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Abstract 

In this paper, we present a stochastic loss development approach that models all the core components of the 
claims process separately.  The benefits of doing so are discussed, including the providing of more accurate 
results by increasing the data available to analyze.  This also allows for finer segmentations, which is very helpful 
for pricing and profitability analysis.   
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1. INTRODUCTION 

Over the recent past, there has been much development and discussion of new stochastic models 

for loss development.  These models apply a more scientific approach to the old problem of 

estimating unpaid losses, but most still stick with the same strategy of using aggregate losses.  Using 

aggregate losses discards much useful information that can be used to improve predictions, such as 

the reporting times of unpaid claims, the number of currently open claims, and separate frequency 

and severity information.   

In many cases, working with aggregate data may be satisfactory and the extra work involved in 

building a more detailed model may not justify the benefit.  But for some cases such as those 

involving low-frequency/high-severity losses, where fine segmentations are desired, or when there 

are relatively fewer years of data available, this pushes the limits of what aggregate data can do, even 

with the most sophisticated stochastic models.  In this paper we present a stochastic loss 

development model that analyzes all of the underlying parts of the claims process separately, while 

still keeping the model as simple as possible. 

1.1 Research Context 

There have been other works as well that recommend using more detailed data to help produce 

more accurate results.  Zhou et al. 2009 uses a Generalized Linear Model approach to loss 

development modeling on frequency and severity separately.  Meyers 2007 does this as well, but 

within a Bayesian framework.  And recently, Parodi 2013 handles the frequency component of pure 

IBNR by modeling on claim emergence times directly, one of the components of our model as well, 

but has more complicated formulas for handling the bias caused by data that is not at ultimate 
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1.2 Objective 

This goal of our method is to model the underlying claims process in more detail and to improve 

the accuracy of predictions.  The models mentioned above as well as other similar approaches do 

not use many useful pieces of information available in the data, such as the reporting times (and 

number, for some) of unpaid claims, how the likelihood of a claim being paid changes as the claim 

ages, and individual detail of how outstanding reserved claims have been settling.  There is also no 

framework for handling mixes of policy retentions and limits and for dealing with changes in this 

mix over time.  Lastly, modeling processes that are more abstracted and removed from reality like 

the total development process of aggregate losses makes it harder to fit simple parametric models 

that can be used to smooth volatility and produce more accurate fits; this will be elaborated later on 

as well.  The approach developed in this paper was designed to use as much information as possible 

while not being overly complicated. 

There are many benefits of individually modeling each component of the claims process 

separately.  This can be compared to analyzing data for a trend indication.  Combining frequency 

and severity information can often mask important patterns in the data while separating them out 

usually yields better predictions.  This is because when there are different underlying drivers 

affecting the data, it becomes harder to see what the true patterns in the data are.  Take, for example, 

two incurred triangles for two different segments, in which the first segment has a slower reporting 

pattern, but more severe losses than the second.  More severe losses tend to be reserved for sooner 

and more conservatively, and so this will make the aggregate loss development pattern faster.  On 

the other hand, the slower reporting pattern will obviously make the pattern slower than the second.  

When comparing these two aggregate triangles, it may be difficult to judge whether the differences 

are caused mostly from volatility, or whether there are in fact real differences between these two 

segments.  In contrast, looking at each component separately will yield clearer details and results.  

The example we gave applied to comparing two separate triangles, but this will also create problems 

when attempting to select development factors for a single, unstable triangle.  High volatility 

compounds this issue. 

Second, by looking at every component separately, we increase the data available to analyze since, 

for example, only a fraction of reported claims end up being paid or reserved for.  When looking at 

aggregate data, we only see the paid or incurred claims, but if we analyze the claim reporting pattern 

separately, we are able to utilize every single claim, even those that close without payment or reserve 

setup.  When making predictions, we are also able to take into account the number and 

characteristics of claims that are currently open, which will add to the accuracy of our predictions. 
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Lastly, as mentioned, by separating out each piece, it becomes much easier to fit parametric 

models to the data that we can be confident in.  It is difficult to find an appropriate curve that 

provides a good fit to the development patterns in aggregate data.  But it is relatively easy to find 

very good fits for each of the individual pieces of the development process, such as the reporting 

and settlement times and the severity of each loss.  Fitting parametric models involves estimating 

fewer parameters than relying on empirical data where every single duration needs to be estimated 

independently, and so helps lower the variance of the predictions, since prediction variance increases 

with the number of parameters being estimated, as is known1.  We show an example later based on 

simulated data that demonstrates that the prediction volatility can be cut by more than half by using 

this method over standard triangle methods.  Fitting parametric models to each piece will also help 

us control for changes in retentions and limits, as well as enable us to create segmentations in the 

data, as will be explained more later. 

1.3 Outline 

For this model, we break the claims process down into five separate pieces, as shown in the 

diagram below.  Each piece will be discussed below in more detail.   

 

 

 

The five parts we will analyze are as follows: 

A) The reporting time of each claim 

                                                 
1 That is, with keeping the data the same.  By separating out each piece, even though we now need to estimate separate 
parameters for each piece, this does not increase the variance, since we are working with more data.  This is analogous to 
how separating out frequency and severity trend information would not increase the variance even though we now have 
to estimate two trend parameters instead of one. 
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B) The percent of reported claims that are paid, as well as the settlement times of reported claims 

C) The severity of each paid claim 

D) The final settlement amount of each claim that has outstanding case reserves 

E) Legal payments 

The next section will discuss fitting distributions when right truncation is present in the data, 

which will be used for some of these pieces; it will also discuss the fitting of hyper-parameters, 

which is not absolutely necessary to build this model, but can be used to make it more refined.  

Section 3 will then discuss each of these modeling steps in detail and section 4 will discuss the how 

to use each piece to calculate the unpaid and ultimate loss and legal estimates.  Section 5 will show a 

numerical example of using this method on simulated data.  Section 6 will discuss ways to check this 

model, and finally, section 7 will discuss some alternatives and other uses of this model, such as to 

calculate the volatility of ultimate losses. 

2. TECHNICAL BACKGROUND 

Before we delve into the details of each piece, we first need to explain the process of right 

truncation and how to build a model when it is present in the data.  This will be discussed in the first 

two parts of this section.  It will also be helpful to understand the process of fitting hyper-

parameters, which will be discussed in the third part of this section. 

2.1 Maximum Likelihood Estimation with Right Truncation 

When modeling insurance losses, we normally have to deal with left truncation and right 

censoring.  Left truncation is caused by retentions where we have no information regarding the 

number of claims below the retention.  Right censoring is caused by policy limits and is different 

from truncation in that we know the number of claims that pierce the limit, even if we still do not 

know the exact dollar amounts.  Reported claim counts, for example, which we will be analyzing in 

this paper, are right truncated, since we have no information regarding the number of claims that 

will occur after the evaluation date of the data. 

We will be using Maximum Likelihood Estimation (MLE) to model reporting times, and MLE 

can handle right truncation similar to how it handles left truncation.  To handle left truncation, the 

likelihood of each item is divided by the survival function at its truncation point; similarly, to handle 

right truncation, each item's likelihood should be divided by the cumulative distribution function 

(CDF) at its truncation point. 
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2.2 Reverse Kaplan-Meier Method for Right Truncation 

When fitting a distribution to data, it is a good idea to compare the fitted curve to the empirical 

to help judge the goodness of fit.  Probably the most common method actuaries use to calculate the 

empirical distribution when dealing with retentions and limits (i.e. left truncation and right 

censoring) is the Kaplan-Meier method.  Here, however, we have data that is right truncated, which 

is not handled by this method.  We propose a modification to work with right truncated data that we 

will refer to as the reverse-Kaplan-Meier method. 

In the normal Kaplan-Meier method, we start from the left and calculate the conditional survival 

probabilities at each interval.  For example, we may first calculate the probability of being greater 

than 1 conditional on being greater than 0, i.e. s(1) / s(0).  We may then calculate s(2) / s(1), and so 

on.  For this second interval, we would exclude any claims with retentions greater than 1, with limits 

less than 2, and with claims less than 1.  To calculate the value of s(2) for example, we would 

multiply these two probabilities together, that is: 

s(2)=
s(1)

s (0)
×

s(2)

s (1)  

To accommodate right truncation, we will instead start from the right and calculate the 

conditional CDF probabilities, e.g. F(9) / F(10), followed by F(8) / F(9), etc.  To calculate the value 

of F(8) for example, we can multiply these probabilities together: 

F (8)

F (10)
=

F (9)

F (10)
×

F (8)

F (9)    

This is the value of F(8) conditional on the tail of the distribution at t=10.  We can plug in this tail 

value from the fitted distribution and use this empirical curve to test the goodness of fit of our fitted 

distribution.  Using this method, all points of the calculated empirical distribution depend on the tail 

portion, which can be very volatile because of the thinness in this portion of the data.  For the 

comparison with the fitted distribution to be useful, the right-most point should be chosen at a 

point before the data gets too volatile.  It may be helpful to choose a couple of different right-most 

points for the comparison. 

2.3 Hyper-Parameters 

This method can be used to help refine some pieces of the model, but is not absolutely necessary.  

It involves fitting a distribution to data via MLE but letting one or more of the distribution 

parameters vary based on some characteristic of each data point.  We refer to this technique as the 

hyper-parameters method, since the distribution's parameters themselves have parameters, and these 



A Frequency Severity Stochastic Approach to Loss Development 

 

Casualty Actuarial Society E-Forum, Spring 2015 6 

are known as hyper-parameters.  This can be useful, for example, if we want our reporting times 

distribution to vary based on the retention. 

To set this method up, each claim should have its own distribution parameters.  These 

parameters are a function of some base parameters (that are common to all claims), the claim's 

retention, in this example, and another adjustment parameter that helps determine how fast the 

parameter changes with retention.  These base parameters can be the distribution parameters at a 

zero retention or at the lowest retention.  Both the base parameters and the adjustment parameters 

are then all solved for using MLE.  If there are different segments, each segment can be given its 

own base parameters but share the same adjustment parameters.  Either one or more of the 

distribution's parameters can contain hyper-parameters.  It is also possible to reparameterize the 

distribution to help obtain the relationship we want, as will be shown in the below example. 

In this example, we will assume that we are fitting a Gamma distribution, with parameters alpha 

and beta, to the reporting times of all claims (which will be explained more later), and that we wish 

the mean of this distribution to vary with the retention, with the assumption that claims at higher 

retentions are generally reported later.  The mean of a Gamma distribution is given by alpha divided 

by beta, and so we need to reparameterize the distribution.  We will reparameterize our distribution 

to have parameters for the mean (mu) and for the coefficient of deviation (CV).  The original 

parameters can be obtained by alpha = 1 / CV², and beta = 1 / ( mu x CV² ).  Only the first 

parameter, mu, will vary with the retention. 

The first step is to determine the shape of an appropriate curve to use for this parameter.  For 

this, we fit the data with MLE allowing only one parameter for the CV, but having different 

parameters for the mean for each group of retentions.  Plotting these points can help determine 

whether a linear of a logarithmic curve is the most appropriate.  The final curve can then be plotted 

against these points to help judge the goodness of fit.  After doing this, assume that we decided to 

use the equation, log(mur)= log(mubase)+ exp (theta)× log(r /base) , where r is the retention of 

each claim, base is the retention of the lowest claim, and log(mubase)  and theta are parameters that 

are fit via MLE, in addition to the CV parameter which is common across all claims.  We took the 

exponent of theta to ensure that the mu parameter is strictly increasing with retention.  Once this is 

done, we have a distribution that is appropriate for every retention. 

3. MODELING STEPS 

The modeling of each of the five parts will now be explained in detail.  Using all of these pieces 

for the calculation of the unpaid and ultimate projections will be discussed in the following section. 
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Table 1 below shows the data that will be needed for each of the steps. 

Table 1: 

Part Data Fields Needed 

A) Reporting Times Claim Level, All Claims Accident Date, Report Date 

B) Percent Paid and 
Settlement Times 

Claim Level, All Closed Claims 

(May also include open 
outstanding claims as well) 

Report Date, Closed Date, Final 
State of Claim (Paid or Not) 

C) Severity Claim Level, All Closed Claims Claim Amount, Retention, Policy 
Limit, Accident Date, Closed Date 

D) Case Outstanding 
Claims 

Claim Level, All Closed Claims 
That Have Had an Outstanding 
Reserve At Some Point 

Average Outstanding Value, 
Ultimate Paid Amount (including 
zeros), Policy Limit 

E) Legal Payments Aggregate Claim Data, All Data Paid Losses and Paid Legal Amounts 
by Total Duration 

 

3.1 Part A: Reported Times 

In this section, we will explain how to model the reporting lag, that is, the time from the accident 

date of a claim to the report date.  (If report date is unavailable, the create quarter can be used 

instead by using the first quarter that each claim number first appears.)  This will be used to help 

estimate the pure IBNR portion of unpaid losses later.  This data is right truncated since we have no 

information about the number of claims that will occur after the evaluation date.  The right 

truncation point for each claim is the evaluation date of the data minus the accident date of the 

claim.  We will use MLE to fit a distribution to these times.  The Exponential, Weibull, and Gamma 

distributions all appear to fit this type of data very well.  (A log-logistic curve may also be 

appropriate in some cases with a thicker tail, although the tail of this distribution should be cut off at 

some point so as not to be too severe.) 

After this data is fit with MLE using right truncation, the goodness of fit should be compared 

against the empirical curve which can be obtained using the reverse-Kaplan-Meier method, all as 

described in the previous section.  Using this approach, as opposed to using aggregate data, makes it 

much easier to see if the reporting lag distribution has any significant historical changes.  There is 

also no need to estimate a separate tail piece as this is already included in the reporting times 
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distribution2. 

3.2 Part B: The Likelihood of a Claim Being Paid 

The second component to be modeled is the percent of reported claims that will ultimately be 

paid.  This can be done very simply by dividing the number of paid claims by the total number of 

closed claims, but this estimate may be biased if closed with no payment (CNP) claims tend to close 

faster than paid claims.  If this is true and we do not take this into account, we will underestimate 

the percent of claims that are paid, since our snapshot of data being used will have relatively more 

CNP claims that would be present after all claims are settled.  To give an extreme example to help 

illustrate this point, say there are two report years of data.  All CNP claims settle in the first year, and 

all paid claims settle in the second year.  There are 100 claims each year, and 50% of claims are paid.  

The evaluation date of the data is one year after the latest year.  The first year will have 50 CNP 

claims and 50 paid claims.  When looking at the second year however, we will see 50 CNP claims 

and no paid claims, since all of the claims that will ultimately be paid are still open (and we do not 

know what their final state will be).  When we calculate the percent of claims paid using the available 

data, we will get the following: 

50 paid claims

50 paid claims+ 100closed claims
=

1

3  

which is less than the correct value of 50%. 

Instead, we will suggest an alternative approach.  For the first step, we fit distributions to all paid 

claims and to all CNP claims separately.  (If the distributions do not appear different, then the paid 

likelihood can be calculated simply by dividing and there is no need to go further.)  There will still be 

many open claims in the data that we do not know what their ultimate state will be making the 

ultimate number of paid and CNP claims unknown, and so this data is right truncated as well.  The 

right truncation point for each claim is equal to the reported date subtracted from the evaluation 

date.  The Exponential, Weibul, and Gamma distributions all appear to be good candidates for this 

type of data as well. 

The ultimate number of paid claims is equal to the following, where F(x) is the cumulative 

distribution function evaluated at x: 

∑
i= All Paid Claims

1/ F Paid (Evaluation Date− Report Datei)  

                                                 
2 This tail may only be accurate if relatively small, otherwise, it is an extrapolation, which may not be accurate.  The 
Gamma tail seems slightly better than the Weibull, but this observation is based off of limited data. 
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And the ultimate number of unpaid claims is equal to: 

∑
i= All CNPClaims

1/ F CNP(Evaluation Date− Report Datei)  

And so, the ultimate percent of claims that are paid is equal to: 

Ultimate Paid Claims

Ultimate Paid Claims+ UltimateCNPClaims  

Dividing each claim by the CDF at the right truncation point is similar to performing a chain ladder 

method.  The most recent years may have high development factors and may be unstable.  To 

address this, we can make the method more similar to a Cape Cod-like method by weighting each 

year appropriately according to the credibility of each year.  To do this, the weight for each year can 

be set to the average of the calculated CDF values of each claim multiplied by the claim volume.  

The paid distribution or the CNP distribution can be used to calculate this CDF, or it can be taken 

as the average of the two.  To give more recent, relevant experience slightly more weight, an 

exponential decay factor can be applied as well.  Alternatively, the actual number of claims per year 

can be used instead.  For this version, the ultimate claim counts for each year should be multiplied 

by the ratio of the actual claim count to the ultimate claim count for that year.  Using this 

reweighting technique (that is, dividing by the CDF and then multiplying by an off-balance factor 

for each year) will not change the number of claims, but still addresses the bias that is caused from 

our data being right truncated.  We will refer to this approach as right truncated reweighting.  This 

approach will be used when building more complicated models on this type of data. 

So far, we have calculated the total percentage of claims that will be paid; this will be used for the 

calculation of pure IBNR.  We also need to determine how this percentage changes with duration to 

be able to apply this to currently open claims for calculation of IBNER.  If paid claims have a longer 

duration than CNP claims, then it should be expected that the paid percentage should increase with 

duration, since relatively more CNP claims will have already closed earlier.  So the longer a claim is 

open, the more chance it has of being paid.  To calculate this, we can use Bayes' formula as follows: 

P (Paid | t≥ x)=
P (t≥ x | Paid )× P (Paid )

P ( t≥ x | Paid )× P (Paid )+ P( t≥ x |CNP )× P (CNP )  

=
sPaid ( x)× P (Paid )

sPaid (x)× P (Paid )+ sCNP(x )× P (CNP )  

 

(3.1) 

where t is the time from the reported date of the claim and x is the duration for each year.  It is also 

possible to calculate the paid likelihoods for claims closing at exactly a given duration (that is, not 

conditional as in the above) by using the PDFs instead of the survival functions in formula 3.1.  
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These values can then be used to compare against the actual paid likelihoods by duration as a sanity 

check.  The conditional likelihoods cannot be used for this since these likelihoods represent the 

probability of a claim being paid given that it has been open for at least a certain number of years, 

but not exactly at that time. 

A more detailed model that also incorporates outstanding claims can be built as well, where 

instead of just modeling the lags and probabilities of two states (paid and CNP), the outstanding 

state is modeled as well.  Once claims are in the outstanding state, they can then transition to either 

the paid or CNP states.  All of these states and transitions can be modeled using the same 

techniques discussed in this section.  The ultimate probability of a claim being paid is then equal to 

the probability of a reported claim being paid (before transitioning to an outstanding state, that is) 

plus the product of the probabilities of transitioning to an outstanding state and of transitioning 

from an outstanding state to a paid state.  This is a mini Markov Chain model, with bias correction 

caused from the right truncation of the data.  If open claims are assigned different “signal” reserves 

that represent information about the possibility of payment for each claim, then a more detailed 

Markov Chain model can be built that incorporates the probability of transitioning to and from each 

of these “signal” states as well. 

Another possible refinement is to have the paid (or other state) likelihoods vary by various 

factors, such as the type of claim or the reporting lag, by building a GLM on the claim data.  To 

account for the bias caused from the data being at an incomplete state, right truncated reweighting 

can be used to calculate the weights for the GLM, and a weighted regression can be performed; this 

will account for the bias without altering the total number of observations.  The settlement lag 

distributions can even be allowed to vary by various factors as well using the hyper-parameters 

approach.  The resulting probabilities will be the paid (or other) likelihoods from time zero, which 

can be applied to new, pure IBNR claims.  For currently open claims for calculation of IBNER, 

Bayes’ formula (3.1) should be used to calculate the conditional probabilities given that a claim has 

been open for at least a certain amount of time.  If the settlement lag distributions were allowed to 

vary, the appropriate distribution should be used for this calculation as well. 

We should note that using right truncated reweighting for the GLM and then again adjusting the 

resulting probabilities is not double counting the effects of development.  The former is to account 

for the fact that the data used for modeling is not at ultimate, while the latter is needed to reflect 

how the probability of a claim being paid varies over time. 

It may seem odd at first that the probabilities for open claims are developed and so will always be 

higher than the probabilities used to apply to new, pure IBNR claims (if this is how claims develop, 
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which it often is).  If everything develops as expected, the total predicted number of paid claims will 

not change, as will be illustrated.  Using an example similar to the above, there are 100 claims and 

half of these claims will be paid.  All unpaid claims close in the first year and all paid claims close in 

the second year. The initial, unconditional probability to apply to new claims is 50%.  After a year, 

we will assign 100% probability of being paid to all the remaining claims.  Initially we predicted that 

half of the 100 claims will be paid, which is 50 claims.  After a year, no actual claims were paid and 

we will predict that 100% of the 50 remaining claims will be paid, which also equals 50 claims.  This 

estimate would be biased downwards if we did not apply this adjustment to calculate the conditional 

probabilities. 

3.3 Part C: Severity Portion 

This portion involves fitting an appropriate severity distribution to the claim data.  Before doing 

so, all losses should be trended to a common year.  We will also need to take into account that more 

severe claims tend to be reported and settled later.  It is technically possible to have the paid 

settlement time distribution vary with claim size and use right truncated reweighting here as well, but 

this approach will likely not be accurate since only a few large claims may have settled earlier.  

Because this problem is also relevant to constructing Increased Limit Factors in general, we will 

elaborate on this in detail.  There are many ways that this can be accounted for, but we will only 

discuss a couple. 

The first way is to use the hyper-parameters approach discussed earlier.  Claim severity can be a 

function of the reporting lag, the settlement lag, both, or the sum of the two, which is the total 

duration of the claim.  If these lag distributions were made to vary by retention or by other factors, it 

may be more accurate to model on the percentile complete instead of the actual lag.  To give an 

example of using the hyper-parameters approach, if we allowed the scale parameter of our 

distribution to vary with duration, this would be assuming that each claim increases by the same 

amount on average, no matter the size of the claim.  (Note that this may be a poor assumption as it 

is more likely that the tail potential increases with duration, since the more severe claims tend to 

arrive at the later durations.)  The limited expected value (LEV) at any lag can now be calculated.  

This LEV can be used directly if solving for ultimate losses by simulating claim arrival times.  If 

using a closed form solution, a weighted average of the LEVs can be calculated by using the 

(conditional) reporting times and/or settlement times distributions.  If the total duration was used, 

the distribution for total duration can be obtained by calculating the discrete convolution of the 
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reporting and settlement times distributions.3  If we wanted to calculate a single distribution that 

represents the expected amount of claims that will be settled in each duration, we can do the 

following.  We will first note that if survival values are generated from a loss distribution, and these 

survival values are then converted into a probability density function (PDF) by taking the differences 

of the percentages at each interval, and then this data is refit via MLE using these PDF percentages 

as the weights (by multiplying each log-likelihood by its weight), the original distribution parameters 

will be produced.  (This can be confirmed via simulation.)  The values for each likelihood can either 

be the average of the two values for each interval, or more accurately, can be represented as a range.  

MLE can be performed using ranges by setting each likelihood to the difference of the CDFs at the 

two interval values.  This can also be done by generating the PDF values from the distribution 

directly, but in order to be accurate, this would need to be done at very fine increments.  Using this, 

we can generate a single distribution based on the percentages of claims expected to be settled in 

each duration by generating the PDF tables for each duration as mentioned, and then setting the 

total sum of the weights for each duration to equal the percentage of claims expected to be settled in 

each duration.  (It is possible that this mixed distribution of durations may not be the same as the 

original distribution used to fit a single duration.  If this is the case, parameters can be added by 

creating a mixed distribution of the same type as the original distribution.  There is no fear of adding 

too many parameters and over-fitting here, since we are not fitting to actual data, but to values that 

have already been smoothed.)  The survival percentages generated should start at and be conditional 

on the lowest policy retention and go up to the top of the credible region for the severity curve.  

This will make the mixing of the different duration curves more properly reflect the actual claim 

values and make the final fitted distribution more accurate. 

Another way to account for the increasing severity by duration, is to use a survival regression 

model called the Cox Proportional Hazards Model.  This model does not rely on any distribution 

assumptions for the underlying data, as it is semi-parametric.  It can also handle retentions and 

limits, i.e. left truncation and right censoring.  As opposed to a GLM that models on the mean, the 

Cox model tells how the hazard function varies with various parameters.  The Cox Model is 

multiplicative, similar to a log-link function in a GLM.  The form of the model is: 

H i(t)= H 0(t)exp(B i 1 X i 1+ Bi 2 X i 2+ ...) , where H i(t) is the cumulative hazard function for a 

particular risk at time t, H 0(t) is the baseline hazard, roughly similar to an intercept (although this is 

                                                 
3 A discrete convolution is calculated by first converting each of these continuous distributions to be discrete.  The 
probabilities for each amount, x, are then calculated by multiplying the probabilities of each distribution that add up to x.  
For example, for x = 3, this can be achieved by a reporting lag of 0 and a settlement lag of 3, or a reporting lag of 1 and 
a settlement lag of 2, etc. 
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not returned from the model), and the B's and X's are the coefficients and the data for a particular 

risk, respectively.  The cumulative hazard function, H(t) is equal to: H(t) = exp[-s(t)], and so s(t) = -

ln[H(t)].  It can be seen from this formula that a multiplicative factor applied to the cumulative 

hazard function is equivalent to taking the survival function to a power4.  We will use this fact below.  

A full discussion of the Cox model is outside the scope of this paper5.   

Assuming that we are modeling on the total duration of each claim, with this approach we are 

assuming that the hazard function of the data changes with the duration.  The hazard can be thought 

of very roughly as the thickness of the tail, and so we are assuming that the tail is what increases 

with duration.  

Initially, a Cox model should be run on the individual loss data with a coefficient for each 

duration to help judge the shape of the curve for how the hazard changes with duration.  Next, 

another model should be fit with a continuous coefficient either for the duration or the log of 

duration, or any other function of duration that is appropriate.  Different segments that may be 

changing by year can also be controlled for with other coefficients.6 

Assuming the log of duration was used, the pattern for how the severity curve changes with 

duration, d, can be obtained from the results of the Cox model, as follows: 

Relative Hazard (d )= exp (Cox Duration Coefficient× log(d ))= dCox DurationCoefficient
  (3.2) 

There are two ways that will be discussed to create severity distributions using this information.  

Before we explain the first method, we first need to mention that if an empirical survival curve is 

generated from claim data using the Kaplan-Meier method, and this survival function is then 

converted to a PDF and fitted with MLE, as explained, the parameters will match those that would 

be obtained from fitting the claim data directly with MLE.  (This can be confirmed via simulation as 

well.)  The first way involves first calculating the empirical survival curve at the base duration, where 

the base duration is the duration that is assigned a coefficient of zero in the Cox model.  To do this, 

instead of using the probably more familiar Kaplan-Meier method to calculate the empirical survival 

function, we use the Nelson-Aalen method to calculate the empirical cumulative hazard function.  

As a note on the Nelson-Aalen method, calculating the cumulative hazard and then taking the 

negative of the natural logarithms to convert to a survival function will produce very similar values 

to the survival values produced from the Kaplan-Meier method.  The Nelson-Aalen estimate is equal 

                                                 
4 Even though the Cox Model technically models on the instantaneous hazard function, since it also assumes that the 
hazards always differ by a constant multiplicative factor, this model can also be viewed as modeling on the cumulative 
hazard as well, since the ratios between the instantaneous and cumulative hazards will be the same. 
5 For a longer explanation, see Fox 2002. 
6 These segments should ideally be treated as separate strata in a stratified model. 
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to: 

H (t)=∑
i≤ t

d i

n i
 

Where d i  is the number of events in each interval and n i  is the number of total risks that exist at 

each interval.  To calculate the hazard at the base duration using the coefficients from the Cox 

model, the following formula can be used: 

H 0(t)=∑
i≤ t

∑
Each Risk

1/exp(coefficient (d i))

ni

 

 (3.3) 

The only difference from the normal Nelson-Aalen formula is that instead of counting all events the 

same, as one, each event is counted as the inverse of the exponent of the sum of its coefficients. 

Using this, we can calculate the survival function at the base hazard by taking the negative of the 

natural logarithm of the cumulative hazard.  With the base survival function, we can now calculate 

the survival function at any duration, d, using the following formula: 

sd (t)= sBase(t)
RelativeHazard (d )

  (3.4) 

The survival functions at each duration can then be converted to probability distribution functions 

and then fit with MLE as shown above.  Doing this will produce a distribution for each duration (or 

duration group, if durations were combined to simplify this procedure).  A single distribution 

representing a weighted average of the expected durations can also be obtained by combining the 

data from multiple durations together and weighting each according to the expected percentage of 

claims expected to be settled at each duration.  (Note that this new distribution may not be the same 

type as the original distribution as mentioned above.)  Alternatively, another way that does not 

require fitting a distribution at every duration is to only fit a distribution to the base duration.  The 

fitted survival values can be produced at the base duration using this distribution, and the survival 

values at any duration can then be obtained by taking this base survival function to the appropriate 

power.  The limited expected values can now be obtained by “integrating” the survival values at the 

desired duration, since: 

 LEV (Retention ,Policy Limit )= ∫
Retention

Retention+ PolicyLimit

s (x )dx  

Where by LEV(Retention, Policy Limit), we mean the limited expected value from the retention up 

to the retention plus the policy limit.  To do this discretely, we can use this formula as an 

approximation: 



A Frequency Severity Stochastic Approach to Loss Development 

 

15 

LEV (Retention ,Policy Limit)= (Width of s( x) Increments)× ∑
Retention

Retention+ Policy Limit

s( x)  

The thinner the increment width that the survival values are calculated at, the more accurate this will 

be.  Putting this together, the formula to calculate the LEV at each duration d is as follows: 

LEV d ( Retention , Policy Limit )= Width× ∑
Retention

Retention+ PolicyLimit

s(x )
RelativeHazard (d )

 
 (3.5) 

The second method to construct distributions for each duration is similar except that it involves 

adjusting the actual claim values instead of the survival or hazard functions.  We can use the well 

known relationship for adjusting a distribution for trend, F(x) = F'(ax) (Rosenberg et al. 1981), 

where F(x) is the cumulative distribution function of the original distribution before adjusting for 

trend, F'(x) is the same after adjusting for trend, and a is the trend adjustment factor.  Similarly here, 

using survival functions instead of cumulative distribution functions, we can solve for the 

adjustment factor for every value of x that satisfies, s( x)= s ' (ax )= s(ax)Desired Adjustment
, or 

equivalently, s( x)1 /Desired Adjustment= s(ax ) , since the latter is computationally quicker to solve.  The 

survival values can be determined from either the empirical Kaplan-Meier survival function or from 

a fitted survival function applied to the entire data set.  This factor, a, can be determined for every 

claim amount and duration by backing into the value of a that satisfies the equality.  Once this is 

done, all of the original loss data can be adjusted to the base duration, and then a loss distribution 

can be fit to this data.  We can use this same method to adjust the claim data to any duration, or 

alternatively, any of the methods discussed above in this section can be performed to derive LEVs at 

all of the durations. 

If one is using a one- or two-parameter Pareto distribution, this process becomes simpler since 

taking the survival function to a power is equivalent to multiplying the alpha parameter by a factor.  

This can be easily seen by looking the Pareto formulas, which will not be shown here.  Once the 

distribution is fit at the base duration using one of the methods discussed, the distribution for any 

duration can be obtained by adjusting the alpha parameter, as follows: 

αd= αbase× Relative Hazard (d )   (3.6) 

Similar methods can be used if using other types of regression models as well, such as a GLM or 

an Accelerated Failure Time model, which will not be elaborated on here. 

3.4 Part D: Outstanding Reserved Claims 

This section explains the estimating of the ultimate settlement values of claims that currently have 
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outstanding reserves.  Note that this is different from open, non-reserved claims in that the reserve 

amounts here are significant.  For example, some companies set up a reserve amount of one dollar 

or a similar amount to indicate that a claim is open, but that no real estimate of the claim's ultimate 

settlement value is available yet. 

To calculate the ultimate paid amounts, we will use a logistic GLM (that is a GLM with a logit 

link and a binomial error term) on all closed claims that have had an outstanding reserve set up at 

some point in the claim's lifetime.  We will model on the dollar amounts divided by the policy limits 

using the following regression equation: 

Paid

Policy Limit
= B1

AverageO /S

Policy Limit
+ B2 exp(

AverageO /S

Policy Limit
)  

 (3.7) 

We used the average outstanding value for each claim since the reserve amount of a claim may have 

changed over time7.  Note that this ratio can also be calculated directly by dividing the sum of 

ultimate paid dollars by the sum of outstanding reserves, but this result may be biased since the 

ultimate settlement values depend on the dollar amount of reserves setup, and this amount depends 

on the duration.  It is also not as refined as it could be.  CNP claims can be included or excluded 

from this model.  If they are excluded, a separate model will need to be built to account for.  If they 

are included, right truncated reweighting should be performed on the claims to avoid any bias. 

Formula 3.7 seems to provide a very good fit to some types of data, although sometimes 

logarithms or other alternatives (such as splines) are more appropriate, depending on the book of 

business and the company.  The logistic model will ensure that the predicted value is always less than 

one, since the claim cannot (usually) settle for more than the limit.  (Some GLM packages may give a 

warning when modeling on data that is not all ones and zeros, but it should still return appropriate 

results.)  Once again, the fit should be compared to the actual.  This model will capture the fact that 

claims reserved near the policy limit tend to settle for lower on average (since they only have one 

direction to move), while claims reserved for lower amounts have a tendency to develop upwards, 

on average.  It is also possible to add coefficients for the type of claim and other factors if desired. 

3.5 Part E: Legal Payments 

The legal percentages should be calculated for each duration, since this percentage usually 

increases with duration.  To address credibility issues with looking at each duration separately, a 

                                                 
7 Alternatively, it is also possible to include every outstanding amount in the model, weight appropriately so that all of 
the rows for each claim add up to one, and use a Generalized Linear Mixed Model to account for the correlation 
between the data points. 
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curve should be fit to this data.  Once this is done, cumulative percentages should be calculated for 

each duration by taking a weighted average of the legal percentages from each duration until the last 

duration.  The weights should be based on the expected amount of paid dollars per duration.  This 

pattern can be obtained by looking at the aggregate data, or by using the model from this paper and 

simulating all years' losses from the beginning.  (This will be discussed a bit more later as well).  

These cumulative legal percentages will be applied to the unpaid losses for each accident year. 

The approach we chose to use here is not as refined as it could be.  It is also possible to build a 

more robust model that determines the legal payments separately for each of the parts from Table 1, 

and takes into account the number claims as well as the limits and retentions by year, etc.  We used a 

simpler approach here so as not to over-complicate our approach. 

4. CALCULATION OF UNPAID LOSSES 

Each part of the unpaid loss plus legal expenses now needs to be calculated.  Table 2 below 

shows the data that is needed for each part that will be described in detail below.  The right-most 

column also shows which parts of the modeling steps from Table 1 each piece depends on. 

Table 2: 

Part Data Fields Needed Depends 
On 

1) Pure IBNR Grouped Policy Data Average Expected Accident Date 
(Average of the Effective Date and the 
Earlier of the Expiration Date and the 
Evaluation Date), Retention, Policy Limit, 
Sum of Exposures or On-Level Premiums 

A, B, C 

2) IBNER on 
Non-Reserved 
Claims 

Claim Level Detail, All 
Open Non-Reserved 
Claims 

Accident Date, Report Date, Retention, 
Policy Limit 

B, C 

3) IBNER on 
Reserved Claims 

Claim Level Detail, All 
Open Reserved Claims 

Outstanding Amount, Policy Limit D 

4) Legal Payments None None E 

 

4.1 Part 1: Pure IBNR 

For the calculation of pure IBNR, we will calculate the frequency of a claim for each policy using 
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a Cape Cod-like method while also controlling for differences in retentions between policies.  We 

will use the following formula to calculate the frequency per exposure unit: 

Frequency=
Total Reported Claims

Used ExposureUnits  
 (4.1) 

Where F(x) and s(x) are the CDF and survival function, respectively, calculated at x and Used 

Exposures Units is defined as: 

Exposure Units× F Report Time( Eval Date− Avg Accident Date)× sSeverity (Retention)   (4.2) 

The severity distribution should be detrended to the appropriate year before calculating this value.  

Doing this will take care of the frequency trend component that is a result of retention erosion.  If 

there is a non-zero ground up frequency trend as well, this should also be accounted for.  If using 

premiums, the exposure units can be the on-level premiums divided by the LEV for the policy layer.  

Dividing by the LEV takes the severity component out of the premium.  Similar to the Cape Cod 

method, we multiply the exposures by the percentage of claims that were expected to have already 

been reported at this point in time.  We obtain this percentage by applying the CDF of reported 

claim times (Part A) to the right truncation point for each group of policies.  So as not give too 

much weight to older years, decaying weights can be used here as well.  To take different retentions 

into account, we need to consider that a policy with a retention of $100,000 may only see 50% of the 

ground up claims while a policy with a retention of $200,000 may only see 20%.  By multiplying the 

exposures by the survival function at the retention, we adjust for this.  (The severity distribution that 

should be used should not be calculated at a specific duration, but should be the overall average 

distribution that would be used to price accounts.) 

We then calculate the expected IBNR frequency per policy using this formula: 

Frequency× Exposures× sReport Time( Eval Date− Avg Acc Date)× sSeverity(R)   (4.3) 

Where “Eval Date” is the evaluation data, “Avg Acc Date” is the average accident data, and “R” is 

the retention.  The exposures times the survival function of the reported times represents the 

unused portion of the exposures.  Once we have this, we can multiply the expected frequency per 

policy by the paid likelihood, obtained from Part B to get the expected number of paid IBNR 

claims.  We then apply Part C to calculate the average severity for each paid claim by calculating the 

conditional severity of each paid claim above the retention, that is, LEV(Retention, Policy Limit) / 

s(Retention).  The claim distribution should be detrended to the appropriate year if it is desired to 

have losses on a historical basis.  Otherwise, if trended losses are needed for pricing or profitability 

purposes, no detrending is needed.  The durations, reporting lags, and/or settlement lags should be 
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taken into account if the severity distribution was made dependent on these, by using the 

appropriate conditional distributions given the current reporting lag of each claim. 

4.2 Part 2: IBNER on Non-Reserved Claims 

For each open non-reserved claim, we need to calculate the probability of it being paid given its 

current duration using formula 3.1 from Part B above.  Severities can be calculated taking into 

account each claim's reporting lag and the conditional settlement times distribution given its current 

settlement lag.  Multiplying these two pieces together yields the expected value of IBNER for each 

claim.  Summing up all of these values will yield the total IBNER on opened, non-reserved claims 

for the entire book. 

4.3 Part 3: IBNER on Reserved Claims 

All that is needed for this part is to apply the model from Part D to all open reserved claims to 

produce the expected paid ratio to policy limit for each claim, and then multiply each percentage by 

the policy limit to obtain the dollar amount.  Subtracting the total outstanding reserves from this 

number will yield the IBNER for these claims.  Note that this amount can be both positive and 

negative.  

4.4 Part 4: Legal Payments 

The appropriate cumulative legal percentage from Part E should then be applied to each accident 

year's total unpaid losses to calculate the total expected legal payments, taking into account the age 

of each year.  This part is only needed if legal payments are paid outside of the policy limits; 

otherwise, they should be included in Part C, in the average severity. 

4.5 IBNR and Ultimate Losses 

Taking the sum of the four parts above will yield the unreported loss plus legal estimates per year.  

Adding this to the incurred losses will produce the ultimate indications.  It is also possible to 

calculate the losses for a prospective year of policies with the expected makeup of retentions and 

policy limits from the beginning to derive an estimate of the expected ultimate losses for the 

prospective period.  This can be done for historical periods as a check as well.  

5. NUMERICAL EXAMPLE 

We will now illustrate this method with an example using simulated data.  To simplify, we will not 
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include any outstanding claims or legal payments, so only Parts A (reporting times), B (percent of 

claims paid and settlement times), and C (claim severity) will be needed.  We will also assume that 

the claim severity does not change with duration or year, and that all claims occur on the first day of 

each year.  We first walk through an example using a particular simulation run chosen at random, 

and then discuss the results of running many simulations. 

Claim reporting and settlement times were simulated from Exponential distributions, with a 

mean of 2 years for reporting times, and means of 4 and 3 years for the settlement times of claims 

that end up being paid and unpaid, respectively.  Claim frequencies were simulated from a Negative 

Binomial distribution having a variance-to-mean ratio of 2 and a frequency per policy of 0.5 (for 

claims above the retention).  Each claim had a probability of 20% of being paid.  Claim severity was 

simulated from a Lognormal distribution with mu and sigma parameters of 9 and 2, respectively.  All 

policies had a retention of half a million and a policy limit of one million.  We simulated ten years of 

data, with 1,000 accounts each year.  The two tables below show what the aggregate loss triangle 

looks like for this simulation run, and the respective link ratios for that run.  Note the large amount 

of volatility in the link ratios. 

1 2 3 4 5 6 7 8 9 1 0

2004 $2,603 $7,733 $13,900 $18,985 $22,930 $28,700 $32,359 $33,268 $36,414 $38,731

2005 $1,565 $5,296 $14,285 $23,152 $27,106 $31,980 $34,089 $37,308 $38,502

2006 $708 $6,249 $10,862 $16,483 $19,533 $25,779 $31,793 $35,490

2007 $1,479 $4,321 $9,433 $14,885 $19,508 $24,071 $25,798

2008 $1,068 $5,550 $9,263 $20,372 $26,033 $29,437

2009 $1,350 $10,322 $19,760 $27,413 $33,388

201 0 $1,065 $3,656 $10,077 $17,731

201 1 $2,732 $7,055 $14,523

201 2 $2,356 $9,900

Year  / 
Duration

 

Year 1 :2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10

2004 2.970 1.798 1.366 1.208 1.252 1.127 1.028 1.095 1.064

2005 3.384 2.698 1.621 1.171 1.180 1.066 1.094 1.032

2006 8.824 1.738 1.517 1.185 1.320 1.233 1.116

2007 2.922 2.183 1.578 1.311 1.234 1.072

2008 5.195 1.669 2.199 1.278 1.131

2009 7.647 1.914 1.387 1.218

201 0 3.432 2.756 1.760

201 1 2.582 2.059

201 2 4.203  

We will now use the method described in this paper.  Following Part A, the first step is to fit an 

Exponential distribution to the reporting times of all claims using MLE, taking the right truncation 

point of each year's claims into account.  Doing this yielded a mean of 1.99, very close to the actual 
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value of 2, which is not surprising given the large number of reported claims.  Using this, we 

calculated the value of the CDF at the right truncation point for every policy (which is the evaluation 

date of the data minus the average accident data of each policy), and then multiply this by the 

number of exposures to produce the number of used exposures per year.  Dividing the total number 

of claims by this number yields the excess claim frequency per policy.  Normally, we would also 

multiply by the survival function at each claim's retention to produce the ground up frequency (as in 

formula 4.2); we chose to skip this step for simplicity since all policies have the same retention in 

this example.  The results are shown in the table below.  The bottom right of this table shows that 

the final calculated frequency per policy was 0.500, which matches the actual value used to simulate 

the data.  Again, this accuracy is not surprising given the large number of total claims. 

Year Used Exposures Claims Frequency

2004 993 521 52.4

2005 989 476 48.1

2006 982 502 51.1

2007 970 499 51.4

2008 951 471 49.5

2009 918 433 47.1

201 0 865 424 49.0

201 1 778 399 51.3

201 2 633 307 48.5

201 3 394 206 52.3

TOTAL 8474 4238 50.0
 

We now continue with Part B, and fit distributions to all of the paid and CNP claims separately, 

also with taking the right truncation point of each claim into account.  The fitted means of the 

Exponential distributions for the paid and CNP claims were 4.17 and 2.91, not far from the actual 

values of 4 and 3, respectively.  We then develop each claim by taking the inverse of the CDF at the 

right truncation point, and add up all of these values to produce the ultimate number of paid and 

CNP claims per year as detailed in section 3.2.  We can then estimate the percentage of claims that 

are paid each year by dividing.  To be more similar to a Cape Cod-like method, as mentioned, to 

calculate the weights given to each year, we first calculate the average of the paid and the CNP CDF 

values for each claim.  We then take the average of these values across all claims for each year.  

Using this, older, more mature years are given more weight and newer, greener years are given less.  

To place some more weight on the more recent experience, a yearly exponential decay factor can be 

applied, as mentioned above in section 3.2, but we did not do so in this example for simplicity.  The 

results are shown in the table below.  The final calculated value for the percent of claims paid was 

21.2%, close to the true value of 20%. 
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Year Ultimate Paid Claims Ultimate CNP Claims Relative Weight Percent Paid

2004 123 409 0.88 23.1

2005 86 392 0.87 18.1

2006 100 401 0.82 19.9

2007 87 404 0.78 17.8

2008 89 349 0.71 20.3

2009 104 336 0.64 23.6

201 0 99 304 0.55 24.6

201 1 84 277 0.45 23.1

201 2 101 231 0.32 30.4

201 3 36 191 0.17 15.8

TOTAL 908 3294 NA 21.2  

Note how both the results in this table (minus the latest two years) as well as the previous table 

that shows claim frequency were relatively stable by year, even with volatile data such as this.  This is 

usually not the case with loss development factors, as can be seen from the triangle above. 

We then use formula 3.1 shown above to solve for the conditional percent of claims paid given 

that a claim has been open for a certain amount of time.  This percentage needs to be calculated for 

every open claim and depends on the evaluation date of the data and the report lag of each claim.  

The average percentages for each year are shown in the table below.  Note how the likelihood of 

being paid is higher for claims from older years which have been open for longer; this was expected 

since the average settlement time for paid claims was longer than that of unpaid claims. 

Year Percent

2004 35.6

2005 31.9

2006 32.0

2007 29.2

2008 28.2

2009 26.4

201 0 25.1

201 1 24.3

201 2 23.0  

The final piece is Part C, where we estimate the parameters of the severity distribution.  Fitting a 

Lognormal distribution to the data using MLE, taking the retention and limit of each claim into 

account produced mu and sigma parameters of 11.5 and 1.45, compared to the true parameters of 9 

and 2.  Using these parameters to calculate the average limited expected value for the appropriate 

retention and limit yields $479,726; the actual value was $469,588.  (In practice, if all retentions and 

limits are the same and average severity does not appear to significantly change with the duration, it 

would be more efficient to calculate the average of the claim values directly, instead of fitting a 

distribution.)   
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We now use the results from the three steps above to estimate the unpaid losses per year.  We 

use the formulas above to calculate the pure IBNR and the IBNER per policy.  Recall that pure 

IBNR is calculated at the policy level by multiplying the unused exposures by the claim frequency 

and multiplying that by the expected percentage of claims that will be paid and the claim severity 

(formula 4.3).  IBNER is calculated at the claim level by multiplying the likelihood that each claim 

will be paid given its current duration (formula 3.1) by the severity.  Results are then aggregated by 

year.  Adding paid losses yields our ultimate projections.  The results are shown in the table below. 

Year Paid Pure IBNR IBNER Total Unpaid Ultimate

2004 38.7 0.3 9.6 9.9 48.6

2005 38.5 0.6 9.5 10.0 48.5

2006 35.5 0.9 13.3 14.3 49.8

2007 25.8 1.5 14.9 16.4 42.2

2008 29.4 2.5 21.2 23.7 53.2

2009 33.4 4.1 20.5 24.7 58.0

201 0 17.7 6.8 24.0 30.8 48.6

201 1 14.5 11.3 27.8 39.1 53.6

201 2 9.9 18.7 22.5 41.2 51.1

201 3 2.5 30.8 17.8 48.6 51.1
 

The below table shows how the results from this simulation compare to the actual.   

Year

2004 9.9 12.0 48.6 47.0 -2.1 -17.5% 1.7 3.6%

2005 10.0 11.7 48.5 47.0 -1.6 -13.7% 1.6 3.4%

2006 14.3 16.6 49.8 47.0 -2.3 -13.9% 2.8 6.0%

2007 16.4 13.2 42.2 47.0 3.1 23.5% -4.8 -10.2%

2008 23.7 24.1 53.2 47.0 -0.4 -1.7% 6.2 13.2%

2009 24.7 25.4 58.0 47.0 -0.8 -3.2% 11.1 23.6%

201 0 30.8 24.3 48.6 47.0 6.5 26.8% 1.6 3.4%

201 1 39.1 31.1 53.6 47.0 8.0 25.7% 6.6 14.0%

201 2 41.2 37.1 51.1 47.0 4.1 11.1% 4.1 8.7%

201 3 48.6 40.7 51.1 47.0 8.0 19.7% 4.2 8.9%

258.7 236.1 50.5 47.0 22.6 9.6% 3.5 7.5%

Estimated 
Unpaid

Actual 
Unpaid

Estimated 
Ultimate

Actual 
Ultimate

Unpaid 
Difference

Unpaid 
Percent 

Difference
Ultimate 

Difference

Ultimate 
Percent 

Difference

TOTAL / 
AVERAGE

 

Running many simulations confirms that this method is unbiased, even with a tail that extends 

for another 10 to 15 years past the evaluation date of the data.  For comparison with a standard 

triangle method, we used the Cape Cod method with the modified Bondy method (Boor 2006) for 

estimating the tail, where the tail is set to the square of the latest loss development factor; this was 

about correct, although we did not penalize for any overall tail bias.  Running 5,000 simulations 

showed a coefficient of variation for total unpaid losses for our method of 11.1% compared to 

23.1% for the aggregate triangle method, meaning that in this example, our method cut the standard 
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deviation down by more than half.  The difference in the ultimate projections was a bit under 40%, 

also quite dramatic.  As the data became sparser and we decreased the number of accounts per year, 

the benefit of our method over the triangle method became more pronounced, and it became 

smaller as we increased the number of years or accounts, both as expected.  Any change that made 

the data more volatile, such as increasing the frequency variance-to-mean ratio, increasing the sigma 

parameter in the severity distribution, or extending the settlement times of claims all decreased the 

difference between the two methods, although not too significantly.  At first, the direction of this 

change may seem surprising, but the fact is that as data becomes more volatile, there is less that can 

be done with it.  As an extreme example, for data that is so volatile that has almost no credibility, 

any method used on it will perform just as poorly, since the volatility is coming all from the data and 

not from the predictions.   

We should mention that the differences in volatility mentioned are overstated since no human 

input was used for selecting the best loss development factors.  On the flip side though, no penalty 

was given for any inaccuracy of the tail estimate.  But regardless, it should not be surprising that this 

method can lower the volatility by a very large margin; each parameter needed for predicting 

ultimate losses is estimated using the entire data, as opposed to the triangle method where each 

“parameter” only uses data from a single duration.  In addition, the estimated parameters from the 

latter part of the triangle are often very volatile and affect the entire estimate since they feed into all 

the earlier age-to-ultimate factors. 

6. CHECKING 

The most obvious way to check this model is to compare the ultimate results to that produced 

from a standard triangle analysis.  Results are not expected to match, but this should still give some 

indication as to the appropriateness of the model.   

If settlement times from Part B were calculated for times of paid claims only, that is, not 

including outstanding reserved claims, then paid loss development factors can be produced by 

starting each year from the beginning and calculating the expected losses at each duration.  Loss 

development factors can then be calculated from these expected payments by duration, and these 

can then be compared to the factors obtained from a triangle method as a sanity check.  It is also 

possible to use these paid loss development factors directly as an alternative.  Producing incurred 

loss development factors is more complicated as we would also need to take into account when 

reserves are set up, how they change, and when they will ultimately be paid. 
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7. REFINEMENTS AND ALTERNATIVE MODELS 

7.1 Paid Only Model 

A simplified version of this model can be used that only uses paid losses and does not consider 

reported or reserved claims.  With this approach, Parts B (percent paid and settlement times) and D 

(reserved claims) can be left out of the model since we are only interested in the settlement of paid 

claims.  Part A (reporting times) will be modified to only include paid claims and will now model the 

complete reporting plus settlement duration of each claim.  This approach does not take advantage 

of all of the data that the full model does, but is much easier to implement.  With this version, we 

also do not have to worry about dependencies between reporting and settlement times, and so this 

can also serve as a test for the full version of the model. 

With this paid-only model, more accurate modeling by retentions can also be performed.  In the 

full model, we modeled on the retention of each policy, so for example, a 50 million dollar claim on 

a policy with a one million retention would only be considered under the one million retention 

group.  With this new model, however, a Kaplan-Meier like approach can be used and this claim can 

be counted under all retentions up to 51 million, since this claim would still have occurred at all of 

these retentions.  To model this, we would use the MLE hyper-parameters method similar to the 

above, but claims can be counted multiple times in all of the retention groups that they could have 

occurred at.  Normally, the Kaplan-Meier method is done at increments of every claim level, but this 

is clearly not possible here because of performance constraints.  Instead, the method can be 

performed using wider intervals.  This approach is not possible with the full version since the 

ultimate paid amounts for each claim in the model is unknown. 

7.2 Segmentations using Mixed Models and Bayesian Credibility 

Our model consists of a bunch of different parametric distributions and GLMs.  Each 

distribution can be broken into finer segments and incorporate credibility by building a Bayesian 

model.  Similarly, instead of using GLMs, Generalized Linear Mixed Models (GLMMs) can be used 

to incorporate credibility by segment.  To produce credibility weighted estimates, it is better to run a 

prospective year from the beginning instead of adding the credibility weighted unpaid estimates to 

actual losses.  If this is not done, the unpaid portion may be credibility weighted, but the actual 

losses that already occurred still need to take credibility into account in order to be useful for a 

prediction.  Alternatively, initial estimates can be produced without taking credibility into account, 

and these estimates can then be credibility weighted.  Further discussion is outside the scope of this 

paper. 
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7.3 Differences by Retention 

All of the reporting and settlement time distributions can be made to vary with the retention of 

each claim by using the hyper-parameters approach discussed above in section 2.3.  This will take 

into account that larger claims, and thus policies with higher retentions, may have slower reporting 

and settlement of claims. 

7.4 Copulas 

As an alternative to using the hyper-parameters and the other approaches mentioned, normal or t 

copulas can be used instead to take into account the dependencies of the reporting, settlement, and 

claim severity distributions.  A further discussion is outside the scope of this paper. 

7.5 Calculation of Volatility 

This model can also be used to estimate the volatility in the IBNR or ultimate losses, either in 

closed form or via simulation.  Alternatively, our framework can also be used estimate the 

uncertainty in the loss predictions resulting from a regular triangle method.  To do this, losses will 

need to be simulated and triangles can be generated from these losses.  Simulating a paid triangle is 

relatively straightforward, but building a reported triangle is more difficult since it involves 

simulating the changes in each claim’s outstanding reserve values over time.  The frequency of each 

claim having a reserve change per year or quarter can be calculated directly.  For the average 

magnitude of each change, Part D above (section 3.4) can be modified to model all reserve changes, 

instead of just changes from the outstanding amount to the paid amount.  Now, given a starting 

reserve (as a percentage of the limit), we can calculate the expected reserve after the change.  To be 

able to simulate though, we need to build distributions around these expected values.  To do this, a 

Beta distribution can be fit to the data using the hyper-parameters approach to set the mean equal to 

the predicted value from the GLM and allowing the volatility (that is the sum of the alpha and beta 

parameters) to be solved for using MLE.  Once this is done, a Beta distribution will be available for 

each starting reserve amount that can be used to simulate the magnitude of the change.  Once a 

triangle is simulated, LDFs can be calculated (and ideally smoothed) and a method similar to that 

used to calculate the actual IBNR and ultimate losses can be performed.  Running many simulations 

will yield the distribution of the prediction errors, either on an absolute basis, or for a one year time 

horizon, which is needed for Solvency II. 
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8. CONCLUSIONS 

The goal of the frequency-severity development approach presented in this paper is improved 

accuracy and better segmentation.  This model can also produce valuable information regarding the 

expected frequency and severity of individual policies, provide a better framework for investigating 

how the reporting and settlement patterns may be changing over time, and generate volatility 

estimates.  A large loss load can be easily calculated as well using the severity distribution.  All of the 

benefits of this model, however, need be evaluated against the additional effort involved.  For cases 

involving very volatile or sparse data, including low frequency-high severity books of business, 

aggregate triangle methods start to struggle and their predictions can even become very questionable 

at times.  In these scenarios, the case for building a more detailed model, such as the one presented 

in this paper, becomes even stronger.  This model also takes many factors into account that triangle 

methods do not, such as the settlement lag of each claim and the outstanding amounts of each 

reserved claim, individually and not in aggregate, and so can be used to produce more accurate, 

refined estimates. 
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