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Abstract 
In this paper, we discuss various credibility and modeling strategies for loss development factors.  We present 
several improvements to the popular inverse power curve to help it better fit to the data.  Using a basic approach 
to credibility weighting curves often produces results that do not lie in between the original curve and the overall 
average, as would be expected.  We show a technique to deal with this issue.  We also discuss how to model 
across continuous variables as well as show formulas for converting and modeling across different loss caps, 
retentions, and policy limits. 
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1. INTRODUCTION 

Unlike other businesses, due to the delay from the date an event occurs until it is reported and 

ultimately paid, insurance companies do not know whether their products are being adequately 

charged for or whether they were sold at a profit or at a loss.  Actuaries rely on loss development 

patterns to help estimate all of  this.  A book of  business is typically made up of  insureds having 

different characteristics with policies written at various retentions and limits, all of  which can be 

expected to have different development patterns.  Not reflecting these differences properly can lead 

to inaccurate estimates of  what is performing well and what is not, not to mention an inaccurate 

total result if  there have been changes over time.  But it is difficult to account for these differences 

since dividing up the data often results in portions that are too volatile to analyze on their own, 

especially under the typical approach which involves selecting a separate parameter for the loss 

development factor of  each period. 

This paper discusses some modeling strategies for loss development factors and for 

differentiating across segments while still leveraging the credibility across the divisions of  the data.  

Specifically, this paper discusses the following: 

 An improved method of  fitting curves to loss development factors 

 Credibility weighting techniques, both for individual LDFs and fitted curves.  For fitted 

curves, ensuring that the credibility weighted results lie in between the original curve and 

the complement. 

 Methods to model across continuous variables 

 Formulas for converting and modeling across different loss caps, retentions, and policy 
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limits 

All of  the models in this paper can be implemented as full Bayesian models solved using Markov 

Chain Monte Carlo, or more simply in spreadsheets.  This allows for easier adoption and also 

facilitates implementation in account rating engines where credibility weighting can be performed on 

an account’s specific loss development pattern.  Both versions will be discussed. 

1.1 Outline 

To illustrate credibility weighting of  loss development factors, three types of  credibility models 

will be shown: the first involves credibility weighting each LDF individually, the second involves a 

parametric curve (the inverse power curve), and last can be thought of  as a compromise between 

these two and involves using a Generalized Additive Model, which will be explained.  For the latter 

two models, an approach is shown to help ensure that the resulting credibility weighted curves lie in 

between the original curve and the overall average, which is often violated using a more basic 

approach.  We also discuss some improved strategies for fitting curves to loss development factors.  

After that, modeling across continuous variables as well as different retentions, policy limits, and loss 

caps is discussed. 

1.2 Technical Background 

For the models that we will be discussing in this paper, we will be assuming that the variance of  

each LDF is inversely proportional to the volume of  cumulative paid or reported losses in the 

previous age of  the triangle.  (So, for example, the variance of  the first LDF is related to the losses 

from the first age.)  This must be the case since the variance of  the losses for a subsequent age for 

two equally sized accounts is equal to twice the variance of  one of  these accounts.  To convert these 

losses into LDFs, they are divided by the sum of  the losses in the previous age, and so the variance 

is divided by the square of  this sum (since it is not a random variable).  Thus, the denominator of  

the LDF variance for both equally sized accounts combined will be two squared greater than that of  

a single account.  And so the variance of  the combined LDF will be 2 / 2² or half  of  that of  each 

of  the accounts separately.  Assuming any other relationship between variance and losses will not 

agree with this result and will lead to inconsistencies. 

To calculate the variance of  each LDF, the Buhlmann-Straub formula for the “within variance” 

can be used, using the previous cumulative losses as the weight (Dean 2005): 
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Where G are the number of  risks, N g are the number of  periods for group g, W gn  is the weight for 

group g in period n, X gn is the value for group g in period n, and X̄ g is the average value for group g. 

Note how this formula multiplies by the weight, but does not divide by it.  This is because this 

parameter is really more accurately described as a within variance factor, rather than the within 

variance for anything in particular.  If  we take a closer look at the Buhlmann-Straub credibility 

formula as well, we can see that this factor is divided by the total weight in order to calculate the 

actual within variance.  The ratio of  the between variance to the within variance determines the 

amount of  credibility given to the risk. 
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 (1.2) 

 

Where Z is the credibility given, N is the weight, A is the between variance, W is the between 

variance factor, and V is the actual between variance.  So to calculate the variance of  an individual 

LDF in the triangle, the within variance factor should be divided by the cumulative losses from the 

previous age.  For the variance of  the overall average LDFs for each age, the weight used should be 

the sum of  the cumulative losses in the previous age that were used for calculating the LDF. 

Once the within variance factors are calculated at every age, they should be smoothed by fitting a 

curve.  A logarithmic curve on the logarithm of  the age seems to provide a good fit.  In practice, the 

first one or two ages may need to be removed, as well as the latter, extremely volatile tail portion to 

be able to fit more accurately.  

We will be using the normal distribution to calculate the likelihood of  each fitted loss 

development factor.  Since we are allowing our variances to vary for each LDF, this approach is 

more similar to Kernel smoothing than to assuming that LDFs are actually normally distributed.  

Taking these two assumptions together of  using normal distributions with variances inversely 

proportional to the losses produces the same result as taking a weighted average of  the LDFs, as is 

commonly done, and so is consistent with traditional actuarial practice.  This type of  model works 

well in practice and is the easiest to implement and understand, although other assumptions are 
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possible as well. 

Most of  the credibility models presented in this paper use Bayesian credibility.  These models can 

be implemented without the use of  special Bayesian software.  Since we are using the normal 

distribution for the LDFs and we will also be assuming that the prior distribution is normal (that is, 

the distribution of  the hypothetical means for each group, in Bayesian terms), which is the common 

assumption, this is a conjugate prior and the resulting posterior distribution (the credibility weighted 

result) is normal as well.  Using MLE returns the mode of  a distribution, which will also be equal to 

the mean for the normal distribution, and so will return identical results to that produced using 

special Bayesian software.  Further details will be discussed later. 

2. Credibility Weighting Individual LDFs 

The first LDF credibility model we will discuss involves credibility weighting the individual loss 

development factors.  Only age-to-age factors should be used since age-to-ultimate factors have a 

high degree of  dependency on one another. 

To credibility weight individual LDFs, Buhlmann-Straub credibility can be used.  The “between 

variance” should be calculated for every age.  The formula for calculating the between variance is 

shown below (Dean 2005): 
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∑
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− (G− 1) ̂EPV

W−

∑
g= 1

G

W g

2

W  

  

(2.1) 

 

Where all terms are the same as above, X̄ is the average value across all groups, W g is the sum of  

the weights for group g, and W is the sum of  the weights across all groups. 

Either a curve should be fit to these points similar to the within variance factors, or they can be 

determined as a constant factor of  the within variance factors.   

The downside to this simple credibility approach is that each LDF is treated individually, and not 

as part of  a curve.  This discards a large amount of  useful information about the relationship 

between the LDFs that can be used to improve the accuracy of  our selections.  As mentioned in 

England and Verrall 2002 (and others), selecting parameters for every single age is over-

parameterized, meaning that more parameters are being chosen than necessary, which will increase 
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the prediction variance.  Therefore, using a curve is highly recommended.  A problem with using a 

curve along with credibility, however, is that normal credibility weighting techniques often result in 

curves that do not lie between the original curve and the overall mean, as we would hope.  The next 

section discusses a technique to address this issue. 

3. Applying Credibility to the Inverse Power Curve 

The inverse power curve is a well-known method used to help smooth LDFs (Sherman 1984).  

This curve can be fit by using the regression equation, as mentioned in the paper1: 

 

log(LDF – 1) = A + B x log(t)  (3.1) 

 

Where A and B are the regression coefficients and t is the age.  In our experience, it can be a 

useful tool to help smooth out some LDFs, especially in the latter portion of  the curve, although it 

often has trouble fitting the entire curve.  This depends on the type of  business being modeled, 

however.  Also, solving this regression equation using ordinary regression gives too much weight to 

the tail portion of  the curve as mentioned in Lowe et al (1985).  This is not an issue if  using an 

extrapolation from earlier more stable points to predict later ages in the curve, as is commonly done, 

but can be an issue when attempting to fit to the entire curve.  An improved way to fit this curve will 

be discussed. 

Instead of  using ordinary regression to solve for the parameters, maximum likelihood estimation 

(MLE) can be used instead.  (This can be implemented using a weighted GLM as well.)  Doing this 

makes the weights by age more appropriate and helps provide a better fit than simple regression.  

MLE can be performed either on each individual LDF or on the weighted averages by age; the 

results will be the same if  the normal distribution is used.  If  using the weighted averages, the losses 

used for calculating the variances should be the sum of  the cumulative losses in the previous period 

that were used in calculating the average LDF.  The only real reason to use the individual LDFs is 

when constructing a full Bayesian model (which solves for the within and between variances as part 

of  the model).  The log-likelihoods of  the fitted LDFs for each age (using equation 3.1) should be 

added together, and this sum should be maximized.  In practice, it may help to exclude the LDFs 

that do not provide a good fit to the curve or that are too volatile, such as the first few LDFs or the 

latter portion of  the curve that is very sparse and volatile.    

                                                 
1 The paper actually uses the logarithm of  the inverse of  the age, but the regression equations are equivalent. 
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To perform credibility weighting among the segments, normally Bayes' formula would be used: 

f(Parameters | Data) = f(Data | Parameters) x f(Parameters), or equivalently, Posterior(Parameters, Data) = 

Likelihood(Data, Parameters) x Prior(Parameters), and the regression parameters would be used for 

calculating this prior likelihood component, which is the credibility component of  the likelihood.  

However, doing so often results in poor behaving curves, as mentioned.  Instead, we suggest 

reparameterizing the curve as will be explained. 

The first step is to invert the regression equation (3.1) to solve for the LDFs.  Doing so results in 

the following equations.  Since there are two parameters, we need two LDFs at two separate ages to 

solve for them. 

 

B=

log(
LDF 1− 1

LDF 2− 1
)

log(
t1

t 2

)
 

 

  

(3.2) 

A= log(LDF 1− 1)− B log( t1)   (3.3) 

 

Now, given any two LDFs of  the fitted curve, we can solve for the original regression parameters.  

And given these, we can calculate all of  the LDFs of  the curve.  Ignoring the middle step, we can 

construct the entire curve from these two LDFs.  Since the entire curve can be defined by these two 

LDFs, we can consider these as the parameters of  the curve.  This being the case, we can 

alternatively calculate the prior likelihood, that is the credibility component of  the likelihood, using 

these new parameters instead.  When doing so, the between variance used should be consistent with 

our new LDF parameters and not the original regression parameters.  This between variance can be 

estimated by calculating the between variance of  the actual LDFs using equation 2.1 above2.  The 

ages for these LDF parameters can be selected as being equally spaced along the ages used to 

perform the fit, but they can be tweaked if  needed.  Note that even though we are only performing 

the credibility weighting on two LDFs of  the curve, we are still credibility weighting the entire curve, 

since changing these LDFs affects the entire curve as they are the new curve parameters. 

The equations should be inverted when implementing a full Bayesian model.  For an MLE 

model, it is not necessary to actual invert the equations (assuming we are not implementing a 

                                                 
2 Note that including the likelihood of  the between variance of  every LDFs, as was done in the previous section, is 

not correct here, since following Bayes' equation, only the parameters should be included in the prior likelihood; in 
the above section, each LDF was considered separately and so is considered a parameter.  This is not the case here. 
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multidimensional model or modeling across continuous variables, which will be discussed later), 

since we can solve for any fitted LDF along the curve and use this LDF to calculate the prior 

likelihood component that we need, effectively “pretending” that we have inverted the equation.  

Doing this will yield the exact same results as if  we had actually performed the inversion.  For the 

MLE model, the complement of  credibility for each parameter should be taken from the results 

from fitting a curve to all segments combined, and not the actual empirical LDFs.  (For the Bayesian 

model, the complement is determined as part of  the model.)  To summarize, the log-likelihood for 

this model is: 

 

 

∑
d= Durations

N (Fitted LDF d , Actual LDF d ,WithinVarianced)  

+ ∑
c= 2 Durations Selected For CredibilityWeighting

N (Fitted LDF c , Average LDF c , BetweenVariancec)
 

  

(3.4) 

 

Where N(A, B, C) is the logarithm of  the probability density function (PDF) of  a normal 

distribution at A, with mean and variance of  B and C, respectively.  The fitted LDFs are determined 

from the inverse power curve equation (3.1).  The parameters of  this equation are determined by a 

maximization routine that maximizes this likelihood.  The within variances are calculated by dividing 

the within variance factor by the cumulative paid or reported losses, as mentioned.  (As a practical 

matter if  implementing with MLE, a minimum value, such as 1× 10
− 20

should be set for the values 

of  the normal PDFs, so that they are not too close and rounded to zero, which will cause errors 

with the logarithm function.  Also, for the earlier ages, it sometimes improves the fit to use the 

within variance factor at a point a few ages later.) 

4. Applying Credibility to an Additive Model 

The following model can be described as a combination of  the inverse power curve and the 

Generalized Additive Model suggested by England and Verrall 2001 in which they use this to model 

the incremental paid or reported loss amounts.  Here, however, we will be modeling on the actual 

LDFs instead, as we did for the inverse power curve, because it works better with credibility 

weighting.  It also involves solving for fewer parameters so that it can be implemented from within 

spreadsheets. 

Before we begin explaining how this model works, we will briefly explain splines and additive 

models.  An ordinary regression model has a dependent variable that is a linear function of  one or 



Credibility and Other Modeling Considerations For Loss Development Factors 

Casualty Actuarial Society E-Forum, Summer 2015-Volume 2 8 

more predictive variables and has the form: 

 

Y i=∑
i

Bi X i  

 

An additive model, instead of  just linear functions, allows for any function, and has the form: 

 

Y i=∑
i

f ( X i)  

 

Usually, some type of  smoothing function is used that helps adapt the curve to the actual data, even 

if  the relationship is not perfectly linear.  Cubic splines are a very common choice since they do a 

good job of  adapting the curve to the data and results in nice, smooth curves. 

For example, if  we were trying to fit a regression model to the data below and were not able to 

find a simple transformation of  the independent variable that nicely fit the data, such as a logarithm, 

we might consider using an additive model.  The results using a linear regression model (blue line) 

versus an additive model (red line) are shown below.  Note how the additive model nicely adapts the 

shape of  the curve to the data. 
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An additive model can also be implemented with an ordinary regression model using splines3.  

These are functions that generate multiple new numeric sequences based off  of  the original 

sequence that can be used for smoothing.  These new variables can then be plugged into a standard 

regression model with the same result as an additive model.  The example shown above used three 

natural cubic spline transformations off  of  the numeric sequence from one to ten and are graphed 

below.  Each of  these resulting curves represents one of  the degrees of  freedom of  the spline.  By 

multiplying each curve by a coefficient and adding the results together, smooth curves can be fit to 

data of  multiple forms and shapes.  The benefits of  this approach is that splines work better for our 

credibility procedure and it also allows additive models to be implemented from within 

spreadsheets4.  A full discussion of  additive models is outside of  the scope of  this paper. 

 

                                                 
3 A full additive model may also help decide how many new variables should be generated (known as the degrees of  

freedom), etc. but this is not crucial.  
4 One way this can be done is to generate the spline numeric sequences outside of  the spreadsheet and then paste 

them in. Natural cubic splines can be generated in R using the ns method of  the splines package.  For example, the 
following code can be used to generate a spline with three degrees of  freedom (that is, equivalent of  three variables) 
starting at the second age, ending at the 20th, but having a tail that goes out to the 40th, all on a log scale as we will 
mention a bit later: 

   library(splines) 
   ns( log(2:40), Boundary.knots=c(log(2),log(20)), df=3 ) 
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Having described the benefits of  additive models and how they work, it becomes clear why we 

would want to use them in a loss development model; it is very difficult to find a nice parametric 

shape that fits nicely to the entire curve.  Additive models solve this problem by adapting the curve 

to the data.  A downside, however, is that they can sometimes over-fit.  When fitting volatile data 

with splines, it is often necessary to remove the later, more volatile points from the fitting.  (When 

this is done, the spline should only be constructed for the actual ages being fit, although the tail can 

be extended further.  See the code in the footnote above for how to generate a spline like this in R.)  

These models may have trouble fitting to the first one or two LDFs as well, and these may need to 

be removed from the fitting and selected outside of  this model. 

This method works best when the spline is generated on the logarithm of  age, and so is very 

similar to the inverse power curve, but with additional smoothing to help fit the data even better.  

We refer to this model as the smoothed inverse power curve.  The data we examined worked best 

using a spline with three degrees of  freedom and so we will assume this is the case below, but a 

different number can be used as well. 

Compared to the inverse power curve, the spline/additive model usually provides a much better 

fit to the data.  Also, having more parameters, the credibility weighting occurs at more points in the 

curve and is often better behaved.  This makes it better able to handle situations when a curve 



Credibility and Other Modeling Considerations For Loss Development Factors 

Casualty Actuarial Society E-Forum, Summer 2015-Volume 2 11 

intersects with the credibility complement, for example; the resulting credibility weighted splines 

curve usually does a good job of  staying in between the original curve and the complement.  The 

points at which credibility is being done can also be tweaked, which can help sometimes if  needed. 

The regression equation used here is: 

 

log(LDF− 1)= A+ B× s(log(t ))  

 

Where A and B are the regression coefficients, t is the age, and s is a smoothing cubic spline 

function.  Using splines, this can be extended to: 

 

log(LDF− 1)= A+ Bt1+ C t2+ Dt3

  (4.1) 

 

Where A is the intercept of  the curve and B, C, and D are the slope parameters for each of  the 

generated spline variables, t
1

, t
2

, and t
3

on the logarithm of  the age.  (We used superscripts to 

denote the different spline variables.)  To fit such a model, similar to the inverse power curve, we use 

maximum likelihood to solve for the parameters.  Implementing credibility is also very similar to 

what we did for the inverse power curve, except that here the prior likelihood should be calculated 

for four different LDFs instead of  two since this regression equation has a total of  four parameters 

including the intercept. 

Below are some examples of  implementing credibility weighting with this method on real data.  

(The resulting LDFs have been modified so as not to reveal any propriety information.)  The spline 

curves provide a good fit to the data and the credibility weighted curves lie in between the original 

and the overall.  The second graph zooms in on the second segment to show that the credibility 

curve does a good job of  staying in between the original and the overall curve even when these two 

curves cross over each other.  (All of  these fits were produced in Excel using the Solver feature to 

maximize the log-likelihood.) 
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The equations for inverting these curves are shown in Appendix A for both three and four 

parameter curves. 

5. Multidimensional Credibility Models 

The models we have been discussing up to this point were one dimensional models as the 

credibility weighting was done across a single variable.  A multidimensional model can also be 

constructed that considers the differences across more than a one variable.  Assuming that our two 

variables are state and industry, a two dimensional model can be built by defining a relationship for 

the (inverted) LDF parameters, such as the following: 

 

log(LDF s , i)= Intercept+ StateCoefficient s+ Industry Coefficient i   (5.1) 

 

We used a log-link here to make the relationship multiplicative, since this usually works best for 

multidimensional models.  The total log-likelihood would be calculated by summing up the log-

likelihood of  each fitted LDF and the log-likelihood of  the priors for each coefficient.  The equation 
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would be as follows: 

 

∑
s= States

∑
i= Industries

N (Fitted LDF s ,i , Actual LDF s ,i ,Within Variance s ,i)
 

+ ∑
s= States

N (State Coef s ,0,State BetweenVariance)
 

+ ∑
i = Industries

N (Industry Coef i ,0, Industry BetweenVariance)
 

  

 

(5.2) 

 

Where, once again, N(A, B, C) is the logarithm of  the probability density function evaluated at A, 

with a mean of  B and variance of  C.  Each state and industry coefficient is credibility weighted back 

towards zero, which pushes each curve back towards the intercept, which will be the complement of  

credibility.  It is also possible to add an interaction term for state and industry and have that 

credibility weighted back towards zero as well.  This will give the model more flexibility to better 

reflect the differences of  state-industry combinations that differ from the average. 

This type of  model can be solved without the use of  special Bayesian software as well.  Since 

MLE parameters are known to be approximately normal, and since the prior distribution is normal, 

the posterior (credibility weighted result) will be approximately normal as well.  And, as we 

discussed, this type of  model can be solved with MLE.  However, unlike the one dimensional 

models discussed above, every segment needs to be maximized together.  Because of  this, the 

number of  parameters may be too many to have accurately solved with a maximization routine, but 

this depends on the circumstance. 

6. Modeling across Continuous Variables 

For modeling LDFs across most continuous predictive variables in the data, such as account size 

or retention (which will also be discussed more thoroughly in the next section), we would usually not 

want to credibility weight these curves back towards the mean, since we usually expect there to be an 

order to these curves, and credibility weighting would just bump up the lower curves and bump 

down the higher ones.  Instead, we can define a relationship between the different curves that 

depends on the continuous variable.  To implement, the inverted, reparameterized version of  the 

curves should be used.  For each group, the LDF parameters should be set to a function of  the 

continuous variable.  For example, the following formula can be used to determine the LDF 

parameters for each retention group: 
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log(LDF Parameter) = Intercept + exp(Coefficient) x log(Retention)  (6.1) 

 

We took the exponent of  the coefficient to guarantee that the actual coefficients used are positive 

and so will result in curves that can only increase by retention, which is usually the expectation. 

As an alternative, sometimes it works better to simply constrain the LDF parameters to the 

expected order.  This can be implemented by setting each LDF parameter for each group to the 

LDF parameter of  the group below it plus the exponent of  another parameter.  The exponent is 

used to ensure that the difference is positive.  For both of  the approaches mentioned, when working 

with volatile data, setting a minimum value for the slope or difference parameters to something 

small, such as 1% or lower, often produces results that fall more in line with expectations. 

7. Loss Caps, Retentions, and Policy Limits 

Besides for the strategy mentioned in the previous section, when modeling across different loss 

caps, retentions, and/or policy limits, we can leverage information from the severity distribution to 

help define the relationships between the groups.  This method assumes that the loss severity 

distribution has already been estimated.  It also requires claim count development factors.  Our 

approach differs from that in Sahasrabuddhe 2010, which suggests using the severity distribution to 

modify the actual data of  the triangle; here we convert the LDFs themselves.  Note that this strategy 

uses the regular (non-inverted, that is) versions of  the curves (unless credibility weighting is being 

done as well.) 

We will start off  with the following relationship mentioned in Siewert 1996 (although in a slightly 

different syntax).  This formula simply states that loss development consists of  the arrival of  new 

claims as well as increased severity of  both the existing and new claims. 

 

LDF t= CCDF t× SDF t   (7.1) 

 

Where CCDF is the claim count development factor and SDF is the severity development factor, 

which accounts for the increase in the average claim severity as a year matures.  Flipping the 

equation around, this becomes: 

 

SDF t=
LDF t

CCDF t  

 (7.2) 
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We will use these relationships to demonstrate modeling across different loss caps assuming that 

we are basing the LDFs of  other, less stable caps on one particular, more stable cap.  We will then 

generalize to include retentions and policy limits and also allow modeling of  all groups 

simultaneously. 

For a particular cap, c1: 

 

SDF t(c1)=
LEV T (c1)

LEV t(c1)  

 (7.3) 

 

Where LEV t( x) is the limited expected value at x at age t and T is infinity (although t+1 can be used 

to convert age-to-age factors as well).  If  we have an assumption for how severity development 

affects claims, we can use this to derive the LDFs.  For now, we will assume that all uncapped losses 

increase on average by the same multiplicative factor as a year matures, and we adjust the loss 

severity distribution by a scale adjustment.  To explain, most distributions have a way of  modifying 

one of  the parameters which causes each claim to increase or decrease by the same multiplicative 

factor.  For example, the mu parameter of  the lognormal distribution is a log-scale parameter and 

adding the natural logarithm of  1.1, for example, will increase each claim by 10%.  For a mixed 

exponential distribution, each theta parameter would be multiplied by 1.1.  We rewrite equation 7.3 

to show the scale parameters instead of  the ages, where LEV (θ ;c1)  is the LEV with a scale 

parameter of  θ  at a cap of  c15: 

 

SDF t(c1)=
LEV (θ ;c1)

LEV (θ/a t ; c1)
 

 (7.4) 

 

Since we know the SDF and can calculate LEV (θ ;c1) , we can back into the factor, a, that satisfies 

this equation.  If  losses are uncapped, there are no policy limits, and c1 is infinity, then the factor, a, 

would equal the SDF.  Otherwise, it will be slightly higher.  Once we have the loss severity 

distribution at time t, we can use this to derive the severity development factor at another loss cap, 

c2: 

                                                 
5  As a side note, applying this SDF to the claims of  each year can also be used as a strategy for developing the severity 

distribution to ultimate when fitting increased limit factors. 
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SDF t(c2)=
LEV (θ ;c2)

LEV (θ/a t ;c2)
 

 (7.5) 

 

And we can then use this to calculate the loss development factor, at a loss cap of  c2: 

 

LDF t(c2)= CCDF t x SDF t (c2)   (7.6) 

 

The above assumed that all claims were ground up.  If  this is not the case, and there is a retention 

(assuming that it is uniform across all policies, for now), the average severities can be calculated as: 

 

LEV (AP+ Cap)– LEV ( AP)

s (AP)  

 (7.7) 

 

Where AP is the retention.  We divided by the survival function at the retention to produce the 

average severities conditional on having a claim above the retention, which is consistent with the 

claims we observe in the triangle. 

For modeling across different retentions, the strategy changes slightly since the claim counts are 

not at the same level.  We can control for this by making the average severities for a retention 

conditional of  having a claim at another retention by dividing by the survival function at this 

retention.  When converting the severity development factor to an LDF, the claim count 

development factor at this retention should be used.  The formulas are as follows, where SDF(x, y, 

Relative to z) is the severity development factor at a retention of  x, a cap of  y, and expressed relative 

to the claim counts of  retention z. 

 

SDF t ( AP2 ,Cap , Relative to AP1 )=
(LEV T (AP2+ Cap) – LEV T( AP2))/ sT ( AP1)

( LEV t( AP2+ Cap)– LEV t (AP2))/ st( AP1)  

 (7.8) 

 

LDF t( AP2 ,Cap)= CCDF t( AP1)× SDF t ( AP2 ,Cap , Relative to AP1 )  

  

(7.9) 

 

If  just converting from LDFs of  one retention to another once the a factors are already known, the 
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SDFs can also be expressed relative to first dollar CCDFs (even if  these are not available) to simplify 

the formula.  The formula is: 

 

LDF t( AP2 ,Cap2)= LDF t (AP1 ,Cap1)×
SDF ( AP2 ,Cap2 , Relative to 0)

SDF ( AP1 ,Cap1 , Relative to0 )  

 (7.10) 

 

To leverage credibility in the claim count development factors as well, claim counts from one 

retention can be converted to another using this formula: 

 

CCDF t (AP2)= CCDF t (AP1)×
sT (AP2)/ sT ( AP1)

st (AP2)/ st (AP1)  

 (7.11) 

 

To give an example, if  the (age-to-ultimate) LDF for a particular age for a group of  ground-up 

policies with limits of  one million is 1.3 and the claim count development factor is 1.2, this would 

indicate that the severity development factor is 1.3 / 1.2 = 1.083, using equation 7.2.  Assuming the 

severity distribution (at ultimate) is lognormal with mu and sigma parameters of  10 and 2, 

respectively, we can back into the scale adjustment using equation 7.5.  Using an a value of  1.115 

produces the desired SDF of  1.083.  Using this same equation and same value of  a, the SDF for a 

group of  policies with limits of  five million is equal to 1.101, which implies an LDF of  1.101 x 1.2 

= 1.321, slightly higher than the original LDF of  1.3, as expected.  Similarly, using equations 7.8 and 

7.9 for excess policies, the SDF for a group of  policies with retentions and policy limits of  one 

million, expressed relative to group up claim counts, is 1.144, which implies an LDF of  1.372. 

In the above discussion, we assumed that every policy is written at the same retention or policy 

limit.  For a more realistic scenario with different limits and retentions within each group, the 

average expected severity should be calculated across all policies.  If  we assume that the expected 

frequency of  each policy is equal to the (on-level) premium divided by the expected average severity, 

the average severity is equal to the total premium divided by the total number of  expected claims, or: 

 

∑
i

Premiumi

∑
i

Premiumi / Expected Average Severity i

 

  

(7.12) 
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If  the retentions or policy limits within each group are not too far apart, it is possible that 

calculating the average severities using a premium weighted average limit and/or retention may not 

be too far off.  This strategy can also be used to adjust LDFs if  there are shifts in the average 

retentions and/or limits by year.  We ignored the effects of  trend in the above which can easily be 

added by applying a de-trending factor to the scale parameter of  the loss severity distribution. 

As we mentioned, the above discussion was geared towards converting LDFs from one 

retention/limit/cap to another, but it is also possible to model across all groups simultaneously 

using these relationships.  To do so, instead of  backing into the a factors, since we are using MLE, 

they can be included in the parameters being maximized.  A curve can be fit to the age-to-age a 

factors, and then they can be multiplied together to produce the age-to-ultimate factors, which are 

needed to calculate the SDFs.  If  simultaneously fitting the CCDFs, parameters will be needed for 

these as well (at one particular retention).   The log-likelihoods can then be calculated and added up 

across all LDFs and CCDFs, and this sum can be maximized.  Alternatively, the claim counts can be 

ignored and the parameters being maximized can include the a factors and the parameters for the 

LDFs of  one of  the groups.  Once we have all of  these, the SDFs can be calculated and equation 

7.10 can be used to convert these LDFs to different retentions, caps, and/or limits.  This approach, 

however, does not utilize the data in the claim count develop factors and so is not as strong. 

We assumed here that every claim increases by the same amount using a scale factor adjustment, 

but since we are backing into (or maximizing) the adjusted value of  LEV t( x)  using the SDF, this 

procedure allows for any sort of  parameter transformations.  For example, for excess losses 

modeled with a one- or two-parameter Pareto, allowing the alpha parameter to vary instead of  the 

Beta parameter, which is a scale parameter, has the effect of  increasing or decreasing the tail of  the 

distribution. 

8. Individual Account Credibility 

Most of  the models discussed above can be implemented relatively simply without use of  any 

specialized software.  This allows the use of  these credibility models in account rating engines, often 

implemented in spreadsheets.  The complement of  credibility for each account should be the 

selected LDFs for the portfolio with the between variances and the within variance factors 

calculated at the portfolio level.  The between variance should represent the variance of  the 

differences across accounts and can be calculated by looking at a sampling of  accounts.  The within 

variance can be calculated by dividing the within variance factor by the account’s losses and 

credibility weighted LDFs can be produced. 
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9. Conclusion 

In this paper we discussed several loss development models that perform very well in practice 

and that are relatively simple to implement.  Using these models will allow for more accurate 

differentiation between risks that properly reflects the differences in the patterns in which losses 

arrive. 
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Appendix A 

The following are the equations for inverting a splines regression equation with four parameters 

in total, an intercept and a spline with three degrees of  freedom.  The equation for this curve is as 

follows: 

 

log(LDF− 1)= A+ Bt1+ C t2+ Dt3

 

 

Where, once again, superscripts here denote each resulting spline variable.  The following 

substitution variables will be used: 

 

X = log(
LDF 1− 1

LDF 2− 1
)−

t1
1
− t2

1

t3

1
− t4

1
× log(

LDF 3− 1

LDF 4− 1
)

 

 

I = (t 1

2
− t2

2
)−

(t 3
2
− t4

2
)× (t1

1
− t2

1
)

t 3

1
− t4

1

 

 

J = ( t1

3
− t2

3
)−

(t 3
3
− t 4

3
)× ( t1

1
− t2

1
)

t 3

1
− t 4

1

 

 

Y = log(
LDF 1− 1

LDF 3− 1
)−

t1
1
− t 3

1

t2

1
− t 4

1
× log(

LDF 2− 1

LDF 4− 1
)

 

 

K= (t1

2
− t3

2
)−

(t 2
2
− t 4

2
)× (t 1

1
− t 3

1
)

t 2

1
− t4

1

 

 

L= (t 1

3
− t 3

3
)−

(t 2
3
− t 4

3
)× (t 1

1
− t 3

1
)

t 2

1
− t 4

1
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The equations for each of  the four parameters are: 

 

D=
X − Y × I /K

J− L× I / K  

 

C=

(t 1

1
− t 2

1
)[ log(

ldf 3− 1

ldf 4− 1
)− D(t3

3
− t 4

3
)]− (t 3

1
− t 4

1
)[ log(

ldf 1− 1

ldf 2− 1
)− D(t 1

3
− t 2

3
)]

(t 3

2
− t 4

2
)(t 1

1
− t 2

1
)− (t 1

2
− t2

2
)(t 3

1
− t 4

1
)

 

 

B=

log(
LDF 1− 1

LDF 2− 1
)− C ( t1

2
− t 2

2
)− D(t 1

3
− t 2

3
)

t 1

1
− t 2

1

 

 

A= log(LDF 1− 1)− Bt1
1− C t1

2− Dt1
3

 

 

To help facilitate implementation, the R code for performing this inversion is as follows, where 
xx represents x above, etc., spline1, spline2, and spline3 are vectors which contain the three spline 
transformations, age is a vector which contains the four ages being used for the parameters, b3 
represents D, b2 represents C, etc., and g represents the group index of  each LDF curve: 

 

xx[g] <- log( ( ldf.param1[g] - 1 ) / ( ldf.param2[g] - 1 ) )-( ( spline1[age[1]] - spline1[age[2]] ) / ( 
spline1[age[3]] - spline1[age[4]] ) ) * log( ( ldf.param3[g] - 1) / ( ldf.param4[g] - 1 ) ) 

ii[g] <- ( spline2[age[1]] - spline2[age[2]] ) - ( ( spline2[age[3]] - spline2[age[4]] ) * ( spline1[age[1]] - 
spline1[age[2]] ) ) / ( spline1[age[3]] - spline1[age[4]] ) 

jj[g] <- ( spline3[age[1]] - spline3[age[2]] ) - ( ( spline3[age[3]] - spline3[age[4]] ) * ( spline1[age[1]] - 
spline1[age[2]] ) ) / ( spline1[age[3]] - spline1[age[4]] ) 

yy[g] <- log( ( ldf.param1[g] - 1 ) / ( ldf.param3[g] - 1 ) )-( ( spline1[age[1]] - spline1[age[3]] ) / ( 
spline1[age[2]] - spline1[age[4]] ) ) * log( ( ldf.param2[g] - 1) / ( ldf.param4[g] - 1 ) ) 

kk[g] <- ( spline2[age[1]] - spline2[age[3]] ) - ( ( spline2[age[2]] - spline2[age[4]] ) * ( spline1[age[1]] - 
spline1[age[3]] ) ) / ( spline1[age[2]] - spline1[age[4]] ) 

ll[g] <- ( spline3[age[1]] - spline3[age[3]] ) - ( ( spline3[age[2]] - spline3[age[4]] ) * ( spline1[age[1]] - 
spline1[age[3]] ) ) / ( spline1[age[2]] - spline1[age[4]] )       

b3[g] <- ( xx[g] - yy[g] * ii[g] / kk[g] ) / ( jj[g] - ll[g] * ii[g] / kk[g] ) 

b2[g] <- ( ( spline1[age[1]] - spline1[age[2]] ) * ( log( ( ldf.param3[g] - 1 ) / ( ldf.param4[g] - 1 ) ) - b3[g] * ( 
spline3[age[3]] - spline3[age[4]] ) ) - ( spline1[age[3]] - spline1[age[4]] ) * ( log( ( ldf.param1[g] - 1) / ( 
ldf.param2[g] - 1 ) ) - b3[g] * ( spline3[age[1]] - spline3[age[2]] ) ) ) / ( ( spline2[age[3]] - spline2[age[4]] ) * ( 
spline1[age[1]] - spline1[age[2]] ) - ( spline2[age[1]] - spline2[age[2]] ) * ( spline1[age[3]] - spline1[age[4]] ) ) 

b1[g] <- ( log( ( ldf.param1[g] - 1 ) / ( ldf.param2[g] - 1 ) ) - b2[g] * ( spline2[age[1]] - spline2[age[2]] ) - b3[g] * 
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( spline3[age[1]] - spline3[age[2]] ) ) / ( spline1[age[1]] - spline1[age[2]] ) 

b0[g] <- log( ldf.param1[g] - 1 ) - ( b1[g] * spline1[age[1]] ) - ( b2[g] * spline2[age[1]] ) - ( b3[g] * 
spline3[age[1]] ) 

 

For Excel, if  the three spline transformations are on the top 3 rows of  the spreadsheet for the 

four ages being used as parameters going across and starting at cell A1, and the four LDF 

parameters to be inverted are in cells A5 to D5, then the formulas for each of  the intermediate 

parameters are as follows: 

 

X=LN((A5-1)/(B5-1))-(A1-B1)/(C1-D1)*LN((C5-1)/(D5-1)) 

I=(A2-B2)-((C2-D2)*(A1-B1))/(C1-D1) 

J=(A3-B3)-((C3-D3)*(A1-B1))/(C1-D1) 

Y=LN((A5-1)/(C5-1))-(A1-C1)/(B1-D1)*LN((B5-1)/(D5-1)) 

K=(A2-C2)-((B2-D2)*(A1-C1))/(B1-D1) 

L=(A3-C3)-((B3-D3)*(A1-C1))/(B1-D1) 

 

If  these formulas are placed on row 6 going across starting with column A, then the formulas for 

each of  the curve parameters are as follows, assuming that these are placed in row 7 going across 

and starting from the column A: 

 

D=LN(A5-1)-B7*A1-C7*A2-D7*A3 

C=(LN((A5-1)/(B5-1))-C7*(A2-B2)-D7*(A3-B3))/(A1-B1) 

B=((A1-B1)*(LN((C5-1)/(D5-1))-D7*(C3-D3))-(C1-D1)*(LN((A5-1)/(B5-1))-D7*(A3-B3)))/((C2-

D2)*(A1-B1)-(A2-B2)*(C1-D1)) 

A=(A6-D6*B6/E6)/(C6-F6*B6/E6) 

 

The equations for inverting a curve with only three parameters, an intercept and a spline with two 

degrees of  freedom are shown below.  The regression equation is as follows: 

 

log(LDF− 1)= A+ Bt
1+ C t

2
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The following substitution variables are used: 

 

X = t1
1− t2

1

 

 

Y = t1
2− t2

2

 

 

W = t 2
1− t 3

1

 

 

Z= t 2
2− t 3

2

 

 

The equations for inverting each of  the variables are: 

 

C=

X

W
log(

LDF 2

LDF 3

)− log(
LDF 1

LDF 2

)

XZ

W
− Y

 

 

B=

Y

Z
log(

LDF 2

LDF 3

)− log(
LDF 1

LDF 2

)

YW

Z
− X

 

 

A= log(LDF 1)− Bt1
1− Ct1

2

 

 

Formulas for R and Excel are not shown for this version since the equations are much less 
complicated than the four parameter version. 
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