a revised prediction that also takes into account the 
experience of that year.  

There are three unknown parameters that are needed to run this algorithm: the starting loss ratio 
for the first year, the volatility of the experience, and the volatility of the year-to-year changes. 
Maximum likelihood is used to determine these values. Note that the likelihood is calculated using the 
initial loss ratio estimates, that is, the estimates before considering the experience for each year. This 
is done because otherwise, if the estimates after considering each year’s experience were used, the 
algorithm would seek to minimize the differences between these actual and fitted loss ratios, which 
would result in indications that were completely smoothed to all of the noise in the experience. Then, 
after this forward iteration has been performed and after the values of all of the unknown parameters 
have been determined, another back-smoothing iteration is performed to calculate the final results. 

The amount of credibility each new year is given in the rolling forward predictor is known as the 
Kalman gain and is equivalent to the credibility discussed in the previous section. This is shown as K 
in the formulas below. The formulas below show the predictor of year t before considering that year’s 
experience as Xt|t-1, the predictor after considering the year’s experience as Xt|t, and the final back-
smoothed predictor as Xt|T. Similar notation is used for the variance. Note that these are not the final 
formulas, as some changes are needed to make the algorithm more suitable for loss ratios, which are 
shown later in section 2.3. Explanations are given by the formulas to relate it to the concepts discussed 
in the previous section. For the notation, Y are the observed loss ratios, X are the predicted loss ratios, 
P are the variances of the predictors, n is the forecast error, R is the loss volatility, Q is the volatility 
of the year-to-year changes, K is the Kalman gain, f is the total variance of the predictor including the 
volatility of the losses, and loglik is the log-likelihood. Norm(a, b, c) is used here to represent the log-
likelihood of the normal distribution at a, with mean of b, and variance of c. (Kim and Nelson 1999) 

The best estimate for the next year before observing the experience is the previous year’s 
prediction. The variance of this prediction is the same as the previous year’s variance plus the volatility 
of the year-to-year changes. 

 



An Extension to the Cape Cod Method with Credibility Weighted Smoothing 
 

Casualty Actuarial Society E-Forum, Summer 2016 6 

Xt|t-1 = Xt-1|t-1 (2.1) 

Pt|t-1 = Pt-1|t-1 + Q (2.2) 

The total error for the amount a prediction can differ from actual equals the prediction error (from 
the “true” value) plus the loss volatility. 

ft = Pt|t-1 + R (2.3) 

To determine the amount of credibility to give to a year’s experience, the variance of the rolling 
forward prediction is compared against the loss volatility. This is shown as K, and is called the Kalman 
gain. 

Kt = Pt|t-1 / ft, = Pt|t-1 / ( Pt|t-1 + R ) (2.4) 

nt = Yt - Xt|t-1 (2.5) 

Xt|t = Xt|t-1 + Ktnt = (1 - Kt)) Xt|t-1 + Kt Yt (2.6) 

The variance of this rolling forward predictor decreases after observing and incorporating the 
experience, based on the formula mentioned that the inverse of the variance equals the sum of the 
inverses of the two variances. Simple algebra can show that this is equivalent to the below. 

Pt|t = Pt|t-1 (1 - Kt ) = Pt|t-1 R / ( Pt|t-1 + R ) 
1 / Pt|t = 1 / R + 1 / Pt|t-1 = ( Pt|t-1 + R ) / Pt|t-1 R ; Pt|t = Pt|t-1 R / (Pt|t-1 + R ) 

(2.7) 

The likelihood is calculated on the prediction error before observing that year’s experience using 
the variance calculated for the rolling forward predictor. 

loglikt = Norm( nt , 0, ft ) (2.8) 

After the initial prediction of the last year has been calculated, the results are back-smoothed. This 
matches the result mentioned in the previous section. 

Xt|T = Xt|t + ( Pt|t / Pt+1|t )( Xt+1|T - Xt|t ) = Z Xt+1|T + (1 - Z)Xt|t , where Z = Pt|t /(Pt|t + R ) (2.9) 

Even though a few modifications will be made to these formulas to apply more to loss ratios, an 
illustration is shown below using the numbers from the previous section. The R (loss volatility) and Q 
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(volatility of year-to-year changes) parameters, which are determined via maximum likelihood, are 
assumed to be 1 and 0.5, respectively. 

X1|0 = 70% 

X2|1 = X1|0 = 70% 

P1|0 = 0 

P2|1 = P1|0 + Q = 0 + 0.5 = 0.5 

f2 = P2|1 + R = 0.5 + 1 = 1.5 

K2 = P2|1 / f2 = 0.5 / 1.5 = 0.333, 

n2 = Y2 – X2|1 = 80% – 70% = 10% 

X2|2 = X2|1 + K2n2 = 70% + 0.333 x 10% = 73.33% 

P2|2 = P2|1 (1 – K2) = 0.5 x (1 – 0.333) = 0.333 

2.3 Modifications for Loss Ratios 
As mentioned, this smoothing algorithm will be applied to determine the a priori loss ratios for use 

in a Bornhuetter-Ferguson method. The inputs are the chain ladder loss ratios, since these are the loss 
ratios that have been observed for incomplete years at the current point in time. The “used premiums” 
are used as the weights, since this represents the volume for the losses observed thus far. If no 
smoothness is indicated, the a priori loss ratios will match that of the Cape Cod technique. If, on the 
other hand, maximum smoothness is given, they will match the chain ladder estimates, and using these 
in a Bornhuetter-Ferguson method will yield identical results as this method. Anywhere in between 
can be thought of as a credibility weighting between these two methods as the IBNR predicted for 
the remainder of each year will only consider each year’s experience to the extent that it is credible. 

To apply this algorithm on loss ratio data, a couple of modifications are necessary. The first is to 
deal with years that have different premium volumes, and thus different expected loss volatility, since 
the original formulas assume that this is constant per year. To allow for different variances, a variance 
factor can be used as one of the parameters instead of the actual variance. Assuming that the variance 
of each year is inversely proportional to the premium volume, which is a good assumption if all policies 
are homogenous in terms of severity, the variance for each year is equal to this variance factor divided 
by the premium. For incomplete years, the “used” premium is used instead, as discussed. 

Ideally, the factor applied to the premiums of incomplete years should reflect the additional 
variance of these years, which includes both the decreased volume as well as any uncertainty in the 
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loss development patterns. Performing some algebra, it can be seen that the factor relating to the 
decreased volume is actually the claim count development factor and not the loss development factor, 
as used in the Cape Cod method. (The derivation is shown in Appendix A.) However, using the claim 
count development factor would be ignoring any uncertainty in the loss development pattern, so using 
the loss development factor, which is usually slightly higher than the claim count development factor, 
is recommended to account for this additional variance as an approximation. This will also make it 
consistent with the Cape Cod method, which is a desirable property. Alternatively, it is also possible 
to use the claim count development factors and estimate the uncertainty in the development patterns 
more exactly if desired. 

Another modification is needed to handle non-normally distributed errors. Instead of calculating 
the likelihood using a normal distribution as the original algorithm does, a gamma or negative binomial 
distribution can be used instead. (A gamma distribution is appropriate for modeling on severity data 
and a negative binomial for modeling on frequency data.) The mean and variance resulting from the 
Kalman Filter algorithm can be used to solve for the two parameters of the appropriate distribution. 
If using a gamma distribution, for example, the variances calculated in the Kalman Filter algorithm 
will really be the variances divided by the means squared, and so it is assumed that the variance is 
proportional to the square of the mean. A negative binomial is not appropriate for modeling loss 
ratios, since this data often has a variance-to-mean ratio less than one, which this distribution does 
not allow. A Poisson distribution cannot be used since it does not have an additional parameter for 
the variance. An overdispersed Poisson has another parameter for the variance but is more difficult 
to implement. Similarly, implementing a Tweedie distribution, which is often used to model on loss 
ratios, is difficult as well.  

But both a Poisson and Tweedie can be approximated fairly well. Calculating the log-likelihood as 
the average of the log-likelihoods of the normal and gamma distributions produces results that are 
very close to using a Generalized Linear Model with a Poisson distribution. Taking a weighted average 
between these two log-likelihoods with the weight to the gamma distribution equal to half the desired 
power of a Tweedie distribution also comes very close to using a Generalized Linear Model with a 
Tweedie distribution. So, for example, applying a weight of 1.67 / 2 = 0.835 to the gamma log-
likelihood and a weight of 0.165 to the normal log-likelihood comes very close to using a Tweedie 
with a power of 1.67. When this is done, another parameter is needed as the constant factor to convert 
the variance to the coefficient of variation, which is needed to solve for the gamma parameters. (If 
only a gamma is used, this parameter is not needed, since the variance variable in the Kalman Filter 
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formulas will already represent the variance divided by the mean squared.) Conducting a simulation1 
and comparing the results to a similar GLM when no smoothness resulted (which was about half the 
time) produced results that were very close. The gamma results matched the GLM results almost 
exactly. The Poisson and Tweedie results were within 0.05 percentage points of the GLM indications 
89% and 98% of the time, respectively, and were within 0.1 percentage points 100% of the time. The 
results show that this method produces a fairly decent approximation. 

If a gamma distribution is used, the yearly innovations are assumed to be multiplicative since it 
assumes that the variance is proportional to the square of the response, which works well with 
handling multiplicative relationships, similar to its use in Generalized Linear Models. If a normal 
distribution is used, the yearly innovations are assumed to be additive. If the approximation of the 
Poisson distribution is used, as described, the yearly innovations are assumed to be in between additive 
and multiplicative. It is difficult to say what the appropriate form these innovations should take2, but 
if it is desired to have multiplicative innovations, the formulas can be modified to use the product of 
Q and the loss ratio for a Poisson distribution. For a Tweedie distribution with power p, the product 
of Q and the loss ratio to the power of two minus p is used instead. This change will cause the variance 
of the innovations to be related to the square of the mean. 

The final formulas that take these modifications into account are shown below. epow is the 
exponential power used (0 for normal, 1 for Poisson, between 1 and 2 for Tweedie, and 2 for gamma), 
EP is the used premium, Gamma(x, alpha, beta) is the gamma log-likelihood at x with parameters alpha 
and beta, and NB(x, n, p) is the negative binomial log-likelihood at x with parameters n and p. These 
formulas assume that the year-to-year changes are multiplicative, although this may or may not be the 
case. 

X1|0 = <Set from a parameter> (2.10) 

P1|0 = 0 (2.11) 

Xt|t-1 = Xt-1|t-1 (2.12) 

Pt|t-1 = Pt-1|t-1 + Q Xt|t-12 - epow (2.13) 

                                                 
1 Frequency was simulated using a negative binomial with a mean of 50 and a variance-to-mean ratio of 2.5.  Severity was 
simulated from a lognormal distribution with mu and sigma parameters of 10 and 2, respectively, a retention of $100 
thousand and limit of two million.  Trend per year was 5%, autocorrelation was 10%, and variance of the year-to-year 
changes was 0.0001.  Premium was set so that the expected loss ratio for the first year would be 70%.  500 simulations 
were run. 
2 Looking at industry data using a Box-Cox test (which is out of scope of this paper produced conflicting results with a 
very large confidence interval depending on the line and the time period looked at. 



An Extension to the Cape Cod Method with Credibility Weighted Smoothing 
 

Casualty Actuarial Society E-Forum, Summer 2016 10 

ft = Pt|t-1 + R / EPt (2.14) 

Kt = Pt|t-1 / ft, (2.15) 

nt = Yt - Xt|t-1 (2.16) 

Xt|t = Xt|t-1 + Ktnt (2.17) 

Pt|t = Pt|t-1 (1 - Kt ) (2.18) 

loglik-normt = Norm( nt , 0, ft ) (2.19) 

alpha = X2t|t-1 / ( ft × <Parameter>) (2.20) 

beta = Xt|t-1 / ( ft × <Parameter>) (2.21) 

loglik-gammat = Gamma( Yt , alpha, beta ) (2.22) 

loglikt = (epow/2) loglik-gammat + (1 - epow/2) loglik-normt (2.23) 

Back-Smoothing: 

Xt|T = Xt|t + ( Pt|t / Pt+1|t ) ( Xt+1|T - Xt|t ) 

 

(2.24) 

For a negative binomial: 

n = Xt|t-1 / ( ft × <Parameter> - 1 ) 

 

(2.25) 

p = 1 / ( ft × <Parameter> ) (2.26) 

loglikt = NB( Yt , n, p ) (2.27) 

 
Since a gamma distribution is used which does not have any likelihood at zero, any zero loss ratios 

should be set to a very small number slightly above zero. 

As general advice, when solving for the two variance parameters, it is recommended to use one 
parameter for the total variance and another parameter for the percentage of the total variance that is 
attributable to the year-to-year changes (a logit function can be used to ensure that this value is 
between zero and one). The noise variance parameter can then be set to the total variance parameter 
multiplied by one minus this percentage, and then multiplied by the average premium volume, or 
something similar, to make this parameter relative to the premium volume. If this strategy is not used, 
care should be taken as solving for these variance parameters directly can sometimes cause difficulty 
with optimization routines. 

With volatile data, it is often helpful to cap losses at an appropriate point to make the data more 
stable. If there have been changes in retentions or policy limits, the premium should be adjusted 
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appropriately as well. It is also possible to use this same algorithm on claim frequency and/or severity 
separately. For frequency, the premium should be adjusted if there have been changes in the retentions 
or policy limits by dividing out the average expected (conditional) severity. When looking at frequency, 
it is possible to include all claims, or to only include significant claims greater than a certain threshold. 

3. ROBUSTIFYING THE METHOD 

As mentioned, the indicated smoothness of the Kalman Filter can be unreliable with relatively few 
data points. It also struggles with data as volatile as loss ratios. Without addressing these issues, the 
algorithm cannot be used in practice. 

The number of available data points depends on how long the company’s history is with the 
segment being analyzed. It also depends on how consistent processes and practices have been since 
this determines the relevant data that can be used. Even though the purpose of this algorithm is to 
address gradual shifts, it may still be beneficial to discard older information that is deemed less relevant 
and that does not add any value for prediction of the more recent data. If less than twenty years or so 
of data are available for analysis, it is strongly recommended to use quarterly data instead, which will 
increase the number of data points four-fold. Even with twenty years of data or more, using quarterly 
data can still greatly increase the accuracy of the method since it enables better estimation of the 
variance. If different loss ratios are expected in each quarter due to the effects of seasonality, this can 
be addressed similarly to the incorporation of external data, as described in section 4.1. (Credibility 
can be incorporated as well, as described in section 4.2.) 

Another technique to make the algorithm more robust is to use bootstrapped aggregation, or 
“bagging”, where multiple iterations of the algorithm are performed, each time on only a fraction of 
the years or quarters. The final indicated a priori loss ratios are then calculated as the average across 
all iterations. Each iteration will receive a varying amount of smoothness based upon which 
years/quarters are included, and averaging across all of these produces a much more stable and reliable 
result. (Just to be clear, the average of each indicated loss ratio should be used, and not the average of 
the smoothness parameters, since the former produces much more reliable results than the latter.) 
Using fifty iterations with selecting two thirds of the data each time seems to perform quite well both 
in simulation tests and on actual data. (When implementing, it is important to either explicitly set the 
random number generator seed or to ensure that the same bootstrapped simulations are used each 
time to avoid having the indications change slightly when rerun.) 

To implement, if a data point is skipped, the Kalman gain should be set to zero to give it no 
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credibility. This will result in the predictor variance being increased by the year-to-year variance 
reflecting the fact that the prediction interval is being extended by skipping this point. So even though 
the Kalman gain is artificially decreased at one point, this will cause it to be increased for the following 
point. The likelihood of this point should still be included in the overall likelihood so that it affects 
the average, however, since the bootstrapping is only needed for the amount of smoothness, and 
bootstrapping on this will only decrease stability slightly. 

An example where the Kalman Filter was run fifty times from simulated data is shown in Figure 1. 
The first ten individual runs are shown as well as the run that resulted in the most smoothness (dotted 
lines). The average is shown as the thick solid line. Note how volatile the amount of smoothness can 
be from single runs, ranging from far too much credibility given to none at all, which occurred in 17 
out of the 50 runs. The average incorporates all of these indications and results in a much more stable 
and reasonable result. 

Figure 1 

 

4. ADDING PREDICTIVE VARIABLES 

4.1 Formulas 
Predictive variables, such as the state of the economy or of the market cycle, can be incorporated 

to improve the accuracy of the predictions. The following formulas can be used, where V is the total 
impact of the predictive variables at each period, v are the predictive variables, and coef are fitted 
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coefficients for each of these variables3: 

b1|0 = <Set From a Parameter> (4.1) 

P1|0 = 0 (4.2) 

Vt = exp( ∑   
𝑖𝑖 coefi × vi ) (4.3) 

bt|t-1 = bt-1|t-1 (4.4) 

Xt|t-1 = bt|t-1 Vt (4.5) 

Pt|t-1 = Pt-1|t-1 + Q Xt|t-12 - epow (4.6) 

ft = Pt|t-1 Vt2 + R / EPt (4.7) 

Kt = Pt|t-1 Vt / ft, (4.8) 

nt = Yt - Xt|t-1 (4.9) 

bt|t = bt|t-1 + Ktnt (4.10) 

Pt|t = Pt|t-1 (1 - Kt Vt ) (4.11) 

loglik-normt = Norm( nt , 0, ft ) (4.12) 

alpha = X2t|t-1 / ( ft ×<Parameter>) (4.13) 

beta = Xt|t-1 / ( ft ×<Parameter>) (4.14) 

loglik-gammat = Gamma( Yt , alpha, beta ) (4.15) 

loglikt = (epow/2) loglik-gammat + (1 - epow/2) loglik-normt (4.16) 

Back-Smoothing: 

bt|T = bt|t + ( Pt|t / Pt+1|t ) ( bt+1|T - bt|t ) 

 

(4.17) 

Xt|T = bt|T Vt (4.18) 

An exponential function was used to calculate the impact of the predictive variables, similar to a 
log-link GLM, but other alternatives are possible as well. b is an intermediate variable similar to an 
intercept. Using this method is similar to using a GLM where the intercept can vary over time. 

The predictive variables here function similarly to a GLM, in that their effect is calculated 
cumulatively, as opposed to being incremented by an additional amount for each year. This means 

                                                 
3  These formulas are obtained by replacing the H matrix from the original formulas with the result of the predictive 
variables. 
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that if, for example, the change in GDP is judged to affect loss ratios, then the actual GDP should be 
used as a variable, and not the change in the GDP. This way, the incremental effect to each year will 
be the change in this variable. Similarly, if the change in the GDP growth rate is desired instead, then 
the GDP change should be used as a variable. 

Using this method, it also is possible to fit a constant trend to the data by including the year as a 
predictive variable. This example is used to help illustrate this method. Loss ratios with a constant 
frequency trend per year were simulated4. Three methods were compared: a (Tweedie) GLM, the 
Kalman Filter model with no trend and the Kalman Filter model with the year as a predictive variable 
to represent the trend (both using the approximation for the Tweedie distribution that was discussed). 

It is interesting to see the results of the Kalman Filter without trend model. Sometimes this model 
can do a fairly decent job of following the trend in the data, although it often needs to adapt too much 
to the data in order to do so, and as a result, produces some overfitting as in Figure 2. In this example, 
the Kalman Filter with trend model indicated no smoothness and so the result is very close to the 
Tweedie GLM. The dotted, “actual” line here is the “true” value for each year before volatility is added 
in the simulation, and the solid, “observed” line is the result with added volatility. 

                                                 
4 Frequency was simulated using a negative binomial with a mean of 25 and a variance-to-mean ratio of 3.  Severity was 
simulated from a lognormal distribution with mu and sigma parameters of 10 and 2, respectively, a retention of $100 
thousand and limit of two million.  Trend per year was 3%, autocorrelation was 40%, and variance of the year-to-year 
changes was 0.0025.  Premium was set so that the expected loss ratio for the first year would be 70%.  For the bagging, 
25 iterations were used using ⅔ of the data on each iteration.  200 simulations were run.  The models were fit using the 
approximation for the Tweedie family mentioned earlier. 
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Figure 2 

 
Figure 3 is another example where the Kalman Filter with trend model differs from the GLM and 

also smooths to the data. In this example, this model does a very good job of adapting to the changing 
loss ratios per year as well as to the trend in the data, much better than both the simpler trend model 
and Kalman Filter model (although, of course, this will not always be the case). (The Kalman Filter 
line is shown with a thinner line in the below graph, as it is not relevant in this example.) 
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Figure 3 

 
 

The results of running many simulations are shown in Figure 4. As expected, the Kalman Filter 
with trend model outperforms both the Kalman Filter without trend and the GLM models. 

Figure 4 

Method RMSE5 

Kalman Filter Without Trend 0.201 

GLM 0.167 

Kalman Filter With Trend 0.157 

 

  

                                                 
5 RMSE stands for Root mean squared error.  It is the square root of the average error squared. 
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4.2 Further Robustifying This Method 
Accidentally including a variable that has no true predictive value can degrade performance. 

Significance tests can also be unreliable. One way to address this issue and also to increase the accuracy 
even for truly predictive variables is to use penalized regression. This applies a penalty to large 
coefficient values, which helps to stabilize the model. With categorical/dummy variables, the effect is 
similar to credibility weighting, but this method can be used for all types of variables. Ridge regression, 
a type of penalized regression, will be illustrated. To implement, the logarithm of a normal probability 
density function with a mean of 0 is evaluated at each coefficient value (just for the predictive variables, 
that is), and this sum is added to the total log-likelihood. The variance of this normal distribution can 
be estimated using cross validation. 

One simple way to perform cross validation is to test various candidate variance values and fit the 
model on only a fraction of the data. The remaining data is then used to calculate the mean squared 
error divided by the mean to the appropriate power (one for Poisson, two for gamma, etc.), multiplied 
by the used premium. This process should be repeated several times to gather a more reliable estimate. 
It also helps reduce the number of iterations needed if the same samplings are used for each value 
being testing, although this is not required. A graph of the average mean square errors can show 
whether enough iterations have been performed. 

The same variance is usually used for all coefficients. Non-dummy variables should be standardized 
to all be on the same scale so that their variances are comparable; this can be done by subtracting out 
the mean and dividing by the standard deviation, or if dummy variables are being used as well, by 
dividing by two times the standard deviation (Gelman 2008). Using this method lessens the negative 
effect of noise variables and also improves the performance of predictive variables. There are other 
methods of performing cross validation that will not be discussed here. 

5. MULTIPLE LINES 

Multiple lines can be evaluated together using the same variance parameters, R and Q, but allowing 
different initial loss ratio parameters for each line. This will leverage the volatility estimation across all 
of the lines together. 

Going one step further, it is possible to do the same, but have the initial loss ratios related to each 
other via credibility weighing. This can be done using Bayesian credibility, and this method can be 
implemented simply, without the use of specialized Bayesian software, as will be explained. If a normal 
distribution is used as the prior distribution for the initial loss ratios, this is a conjugate prior since a 
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normal distribution is also being used for the loss ratios, and so, the posterior distribution will be 
normally distributed. This means that maximum likelihood estimation, which returns the mode, can 
be used to estimate the mean, since the mean is identical to the mode for a normal distribution. 
Performing credibility in this fashion will also match the Buhlmann-Straub credibility results (Herzog 
1989). To implement, another parameter should be added for the complement of credibility. Then, 
the log-likelihood of a normal probability density function evaluated at each initial loss ratio with a 
mean of the credibility complement should be calculated for each line. Adding the sum of these log-
likelihoods to the total log-likelihood will cause the loss ratios to shift towards the overall mean and 
credibility weighting will be performed. The variance of this normal prior distribution is equivalent to 
the between variance used in the Buhlmann-Straub method. One way to estimate it is to use the 
Buhlmann-Straub formulas (as described in Korn 2015 to apply to loss ratios, for example).  

Using this approach to calculating the between variances, however, does not consider the loss ratio 
changes by year as calculated by the Kalman Filter and so is slightly inconsistent. As an alternative, 
cross validation can be used instead, similar to ridge regression, which was described earlier. Different 
between variances can be tested where the loss ratios are fit using only a fraction of the data and the 
remainder of the data is used to calculate the mean square error divided by the mean to the appropriate 
power, multiplied by the used premium. Using this will be consistent with the loss ratio changes by 
year. 

There is still an issue, however, since credibility weighting the initial loss ratios towards the mean 
but then allowing the remaining ones to vary freely sometimes produces results that deviate away from 
the mean with time, even if this is not the case, especially if the between variance chosen is relatively 
small. Bayesian credibility was used to credibility weight the initial loss ratios, which has the formula: 

f(Posterior | Data, Parameters) = f(Likelihood | Data, Parameters) x f(Prior | Parameters). 

Credibility weighting is performed since the prior component, f(Prior | Parameters), applies a penalty 
to the parameters as they deviate away from the mean. This prior needs to be a function of the model 
parameters. 

However, it is also possible to reparameterize the model so that instead of using the initial loss 
ratios as the parameters, the ending loss ratios are used instead. Note that it is possible to solve for 
the ending loss ratios given all of the Kalman Filter parameters including the initial loss ratios. Because 
of this, it is also possible to invert the equations and to solve for the initial loss ratios given the ending 
loss ratios. So, the ending loss ratios can be used as the parameters of the model, the initial loss ratios 
can be solved for, and then the Kalman Filter can be run as normal. To make the process simpler, 
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instead of actually performing all of these calculations, we can run the Kalman Filter as normal using 
the initial loss ratios as the parameters, but still “pretend” that the ending loss ratios are the parameters 
and calculate the prior distribution credibility penalty using the ending loss ratios, since the result 
would be exactly the same. So, in summary, nothing needs to be changed, and the ending loss ratios 
can be used for credibility weighting. 

This method produces better behaving models that do not artificially deviate either towards or 
away from the mean. Because the Kalman Filter iterates forwards through all of the loss ratios, and 
then conducts another iteration backwards to smooth the results, the ending loss ratio can almost be 
thought of as the midpoint of the iteration. Therefore, it is recommended to use the ending loss ratios 
for calculating the log-likelihoods of the normal prior distribution. 

6. SIMULATION RESULTS 

A simulation was run6 to help illustrate the benefits this method can provide, although, of course, 
the exact benefit will vary from case to case. In this scenario, two random variables were combined to 
simulate the frequency per year, and it was assumed that one of these was known. This was done to 
simulate a scenario where a predictive variable is known that affects the frequency per year, such as 
the state of the economy, but that not everything about how the frequency changes is known. 

The summary of the results are shown in Figure 5. 

                                                 
6 Frequency was simulated using a negative binomial with a mean of 50 for complete years and a variance-to-mean ratio 
of 2.5.  Severity was simulated from a lognormal distribution with mu and sigma parameters of 10 and 2, respectively, a 
retention of $100 thousand and limit of two million.  Autocorrelation was 30% for each of the frequency variables and for 
the severity variable, variance of the year-to-year changes was 0.005 for each of the frequency variables and 0.00025 for 
the severity variable.  Development factors were used that affected the frequency that decreased by 0.05 starting at the 
22nd period.  Premium was set so that the expected loss ratio for the first year would be 70%.  For the methods that used 
bagging, 25 iterations were used using ⅔ of the data on each iteration.  500 simulations were run.  The models were fit 
using the approximation for the Tweedie family mentioned earlier. 
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Figure 5 

Method RMSE 
All Years 

RMSE 
Latest Year 

RMSE All 
Years - 

Compared 
to Cape 

Cod 

RMSE Latest 
Year - 

Compared to 
Cape Cod 

Cape Cod 1.211 0.312 0% 0% 

Kalman Filter 0.538 0.132 -55.5% -57.6% 

Kalman Filter with Bagging 0.508 0.126 -58.1% -59.5% 

Kalman Filter with Predictive 
Variable 

0.485 0.120 -59.9% -61.4% 

Kalman Filter with Predictive 
Variable and Bagging 

0.462 0.114 -61.9% -63.3% 

Kalman Filter with Predictive 
Variable, Penalized Regression 
and Bagging7 

0.453 0.105 -62.6% -66.3% 

Tweedie GLM with Predictive 
Variable (Weighted by Used 
Premium per Year) 

0.704 0.165 -41.8% -47.2% 

The main conclusion is the amount of benefit this method is capable of providing over the Cape 
Cod, which does not adapt to changing conditions and cannot include predictive variables. Each of 
these individually is also able to provide significant benefit. 

7. CONCLUSIONS 

The goal of this paper was to present a relatively simple method that can be implemented in 
spreadsheets to extend the Cape Cod and is capable of accounting for changes indicated in the data 
and from external predictive variables. Estimating expected loss ratios per year with volatile data can 
often be a confusing and difficult task, subject to a large degree of judgement. It is our hope to improve 
this process by adding some guidance from modern statistical techniques without losing the simple 
and intuitive nature of the Cape Cod method. 

                                                 
7 Only 100 iterations were performed for this method because of its longer running time.  Also, only 10 iterations of 
bootstrapping were performed.  Using a higher number is expected to further improve the performance of this method. 
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APPENDIX A 

The appropriate development factor to relate to the increased volatility of incomplete experience 
can be derived using the formula for the variance of aggregate losses, where A are the ultimate 
aggregate losses, F is the ultimate frequency, S is the ultimate severity, VTMF is the variance-to-mean 
ratio for the frequency, CVS is the coefficient of variation for the severity, RPT are the reported losses, 
and ULT are the ultimate losses: 

V(A) = V(F) E(S2) + E(F) V(S) = VTMF F S2 + F CVs S2 = F S2 ( VTMF + CVS
2 ) 

The variance of the reported losses is equal to the below, since the observed frequency is F / CCDF 
(where CCDF is the claim count development factor), and the observed severity is S / SDF (where 
SDF is the severity development factor, which is equal to the LDF divided by the CCDF): 

 

𝑉𝑉(𝑅𝑅𝑅𝑅𝑅𝑅) =  𝐹𝐹
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 ×  𝑆𝑆2

𝑆𝑆𝑆𝑆𝐹𝐹2
 ×  ( 𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 )  

 

The variance of ultimate losses is then equal to: 

 

𝑉𝑉(𝑈𝑈𝑈𝑈𝑈𝑈) =  𝑉𝑉(𝑅𝑅𝑅𝑅𝑅𝑅) ×  𝐿𝐿𝐿𝐿𝐹𝐹2  =  𝑉𝑉(𝑅𝑅𝑅𝑅𝑅𝑅) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹2 × 𝑆𝑆𝑆𝑆𝐹𝐹2 

= 𝐹𝐹
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 ×  𝑆𝑆2

𝑆𝑆𝑆𝑆𝐹𝐹2
 ×  ( 𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 ) × 𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹2 × 𝑆𝑆𝑆𝑆𝐹𝐹2 

=  𝐹𝐹 × 𝑆𝑆2 × (𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 )  × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

=  𝑈𝑈𝑈𝑈𝑈𝑈 ×  𝑆𝑆 ×  (𝑉𝑉𝑉𝑉𝑀𝑀𝐹𝐹  +  𝐶𝐶𝑉𝑉𝑆𝑆2 )  × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

 

Note how all SDF terms cancel out and the only development term remaining is the claim count 
development factor. 
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