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______________________________________________________________________________ 

Abstract 
This paper discusses how credibility can be applied to pricing loss ratios and loss costs.  A method is also 
presented that can perform a credibility weighted allocation of  losses without changing the overall average, which 
often occurs when applying credibility.  Finally, it is shown how Generalized Linear Mixed Models can be used to 
credibility weight loss ratios while taking multiple dimensions into account.  Workarounds are shown for some 
common pitfalls, and it is explained how to implement these models in spreadsheets. 
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______________________________________________________________________________ 

1. INTRODUCTION 

When doing any type of  actuarial analysis, credibility is an issue that must be frequently dealt with.  

However, many seemingly simple credibility applications are difficult to apply in practice.  For loss ratios and 

loss costs, seemingly simple concepts such as how to calculate the Bühlmann-Straub parameters or how to 

perform a credibility weighted allocation are difficult to apply in practice. 

 In this paper, we discuss these and other practical issues that arise when using credibility with loss ratios 

and loss costs.  For our discussion, we will use the term loss ratio for brevity, but everything mentioned is 

applicable to loss costs as well.  For loss costs, “exposures” should be substituted for “premium” for 

everything below. 

1.1 Outline 

We will start our discussion with Bühlmann-Straub credibility and how to apply it to loss ratios and loss 

costs.  The following section discusses the recommended method for calculating loss ratios for pricing studies 

when credibility is being performed.  Section 4 introduces a credibility model that ensures that the credibility 

weighted results always tie to the original loss ratio.  This method is especially useful for performing a 

credibility weighted allocation of  a selected loss ratio.  And finally, section 5 discusses the use of  mixed 

models to perform the credibility weighting.  It also discusses dealing with some common pitfalls and shows 

how to implement these models in a spreadsheet or other environment. 

2. BÜHLMANN-STRAUB CREDIBILITY 

The first topic that will be discussed is how to calculate the Bühlmann-Straub parameters.  This includes 

calculation of  the within variance and the between variance.  The formulas for each are shown below (Dean 
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2005). 

̂EPV =
∑
g= 1

G

∑
n= 1

N g

W gn( X gn− X̄ g)
2

∑
g= 1

G

( N g− 1)
 

  
(2.1) 

 

̂VHM =
∑
g= 1

G

W g ( X̄ g− X̄ )2− (G− 1) ̂EPV

W−
∑
g= 1

G

W g
2

W  

  

(2.2) 

Where EPV is the expected value of  the process variance, or the “within variance”, and VHM is the 

variance of  the hypothetical means, or the “between variance”.  W is the weight, G is the number of  groups, 

N is the number of  periods, X gn  is the indication for group g in period n, X̄ g  is the average for group g 

across all periods, and X̄  is the average across all groups and periods. 

2.1 The Within Variance 

For loss ratios, we will assume that the variance of  total losses is proportional to the premium, which 

implies that the variance of  a loss ratio is proportional to the inverse of  premium (since calculating the 

variance of  the latter involves dividing the former by the square of  the premium).  A closer look shows that 

this must be the case, since the variance of  total losses for two (uncorrelated) accounts is equal to the sum of  

the individual variances.  Assuming any other relationship between premium and variance will not agree with 

this result and will lead to inconsistencies.  Similarly, for loss costs, we will assume that the variance is 

inversely proportional to the exposures. 

The next question is what data should be used for calculating this parameter.  The answer is that it should 

be based off  of  the observed experience, although this is not as straightforward as it sounds.  The variance 

should not be based off  of  the final selected estimates for each year by using a Bornhuetter-Ferguson 

method; doing so artificially reduces the variance since each year is moved closer to the a priori estimate and 

so does not represent the true volatility in the data.  Instead, we recommend using an approach similar to the 

Cape Cod method that compares actual paid or reported losses to used premiums, which are premiums 

divided by the loss development factor.  If  the data is capped and excess ratios are used to produce final 

uncapped loss ratios, then the excess ratios should be applied to the premiums as well to produce used, 

capped premium, since this reflects the premium relevant to the capped losses.  If  we want, we can also 

reflect the fact that some of  volatility observed in the loss ratios is due to yearly changes that are not captured 

in trend or rate changes.  We can take this into account and give older, less predictive years less weight by 
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applying an exponential decay factor to the weights as well.  This will be discussed further later on.  Doing 

this will reflect the level of  credibility inherent in each year and group, and this is the weight that should be 

used in the formulas above.  Dividing capped paid or reported losses by used, capped premium is 

mathematically equivalent to using the chain ladder estimates for the ultimate loss ratios multiplied or divided 

by one minus the excess ratios, depending on how the excess ratios are expressed.  So, we are essentially using 

chain ladder ultimate loss ratios with weights for each year as described.  Using this method, we can analyze 

the actual experience that has emerged and the volatility estimates will be appropriate. 

Note that the within variance formula above multiplies the differences squared by the weights, but does 

not divide by the total of  the weights afterwards.  This is because the within variance used in the Bühlmann-

Straub formula is really more accurately described as a within variance factor, and not the actual within 

variance for anything in particular.  This can be seen from the Bühlmann-Straub credibility formula as well; 

rearranging the formula below shows that this parameter is divided by the dollar amount to come up with the 

final within variance. 

Z= N
N + W / A

= 1

1+ W / N
A

= 1
1+ V / A

 

Where N is the weight, W is the within variance from the Bühlmann-Straub formula, or the within 

variance factor as we will call it, V is the actual within variance, and A is the between variance. 

The within variance formula (2.1) assumes that the product of  the weights and the square differences 

from the mean all have the same expected value.  The square differences from the mean represent the 

variance component.  So, by taking the average of  these values as the within variance factor, this formula 

essentially assumes that the variances of  each year multiplied by the weight are consistent, which is the same 

as assuming that the weights are proportional to the variance. 

Lastly, we will note that formula (2.1) takes an average of  the within variance factors by segment, only 

weighting by the number of  years, but not the premium volume.  If  one wishes, one can modify the formula 

and use a weighted average by premium volume instead. 

2.2 The Between Variance 

The second parameter, the between variance, is even more volatile and difficult to calculate than the first.  

When constructing a hierarchical model with multiple levels, for smaller, lower down levels, if  the estimates 

of  this parameter appear unreasonable, assumptions can be made for how each level's between variance 

relates to the levels above it, and it can then be judgmentally selected accordingly.  This parameter is easier to 

calculate with more groups, and so it can also be calculated between finer segmentations than being used, and 

then judgmentally adjusted as well.  The formula shown above (2.2) can sometimes return negative values, 
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which means that the indicated between variance is zero. 

This formula also assumes that the within variance factor is the same for all groups.  Using the logic we 

discussed, the following formula can be used when the within variance factor is assumed to differ among 

segments.  Caution should be used when doing this however; the within variance is difficult to calculate due 

to data volatility.  It is normally best to use an average across segments for everything.  This should only be 

done in some special cases where the within variance is expected to be significantly different between groups, 

such as when working with primary and excess data together. 
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3. CALCULATION OF LOSS RATIOS 

For the loss ratios used in any credibility method, we recommend using similar guidelines as mentioned, at 

least as a starting point.  This is not essential however, except for when working with mixed models, which 

will be discussed later.  To recap, the loss ratios for each year are equal to the capped paid or reported losses 

divided by the used, capped premium, which is the premium divided by the LDF and then multiplied or 

divided by one minus the excess ratio (ignoring trend and on-leveling).  As we mentioned, this is equivalent to 

multiplying the capped loss ratios by the LDF and then multiplying or dividing by one minus the excess ratio. 

If  the losses are capped, the loss ratios produced from the credibility procedure should be adjusted to 

reflect the fact that we are only analyzing a portion of  the losses.  The final loss ratio should be taken as a 

weighted average of  the credibility weighted result and the overall average loss ratio with weights of  one 

minus the excess ratio and the excess ratio, respectively (assuming that the excess ratio is expressed as a 

percentage of  total losses).  This approach assumes that the excess portion that we are not analyzing is 

running the same as the average for all segments.  (It is also acceptable, however, to assume that the excess 

portion for each segment is running the same as the capped portion and to skip this adjustment, if  one 

desires.) 

An additional factor should also be applied to the weight for each year so that more recent years which 

have more predictive power for the going forward loss ratio receive more weight.  This factor is needed since 

a Bornhuetter-Ferguson method is normally done using the a priori loss ratio obtained from the Cape Cod 

method.  This step uses the a priori loss ratio, but effectively gives even more weight to the recent years, 
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which have the most predictive power for the going forward loss ratio.  Since we are skipping this step, we 

need another way to give some more weight to the latest years.  An exponential decay factor of  0.95 should 

give similar indications as the full Cape Cod/Bornhuetter-Ferguson method, depending on the LDFs, and a 

higher or lower factor can be used based on the perceived rate that the business is changing.  So, to recap, the 

weights should be the used premium multiplied or divided by one minus the excess ratio, multiplied by the 

yearly decay factor.  To keep the weights given to each segment appropriate, the total premium should be used 

as the weight when combining across segments, and the weights mentioned should only be used when 

aggregating results across years.  If  the same premium is used for multiple LDF segmentations, the used 

premium can be calculated using the implied LDF, that is, the total calculated chain ladder ultimate divided by 

the paid or reported losses. 

There are many advantages to this approach.  The first is that loss ratios produced in this fashion are a 

good representation of  the actual experience for each year, and the weights correspond to the amount of  

credibility inherent in each year's estimate; this makes the data well suited for a credibility routine.  Second, it 

is easier to streamline and automate than a Bornhuetter-Ferguson or other similar method, especially when 

there are many segmentations in the data.    Third, it makes it easier to apply assumptions at finer levels of  

detail than the Bornhuetter-Ferguson method.  Lastly, the final weights given to each year are more explicit 

instead of  being implied from the loss development pattern. 

There is sometimes some confusion that a Bornhuetter-Ferguson method already performs credibility 

weighting.  This is only true from a reserving perspective, but not from a going forward profitability point of  

view.  A Bornhuetter-Ferguson method gives more weight to the a priori loss ratio for more recent, greener 

years for which the IBNR for those years are more uncertain.  But from a going forward perspective, even if  

all losses came in instantaneously and there was no need for any loss development, there would still be a need 

to credibility weight results because of  the volatility inherent in the experience.  For complete years, the 

amount of  credibility for each year depends on the premium volume.  For incomplete years, it is the premium 

multiplied by the percentage of  the year that we have already observed.  (The variance is really slightly higher 

because of  the uncertainty in the estimation of  the LDFs, but accounting for this would just give more 

weight to older years, which is counter-intuitive.)  So, for a going forward, pricing perspective, if  credibility is 

being applied, we recommend not using the Bornhuetter-Ferguson method and sticking with the original 

chain ladder method with weights as described.  Doing this is non-essential, however, as we mentioned, 

except for mixed models.  But regardless of  which methods are used to calculate the actual loss ratios, the 

Bornhuetter-Ferguson results are not appropriate for the calculation of  the within variance. 

We will illustrate one way of  performing this method with an example: we are developing a book of  

business that contains segments and sub-segments that we wish to perform credibility on in a hierarchical 

fashion.  We group the data at the sub-segment level.  We then calculate three values for each sub-segment for 
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each year:  the on-level premium; the trended, uncapped loss ratio; and the weight.  The calculation of  the 

on-level premium is straightforward.  The calculation of  the latter two is shown in these two formulas 

(assuming that our analysis is performed on capped, reported losses and that excess ratios are expressed as a 

percentage of  total losses): 

 

Loss Ratio= Capped Reported Losses
On - Level Premium

× LDF × Trend Factor /(1− Excess Ratio)  
 (3.1) 

 
Initial Weight = On - Level Premium / LDF × (1− Excess Ratio)× Yearly Decay Factor  

  

(3.2) 

 

Using these initial weights in the credibility calculation would cause improper weights being given to each 

segment and sub-segment that are not based on the total premiums of  each.  To use the total premium as the 

weights, but still perform the Cape Cod approach as we described above, we apply an off-balance factor for 

each sub-segment and calculate the final weights used as follows:  (Subscripts are used in the below for added 

clarity; they were ignored in 3.1 and 3.2 for brevity.) 

 

Off - Balance FactorSub-Segment=
∑

AllYears

On - Level PremiumSub-Segment

∑
All Years

Initial WeightsSub-Segment

 

  

(3.3) 

 
FinalWeight Sub-Segment ,Year= Intial WeightSub-Segment ,Year× Off - Balance FactorSub-Segment  

  

(3.4) 

 

The final loss ratio to use as the input for each sub-segment is calculated by taking the weighted average 

of  the yearly loss ratios using this as the weight.  With this approach, summing up the results by segment and 

year and then calculating the segment loss ratios will tie to the sum of  the sub-segment loss ratios, which is 

clearly a desired condition.  These final weights can also be used as the base for final weights in a Generalized 

Linear Mixed Model (GLMM) or a Bayesian credibility model and both the regression weights and the relative 

credibility by year will be appropriate.  (A further step is really needed for GLMMs, which will be discussed 

later.)  Once the credibility procedure is run, the final selected loss ratios are equal to: 

 

LRSub-Segment= Credibility Loss RatioSub-Segment× (1− XSRSub-Segment )+ Average LR× XSRSub-Segment  (3.5) 
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Where LR is the loss ratio and XSR is the excess ratio.  As mentioned, it is also acceptable to skip this last 

step.  As a compromise, instead of  using the overall average loss ratio, the loss ratio from the corresponding 

segment can be used as well. 

As a slight alternative, it is also possible to develop losses and calculate the initial weights at the policy 

level.  Results can then be rolled up into sub-segments by adding the ultimate losses and the initial weights 

from each policy.  The final weights can then be calculated at this level, although it is possible to calculate 

them at the policy level as well.  Doing this yields the same results, but allows for more flexibility in the 

segmentation structure used for credibility and also makes it easier to use assumptions, such as LDFs and 

excess ratios, at the policy level. 

As mentioned, this approach produces data that fits very nicely into a credibility procedure.  Another 

benefit is that the segmentation structure has less of  an impact on the final results than a similar Bornhuetter-

Ferguson method. 

4. THE TUG-OF-WAR CREDIBILITY METHOD 

We will introduce a credibility method that ensures that the average of  the resulting credibility weighted 

results matches the original.  This method is well suited for performing a credibility weighted allocation but 

has other uses that will be discussed.  We will focus on loss ratios, although this method can be applied to 

other items as well. 

A frequent problem with applying credibility to loss ratios, is that the average of  the credibility weighted 

results often does not match the original.  This causes practical issues since now we must either change our 

originally selected overall estimate or else the sum of  the segments will not tie to the combined.  A common 

solution is to apply an off-balance factor that forces the average of  the credibility weighted loss ratios to equal 

the original overall average, but doing so often produces questionable results, especially when the segments 

are small and when this off-balance factor is large.   

These problems will be demonstrated with the following example:  We are analyzing a book of  business 

with a total premium volume of  $200 million, which consists of  one very large segment with $100 million of  

premium and a bunch of  smaller segments that in total make up the other $100 million.  The total loss ratio is 

judged to be 70%, and we wish to produce credibility weighted loss ratios for each of  the segments.  The loss 

ratio of  the large segment is 90% and is almost fully credible.  The smaller segments have an average loss 

ratio of  50%, and because of  their size, have almost no credibility.  If  we calculated credibility weighted loss 

ratios for each segment, the large segment would end up with a loss ratio close to 90%, and the smaller 

segments would be assigned loss ratios close to the overall mean, which is 70%.  Each of  these results seem 

to make sense at the individual level, but summing up all the parts, our average loss ratio for the book is now 



Credibility for Pricing Loss Ratios and Loss Costs 

Casualty Actuarial Society E-Forum, Fall 2015 8 

around 80%, much higher than the originally estimated 70%.  If  we applied an off-balance factor to each of  

the loss ratios, the factor would be equal to 0.7 / 0.8 = 0.875.  The large segment would now have a loss ratio 

of  0.9 x 0.875 = 78.75%, and each of  the smaller segments would have loss ratios of  0.7 x 0.875 = 61.25%.  

The combined average loss ratio is now 70%, as expected, but the results by segment are no longer 

reasonable.  The large, almost fully credible segment is not given enough credibility, only around 50%, and the 

smaller segments are given way too much. 

However, if  we took a closer look at the above, the results before the off-balance factor may be 

problematic as well.  If  the total loss ratio is 70% and there is one large, nearly fully credible segment with a 

loss ratio of  90%, then this should imply that the total loss ratio of  the smaller segments is 50%.  In fact, if  

we conducted our analysis removing the large segment, this is what we would expect to see.  The average loss 

ratio of  the smaller segments can be deduced from what we know about the larger segment.  Neither method 

above takes this into account since they both look at each segment individually, ignoring the results of  the 

other segments. 

4.1 Using Bayesian Credibility 

To implement this method, we will be using a simple Bayesian credibility model that does not require any 

special software to run.  The results of  this model are also consistent with Bühlmann-Straub credibility as will 

be shown.  The reason for using the Bayesian version is because the Bühlmann-Straub method only produces 

a point estimate, whereas we need to know the entire distribution so that we can find the most optimal 

solution subject to the constraint that the results must tie to the original overall number.  This can only be 

done using the Bayesian version. 

We will be using a normal distribution to model loss ratios, although with variances that differ for each 

observation.  Note that this assumption is not the same as assuming that these items are normally distributed; 

we are only assuming that each individual loss ratio has a normal distribution on what its possible outcomes 

might have been.  In this way, it is more similar to kernel smoothing than to assuming a distribution.  

Assuming normality with variances inversely proportional to the dollar amount also produces the same results 

as taking a weighted average by the dollar amounts, and so is consistent with traditional actuarial analysis. 

We will also be assuming that the prior distribution (that is, the credibility complement, in Bayesian terms) 

is normal as well, which is the common assumption.  This is a conjugate prior and the resulting posterior 

distribution (that is, the credibility weighted result) will also be normal.  Only when we assume normality for 

both the observations and the prior, Bayesian credibility produces the same results as Bühlmann-Straub 

credibility.  The mean of  this posterior normal distribution is equal to the weighted average of  the actual and 

prior means, with weights equal to the inverse of  the variances of  each.  As for the variance, the inverse of  

the variance is equal to the sum of  the inverses of  the within and between variances (Bolstad 2007).  The 
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variance of  the item being credibility weighted is comparable to the within variance, and the variance of  the 

prior is comparable to the between variance.  This means that the resulting credibility assigned is equal to the 

inverse of  the within variance divided by the sum of  the inverses of  both the within variance and the between 

variance.  Using some algebra: 

Z= 1/V
1/V + 1/ A

× V
V

= 1
1+ V / A  

Where V is the within variance and A is the between variance (or equivalently the variance of  the prior 

distribution).  Examining the Bühlmann-Straub credibility formula again, where W is the within variance 

factor: 

Z= N
N + W / A

= 1

1+ W / N
A

= 1
1+ V / A

 

So, it can be seen that when using normal distributions, Bayesian credibility is equivalent to Bühlmann-

Straub credibility.  The likelihood formula for this Bayesian model is: 

 

N(Credibility Result, Actual Result, Within Variance) 

+ N(Credibility Result, Credibility Complement, Between Variance) 

  

(4.1) 

 

Where N(A, B, C) is the logarithm of  the probability density function (PDF) of  a normal distribution at 

A with a mean of  B and variance of  C.   Maximizing the likelihood of  this formula will produce the 

mentioned result.  As an alternative, it is also possible to use the formulas for the mean and variance of  the 

posterior normal distribution that we mentioned.  (As a practical issue when programming, it may be 

necessary to set a minimum on the PDF values so that they are not too close to zero, which can cause 

problems with logarithms.) 

This simple Bayesian model can be solved using only Maximum Likelihood Estimation (MLE).  Since the 

resulting posterior distribution is normally distributed, the mode of  this distribution is equal to the mean, as 

is known.  This means that the MLE, which returns the mode, will also be returning the mean in this case. 

4.2 Implementing the Method 

To implement the Tug-of-War method, we maximize the likelihood of  the credibility weighted loss ratios, 

while constraining the parameters so that the resulting average will match the original. 

To do this, we start with initial parameters that represent the relative amount of  the total losses allocated 

to each segment.  We then use these initial parameters to calculate percentages that will always add up to one 
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by taking the initial parameter for each segment and dividing by the sum of  all of  the initial parameters.  We 

then convert this into a loss ratio by multiplying each percentage by the total amount of  losses across all 

segments and then divide by the premium for each segment.  We then calculate the likelihood for each loss 

ratio using the Bayesian credibility formula shown above.  Since each loss ratio affects all of  the others, we 

need to weight the likelihood of  each segment to account for this.  The weights used for each segment should 

be the premium.  (To use weights in MLE, each log-likelihood should be multiplied by the weight.)  The initial 

parameters are set using an optimization routine that maximizes the total likelihood. 

In practice, it helps if  the initial parameters are on a logarithmic scale so that negative numbers do not 

cause problems with negative loss ratios.  The parameter of  one of  the segments can be fixed at a number 

such as zero or another value, since the real number of  parameters is one less than the number of  segments 

since the sum of  the percentages must equal one.   Also, to help ensure that the maximization routine 

converges to the correct solution, good starting values should be chosen; these can be obtained from the 

regular Bühlmann-Straub indications. 

There are multiple ways to implement the above scheme.  Another way is to set the percentages of  one of  

the segments to one minus the sum of  the rest, although this can sometimes result in negative percentages.  

Another version that is sometimes helpful is to use relativities instead of  percentages.  In this version, the 

initial parameters are the initial relativities (on a logarithmic scale).  The average relativity is then calculated by 

taking a weighted average of  these initial relativities using the premium as the weight.  The final relativities are 

then set to the initial relativities divided by the average.  This will ensure that the resulting average matches the 

original.  Note that in both versions, credibility is calculated on the loss ratios themselves and not on the 

percentages or the relativities. 

To review, the steps are as follows: 

1) Initial Parameters(Set by Maximization Routine)  
2) Relative Percent of Lossesi= exp( Initial Parameteri)  

3) Percent of Lossesi=
Relative Percent of Lossesi

∑ Relative Percent of Losses  

4) Loss Ratioi= Percent of Lossesi× Total Losses/ Premiumi  

5) Log- Likelihood i= Log- Likelihood ( Loss Ratioi)× Premiumi  
6) Total Log- Likelihood =∑ Log- Likelihood i  

If  implementing the relativities version, the steps are slightly different: 

1) Initial Parameters(Set by Maximization Routine)  
2) Initial Relativityi= exp ( Initial Parameteri)  
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3) Average Relativity= ∑ Initial Relativitiesi× Premiumi

∑ Premiumi
 

4) Relativity i= Initial Relativityi / Average Relativity  

5) Loss Ratioi= Relativityi× Overall Loss Ratio  

6) Log- Likelihood i= Log- Likelihood ( Loss Ratioi)× Premiumi  
7) Total Log- Likelihood =∑ Log- Likelihood i  

We named this method the Tug-of-War method because each loss ratio tries to maximize its own 

likelihood, and because of  the constraint that the resulting average must equal the original, each loss ratio 

“tugs” on all of  the others as they fight for the highest likelihood that they can achieve.  This method 

produces better results than the application of  a simple off-balancing factor, since the likelihood is maximized 

over all possible combinations that tie to the original average, and so the best tying result is selected.  The 

complement for each segment is essentially revised based on available information from the other segments.  

It should be noted though that if  the off-balance is small, there may not be much benefit to using this more 

complicated method, and the use of  a simpler off-balancing factor may be preferable. 

For both the overall loss ratio used as the complement of  credibility as well as the individual segment loss 

ratios used in this model, they can be either actual loss ratios dictated solely from the experience, or they can 

be selected with some degree of  judgment.  If  the overall loss ratio used is a selected loss ratio, and the 

segment loss ratios are from the experience, this method is essentially performing a credibility-weighted 

allocation of  the selected loss ratio.  A hierarchical model can also be built where the overall loss ratio used 

for each level is the credibility weighted result from the previous level.  Alternatively, if  the segment loss 

ratios are judgmentally selected, and the overall is set to the average of  these loss ratios, then this method 

performs a credibility weighting on the selected loss ratios. 

As another similar option, it is possible to use the actual, experience dictated loss ratios for both the 

overall and the segments and have this method take care of  all the selections via credibility weighting, since 

with a good credibility method there is less need to manually select loss ratios.   Adjustments can be made 

afterwards though, if  needed.  A hierarchical model can be built similar to the above, as well.  It is suggested 

to use loss ratios and weights as was explained above, but any reasonable method can be used as long as the 

within and between variances are calculated correctly. 

A couple of  examples of  applying this method are shown below for illustration.  The first is very similar 

to the one given above but shows the actual estimate produced from applying this method in practice. 
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 Total Segment 1 Segment 2 Segment 3 Segments 4 - 21 

Total Premium 20M 10M 500K 500K 500K 

Loss Ratio 70% 100% 40% 40% 40% 

Within Standard 

Deviation 

3.9% 31.6% 31.6% 31.6% 31.6% 

Between Standard 

Deviation 

10%     

Tug-of-War LR 70% 93.2% 46.8% 46.8% 46.8% 

Implied Credibility  77.2% 77.2% 77.2% 77.2% 

Bühlmann-Straub LR 81.7% 96.1% 67.3% 67.3% 67.3% 

Bühlmann-Straub 

Credibility 

 87.0% 9.1% 9.1% 9.1% 

 

Note that with this method, the large segment receives slightly less credibility than it does using the 

Bühlmann-Straub method.  This is because the result of  this large segment affects not only its own loss ratio, 

but all of  the other segments as well. 

The next example is nearly identical except that one of  the smaller segments, segment 3, has a higher loss 

ratio of  80%.  The details are shown below.  The point of  this example is to show that negative credibilities 

are possible since the large segment with ten million in premium and a very high loss ratio essentially lowers 

the complement of  credibility for the remaining segments, since, as we have mentioned, we would expect to 

see an overall lower loss ratio if  we performed the analysis without this large segment.  Note though that the 

resulting Tug-of-War loss ratio for this segment still comes out higher than the other small segments, as 

expected. 
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 Total Segment 1 Segment 2 Segment 3 Segments 4 - 21 

Total Premium 20M 10M 500K 500K 500K 

Loss Ratio 71% 100% 40% 80% 40% 

Within Standard 

Deviation 

3.9% 31.6% 31.6% 31.6% 31.6% 

Between Standard 

Deviation 

10%     

Tug-of-War LR 71% 93.4% 48.4% 52.1% 48.4% 

Implied Credibility  77.2% 72.8% -210.3% 72.8% 

Bühlmann-Straub 

LR 

82.3% 96.2% 68.2% 71.8% 68.2% 

Credibility  87.0% 9.1% 9.1% 9.1% 

 

These results and implied credibilities will be explained more in the next section as well. 

4.3 Understanding the Results 

The loss ratios resulting from this method can sometimes be difficult to interpret at first glance.  Even 

though the correlation between the resulting loss ratios from this method and the Bühlmann-Straub method 

are usually very high, the relationship between the credibility numbers is less apparent at first.  In the simple 

examples shown in the previous section, it was relatively easy to understand the results, but more realistic 

scenarios can be more difficult to interpret.  

As we explained above, the complement of  credibility is effectively changed with this method as it takes 

all of  the information about the expected average loss ratio and the other segment's loss ratios into account.  

A segment's loss ratio is impacted by the other segments’ loss ratios since they provide information and can 

be used to imply something about our current loss ratio.  The amount of  impact other loss ratios affect each 

other is related to how credible each loss ratio is.  Using this logic, we can produce a formula to derive what 

the effective complement for each segment's loss ratio is.  We do this by starting with the total losses for the 

entire book and subtracting out the amount of  losses from all of  the other segments using the Bühlmann-

Straub derived loss ratios.  But subtracting out all of  these losses would be giving the effect that segments 

have on each other too much weight.  To account for the partial credibility of  these loss ratios, we subtract 

out only a portion of  the losses; for this fraction, we use the calculated Bühlmann-Straub credibilities as an 

approximation.  We then divide by the appropriate premium volume to convert these losses into loss ratios.  
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With this formula, each group receives a different effective complement based on the loss ratios and relative 

weights of  all of  the other segments.  The formula is as follows: 

 

Complement=
Total Premium× Average LR− ∑

i= AllOther Segments
Premiumi× Cred LRi× Z i

Total Premium− ∑
i= All Other Segments

Premiumi× Z i
 

  

(4.2) 

 

Where Cred LR is the Bühlmann-Straub loss ratio and Z is the credibility.  The implied credibility from this 

new effective complement can be calculated by inverting the credibility formula and solving for Z, which 

results in the following: 

 

Z =
LRCred− LRComplement

LRSegment− LRComplement
 

 (4.3) 

 

These resulting credibilities will not match the Bühlmann-Straub credibilities exactly, but the correlation is 

usually very high, and these can be used to help explain the results. 

As mentioned, some of  the resulting loss ratios may not fall in between the (original) complement and the 

initially indicated loss ratio.  Even though we can understand and explain the results, this may still be 

undesirable.  A simple solution is to just select different loss ratios for these segments.  This occurs most 

often with smaller segments and so the impact to the overall average will be small.  Another solution is to 

apply a penalty to the likelihood to help keep the results within range.  One way to do this is to subtract from 

the likelihood the product of  the amount that the loss ratio is out of  the range by some small penalty 

constant.  (This should be done within the parenthesis before the likelihood is multiplied by the premium so 

that the penalty is multiplied by the premium volume as well; this seemed to work best.  Also, the penalty 

should usually be less than one or two.)  This approach will not guarantee that the loss ratios remain within 

the range, but it will help push them closer and make being outside of  the range less likely.  Note, however, 

that using a penalty puts more constraints on the loss ratios and often lowers the correlation between the 

implied credibilities and the original and so may make the other loss ratios more difficult to explain. 

4.4 Using Classical Credibility 

Even though this method requires the within and between variance parameters, it can also be 

implemented in a classical credibility-like (or limited fluctuation) fashion, if  desired.  Even though classical 

credibility has some guidelines for selecting different credibility thresholds, such as having the estimate not 
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deviate by more than 5% from the true value 90% of  the time etc., any such selections for these parameters 

are mostly arbitrary.  That is not to say that there are any problems with using classical credibility; it is just 

important to realize the need for judgmental estimates and not assume that the results are more objective 

than they really are.  Classical credibility can provide reasonable credibility weighted results in a small amount 

of  time, which in itself  is a lot to say in its support. 

The Bühlmann-Straub credibility formula is N / (N + K).  This formula will assign 50% credibility when 

N = K, and so K can be thought of  as the criteria for half  credibility.  The premium threshold for this can be 

judgmentally selected.  Alternatively, if  one is more comfortable with choosing a full credibility threshold, a 

threshold can be selected for approximate full credibility, and we can then rearrange the classical credibility 

formula of  Z= √X / K  to K Half  Credibility  Criteria= 0.25 K Full  Credibility  Criteria  to convert this into a rough 

half  credibility threshold, although of  course, this will not be exact. 

Using this, the within variance for a segment can be set as the inverse of  the dollar amount being used as 

the weight multiplied by a factor.  The between variance can be set to the inverse of  the dollar amount that 

should receive half  credibility multiplied by the same factor.  The actual factor used has no impact; it is just 

needed to put the variances on an appropriate scale so that the method can converge. 

5. USING GENERALIZED LINEAR MIXED MODELS 

5.1 Credibility Weighting Loss Ratios and Loss Costs 

As an alternative to the methods presented above, it is also possible to use a Generalized Linear Mixed 

Model (GLMM) to credibility weight loss ratios and loss costs.  See Klinker (2011) for an introduction to 

these models.  Using a GLMM with an identity-link and a normal distribution will produce the same results as 

applying Bühlmann-Straub credibility.  Besides for the benefits it offers of  easily allowing hierarchical and 

multidimensional models, using a GLMM automates the calculations of  the within and between variances. 

A problem, however, arises when using premiums as the base for the weights, since a GLMM assumes 

that a weight represents a number of  observations.  Because of  this, using premium will almost always result 

in assigning full credibility to everything since each premium dollar will be counted as an observation and so 

the number of  observations will be very high1.  Using an alternative weight, such as claim counts, does not 

fulfill the desired objective of  weighting by premiums, since GLMMs use the same weights for credibility as 

they do for the regression.  Weighting by counts may also cause a bias if  there are some segments with high 

frequency, low severity claims that have a high loss ratio and vice versa, for example.  One solution is to 

multiply the weights by an additional constant equal to the total number of  reported claims across all 

                                                 
1 The referenced paper actually shows an example using premium as weights but this appears to be an error. 
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segments divided by the sum of  the original weights so that the new sum of  the weights across all segments 

will be equal to the total number of  reported claims.  This will allow us to weight by premium volume but still 

keep the total weight consistent with the number of  observations overall.  This approach produces reasonable 

credibility estimates when applied in practice.  To summarize, using this method in addition to what we 

discussed above, the weights should be equal to the following: 

 

Premium / LDF x (1 - Excess Ratio) x Yearly Weight Factor x K  (5.1) 

 

Where K is the factor that we mentioned2.  Note that there is only one K factor for all of  the data and it 

has the same value for every segment, regardless of  the actual number of  claim counts for each.  Using this 

approach, it is possible to build hierarchical and multidimensional credibility models using GLMMs. 

Using a GLMM also allows us to use a log-link when credibility weighting, which sometimes produces 

better results than an identity-link when there are extreme values, as there often are with volatile data, but not 

always; both ways can be tested to see which produces better results.  To avoid errors caused from taking the 

logarithm of  zero, observations with loss ratios of  zero should be modified to a very small number slightly 

above zero, such as 0.00001.  Also, even without a log-link, loss ratios with zero weights should be removed 

so as to not cause errors, which will occur with some GLMM implementations if  left in. 

5.2 Multidimensional Credibility Models 

With GLMMs, it is also possible to build a multidimensional credibility model in which each dimension is 

assigned a relativity, and each relativity is credibility weighted back towards zero.  For multidimensional 

models, multiplicative relativities usually behave much better and are recommended. 

Assuming we have two dimensions and we wish to perform credibility weighting on the relativities of  

each, there are two main types of  models we can build, and another that is a compromise of  these two 

approaches, as will be explained.  For this section, we will assume that the two dimensions we are dealing with 

are industry and territory. 

The first type of  model is a true two dimensional model where the resulting loss ratios are the product of  

the two relativities.  This assumes that territory relativities are the same for each industry (and vice versa).  So 

if  a particular territory is higher than average overall, it will be higher for every single industry by the exact 

same amount.  A positive of  this model is that it leverages the credibility of  each territory across all 

industries.  But this is a down side as well since it assumes the relativities are always the same, which they will 

not always be. 
                                                 
2 Note that this additional factor is not needed for Bayesian models. 
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The second type of  model we can build is really a hierarchical model.  For example, we can put territory 

under industry and first perform credibility at the industry level.  We then perform a separate territory 

credibility calculation for each industry.  This will allow territory relativities to differ by industry, but does not 

leverage the credibility of  a territory across industries.  Which of  these two models to choose depends on our 

perception of  how different the territory relativities are across industries and how volatile our data is.  Both 

of  these models can be calculated using GLMMs. 

A compromise model can also be built that leverages the credibility of  each territory across the industries, 

but also allows each industry's territory relativities to differ based on the amount of  credibility within each 

cell.  In this model, the territory relativities for each industry are effectively credibility weighted back towards 

the overall territory relativity, which itself  is credibility weighted back towards zero.  This is the ideal model 

that combines the best points of  each of  the above models.  Such a model can be built using a GLMM with 

both industry and territory included as random effects (that is, included as components of  the model that 

take credibility into account), and the interaction of  these two added as a third random effect3.  This type of  

model is very powerful at producing results at fine levels of  detail even when the data is very thin and volatile. 

5.3 Uneven Hierarchical Models 

When building a model to perform credibility weighting, sometimes we can encounter a data structure 

where each group has a different number of  levels.  For example, suppose we are building a hierarchical 

model on groups and subgroups that looks like the following: 

 

 

 

Groups A and B each have two children, while groups C and D only have one, and so really do not have 

                                                 
3 In R, an interaction is added by using a colon between variables.  Using the lme4 package, a random effect has the 

syntax, (1 | group) where group is the variable we create a random effect on.  To do as described, the syntax would be:  
(1 | industry) + (1 | territory) + (1 | industry: territory) 
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any sub-groupings.  This can create problems when building a GLMM since if  random effects are assigned to 

the subgroups C1 and D1, the groups C and D will each have two credibility coefficients that do the same 

thing, effectively giving double credibility to these groups.  Really, we would want the coefficients for C1 and 

D1 to be given values of  zero.  This is in fact what happens when building a GLM on this type of  data, but 

not with a GLMM. 

This type of  model can be built using a GLMM if  we add the subgroup random effects as slope 

coefficients instead of  regular intercept coefficients.  To explain, most random effects modify the intercept 

and add or subtract an amount from the intercept, which is same as adding or subtracting this term from the 

entire equation.  But it is also possible to have a random effect behave like a slope parameter instead4.  Doing 

this, the coefficients of  the random effects are multiplied by a data variable in the equation.  Using this, we 

can create a new variable that is one if  its subgroup has any siblings, meaning that it is not the only child of  

its parent, and zero if  it has no siblings.  If  we create the subgroup random effect as a slope on this variable, 

it will not allow the nodes C1 and D1 to have non-zero values, and the model will behave as expected. 

Similarly, if  building the “compromise” model described in the previous section where we gave the 

example of  constructing a model by industry and territory, this unevenness of  levels may need to be 

accounted for as well.  A regular model will give double credibility if  there is a territory with only one 

industry, or an industry only under a certain territory.  Instead of  siblings, we refer to these relationships as 

cousins.  To account for this, similar binary variables can be setup in the data that indicate whether any 

cousins exist, and the random effects can be added as slope parameters to these variables as described. 

5.4 Implementing Mixed Models in Spreadsheets 

GLMM credibility models that are either additive or multiplicative can also be implemented in 

spreadsheets fairly easily using maximum likelihood estimation.  To do this, we first determine the formula of  

the loss ratios, such as log(Fitted LR) = intercept + territory + industry, which would create a multiplicative model 

with territory and industry relativities.  To build a regular GLM without credibility weighting, the log-

likelihood should be calculated as follows: 

 

∑ N ( Fitted LRi , Actual LRi , WithinVariance Factor / Premium Basei)   (5.2) 

 

Where N(A, B, C) is the logarithm of  the Normal PDF at A with a mean of  B and a variance of  C.  The 

                                                 
4 The syntax shown in the previous footnote will create a random effect on the intercept.  To create a random effect 

on the slope, the syntax is: (0 + variable | group) where variable is the variable we are creating the slope on.  (The “0 +” 
is needed here to let it know not to create the random effect on the intercept as well.  If  we left this part out, random 
effects would be added both to the intercept and as a slope.) 
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intercept and territory and industry coefficients should all be determined using a routine that maximizes the 

total log-likelihood. 

A GLMM can be implemented using the simple Bayesian model we described above since MLE 

parameters are assumed to be approximately normally distributed, and so the posterior distribution should be 

approximately normal as well.  To calculate the log-likelihood for the GLMM, we add the following to 

formula (5.2): 

 

∑
t= all territories

N (Coefficient t , 0, BetweenVariance Territories)  

+ ∑
i = all industries

N (Coefficient i , 0, BetweenVariance Industries)  

  

(5.3) 

 

Using zero as the mean for the prior distributions effectively weights everything back towards the 

intercept, which is what performs the credibility weighting.  The between variances are difficult to calculate, 

limiting the advantage of  this approach however.  They can be estimated by looking at the variances of  each 

parameter while controlling for all of  the other parameters, possibly by using a GLM. 

A plus side is that the Tug-of-War method can be implemented.  We suggest using the relativities version 

shown above and implementing as follows, assuming a multiplicative model:  The log-likelihood for the 

relativity coefficients should be calculated first using formulas similar to (5.3).  The exponent of  the log-

relativities should be taken to calculate the actual relativities for each combination of  dimensions and the 

weighted average overall relativity should be calculated.  Revised relativities should then be computed by 

dividing each relativity by the average and the final loss ratios can be calculated by multiplying these relativities 

by the average loss ratio.  The log-likelihood for each loss ratio can then be taken and added to the overall 

total.  This method will ensure that the overall average of  the credibility weighted results ties to the original.  

It is also possible to ensure that the average of  each loss ratio across a particular dimension, industry for 

example, ties the original average industry loss ratios as well.  This can be done by calculating the average 

relativities across each industry and dividing each relativity by the average relativity for each industry.  

Ensuring that the averages of  more than one dimension tie to the originals puts too many constraints on the 

solution and is not recommended5. 

                                                 
5 We ignored the log-likelihood weights in this discussion.  One option is to leave out the weights even though this 

may cause the Tug-of-War method to not work as well.  Another option is to apply weights to each relativity log-
likelihood equal to the total premium for each item across all of  the other dimensions, and weights to each loss ratio 
log-likelihood equal to the premium of  each.  This will help the Tug-of-War part of  the method work better but 
slightly violates Bayes’ formula which is the formula we are using for the credibility weighting. 
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6. ACCOUNTING FOR MIX CHANGES AND NON-RENEWALS 

The last topic we will discuss is non-renewals and business mix changes.  Very often, to improve a book 

of  business, some accounts or segments perceived to be under-performing will be non-renewed, and actuaries 

are often asked to quantify the impact of  these actions.  One method (which is often favored by the 

underwriters) is to completely eliminate all non-renewed business from the experience and calculate 

predictions on this cleaned up data.  But doing so does not account for the credibility of  the non-renewed 

business.  To give an extreme example, assume all policies have a loss on average of  once every five years and 

are completely identical in terms of  expected losses.  If  after a couple of  years, all accounts with a loss are 

non-renewed, the historical loss ratio on the remaining business will clearly look much better, but the book 

really has not changed at all.  The expected going forward loss ratio is exactly the same.  The same example 

can be applied to business mix changes as well. 

Instead, when calculating the benefit, we suggest incorporating credibility in most cases.  (In some cases, 

however, a major change has truly been made and a unique segment has been non-renewed for which the 

overall loss ratio of  the book does not serve as a good credibility complement; in these situations, it may not 

make sense to incorporate credibility.)  If  a particular segment is non-renewed, credibility weighted loss ratios 

can be produced by segment using one of  the methods described above, and the difference to the total loss 

ratio can be calculated both with and without this particular segment to determine the effect.  If  accounts 

with the highest frequency or loss ratios are non-renewed, credibility weighted loss ratios can be calculated by 

frequency or loss ratio band and the effect can be determined.  If  just a bunch of  poor accounts are non-

renewed, a hierarchical model that properly reflects the segmentations in the book of  business can be built 

that goes all the way down to the policy level, and the result of  excluding these policies can be determined as 

well.  Although this last case may be the most difficult to model.  The same applies to mix changes.  

Credibility weighted loss ratios can be produced per segment and the total weighted average loss ratio can be 

calculated before and after the change to help judge the effect on the overall book.  

7. CONCLUSION 

As pricing actuaries, we are relied upon to help make many important strategic and quantitative decisions.  

Without a good credibility mechanism, a choice often needs to be made between not giving enough detail and 

giving enough detail but not accurately.  Applying credibility allows us to balance these two demands and 

provide enough detail and do so accurately. 
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