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Abstract 

This paper provides an introduction to the use of Bayesian methods for blending prior information with 
a loss development pattern from a triangle.  The methods build upon conjugate forms discussed in earlier 
literature but introduce the Generalized Dirichlet as a prior, which allows for a significant simplification 
in calculation. The discussion is mainly restricted to the question of blending observed data with prior 
beliefs and not on the question of reserve ranges. 

The paper is aimed at practicing actuaries seeking an introduction to Bayesian ideas for loss development.  
The methods will work with a single development triangle analyzed in a spreadsheet. 
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1. INTRODUCTION 

The selection of loss development patterns is a critical piece of actuarial analysis for casualty 
insurance business and it arises in both pricing and reserving.  The most common data 
structure for this analysis is the development triangle. The actuary can estimate a pattern from 
the triangle but would typically impose judgment in selecting the final pattern based on prior 
knowledge or external data. 

The incorporation of expert judgment and external data makes loss development analysis 
a natural application for the Bayesian framework.  The Bayesian framework provides a way to 
incorporate this prior knowledge in a systematic way.  This paper will provide a very basic 
model to allow the practicing actuary to begin using the Bayesian ideas. 

In many non-insurance applications of Bayesian statistics, the observed data overwhelms 
the prior distribution, making the exact form of the prior irrelevant.  This is not so for 
insurance, where the data is often sparse or volatile; the prior knowledge can have a great 
influence on the final results. 

We will focus on the narrow problem of selecting a pattern from a loss development 
triangle (no exposure units or loss ratio information), blending the data in the triangle with 
prior knowledge.  For convenience, this will be done using conjugate forms, which make the 
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calculations trivial to perform.  Anyone who knows how to calculate an age-to-age factor will 
be able to begin doing Bayesian analysis right away. 

1.1 Research Context 
Bayesian ideas have been part of actuarial thinking for many years, often in the context of 

credibility theory, which has been called the “cornerstone of actuarial science” (Hickman, 
1999).  Bayesian methods have previously been introduced in the context of reserving, and 
have gained more attention recently because of advances in computational algorithms such as 
Markov Chain Monte Carlo (MCMC) techniques. 

The Bayesian approach has been noted for three major advantages: 

1) It allows the analyst to incorporate prior knowledge or expertise in a logically coherent 
way. 

2) It can incorporate complex, nonlinear relationships to provide a more realistic model 
than can be done otherwise. 

3) It can incorporate uncertainty in all model parameters and therefore produce realistic 
reasonable ranges around predicted values. 

Prior papers such as Meyers (2015) and Zhang, et al (2012) have generally focused on the 
problem of estimating ranges around reserve estimates.  Authors such as Robbin (1986), 
Mildenhall (2006), Wüthrich (2007), and England, et al (2012) have also used the Bayesian 
concepts to illuminate the relationships between traditional models such as chain ladder and 
Bornhuetter-Ferguson. 

While many papers acknowledge that “The Bayesian paradigm offers a formal mechanism 
for incorporating into one's analysis information not contained in the available data” (Zhang, 
2012), it is not always clear how this can be done.  Diffuse or noninformative priors are used 
in much of the literature. 

1.2 Objective 
In this paper, we present a conjugate Bayesian model applied to a standard loss 

development triangle.  We will assume that the goal of the analyst is to estimate a development 
pattern using this data to update prior beliefs.  Our focus will be on how to organize the prior 
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beliefs about the development pattern into an explicit prior distribution for this blending 
problem. 

By staying in the context of the conjugate1 models, the blending of prior knowledge with 
new data can be done with very simple calculations.  This allows analyst to begin experimenting 
with these ideas immediately without the need for special software or programming skills.  The 
hope is that this model will help build intuition in the Bayesian framework and become the 
stepping stone for expanding to more advanced models. 

1.3 Outline 
Section 2 of this paper will outline the mathematics of the Bayesian conjugate form for the 

loss development pattern estimation; this will give all of the theory underlying the approach.  
Section 3 will provide a numerical example showing how the model can be implemented in 
practice.  Section 4 gives a brief sketch of future research and ways to extend the model into 
more realistic (and more complex) forms.  

2. BACKGROUND AND MATHEMATICS 

This section provides all of the mathematics needed to derive the conjugate family for 
Bayesian loss development.  Most of this is not critical for the actuary who is only looking to 
implement the method, and can be skimmed. 

2.1 Bayesian Theory in General 
Bayesian theory assumes that an analyst working with a loss development triangle does not 

start as a “blank slate” with no idea of what a development pattern looks like.  Instead, it 
assumes that the analyst comes with some “prior” expectation and is willing to change that 
prior belief based on what is observed in the new data. 

The theory is derived from Bayes’ theorem, which calculates the “inverse probability” of a 
parameter value 𝜃𝜃, based on observed data 𝑥𝑥. 

1 Conjugacy is “the property that the posterior distribution follows the same parametric form as the prior 
distribution” (Gelman, et al (2013), page 35). This is a technical definition, but the attraction of conjugacy is 
in the practical implementation and interpretability. 
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The major challenge for applying Bayes’ theorem in practice is that the parameter 𝜃𝜃 is 
usually a vector of multiple parameters.  This means that we need to specify a multi-
dimensional distribution 𝑓𝑓(𝜃𝜃) and also be able to evaluate the multi-dimensional integral in 
the denominator.  This presents a computational challenge. 

There have been three main strategies for handling the computation challenge: 

1) Use of conjugate priors, allowing closed-form solutions for carefully chosen 
distributional forms. 

2) Linear approximations to the formula (e.g., Bühlmann-Straub) 

3) Numerical approximations 

a. Quadrature evaluation of the integral 

b. Simulation-based approached (MCMC) 

With greater computer speeds and improved algorithms, the simulation-based methods 
have allowed for Bayesian methods to be used in many fields.  These models are especially 
useful when we need to evaluate complex models. 

The conjugate families are much more useful for introductory purposes because they allow 
the calculations to be done simply and even manually.  It is also very useful to include 
conjugate forms in some of the components of a simulation model (“conditionally conjugate” 
parameters) to improve efficiency. 

For this paper, we will stay in the conjugate world in order to introduce all of the concepts 
in the loss development application such that any actuary can implement.  If you can calculate 
an age-to-age factor, then you can do Bayesian analysis! 

 

2.2 The Beta-Binomial Conjugate Relationship 
Blending patterns is a multivariate problem, but it is easiest to attack the problem by starting 

with the univariate case.  We begin with the univariate Beta-Binomial case, because it will be 
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the main building block for the loss development application. 

The Beta distribution works with a continuous random variable, 𝑝𝑝, that can be any value 
between 0 and 1.  The density function is given below. 
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The Beta distribution is usefully interpreted as the ratio of gamma random variables.  The 
two gamma random variable have different shape parameters, but share a common scale 
parameter 𝜙𝜙, which does not affect the Beta random variable. 
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(2.3) 

We can also note that the shape parameters 𝛼𝛼 and 𝛽𝛽 must be positive numbers but they 
are not restricted to being integer values. 

The likelihood function for the observed data 𝑥𝑥 will be assumed to come from a binomial 
distribution with the probability function below. 
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(2.4) 

The binomial is often interpreted as the number of “successes” observed in a sample of 𝑛𝑛 
trials, given a probability of success 𝑝𝑝.  The maximum likelihood estimator of this probability 
is calculated easily. 



xp
n

=  
(2.5) 

While the binomial distribution is strictly speaking restricted to integer values, we will make 
an approximation in this application that the estimator above can include non-integer values 
for 𝑥𝑥 and/or 𝑛𝑛 when estimating the proportion 𝑝𝑝. 
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If the parameter 𝑝𝑝 has a Beta prior distribution as defined above, then we apply Bayes’ 
theorem to revise our distribution based on the observed data. 
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(2.6) 

The fact that the posterior distribution for 𝑝𝑝 is again a Beta distribution gives us the reason 
for calling this a “conjugate” form. 

The expected value of the proportion can also be written in a linear form. 
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Alternatively, we can write the updating of parameters in a simple form: 
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(2.8) 

With this updating formula, we have a very useful way of interpreting the parameters as 
being “pseudo-data.”  That is, the prior parameters 𝛼𝛼(0) and 𝛽𝛽(0) are combined with the new 
data as though they were previously observed data points.  Our prior knowledge is used as 
though it had been previously observed data. 

Koop, et al (2007, page 19) summarize this concept well: 

“Natural conjugate priors have the desirable feature that prior information can be 
viewed as ‘fictitious sample information’ in that it is combined with the sample in 
exactly the same way that additional sample information would be combined.  The 
only difference is that the prior information is ‘observed’ in the mind of the researcher, 
not in the real world.” 

This interpretability is useful when prior knowledge comes in a subjective form.  For 
example, someone may say “I selected the development pattern based upon my twenty years 
of experience as an actuary.”  This is still useful in the Bayesian framework but we need to 
translate twenty years of experience into equivalent dollars of loss development data. 
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2.3 The Dirichlet-Multinomial Conjugate Relationship 
The Dirichlet distribution is a multivariate generalization of the Beta distribution, which 

allows for a sequence of proportions, {𝑝𝑝1, 𝑝𝑝2,⋯ ,𝑝𝑝𝑘𝑘}.  The probability density function is 
similar to the Beta distribution except that the random variable is now a vector of percentages. 
These are interpreted as the incremental percentages of ultimate loss paid or reported in each 
identified period.  
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The expected percent-of-ultimate in each period is proportional to its corresponding alpha. 
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(3.2) 

The sequence of expected percentages produces the expected loss development pattern 
(either paid or reported).  Figure 1 represents the proportion of ultimate loss in each 
incremental period.  This assumption is consistent with Robbin (1986), Hesselager & Witting 
(1988), de Alba (2002), and Mildenhall (2006). 

Figure 1 

 

Similar to the Beta-Binomial model, the Dirichlet is conjugate with a Multinomial 
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distribution, the Multinomial being the multivariate generalization of the Binomial.  The 
parameters are given a similar updating. 
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(3.3) 

In this updating formula, the sequence {𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑘𝑘} is proportional to the observed 
losses in each development period.  It is most convenient to think of these as the shape 
parameters of gamma random variables, similar to the sequence of {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑘𝑘}.   As such, 
the new data comes as the incremental losses divided by the common scale parameter 𝜙𝜙. 

The scale parameter 𝜙𝜙 is the variance/mean ratio of the loss data.  We will assume that this 
is a fixed and known quantity, though that assumption can be relaxed later in the work. 

If an estimate of the variance/mean ratio is needed, it can be approximated from the data 
just as is done for the dispersion parameter in a GLM2, where 𝐶𝐶𝑡𝑡,𝑑𝑑 is the cumulative loss for 
year 𝑡𝑡 as of development period 𝑑𝑑.  This is approximately a variance/mean ratio. 

𝜙𝜙 =
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(3.4) 

The major difficulty in the Dirichlet-Multinomial model is that we need to have a complete 
development pattern from the data in order to perform the updating.  This is precisely not the 
case for loss development; we have a triangle of incomplete patterns.  Fortunately, this 
difficulty is solved via the Generalized Dirichlet distribution. 

 

2 See for McCullagh & Nelder (1989) as a standard reference. 

This is the same concept used in the over-dispersed Poisson (ODP) version of the chain ladder method, as 
presented in papers such as Renshaw and Verrall (1998).  This connection is not accidental, as the binomial 
model presented here is simply a conditional Poisson model.  That is, if 𝑋𝑋1 and 𝑋𝑋2 are Poisson random 
variables, then 𝑋𝑋1|𝑋𝑋1 + 𝑋𝑋2 = 𝑁𝑁 is a binomial random variable.   This relationship extends to the over-
dispersed and multivariate versions of the distributions. 
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2.4 The Generalized Dirichlet Distribution 
The Generalized Dirichlet distribution was introduced by Connor and Mosimann (1969) 

in the context of biological science. Wong (1998) further investigated this form and provides 
the Bayesian updating formulas.  Ng, et al (2011) provides more description of this 
distribution, renaming it the “nested Dirichlet.” 

 Instead of a sequence of model parameters {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑘𝑘}, we have a parameter set with 
alphas and betas: {𝛼𝛼1,𝛼𝛼2,⋯ ,𝛼𝛼𝑘𝑘−1,𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘−1}.  Just as 𝛼𝛼𝑖𝑖 was seen to be proportional 
to incremental loss, the 𝛽𝛽𝑖𝑖 parameter is proportional to cumulative loss.  This added flexibility 
means that we can have different weights for each cumulative development age, making it 
natural for the development triangle data format. 

These parameters generalize the Dirichlet distribution given above.  But the random 
variable 𝑝𝑝 = {𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑘𝑘}, is interpreted exactly the same as before. 
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The Generalized Dirichlet has independence3 between 𝑝𝑝1 and 𝑝𝑝2/(1 − 𝑝𝑝1) and between 
subsequent conditional values 𝑝𝑝3/(1 − 𝑝𝑝1 − 𝑝𝑝2) and so forth.  For the loss development 
application this implies that all of the age-to-age factors are independent.  This independence 
assumption between age-to-age factors is paralleled in the chain ladder method (Mack, 1993). 

The expected incremental losses are given as below.  Formulas for all of the moments and 
co-moments are given in Wong (1998). 
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The expected incremental values are more easily calculated via a recursive formula. 
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3 This property is described as “neutrality” by Connor and Mosimann (1969), and it only holds for the 
Generalized Dirichlet when the variables are ordered.  It is for this reason that we use the notation that the 
first variable is the tail factor, and then move from right to left up to 𝑘𝑘 as the first (usually age 12) factor.  In 
this order the distribution is a perfect model for development triangle data. 
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The Dirichlet is a special case when 𝛽𝛽𝑗𝑗 = 𝛼𝛼𝑗𝑗+1 + 𝛽𝛽𝑗𝑗+1. 

The Bayesian updating formulas are also straightforward. 
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Using the cumulative losses from the triangle, this is written as shown below.  For losses 
in accident year 𝑡𝑡 as of development period 𝑑𝑑, the cumulative amount is 𝐶𝐶𝑡𝑡,𝑑𝑑.  The values used 
for updating the parameters remove the scaling parameter:  𝑥𝑥 = �𝐶𝐶𝑡𝑡,𝑑𝑑+1 − 𝐶𝐶𝑡𝑡,𝑑𝑑�/𝜙𝜙. 
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(4.5) 

The dispersion parameter 𝜙𝜙 acts as a scaling parameter on the loss data from the triangle. 

The great advantage of this Generalized Dirichlet is that we can exclude the first 𝑝𝑝1 or the 
first several points and the remaining points are still a Generalized Dirichlet.  Further, the 
relationship of the first increment to the sum of the remaining increments is always a Beta 
distribution. 
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This relationship of one period to all the others is exactly what is needed in the calculation 
of age-to-age link ratios in the chain ladder method.   The notation needs to be reversed: for 
example, count 𝑖𝑖=1 for last incremental loss oldest period, and 𝑖𝑖 = 𝑘𝑘 for losses in the first 
year.  The model parameters therefore translate very easily into familiar age-to-age factors. 
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The age-to-age factor for development period 𝑑𝑑 is calculated from the triangle as shown 
below.  The weighted average age-to-age (ATA) factor should be familiar to most actuaries. 
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The credibility blended numbers are given in a simple form as in formula (4.9) below. 
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(4.9) 

Given the model parameters for the Generalized Dirichlet and the scaling parameter 𝜙𝜙, 
this credibility blending can be performed in a spreadsheet cell or even on paper.  A numerical 
example of this calculation is given in Section 3.2. 

Part of what has made the conjugate form so easy to implement is the assumption of 
independence between development ages.  Unfortunately, the disadvantage of the 
independence assumption is that ages with little volume will get little credibility weight.  There 
is no consideration of adjacent points, and no more weight assigned if all ages show 
consistently better (or worse) development than the benchmark.  Most notably, the benchmark 
tail factor will never change based on the client data. 

Most users, however, would want some dependence between ages.  For example, if all of 
the age-to-age factors in the client’s triangle are below the benchmark, then the benchmark 
tail should also be reduced.  The next section of our paper will provide a way to include such 
a dependence structure. 

 

2.5 Mixtures of Generalized Dirichlet Distributions 

The model above provides a full conjugate Bayesian model that can be easily implemented 
by an analyst with knowledge of calculating age-to-age factors.  The conjugate family is actually 
a bit more flexible still and allows for further expansion of the prior distributions. 

The principle is that a linear combination of conjugate priors will still be a conjugate prior.  
If the analyst decides that the prior knowledge includes a library of possible development 
patterns (perhaps slow/medium/fast), then the prior is defined as a weighted average of these 
priors.   The weights {𝑤𝑤1,𝑤𝑤2,𝑤𝑤3} act as a discrete mixture distribution. 
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For each of the individual Generalized Dirichlet distributions 𝐺𝐺𝐺𝐺𝑢𝑢(𝑝𝑝), we perform the 
same updating as outlined in the previous section.  In addition, we update the weights in 
proportion to the likelihood functions for each. 

The likelihood functions are the products of the Beta-Binomial functions for each age 
included in the analysis. 
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For non-integer values of 𝑛𝑛 and 𝑥𝑥, we can replace �𝑛𝑛𝑥𝑥� with Γ(𝑛𝑛+1)
Γ(𝑛𝑛−𝑥𝑥+1)∙Γ(𝑥𝑥+1)

.  We may also 

note that a special case of formula (5.2) is the uniform distribution when 𝛼𝛼 = 𝛽𝛽 = 1, 

indicating that all values are equally likely. 

The updating of the weights is a straight-forward application of Bayes’ theorem. 
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(5.3) 

Section 3.3, below, gives a numerical example illustrating this formula.  The ability to adjust 
the tail factor in the data according to client data is a major practical advantage. 

 

3.  NUMERICAL EXAMPLE 

3.1 Selecting the Model Parameters 

The description of the Bayesian model given in the previous section has flexibility for the 
analyst to supply a large number of prior parameters.  We now discuss how this can be done 
without making all of these choices arbitrary. 

Parodi and Bonche (2010), describe the uncertainty in prior information from two sources: 

1. Market heterogeneity – the spread of different risks around some industry average 

2. Estimation uncertainty – the industry average, though large, may still be of limited size 
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We may choose to give the prior distribution more variance depending upon how we 
evaluate these sources of uncertainty.  Nonetheless, we usually have some prior knowledge 
and are not completely uninformed about external information. 

In many application of Bayesian models, the choice of prior is not given much attention 
because it is assumed that the data will overwhelm the prior assumption anyway.  For insurance 
applications we cannot assume this, and instead want to provide meaningful prior information.  
The discussion of “noninformative” or “diffuse” priors is therefore just a starting point. 

For the Beta or Dirichlet distributions, a standard noninformative prior is to set all of the 
parameters equal to 1.00.  That is, 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑘𝑘 = 1; this is sometimes referred to as 
the Laplace prior.   Even more diffuse is the Jeffreys prior with 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑘𝑘 = 1/𝑘𝑘.  
In both these cases, the expected pattern would have equal percentages in each period.  In the 
most extreme case, we have 𝛼𝛼1 = 𝛼𝛼2 = ⋯ = 𝛼𝛼𝑘𝑘 = 0; which is an improper prior, sometimes 
called a Haldane prior, that gives no weight to the prior information and therefore will always 
result in a posterior expected value equal to the chain ladder calculation. 

We would like our prior to have expected values equal to our prior knowledge.  In the 
reserving exercise, this may be equal to the pattern selected in a prior reserve study.  In the 
pricing exercise, the prior pattern may be taken from the expiring pricing or from an average 
of similar risks. 

One approach to setting the sequence of alphas is to make them proportional to the 
incremental losses in our benchmark pattern.  If these are scaled to add up to 1.00 then we 
have a very wide uncertainty similar to the Jeffreys prior.  If the alphas add up to a larger 
quantity, say 100, then the prior benchmark pattern will be given much more weight.  The 
sequence of betas can be set to make the Generalized Dirichlet equal to a simple Dirichlet: 
𝛽𝛽𝑗𝑗 = 𝛼𝛼𝑗𝑗+1 + 𝛽𝛽𝑗𝑗+1. 

Alternatively, we can set �𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗� as a constant, generally greater than 2, with the 𝛼𝛼𝑗𝑗 and 
𝛽𝛽𝑗𝑗 values set to match the ATA factors. 

The other key input is the dispersion parameter 𝜙𝜙, which is defined as the variance/mean 
of the data in the triangle.  A small value of 𝜙𝜙 will result in more weight given to the new data 
because it implies small process variance. 

This dispersion parameter may be estimated empirically from representative triangles, or it 
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can be selected based on other sources for aggregate distributions.  For example, in Table M4 
we can approximate the distributions using a Gamma.  The expected loss group (ELG) 
represents the insurance charge at an entry ratio of 1.00.  The expected losses for the ELG 
divided by the Gamma shape parameter is therefore an estimate for the scale 𝜙𝜙. 

Table 1 

 

For a starting point, we can select a combination of the parameters, such that 𝜙𝜙 ∙ �𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗� 
is constant for all 𝑗𝑗. 

If the prior distribution and scale parameter are calculated from a sample of patterns 
collected from peer companies, then it may be considered an “empirical Bayes” model.  
Schmid (2012) and Shi and Hartman (2014) provide models on that basis.  

 

3.2 Numerical Example with One Benchmark Pattern 
For an example of the loss development task, we introduce a triangle of cumulative loss 

payments.  This data was taken from a sample of companies collected in the CAS Website, 
and represents Products Liability loss net of reinsurance.  The example is, of course, only for 
illustration.5 

The average age-to-age (ATA) factors are calculated as all year weighted averages.  The 
“Col. 1” number represents the sum of losses for a given age, excluding the latest diagonal; 

4 Table M is an industry tool for excess-of-aggregate charges for Workers’ Compensation.  The numbers 
shown here are not from that source, but were created only to illustrate the concept. 

5 For the interested reader, an Excel file including the example that follows can be provided by the author 
upon request. 

 Theoretical "Table M" (for illustration)
Gamma 
Shape 

Parameter

Insurance 
Charge at 
Entry=1

Expected 
Loss Group

Aggregate 
Loss Size 
(example)

Implied 
Variance/Mean

0.5 0.484 48 360,000        720,000            
1 0.368 37 1,000,000     1,000,000         

1.5 0.308 31 2,000,000     1,333,333         
2 0.271 27 3,750,000     1,875,000         
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the “Col. 2” number represents the sum of the subsequent column. 

Table 2 

 

The average ATA factors are easily calculated by the actuary and, if desired, could be 
replaced with the values for only including the latest, say, three diagonals. 

The ATA factors in the triangle show considerable volatility, so it is desirable to blend the 
data with other benchmarks to improve the stability. 

Table 3 

 

The table below brings in the prior knowledge.  We assume that we know a loss 
development pattern.  This pattern may come from industry sources, peer companies, or  prior 
reserve studies. 

We must select the alpha and beta parameters for each age.  We can set these such that the 
expected pattern equals our benchmark:  ATA = (Alpha+Beta)/Beta. 

The total value of Alpha+Beta is selected to be 4.00 in this example, representing a weakly 
informative prior.  The variance/mean ratio or scale parameter 𝜙𝜙 is selected as 1,000 
($1,000,000 since the original Schedule P units are in thousands).  The “Col. 1” and “Col. 2” 

 Sample Triangle = Cumulative Products Liability Paid Losses
12 24 36 48 60 72 84 96

1990 73 262 469 528 536 591 604 606
1991 148 346 391 502 522 514 567
1992 99 198 219 394 408 430
1993 118 255 352 412 581
1994 275 415 645 803
1995 261 446 637
1996 130 471
1997 148

Col. 1 1,104 1,922 2,076 1,836 1,466 1,105 604
Col. 2 2,393 2,713 2,639 2,047 1,535 1,171 606

Avg ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003

 Age-to-Age Factors
12-24 24-36 36-48 48-60 60-72 72-84 84-96

1990 3.589 1.790 1.126 1.015 1.103 1.022 1.003
1991 2.338 1.130 1.284 1.040 0.985 1.103
1992 2.000 1.106 1.799 1.036 1.054
1993 2.161 1.380 1.170 1.410
1994 1.509 1.554 1.245
1995 1.709 1.428
1996 3.623
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entries are simply the scale parameter times the Beta and Alpha+Beta parameters of the 
Generalized Dirichlet. 

Table 4 

 

The blended pattern is simply the addition of the Col. 1 and Col. 2 weights from the triangle 
and the benchmark pattern (scaled by 𝜙𝜙). 

As noted previously, the conjugate form puts the prior knowledge into a form as though it 
was prior loss development data.  The prior knowledge is added to the data from the new 
triangle as though we actually had more loss in the weighted-average calculation.  The table 
below makes use of formula (4.9) to blend the patterns. 

Table 5 

 

This calculation can be easily incorporated into reserving studies or pricing work.  The 
values for the alpha, beta and scale parameters in our example are only for illustration; the 
actuary can sensitivity test values in real examples in order to gain intuition for setting 

 Prior Assumptions
12 24 36 48 60 72 84 96

LDF 21.950 7.787 3.946 2.512 1.842 1.558 1.415 1.315
ATA 2.819 1.973 1.571 1.364 1.182 1.101 1.076 1.315

Alpha 2.58 1.97 1.45 1.07 0.62 0.37 0.28 0.96
Beta 1.42 2.03 2.55 2.93 3.38 3.63 3.72 3.04

Alpha+Beta 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Variance/ Mean: 1,000

Col. 1 1,419      2,027     2,546     2,933     3,383     3,633     3,717     3,042     
Col. 2 4,000      4,000     4,000     4,000     4,000     4,000     4,000     4,000     

 Example of Blending Client and Benchmark Patterns
12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

ATA from Triangle
Col. 1 1,104      1,922     2,076     1,836     1,466     1,105     604        -         
Col. 2 2,393      2,713     2,639     2,047     1,535     1,171     606        -         
ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003

Benchmark Pattern
Col. 1 1,419      2,027     2,546     2,933     3,383     3,633     3,717     3,042     
Col. 2 4,000      4,000     4,000     4,000     4,000     4,000     4,000     4,000     
ATA 2.819 1.973 1.571 1.364 1.182 1.101 1.076 1.315

Blended Pattern
Col. 1 2,523      3,949     4,622     4,769     4,849     4,738     4,321     3,042     
Col. 2 6,393      6,713     6,639     6,047     5,535     5,171     4,606     4,000     
ATA 2.534 1.700 1.436 1.268 1.141 1.091 1.066 1.315
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reasonable values. 

One limitation in this implementation is that the “tail” factor will always be equal to the 
benchmark number.  This is because we have assumed independence between all ATA factors.  
This assumption is relaxed in the next section, as more robust priors are used. 

 

3.3 Numerical Example with Library of Benchmark Patterns 
The example in section 3.2 assumes that there is a benchmark development pattern and 

some level of uncertainty around that pattern.  It further assumes independence between the 
ATA factors for each development age. 

We can expand the prior assumptions to instead assume that there is not just a single 
benchmark pattern but rather a library of such patterns.  For example, we may assume that 
there are fast, medium and slow developing businesses, perhaps differing due to settlement 
strategies or case reserving practices.  Each of these patterns has its own Generalized Dirichlet 
parameters, and there is some prior belief as to the probability of a given triangle being from 
any member of the library. 

For a reinsurer, this may mean that their client companies’ development patterns are 
naturally clustered into Fast/Medium/Slow groups, but without a perfect way to tell 
beforehand to which cluster a given client belongs. 

Table 6 

 

 

As we noted earlier, the distribution of 1/ATA always follows a Beta distribution.  For each 
development age, we can make a graph of the density functions for each of the benchmark 
patterns as a test for reasonableness. 

  

 Cumulative Loss Development Factors
12 24 36 48 60 72 84 96

Fast 14.014 4.930 2.607 1.759 1.406 1.263 1.191 1.155

Medium 21.950 7.787 3.946 2.512 1.842 1.558 1.415 1.315

Slow 49.240 15.860 7.407 4.163 2.706 2.057 1.750 1.567
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Figure 2 

 

 

We may have the case that the user has specified three different patterns, with variance 
within each.  The prior mixture weights are assumed to be 1/3 to each of the three benchmark 
patterns.  For Bayesian updating, the same procedure from Section 3.2 is applied for each of 
these patterns separately.  

The mixture weights are then updated using formula (5.3).  An example is show for the 
Fast pattern below, with formula (5.2) calculated as loglikelihood for each development age. 
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Table 7 

 

This is known as a mixture model and it is still relatively easy to compute because a mixture 
of conjugate distributions is still a conjugate form.  The posterior will again be a discrete 
mixture of Generalized Dirichlet distributions. Because the data from the triangle generally 
showed a faster pattern than implied in our benchmark, the weights are revised to shift more 
weight to the “Fast” curve. 

Table 8 

 

This use of a mixture of benchmark patterns can be expanded to include as many alternative 
patterns as desired, though for practical purposes three is sufficient.  The major point is simply 
to illustrate the great flexibility for incorporating prior knowledge. 

 Calculaton of Loglikelihood (Fast Pattern)

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

Data from Triangle
Col. 1 1,104 1,922 2,076 1,836 1,466 1,105 604
Col. 2 2,393 2,713 2,639 2,047 1,535 1,171 606

Variance/Mean Ratio: 1,000
N 2.39 2.71 2.64 2.05 1.54 1.17 0.61
X 1.29 0.79 0.56 0.21 0.07 0.07 0.00

Benchmark Pattern
LDF 14.014 4.930 2.607 1.759 1.406 1.263 1.191 1.155
ATA 2.843 1.891 1.482 1.251 1.113 1.060 1.031 1.155

Alpha 6.5 4.7 3.3 2.0 1.0 0.6 0.3 1.3
Beta 3.5 5.3 6.7 8.0 9.0 9.4 9.7 8.7

Alpha+Beta 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Loglikelihood -0.9363 -1.0052 -0.8252 -0.5260 -0.2687 -0.2535 -0.0290 0.0000

 Bayesian Updating of Probabilities

Difference Relative Original Revised
LogLikelihood in LL Likelihood Weights Weights

A B=A-Max(A) C=exp(B) D E=C*D/Avg( C )

Slow -4.61 -0.77 0.464 33.33% 20.41%
Baseline -4.06 -0.21 0.810 33.33% 35.61%
Fast -3.84 0.00 1.000 33.33% 43.98%

0.758 100.00% 100.00%
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4. RESULTS AND DISCUSSION 

It was the main goal of this paper to provide a Bayesian model that can be implemented 
quickly for the practicing non-technical actuary.  The use of the conjugate form allows that 
implementation.  Once this introductory material has been mastered, it is hoped that actuaries 
will seek to expand the model to make them more realistic. 

4.1 Summary of Conjugate Model 
The conjugate model is based on some simplified assumptions for ease of implementation.   

It is worth remembering some of the assumptions we have required. 

1) The variance/mean ratio is assumed to be constant and known (supplied by the analyst) 

2) All incremental development should be strictly positive 

3) Individual incremental losses are independent 

  

4.2 Extensions of the Model 

Some of the ways that we can expand on the simple model are given below.  These go 
beyond the conjugate form and therefore require moving to simulation models.  The simple 
conjugate form may still be a component or special case of these advances. 

4.2.1 Parametric versus Nonparametric Models 
The use of the Dirichlet or Generalized Dirichlet distribution allows for a pattern with a 

parameter for each development period.  This creates a very flexible shape but requires 
estimation of many parameters.   An alternative is the use of a parametric “growth curve” such 
as described in Zhang, et al (2012). 

A parametric curve creates a much smoother development pattern, which is more 
constrained because of the fewer parameters.  The Dirichlet is sometimes called a 
nonparametric model because it can follow the data more closely; however, “nonparametric” 
is a bit of a misnomer because it does not mean “no parameters” but rather potentially “many 
parameters.” 

The use of a parametric growth curve can be incorporated in a Bayesian framework, with 
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the prior distribution being on the parameters.  This does not fit as neatly into our conjugate 
form, but can be handled in simulation-based MCMC models. 

4.2.2 Including Exposures or Other External Data 
The models above assume that the actuary is selecting a loss development pattern from a 

development triangle, and that the basic assumptions of the chain ladder method apply.  For 
example, that the same pattern is applicable for all accident years. 

The Bayesian framework allows us to move beyond this limited data and include other 
information.  We could bring in data such as exposure units (e.g., onlevel premium) or 
expected loss ratios.  This additional information may also have prior distributions reflecting 
the relative uncertainty in the data.  Robbin (1986) and Mildenhall (2006) show that as the 
relative uncertainties change the results move between familiar methods such as Cape Cod 
and Bornhuetter-Ferguson. 

In addition to exposure or premium information, the model can expand to modify the 
assumption that all accident years share the same expected development pattern.  Meyers 
(2015) introduces a “changing settlement rate” (CSR) model that includes an interaction term 
to adjust each accident year. 

4.2.3 Calculation of Predictive Distribution 

This paper has been focused on getting an estimate of expected ultimate loss that 
incorporates prior knowledge, and we have not directly discussed the variability around that 
estimate.  However, because all of the analysis presented in this paper has been based on 
explicit distribution forms, all of the building blocks are in place to calculate ranges around 
estimated ultimate losses. 

The evaluation of variance depends directly upon the scale parameter 𝜙𝜙, which has been 
assumed to be fixed and known – in fact supplied by the analyst.  For computing ranges we 
would more generally want this parameter to be considered a random variable with its own 
prior distribution.  The variance should also be considered uncertain in order to evaluate the 
full uncertainty in the final estimate of ultimate loss. 

4. CONCLUSIONS 

This paper has presented an introduction to Bayesian loss development and gives an 
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implementation that can be used immediately by any actuary.   The use of the Generalized 
Dirichlet allows simpler computation than presented in earlier papers and allows for 
calculations that are as direct as the calculation of age-to-age factors.   The use of a conjugate 
form allows an interpretation of prior knowledge in the form of “fictitious” prior loss 
development.  The conjugate form can also be expanded with discrete mixtures to allow 
greater flexibility in specifying prior knowledge. 

It is hoped that this paper will allow more actuaries to experiment with the Bayesian 
framework and then be comfortable to move to ever more realistic modeling work. 
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Abbreviations and Mathematical Notation 
ATA Age-to-Age factor , or “link ratio” 
LDF Cumulative Loss Development Factor 
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𝑝𝑝 A variable representing a portion between 0 and 1.  It is a parameter (number of successes) in the 
Binomial distribution or the random variable itself for Beta distribution.  In the univariate distributions 
(Binomial, Beta) it is written without a subscript; in the multivariate cases (Multinomial, Dirichlet) it is 
written with a subscript. 

𝜙𝜙 Scale Parameter, or variance-to-mean ratio of aggregate loss 
𝛼𝛼,𝛽𝛽 Shape parameters of Gamma, Beta and Generalized Dirichlet distributions 
𝐶𝐶𝑡𝑡,𝑑𝑑 Cumulative losses for accident year 𝑡𝑡 as of development age 𝑑𝑑 
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